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In classical inverse linear optimization, one assumes a given solution is a candidate to be optimal. Real data

is imperfect and noisy, so there is no guarantee this assumption is satisfied. Inspired by regression, this paper

presents a unified framework for cost function estimation in linear optimization comprising a general inverse

optimization model and a corresponding goodness-of-fit metric. Although our inverse optimization model is

nonconvex, we derive a closed-form solution and present the geometric intuition. Our goodness-of-fit metric,

ρ, the coefficient of complementarity, has similar properties to R2 from regression and is quasiconvex in the

input data, leading to an intuitive geometric interpretation. While ρ is computable in polynomial-time, we

derive a lower bound that possesses the same properties, is tight for several important model variations,

and is even easier to compute. We demonstrate the application of our framework for model estimation and

evaluation in production planning and cancer therapy.
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1. Introduction

In inverse optimization, one seeks to impute the cost function or other parameters of an

optimization problem in order to render a given solution optimal. Inverse optimization

methods have been developed for linear (Ahuja and Orlin 2001), conic (Iyengar and Kang

2005), convex (Keshavarz et al. 2011), integer (Schaefer 2009), multi-objective (Chan et al.

2014), variational inequality (Bertsimas et al. 2015), and countably infinite linear prob-

lems (Ghate 2015). Heuberger (2004) surveys inverse network and combinatorial problems.

Inverse optimization has found application in a wide variety of domains, including seismic

tomography (Burton and Toint 1992), demand management (Carr and Lovejoy 2000), rail-

road management (Day et al. 2002), auctions (Beil and Wein 2003), production planning

(Troutt et al. 2006), finance (Bertsimas et al. 2012), transportation (Chow and Recker
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2012, Chow et al. 2014), healthcare (Erkin et al. 2010, Chan et al. 2014, Ayer 2015), sus-

tainability (Turner and Chan 2013), and electricity markets (Birge et al. 2014).

This paper is motivated by advances to the classical inverse optimization paradigm

that arise from data-driven applications. The classical framework implicitly assumes that

there exist parameter values that make the given solution optimal (e.g., Ahuja and Orlin

(2001)). However, in many applications it may be impossible to find parameter values

that achieve this goal exactly (Troutt et al. 2006, Keshavarz et al. 2011, Chan et al. 2014,

Bertsimas et al. 2015). For example, a given datum may be a noisy observation of a pristine

solution to an optimization problem, or the model whose parameters are being estimated

may be a simpler, lower dimensional model than the one that generated the observation.

Applying the classical models in such situations will render the inverse problem infeasible or

its solution uninformative (e.g., it may return a trivial solution such as a zero cost vector).

Thus, a natural extension of the classical framework is to minimize a measure of error

in the fit between model and data in order to make the given solution “approximately”

optimal.

A natural way to measure the error in fit between model and data in inverse optimization

is via the optimality conditions of the underlying optimization problem. If the optimality

conditions are satisfied exactly, then there is no error in the fit. An example of this situation

is when the observed solution to a linear optimization problem lies on the boundary of the

feasible region – there exists a cost vector that optimizes that solution exactly. However,

if the optimality conditions cannot be satisfied exactly (e.g., the observed solution is an

interior point for a linear optimization problem) then there is a positive error in the fit.

In the latter case, inverse optimization can identify “ǫ-optimal” solutions, i.e., choices of

the parameters that enable the observed solution to approximately satisfy the optimal-

ity conditions (e.g., Troutt et al. (2006), Keshavarz et al. (2011), Bertsimas et al. (2015),

Chan et al. (2014)). In the literature, there are several approaches to measuring and mini-

mizing this error in the course of solving an inverse optimization problem. Given its broad

applicability, we believe a general measure of model-data fit error in inverse optimization

is needed. Note that a few studies have considered context-specific measures of model-data

fit error (Troutt et al. 2006, Chow and Recker 2012), while others have adapted statistical

concepts such as efficiency (Troutt 1995) and consistency (Aswani et al. 2015) for inverse

optimization.
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In this paper, we propose a unified framework for cost function estimation in linear

optimization including a general notion of model-data fit error, characterization of the

error-minimizing solution to the inverse problem, and a corresponding goodness-of-fit met-

ric. We draw inspiration from statistics, particularly regression, which has a long history of

measuring the fit between a statistical model and real data, intertwined with an optimiza-

tion model that determines the model parameters. For example, parameters of a linear

regression model are typically derived by minimizing the sum of squared errors between

the model and data, which leads to a characterization of the goodness of fit through the

coefficient of determination R2. Just as variants of R2 exist that are tailored to differ-

ent types of regression approaches (e.g., least squares, least absolute deviation, etc.), we

propose variants of our goodness-of-fit metric, ρ, that are intimately linked to variations

of our general inverse optimization model. We demonstrate the use of our framework to

guide model selection in inverse linear optimization. In particular, we use ρ to evaluate

and compare models that differ in their constraints on the cost vector. Model selection is

a key aspect of developing statistical models and may take the form of constrained regres-

sion or variable selection approaches. We demonstrate two analogous concepts for inverse

optimization in our numerical results. Since there has been no previous rigorous, general

treatment of these topics in inverse optimization, we focus on the case of a single sub-

optimal observation as a necessary foundational step toward a framework for the multiple

data point case. All proofs are given in the Appendix.

The main contributions of this paper are as follows:

1. We develop a unified framework for cost function estimation in linear optimization

consisting of a general inverse optimization model and a corresponding goodness-of-fit

metric. We propose several natural variations of the framework that evaluate goodness

of fit in both the decision variables and objective value.

2. We derive closed-form solutions to our general inverse optimization model and to the

variants differentiated by the type of model-data error considered. For each solution,

we present the corresponding geometric intuition.

3. We show that our goodness-of-fit metric, ρ, the coefficient of complementarity, has

similar properties to R2 for linear regression: it is maximized by the solution to our

inverse optimization model, takes values between 0 and 1, and is non-decreasing in the

dimension of the decision vector. We demonstrate that ρ is quasiconvex in the observed
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solution, which leads to an intuitive geometric characterization of the goodness of fit

within a polyhedron. We also develop an approximation to ρ, denoted ρ̃, that is a

lower bound, maintains the same properties, is easier to compute, and coincides with

ρ for several special cases.

4. We demonstrate the application of our framework in two domains: production planning

and cancer therapy. We use our examples to show how ρ can be used for model selection

by evaluating and iteratively improving estimates of a model’s parameters via inverse

optimization.

2. Inverse Linear Optimization

In this section, we propose a general inverse optimization model for linear optimization,

discuss several natural variants of this model, derive closed-form solutions for each, and

illustrate the corresponding geometric intuition.

2.1. Preliminaries

Let x∈R
n,c∈R

n,A∈R
m×n, and b∈R

m. We define our forward optimization problem as

FO(c) : minimize
x

c′x

subject to Ax≥ b.
(1)

Let I = {1, . . . ,m} index the constraint set, J = {1, . . . , n} index the set of variables, and ai

define the ith row of A. Let X, assumed full-dimensional and free of redundant constraints,

be the set of feasible solutions to FO(c). Let XOPT(c) be the set of optimal solutions

to FO(c), and let XOPT := ∪
c6=0

XOPT(c). We define ei to be a unit vector with the i-th

component being 1.

Let x0 ∈ R
n denote the observed solution. We consider A, b and x0 to be exogenously

determined; thus, they form the data that we use to infer the cost vector. We start with

what we refer to as the classical inverse optimization problem, which finds a cost vector c

such that x0 is optimal for FO(c):

IO(x0) : minimize
y,c

0

subject to A′y= c,

c′x0 = b′y,

‖c‖1 =1,

y≥ 0.

(2)
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We omit A and b in our notation IO(x0) for simplicity, but acknowledge that the inverse

problem depends on these parameters. The vector y is the vector of dual variables associ-

ated with Ax≥ b. The first two sets of constraints in model (2) represent dual feasibility

and strong duality, respectively. Besides normalizing the imputed cost vector, the third

constraint prevents c= 0 from being a feasible solution to IO(x0). For problems with non-

negative costs, IO(x0) is a linear program. We omit an objective of the form ‖c− ĉ‖, which

is present in other approaches (e.g., Ahuja and Orlin (2001), Iyengar and Kang (2005)),

that chooses between possibly multiple optimal c based on distance to a given ĉ. In the

next section, we will instead propose a model that is flexible enough to accommodate

constraints on c of the form ‖c− ĉ‖ ≤ κ.

First, we show that for a fixed A and b, the feasibility of the classical model IO(x0)

depends on x0 in such a way as to severely limit its potential applicability in practice.

Proposition 1. IO(x0) is feasible if and only if x0 ∈ XOPT or x0 ∈ {x 6∈ X | a′
ix ≥

bi for some i∈ I}.

The following result is a straightforward corollary (proof omitted) of Proposition 1.

Corollary 1. If X is bounded, IO(x0) is feasible if and only if x0 ∈XOPT or x0 6∈X.

Proposition 1 and Corollary 1 highlight the primary undesirable property of IO(x0): a

point x0 that is an interior point of X renders IO(x0) infeasible, even if x0 is very “close”

to the boundary of X, in which case there would be at least one natural choice of a cost

vector that would make x0 “approximately” optimal.

2.2. Generalized Inverse Linear Optimization

We present a simple and natural generalization of IO(x0), where the goal is to simultane-

ously derive a cost vector c∗ and identify the “smallest” perturbation of x0 so the perturbed

point is in the set XOPT(c∗). By considering the distance between x0 and XOPT(c∗) as a

measure of error, we define a natural measure of goodness of fit between the data and

the fitted model. While error in inverse optimization has been explored previously (e.g.,

Troutt et al. (2006), Keshavarz et al. (2011), Chan et al. (2014), Bertsimas et al. (2015)),

this paper is the first to leverage such a notion to develop a general goodness-of-fit metric

for inverse optimization that is integrated with the underlying inverse optimization model.

Our approach determines a meaningful cost vector for any x0 ∈ X, which is the only

restriction we place on x0 from here on out. Throughout the paper, we view the inverse
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problem through the lens of fitting, i.e., identifying a cost vector that best fits a (noisy)

observation, represented by x0.

Consider the following model, which generalizes IO(x0):

GIO(x0) : minimize
y,c,ǫ

‖ǫ‖L

subject to A′y= c,

c′(x0 − ǫ) = b′y,

‖c‖1 = 1,

y≥ 0.

(3)

The objective function ‖ · ‖L is an arbitrary norm (we use “L” for “loss”). The error

vector ǫ in the strong duality constraint allows GIO(x0) to be feasible when x0 is an

interior point. If x0 ∈XOPT, then the optimal ǫ equals 0: there is no error between the

data and the model. Otherwise, there will be a nonzero ǫ representing positive error in

the fit. Technically, a primal feasibility constraint A(x0 − ǫ) ≥ b should be included in

formulation (3). However, it is automatically satisfied by an optimal solution to GIO(x0),

which we will show later. We assume c and ǫ are unrestricted for now and revisit this issue

in Section 4.1.

Unlike IO(x0), GIO(x0) has an optimal solution given any x0 ∈X.

Proposition 2. Given any x0 ∈X,

1. GIO(x0) has an optimal solution.

2. A solution (y,c,ǫ) is feasible to GIO(x0) if and only if (y,c) is a feasible solution to

IO(x0 − ǫ).

The second part of Proposition 2 elucidates the geometry associated with an optimal

solution to GIO(x0). Given x0, GIO(x0) identifies a direction of perturbation, ǫ∗, of

minimal distance (with respect to ‖ · ‖L) to bring x0 into the set XOPT. An optimal c∗

to GIO(x0) is a cost vector such that x0 − ǫ∗ ∈XOPT(c∗). That is, solving GIO(x0) is

equivalent to solving IO(x∗) where x∗ := x0−ǫ∗ is a point inXOPT closest to x0 as measured

by ‖ · ‖L. Thus, the distance from x0 to XOPT, ‖ǫ∗‖L, is a measure of model-data fit error.

2.3. Characterizing an optimal solution to GIO(x0)

Although GIO(x0) is not linear due to the term c′ǫ, we can characterize its optimal

solutions in closed form. As described above, solving GIO(x0) is equivalent to finding a
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projection of x0 on to XOPT using ‖ · ‖L. Equivalently, x
0 is being projected on to the

closure of the complement of the convex set that contains x0. The main result of this

subsection, the closed-form characterization of optimal solutions to GIO(x0), relies on the

concept of a dual norm, which we define here for completeness. If ‖ · ‖ is a norm, then we

write the associated dual norm as ‖z‖D := sup{z′x : ‖x‖ ≤ 1}.

Theorem 1. Given x0 ∈X, an optimal solution to GIO(x0) is

(y∗,c∗,ǫ∗) =

(

ei∗

‖ai∗‖1
,

ai∗

‖ai∗‖1
,
a′
i∗x

0 − bi∗

‖ai∗‖DL
v(ai∗)

)

, (4)

where i∗ ∈ argmin
i∈I

{(a′
ix

0 − bi)/‖ai‖
D
L } and v(ai∗) ∈ argmax‖v‖L=1 a

′
i∗v. Furthermore, the

optimal objective value of GIO(x0) is ‖ǫ∗‖L = (a′
i∗x

0− bi∗)/‖ai∗‖
D
L .

Remark 1. Theorem 1 implies that the search for an optimal c is reduced

to comparing a simple ratio across a finite set of choices and that c∗ ∈

{a1/‖a1‖1,a2/‖a2‖1, . . . ,am/‖am‖1}.

The main takeaway from Theorem 1 is that a cost vector that makes x0 minimally

suboptimal (according to the ‖ · ‖L metric) is easily computable: identify the constraint

i with the smallest value of (a′
ix

0 − bi)/‖ai‖
D
L and an optimal c∗ will be a normalized

multiple of the vector ai defining that constraint. The fact that the search for an optimal

cost vector can be restricted to a finite set of alternatives implies a natural choice for a

baseline comparison when measuring goodness of fit; we revisit this issue in Section 3.2

where we formally define our goodness of fit metric, ρ. Note that there may exist multiple

i’s that achieve the argmin in Theorem 1. In particular, if the point x0 is projected exactly

to a vertex of X, then a c vector that is a suitably normalized conic combination of the

corresponding multiple ai vectors will also be optimal.

We now return to an assertion made earlier, namely that the constraint A(x0 − ǫ)≥ b

is automatically satisfied by an optimal solution ǫ∗ to GIO(x0). The proof of Theorem 1

establishes that this assertion is indeed true. While the projection of x0 to an arbitrary

constraint may not be to a feasible point, the projection to the closest constraint measured

by || · ||L will be feasible.

2.4. Variants of GIO(x0)

In this subsection, we present three natural variants of the general model GIO(x0). These

variants arise from different choices of the norm in the objective function of GIO(x0) and
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possibly restricting the structure of ǫ, which together induce different projections of x0

on to XOPT. In all three cases, the characterizations of c∗ and y∗ do not change; only the

specific constraint on to which x0 is projected changes. For completeness, we define the

sign function as sgn(s) = s/|s| for a nonzero s ∈ R and 0 otherwise. When applied to a

vector s, the sign function returns a vector of the component-wise signs denoted sgn(s).

2.4.1. p-norm (GIOp(x
0)) First, we consider minimizing error using the p-norm, p≥ 1,

which provides a natural measure of error in the space of decision variables. Recall that

the p-norm is defined as ‖x‖p = (
∑n

j=1 |xj|
p)1/p for p ∈ [1,∞) and ‖x‖∞ = max

1≤j≤n
{|xj|} for

p=∞. The resulting formulation sets the objective of formulation (3) to ‖ǫ‖p:

GIOp(x
0) : minimize

y,c,ǫ
‖ǫ‖p

subject to A′y= c,

c′(x0 − ǫ) = b′y,

‖c‖1 = 1,

y≥ 0.

(5)

Solving GIOp(x
0) returns a cost vector c∗ that finds x∗ := x0− ǫ∗ ∈ argminx∈XOPT ‖x−

x0‖p. The following corollary specializes Theorem 1 to the p-norm case, with particular

attention paid to p= 1,2,∞ (proof omitted). Recall that the p- and q-norms are dual if

1/p+1/q = 1. In particular, the 1-norm and ∞-norm are dual, and the 2-norm is self-dual.

Corollary 2. Let i∗ ∈ argmin
i∈I

{(a′
ix

0 − bi)/‖ai‖q} where q satisfies 1/p+ 1/q = 1 and

j∗ ∈ argmaxl |ai∗,l|. Then the optimal objective value of GIOp(x
0) is ‖ǫ∗‖p = (a′

i∗x
0 −

bi∗)/‖ai∗‖q. For p=1,2,∞, an optimal ǫ∗ is

ǫ∗ =















sgn(ai∗,j∗)
a′

i∗
x0−bi∗

‖ai∗‖∞
ej∗, if p= 1,

ai∗

‖ai∗‖2

a′

i∗
x0−bi∗

‖ai∗‖2
, if p= 2,

sgn(ai∗)
a′

i∗
x0−bi∗

‖ai∗‖1
, if p=∞.

(6)

Geometrically, GIOp(x
0) finds the largest p-norm ball centered at x0 that lies within

the feasible region. The point of intersection between this ball and the boundary of the

feasible region is x0 − ǫ∗, which lies on the constraint defined by ai∗.



9

2.4.2. Absolute duality gap (GIOa(x
0)) Next, we consider error measured in terms

of the objective function value. In particular, we find c∗ that minimizes the difference in

objective values between x0 and an optimal solution x∗ to FO(c∗). This approach can

be interpreted as minimizing the absolute duality gap, ǫa (Troutt et al. 2006, Chan et al.

2014):

GIOa(x
0) : minimize

y,c,ǫa
ǫa

subject to A′y= c,

c′x0 = b′y+ ǫa,

‖c‖1 = 1,

y≥ 0.

(7)

An attractive feature of this formulation is that it becomes a linear program when the cost

vector is non-negative. Being able to solve the inverse problem as a LP directly may be

useful when there are additional application-specific constraints that need to be included

(see Sections 4 and 5).

Next, we show that GIOa(x
0) can be derived through a simple modification ofGIO(x0).

Proposition 3. GIOa(x
0) is equivalent to GIO(x0) with ‖ · ‖L = ‖ · ‖∞ and the con-

straint ǫ= ǫa sgn(c).

Even though GIOa(x
0) is not a direct specialization of GIO(x0), it turns out that a

result analogous to Theorem 1 holds.

Proposition 4. An optimal solution to GIOa(x
0) is (y∗,c∗, ǫ∗a) =

(ei∗/‖ai∗‖1,ai∗/‖ai∗‖1, (a
′
i∗x

0 − bi∗)/‖ai∗‖1), where i∗ ∈ argmin
i∈I

{(a′
ix

0− bi)/‖ai‖1}.

This result says that when error is measured in terms of the absolute duality gap,

a cost vector that minimizes this error will coincide with one of the m constraints ai.

Geometrically, GIOa(x
0) evaluates level sets parallel to the hyperplanes {x|a′

ix= bi} for

all i to determine a cost vector c∗ and a point x∗ ∈XOPT(c∗) that minimizes the absolute

duality gap, i.e., c∗′x0 − c∗′x∗.

2.4.3. Relative duality gap (GIOr(x
0)) A second measure of error in the objective

function value is the relative duality gap (Troutt 1995, Chan et al. 2014). Assuming b′y 6=
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0, we define the relative duality gap as (c′x0 −b′y)/|b′y| = |c′x0/b′y − 1|. If we define

ǫr := c′x0/b′y, then the inverse model minimizing the relative duality gap is

GIOr(x
0) : minimize

y,c,ǫr
|ǫr − 1|

subject to A′y= c,

c′x0 = ǫrb
′y,

‖c‖1 =1,

y≥ 0.

(8)

Like GIOa(x
0), GIOr(x

0) can be derived from a simple modification to GIO(x0).

Proposition 5. GIOr(x
0) is equivalent to GIO(x0) with ‖ · ‖L equal to the weighted

infinity norm ‖ · ‖∞,K = ‖ · ‖∞|K|, K = 1/b′y, and the constraint ǫ= b′y(ǫr − 1) sgn(c).

Similar to the case of GIOa(x
0), a result analogous to Theorem 1 holds for GIOr(x

0).

Proposition 6. An optimal solution to GIOr(x
0) is (y∗,c∗, ǫ∗r) =

(ei∗/‖ai∗‖1,ai∗/‖ai∗‖1,a
′
i∗x

0/bi∗), where i∗ ∈ argmin
i∈I

{(a′
ix

0− bi)/|bi|}.

This result implies that Remark 1 is again relevant here: there exists an optimal c that

is a normalized version of one of the ai vectors. The only difference is in the specific ratios

that need to be compared to determine the optimal c. Geometrically, GIOr(x
0) evaluates

level sets parallel to the hyperplanes {x|a′
ix= bi} ∀i to determine an optimal cost vector c∗

and a point x∗ ∈XOPT(c∗) that minimizes the relative duality gap, i.e., |c∗′x0/c∗′x∗ − 1|.

With knowledge of the closed-form solution structure, the requirement b′y 6= 0 can be

satisfied if at least one of the bi is not zero.

Finally, we discuss how changing the normalization constraint allows GIOr(x
0) to be

solved by solving at most two linear programs. This result may be practically useful when

a computational solution to GIOr(x
0) is desired, such as when there are extra constraints

like those used for model selection.
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Proposition 7. An optimal solution to GIOr(x
0) is (y∗,c∗, ǫ∗r) = (ŷ/‖ĉ‖1, ĉ/‖ĉ‖1, ǫ̂r)

where (ŷ, ĉ, ǫ̂r) is an optimal solution to formulation (9).

minimize
y,c,ǫr

|ǫr − 1|

subject to A′y= c,

c′x0 = ǫrb
′y,

|b′y|= 1,

y≥ 0.

(9)

Formulation (9) can be solved by solving two linear programs, one with b′y= 1 and the

other with b′y = −1 (and of course linearizing the absolute value in the objective), and

then choosing the solution with lowest cost. Furthermore, if b′y> 0, which is the case in

many applied problems with positive right hand sides, it is necessary to solve only a single

problem (Chan et al. 2014) and then appropriately rescale its solution:

minimize
y,c

c′x0

subject to A′y= c,

b′y= 1,

y≥ 0.

(10)

Note that if c≥ 0, formulation (10) not only minimizes the relative duality gap, it does

so while performing a weighted ℓ1 regularization of the cost vector c with the weights cor-

responding to the components of x0. This observation suggests that solutions to GIOr(x
0)

may offer sparsity, which we revisit in Section 5.2.

2.5. Summary

The main results of this section are: 1) determining the optimal c∗ to GIO(x0) can be done

by restricting consideration to a finite set ofm cost vectors and comparingm corresponding

ratios (Theorem 1); 2) variants ofGIO(x0) can specialize measurement of error to the space

of decision variables or objective function values, while maintaining the simple closed-form

optimal solution structure. It is important to note that for the two duality gap models all

points on the constraint a′
i∗x= bi∗ induce the same error, regardless of whether the point is

primal feasible, since error is measured in terms of objective value with respect to c∗. This
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property simplifies the computation of the goodness of fit with respect to the objective

value, as shown in Section 3.

Table 1 summarizes the variants of GIO(x0) presented in the previous subsections. The

first column indicates the space in which error is measured. The next three columns identify

the type of model along with the corresponding choices of the objective function norm and

assumed structure of ǫ used to connect the variant and GIO(x0). The last two columns

specify the structure of the closed-form solutions, which can be found by substituting the

entries in those columns into equation (4).

Model Variant Solution Structure

Type ‖ǫ‖L ǫ ‖ai∗‖
D
L v(ai∗)

D
ec
is
io
n
sp
a
ce

GIOp(x
0)

1 ‖ǫ‖1 ǫ ‖ai∗‖∞ sgn(ai∗,j∗)ej∗, j
∗ from Cor. 2

2 ‖ǫ‖2 ǫ ‖ai∗‖2 ai∗/‖ai∗‖2

∞ ‖ǫ‖∞ ǫ ‖ai∗‖1 sgn(ai∗)

O
b
je
ct
iv
e
sp
a
ce

GIOa(x
0) ‖ǫ‖∞ ǫa sgn(c) ‖ai∗‖1 sgn(ai∗)

GIOr(x
0) ‖ǫ‖∞,1/|b′y| b′y(ǫr − 1) sgn(c) |bi∗| |bi∗| sgn(ai∗)/‖ai∗‖1

Table 1 Summary of the GIO(x0) variants.

The following numerical example illustrates the different geometric interpretations of

the GIO(x0) variants.

Example 1. Consider the following forward problem:

minimize
x

c1x1+ c2x2

subject to 2x1+5x2 ≥ 10,

2x1− 3x2 ≥−6,

2x1+x2 ≥ 4,

− 2x1−x2 ≥−10.

(11)

The feasible region of this problem is shown in Figure 1. Let x0 = (2.5,3). The pro-

jected solutions x0− ǫ∗ are [2.5,3.6̄] for GIO1(x
0), [2.19,3.46] for GIO2(x

0), [2.1,3.4] for
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Figure 1 GIO(x0) projections for Example 1.

GIO∞(x0) and GIOa(x
0), and [3.16̄,3.6̄] for GIOr(x

0). For GIOp(x
0), the point x0− ǫ∗

is where the largest p-norm ball meets the boundary of the feasible region. For GIOa(x
0),

the projection to the boundary matches GIO∞(x0). For GIOr(x
0), the projected point is

again at the intersection of a ∞-norm ball and the boundary. The specific ball is the one

with the smallest weighted norm among the four that just meet each of the four constraints,

weighted by the corresponding bi.

3. Goodness of Fit

We first briefly review the concept of goodness of fit in linear regression and then develop

our goodness-of-fit metric for inverse optimization.

3.1. Preliminaries

A multiple linear regression model assumes a linear relationship between a dependent

variable Y and independent variables X1, . . . ,Xn:

Y = β0 +β1X1+ · · ·+βnXn+ ǫ, (12)

where ǫ is a zero-mean, normally distributed error term. Given data (x1, y1), . . . , (x
Q, yQ),

the most common method for determining the regression parameters β0, . . . , βn is to mini-
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mize the sum of squared errors or residuals, also known as linear least squares :

minimize
β0,...,βn

Q
∑

q=1

(

yq −β0 −

n
∑

j=1

βjx
q
j

)2

. (13)

Correspondingly, the most popular and simple-to-calculate metric to quantify the good-

ness of fit of a linear regression model is the coefficient of determination, R2. The coefficient

of determination can be thought of as the proportion of the total variation in the observed

yq values that is accounted for by the independent variables (i.e., the model). More pre-

cisely,

R2 = 1−
variation not explained by model

total variation
= 1−

∑Q
q=1(yq − ŷq)

2

∑Q
q=1(yq − ȳ)2

, (14)

where ŷq is the value of Y estimated from the model using xq and ȳ is the average of the

observed yq values. The coefficient of determination possesses several attractive properties:

it is maximized when β is determined by minimizing the sum of squared residuals; it takes

values in [0,1] and is therefore easy to interpret; and it is non-decreasing in the number of

independent variables in the regression model.

Although R2 as defined in (14) is the most well-known goodness-of-fit metric in linear

regression, alternative R2-type metrics exist (Anderson-Sprecher 1994). For example, there

is a variant of R2 for least absolute deviation regression that has absolute values instead of

squares in both the numerator and denominator of equation (14), and replaces the average,

ȳ, with the median of the observed yq values. This variant of R2 is maximized when β

is determined by minimizing the sum of absolute values of the residuals, and also takes

values in [0,1] (Pynnönen and Salmi 1994).

3.2. Goodness of Fit in Generalized Inverse Optimization

Inspired by the coefficient of determination in regression, we develop a goodness-of-fit

metric for inverse optimization that we call the coefficient of complementarity. The name

is derived from the satisfaction of the complementary slackness/optimality conditions in

GIO(x0). Goodness of fit in inverse optimization has been examined previously in very

specific contexts (Troutt et al. 2006, Chow and Recker 2012). The metric we present is gen-

eral, is appropriately linked with the underlying inverse optimization model, and possesses

several attractive properties that mirror properties of R2. We first present our proposed

(“exact”) metric, and discuss its interpretation and computation. Then, we discuss an
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alternative metric that approximates the exact one – and in some cases coincides with the

exact one – but is easier to compute.

We define the coefficient of complementarity as:

ρ= 1−
‖ǫ∗‖L

1
m

∑m
i=1 ‖ǫ

i‖L
, (15)

where ‖ǫ∗‖L quantifies the error in data-model fit determined by solving GIO(x0) (i.e., the

shortest distance from x0 to XOPT as measured by ‖ · ‖L), and ‖ǫi‖L measures the error in

the fit with respect to constraint i, i= 1, . . . ,m. Note that the dependence of ρ on the given

point x0 is implicit in (15). The denominator of ρ captures the average error associated

with m possible inverse solutions, one for each constraint of the primal feasible region

(recall Theorem 1). Implicit in the above definition is the assumption that
∑m

i=1 ‖ǫ
i‖L 6= 0.

Indeed, if
∑m

i=1 ‖ǫ
i‖L =0, then ‖ǫi‖L =0 for all i, in which case we define ρ := 1.

Intrinsic in the definition of ρ (and R2) is the fact that it is not an absolute measure of

performance. Rather, it evaluates the model-data fit of the estimated model (i.e., one that

identifies a cost vector that minimizes the error ‖ǫ‖L) relative to the average variation in

the feasible region with respect to x0, i.e., all the given data in the problem, (x0,A,b).

Alternatively, the denominator of ρ can be viewed as the expected value of a geometric

“null hypothesis” that c is chosen uniformly at random from the set {ai | i ∈ I}. Thus, ρ

also captures the value of the inversely optimized solution against such a randomly chosen

c. This null hypothesis is the first attempt to define a general baseline solution that is

analogous to ȳ in regression.

One of the main advantages of a relative measure like ρ is that it automatically puts in

context whether the “raw” error, ‖ǫ‖L, is big or small. As a unitless measure, ρ is invariant

to scaling in A and b, which is similar to how R2 is invariant to scaling in the input data of

a least-squares regression model. While domain experts working on a specific application

may know the acceptable level of raw error, our metric can be used in any application

setting by a nonexpert.

Recalling the p-norm, absolute duality gap, and relative duality gap variants of GIO(x0)

described in Section 2.4, ρ also has corresponding variants that measure the appropriate

error for each model. While ‖ǫ∗‖L can be obtained by Theorem 1, calculation of the denom-

inator differs between the variations of ρ based on different geometric interpretations of

model-data fit.
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Figure 2 Illustration of ‖ǫ∗‖2, ‖ǫ
i‖2, and ‖ǫ̃i‖2 for Example 1.

3.2.1. ρ for GIOp(x
0). We define ρp, the variant of ρ that corresponds to GIOp(x

0), as

ρp = 1−
‖ǫ∗‖p

1
m

∑m
i=1 ‖ǫ

i‖p
= 1−

‖x∗−x0‖p
1
m

∑m
i=1 ‖x

i −x0‖p
, (16)

where x∗ := x0− ǫ∗ and xi := x0− ǫi. The first expression is a direct substitution of the p-

norm into equation (15), while the second emphasizes the fact that error is being measured

in the space of decision variables.

To find ǫi, i.e., the error in the fit with respect to constraint i= 1, . . . ,m, the following

convex optimization problem can be solved:

minimize
ǫ

‖ǫ‖p

subject to A(x0− ǫ)≥b,

a′
i(x

0 − ǫ) = bi.

(17)

It is important to recognize that ‖ǫi‖L does not, in general, represent the minimum

distance from x0 to constraint i, due to the primal feasibility constraint. Figure 2 illustrates

ǫ∗ and ǫi in the polyhedron from Example 1 when ‖ · ‖L is the 2-norm; the minimum

distance projection to constraint i is represented by ǫ̃i, which is an optimal solution to (17)

without the primal feasibility constraint A(x0− ǫ)≥b.
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3.2.2. ρ for GIOa(x
0) and GIOr(x

0). In the absolute and relative duality gap cases,

we know through Propositions 3 and 5 that ‖ǫ∗‖L equals ǫ∗a and ǫ∗r, respectively. Similarly,

through Propositions 3–6, we can define ‖ǫi‖L, the fit error with respect to constraint i,

as ǫia and ǫir, respectively. Thus, we define ρa and ρr, the variants of ρ that correspond to

GIOa(x
0) and GIOr(x

0), respectively, as

ρa = 1−
ǫ∗a

1
m

∑m
i=1 ǫ

i
a

= 1−
c∗′x0− c∗′x∗

1
m

∑m
i=1(c

i′x0 − ci′xi)
= 1−

(a′
i∗x

0 − bi∗)/‖ai∗‖1
1
m

∑m
i=1(ai

′x0− bi)/‖ai‖1
, (18)

and

ρr = 1−
|ǫ∗r − 1|

1
m

∑m
i=1 |ǫ

i
r − 1|

= 1−
|c∗′x0/c∗′x∗ − 1|

1
m

∑m
i=1 |c

i′x0/ci′xi − 1|
=1−

|ai∗
′x0/bi∗ − 1|

1
m

∑m
i=1 |ai

′x0/bi − 1|
, (19)

where xi is an optimal solution to FOP(ci), x∗ = xi∗ , ci = ai/‖ai‖1, and c∗ = ci
∗

. The

second expression in each of equations (18) and (19) shows explicitly that error is measured

in terms of objective function value, while the third expression is due to Propositions 4

and 6. Note that finding ǫia and ǫir does not require ensuring primal feasibility as in the

p-norm case (see Section 2.5). As a result, ǫia and ǫir can be determined by simply setting

ǫia and ǫir as follows:

ǫia =
(a′

ix
0 − bi)

‖ai‖1
, (20)

ǫir =
a′
ix

0

bi
, (21)

where the latter assumes bi 6= 0.

3.3. Properties of ρ

In this sub-section, we present key properties of ρ, as defined in (15), which hold for

all ρ variants presented above. Some additional notation is needed before proceeding.

We define ρ(k) = 1− ‖ǫ(k)∗‖L/(
∑m

i=1 ‖ǫ
i‖L/m), where ǫ(k)∗ is an optimal solution for ǫ for

GIO(k)(x0), the generalized inverse optimization model (3) where the first k≤ n (without

loss of generality) components of c are free and the remaining n−k components are fixed to

0. The denominator of ρ(k) matches the denominator of ρ, since the denominator represents

the average error induced by the problem data (x0,A,b), which is independent of the

inverse optimization process. We will also write ρ(x0) in place of ρ where it is useful to

show the explicit dependence of ρ on the given point x0.

Theorem 2. Let x0 ∈X.
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1. (Optimality) ρ is maximized by an optimal solution of GIO(x0),

2. (Boundedness) ρ∈ [0,1],

3. (Monotonicity) ρ(k) ≤ ρ(k+1) for k= 1, . . . , n− 1,

4. (Quasiconvexity) ρ(x0) is a quasiconvex function of x0 ∈X.

The first three properties directly mirror the properties possessed by R2. The first prop-

erty implies that although ρ can be used to evaluate the goodness of fit of a solution

generated by any inverse optimization model, it is maximized by an optimal solution to

GIO(x0); the regression analogue is that while R2 as defined in equation (14) can measure

the goodness of fit of a regression model with coefficients generated from any method,

it is maximized when the coefficients are determined by minimizing the sum of squared

residuals (i.e., solving problem (13)).

The second property shows that ρ, just like R2, is a unitless quantity that takes values

in [0,1], with 0 indicating complete lack of fit and 1 indicating perfect fit. Perfect fit

corresponds to the existence of a cost vector that makes x0 optimal for the forward problem.

Indeed, when x0 ∈ XOPT, ǫ∗ = 0, so ρ = 1. On the other hand, if x0 ∈ X \XOPT, then

ǫ∗ 6= 0, so ρ < 1. The case of ρ = 0 indicates a complete lack of fit, which occurs when

‖ǫi‖L = ‖ǫ∗‖L for all i= 1, . . . ,m, as in the case of X being a unit hypercube centered at

x0, for example.

The monotonicity property is the analogue of R2 being nondecreasing in the number of

independent variables. This property reflects the fact that having a more flexible model

(with more degrees of freedom) enables better fit with the data. However, just like in regres-

sion, it may be possible to overfit an inverse optimization model. Thus, the monotonicity

property requires the user to be cognizant of artificially increasing ρ by including more

variables/dimensions without actually gaining more insight or producing a model that is

generalizable beyond the given data.

The quasiconvexity property implies that ρ varies in a structured way inside the polyhe-

dron X. For example, Figure 3 illustrates the ρ2 values for points x0 scattered throughout

the polyhedron from Example 1. Since quasiconvexity of a function f(x) is equivalent to

convexity of its sub-level sets {x|f(x)≤ α} for α ∈R, geometrically we see that ρ is non-

decreasing in a “radial” sense as x0 moves from the interior towards the boundary. This

observation is captured formally in Proposition 8.
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Figure 3 ρ2 values throughout the polyhedron from Example 1.

Proposition 8. Let xmin ∈ {x ∈ X | ρ(x) ≤ ρ(y) ∀ y ∈ X} and x∗ ∈ XOPT. Let x1 =

λ1x
min+(1−λ1)x

∗ and x2 = λ2x
min+(1−λ2)x

∗ where λ1 ∈ (0,1), λ2 ∈ (0,1), and λ1 6= λ2.

If ‖x1−x∗‖L ≤ ‖x2−x∗‖L then ρ(x1)≥ ρ(x2).

Without quasiconvexity, points closer to the boundary may, paradoxically, exhibit worse

fit than those that are closer to the “center” of the polyhedron.

Overall, the above-described properties enable ρ to be a general tool to aid model selec-

tion in inverse optimization, with its primary attractiveness being its interpretability and

applicability by a nonexpert.

3.4. An alternative ρ metric

In this subsection, we present an alternative goodness-of-fit metric, ρ̃, that has essentially

the same interpretation and retains the same attractive properties of ρ. This metric coin-

cides with ρ in the absolute and relative duality gap cases, and adapts the simple approach

of those calculations to the p-norm case. Thus, it is simpler to compute than ρ in general.

Analogously to R2, whose computation requires only the solution of the least squares

problem (13) and the given data, the effort required to compute ρ would ideally not

extend beyond what is needed to identify i∗ and compute ‖ǫ∗‖L, i.e., to solve the inverse

optimization problem. However, this is not the case for ρp, which requires the additional

effort of solving problem (17) m times, once for each constraint i. Granted, the effort is

modest given that (17) is convex, but it is additional effort nonetheless. While identifying
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i∗ and determining ‖ǫ∗‖L simply requires the evaluation of (a′
ix

0 − bi)/‖ai‖
D
L for each i,

‖ǫi‖L is, in general, not equal to (a′
ix

0 − bi)/‖ai‖
D
L , since the projection of x0 on to some

constraints may result in a point that is not primal feasible (cf. Figure 2). This observation

suggests that a natural approximation for ρ, which we denote as ρ̃, can be derived by

simply ignoring the primal feasibility restriction when computing ǫi, which is essentially

what the ρa and ρr computations are doing.

Formally, we define ρ̃ as

ρ̃= 1−
‖ǫ∗‖L

1
m

∑m
i=1 ‖ǫ̃

i‖L
, (22)

where ‖ǫ̃i‖L = (a′
ix

0 − bi)/‖ai‖
D
L is the norm of the projection vector of x0 on to con-

straint i, ignoring primal feasibility of the projected point (i.e., x0 − ǫ̃i is not required to

be primal feasible). For the p-norm case, ǫ̃i is an optimal solution to (17) without the

constraint A(x0 − ǫ)≥ b. The computation of ρ̃ requires only the evaluation of the ratios

(a′
ix

0− bi)/‖ai‖
D
L for each i, which is already carried out when solving GIO(x0) (cf. Theo-

rem 1). Thus, there is no additional effort required to compute ρ̃ beyond solving the inverse

problem. Note that the only difference between ρ̃ and ρ is in the denominator. We define

ρ̃p analogously to ρp, except with x̃i := x0 − ǫ̃i in place of xi in equations (16). As in the

case of ρ, we assume that
∑m

i=1 ‖ǫ̃
i‖L 6= 0; otherwise, we define ρ̃ := 1.

First, we show that ρ̃ retains the same four properties of ρ presented in Section 3.3. The

term ρ̃(k) is defined analogously to ρ(k).

Proposition 9. Let x0 ∈X.

1. (Optimality) ρ̃ is maximized by an optimal solution of GIO(x0),

2. (Boundedness) ρ̃∈ [0,1],

3. (Monotonicity) ρ̃(k) ≤ ρ̃(k+1) for k= 1, . . . , n− 1,

4. (Quasiconvexity) ρ̃(x0) is a quasiconvex function of x0 ∈X.

Next, we examine the relationship between ρ̃ and ρ. Recall that ‖ǫ̃i‖L measures the

distance from x0 to constraint i whereas ‖ǫi‖L measures the distance from x0 to the closest

feasible point on constraint i. So, in terms of the inverse optimization process, using ǫ̃i

underestimates the lack of data-model fit with respect to constraint i (‖ǫ̃i‖L ≤ ‖ǫi‖L for

all i) and thus ρ̃ is a lower bound for ρ. However, ρ̃ and ρ coincide when error is measured

in terms of objective function value, as in GIOa(x
0) and GIOr(x

0); ǫ̃i and ǫi projecting

x0 to different points on constraint i becomes irrelevant since the cost of those two points



21

will be equal with respect to ai. These results are summarized in the following proposition

(proof omitted).

Proposition 10.

1. ρ̃≤ ρ,

2. ρ̃= ρ for the absolute and relative duality gap variants.
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(a) Distribution of ρ2.

1 2 3 4 5
0

1

2

3

4

x1

x2

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Distribution of ρ̃2.
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Figure 4 Comparison between ρ2 and ρ̃2 for Example 1.

Figure 4 compares the distribution of ρ2 and ρ̃2 values inside the polyhedron from Exam-

ple 1. As shown in Figure 4(c), the differences are small in magnitude and, by definition,

localized to the regions of the polyhedron where the difference between ǫi and ǫ̃i is great-

est. For example, the “hot” area to the bottom right of the polyhedron contains those x0
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(a) ρ= ρ̃. (b) ρ and ρ̃ are different as ν increases.

Figure 5 Illustration of Example 2.

where the projections ǫi and ǫ̃i with respect to the constraint 2x1 + x2 ≥ 4 are the most

different (also see Figure 2). However, it is possible for the relative difference between ρ

and ρ̃ (in the p-norm case) to be arbitrarily large in certain pathological cases, as shown

in Example 2, which has the potential to suggest poor fit when in fact it is good.

Example 2. Let X= {(x1, x2) |
1
ν
x1+

1
δ
x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}, x0 = (1,1), ν > 0 and δ >

0. We compare ρ2 and ρ̃2. First, consider the case where ν = δ < 1, shown in Figure 5(a).

Since ǫi = ǫ̃i for i= 1,2,3, ρ2 = ρ̃2. Next, notice that if ν > 1> δ, ‖ǫ3‖2 > ‖ǫ̃3‖2 and thus,

ρ2 > ρ̃2 (Figure 5(b)). In fact, consider the extreme case where ν →∞. Then ‖ǫ1‖2 = 1,

‖ǫ2‖2 → 1− δ, and ‖ǫ3‖2 →∞, and ρ→ 1. On the other hand, ‖ǫ̃1‖2 = 1, ‖ǫ̃2‖2 → 1− δ,

and ‖ǫ̃3‖2 = 1, and therefore ρ̃→ 1− 1−δ
(1+(1−δ)+1)/3

= 2δ
3−δ

. Thus, with sufficiently large ν and

sufficiently small δ, we can have ρ̃≈ 0 while ρ≈ 1.

We expect that for most problems, ρ and ρ̃ will give similar indications about model-

data fit. In addition, this issue can be avoided entirely by using an inverse model that

measures error in terms of objective value. Also, when used to support model selection,

the difference in ρ values between successive models (i.e., the change in fit) may be a more

useful indicator, rather than the absolute value ρ. Thus, it may be the case that both ρ

and ρ̃ would serve the purpose equally well. For the p-norm case, it may be possible to

bound ρ̃ from below as a function of ρ and geometric properties of the polyhedron X. Such

development is left as future work.
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4. Model Selection and Inverse Optimization

In fitting a regression model, one is usually faced with the problem of model selection:

determining which independent variables results in the best explanatory or predictive per-

formance. Model selection may also look to enforce relationships between certain coeffi-

cients (e.g., constrained regression). These issues also exist in inverse optimization. Variable

selection in inverse optimization can be thought of as identifying which terms in the objec-

tive function are included in the model, and can be formulated as a constrained model

where certain cost coefficients cj are set to 0. In general, a given application may require

structural constraints on c or ǫ, which restrict the set of cost vectors that can be returned

by the inverse process. Examples of such constraints include fixing certain cj values, enforc-

ing certain relationships between multiple cj, and constraining ǫ so only certain directions

of perturbation from x0 are allowed (e.g., if we want to maintain a certain structure of x∗

relative to x0).

In addition to practitioner experience and domain-specific knowledge, the process of

model selection in regression is typically guided by goodness of fit (e.g., R2). In inverse

optimization, ρ can play a similar role. In the framework that we have developed, ρ can

be a tool to help choose the “best” model among a set of linear models parameterized

by c, possibly in the presence of structural constraints that enforce prior knowledge on c

or a particular relationship between x0 and its projection to the boundary of X. Below,

we discuss several issues regarding model selection in inverse optimization: the impact of

structural constraints on c and ǫ on model estimation, the use and interpretation of ρ, and

practical considerations regarding the choice of specific GIO(x0) model variant.

4.1. Model Estimation under Structural Constraints

In the absence of constraints on c or ǫ, Theorem 1 establishes that c∗ = ai/‖ai‖1 for some

i. With the addition of structural constraints of the form c ∈ C or ǫ∈ E to formulation (3),

Theorem 1 may not be directly applicable. Below, we discuss the effect of such constraints

on the applicability of our previously derived closed-form solution and the solution of the

resulting inverse problem in general.

4.1.1. Constraints on c. When there are restrictions on c, c∗ does not in general retain

the structure ai/‖ai‖1. However, the corresponding c-constrained GIO(x0) problem may

still be feasible. For example, an optimal c∗ may be a strict conic combination of the ai
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(from the dual feasibility constraints), with the projected point x0− ǫ∗ corresponding to a

vertex of the forward polyhedron. As an example, consider a unit square centered at the

origin, x0 = (0,0) and c∈ C = {c | c1 = c2}. Clearly c∗ 6= ai/‖ai‖1 for any i, but c= (1/2,1/2)

is feasible for the inverse problem. Thus, in general, structural constraints on c require the

direct solution of the inverse optimization model (i.e., (3)), which suggests that the duality

gap formulations are preferred in such cases.

4.1.2. Constraints on ǫ. Constraining ǫ affects how x0 can be projected to the bound-

ary of the forward polyhedron. Since restricting the way x0 is projected is most relevant

in the decision space, we focus on the p-norm case. With constraints ǫ∈ E , GIOp(x
0) can

be solved by simply solving

minimize
ǫ

‖ǫ‖p

subject to A(x0− ǫ)≥ b,

a′
i(x

0− ǫ) = bi,

ǫ∈ E ,

(23)

for each i = 1, . . . ,m. Formulation (23) determines whether there is a feasible projection

to constraint i that satisfies ǫ ∈ E . Let Î ⊆ I index this set of constraints. As long as Î

is nonempty, the ǫ-constrained GIOp(x
0) problem is feasible (e.g., c = ai/‖ai‖1, i ∈ Î is

a feasible solution). In fact, solving problem (23) for each i ∈ I will identify the optimal

solution to the ǫ-constrained GIOp(x
0) problem; it will simply be c∗ = ai/‖ai‖1 for i ∈ Î

with smallest corresponding optimal objective value in (23). Of course, this solution c∗ is

the closed-form solution from Theorem 1 applied to the set Î, with corresponding y∗ and

ǫ∗.

4.1.3. Effect on Calculation of ρ. The addition of structural constraints c ∈ C or ǫ∈ E

affects the calculation of ǫ∗, as outlined in Sections 4.1.1 and 4.1.2. However, structural

constraints may or may not affect the calculation of the denominator of ρ, depending

on the assumptions underlying the particular application. See Section 4.2.1 for discussion

on when it is appropriate to adjust or not adjust the denominator calculation, and the

associated implications. For now, we discuss the mechanics of making the adjustment, if

the modeler chooses to do so.

For the p-norm case, taking into account constraints ǫ∈ E in the denominator requires

no extra effort since finding ǫ∗ under such constraints already requires finding ǫi using
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(23) instead of (17). With constraints on c in the absolute and relative duality gap cases,

the feasibility of ǫia = (a′
ix

0 − bi)/‖ai‖1 and ǫir = a′
ix

0/bi for each i ∈ I needs to be checked

in GIOa(x
0) and GIOr(x

0), respectively; only feasible ǫi values (i.e., those where the

associated ai satisfies the constraints on c) should be included in the denominator.

4.2. Guidelines for Practitioners

In this section we discuss additional considerations for the calculation and usage of ρ, and

provide recommendations regarding the choice of specific GIO(x0) model variant.

4.2.1. Calculation of ρ To determine whether the denominator of ρ should be altered

by the structural constraints, the practitioner needs to determine whether these constraints

change the set of candidate cost vectors for the underlying problem. Structural constraints

should be applied in the calculation of the denominator of ρ only when the set of candidate

cost vectors is reduced as a result of the constraints. For example, in our numerical exper-

iments (Section 5), negative cost vectors are not physically meaningful and thus should be

eliminated from consideration in the denominator. On the other hand, in Example 2, the

c vector is unconstrained but we may want to evaluate the quality of fit provided by the

best non-negative c vector; in this case, the denominator should not be affected by the

non-negativity constraint.

Note that if the denominator calculation is not modified in the presence of structural

constraints, the non-negativity property of ρ may not hold anymore as ‖ǫ∗‖ may be larger

than 1
m

∑m
i=1 ‖ǫ

i‖. That is, the fit of any of the m possible vectors in the unconstrained

case is better than that of the optimal constrained one. The analogous result in regression

is that R2 may be negative when used to evaluate a constrained regression model. There is

also an analogous situation in regression to when the the ρ calculation should be adjusted

due to structural constraints. Consider regression through the origin, where only in models

with a zero intercept are considered. In this case, it is recommended that the calculation

of R2 be modified to use a denominator of
∑Q

q=1 y
2
q instead of

∑Q
q=1(yq − ȳ)2, effectively

imposing a constraint β0 = 0 in the denominator (Anderson-Sprecher 1994).

4.2.2. Usage of ρ Analogous to R2 in regression, there is no universal threshold that

determines acceptable fit when using ρ. In addition to considering its value, the user should

also consider the change in ρ when comparing different models, with the general caveat

that overfitting should be balanced against obtaining a high value of ρ.
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4.2.3. Choice of GIO(x0) variant The choice of a specific GIO(x0) model to use may

be dictated by the application. For instance, if the modeler aims to recover a solution x∗

that is optimal for the inversely optimized c∗ and “close” to the initial x0, a p-norm model

would be most natural. If the goal is to recover the objective function value achieved by

x0, then a duality gap model would be a more appropriate choice.

When there are constraints on c that prevent the modeler from applying the closed-form

solution in Theorem 1, our general recommendation is to use one of the duality gap models

since they can be solved as linear programs under mild assumptions that are often satisfied

in real applications (e.g., non-negative costs). When there are constraints on ǫ, on the

other hand, GIOp(x
0) is naturally better suited; in this case, the structure of the solution

is characterized by Theorem 1 applied to the set Î of feasible constraints as discussed in

Section 4.1.2.

5. Numerical Studies

In this section, we demonstrate the use of ρ in model estimation and evaluation for two dif-

ferent applications that have previously been studied in the inverse optimization literature:

production planning (Troutt et al. 2006) and cancer therapy (Chan et al. 2014).

5.1. Production Planning

Troutt et al. (2006, 2008) posit that the application of mathematical programming for pro-

duction planning in practice is complicated by the lack of appropriate parameter estimates.

However, given past production data, inverse optimization may provide a way to overcome

this difficulty. We demonstrate the application of our inverse optimization framework to

the aggregate production planning (APP) problem from Troutt et al. (2006). In particu-

lar, we show how initial managerial estimates for certain cost parameters can be updated

through an iterative process of model refinement and evaluation using ρ. A more accurate

APP model can aid prospective decision-making in the production planning process.

5.1.1. Problem Description The APP model (forward problem) aims to find the opti-

mal production quantities for each quarter h of a year to minimize costs and meet demand.

In this model, there are five decision variables: regular time production, overtime, idle time,

inventory, and backorders, all expressed in terms of direct labour hours. For example, the
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number of items in inventory is expressed in terms of the number of labour hours needed

to produce them. The APP model is formulated as the following linear program:

minimize
x

4
∑

h=1

5
∑

j=1

cjxh,j (24a)

subject to xh−1,4−xh−1,5−xh,4+xh,5+xh,1+xh,2 =Dh, h= 1, . . . ,4, (24b)

xh,1+xh,3 =A1, h= 1, . . . ,4, (24c)

xh,2 ≤A2, h= 1, . . . ,4, (24d)

xh,j ≥ 0, h=1, . . . ,4, j =1, . . . ,5, (24e)

where the decision variables xh,1, xh,2, xh,3, xh,4, xh,5 (h= 1, . . . ,4) represent the per-quarter

regular-time production hours, overtime production hours, idle-time hours, hours of

production stored in inventory and hours of production backordered, respectively, and

c1, c2, c3, c4, c5 are the corresponding costs per hour. The model parameters are Dh, the

forecasted demand in hours; A1, the maximum number of regular-time hours available per

quarter; and A2, the maximum number of overtime hours available per quarter. We define

the parameters x0,4 and x0,5 as the number of hours left in inventory and backordered,

respectively, from the previous year.

We aim to obtain per-hour cost estimates that allow the model to replicate the total

production cost associated with a given solution as closely as possible. Thus, we choose an

inverse model based on minimizing the error in objective value, in particular the absolute

duality gap formulation (7); the complete model is shown in Appendix A.1.

5.1.2. Data We use one year of past demand data from Troutt et al. (2006)’s Table

1 as the realized past demand, D.1 To generate x0, we solve formulation (24) using D,

assuming costs c1 = $14, c2 = $21, c3 = $8, c4 = $4, c5 = $17, and then perturb the resulting

optimal solution similarly to Troutt et al. (2006) (see Appendix A.2 for details).

5.1.3. Evaluating cost assumptions using ρa We illustrate how a manager may use ρ

to guide an iterative process of model and assumption refinement. A series of four models

is presented below, each with different assumptions on c and representing a refinement of a

previous model. A summary of the results is given in Table 2; additional details regarding

the implementation of assumptions on c are given in Appendix A.3. Because we employ

1 In contrast, Troutt et al. use these values as forecasts, rather than demand realizations.
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the absolute duality gap model, all models are evaluated using ρa (18). We calculate the

terms ǫia in the denominator of ρa using equation (20). Because we know that all relevant

solutions should have non-negative costs, as recommended in Section 4.2.2 we choose to

compute both the numerator and the denominator of ρ with the constraints cj ≥ 0.0001 ∀j.

Thus, we check the feasibility of each ǫia by solving the inverse model with the constraint

ǫa = ǫia and include only the feasible ǫia values in the denominator of ρa.

In Table 2, Model 1 is the most constrained, representing the manager’s prior belief

about the costs; the corresponding ρa of 0.426 suggests that this belief does not match the

observed solution, particularly because the estimated cost of production is too low and

the estimated cost of idle time is too high for an observed solution where the regular-time

production is not at capacity. Model 2 relaxes one of the manager’s prior constraints; the

substantial improvement in fit combined with a low estimate for c3 suggests that even

though the manager believed idle time was expensive (c3 ≥ $24 in Model 1), production

decisions were made as if idle time was very cheap (c3 = $0.0035). Adjusting the constraints

to allow the cost of regular production to be higher in Model 3, we obtain an even better

ρa. An upper bound on the goodness of fit for the given solution is obtained by considering

a completely unconstrained model, Model 4. This model results in almost perfect fit, but

the estimated cost vector includes an estimate for the inventory cost that is several orders

of magnitude larger than the other costs. The manager may therefore decide that Model

3 provides a sufficiently good cost estimate for prospective production planning.

Model Constraints on c c∗ ρa

1 2c2 = 21c4, c1 ≤ 3c4, c3 ≥ 12c4 [6,21,24,2,25] 0.426

2 2c2 = 21c4, c1 ≤ 3c4 [6,21,0.0035,2,6] 0.846

3 4c2 = 21c4, c1 ≤ 3c4 [12,21,1.5,4,10.5] 0.906

4 None [42,21,21,209895,21] 0.999

Table 2 Cost estimates from different inverse APP models, scaled to c2 = 21, and the corresponding ρa values.

(See Appendix A.3 for the unscaled c vector.)

The substantial fit improvement between Models 1 and 3 suggests that the manager’s

initial cost estimates did not represent well how the observed production plan was gener-

ated. The remaining (unexplained) model-data error may be attributed to several factors



29

including sub-optimal historical production planning, additional inaccurate cost assump-

tions, and inaccurate past demand forecasts. These factors can easily be explored further

by the manager in a manner similar to the one demonstrated. In Model 4, even though the

high ρa value suggests excellent fit, the estimated c is far (in terms of norm) from the true

c since our inverse model is focused on minimizing error in the objective value space (i.e.,

duality gap). However, constraints of the form used in Models 1 to 3 can help to encourage

inverse solutions c that are close to a given prior cost vector.

5.2. Cancer Therapy

Intensity-modulated radiation therapy (IMRT) is a cancer treatment technique that uses

high energy x-ray beams to deliver radiation to a tumor. IMRT treatments can be designed

using an optimization model with a composite objective function comprising a weighted

sum of several organ-specific objectives that trade off between tumor dose and healthy

organ dose. A major challenge in IMRT treatment plan optimization is determining the

right objective functions and corresponding weights necessary to generate a clinical quality

treatment. For example, the relative improvement that may be gained through the addition

of a particular objective is not known a priori. In practice, trial-and-error is used. Recently,

Chan et al. (2014) demonstrated that appropriate weights could be determined from past

clinically approved treatments of prostate cancer using inverse optimization. These weights

could then be used to train statistical models that predict weights from patient anatomy

to create treatments for de novo patients (Lee et al. 2013, Boutilier et al. 2015). However,

the overall process is heavily dependent on the initial choice of objective functions. In this

section, we demonstrate the use of ρ to measure which objectives contribute the most to

re-creating a clinical IMRT treatment plan. Using a well-known treatment evaluation tool,

we also provide a context-specific validation of ρ as a measure of the goodness of fit.

5.2.1. Problem description The aim of the IMRT optimization problem in prostate

cancer is to deliver a sufficiently high dose of radiation to the prostate while minimizing

dose to the neighboring organs-at-risk (OARs). The primary disease site (prostate) is

referred to as the clinical target volume (CTV), and typical OARs include the bladder,

rectum, and left and right femoral heads.

We employ the linear forward and inverse multi-objective optimization formulations

of Chan et al. (2014), which are included in Appendix B for completeness. The forward



30

problem has an objective function of the form α′Cx, where C is a matrix of (row-wise)

objectives and α is the vector of objective weights to be estimated. In other words, this

model is equivalent to a linear program with the cost vector c constrained to be a conic

combination of the rows of C. As such, there is no guarantee that any of the vectors ai

(appropriately scaled) can be written as C′α and thus the inverse problem needs to be

solved directly. The specific inverse model employed is an instance of the relative duality

gap formulation, so goodness of fit is measured by ρr.

5.2.2. Data We used a clinical prostate cancer treatment plan from Princess Margaret

Cancer Centre, i.e., a particular patient’s radiation dose distribution, as input. The beamlet

intensities (i.e., the observed solution x0) were not available, but having the complete dose

distribution is all that is needed to compute the vector of objective function values Cx0,

which is the input required for a multi-objective inverse optimization problem.

5.2.3. Evaluating objective functions using ρr We illustrate how a treatment planner

may use ρr to evaluate how different objectives improve the ability of the model to re-create

the given dose distribution. Following Chan et al. (2014), two types of objective functions

are considered: (a) a piece-wise linear function that penalizes dose to any part of the OAR

above a certain dose threshold, and (b) a maximum dose function. We consider objectives

of type (a) with thresholds of 0,10, . . . ,70 Gray (Gy) for the bladder and rectum, and

objectives of type (b) for the femoral heads.

Unlike the production planning application in the previous section, we test different

subsets of the 18 objectives by starting with a simple set and adding more objectives to

increase ρr, which emulates the current practice of treatment planning. Note that speci-

fying the subset of the objectives to use in the inverse formulation is equivalent to fixing

weight values for the other objectives to zero. However, such constraints do not affect the

calculation of the denominator of ρr because for any subset of objectives we want to mea-

sure its fit relative to the complete 18-objective model (see Section 4.1.3). We calculate

the terms ǫir in the denominator of ρr using equation (21). The purpose of this experiment

is not to provide a prescriptive scheme for determining which objectives should be added

or removed. Rather, the goal is to observe how ρr varies as the treatment planner explores

the explanatory power of different objectives used in concert or alone.

Table 3 shows the weights and the ρr values for models with different choices of objec-

tives. Gray cells indicate which objectives were included in the model while the values of
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Model
θ= 0 θ= 10 θ=20 θ= 30 θ= 40 θ= 50 θ= 60 θ= 70 Max

ρr
B R B R B R B R B R B R B R B R LF RF

1 0.667 0.333 0.724

2 0.604 0.394 0.001 0.001 0.737

3 0.591 0.063 0.326 0.001 0.010 0.009 0.947

4 0.582 0.058 - - - - - - - - 0.059 0.008 - - 0.275 - 0.009 0.009 0.948

B = bladder, Re= rectum, LF = left femoral head, RF = right femoral head. θ represents the dose threshold in objective type (a).

Gray cells indicate the objectives included for each model. Dashes indicate a weight of zero.

Table 3 Results from inverse models with different sets of objectives.

the cells indicate the corresponding objective function weight. Model 1 is the simplest, with

two objectives that penalize dose above 70 Gy to the bladder and rectum; the correspond-

ing ρr is 0.724. Model 2 includes two additional objectives for the femoral heads, but the fit

improves only slightly. Adding the mean dose objectives (equivalent to dose threshold of 0

Gy) for the bladder and rectum in Model 3, we see ρr increases to 0.947, suggesting a good

fit with the historical treatment plan. Finally, Model 4 considers all of the 18 objectives.

For this model, the value of ρr is almost the same as for Model 3 (0.948). Interestingly, the

corresponding weight vector has only seven nonzero components. Overall, for this specific

patient, the bladder seems to be the most important organ to spare.

To provide a context-specific validation of ρr as a measure of goodness of fit, we solve the

forward model using the inversely optimized weight vector α∗ and compare the resulting

dose distribution with the clinical dose distribution using a dose-volume histogram (DVH).

A DVH is the clinical standard for visualizing and evaluating treatment quality. For each

organ, it shows what fraction of the organ receives a certain dose or higher. Figure 6

shows the bladder and rectum DVHs corresponding to the clinical plan, the Model 1 (two

objectives) plan, and the Model 3 (six objectives) plan. For both organs, the DVH from

the six-objective model more closely approximates the clinical DVH than the DVH from

the two-objective model does. These results suggest that ρr provides an indication of how

representative a dose distribution generated with a particular set of objectives and weights

is of a clinical dose distribution.

5.2.4. Sparsity and variable selection The process of adding objectives and measuring

the resulting goodness of fit in the previous section can be seen as analogous to variable

selection in regression. Recall that the inverse solution to the 18-objective model (Model

4) has only seven nonzero objective function weights, indicating that not all objectives
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(a) Bladder DVH.
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(b) Rectum DVH.

Figure 6 DVHs from the clinical, Model 1, and Model 3 plans.

were needed to fit the observed treatment plan. Furthermore, while our inverse approach

does not explicitly focus on sparsity, it nevertheless seems to generate a sparse solution.

Motivated by this observation, we investigate whether it is possible to find an even sparser

solution than α∗ while minimally degrading ρr. To do so, we add a regularization term ‖α‖1

to the original objective function of the inverse formulation in Appendix B, with a weight

of λ ∈ [0,1] for the regularization term and a weight of 1− λ for the original objective,

analogous to lasso for regression (Tibshirani 1994). The number of nonzero components of

α∗ drops to six at λ= 0.04 (ρr = 0.948) and to five at λ= 0.07 (ρr = 0.947). For λ= 0.1,

α∗ has only four nonzero values, corresponding to the bladder and rectum mean dose

objectives, and the left and right femoral head objectives. The ρr value is 0.947, almost

identical to that of Model 3. The same solution is optimal for λ values from 0.1 to 0.9.

Using a regularization approach may result in a potentially sparser inverse solution with

minimal degradation in goodness of fit. However, evaluating a few other patients using

the same process, we find that the level of sparsity of the non-regularized solution varies

quite a bit. Interestingly, for some patients, the non-regularized model generates a sparse

solution and sparsity actually worsens when including the regularization objective with a

nonzero λ. We believe this result is due to the fact that, as noted in Section 2.4.3, the

relative duality gap model under the assumption of non-negative weights (cost vector),

has an objective that is already a weighted ℓ1 regularization of the weight vector. Thus,
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creating an overall objective function that is a convex combination of the original objective

function and ‖α‖1 may actually generate less sparse solutions than having the original

objective alone.

6. Conclusions and Future Work

In this paper, we introduce a framework for imputing optimization model parameters

from imperfect data using inverse linear optimization, integrating parameter estimation

to minimize error in the data-model fit and the measurement of the resulting goodness

of fit. Our general inverse optimization model has a closed-form solution and tractable

model variants that include previous models from the literature. Our goodness-of-fit metric,

the coefficient of complementarity, has similar properties as R2 from regression, is easy

to interpret, and is broadly applicable. It is the first context-free, general goodness-of-

fit metric for inverse optimization and has the potential to support broader uptake of

inverse optimization as a tool for optimization model estimation and selection. The choice

of inverse optimization model variant should depend on the application setting, with the

duality gap models being better suited in the case of constraints on c and the p-norm

models being better suited in the case of constraints on ǫ.

A natural next step for the work presented in this paper is to extend to the simultaneous

treatment of multiple data points, including infeasible points, which would enable broader

uptake and applicability of our framework. As our framework draws numerous parallels

with regression (e.g., existence of closed-form optimal solutions, goodness-of-fit metric with

similar properties), the case of multiple points offers a rich setting for further adaptation

of regression concepts. We also hypothesize that our framework can be extended to conic

problems, but will likely require new theoretical development to deal with the projection to

the complement of a general convex set and the corresponding challenges in computing ρ.

Finally, this paper takes a geometric perspective of goodness of fit in inverse optimization.

The development of a statistical foundation is a worthwhile topic for future study.

Appendix
A. Aggregate Production Planning (APP) Experimental Details

A.1. APP Inverse Model

minimize
c,ǫa,γ,λ,µ

ǫa (25a)
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subject to − γh+ γh+1 ≤ c4, h= 1, . . . ,3, (25b)

− γ4 ≤ c4, (25c)

γh− γh+1 ≤ c5, h= 1, . . . ,3, (25d)

γ4 ≤ c5, (25e)

γh+λh ≤ c1, h= 1, . . . ,4, (25f)

γh−µh ≤ c2, h= 1, . . . ,4, (25g)

λh ≤ c3, h= 1, . . . ,4, (25h)

µh ≥ 0, h= 1, . . . ,4, (25i)

4
∑

h=1

5
∑

j=1

(cjx
0
h,j) = (D1−x0,4+x0,5)γ1+

4
∑

h=2

Dhγh

+
4
∑

h=1

(A1λh −A2µh)+ ǫa, (25j)

5
∑

j=1

cj = 1, (25k)

cj ≥ 0, j =1, . . . ,5. (25l)

The inputs to the inverse model (25) are the observed production plan (x0), the num-

ber of hours in inventory/backordered from last year (x0,4, x0,5), and the demand real-

ization (D). The variables γ, λ, µ are the vectors of dual variables corresponding to

constraints (24b), (24c) and (24d), respectively. Equations (25b)–(25i) represent dual fea-

sibility, and equation (25j) is the relaxed strong duality constraint. We assume that all

costs are non-negative, allowing normalization to be enforced by (25k) and (25l).

A.2. Given APP Solution Table 4 lists the data used in the APP example from Sec-

tion 5.1. Columns 2–6 correspond to x0 and column 7 shows the given demand realization

Dh, h = 1, . . . ,4. The numbers in the brackets show the original, non-perturbed optimal

solution to the forward problem with demand D. Note that the number of hours left in

inventory from the previous year (x0,4) and the number of hours backordered from the

previous year (x0,5) are different for the original and perturbed solution. That is, x0,4 = 0

and x0,5 = 0 for the original non-perturbed solution, while x0,4 is 0 and x0,5 = 1,183.8 for

the perturbed solution.
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The perturbed solution is produced as follows. We first perturb the regular time produc-

tion by adding either a random number U [0,0.02] times the idle time (if original production

time is 0) or a random number U [−0.03,0.03] times the original regular time production,

and then adjusting all the remaining quantities to ensure a feasible solution. Idle time is

adjusted to reflect the increase or decrease in regular time hours, ensuring feasibility for

constraint (24c). We do not adjust overtime hours, and so constraint (24d) is automati-

cally satisfied. If the sum of demand and the initial backorder quantity exceeds the sum of

the initial inventory, the perturbed production level and the overtime, then the backorder

value is increased by the corresponding amount, while the perturbed inventory level is set

to 0. Otherwise, the inventory is increased and the backorder is set to 0. Thus, we ensure

feasibility of the perturbed solution for constraint (24b).

Quarter Production Plan Demand

Regular-time Over-time Idle-time Inventory Backorder

1 34,430.9 (35000) 3,500 (3500) 569.1 (0) 0 (0) 13,453.0 (11700) 50,200
2 34,114.2 (35000) 3,500 (3500) 885.8 (0) 0 (0) 19,763.8 (17125) 43,925
3 29,056.1 (29675) 0 (0) 5,943.9 (5325) 0 (0) 3,257.8 (0) 12,550
4 21,112.8 (20708) 0 (0) 13,887.2 (14292) 0 (0) 2,852.9 (0) 20,708

Table 4 The observed APP solution from Section 6.1. The numbers in brackets show the non-perturbed

solution. All units in hours.

A.3. Scaling Assumptions on c are implemented via the rescaling method from

Troutt et al. (2006). That is, assuming J0 ⊂ {1,2,3,4,5} is a set indexing those costs that

are assumed to be known a-priori (c̄j), we add to the inverse model the linearized versions

of the constraints cl/cj = c̄l/c̄j for l, j ∈ J0, together with cj ≥ 0.0001 ∀j to prevent division-

by-zero errors. We scale all estimated cost vectors so that c2 = 21, assuming the manager

is confident in the estimate of this cost a-priori. Table 5 shows the solutions to Model 1 to

4 without the scaling. Note that the choice of scaling can impact the interpretation of the

results and thus should be chosen carefully for the particular application of interest.

B. Forward and Inverse Formulations for Cancer Therapy

In this section we provide the full formulations for the forward and inverse IMRT treatment

plan optimization problem. We refer the interested reader to Chan et al. (2014) for addi-

tional details. Let B be the set of beamlets and wb be the intensity delivered by beamlet
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Model Constraints on c c∗ ρa

1 2c2 = 21c4, c1 ≤ 3c4, c3 ≥ 12c4 [0.077,0.269,0.308,0.026,0.320] 0.426

2 2c2 = 21c4, c1 ≤ 3c4 [0.171,0.6,0.001,0.057,0.171] 0.846

3 4c2 = 21c4, c1 ≤ 3c4 [0.245,0.429,0.031,0.082,0.214] 0.906

4 None [0.0002,0.0001,0.0001,0.9995,0.0001] 0.999

Table 5 Cost estimates from different inverse APP models without scaling.

b∈B. A patient’s anatomy is discretized into volume elements called voxels. We denote by

Dv,b the dose deposited to voxel v from unit intensity of beamlet b. Let K be the set of all

objectives. For any k ∈K, let Ok be the set of voxels in the OAR associated with objective

k. We also let V be the set of voxels in the anatomy. Lastly, let αk ≥ 0 denote the weight

assigned to objective k. The forward multi-objective IMRT treatment plan optimization

problem is given by

minimize
w

∑

k∈K

αkfk(w)

subject to
∑

b∈B

Dv,bwb ≥ ℓv, ∀v ∈ T ,

∑

b∈B

Dv,bwb ≤ uv, ∀v ∈ V,

β1

|B|

∑

b′∈B

wb′ ≤ wb ≤
β2

|B|

∑

b′∈B

wb′ , ∀b ∈B,

wb ≥ 0, ∀b∈B,

(26)

where organ i∈ I ⊆K is associated with objective function type (a):

fi(w) =
1

|Oi|

∑

v∈Oi

max

{

0,
∑

b∈B

Dv,bwb − θiv

}

, (27)

and organ j ∈J ⊆K is associated with objective function type (b):

fj(w) =max
v∈Oj

{

∑

b∈B

Dv,bwb

}

. (28)

By introducing auxiliary variables ξ and z corresponding to the above-threshold doses

(objective type (a)) and max dose (objective type (b)), respectively, formulation (26) can
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be written as an LP:

minimize
w,ξ,z

∑

i∈I

αi

|Oi|

∑

v∈Oi

ξi,v +
∑

j∈J

αjzj

subject to ξi,v ≥
∑

b∈B

Dv,bwb − θiv, ∀v ∈Oi, i∈ I,

zj ≥
∑

b∈B

Dv,bwb, ∀v ∈Oj , j ∈J ,

∑

b∈B

Dv,bwb ≥ ℓv, ∀v ∈ T ,

∑

b∈B

Dv,bwb ≤ uv, ∀v ∈ V,

β1

|B|

∑

b′∈B

wb′ ≤ wb ≤
β2

|B|

∑

b′∈B

wb′ , ∀b ∈B,

ξi,v ≥ 0, ∀v ∈Oi, i∈ I,

zj ≥ 0, j ∈J ,

wb ≥ 0, ∀b∈B.

(29)

Let p,q, r, s, t1 and t2 be the dual variables associated with the constraints in formula-

tion (29) (t1 and t2 for the left and right inequalities in the fifth constraint, respectively).

Given a dose distribution Dŵ from a clinical treatment plan, the corresponding ξ̂ and ẑ

values can be calculated. The relative duality gap inverse formulation is:
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minimize
p,q, r, s, t1, t2,α

∑

i∈I

αi

|Oi|

∑

v∈Oi

ξ̂v,i+
∑

j∈J

αj ẑj

subject to −
∑

i∈I

∑

v∈Oi

Dv,bpv,i −
∑

j∈J

∑

v∈Oj

Dv,bqv,j +
∑

v∈T

Dv,brv −
∑

v∈V

Dv,bsv

+ t1b −
β1

|B|

∑

b′∈B

t1b′ − t2b +
β2

|B|

∑

b′∈B

t2b′ ≤ 0, ∀b∈B,

pv,i ≤
αi

|Oi|
, ∀v ∈Oi,∀i∈ I,

∑

v∈Oj

qv,j = αj, ∀j ∈J ,

−
∑

i∈I

∑

v∈Oi

θivpv,i +
∑

v∈T

ℓvrv −
∑

v∈V

uvsv = 1,

αk ≥ 0, ∀k ∈K,

pv,i ≥ 0, ∀v ∈Oi,∀i∈ I,

qv,j ≥ 0, ∀v ∈Oj,∀j ∈J ,

rv ≥ 0, ∀v ∈ T , sv ≥ 0, ∀v ∈ V,

t1b ≥ 0, ∀b ∈B, t2b ≥ 0, ∀b∈B.

(30)

Note that the structure of (30) differs slightly from the general relative duality gap inverse

model (8). The difference is due to the fact that α is assumed to be nonnegative and

fk(w)≥ 0 for all k ∈K for every feasible w. In this case, the objective function simplifies

to ǫr, which can be minimized by fixing the denominator and minimizing the numerator,

followed by a post-hoc re-normalization (cf. formulation (4) from Chan et al. (2014)). See

Proposition 7 and formulation 10.

C. Proofs

Proof of Proposition 1 (⇒) We condition on the feasibility of x0. If x0 is feasible, then

feasibility of IO(x0) implies the optimality conditions are met, so x0 is optimal. Now

suppose x0 is infeasible and, to derive a contradiction, satisfies a′
ix

0 < bi for all i ∈ I.

Feasibility of IO(x0) forces y′(Ax0−b) = 0, which can be satisfied only if y= 0, violating

the normalization constraint.

(⇐) If x0 ∈XOPT, then dual feasibility and strong duality hold with non-zero y and c.

Thus, y and c, both normalized by ‖c‖1, are feasible for IO(x0). If x0 ∈ {x 6∈X | a′
ix ≥

bi for some i∈ I}, there exists i∈ I such that a′
ix

0 ≥ bi and k ∈ I such that a′
kx

0 < bk. It is
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easily checked that y= ei− (a′
ix

0− bi)/(a
′
kx

0− bk)ek and c= yiai+ ykak, both normalized

by ‖c‖1, are feasible for IO(x0). �

Proof of Proposition 2 Since the objective has a lower bound of zero, it suffices to show

that GIO(x0) is feasible to prove the first statement. If x0 ∈XOPT, clearly GIO(x0) is

feasible (optimal) with ǫ= 0. If x0 ∈X\XOPT, there exists a dual feasible y, appropriately

scaled, such that A′y = c,‖c‖1 = 1, and b′y < c′x0. Since ǫ is unrestricted, it can be

chosen so that c′ǫ = c′x0 − b′y. Thus, GIO(x0) is feasible and has an optimal solution.

The proof of the second statement is trivial, observing the correspondence between the

strong duality constraints in IO(x0) and GIO(x0). �

The proof of Theorem 1 requires showing that an optimal solution to GIO(x0) can be

found by 1) projecting x0 to one of the hyperplanes defining X, and 2) characterizing the

point on to which x0 is projected. For the latter step, we leverage Theorem 3 below, which

characterizes projections of a point on to a hyperplane under general norms.

Theorem 3. [Mangasarian (1999, Thm. 2.1)] Let ‖ · ‖ be a norm defined over R
n and

let H= {x ∈ R
n | a′x= b}, a 6= 0, a ∈ R

n, b ∈ R. Let x0 ∈ R
n \H. A projection π(x0) ∈ H

under ‖ · ‖ is given by π(x0) = x0 − (a′x0 − b)v(a)/‖a‖D, where v(a) ∈ argmax‖v‖=1a
′v,

and ‖x0 −π(x0)‖= |a′x0 − b|/‖a‖D.

Proof of Theorem 1 Let (y∗,c∗,ǫ∗) be an optimal solution to GIO(x0), and define x∗ =

x0−ǫ∗. By Proposition 2, (y∗,c∗) is a feasible solution to IO(x∗), which, by Proposition 1,

implies that either x∗ ∈XOPT(c∗) or x∗ ∈ {x 6∈X | a′
ix≥ bi for some i ∈ I}. We will show

the former is true by showing that x∗ is primal feasible. Suppose to the contrary that x∗

is infeasible. Then there exist a j such that a′
j(x

0 − ǫ∗) < bj and a primal feasible point

x̂ := x0 − ǫ̂ = λx0 + (1 − λ)(x0 − ǫ∗), λ ∈ (0,1), such that a′
jx̂ = bj. Since x̂ is on the

boundary of X, i.e., x̂ ∈XOPT, IO(x̂) is feasible by Proposition 1. If we let (ŷ, ĉ) be a

feasible solution to IO(x̂), then by Proposition 2, (ŷ, ĉ, ǫ̂) is feasible for GIO(x0), where

ǫ̂= (1− λ)ǫ∗. However, ‖ǫ̂‖L = ‖(1− λ)ǫ∗‖L < ‖ǫ∗‖L, which contradicts the optimality of

(y∗,c∗,ǫ∗). Thus, it must be that x∗ ∈XOPT(c∗). In particular, x∗ is feasible and there

exists i such that a′
ix

∗ = bi.

By optimality of ǫ∗, ||ǫ∗||L = ||x∗ − x0||L is the minimum distance from x0 to XOPT,

i.e., the minimum of all distances from x0 to the hyperplanes defining X. Applying
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Theorem 2.1 of Mangasarian (1999) for each i ∈ I, ‖ǫ∗‖L = min
i∈I

{(a′
ix

0 − bi)/‖ai‖
D
L }. Let

i∗ ∈ argmin
i∈I

{(a′
ix

0 − bi)/‖ai‖
D
L }. Then x∗ satisfies a′

i∗x
∗ = bi∗. Consequently, c

∗ can be writ-

ten as λai∗ for some λ> 0. The constraints ‖c‖1 = 1 and A′y= c imply c∗ = ai∗/‖ai∗‖1 and

y∗ = ei∗/‖ai∗‖1. The expression for ǫ∗ follows directly from Theorem 2.1 of Mangasarian

(1999). �

Proof of Proposition 3 First, the objective function of GIO(x0) with the chosen

infinity norm and structure of ǫ matches the objective function of GIOa(x
0): ‖ǫ‖∞ =

‖ǫa sgn(c)‖∞ = |ǫa| ‖ sgn(c)‖∞ = ǫa. Finally, the strong duality constraint of GIO(x0)

becomes: b′y= c′(x0 − ǫ) = c′ (x0− ǫa sgn(c)) = c′x0 − ǫa, since c′ sgn(c) = ‖c‖1 = 1. �

Proof of Proposition 4 By Proposition 3, GIO∞(x0) (i.e., GIO(x0) with ‖ ·‖L = ‖ ·‖∞)

is a relaxed version GIOa(x
0) with the constraint ǫ = ǫa sgn(c) omitted. Applying

Theorem 1, (y∗,c∗,ǫ∗) = (ei∗/‖ai∗‖1,ai∗/‖ai∗‖1, (a
′
i∗x

0 − bi∗) sgn(ai∗)/‖ai∗‖1) is an optimal

solution to GIO∞(x0), where i∗ ∈ argmini∈I(a
′
ix

0 − bi)/‖ai‖1. This solution is feasible

for GIOa(x
0) since there always exists an ǫa such that ǫ∗ = ǫa sgn(c

∗). In particular,

ǫa = (a′
i∗x

0 − bi∗)/‖ai∗‖1. Since (y∗,c∗,ǫ∗) is optimal for GIO∞(x0) and feasible for

GIOa(x
0), it must also be optimal for GIOa(x

0), and hence ǫ∗a = (a′
i∗x

0 − bi∗)/‖ai∗‖1. �

Proof of Proposition 5 First, the objective function of GIO(x0) with the chosen

weighted infinity norm and structure of ǫ matches the objective function of GIOr(x
0):

‖ǫ‖∞,1/|b′y| = ‖b′y(ǫr−1) sgn(c)‖∞/|b′y|= |b′y(ǫr−1)|‖ sgn(c)‖∞/|b′y|= |ǫr −1|. Second,

the strong duality constraint of GIO(x0) becomes: c′x0 = b′y + c′ǫ = b′y + c′(b′y(ǫr −

1) sgn(c)) = b′y+b′y(ǫr−1) = ǫrb
′y, where the second last equality is due to c′ sgn(c) = 1.

�

Proof of Proposition 6 By Proposition 5, GIO∞,K(x
0) (i.e., GIO(x0) with ‖ · ‖L =

‖ · ‖∞,K) where K = 1/|b′y| is a relaxed version of GIOr(x
0) with the constraint ǫ =

b′y(ǫr−1) sgn(c) omitted. To apply Theorem 1 to GIO∞,K(x
0), we first need to derive the

dual of the weighted infinity norm ‖ · ‖∞,K . We have ‖ai‖
D
∞,1/|b′y| = sup

x

{a′
ix : ‖x‖∞,1/|b′y| ≤

1} = sup
x

{a′
ix : ‖x‖∞/|b′y| ≤ 1} = sup

x

{a′
ix : ‖x‖∞ ≤ |b′y|} ≤ sup

x

{‖ai‖1‖x‖∞ : ‖x‖∞ ≤
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|b′y|} ≤ ‖ai‖1|b
′y|, where the first inequality is due to Hölder’s inequality. If we pick

x= |b′y| sgn(ai), we achieve equality throughout. Hence, ‖ai‖
D
∞,1/|b′y| = ‖ai‖1|b

′y|.

By definition, the choice of x above that achieves equality defines

v(ai). So, v(ai) = |b′y| sgn(ai). Applying Theorem 1, (y∗,c∗,ǫ∗) =
(

ei/‖ai‖1,ai/‖ai‖1, (a
′
ix

0 − bi)v(ai)/‖ai‖
D
L

)

= (ei/‖ai‖1,ai/‖ai‖1, (a
′
ix

0− bi) sgn(ai)/‖ai‖1)

for some i. Given the optimal solution structure, the optimal objective value is

‖ǫ∗‖∞/|b′y∗| = ‖(a′
i∗x

0 − bi∗) sgn(ai∗)/‖ai∗‖1‖∞/(|bi∗|/‖ai∗‖1) = |(a′
i∗x

0 − bi∗)/bi∗| =

(a′
i∗x

0− bi∗)/|bi∗| where i∗ ∈ argmini{(a
′
ix

0− bi)/|bi|}.

Finally, ǫ∗r = ǫ∗/(sgn(c∗)b′y∗)+ 1 = ((a′
i∗x

0− bi∗) sgn(ai∗)/‖ai∗‖1)/(sgn(ai∗)bi∗/‖ai∗‖1)+

1= (a′
i∗x

0− bi∗)/bi∗ +1= a′
i∗x

0/bi∗, as required. �

Proof of Proposition 7 There is a one-to-one correspondence between feasible solutions

to (8) and (9) since they only differ by a scaling constraint. The term ǫr in the objective

equals c′x0/b′y and is invariant to simultaneous scaling of the c and y vectors. Thus,

(ŷ, ĉ, ǫ̂) to optimal to (9) if and only if (ŷ/‖ĉ‖1, ĉ/‖ĉ‖1, ǫ̂r) is optimal to (8). �

Proof of Theorem 2

1. Since an optimal ǫ∗ to GIO(x0) minimizes ‖ǫ‖L and the sum
∑m

i=1 ‖ǫ
i‖L depends only

on x0 and the primal feasible region, ρ is maximized by ǫ∗.

2. By definition, an optimal ǫ∗ to GIO(x0) satisfies 0≤ ‖ǫ∗‖L ≤ ‖ǫi‖L for all i=1, . . . ,m.

Thus, 0 ≤ ‖ǫ∗‖L ≤ 1
m

∑m
i=1 ‖ǫ

i‖L, which implies 0 ≤ ρ ≤ 1 if 1
m

∑m
i=1 ‖ǫ

i‖L 6= 0. If

1
m

∑m
i=1 ‖ǫ

i‖L = 0, we define ρ := 1.

3. Let (y(k)∗,c(k)∗,ǫ(k)∗) be an optimal solution to GIO(k)(x0). This solution is also fea-

sible (but not necessarily optimal) for GIO(k+1)(x0). Thus, ‖ǫ(k)∗‖L ≥ ‖ǫ(k+1)∗‖L and

the result follows.

4. Let x1 and x2 be distinct feasible solutions that, without loss of generality, satisfy

ρ(x1) ≤ ρ(x2). We wish to show that ρ(x̄) ≤ max{ρ(x1), ρ(x2)} = ρ(x2), where x̄ =

λx1 + (1− λ)x2, λ ∈ (0,1), or equivalently 1− ρ(x̄) ≥min{1− ρ(x1),1− ρ(x2)}= 1−

ρ(x2). Let

1− ρ(x̄) =
‖ǭ∗‖L

1
m

∑m
i=1 ‖ǭ

i‖L
, (31)

and

1− ρ(xk) =
‖ǫ∗k‖L

1
m

∑m
i=1 ‖ǫ

i
k‖L

, (32)
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for k = 1,2, where ǭi and ǫik are optimal solutions to problem (17) with respect to x̄

and xk, k = 1,2, respectively. Let ī∗ ∈ argmin
i∈I

{(a′
ix̄− bi)/‖ai‖

D
L }, i

∗
1 ∈ argmin

i∈I
{(a′

ix1 −

bi)/‖ai‖
D
L }, and i∗2 ∈ argmin

i∈I
{(a′

ix2−bi)/‖ai‖
D
L }. First, we bound the numerator of (31):

‖ǭ∗‖L =
aī∗

′x̄− bī∗

‖aī∗‖
D
L

=
aī∗

′(λx1 +(1−λ)x2)− bī∗

‖aī∗‖
D
L

= λ
aī∗

′x1− bī∗

‖aī∗‖
D
L

+(1−λ)
aī∗

′x2− bī∗

‖aī∗‖
D
L

≥ λ
ai∗

1

′x1 − bi∗
1

‖ai∗
1
‖DL

+(1−λ)
ai∗

2

′x2 − bi∗
2

‖ai∗
2
‖DL

= λ‖ǫ∗1‖L+(1−λ)‖ǫ∗2‖L,

(33)

where the first and last equalities are from Theorem 1, and the inequality is from

optimality of GIO(xk) for k= 1,2.

Next we bound the denominator of (31). Note that if ǫk satisfies A(xk − ǫk) ≥ b,

for k = 1,2, then A(x̄− ǫ)≥ b if ǫ= λǫ1 + (1− λ)ǫ2. Similarly, if a′
i(xk − ǫk) = bi for

k= 1,2, then a′
i(x̄−ǫ) = bi. In other words, given feasible solutions ǫk to problem (17)

with respect to xk, k = 1,2, we can construct a feasible solution ǫ to problem (17)

with respect to x̄. Thus,

‖ǭi‖L ≤ ‖λǫi1+(1−λ)ǫi2‖L ≤ λ‖ǫi1‖L +(1−λ)‖ǫi2‖L, (34)

which implies

1

m

m
∑

i=1

‖ǭi‖L ≤ λ

(

1

m

m
∑

i=1

‖ǫi1‖L

)

+(1−λ)

(

1

m

m
∑

i=1

‖ǫi2‖L

)

. (35)

Putting (33) and (35) together,

‖ǭ∗‖L
1
m

∑m
i=1 ‖ǭ

i‖L
≥

λ‖ǫ∗1‖L+(1−λ)‖ǫ∗2‖L
λ( 1

m

∑m
i=1 ‖ǫ

i
1‖L)+ (1−λ)( 1

m

∑m
i=1 ‖ǫ

i
2‖L)

. (36)

What remains is to show that

λ‖ǫ∗1‖L+(1−λ)‖ǫ∗2‖L
λ( 1

m

∑m
i=1 ‖ǫ

i
1‖L)+ (1−λ)( 1

m

∑m
i=1 ‖ǫ

i
2‖L)

≥
‖ǫ∗2‖L

1
m

∑m
i=1 ‖ǫ

i
2‖L

, (37)

which follows from straightforward algebraic manipulation, along with the original

assumption that

1− ρ(x1) =
‖ǫ∗1‖L

1
m

∑m
i=1 ‖ǫ

i
1‖L

≥
‖ǫ∗2‖L

1
m

∑m
i=1 ‖ǫ

i
2‖L

= 1− ρ(x2). (38)

Thus, combining (36) and (37), we have 1− ρ(x̄)≥ 1− ρ(x2), as desired. �
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Proof of Proposition 8 Suppose ‖x1 − x∗‖L ≤ ‖x2 − x∗‖L. If ‖x1 − x∗‖L = ‖x2 − x∗‖L,

then x1 = x2 and ρ(x1) = ρ(x2). If ‖x1 − x∗‖L < ‖x2 − x∗‖L then, using the definition

of x1 and x2, we find that ‖λ1x
min + (1 − λ1)x

∗ − x∗‖L < ‖λ2x
min + (1 − λ2)x

∗ − x∗‖L,

which implies λ1 < λ2. Additionally, from the definition of x1 it follows that x∗ =

(x1 − λ1x
min)/(1 − λ1); substituting this expression into the equation for x2, we get

x2 = (λ2 − λ1)x
min/(1 − λ1) + (1 − λ2)x1/(1 − λ1). Since λ1 < λ2, we now know there

exists λ ∈ (0,1) such that x2 = λxmin + (1− λ)x1. By quasiconvexity of ρ, we know that

ρ(x2)≤max{ρ(xmin), ρ(x1)}= ρ(x1).�

Proof of Proposition 9 The first three properties are immediate since the only difference

between ρ̃ and ρ is in the denominator, which is independent of the inverse process. For

the quasiconvexity proof, let x1 and x2 be distinct feasible solutions that, without loss of

generality, satisfy ρ̃(x1)≤ ρ̃(x2). We wish to show that ρ̃(x̄)≤max{ρ̃(x1), ρ̃(x2)}= ρ̃(x2),

where x̄= λx1+(1−λ)x2, λ∈ (0,1). We have

1− ρ̃(x̄) =
‖ǭ∗‖L

1
m

∑m
i=1 ‖˜̄ǫ

i‖L

≥
λ‖ǫ∗1‖L +(1−λ)‖ǫ∗2‖L

1
m

∑m
i=1 ‖˜̄ǫ

i‖L

=
λ‖ǫ∗1‖L+(1−λ)‖ǫ∗2‖L

1
m

∑m
i=1(λ‖ǫ̃

i
1‖L+(1−λ)‖ǫ̃i2‖L)

≥
‖ǫ∗2‖L

1
m

∑m
i=1 ‖ǫ̃

i
2‖L

= 1− ρ̃(x2),

where the first inequality is due to (33), the second equality is due to the linearity of

‖˜̄ǫi‖L with respect to x̄, and the last inequality follows from straightforward algebraic

manipulation along with the original assumption that ρ̃(x1)≤ ρ̃(x2). �
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