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The S&P 500 Option Implied Risk Aversion§
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George Skiadopoulosc and Sylvia Sarantopoulou-Chiouread

January 5, 2018

Abstract

We propose a new predictor of U.S. real economic activity (REA), namely the represen-
tative investor’s implied relative risk aversion (IRRA) extracted from S&P 500 option
prices. IRRA is forward-looking and hence, it is expected to be related to future economic
conditions. We document that U.S. IRRA predicts U.S. REA both in- and out-of-sample
once we control for well-known REA predictors and take into account their persistence.
An increase (decrease) in IRRA predicts a decrease (increase) in REA. We extend the
empirical analysis by extracting IRRA from the South Korea, UK, Japanese and Ger-
man index option markets. We find that South Korea IRRA predicts the South Korea
REA both in- and out-of-sample, as expected given the high liquidity of its index option
market. We show that a parsimonious yet flexible production economy model calibrated
to the U.S. economy can explain the documented negative relation between risk aversion
and future economic growth.

JEL Classification: E44, G13, G17
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1. Introduction

The question whether the growth of real economic activity (REA) can be predicted is of

particular importance to policy makers, firms and investors. Monetary and fiscal policy as

well as firms’ business plans and investors’ decisions are based on REA growth forecasts. There

is an extensive literature which studies whether REA growth can be predicted by employing

a number of financial variables (for a review, see Stock and Watson, 2003). This literature

has become even more topical recently when the 2007 turbulence in the financial markets was

followed by a significant economic recession which caught investors and academics by surprise

(Gourinchas and Obstfeld, 2012). These facts highlight the link between financial markets

and the real economy as well as the need to develop new accurate REA predictors based on

financial markets’ information (for a discussion on this, see also Ng and Wright, 2013).

In this paper, we propose a new predictor of U.S. REA. We investigate whether the

representative investor’s relative risk aversion (RRA) extracted from the S&P 500 market

option prices (implied RRA, IRRA) predicts the growth of U.S. REA. The motivation for the

choice of our predictor stems from the informational content that market prices of liquid index

options are expected to possess. This is because S&P 500 options are inherently forward-

looking contracts. Their payoff depends on the future state of the economy because the

underlying stock index is a broad one that eliminates idiosyncratic risk. In addition, evidence

suggests that informed traders tend to prefer option markets rather than the underlying spot

market to exploit their informational advantage (e.g., Easley et al., 1998, Pan and Poteshman,

2006, and references therein), thus making option-based measures of highly liquid options,

such as the S&P 500 ones, even more appealing for forecasting REA.

We extract U.S. IRRA’s time series over July 1998-August 2015 via the Kang et al. (2010)

formula. The formula proxies the difference between the risk-neutral and physical variance

as a function of the representative investor’s RRA by assuming a power utility function. It

employs the S&P 500 risk-neutral volatility, risk-neutral skewness, risk-neutral kurtosis and

the physical variance as inputs. We calculate the risk-neutral moments via Bakshi et al.

(2003) method which uses the cross-section of traded S&P 500 option prices. Hence, IRRA

incorporates information from all traded options by construction. The extracted IRRA values
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are within the range of values reported by previous literature.

Next, we investigate whether U.S. IRRA predicts future U.S. REA. To this end, we use

a number of alternative REA proxies. We test IRRA’s forecasting ability across different

forecasting horizons (up to one year) controlling for a large set of variables documented by

the previous literature to predict REA. We conduct statistical inference carefully to cope

with the persistence of regressors. We employ the recently developed instrumental variable

test of Kostakis et al. (2015) designed to deal with the question of predictability in the

case of multiple predictors whose order of persistence is unknown. We find that IRRA is a

statistically significant predictor of REA over and above the set of control variables, i.e. IRRA

contains information that has not already been incorporated by other financial predictors. An

increase (decrease) in IRRA predicts a decrease (increase) in future U.S. REA. We document

the predictive ability of IRRA both in- and out-of-sample. Application of Kelly and Pruitt’s

(2015) factor-based approach to forecasting corroborates our results.

We repeat our empirical analysis for South Korea, UK, Japan and Germany. The index

option markets of these countries differ in their liquidity and hence, this additional analysis

will shed more light on the properties of IRRA as a predictor of REA. We extract IRRA

separately from options written on the KOSPI 200 (South Korea), FTSE 100 (UK), Nikkei

225 (Japan) and DAX (Germany) index. We find that IRRA predicts the respective REA

both in- and out-of-sample only in the case of South Korea; an increase (decrease) in South

Korea’s IRRA predicts a decrease (increase) in South Korea’s REA. This comes as no surprise

since KOSPI 200 options have become the most actively traded option contracts in the world

since their inauguration in 1997 (Ryu, 2015); the more liquid the index option market is,

the richer its informational content for future REA is expected to be. Our findings also

supplement Stock and Watson (2003) who document that the predictive ability of a given a

REA predictor may differ across countries.

We explain the negative relation between IRRA and future REA by modelling a parsimo-

nious yet flexible production economy in the spirit of the real business cycle (RBC) literature.

The RBC framework is a natural candidate to explain our findings because it allows exploring

the interactions of key macroeconomic variables that arise endogenously from the intertem-
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poral optimization problem of households and firms within a general equilibrium setting. The

model is standard: on the production side, we assume a representative firm operating in per-

fectly competitive markets for both the output and inputs of production. On the household

side, we assume that the representative agent has preferences over consumption dictated by

a power utility function with habits. The key difference with respect to the baseline RBC

setting though, is that we abstract from shocks to technology on the firms’ side and instead

we focus on the real effects of shocks to households’ risk aversion.

We calibrate the steady state solution of our model to the U.S. economy. We confirm that

the model yields a negative relation between RRA and future REA by (i) investigating the

impulse response function of output to an exogenous shock in RRA, and (ii) running predictive

regressions that employ simulated values of REA and RRA generated by our model. The

intuition for the model’s predictions is that a negative shock in RRA makes agents decrease

consumption and hence increase savings and thus investment. This boosts REA via the

accumulation of capital.

Related literature: Our paper ties four strands of literature. The first strand has to do with

the use of financial variables to predict REA. The rationale is that financial markets reflect

investors’ perceptions about the future state of the economy and hence they can predict REA.

The term spread (Estrella and Hardouvelis, 1991) and default spread (Stock and Watson,

2003) are two prominent predictors of REA. More recently, other financial variables such as

asset pricing factors (Liew and Vassalou, 2000), the TED spread (Chiu, 2010), the Baltic dry

index (Bakshi et al., 2012), commodity futures open interest (Hong and Yogo, 2012), and

commodity-specific factors (Bakshi et al., 2014) have been found to predict REA. Bakshi et

al. (2011) also document empirically that option implied information, namely the forward

variance extracted from S&P 500 index options, predicts REA. Our paper differs in that

we use index option prices to estimate IRRA whose predictive ability over REA is not only

documented empirically but is also theoretically explained within a RBC framework.

The second strand of literature has to do with the estimation of the representative agent’s

risk aversion from index options market prices (Ait-Sahalia and Lo, 2000, Jackwerth, 2000,

Rosenberg and Engle, 2002, Bliss and Panigirtzoglou, 2004, Bakshi and Madan, 2006, Kang
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and Kim, 2006, Kang et al., 2010, Kostakis et al., 2011, Barone-Adesi et al., 2014, and Duan

and Zhang, 2014). This is possible due to the theoretical relation of risk aversion to the ratio of

the risk-neutral distribution and the subjective distribution of the option’s underlying index;

the former can be recovered from option prices (for a review, see Jackwerth, 2004). We choose

Kang et al. (2010)’s methodology to extract IRRA because it is parsimonious in terms of

the required inputs. Most importantly, these inputs can be estimated accurately from the

cross-section of market option prices which are readily available.

The third strand of literature uses the informational content of market option prices to

address a number of topics in economics and finance. The rationale is that market option

prices convey information which can be used for policy making (Söderlind and Svensson, 1997),

risk management (Chang et al., 2012, Buss and Vilkov, 2012), market timing (Kostakis et al.,

2011) and stock selection purposes (DeMiguel et al., 2013, for reviews see Giamouridis and

Skiadopoulos, 2012, Christoffersen et al., 2013). Surprisingly, there is a paucity of research

on whether the information embedded in index option prices can be used to predict REA,

too. To the best of our knowledge, Bakshi et al. (2011) is the only paper which explores this

and documents that forward variances extracted from index options forecast REA.

The fourth strand has to do with the use of RBC models in the finance literature. So

far, RBC models have been used to address pricing puzzles by considering the effects of

technology shocks (e.g., Jerman, 1998, Boldrin et al., 2001, Kaltenbrunner and Lochstoer,

2010, Papanikolaou, 2011). We deviate from previous literature and we investigate the effects

of exogenous shocks to risk-aversion to future REA.

The rest of the paper is structured as follows. Section 2 describes the U.S. data. Section

3 explains how we extract U.S. IRRA. Section 4 presents the empirical evidence on the U.S.

IRRA as a predictor of U.S. REA. Section 5 presents further evidence on the predictive content

of IRRA in the case of other countries. Section 6 presents the RBC model and discusses its

results. Section 7 concludes.
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2. U.S. Data

2.1. Real economic activity data

We obtain monthly data for six alternative measures to proxy U.S. REA over July 1998 to

August 2015. This is a rich period because it includes events of importance such as the August

1998 Russian crisis, the early 2000s recession and the subsequent bullish U.S. stock market,

the 2007-2009 financial crisis and the great economic recession as well as the 2008-2014 U.S.

quantitative easing era.

First, we use industrial production (IPI) which measures the amount of the industries

output. Second, we consider non-farm payroll employment (NFP) defined as the number of

employees in the non-farm sectors in the U.S. economy. Third, we employ real retail sales

including food services sales as a proxy for retail sales (RS). Fourth, we use housing starts

(HS) which measures the total newly started privately owned housing units. We use the

monthly logarithmic growth rates for these four REA proxies. We obtain these data from the

Federal Reserve Economic Data (FRED) database maintained by the Federal Reserve Bank

of St. Louis (FRED).

Fifth, we consider the Chicago Fed National Activity Index (CFNAI). CFNAI is a weighted

average of 85 existing monthly indicators of national economic activity. It is constructed to

have an average value of zero and a standard deviation of one. Since economic activity tends

toward trend growth rate over time, a positive (negative) index value corresponds to growth

above (below) trend. The 85 economic indicators that are included in the CFNAI are drawn

from four broad categories of data: production and income; employment, unemployment,

and hours; personal consumption and housing; and sales, orders, and inventories. We obtain

CFNAI from FRED.

Finally, we use the Aruoba-Diebold-Scotti (ADS, Aruoba et al., 2009) business conditions

index. ADS is compiled based on six economic indicators: weekly initial jobless claims,

monthly payroll employment, industrial production, personal income less transfer payments,

manufacturing and trade sales and quarterly real GDP. It blends high- and low-frequency

information, as well as stock and flow data. The average value of the ADS index is zero.

Positive (negative) values indicate better-(worse-) than-average conditions. We obtain ADS
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from the Philadelphia Fed webpage.

2.2. IRRA inputs: S&P 500 options and 5-minute spot data

We use the following data to estimate U.S. IRRA at any point in time. First, we obtain S&P

500 European style index option data (closing quotes calculated based on the midpoint of

bid and ask prices), their corresponding implied volatilities, the closing price of the S&P 500

and the continuously paid dividend yield for January 1996 to August 2015 from the Ivy DB

OptionMetrics database. Implied volatilities are calculated based on the midpoint of bid and

ask quotes using Merton’s (1973) model. We use the obtained implied volatilities to compute

the S&P 500 risk-neutral moments with a τ -month horizon (τ = 1 month) via Bakshi et

al. (2003)’s model-free method (see Appendix A). As a proxy for the risk-free rate, we use

the zero-coupon curve also provided by Ivy DB. We filter implied volatilities to remove any

noise by applying a number of filtering criteria to their corresponding option prices. We only

consider out-of-the-money and at-the-money options with time-to-maturity 7 to 90 days. We

also discard options with zero open interest and zero trading volume. Furthermore, we retain

option contracts that do not violate Merton’s (1973) no-arbitrage condition and have implied

volatilities less than 100%. We also eliminate options that form vertical and butterfly spreads

with negative prices, as well as option contracts with zero bid prices and premiums below

3/8$.

Second, we obtain 5-minute intra-day S&P 500 prices from Thomson Reuters Tick History

to estimate the S&P 500 physical variance with a τ -month horizon (τ = 1 month). We assume

that the physical variance follows a random walk in line with Andersen and Bollerslev (1998).

The τ -month physical variance, σ2
p,t(τ), equals the realized variance from t − τ to t, RVt−τ,t,

computed as the sum of the daily realized variances plus the sum of the overnight squared

returns (OR) of the S&P 500 over the last one month, i.e.

RVt−τ,t =
t∑

i=t−τ

σ2
i +

t∑
i=t−τ

OR2
i (1)

where σ2
t is the realized variance on day t and ORt is the overnight return. We calculate

overnight returns as the log difference of each day’s opening price minus the closing price of
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the previous day: OR = lnSOpt − lnSClt−1, where SOp and SCl are the opening and the closing

prices of the S&P 500 index, respectively.

2.3. Control variables and a large macroeconomic dataset

We collect data on a number of variables documented to predict REA by previous literature;

these will be used as control variables in the subsequent predictive regressions. Data span the

same period that IRRA is extracted for, i.e. July 1998-August 2015. First, we obtain monthly

data from the FRED website to measure the term spread (TERM, difference between the

ten-year Treasury bond rate and the three-months Treasury bill rate), default spread (DEF,

difference between the yields of the Moody’s AAA and BAA corporate bonds) and TED

spread (difference between the three-months U.S. Libor rate and the three-months Treasury

bill rate). Second, we obtain monthly data on the monthly Fama-French (1996) high minus low

(HML) and small minus big (SMB) factors from Wharton Research Data Services (WRDS).

Third, we collect data on the Baltic Dry Index (BDI) from Bloomberg.

Fourth, we obtain data on 22 individual commodity futures from Bloomberg to construct

the three Daskalaki et al. (2014) commodity-specific factors, namely hedging-pressure (HP),

momentum (MOM) and basis factors(BASIS); Appendix B describes the construction of these

factors. Table 1 lists the employed commodities categorized in five sectors (grains and oilseeds,

energy, livestock, metals and softs). In addition, we construct a commodity futures open

interest variable (OI) in line with Hong and Yogo (2012). First, we compute the growth rate

of open interest for each commodity futures. Then, at any given point in time, we compute

the median of the growth rates of open interest for all commodities futures of each sector.

Last, we compute the equally weighted average of the medians growth rates of all sectors.

Fifth, we use the options data discussed in Section 2.2 to compute at time t the forward

variance FVt,t+1 between t and t+ 1, i.e. the forward variance with a one-month horizon. To

this end, we follow Bakshi et al. (2011). Finally, we obtain the McCracken and Ng (2016) large

macroeconomic dataset from FRED. This dataset consists of 134 monthly macroeconomic U.S.

indicators and we will use it in the out-of-sample tests in Section 4.2.
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3. Extracting risk aversion from option prices

Bakshi and Madan (2006) derive a formula which can be used to extract the risk aversion

of the representative agent from European options market prices. By assuming that a power

utility function describes the representative agent’s preferences, RRA is extracted from the

following equation:

σ2
q,t(τ)− σ2

p,t(τ)

σ2
p,tτ

≈ −γσp,t(τ)θp,t(τ) +
γ2

2
σ2
p,t (κp,t(τ)− 3) (2)

where γ is the RRA coefficient, σ2
q,t(τ) is the risk-neutral variance of the continuously com-

pounded return distribution at time t with horizon τ , and σ2
p,t(τ), θp,t(τ) and κp,t(τ) are the

physical variance, skewness and kurtosis of the continuously compounded return distribution

at time t with horizon τ , respectively.

Equation (2) shows that the RRA extraction requires estimation of the higher order phy-

sical moments (skewness and kurtosis) which is a challenging task. On the one hand, a long

time series is required to estimate higher order physical moments accurately and on the other

hand, a small sample size is needed to capture their time variation (Jackwerth and Rubin-

stein, 1996). To bypass the estimation of the physical higher order moments, we use Kang et

al. (2010) formula which is a variant of equation (2), i.e.

σ2
p,t(τ)− σ2

q,t(τ)

σ2
q,tτ

≈ γσq,t(τ)θq,t(τ) +
γ2

2
σ2
q,t (κq,t(τ)− 3) (3)

where θq,t(τ) and κq,t(τ) is the risk-neutral skewness and kurtosis of the continuously com-

pounded return distribution at time t with horizon τ , respectively. Kang et al. (2010) derive

equation (3) by also assuming that the representative agent’s preferences are described by a

power utility function. Then, they use the moment generating functions of the risk-neutral

and physical probability distributions and they truncate their expansion series appropriately.

The extraction of IRRA from either equation (2) or (3) is model-dependent. However,

the advantage of extracting RRA from equation (3) rather than from equation (2) is twofold.

First, the former equation requires the risk-neutral skewness and kurtosis rather than their

physical counterparts as inputs. Hence, it circumvents the above mentioned challenges of
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estimating higher order physical moments. This is because the estimation of the higher order

risk-neutral moments is model-free (e.g., Bakshi et al., 2003, Jiang and Tian, 2005, Carr and

Wu, 2009). Therefore, even though we use a model-dependent method to back out RRA,

three out of the four required inputs are model-free in contrast to equation (2).1 Second, the

risk-neutral moments are forward-looking (they can be computed at time t from the market

option prices observed at time t) whereas the physical moments estimates are backward-

looking (they rely on past historical data). This makes equation (3) the natural choice for

the purposes of our study.

We use the 30-days realized variance calculated from 5-minute S&P 500 prices as an

estimate of the physical variance. We compute the S&P 500 risk-neutral moments with a

horizon of τ = 1-month by implementing the Bakshi et al. (2003) formulae (see Appendix

A).2 In line with Bakshi and Madan (2006), Kang et al. (2010) and Duan and Zhang (2014),

we use the generalized method of moments (GMM, Hansen, 1982) to estimate RRA. We

minimize the following objective function with respect to γ:

JT ≡ min
γ
g′THTgT (4)

gT ≡
1

T

T∑
t=1

εt ⊗ Zt

εt ≡
σ2
p, t(τ)− σ2

q , t(τ)

σ2
q , t(τ)

− γσq,t(τ)θq,t(τ)− γ2

2
σ2
q,t (κq,t(τ)− 3)

1Inevitably, any method to extract RRA from option prices will be model-dependent. For instance, an
alternative way to extract IRRA would be the Bliss and Panigirtzoglou (2004) method, which uses the relation
between the ratio of the risk-neutral to the physical probability density function and the stochastic discount
factor. However, that method is model-dependent, too, because it requires an assumption on the utility
function of the representative agent as well as further parametric transformations and assumptions. Given
that there is not a model-free method to back out IRRA, the "first best" (i.e. use a model-free method to
estimate IRRA) cannot be attained. However, the choice of the Kang et al. (2010) formula attains the "second
best" (i.e. get as many parameters as possible estimated in a model-free way): three out of its four required
inputs can be estimated in a model-free way.

2The risk-neutral and physical variances should not be annualized when used as inputs in equations (2)
and (3). To prove this statement, we multiply and divide equation (3) by 252,

σ∗2p,t(τ)− σ∗2q,t(τ)
σ∗2q,tτ

≈ γ√
252

σ∗q,t(τ)θq,t(τ) +
1

2

γ2

252
σ∗2q,t (κq,t(τ)− 3) = γ∗σ∗q,t(τ) +

1

2
γ∗2σ∗2q,t (κq,t(τ)− 3) θq,t

where * denotes the annualized values. Hence, if we use the annualized instead of the raw variance as input,
we shall estimate the annualized risk aversion coefficient , γ∗ = γ√

252
, which differs from the raw risk aversion

estimate γ. Hence, we use the raw values of the variances as inputs to estimate the risk aversion coefficient.
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where JT is the objective function, gT denotes the sample mean estimate of the orthogona-

lity condition of the instruments, HT is the inverse of the variance-covariance matrix of the

function gT and ZT are the instruments. In equation (4), there are as many moment conditi-

ons as instruments. In line with the three above mentioned studies, we use three different sets

of instruments to assess whether the choice of instruments affects the extracted IRRA. The

first set consists of a constant and one lag of the risk-neutral variance [σ2
q,t−1(τ)]. The second

set consists of a constant and two lags of the risk-neutral variance [σ2
q,t−1(τ), σ2

q,t−2(τ)]. The

third set contains a constant and three lags of the risk-neutral variance [σ2
q,t−1(τ), σ2

q,t−2(τ),

σ2
q,t−3(τ)]. We apply a two-step GMM.

In line with the three above cited studies, we extract IRRA for a constant time horizon

τ = 1 month (=30 days). We record the risk-neutral moments and realized variance at the

last trading day of each month. We use equation (3) to extract the monthly IRRA series with

a rolling GMM estimation using a rolling window of size 30 months. This yields an IRRA

time series for July 1998 - August 2015 given that our option dataset spans January 1996 to

August 2015.

Figure 1 shows IRRA’s monthly time variation for each one of the three sets of instruments

extracted from the rolling GMM. Four remarks are in order. First, IRRA values range from

2.27 to 9.55. These fall within the range of IRRA estimates reported by the previous literature.

Ait-Sahalia and Lo (2000) report a full-sample IRRA of 12.7, Rosenberg and Engle (2002)

report values from 2.26 to 12.55, Bakshi et al. (2003) report values between 1.76 and 11.39,

Bliss and Panigirtzoglou (2004) report a full sample estimate of 4.08, Bakshi and Madan

(2006) report values from 12.71 to 17.33, Kang and Kim (2006) report values between 2 and

4, Kang et al. (2010) 1.2 to 1.4, Barone-Adesi et al. (2014) report values between -0.5 and 3,

and Duan and Zhang (2014) obtain values from 1.8 to 7.1.

Second, IRRA’s time variation is similar across all three sets of instruments. In the

remainder of the paper, we report results for the case of the IRRA estimated by the first set

of instruments comprising the constant and one lag of the risk-neutral variance. Third, we

can see that the U.S. IRRA is not affected by the 1998 Russian crisis and the early March

2001-November 2001 U.S. recession whereas it increases significantly up to the 2008 financial
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crisis. Interestingly, it starts decreasing thereafter; this pattern may be a result of the 2008-

2014 quantitative easing monetary policy exercised by the Fed which might have alleviated

U.S. agents’ concerns. Finally, IRRA is persistent (ρ = 0.986). We will take this persistence

into account in the subsequent analysis where we will explore whether IRRA predicts REA.

4. Predicting U.S. REA

We examine whether the U.S. IRRA predicts U.S. REA growth first in-sample and then

out-of-sample.

4.1. In-sample evidence

To identify whether IRRA predicts REA growth over h forecasting horizons, we regress each

one of the employed REA measures on IRRA by controlling for a set of variables documented

to predict REA. We estimate the predictive regression:

REAi,t+h = ci + β1,iREAt + β2,iIRRAt + β
′

3,ixt + εi,t+h (5)

where REAi,t+h denotes the growth of the i− th REA proxy (i =1 for IPI, 2 for NFP, 3 for

RS, 4 for HS, 5 for CFNAI, 6 for ADS) over the period t to t+h, REAi,t is the growth of the

i− th REA proxy over the period t−h to t, IRRAt is the implied risk aversion at time t and

xt is a (11 × 1) vector which contains a set of control variables. We compute the h-month

overlapping log growth rates of IPI, NFP, RS, and HS. The values of CFNAI and ADS signify

growth or recession by construction and hence, there is no need to compute the growth rates

for these two REA proxies. We set h = 1, 3, 6, 9, 12 months.

We consider the following control variables: term spread (Estrella and Hardouvelis, 1991),

default spread (Faust et al., 2013), TED spread that proxies for funding liquidity (Chiu, 2010),

SMB and HML Fama-French (1996) factors (Liew and Vassalou, 2000), Baltic dry index (BDI,

Bakshi, et al., 2012), forward variances (FV, Bakshi et al., 2011), commodity-specific factors

(hedging-pressure, momentum, and basis, Bakshi et al., 2014), and the growth rate of the

commodity futures market open interest (Hong and Yogo, 2012). The sample spans July
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1998 - August 2015 (206 observations).

We conduct inference by taking the high degree of IRRA’s persistent into account. This is

because statistical inference is flawed once conducted by standard/Newey-West t-statistic in

the case where predictors are persistent (e.g., Kostakis et al., 2015). More specifically, we use

the IVX-Wald test statistic (Kostakis et al., 2015) to test the predictive ability of IRRA (for

a description of the test, see Appendix C). The IVX-Wald test is robust to the unknown time

series properties of the predictors. In particular, it does not assume a-priori knowledge of the

degree of persistence and it allows for different classes of persistence of the predictor variables,

ranging from purely stationary to purely non-stationary. It also allows conducting inference

in the case of multiple predictors whereas previous tests related to predictors persistence are

developed only for single predictor models (e.g., Campbell and Yogo’s test, 2006).

Table 2 reports the results from estimating equation (5) for forecasting horizons h = 1, 3,

6, 9 and 12 months. Panel A shows the standardized ordinary-least-squares (OLS) coefficient

estimates, the Newey-West and IVX-Wald test p-values of each one of the predictors. One,

two and three asterisks denote rejection of the null hypothesis of a zero coefficient based on

the p-values of the IVX-Wald test at the 1%, 5% and 10% level, respectively. Panel B shows

the in-sample adjusted R2 for any given REA proxy. Two remarks can be drawn in the case

of a one-month forecasting horizon. First, we can see that U.S. IRRA predicts all but one

(i.e. RS) U.S. REA proxies.3 Second, the sign of the IRRA coefficient is negative in all cases.

This suggests that an increase in IRRA predicts a decrease in REA. Extending the evidence

from the one-month results, we can see that IRRA predicts most of the REA proxies at longer

horizons as well. IRRA is significant for four out of six REA proxies for longer horizons. More

specifically, IRRA predicts NFP and HS at all horizons h > 1 month. It also predicts RS for
3We explore whether U.S. IRRA predicts U.S. REA when we extract U.S. IRRA by an alternative method

to that of Kang et al. (2010). We use the Kostakis et al. (2011) U.S. IRRA dataset extracted from the Bliss
and Panigirtzoglou (2004) approach. We are grateful to Kostakis et al. (2011) who have kindly shared their
IRRA estimates with us. They have extracted U.S. IRRA from futures S&P 500 options over July 1998 - May
2010 by assuming a representative agent whose preferences are described by a power utility function. The
results, presented in the online appendix, show that the evidence of predictability is weaker in this case. Even
though the period under scrutiny in this explorative exercise is significantly shorter from the one employed in
the main body of the paper and hence results are not comparable, the weaker performance of the Bliss and
Panigirtzoglou U.S. IRRA as a U.S. REA predictor may be attributed to the way the Bliss and Panigirtzoglou
IRRA is extracted. The extraction of the Bliss and Panigirtzoglou (2004) IRRA requires a conversion of the
implied to the subjective PDF. The Kang et al (2010) IRRA does not require such a transformation.
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horizons up to nine months and IPI for longer horizons (h =9 and 12 months). R2 range from

0.2 to 0.85 across the various REA proxies and forecasting horizons.

4.2. Out-of-sample evidence

In Section 4.1 we documented that U.S. IRRA forecasts U.S. REA in an in-sample setting.

In this section, we assess the forecasting ability of U.S. IRRA in a real time out-of-sample

setting over October 2007 - August 2015. This is also a period of particular interest because

it includes the onset and development of the recent financial crisis and the subsequent signifi-

cant economic recession (also termed Great Recession) and the quantitative easing conducted

by the U.S. Fed. This is a period of time where standard predictors failed to forecast the

forthcoming realized recession. As a result, we have posed a high hurdle for our IRRA pre-

dictor to overcome. For each REA proxy, we estimate equation (5) recursively by employing

an expanding window; the first estimation sample window spans July 1998 - September 2007.

Then, at each point in time, we form h = 1, 3, 6, 9, 12 months-ahead REA forecasts.

We use the out-of-sample R2 (Campbell and Thompson, 2008) to evaluate the out-of-

sample forecasting performance of IRRA. The out-of-sample R2 shows whether the variance

explained by a full model (which contains IRRA in the set of predictors) is greater or smaller

than the variance explained by a restricted model (which does not contain IRRA within the

set of predictors). Then, the out-of-sample R2
i obtained from predicting the i− th REA proxy

is defined as:

R2
i,h = 1−

var
[
Et
(
REAFulli,t+h

)
−REAi,t+h

]
var

[
Et
(
REARestrictedi,t+h

)
−REAi,t+h

] (6)

where Et
(
REAFulli,t+1

)
and Et

(
REARestrictedi,t+1

)
denote h-month ahead forecasts from the full

and restricted model, respectively. A positive (negative) out-of-sample R2 suggests that the

full model outperforms (underperforms) the restricted model and hence, IRRA has (has no)

out-of-sample predictive ability.

We consider two alternative model specifications. First, we obtain forecasts from the

regression model described by equation (5). In this case, the forecasts Et
(
REAFulli,t+h

)
for the

i− th REA proxy obtained from the full model are:
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Et
(
REAFulli,t+h

)
= b0 + b1REAt + b2IRRAt + b

′

3xt (7)

and the forecasts Et
(
REARestrictedi,t+h

)
from the restricted model are:

Et
(
REARestrictedi,t+h

)
= b0 + b1REAt + b

′

3xt (8)

Second, we consider Kelly and Pruitt’s (2015) three-pass regression filter (3PRF). 3PRF

is developed within the factor-based approach to forecasting advocated by Stock and Wat-

son (2002a, 2002b). Hence, it is a dimension reduction method that is suitable in the case

where the number of potentially useful for prediction variables is large and the number of

observations is relatively small. In contrast to previous factor-based forecasting methods,

3PRF identifies factors that are relevant to the variable that we wish to forecast; these fac-

tors may be a strict subset of the factors driving the predictor variables. For the purposes

of implementing the 3PRF approach, we need to consider a large dataset. Hence, we consi-

der a dataset which includes IRRA and the 134 McCracken and Ng (2016) macroeconomic

variables. Following McCracken and Ng (2016), we transform the original time series into

stationary and we remove outliers; outliers are defined as observations that deviate from the

sample median by more than ten interquartile ranges. Then, we standardize the transformed

variables. Following Kelly and Pruitt (2015), we extract one 3PRF factor and we take care to

avoid any look-ahead bias given that the estimation of the first two steps uses the full sample

(for a description, see Appendix D). For any given REA proxy to be predicted, we construct

the 3PRF factor by removing the variables from the McCracken and Ng (2016) dataset which

measure the same notion of economic activity as the REA proxy does. Once we construct the

3PRF factor, our 3PRF model is

REAit+h = γ0 + γ1Ft + ut+h (9)

where Ft is the 3PRF factor. We obtain forecasts for the i− th REA proxy from the full and

restricted 3PRF models defined as:

Et
(
REAFulli,t+h

)
= γ0 + γ1F

Full
t and Et

(
REARestrictedi,t+h

)
= γ0 + γ1F

Restricted
t
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respectively, where we extract F Full
t from a large set of variables which includes IRRA and

the McCracken and Ng (2016) macroeconomic variables and FRestricted
t from a large set of

variables which includes only McCracken and Ng (2016) variables.

Table 3 shows the out-of-sample R2 for the case of forecasts obtained from the regression

predictive models [equations (7) and (8), Panel A] and from the two 3PRF models (Panel B).

We can see that the out-of-sample R2 is positive in most cases, i.e. the full model performs

better than the restricted model. This implies that the inclusion of IRRA is statistically

significant in an out-of-sample setting, too. In the case of forecasts obtained by the regression

models, the evidence on this is somewhat weaker for longer horizons. For RS and HS, the full

model outperforms the restricted model across all predictive horizons. The out-of-sample R2

is also positive for short and intermediate forecasting horizons (h = 1, 3, 6 months) in the case

of NFP and CFNAI. In addition, IRRA predicts IPI and ADS for short horizons (h = 1, 3

months and h = 1 month, respectively). In the case of the 3PRF model, the out-of-sample

R2 is positive in all but one cases. The only exception occurs at a one-month horizon for

CFNAI. 4,5

Finally, we examine the stability of the IRRA coefficients over the out-of-sample period.

To this end, we estimate equation (5) at each point in time over October 2007-August 2015

by employing an expanding window for each one of the employed forecasting horizons. Figure

2 shows the standardized IRRA coefficients in the case of the one-month forecasting horizon

where we use IPI, NFP, RS, HS, CFNAI and ADS as REA proxies (Panels A, B, C, D, E and

F, respectively). We can see that the time series evolution of the estimated IRRA coefficient

is stable over time. The sign of the estimated IRRA coefficient is negative at each estimation

time step suggesting that a decrease in IRRA predicts an increase in future REA. This is

in line with the results obtained from the in-sample analysis (see Table 2). The time series
4We investigate the robustness of our U.S. in- and out-of-sample results by estimating U.S. IRRA for

alternative rolling window sizes, namely 45 and 60 months. Results are qualitatively similar and we report
them in the online appendix.

5We consider two additional robustness checks of our U.S. out-of-sample results. First, we examine alterna-
tive out-of-sample periods by reducing the size of the sample used to initialize the out-of-sample experiment.
This delivers January 2004 - August 2015, January 2005 - August 2015, January 2006 - August 2015, and
January 2007 - August 2015 as alternative out-of-sample periods. Second, we consider an alternative bench-
mark model to calculate the out-of-sample R2, namely the moving average of past 30-month REA values for
the U.S. The results for both robustness tests are similar to those reported in the main body of the paper,
and we present them in the online appendix.
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evolution of the estimated IRRA coefficient is stable over time for the longer horizons, too,

and hence due to space limitations we do not report additional figures.

5. Further evidence from other countries

We examine whether IRRA predicts REA in South Korea, Germany, Japan and UK. South

Korea is the most active index option markets in the world (Ryu, 2015). Options written

on the South Korea Composite Stock Price Index (KOSPI) 200 were introduced in July

1997. Since then, KOSPI options have become one of the most actively traded contracts in

the world. In 2014, the aggregate trading volume was 462 million contracts. This figure is

greater than the 2014 aggregate trading volume of each one of the other index options that we

consider (S&P 500: 223 million, Nikkei 225: 26.7 million, DAX: 20.8 million and FTSE 100:

8.6 million). Therefore, the chosen panel of countries can shed further light on the conditions

under which IRRA may predict future REA since the informational content of market option

prices may vary with the option market’s liquidity.

5.1. Data

To extract IRRA for South Korea, UK, Japan and Germany we obtain European index option

data (closing prices) written on KOSPI 200 options data from the Korea Exchange (KRX)

and on FTSE 100, Nikkei 225 and DAX from Optionmetrics Ivy DB Global Indices and their

respective implied volatilities spanning January 2004 to June 2015. We filter the options

data as follows. We only consider out-of-the-money and at-the-money options. We retain

options with time-to-maturity 7 to 60 days for South Korea and 7 to 270 days for the UK,

Japan and Germany. We remove options with zero open interest and zero trading volume.6

We also discard option contracts which have an implied volatility that is less than zero and
6We do not apply the open interest filter in the case of FTSE 100 index options for the year 2006. This

is because the open interest of FTSE 100 index options is zero across all option observations for the whole
year 2006. This is attributed to an error in recording the open interest variable for 2006, following discussions
with Optionmetrics. We do not expect the non-application of the open interest constraint to affect our results
though: The zero open interest filter removes only an extra 5.46% of the observations for FTSE 100 index
options data spanning January 2007-June 2015 on top of the ones already removed when all other filters are
applied.
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greater than 100%; we use Merton’s (1973) model to back out the implied volatility.7 We do

not consider South Korean options with premiums less than 0.02. Finally, we retain option

contracts that do not violate Merton’s (1973) no arbitrage bounds.

To ensure a common set of REA proxies across countries, we use monthly data for two

alternative measures to proxy REA for the South Korea, UK, Japan and Germany from June

2006 to June 2015. First, we obtain data on industrial production (IP, proxied by industrical

production index) from the Bank of Korea for South Korea and from Bloomberg for UK, Japan

and Germany. Second, we obtain data on unemployment (U, proxied by unemployment rate)

from Bloomberg for all countries. We use logarithmic growth rates for all REA proxies.

We use the following control variables in the predictive regressions: TERM, DEF, TED,

BDI, and FV.8 These span June 2006 to June 2015. The construction of the spread variables

(i.e. TERM, DEF and TED) is shown in Table 4 and is dictated by data availability. Finally,

we obtain BDI from Bloomberg and we construct FV using the index options data for each

country as discussed above.

5.2. Results

We estimate IRRA for South Korea, UK, Japan and Germany by GMM using a rolling window

of 30 monthly observations and three separate sets of instruments, just as we did in the case

with the U.S. IRRA in Section 3. This delivers the IRRAs of the respective countries over

June 2006 to June 2015. We use monthly data on KOSPI 200, FTSE 100, Nikkei 225 and

DAX options to compute the one-month horizon risk-neutral moments for South Korea, UK,

Japan and Germany, respectively. To estimate IRRA at any point in time, we estimate the

one-month physical variance. For South Korea, we use monthly data on KOSPI 200 and we
7Two remarks are at place for South Korea. First, we use the 91 days certificate of deposit (CD) rate as

the risk free rate which is the standard practice for the Korea market (e.g., Kim and Kim, 2005). This is
because the South Korea treasury bill market is not liquid. For the remaining countries, we use zero yield
curve that IvyDB Global Indices provides. Second, we set the continuous dividend yield equal to zero. This
is because we have no access to data on South Korea dividends. However, the effect of the value of dividend
yield on the risk-neutral moments is small. This is because we use OTM options to calculate the risk-neutral
moments. OTM options have a small delta and therefore any effect of dividends on the underlying index price
and hence on the option price will be small. For the remaining countries, we use the respective dividend yield
provided by IvyDB Global Indices.

8We do not consider the South Korea, UK, Japan and Germany analogues of the U.S. Fama-French factors
and Daskalaki et al. (2014) commodity-related variables as controls. This is because the corresponding Fama-
French factors are not available for the entire time period under consideration and there are no commodity
futures contracts traded in Korea, UK, Japan and Germany.
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construct the one-month physical variance as one-step ahead forecasts from a GARCH(1,1)

model using a rolling window of 30 observations of KOSPI 200.9 For the UK, Japan and

Germany we use 5-minute intra-day FTSE 100, Nikkei 225 and DAX prices obtained from

Thomson Reuters Tick History to estimate the FTSE 100, DAX and Nikkei 225 physical

variance with a one-month horizon, respectively.

Figure 3 shows the evolution of the monthly Korea, UK, Japanese and German IRRA over

June 2006-June 2015. IRRA’s time variation is similar across all three sets of instruments;

in the remainder of this section we will employ IRRA extracted from the first set of instru-

ments just as we did in the U.S. case. We can see that the Korea, UK, Japan and German

IRRAs spike upwards over the 2007-2008 U.S. financial crisis just as the U.S. IRRA does;

this is another manifestation of the interconnectedness of financial markets across the globe.

Interestingly, the Korea IRRA is negative over April 2011 to February 2012. This suggests

that the Korea representative agent exhibits a risk-loving behaviour over this period.

Next, we examine whether IRRA predicts REA in South Korea, UK, Japan and Germany

in-sample. To this end, we estimate equation (5) in-sample across the full sample June 2006

- June 2015. To alleviate multicollinearity concerns, we orthogonalize the control variables

that have a correlation with IRRA bigger than 0.50. In the UK, we orthogonalize TERM on

IRRA (ρ = −0.66) and FV on IRRA (ρ = 0.75). In Japan, we orthogonalize TERM on IRRA

(ρ = 0.66) and TED on IRRA (ρ = 0.69). In South Korea and Germany, all control variables

have pairwise correlations lower than 0.50.

Table 5 Panel A reports results from estimating equation (5) in-sample for h = 1, 3, 6,

9 and 12 months for South Korea, UK, Japan and Germany. We report the standardized

OLS coefficient estimates and the IVX-Wald test’s p-value (within brackets) for the IRRA

predictor. We can draw two main findings. First, we can see that IRRA predicts REA in the

case of South Korea and UK in most of the cases. More specifically, it predicts the South

Korea IPI for h > 3 months and U for h > 1 month. It also predicts the UK IPI and U across

all horizons. On the other hand, there is weak evidence of in-sample predictability for Japan,
9We do not estimate the one-month physical variance using high frequency data as we did in the U.S. case.

This is because the intra-day KOSPI 200 futures data are significantly contaminated with measurement errors
and typographical errors; the provided documentation does not allow correcting them.
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where IRRA predicts only U for h = 9 months. Interestingly, IRRA does not predict any of

the German REA proxies. Second, we can see that an increase (decrease) in IRRA predicts

a decrease (increase) in REA; the estimated IRRA coefficient is negative in the case of IPI,

whereas it is positive in the case of U implying that an increase in IRRA predicts an increase

in the rate of unemployment and hence, a decrease in future REA.

Next, we examine IRRA’s predictive ability in an out-sample setting over January 2009 -

June 2015 for South Korea and UK where we found strong evidence of in-sample predictability.

The out-of-sample period for these two countries does not start in October 2007 as it was the

case for U.S. This is because such a choice would yield a sample with only 15 observations to

be used for the estimation of the predictive model in the first out-of-sample estimation step

(versus 111 observations used in the U.S. in the first out-of-sample estimation step). Table

5 Panel B reports the out-of-sample R2.10 We can see that the in-sample predictive ability

of IRRA also carries over to an out-of-sample setting for South Korea only. In particular,

IRRA predicts South Korea REA in the case of IPI for h > 3 months and U for h > 1

month. Overall, our results from the analysis beyond U.S., document that only South Korea

IRRA predicts South Korea REA. Our findings suggest that IRRA predicts future REA in the

case where it is extracted from highly liquid options; South Korea KOSPI 200 index options

have the highest trading volume in the panel of considered countries over the period under

scrutiny and therefore the informational content of these market option prices is expected to

be significant.

As a final robustness test, for the countries where IRRA is documented to predict REA

both in- and out-of-sample (i.e. US and South-Korea), we have also examined whether this
10Application of the Kelly and Pruitt (2015) 3PRF is not possible in the case of the additional countries

because an analogous to McCracken and Ng (2016) large macroeconomic dataset is not available for them.
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finding prevails once IRRA is extracted from longer maturity (three-month) options.11, 12 The

results, presented in the online appendix, show that U.S. IRRA does not predict U.S. REA

neither in-sample nor out-of-sample when IRRA is estimated from options with three months

to maturity. This is in line with the intuition that the prices of shorter maturity options may

be more informative than those of longer maturity ones because the former are more liquid.

On the other hand, South Korea IRRA predicts South Korea REA in-sample across most

forecasting horizons; an increase (decrease) in IRRA predicts a decrease (increase) in REA.

Notably, South Korea IRRA predicts South Korea REA out-of-sample, too. The ability

of IRRA to predict REA when it is extracted from longer maturity in the case of South

Korea comes as no surprise since the KOSPI 200 index options are the most actively traded

contracts. For instance, when we extract IRRA using three-month constant maturity risk-

neutral moments, we consider KOSPI 200 index option with 7 to 270 days to maturity that

have a trading volume equal to 319 million in 2014 (versus 71 million for the respective S&P

500 index options in the U.S.).

6. Explaining empirical evidence: A production model

We take the textbook version of the real business cycle model presented in Miao (2014),

and augment it with shocks to the coefficient of RRA. We show that this very standard

and parsimonious production economy produces the same predictive high-frequency relation

between risk aversion and future REA that we have identified in the empirical analysis.
11Typically, the literature uses short maturity options to extract IRRA for two reasons. First, the liquidity

is greater in shorter maturity options and hence, the informational content of IRRA is expected to be richer.
Second, from a theoretical perspective, utility is defined over real consumption. The extraction of IRRA
implicitly assumes that utility is defined over end-of-period wealth, i.e. nominal consumption rather than real
consumption. In the latter case, researchers proxy wealth (i.e. dollar-denominated consumption) by a stock
index like the S&P 500 for the case of U.S. To be accurate though, nominal consumption (i.e. wealth in this
case) should have been converted to real consumption by taking inflation into account. Such a conversion is
not possible though since IRRA is extracted from option prices. However, this is not a serious issue in the
case where short horizons, i.e. short maturity options are considered (see Ait-Sahalia and Lo, 2000, for an
excellent discussion on this).

12IRRA cannot be extracted from options with maturities longer than three months because of data con-
straints due to the lower liquidity in the longer maturity options. For instance, in the case of South Korea,
we can estimate risk-neutral moments for six-months time-to-maturity only after 2014.
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6.1. The economic environment

Households

The economy is populated by an infinitely lived representative household endowed with one

unit of time in each period. Time is divided between work Nt and leisure Lt, so that Nt+Lt =

1. The household derives utility from the consumption good Ct and disutility from the fraction

of time spent working. It maximizes expected (discounted) lifetime utility with respect to

{Ct, Nt}∞t=0

max
{Ct,Nt}∞t=0

Et

∞∑
t=0

βtUt

where

Ut =

(
Ct − hC̄t−1

)1−γt
1− γt

− χN
1+φ
t

1 + φ
, (10)

Ut is the utility function and β is the subjective discount factor. We assume that Ut is

separable over time and over consumption versus labour choices. Ut posits that households

enjoy utility from the level of their own consumption Ct adjusted for habits, which in turn

depends on aggregate consumption C̄t−1. γt is a variable driving time-variation in risk aversion

and h ∈ [0, 1) is a parameter governing external habits.13 φ governs the (Frisch) elasticity of

labour supply to the real wage, and χ is a scale parameter to be assigned in the calibration.

We assume that γt follows an autoregressive stochastic process of order one parameterized in

logs:

ln γt = ln γ + ρ (ln γt−1 − ln γ) + εt, εt ∼ N
(
0, σ2

)
, (11)

where εt is an exogenous innovation to risk aversion.

The household’s relative risk aversion is given by

RRAt = −Ct (∂2Ut/∂Ct)

∂Ut/∂C2
t

= γt
Ct

Ct − hC̄t−1
, (12)

13We have introduced habits in consumption following a suggestion by the referee. This feature of the model
amplifies the transmission of shocks quantitatively, but it does not affect the qualitative results of the analysis
compared to the case where there are no habits. For recent theoretical and empirical analysis of the impact
of habit formation on individual consumption behaviour see Baucells and Sarin (2010) and Acland and Levy
(2015). Christoffersen et al. (2017) also use habits in consumption to explain stylized facts of credit spreads
and their relation with option markets.
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where
(
Ct − hC̄t−1

)
/Ct is the consumption surplus ratio. Notice that the empirical IRRA

time series extracted from option prices is consistent with the presence of habits because its

time variation may reflect the time variation in the consumption surplus ratio in equation

(12).

The household receives a real wage Wt in exchange for supplying labour services and

accumulates physical capital, Kt which rents to the firms at the net rate of return Rt−1.

Capital accumulation follows the law of motion:

Kt+1 = (1− δ)Kt + It, (13)

where It denotes investment, δ is a constant rate of depreciation and Kt is predetermined at

time t.

The intertemporal problem of the household is to maximize current and future expected

utility (equation (10)) subject to the budget constraint

Ct + It = Rt−1Kt +WtNt,

and the law of motion for capital [equation (13)] where Rt−1 is the real return on capital at

t − 1. The first order conditions for dynamic optimality with respect to Ct, Nt, and Kt+1

deliver a standard Euler equation:

λt = βEtλt+1 [Rt + 1− δ] , (14)

where λt denotes the marginal utility of consumption

λt =
(
Ct − hC̄t−1

)−γt
,

and an equation for labour supply,

λtWt = χNφ
t .

The above expression equalizes the marginal disutility from work χNφ
t to the return from a
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marginal increase in labor supply in utility units, λtWt.

Firms

A representative perfectly competitive firm produces a homogeneous good Yt using a stan-

dard Cobb-Douglas technology

Yt = AK1−α
t Nα

t . (15)

We interpret the level of production Yt as the theoretical analogue of the various proxies of real

economic activity used in the empirical analysis. We assume that total factor productivity

A is constant because we are only interested in the dynamics generated by the shock to risk

aversion and hence we abstract from technology shocks. At every time t, firms minimize the

cost of their inputs subject to the production technology in equation (15). The markets for

capital and labour are assumed to be perfectly competitive which implies that the real return

on capital and the real wage equal the marginal product of capital and labour, respectively:

Rt = (1− α)AK−αt Nα
t , (16)

Wt = αAK1−α
t Nα−1

t . (17)

Equilibrium

The competitive equilibrium is a sequence of quantities {Ct, Nt, Kt+1, It, Yt}∞t=0, and prices

{Rt,Wt}∞t=0 such that 1) given the prices and the exogenous stochastic process for γt, the

vector of quantities satisfies the household’s conditions for dynamic optimality, i.e. the Euler

equation

(Ct − hCt−1)−γt = Etβ (Ct+1 − hCt)−γt+1
[
(1− α)K−αt+1N

α
t+1 + 1− δ

]
, (18)

and the labour supply equation

Wt = χNφ
t (Ct − hCt−1)γt , (19)
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the feasibility constraint

Yt = Ct + It,

the production function (15) and the law of motion for capital (13);

2) The price system solves the firm’s first order conditions (16) and (17);

3) The exogenous stochastic process for the coefficient of risk aversion obeys equation (11).

Given that the equilibrium of the model has no closed form solution, we solve it numerically

as follows. First, we assign parameter values to pin down the steady-state of the model.

Then, we take a second order approximation of the model’s equations around the steady

state. Finally, we solve for the policy functions using the Kim et al. (2008) algorithm. See

Appendix E for an explanation of the model’s solution.

6.2. Calibration

The deterministic steady-state of the model can be solved in closed form by assigning para-

meter values in a particular order (see Miao, 2014). Parameter values are calibrated so as

to match key statistics for the post-war U.S. economy, under the conventional normalization

that one period in the model corresponds to a quarter. The parameter values and calibration

targets are reported in Table 6. Given that the calibration is standard and follows Miao

(2014) very closely, we relegate the details to Appendix E.

Instead, here we devote attention to the calibration of the parameters governing the sto-

chastic process for γt, which marks the departure from the literature. We assign values to γ, ρ

and σ by simulating the model’s RRA via equation (12) so that we match the mean, standard

deviation and autocorrelation of the simulated RRAt with the empirical mean, standard de-

viation and autocorrelation of the U.S. IRRA series estimated in Section 3.14 We perform the

simulation over 100,000 quarters by drawing 100,000 respective εt. We perform the matching

by a trial and error iterative approach. Finally, we note that the habit parameter is set to

0.6, which is in line with the habit estimates in Christiano et al. (2005).

To assess whether the proposed model explains the empirically documented relation bet-
14The IRRA series in Section 3 is estimated at monthly frequencies and hence, it needs to be converted into

a quarterly frequency for the purposes of the calibration. The mean, standard deviation and autocorrelation
of this quarterly series are 5.8, 1.38 and 0.966 respectively.
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ween IRRA and future REA, in the next Section we will (i) examine the impulse responses

of the endogenous variables to a shock in γt, and (ii) simulate time series of γt and Yt and

examine their predictive relation.

6.3. Results and discussion

Inspecting the mechanism through impulse responses

We inspect impulse responses of the model’s endogenous variables to a negative exogenous

innovation to risk-aversion. Specifically, we perturb the steady-state equilibrium once with

a single innovation εt at time t which generates a deviation of γt at time t relative to its

steady-state value at t − 1 (see Appendix E for details). This allows us to provide intuition

for the mechanism by which shocks to risk aversion propagate to the real economy and explore

the impact of an exogenous change in risk-aversion at time t on the future growth rates of

production, i.e., lnYt+h − lnYt, for h = 1, ..., 40 quarters. Figure 4 reports impulse responses

to a one standard deviation negative innovation to γt. All variables in this figure are expressed

in log deviations from the steady-state, with the exception of risk aversion, which is expressed

in level deviations, and GDP growth in the last panel, which is measured in log deviations

relative to the impact period t,. i.e. lnYt+h − lnYt.

Figure 4 shows that a decrease in RRA yields a subsequent increase in Yt+h over a number

of subsequent quarters. This is in line with the previously provided empirical evidence. The

impulse response function reveals the channel via which this causal effect occurs. The first

panel of the figure shows that RRAt drops as soon as the shock appears, subsequently exhibits

hump-shaped dynamics due to habits, and then gradually returns to its long run average, as

dictated by the mean reverting process in equation (11). The marginal utility of consumption

λt = (Ct − hCt−1)
−γt , reported in the next panel, also falls following the decrease in γt.15

Intuitively, periods when γt is low are times when the marginal utility of consumption is low

and hence consumption is valued less, so consumption falls, as reported in the third panel.

In turn, real wages rise. This is explained by the first order condition for labour supply
15Notice that the response of the marginal utility of consumption to the impact of an exogenous change to γt

is ∂ (ct − hcss)−γt /∂γt = − ln (ct − hcss) c−γtt > 0, where css denotes the steady-state value of consumption.
ln (ct − hcss) is negative and it increases in absolute value with the value of h because 0 < ct − hcss < 1 for
plausible parameterizations.
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in equation (19), Wt = χ
Nφ
t

λt
given the initial fall in λt. Intuitively, for a given labour supply

Nt, the disutility of work Nφ
t increases relative to the marginal utility of consumption, hence

the workers require a higher real wage.

Given that real wage increases and capital at time t is predetermined, equation (17) shows

that employment Nt must fall to equalize the marginal product of labour to the real wage

(see the fourth panel in Figure 4). Equation (16) shows that the lower level of Nt generates

a decrease in the marginal product of capital and hence in the rate of return on capital, as

shown in the fifth panel of Figure 4. Intuitively, the return on capital falls because savings

increase since consumption falls. Given that the model has no financial intermediaries, any

increase in savings translates in an increase in investments as shown in the sixth panel in

Figure 4. The rise of investment It at time t implies an increase in capital Kt+1 at time t+ 1

[equation (13)] and this leads to an increase in Yt+1 (last panel).

At this point, a remark is in order. At time t, GDP decreases as a response to the

contemporaneous shock on RRA (see the eighth panel), reflecting the fall in employment. This

is because Yt = AK1−α
t Nα

t . Given that Kt is predetermined at time t, the fall in employment

directly translates into an fall in GDP. However, capital starts increasing thereafter because

investment increases as we described. This delayed increase in capital taken together with

the reversion of employment to its steady-state value, implies that output growth is positive

between time t and t+ 1 (see the last panel). In the following quarters, capital accumulation

and the increase in employment continue driving output growth, leading to a negative relation

between γt and GDP growth, ln(Yt+h)− ln(Yt), which remains positive for various quarters h,

extending far beyond the 1-year horizon considered in the empirical section.

Simulations

To provide further evidence that the model reproduces the predictive relation identified in

the empirical analysis, we simulate time series for output Yt and risk aversion RRAt. We

draw a random sequence of 100,000 innovations for εt, which leads to exogenous variation in

γt according to equation (11). In turn, shocks to risk-aversion engenders fluctuations in all

the endogenous variables, including Yt. We collect a vector of 100,000 artificial observations
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for both RRAt and Yt, and run the regression:

∆Yt,t+h = c+ bRRAt + εt+h (20)

where ∆Yt,t+h is measured as ln (Yt+h)− ln (Yt) for h = 1, 2, 3 and 4 quarters. Table 7 reports

the estimated RRA coefficient along with the Newey-West and IVX-Wald p-values.

We can see that the estimated coefficients are negative and significant at all horizons bet-

ween one quarter and one-year. This confirms that the model reproduces the same predictive

relation that we have identified in the empirical analysis of Section 4.

7. Conclusions

We propose a new predictor of U.S. real economic activity (REA), namely the U.S. repre-

sentative agent’s implied relative risk aversion (IRRA) extracted from S&P 500 index option

market prices. We find that an increase (decrease) in U.S. IRRA predicts a decrease (incre-

ase) in future U.S. REA both in- and out-of-sample. Interestingly, we document that the

predictive ability of market option prices for future REA is not confined to the U.S. economy.

We extract IRRA from the highly liquid South Korea KOSPI 200 options market and we

find that it predicts the South Korea future REA, too. On the other hand, we find that the

IRRA extracted from less liquid option markets such as the German, Japanese and UK does

not forecast the respective countries’ future REA. Our results imply that the U.S. and South

Korea IRRAs extracted from highly liquid index options should be added to the existing list

of REA predictors for these two countries.

We explain the negative predictive relation between risk aversion and future REA by

invoking a production economy model, where an exogenous fall in risk aversion generates

protracted growth in REA relative to the impact period. While the model is consistent with

the estimated predictive relation, there might as well exist alternative, non mutually exclusive

mechanisms that give rise to the same predictive relation. For instance, it is possible that ex-

pectations of future growth in REA decrease current risk-aversion (Guiso et al., 2017). Under

rational expectations, future expected REA equals, on average, future realized REA. In this
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case, the estimated negative relation between current IRRA and future actual REA could

reflect the causal effect of a change in expectations about future REA onto current IRRA. Di-

sentangling the contribution of these different mechanisms to the estimated predictive relation

falls beyond the scope of this paper, and we leave it for future analysis.
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Appendix A: Computation of the risk-neutral moments

We compute the S&P 500 risk-neutral moments from market option prices following Bakshi et

al. (2003) methodology. The advantage of this methodology is that it is model-free because it

does not require any specific assumptions for the underlying’s asset price stochastic process.

Let S(t) be the price of the underlying asset at time t, r the risk-free rate and R(t, τ) ≡

ln[S(t + τ)] − lnS(t) the τ -period continuously compounded return. The computed at time

t model-free risk-neutral volatility [σq,t(τ)], skewness [θq,t(τ)] and kurtosis [κq,t(τ)] of the log-

returns R(t, τ) distribution with horizon τ are given by:

σq,t(τ) =

√
EQ
t [R(t, τ)2]− µ(t, τ)2 =

√
V (t, τ)erτ − µ(t, τ)2 (A.1)

θq,t(τ) =

EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)3]

EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)2]3/2

=
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2]3/2
(A.2)

κq,t(τ) =

EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)4]

{
EQ
t

[(
R(t, τ)− EQ

t R(t, τ)
)2]}2 (A.3)

where V (t, τ), W (t, τ) and X(t, τ) are the fair values of three artificial contracts (volatility,

cubic and quartic contract) defined as:

V (t, τ) = EQ
t [e−rτR(t, τ)2], W (t, τ) ≡ EQ

t [e−rτR(t, τ)3] and X(t, τ) ≡ EQ
t [e−rτR(t, τ)4]

and µ(t, τ) is the mean of the log return over the period τ defined as:

µ(t, τ) ≡ EQ
t {ln(St+τ/St)} ≈ erτ − 1− erτ

2
V (t, τ)− erτ

6
W (t, τ)− erτ

24
X(t, τ)

The prices of the three contracts can be computed as a linear combination of out-of-the-money

call and put options:
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V (t, τ) =

∞∫
St

2 (1− ln(K/St))

K2
C(t, τ ;K)dK +

+

St∫
0

2 (1 + ln(St/K))

K2
P (t, τ ;K)dK (A.4)

W (t, τ) =

∞∫
St

6 ln(K/St)− 3 ln(K/St)

K2
C(t, τ ;K)dK +

+

St∫
0

6 ln(St/K) + 3 ln(St/K)

K2
P (t, τ ;K)dK (A.5)

X(t, τ) =

∞∫
St

12 [ln(K/St)]
2 − 4 [ln(K/St)]

3

K2
C(t, τ ;K)dK +

+

St∫
0

12 [ln(St/K)]2 + 4 [ln(St/K)]3

K2
(A.6)

where C(t, τ ;K) (P (t, τ ;K) ) are the call and put prices with strike price K and time to

maturity τ .

Equations (A.4), (A.5) and (A.6) show a continuum of out-of-the-money calls and puts

across strikes is required to compute the risk-neutral moments. However, options trade for

discrete strikes. We also need constant-maturity risk-neutral moments to extract IRRA cor-

responding to a 30-days constant horizon. We estimate the constant-maturity risk-neutral

moments of the S&P 500 returns distribution in line with Jiang and Tian (2005), Carr and

Wu (2009), Chang et al. (2013), and Neumann and Skiadopoulos (2013). First, we keep only

maturities for which there are at least two out-of-the-money puts and two out-the-money

calls. In addition, to ensure that the options span a wide range of moneyness regions, we also

discard maturities for which there are no options with deltas below 0.25 and above 0.75; we

calculate deltas by using the implied volatility of the closest-to-the-money option. Next, for
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any given maturity and date t, we convert strikes into moneyness (K/S(t)) levels. Then, we

interpolate using a cubic spline across the implied volatilities provided by Optionmetrics to

obtain a continuum of implied volatilities as a function of moneyness levels. To compute con-

stant maturity moments, for each moneyness level, we interpolate across implied volatilities

in the time dimension using a cubic spline. We keep the implied moments with a constant

one-month maturity. Finally, we convert implied volatilities to option prices using Merton’s

(1973) model. Using trapezoidal approximation, we compute the prices for the three contracts

which we then use to compute the risk- neutral moments.
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Appendix B: Construction of the commodity factors

We construct the three commodity risk factors (hedging-pressure, basis and momentum risk

factors) along the lines of Daskalaki et al. (2014).

B.1 Hedging-pressure risk factor

We denote as HPi,t the hedging pressure for any commodity i at time t defined to be the

number of short hedging positions minus the number of long hedging positions, divided by

the total number of hedgers in the respective commodity market. Risk averse speculators

take futures positions only if they receive compensation and they share the price risk with

hedgers (hedging pressure hypothesis). So, if HPi,t is positive (negative), hedgers are net

short (long) in the futures contract. Speculators are willing to take the long (short) position

only if they receive a positive risk premium. At any given month t, we construct a zero cost

mimicking portfolio in line with the above strategy. First, we calculate HPi,t for each futures

contract. Then, we construct two portfolios: portfolio H that contains all commodities with

positive HP and portfolio L that contains all commodities with negative HP . At time t,

we construct the high minus low HP risk factor by going long in portfolio H and short in

portfolio L. Finally, at time t + 1, i.e. the next month, we calculate the realized mimicking

portfolio return realized over t to t+ 1. We construct a time series of our factor by repeating

the above steps throughout our sample.

B.2 Momentum risk factor

According to Gordon et al. (2012), a negative shock to inventories leads to an increase in prices

which is then followed by a short period of high expected futures returns for the respective

commodity. This occurs because demand exceeds the supply for the commodity for that period

and thus a price momentum is created. At any point in time t, we construct two portfolios:

portfolio H that contains all commodities with positive prior 12-month average return and

portfolio L that contains those with negative prior 12-month average return. Then at t, we

construct the high minus low momentum zero-cost risk factor, by going long in portfolio H

and short in portfolio L. Finally, at time t+ 1, i.e. the next month, we calculate the realized
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mimicking portfolio return realized over t to t + 1. We construct a time series of our factor

by repeating the above steps throughout our sample.

B.3 Basis risk factor

According to the theory of storage, a positive basis is associated with low inventories for any

given commodity. In addition, Gordon, et al. (2012) find that a portfolio of commodities with

a high basis outperforms the portfolio of commodities with a low basis. At any point in time

t, we construct two portfolios: portfolio H that contains all commodities with positive basis

and portfolio L that contains all commodities with negative basis. Then, we construct the

zero-cost high minus low basis risk factor by going long in portfolio H and short in portfolio

L. Finally, at time t + 1, i.e. the next month, we calculate the realized mimicking portfolio

return realized over t to t+ 1. We construct a time series of our factor by repeating the above

steps throughout our sample.
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Appendix C: The IVX-Wald test (Kostakis et al., 2015)

C.1 The IVX estimator

Consider the following predictive regression:

yt+1 = c+ Axt + εt+1 (C.1)

where A is a (m× r) coefficient matrix and:

xt+1 = Rnxt + ut+1 (C.2)

with xt = (x1t, x2t, ..., xrt) being the vector of predictors employed in (C.1), Rn = Ir + C
nα

for some α ≥ 0, C = diag(c1, ..., cr) and n being the sample size. The IVX methodology

does not require a-priori knowledge of the predictors’ degree of persistence. In fact, it allows

for various classes of persistence through the autocorrelation matrix Rn; the accommodated

classes of persistence vary from purely stationary (ci < 0 for all i and alpha = 0) to purely

non-stationary (C = 0 or α > 1).

We estimate equation (C.1) via two-stage least squares based on the near-stationary in-

struments z̃t and not the initial predictors xt:

ÃIV X = Y′Z̃
(
X′Z̃

)−1
=

n∑
t=1

(yt − ȳn)z̃′t−1

[
n∑
j=1

(xj − x̄n−1)z̃′j−1

]−1
(C.3)

where ȳn = 1/n
∑n

t=1 yt, x̄n−1 = 1/n
∑n

t=1 xt−1, Z̃ =
(
z̃′0, ..., z̃

′
n−1
)
is the instrument matrix,

and Y = (Y ′1 , ..., Y
′
n) and X =

(
X ′0, ..., X

′
n−1
)
are the demeaned predictive regression matrices;

we take the demeaned predictive regression matrices because we allow for a constant in the

predictive regression given in equation (C.1). Following Kostakis et al. (2015), we choose

CZ = −Ir and β = 0.95.

The intuition behind the IVX methodology is to construct an instrumental variable with

a known degree of persistence from the initial predictors xt which has an unknown degree of

persistence. Once we have done that, we apply standard instrumental variable estimation.
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To construct the near-stationary instrumental variable z̃t, we first estimate equations (C.1)

and (C.2) with ordinary-least squares. Then, we construct z̃t, initialized at z̃0 = 0, as follows:

z̃t = Rnz z̃t−1 + ∆xt (C.4)

where Rnz = Ir+ Cz
nβ

is an artificial autoregressive matrix with specified persistence, β ∈ (0, 1)

and Cz < 0.

C.2 The IVX-Wald test

We test for the predictive ability of xit, i.e. we test the null hypothesis:

H0 : Hvec(A) = 0

where H is a known r× r matrix whose (i, i) entry is one and the remaining entries are zero,

i.e. we test for the significance of each predictor separately.

The IVX-Wald test statistic for testing the H0 is:

WIV X =
(
HvecÃIV X

)′
Q−1H

(
HvecÃIV X

)
H0∼ χ2(1) (C.5)

where:

QH = H
[
(Z̃ ′X)−1 ⊗ Im

]
M
[
(X′Z̃)−1 ⊗ Im

]
H ′ (C.6)

M = Z̃ ′Z̃ ⊗ Σ̂εε − nz̄n−1z̄′n−1 ⊗ Ω̂FM (C.7)

Ω̂FM = Σ̂εε − Ω̂εuΩ̂
−1
uu Ω̂′εu (C.8)

To calculate the test statistic in (C.5), we need to construct the following short-run and
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long-run covariance matrices:

Σ̂εε =
1

n

n∑
t=1

ε̂tε̂
′
t, Σ̂εu =

1

n

n∑
t=1

ε̂tû
′
t, Σ̂uu =

1

n

n∑
t=1

ûtû
′
t (C.9)

Λ̂uu =
1

n

Mn∑
i=1

(
1− i

Mn + 1

) n∑
t=i+1

ûtû
′
t−i, Ω̂uu = Σ̂uu + Λ̂uu + Λ̂′uu (C.10)

Λ̂uε =
1

n

Mn∑
i=1

(
1− i

Mn + 1

) n∑
t=i+1

ûtε̂
′
t−i, Ω̂εu = Σ̂εu + Λ̂′uε (C.11)

where ε̂t and ût are the ordinary least squares residuals from equations (C.1) and (C.2),

respectively, and Mn is a bandwidth parameter satisfying Mn → ∞ and Mn/
√
n → 0 ad

n→∞. Following Kostakis et al. (2015), we choose Mn = n1/3; the choice of the bandwidth

parameter does not affect the properties of the IVX-Wald test statistic.
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Appendix D: The three-pass regression filter (Kelly and Pruitt, 2015)

The three-pass regression filter (3PRF) is a dimension reduction method. It identifies factors

that are relevant to the variable that we wish to forecast (forecast target, y). These factors

may be a strict subset of the factors driving the predictor variables (X). To extract the factors

we use a set of proxies which are variables that are related to the forecast target.

To fix ideas, we consider the following variables. First, y = (y1, y2...yT )′ is a (T ×1) vector

of the forecast target where T is the number of time series observations in the in-sample

period. Second, X is a (T × N) matrix of the standardized predictor variables where N is

the number of predictors. We denote with xit the (t, i)-th element of the X matrix, i.e. the

t-th time series observation of the i-th predictor (i = 1, 2, ...N and t = 1−h, 2−h, ..., T −h).

Third, Z is the (T × L) matrix of proxies, i.e. variables which are driven by target relevant

factors. Note that L is the number of proxies. We denote with zlt the (t, l)-th element of the Z

matrix, i.e. the t-th time series observation of the l-th proxy (l = 1, 2, ...L and t = 1, 2, ..., T ).

Following Kelly and Pruitt (2015), we extract the 3PRF factor using one proxy (L = 1),

namely the forecast target (z = yT ). To fix ideas, standing at time T , we construct the

h-month out-of-sample forecast as follows. First, we run N time-series regressions:

xi,T−h = φ0,i + z′φi + εi,t

= φ0,i + φiyT + εi,t for i = 1, 2, ...N (D.1)

Next, we retain the estimated φ̂i and we estimate cross-sectional regressions at times t =

1, 2, ..., T − h and at time T :

xit = γ0,i + φ̂′iFt + εi,t for t = 1, 2, ...T − h and T (D.2)

This yields the factor estimates F̂1, F̂2, ..., F̂T−h and F̂T . Then, we use F̂1, F̂2, ..., F̂T−h to

estimate the third-pass regression:

yT = β0 + ˆF ′T−hβ + ηt+1 (D.3)
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Finally, we use the estimated coefficients and the estimated factor F̂T to construct our forecast:

ET (yT+h) = β0 + F̂ ′Tβ (D.4)

Note that in line with Kelly and Pruitt (2015), we take care to avoid any look-ahead bias by

using information up to time T to estimate the factor from equation (D.2) and to estimate

β0 and β from equation (D.3). In the latter case, this requires we estimate (D.3) using

observations on the factor up to T − h (i.e. up to FT−h).
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Appendix E: Model solution, impulse responses, simulations and calibration

Model solution

The solution to the full system of non-linear dynamic equations listed in the characterization of

the competitive general equilibrium is a list of equations, called policy functions. These relate

the vector of all current period endogenous variables −→x t only to the current exogenous shock

to risk-aversion γt and the past state of a subset of endogenous variables −→x −t−1, called ‘state

variables’. This subset −→x −t−1 includes the variables whose value at time t is predetermined,

like Kt, and the variables that appear with a lag, Ct−1 and γt−1. So, for example, the policy

function for consumption is a function Ct = C
(−→x −t−1, γt; Ω

)
, where Ω is the set of parameter

values to be assigned in the calibration stage.

Given that the model has no closed form solution, we solve it numerically as follows. First,

we assign parameter values to pin down the deterministic steady-state of the model, which

is the stationary point −→x t = −→x t−1 = −→x . Then, we approximate the model up to a second

order approximation around the steady state. Finally, we solve for the policy functions using

the Kim et al. (2008) algorithm.

Impulse responses

To calculate the impulse responses, we perturb the steady-state equilibrium once with a single

innovation εt at time t which generates a deviation of γt at time t relative to its steady-state

value at t − 1. Given γt, we obtain the value for the vector of endogenous variables −→x t at

time t via the policy functions −→x t = f
(−→x −t−1, γt; Ω

)
, where −→x −t−1 is the vector of steady-

state values for the state variables. For the subsequent periods, we compute the values of

γt+h, for h = 1, 2, ..., T periods ahead. To this end, we take the exponent of γt in equation

(11) and iterate forward, under the assumption that the realized εt+h = 0 for h = 1, 2, ..., T .

We iterate on the policy functions to simulate the dynamics of the endogenous variables
−→x t+h = f

(−→x −t+h−1, γt+h; Ω
)
by using the obtained time series for γt+h, for h = 1, 2, ..., T .

Simulations

To obtain a simulated time series of γt and Yt, we perturb the stationary equilibrium with

a random sequence of N innovations to risk aversion, i.e., we produce a vector of {εt+h}Nh=0.
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Iterating on the law of motion for γt [equation 11], we generate a time series for this exogenous

variable. Given the values of {γt+h}Nh=0, we iterate on the policy functions to produce a path

for the vector of endogenous variables −→x t+h = f
(−→x −t+h−1, γt+h; Ω

)
.

Calibration

Following the RBC literature, we assume that one period in the model corresponds to a

quarter. In line with Miao (2014), we set the labour share of income α = 0.67, and the

discount factor β = 0.99 (which implies a real rate of return of about 1% per quarter).

We set the depreciation rate of capital to the conventional value of δ = 0.025 in line with

estimates for the US economy (see Yashiv 2016). We normalize the long run value of total

factor productivity, A to one. Solving the Euler equation (18) for the capital-labour ratio and

evaluating it at the steady state yields

K

N
=

[
1− β (1− δ)
β (1− α)

]− 1
α

(D.5)

Hence, we can recover the capital-labour ratio once we assign parameter values for α, β

and δ. In turn, given the capital-labour ratio and α, we can compute the return to labour,

W, and the return to capital R+ 1− δ, using equations (16) and (17), respectively. We then

normalize employment to the standard value of N = 0.33, which implies that households

work 8 out of 24 hours a day. This allows us to compute the stock of capital by solving for K

equation (D.5), the level of investment as I = δK, output Y by making use of the production

function in (15) and consumption as C = Y − I. The marginal utility of consumption can

be recovered as [C (1− h)]−γ once we assign a value to the habit parameter h. We select a

value of h = 0.6, which is in line with the habit estimates in Christiano et al. (2005). Finally,

the value of the scale parameter χ in the utility function is implied by the intersection of the

labour demand and supply equations (17) and (19), respectively:

χ = λWN−φ

where the inverse Frisch elasticity of labor supply, φ, is set to the value of 2, in line with the

evidence in Chetty et al (2012).
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Figure 1: Evolution of the U.S. implied risk aversion
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The figure shows the evolution of the U.S. implied risk aversion (IRRA) over July 1998 - August
2015. We extract the IRRA time series via Kang et al. (2010) formula by performing a generalized-
method-of-moments (GMM) rolling window estimation. We use a rolling window with size 30 months
and three sets of instruments to obtain three respective U.S. IRRA time series.
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Figure 2: Stability of U.S. IRRA coefficients
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Panel E: Predicting CFNAI
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Panel F: Predicting ADS

The figure shows the standardized U.S. IRRA coefficients from the estimated multiple predictor
regression [equation (5)] for various U.S. real economic activity (REA) proxies and for a one-month
horizon over the out-of-sample period October 2007 - August 2015. The REA proxies considered
are: industrial production (IPI), non-farm payrolls (NFP), retail sales (RS, proxied by real retail
sales), housing starts (HS), the Chicago Fed National Activity Index (CFNAI) and the Aruoba-
Diebold-Scotti business conditions index (ADS). The multiple predictor model includes the lagged
REA and implied relative risk aversion (IRRA) as predictors and is augmented by a set of control
variables: term spread (TERM), default spread (DEF), TED spread (TED),Fama-French (1996)
Small-Minus-Big factor (SMB), Fama-French (1996) High-Minus-Low factor (HML), Baltic Dry Index
(BDI), forward variance (FV), hedging pressure commodity factor (HP), momentum commodity
factor (MOM), basis commodity factor (BASIS), commodities open interest (OI). We estimate IRRA
by the generalized-method-of-moments (GMM) with a 30-months rolling window using equation (3)

.
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Figure 3: Evolution of the South Korea, UK, Japanese and German implied risk aversion
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Panel C: Japanese IRRA
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Panel D: German IRRA

The figure shows the evolution of the South Korea, UK, Japanese and German implied risk aversion
(IRRA) over June 2006 - June 2015. For each country, we extract the IRRA time series via Kang et al.
(2010) formula by performing a generalized-method-of-moments (GMM) rolling window estimation.
We use a rolling window with size 30 months and three sets of instruments to obtain three respective
IRRA time series for each country.
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Figure 4: Production economy model: Impulse responses to a risk-aversion shock
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The figure shows the impulse responses generated by the production economy model regarding the
impact of a shock to risk-aversion for the model with habits on the set of the model’s endogenous
variables. All impulse responses are expressed in log deviations from the steady-state, except for
relative risk aversion, which is expressed in level deviations and GDP growth in the last panel, which
is measured in log deviations relative to the impact period t, i.e. lnYt+h − lnYt, h = 1, 2, ..., 40
quarters.
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Table 1: List of commodity futures

Sector Commodities
Grains and Oilseeds Corn

Kansas Wheat
Oats
Soybean Meal
Soybean Oil
Soybeans
Wheat

Energy Crude Oil
Heating Oil

Livestock Feeder Cattle
Pork Bellies
Lean Hogs
Live Cattle

Metals Copper
Gold
Palladium
Platinum
Silver

Softs Cocoa
Coffee
Cotton
Sugar

Entries report the twenty-two commodity futures categorized in five broad sectors (grains and oil-
seeds, energy, livestock, metals and softs). These are used to construct the three Daskalaki et al.
(2014) commodity-specific factors (hedging pressure, momentum and basis factors).
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Table 2: In-sample prediction of U.S. REA with U.S. IRRA

IPI NFP RS HS CFNAI ADS
Panel A: Standardized IRRA coefficient

h = 1M -0.133*** -0.131** -0.148 -0.253* -0.123*** -0.062***
(0.097) (0.002) (0.014) (0.000) (0.024) (0.153)
[0.075] [0.012] [0.107] [0.003] [0.060] [0.087]

h = 3M -0.097 -0.120* -0.245** -0.401** -0.064 -0.050
(0.282) (0.021) (0.009) (0.000) (0.329) (0.474)
[0.169] [0.008] [0.022] [0.015] [0.729] [0.676]

h = 6M -0.133 -0.156* -0.310*** -0.659* -0.122 -0.156
(0.279) (0.023) (0.006) (0.000) (0.302) (0.241)
[0.151] [0.002] [0.098] [0.000] [0.969] [0.304]

h = 9M -0.227* -0.224*** -0.377*** -0.785* -0.194 -0.254
(0.146) (0.023) (0.007) (0.000) (0.204) (0.143)
[0.060] [0.068] [0.078] [0.000] [0.787] [0.950]

h = 12M -0.327* -0.268** -0.470 -0.823* -0.294 -0.310
(0.066) (0.023) (0.001) (0.000) (0.078) (0.068)
[0.003] [0.041] [0.174] [0.000] [0.572] [0.967]

Panel B: In-sample R2

h = 1M 0.205 0.725 0.138 0.205 0.617 0.856

h = 3M 0.482 0.797 0.246 0.283 0.579 0.640

h = 6M 0.419 0.759 0.409 0.483 0.458 0.452

h = 9M 0.414 0.685 0.469 0.597 0.356 0.379

h = 12M 0.460 0.645 0.532 0.720 0.320 0.351

Entries report results from the in-sample estimated multiple predictor regressions for various U.S. real economic activity (REA)
proxies and for an h month horizon (h = 1, 3, 6, 9 and 12 months). The REA proxies considered are: industrial production
(IPI), non-farm payrolls (NFP), retail sales (RS, proxied by real retail sales), housing starts (HS), the Chicago Fed National
Activity Index (CFNAI) and the Aruoba-Diebold-Scotti business conditions index (ADS). The multiple predictor model includes
the lagged REA and implied relative risk aversion (IRRA) as predictors and is augmented by a set of control variables: term
spread (TERM), default spread (DEF), TED spread (TED), Fama-French (1996) Small-Minus-Big factor (SMB), Fama-French
(1996) High-Minus-Low factor (HML), Baltic Dry Index (BDI), forward variance (FV), hedging pressure commodity factor (HP),
momentum commodity factor (MOM), basis commodity factor (BASIS), and commodities open interest (OI). To construct our
IRRA measure, we estimate equation (3) via the generalized-method-of-moments (GMM) with a 30-months rolling window.
Panel A shows the standardized ordinary-least-squares (OLS) coefficient estimates, Newey-West (within brackets) and IVX-Wald
(within squared brackets) p-values of each one of the predictors. One, two and three asterisks denote rejection of the null
hypothesis of a zero coefficient based on the IVX-Wald test statistic at the 1%, 5% and 10% level, respectively. Panel B shows
the in-sample adjusted R2 for any given model. The sample spans July 1998 - August 2015.
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Table 3: Out-of-sample predictability of U.S. REA

IPI NFP RS HS CFNAI ADS

Panel A: Out-of-sample R2 from predictive regressions

h = 1M 0.019 0.037 0.052 0.034 0.062 0.024

h = 3M 0.017 0.027 0.102 0.078 0.016 -0.033

h = 6M -0.057 0.014 0.167 0.363 0.021 -0.009

h = 9M -0.164 -0.042 0.164 0.572 -0.049 -0.042

h = 12M -0.239 -0.108 0.171 0.640 -0.092 -0.113

Panel B: Out-of-sample R2 from Kelly and Pruitt (2015) three-pass regression filter

h = 1M 0.003 0.011 0.010 0.006 -0.012 0.013

h = 3M 0.005 0.016 0.011 0.038 0.010 0.013

h = 6M 0.010 0.016 0.026 0.067 0.017 0.018

h = 9M 0.014 0.019 0.032 0.101 0.028 0.028

h = 12M 0.018 0.022 0.042 0.097 0.030 0.016

Entries report the out-of-sample R2 for U.S. Panel A shows the out-of-sample R2 obtained from the
predictive model in equation (5) versus the benchmark model that considers only lagged REA and
the control variables as predictors. Panel B shows the out-of-sample R2 obtained from Kelly and
Pruitt (2015) three-pass regression filter in equation (9) applied to the set of variables consisting of
IRRA and a large set of 135 macroeconomic variables compiled by McCracken and Ng (2016) versus
the benchmark model that is the Kelly and Pruitt (2015) three-pass regression filter applied to the
135 McCracken and Ng (2016) macroeconomic variables. For each U.S. REA proxy, we estimate
equations (5) and (9) for the respective full and benchmark models recursively by employing an
expanding window; the first estimation sample window spans July 1998 - September 2007. At each
point in time, we form h = 1, 3, 6, 9, 12 months-ahead REA forecasts. The positive (negative) sign of
the out-of-sample R2 indicates that the full model which includes IRRA as a predictor outperforms
(underperforms) the restricted model.
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Table 5: Prediction of REA with IRRA: Evidence from other countries

Panel A: In-sample IRRA coefficient
South Korea UK

IPIt+h Ut+h IPIt+h Ut+h

h = 1M 0.016 0.049 -0.071** 0.240*
(0.881) (0.103) (0.048) (0.000)

h = 3M 0.054 0.108* -0.097** 0.263*
(0.791) (0.000) (0.016) (0.000)

h = 6M -0.066** 0.463* -0.243* 0.392*
(0.015) (0.000) (0.002) (0.000)

h = 9M -0.133** 0.507* -0.326* 0.527*
(0.012) (0.006) (0.000) (0.000)

h = 12M -0.242* 0.534* -0.352* 0.653*
(0.001) (0.000) (0.000) (0.000)

Japan Germany
IPIt+h Ut+h IPIt+h Ut+h

h = 1M -0.084 0.018 0.025 -0.190
(0.736) (0.965) (0.830) (0.706)

h = 3M -0.157 0.070 0.165 -0.239
(0.638) (0.843) (0.362) (0.300)

h = 6M -0.245 0.161 0.244 -0.366
(0.485) (0.505) (0.660) (0.567)

h = 9M -0.177 0.295*** 0.297 -0.419
(0.339) (0.069) (0.756) (0.954)

h = 12M -0.081 0.390 0.270 -0.459
(0.937) (0.869) (0.881) (0.608)

Panel B: Out-of-sample R2 from predictive regression
South Korea UK

IPI U IPI U
h = 1M -0.026 -0.013 -0.005 -0.029

h = 3M -0.016 0.056 -0.200 -0.104

h = 6M 0.028 0.208 -0.102 -0.089

h = 9M 0.551 0.378 0.210 -0.124

h = 12M 0.262 0.620 -0.051 -0.610

Panel A reports the standardized coefficient for IRRA obtained by estimating equation (5) by OLS for two South Korea, UK,
Japan and Germany real economic activity (REA) proxies and for various forecasting horizons. The REA proxies considered
are: industrial production (IPI) and unemployment rate (U). The horizons considered are h = 1, 3, 6, 9 and 12 months. The
multiple predictor model includes the lagged REA and implied relative risk aversion (IRRA) as predictors and is augmented by a
set of predictors as control variables: term spread (TERM), default spread (DEF), TED spread (TED), Baltic Dry Index (BDI)
and forward variance (FV). To construct our IRRA measure, we estimate equation (3) with the generalized-method-of-moments
(GMM) with a 30-months rolling window. We report the standardized ordinary-least-squares (OLS) coefficient estimates and
IVX-Wald (within parentheses) p-values of each one of the predictors for any given model. One, two and three asterisks denote
rejection of the null hypothesis of a zero coefficient based on the IVX-Wald test statistic at the 1%, 5% and 10% level, respectively.
All predictor variables span June 2006 - June 2015.

Panel B reports the out-of-sample R2 in the case of South Korea and UK for which in-sample predictability has previously been
documented. For each REA proxy, we estimate equation (5) and the benchmark model recursively by employing an expanding
window; the first estimation sample window contains observations spanning June 2006 - December 2008. At each point in time,
we form h month-ahead REA forecasts (h = 1, 3, 6, 9 and 12 months). The benchmark model considers only lagged REA and
the control variables as predictors.
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Table 6: RBC model’s calibrated parameters and implied steady-state values

Panel A: RBC model’s calibrated parameters
Description Parameter Value Source/Target
Discount factor β 0.99 1% interest rate
Capital depreciation rate δ 0.025 Yashiv (2016)
Elasticity of output to labor α 0.67 US labor share of income
Habits h 0.6 Christiano et al. (2005)
Inverse Frisch elasticity φ 2 Chetty et al. (2012)
Disutility of labor χ 266.5 Share of hours worked 0.33
Coefficient of risk aversion γ 2.241 Average IRRA
Autocorr. risk aversion shock ρ 0.893 Autocorrelation IRRA
St. dev. risk aversion shock σ 0.118 standard deviation IRRA

Panel B: Implied steady state values
Definition Variable Value
Consumption C 0.76
Investment I 0.23
Output Y 0.99
Hours (share) N 0.33
Real interest rate R 0.0101
Investment/capital ratio I/K 0.025
Capital/output ratio K/Y 28.34

Entries report the real business cycle (RBC) model’s calibrated parameters (Panel A) and implied steady-state values (Panel
B). Calibration is performed to the U.S. economy. We assign the values for the parameters γ, ρ and σ governing the stochastic
process for γt, in equation (12) to match the mean, autocorrelation and standard deviation of the RRAt series generated by
simulating the model over 100,000 quarters with the empirical mean, standard deviation and autocorrelation of the IRRA time
series estimated in Section 3.
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Table 7: Predictive regressions using simulated data from the RBC model

REAt+3 REAt+6 REAt+9 REAt+12

RRAt -0.004* -0.008* -0.012* -0.016*

(0.000) (0.000) (0.000) (0.000)

[0.000] [0.000] [0.000] [0.000]

Entries report results from the predictive regression of output growth on RRA in equation (20).
The regression has been performed on 100,000 simulated observations for output and risk aversion
obtained by simulating the real business cycle (RBC) model presented in Section 6, using the para-
meter values reported in Table 6. We report the ordinary-least-squares (OLS) coefficient estimate,
and Newey-West (within brackets) and IVX-Wald (within squared brackets) p-values. One asterisk
denotes rejection of the null hypothesis of a zero coefficient on RRA based on the IVX-Wald test
statistic at a 1% significance level.
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