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This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such

recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements

and need to be immediately scheduled on physical machines in data centers. It is often observed that the

requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment

policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant

cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints.

We introduce and study a model that quantifies the value of overcommitment by modeling the problem as

a bin packing with chance constraints. We then propose an alternative formulation that transforms each

chance constraint into a submodular function. We show that our model captures the risk pooling effect and

can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are

intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate

our model using realistic workload data, and test our approach in a practical setting. Our analysis and

experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5%

to 17% depending on the provider’s risk tolerance.
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1. Introduction

Bin packing is an important problem with numerous applications such as hospitals, call centers,

filling up containers, loading trucks with weight capacity constraints, creating file backups and

more recently, cloud computing. A cloud provider needs to decide how many physical machines to

purchase in order to accommodate the incoming jobs efficiently. This is typically modeled as a bin

packing optimization problem, where one minimizes the cost of acquiring the physical machines

subject to a capacity constraint for each machine. The jobs are assumed to arrive in an online

fashion according to some vaguely specified arrival process. In addition, the jobs come with a

specific requirement, but the effective job size and duration are not exactly known until after the
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actual scheduling has occurred. In practice, job size and duration can be estimated from historical

data. One straightforward way to schedule jobs is to assume that each job will fully utilize its

requirement (e.g., if a job requests 32 CPU cores, the cloud provider allocates this exact amount for

the job). However, there is empirical evidence, that most of the virtual machines do not use the full

requested capacity. This offers an opportunity for the cloud provider to employ an overcommitment

policy, i.e., to schedule sets of jobs with the total requirement exceeding the respective capacities

of physical machines. On one hand, the provider faces the risk that usage exceeds the physical

capacity, which can result in severe penalties (e.g., acquiring or reallocating machines on the fly,

canceling and rescheduling running jobs, mitigating interventions, etc.). On the other hand, if

many jobs do not fully utilize their requested resources, the provider can potentially reduce the

costs significantly. This becomes even more impactful in the cloud computing market, which has

become increasingly competitive in recent years as Google, Amazon, and Microsoft aim to replace

private data centers. “The race to zero price” is a commonly used term for this industry, where

cloud providers have cut their prices very aggressively. According to an article in Business Insider

in January 2015: “Amazon Web Services (AWS), for example, has cut its price 44 times during

2009-2015, while Microsoft and Google have both decreased prices multiple times to keep up with

AWS”. In January 2015, RBC Capital’s Mark Mahaney published a chart that perfectly captures

this trend and shows that the average monthly cost per gigabyte of RAM, for a set of various

workloads, has dropped significantly: AWS dropped prices 8% from Oct. 2013 to Dec. 2014, while

both Google and Microsoft cut prices by 6% and 5%, respectively, in the same period. Other

companies who charge more, like Rackspace and AT&T, dropped prices even more significantly.

As a result, designing the right overcommitment policy for servers has a clear potential to increase

the cloud provider profit. The goal of this paper is to study this question, and propose a model

that helps guiding this type of decisions. In particular, we explicitly model job size uncertainty to

motivate new algorithms, and evaluate them on realistic workloads.

Our model and approaches are not limited to cloud computing and can be applied to several

resource allocation problems. However, we will illustrate most of the discussions and applications

using examples borrowed from the cloud computing world. Note that describing the cloud infras-

tructure and hardware is beyond the scope of this paper. For surveys on cloud computing, see, for

example Dinh et al. (2013) and Fox et al. (2009).

We propose to model the problem as a bin packing with chance constraints, i.e., the total load

assigned to each machine should be below physical capacity with a high pre-specified probability.

Chance constraints are a commonly used modeling tool to capture risks and constraints on ran-

dom variables (Charnes and Cooper (1963)). Introducing chance constraints to several continuous

optimization problems was extensively studied in the literature (see, e.g., Calafiore and El Ghaoui
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(2006) and Delage and Ye (2010)). This paper is the first to incorporate capacity chance constraints

in the bin packing problem, and to propose efficient algorithms to solve the problem. Using some

results from distributionally robust optimization (Calafiore and El Ghaoui (2006)), we reformulate

the problem as a bin packing with submodular capacity constraints. Our reformulations are exact

under the assumption of independent Gaussian resource usages for the jobs. More generally, they

provide an upper bound and a good practical approximation in the realistic case where the jobs’

usages are arbitrarily distributed but bounded.

Using some machinery from previous work (see Goemans et al. (2009), and Svitkina and Fleischer

(2011)), we show that for the bin packing problem with general monotone submodular constraints,

it is impossible to find a solution within any reasonable factor from optimal (more precisely,
√
N

ln(N)
,

where N is the number of jobs). In this paper, we show that our problem can be solved using a class

of simple online algorithms that guarantee a constant factor of 8/3 from optimal (Theorem 2). This

class of algorithms includes the commonly used Best-Fit and First-Fit heuristics. We also develop

an improved constant guarantee of 9/4 for the online problem (Theorem 4), and a 2-approximation

for the offline version (Theorem 6). We further refine our results to the case where a large number

of jobs can be scheduled on each machine (i.e., each job has a small size relative to the machine

capacity). In this regime, our approach asymptotically converges to a 4/3 approximation. More

importantly, our model and algorithms allow us to draw interesting insights on how one should

schedule jobs. In particular, our approach (i) translates to a transparent recipe on how to assign

jobs to machines; (ii) explicitly exploits the risk pooling effect; and (iii) can be used to guide an

overcommitment strategy that significantly reduces the cost of purchasing machines.

We apply our algorithm to a synthetic but realistic workload inspired by historical produc-

tion workloads in Google data centers, and show that it yields good performance. In particular,

our method reduces the necessary number of physical machines, while limiting the risk borne by

the provider. Our analysis also formalizes intuitions and provides insights regarding effective job

scheduling strategies in practical settings.

1.1. Contributions

Scheduling jobs on machines can be modeled as a bin packing problem. Jobs arrive online with

some requirements, and the scheduler decides how many machines to purchase and how to schedule

the jobs. Assuming random job sizes and limited machine capacities, one can formulate the problem

as a 0/1 integer program. The objective is to minimize the number of machines required, subject

to constraints on the capacity of each machine. In this paper, we model the capacity constraints as

chance constraints, and study the potential benefit of overcommitment. The contributions of the

paper can be summarized as follows.
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• Formulating the overcommitment bin packing problem.

We present an optimization formulation for scheduling jobs on machines, while allowing the provider

to overcommit. We first model the problem as Bin Packing with Chance Constraints (BPCC). Then,

we present an alternative Submodular Bin Packing (SMBP) formulation that explicitly captures

the risk pooling effect on each machine. We show that the SMBP is equivalent to the BPCC under

common assumptions (independent Gaussian usage distributions), and that it is distributionally

robust for usages with given means and diagonal covariance matrix). Perhaps most importantly

from a practical perspective, the SMBP provides an upper bound and a good approximation under

generic independent distributions over bounded intervals (see Proposition 1). This last setting is

most common in today’s cloud data centers, where virtual machines are sold as fixed-size units.

• Developing simple algorithms that guarantee a constant factor approximation from optimal.

We show that our (SMBP) problem can be solved by well-known online algorithms such as First-Fit

and Best-Fit, while guaranteeing a constant factor of 8/3 from optimal (Theorem 2). We further

refine this result in the case where a large number of jobs can be scheduled on each machine, and

obtain a 4/3 approximation asymptotically (Corollary 1). We also develop an improved constant

guarantee of 9/4 for the online problem using First-Fit (Theorem 4), and a 2 approximation for

the offline version (Theorem 6). We then use our analysis to infer how one should assign jobs to

machines, and show how to obtain a nearly optimal assignment (Theorem 5).

• Using our model to draw practical insights on the overcommitment policy.

Our approach translates to a transparent and meaningful recipe on how to assign jobs to machines

by clustering similar jobs in terms of statistical information. In addition, our approach explicitly

captures the risk pooling effect: as we assign more jobs to a given machine, the “safety buffer”

needed for each job decreases. Finally, our approach can be used to guide a practical overcommit-

ment strategy, where one can significantly reduce the cost of purchasing machines by allowing a

low risk of violating capacity constraints.

• Calibrating and applying our model to a practical setting.

We use realistic workload data inspired by Google Compute Engine to calibrate our model and test

our results in a practical setting. We observe that our proposed algorithm outperforms other natural

scheduling schemes, and realizes a cost saving of 1.5% to 17% relative to the no-overcommitment

policy.

1.2. Literature review

This paper is related to different streams of literature.

In the optimization literature, the problem of scheduling jobs on virtual machines has been

studied extensively, and the bin packing problem is a common formulation. Hundreds of papers
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study the bin packing problem including many of its variations, such as 2D packing (e.g., Pisinger

and Sigurd (2005)), linear packing, packing by weight, packing by cost, online bin packing, etc.

The basic bin packing problem is NP-hard, and Delorme et al. (2016) provide a recent survey of

exact approaches. However, several simple online algorithms are often used in practice for large-

scale instances. A common variation is the problem where jobs arrive online with sizes sampled

independently from a known discrete distribution with integer support and must be immediately

packed onto machines upon arrival. The size of a job is known when it arrives, and the goal is

to minimize the number of non-empty machines (or equivalently, minimize the waste, defined as

the total unused space). For this variation, the sum-of-squares heuristic represents the state-of-

the-art. It is almost distribution-agnostic, and nearly universally optimal for most distributions by

achieving sublinear waste in the number of items seen (see, Csirik et al. (2006)). In Gupta and

Radovanovic (2012), the authors propose two algorithms based on gradient descent on a suitably

defined Lagrangian relaxations of the bin packing linear program that achieve additive O(
√
N)

waste relative to the optimal policy. This line of work bounds the expected waste for general classes

of job size distribution in an asymptotic sense.

Worst-case analysis of (finite, deterministic) bin packing solutions has received a lot of attention

as well. For deterministic capacity constraints, several efficient algorithms have been proposed.

They can be applied online, and admit approximation guarantees in both online and offline set-

tings. The offline version of the problem can be solved using (1 + ε)OPT + 1 bins in linear time

(de La Vega and Lueker (1981)). A number of heuristics can solve large-scale instances efficiently

while guaranteeing a constant factor cost relative to optimal. For a survey on approximation algo-

rithms for bin packing, see for example Coffman Jr et al. (1996). Three such widely used heuristics

are First-Fit (FF), Next-Fit (NF) and Best-Fit (BF) (see, e.g., Bays (1977), Keller et al. (2012) and

Kenyon et al. (1996)). FF assigns the newly arrived job to the first machine that can accommodate

it, and purchase a new machine only if none of the existing ones can fit the new job. NF is similar to

FF but continues to assign jobs from the current machine without going back to previous machines.

BF uses a similar strategy but seeks to fit the newly arrived job to the machine with the smallest

remaining capacity. While one can easily show that these heuristics provide a 2-approximation

guarantee, improved factors were also developed under special assumptions. Dósa and Sgall (2013)

provide a tight upper bound for the FF strategy, showing that it never needs more than 1.7OPT

machines for any input. The offline version of the problem also received a lot of attention, and

the Best-Fit-Decreasing (BFD) and First-Fit-Decreasing (FFD) strategies are among the simplest

(and most popular) heuristics for solving it. They operate like BF and FF but first rank all the

jobs in decreasing order of size. Dósa (2007) show that the tight bound of FFD is 11/9OPT + 6/9.
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Our problem differs as our goal is to schedule jobs before observing the realization of their size. In

this case, stochastic bin packing models, where the job durations are modeled as random variables,

are particularly relevant. Coffman et al. (1980) consider the problem and study the asymptotic and

convergence properties of the Next-Fit online algorithm. Lueker (1983) considers the case where

the job durations are drawn uniformly from intervals of the form [a, b], and derive a lower bound

on the asymptotic expected number of bins used in an optimum packing. However, unlike this and

other asymptotic results where the jobs’ sizes are known when scheduling occurs, we are interested

in computing a solution that is feasible with high probability before observing the actual sizes.

Our objective is to assign the jobs to as few machines as possible such that the set of jobs assigned

to each machine satisfies the capacity constraint with some given probability (say 99%). In other

words, we are solving a stochastic optimization problem, and studying/analyzing different simple

heuristic solutions to achieve this goal. To make the difference with the worst case analysis clear,

we note that the worst case analysis becomes a special case of our problem when the objective

probability threshold is set to 100% (instead of 99%, or any other number strictly less than 1). The

whole point of our paper is to exploit the stochastic structure of the problem in order to reduce

the scheduling costs via overcommitment.

In this paper, we consider an auxiliary deterministic bin packing problem with a linear cost but

non-linear modified capacity constraints. In Anily et al. (1994), the authors consider general cost

structures with linear capacity constraints. More precisely, the cost of a machine is assumed to

be a concave and monotone function of the number of jobs in the machine. They show that the

Next-Fit Increasing heuristic provides a worst-case bound of no more than 1.75, and an asymptotic

worst-case bound of 1.691.

The motivation behind this paper is similar to the overbooking policy for airline companies and

hotels. It is very common for airlines to overbook and accept additional reservations for seats on a

flight beyond the aircraft’s seating capacity1. Airline companies (and hotels) employ an overbooking

strategy for several reasons, including: (i) no-shows (several passengers are not showing up to their

flight, and the airline can predict the no-show rate for each itinerary); (ii) increasing the profit

by reducing lost opportunities; and (iii) segmenting passengers (charging a higher price as we get

closer to the flight). Note that in the context of this paper, the same motivation of no-shows

applies. However, the inter-temporal price discrimination is beyond the scope of our model. Several

academic papers in operations research have studied the overbooking problem within the last forty

years (see, e.g., Rothstein (1971), Rothstein (1985), Weatherford and Bodily (1992), Subramanian

et al. (1999) and Karaesmen and Van Ryzin (2004)). The methodology is often based on solving

1 http://www.forbes.com/2009/04/16/airline-tickets-flights-lifestyle-travel-airlines-overbooked.html
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a dynamic program incorporating some prediction of the no-show rate. In our problem, we face a

large-scale bin packing problem that needs to be solved online. Rather than deciding how many

passengers (jobs) to accept and at what price, cloud providers today usually aim to avoid declining

any reasonable workloads at a fixed list price2.

This paper is also related to the robust optimization literature, and especially to distributionally

robust optimization. The goal is to solve an optimization problem where the input parameter dis-

tribution belongs to a family of distributions that share some properties (e.g., all the distributions

with the same mean and covariance matrix) and consider the worst-case within the given family

(concrete examples are presented in Section 2.4). Examples of such work include: Ghaoui et al.

(2003), Bertsimas and Popescu (2005), Calafiore and El Ghaoui (2006) and Delage and Ye (2010).

That work aims to convert linear or convex (continuous) optimization problems with a chance con-

straint into tractable formulations. Our paper shares a similar motivation but considers a problem

with integer variables. To the best of our knowledge, this paper is the first to develop efficient algo-

rithms with constant approximation guarantees for the bin packing problem with capacity chance

constraints.

Large-scale cluster management in general is an important area of computer systems research.

Verma et al. (2015) provide a full, modern example of a production system. Among the work

on scheduling jobs, Sindelar et al. (2011) propose a model that also has a certain submodular

structure due to the potential for sharing memory pages between virtual machines (in contrast

to the risk-pooling effect modeled in this paper). Much experimental work seek to evaluate the

real-world performance of bin packing heuristics that also account for factors such as adverse

interactions between jobs scheduled together, and the presence of multiple contended resources

(see for example Rina Panigrahy (2011) and Alan Roytman (2013)). While modeling these aspects

is likely to complement the resource savings achieved with the stochastic model we propose, these

papers capture fundamentally different efficiency gains arising from technological improvements

and idiosyncratic properties of certain types (or combinations) of resources. In this paper, we limit

our attention to the benefit and practicality of machine over-commitment in the case where a single

key resource is in short supply. This applies directly to multi-resource settings if, for example, the

relatively high cost of one resource makes over-provisioning the others worthwhile, or if there is

simply an imbalance between the relative supply and demand for the various resources making one

of the resources scarce.

Structure of the paper. In Section 2, we present our model and assumptions. Then, we

present the results and insights for special cases in Section 3. In Section 4, we consider the general

2 The ”spot instances” provided by Amazon and other heavily discounted reduced-availability services are notable
exceptions.



Cohen, Keller, Mirrokni and Zadimoghaddam: Overcommitment in Cloud Services - Bin packing with Chance Constraints
8

case and develop a class of efficient approximation algorithms that guarantee a constant factor

from optimal. In Section 5, we exploit the structure of the problem in order to obtain a nearly

optimal assignment and to draw practical insights. In Sections 6 and 7, we present extensions and

computational experiments using realistic data respectively. Finally, our conclusions are reported

in Section 8. Most of the proofs of the Theorems and Propositions are relegated to the Appendix.

2. Model

In this section, we present the model and assumptions we impose. We start by formulating the

problem we want to solve, and then propose an alternative formulation. As we previously discussed,

job requests for cloud services (or any other resource allocation problem) come with a requested

capacity. This can be the memory or CPU requirements for virtual machines in the context of

cloud computing, or job duration in more traditional scheduling problems where jobs are processed

sequentially3. We refer to Aj as the size of job j and assume that Aj is a random variable. Historical

data can provide insight into the distribution of Aj. For simplicity, we first consider the offline

version of the problem where all the jobs arrive simultaneously at time 0, and our goal is to pack

the jobs onto the minimum possible number of machines. Jobs cannot be delayed or preempted.

The methods we develop in this paper can be applied in the more interesting online version of

the problem, as we discuss in Section 4. We denote the capacity of machine i by Vi. Motivated by

practical problems, and in accordance with prior work, we assume that all the machines have the

same capacity, i.e., Vi = V ; ∀i. In addition, each machine costs ci = c, and our goal is to maximize

the total profit (or equivalently, minimize the number of machines), while scheduling all the jobs

and satisfying the capacity constraints. Note that we consider a single dimensional problem, where

each job has one capacity requirement (e.g., the number of virtual CPU cores or the amount of

memory). Although cloud virtual machine packing may be modeled as a low-dimensional vector bin

packing problem (see for example, Rina Panigrahy (2011)), one resource is often effectively binding

and/or more critical so that focusing on it offers a much larger opportunity for overcommitment4.

3 Although there is also a job duration in cloud computing, it is generally unbounded and hence, even less constrained
than the resource usage from the customer’s perspective. The duration is also less important than the resource usage,
since most virtual machines tend to be long-lived, cannot be delayed or pre-empted, and are paid for by the minute.
In contrast, over-allocating unused, already paid-for resources can have a large impact on efficiency.

4 Insofar as many vector bin packing heuristics are actually straightforward generalizations of the FF, NF and BF
rules, it will become obvious how our proposed algorithm could similarly be adapted to the multi-resource setting in
Section 4, although we do not pursue this idea in this paper.
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2.1. Bin packing problem

For the case where Aj is deterministic, we obtain the classical deterministic bin packing problem:

B = min
xij ,yi

N∑
i=1

yi

s.t.
N∑
j=1

Ajxij ≤ V yi ∀i

N∑
i=1

xij = 1 ∀j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i

(DBP)

For the offline version, we have a total of N jobs and we need to decide which machines to

use/purchase (captured by the decision variable yi that is equal to 1, if machine i is purchased

and 0 otherwise). The solution is a B-partition of the set {1,2, . . . ,N} that satisfies the capacity

constraints. The decision variable xij equals one if job j is assigned to machine i and zero otherwise.

As we discussed in Section 1.2, there is an extensive literature on the DBP problem and its many

variations covering both exact algorithms as well and approximation heuristics with performance

bounds.

The problem faced by a cloud provider is typically online in nature since jobs arrive and depart

over time. Unfortunately, it is not possible to continually re-solve the DBP problem as the data is

updated for both practical and computational reasons. Keeping with the majority of prior work,

we start by basing our algorithms on static, single-period optimization formulations like the DBP

problem, rather than explicitly modeling arrivals and departures. The next section explains how,

unlike prior work, our single-period optimization model efficiently captures the uncertainty faced

by a cloud provider. We will consider both the online and offline versions of our model.

We remark that, while our online analysis considers sequentially arriving jobs, none of our results

explicitly considers departing jobs. This is also in line with the bin-packing literature, where results

usually apply to very general item arrival processes {Aj}, but it is typically assumed that packed

items remain in their assigned bins. In practice, a large cloud provider is likely to be interested

in a steady-state where the distribution of jobs in the systems is stable over time (or at least

predictable), even if individual jobs come and go. Whereas the online model with arrivals correctly

reflects that the scheduler cannot optimize to account for unseen future arrivals, it is unclear if

and how additionally modeling departures would affect a system where the overall distribution of

jobs remains the same over time. We therefore leave this question open. Note that several works

consider bin-packing with item departures (see, e.g., Stolyar and Zhong (2015) and the references

therein). In this work, the authors design a simple greedy algorithm for general packing constraints

and show that it can be asymptotically optimal.
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2.2. Chance constraints

The DBP problem suffers from the unrealistic assumption that the jobs’ sizes Aj are determin-

istic. In reality, jobs’ requirements (or durations) can be highly unpredictable and quite volatile,

especially from the perspective of a cloud provider with no control over the software executed in

a virtual machine. Ensuring that the capacity constraints are satisfied for any realization of Aj

generally yields a conservative outcome. For example, if the jobs’ true requirements are Bernoulli

random variables taking on either 0.3 or 1.0 with equal probability, one needs to plan as if each

job consumes a capacity of 1.0. By overcommitting resources, the provider can reduce the cost

significantly. Caution is required however, since overcommitting can be very expensive if not done

properly. Planning according to the expected value (in the previous simple example, 0.65), for

instance, would result in capacity being too tight on many machines. Specifically, for large machines,

the realized requirements could exceed capacity up to half of the time. Depending on the specific

resource and the degree of violation, such performance could be catastrophic for a cloud service

provider. Concretely, sustained CPU contention among virtual machines would materially affect

customers’ performance metrics, whereas a shortage of available memory could require temporarily

“swapping” some data to a slower storage medium with usually devastating consequences on per-

formance. Other mitigations are possible, including migrating a running virtual machine to another

host, but these also incur computational overhead for the provider and performance degradation for

the customer. In the extreme case where overly optimistic scheduling results in inadequate capacity

planning, there is even a stock-out risk where it is no longer possible to schedule all customers’ jobs

within a data center. With this motivation in mind, our goal is to propose a formulation that finds

the right overcommitment policy. We will show that by slightly overcommitting (defined formally

in Section 2.3), one can reduce the costs significantly while satisfying the capacity constraints with

high probability.

While not strictly required by our approach, in practice, there is often an upper bound on Aj,

denoted by Āj. In the context of cloud computing, Āj is the requested capacity that a virtual

machine is not allowed to exceed (32 CPU cores, or 128 GB of memory, say). However, the job

may end up using much less, at least for some time. If the cloud provider schedules all the jobs

according to their respective upper bounds Āj, then there is no overcommitment. If the cloud

provider schedules all the jobs according to some sizes smaller than the Āj, then some of the

machines may be overcommitted.

We propose to solve a bin packing problem with capacity chance constraints. Chance constraints

are widely used in optimization problems, starting with Charnes and Cooper (1963) for linear
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programs, and more recently in convex optimization (see, e.g., Nemirovski and Shapiro (2006)) and

in finance (see, e.g., Abdelaziz et al. (2007)). In this case, the capacity constraints are replaced by:

P
( N∑
j=1

Ajxij ≤ V yi
)
≥ α, (1)

where α represents the confidence level of satisfying the constraint (α= 0.999, say) and is exoge-

nously set by the cloud provider depending on considerations such as typical job’s running time

and contractual agreements. Note that when α= 1, this corresponds to the setting with no over-

commitment, or in other words, to the worst-case solution that covers all possible realizations of

all the Aj’s. One of our goals is to study the trade-off between the probability of violating physical

capacity and the cost reduction resulting from a given value of α.

The problem becomes the bin packing with chance constraints, parameterized by α:

B(α) = min
xij ,yi

N∑
i=1

yi

s.t. P
( N∑
j=1

Ajxij ≤ V yi
)
≥ α ∀i

N∑
i=1

xij = 1 ∀j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i

(BPCC)

2.3. Overcommitment

One can define the overcommitment level as follows. Consider two possible (equivalent) bench-

marks. First, one can solve the problem for α= 1, and obtain a solution (by directly solving the

IP or any other heuristic method) with objective B(1). Then, we solve the problem for the desired

value α< 1. The overcommitment benefit can be defined as 0<B(α)/B(1)≤ 1. It is also interesting

to compare the two different jobs assignments.

The second definition goes as follows. We define the overcommitment factor as the amount of

sellable capacity divided by the physical capacity of machines in the data center, that is:

OCF (α),

∑
j Āj∑
i V yi

.

Since we assume that all the machines have the same capacity and cost, we can write:

OCF (α) =

∑
j Āj

V B(α)
≥
∑

j Āj

V B(1)
=OCF (1).
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Note that OCF(1) is (generally strictly) less than one, as the bin packing overhead prevents the

sale of all resources5. Then, we have:

OCF (1)

OCF (α)
=
B(α)

B(1)
.

For illustration purposes, consider the following simple example with N = 70 1-core jobs. The jobs

are independent and Bernoulli distributed with probability 0.5. In particular, the jobs are either

high usage (i.e., fully utilize the 1 core), or low usage (in this case, idle). Each machine has a

capacity V = 48 cores. Without overcommitting, we need 2 machines, i.e., B(1) = 2. What happens

if we schedule all the jobs in a single machine? In this case, one can reduce the cost (number of

machines) by half, while satisfying the capacity constraint with probability 0.9987. In other words,

B(0.99) = 1. The overcommitment benefit in this simple example is clear. Our goal is to formalize

a systematic way to overcommit in more complicated and realistic settings.

Note that overcommitment may lead to Service Level Agreement (SLA) violations. This paper

does not discuss in detail the SLAs (with some possible associated metrics), and the corresponding

estimation/forecast procedures as they are usually application and resource specific. Instead, this

research treats a general Virtual Machine (VM) scheduling problem. More precisely, our context

is that of a cloud computing provider with limited visibility into the mix of customer workloads,

and hard SLAs. While the provider does track numerous service-level indicators, they are typically

monotonic in the resource usage on average (we expect more work to translate to worse perfor-

mance). Therefore, we believe that it is reasonable to rely on resource utilization as the sole metric

in the optimization problem.

2.4. A variant of submodular bin packing

In this section, we propose an alternative formulation that is closely related to the (BPCC) problem.

Under some mild assumptions, we show that the latter is either exactly or approximately equivalent

to the following submodular bin packing problem:

BS(α) = min
xij ,yi

N∑
i=1

yi

s.t.
∑N

j=1 µjxij +D(α)
√∑N

j=1 bjxij ≤ V yi ∀i

N∑
i=1

xij = 1 ∀j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i

(SMBP)

5 Technical note: other production overheads such as safety stocks for various types of outages and management
overheads, are generally also included in the denominator. For the purpose of this paper, we omit them.
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The difference between the (BPCC) and the (SMBP) problems is the way the capacity constraints

are written. Here, we have replaced each chance constraint with a linear term plus a square root

term. These constraints are submodular with respect to the vector x. The variable µj denotes the

expected value of Aj. In what follows, we will consider different definitions of bj and D(α) in three

different settings. The first two are concrete motivational examples, whereas the third one is a

generalization. In each case, we formally show the relation between the (BPCC) and the (SMBP)

problems.

1. Gaussian case: Assume that the random variables Aj are Gaussian and independent. In this

case, the random variable Z =
∑N

j=1Ajxij for any given binary vector x is Gaussian, and therefore,

one can use the following simplification:

P
( N∑
j=1

Ajxij ≤ V yi
)

= P
(
Z ≤ V yi

)
≥ α.

For each machine i, constraint (1) becomes:

N∑
j=1

µjxij + Φ−1(α) ·

√√√√ N∑
j=1

σ2
jxij ≤ V yi, (2)

where Φ−1(·) is the inverse CDF of a normal N(0,1), µj = E[Aj] and σ2
j = Var(Aj). Note that we

have used the fact that x is binary so that x2
ij = xij. Consequently, the (BPCC) and the (SMBP)

problems are equivalent with the values bj = σ2
j and D(α) = Φ−1(α).

When the random variables Aj are independent but not normally distributed, if there are a

large number of jobs per machine, one can apply the Central Limit Theorem and obtain a similar

approximate argument. In fact, using a result from Calafiore and El Ghaoui (2006), one can extend

this equivalence to any radial distribution6.

2. Hoeffding’s inequality: Assume that the random variables Aj are independent with a finite

support [Aj,Aj], 0≤Aj <Aj with mean µj. As we discussed, one can often know the value of Aj

and use historical data to estimate µj and Aj (we discuss this in more detail in Section 7). Assume

that the mean usages fit on each machine, i.e.,
∑N

j=1 xijµj < yiVi. Then, Hoeffding’s inequality

states that:

P
( N∑
j=1

Ajxij ≤ V yi
)
≥ 1− e

−2[V yi−
∑N
j=1 µjxij ]2∑N

j=1
(Aj−Aj)2 .

Equating the right hand side to α, we obtain:

−2[V yi−
∑N

j=1 µjxij]
2∑N

j=1 bjxij
= ln(1−α),

6 Radial distributions include all probability densities whose level sets are ellipsoids. The formal mathematical defi-
nition can be found in Calafiore and El Ghaoui (2006).
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where bj = (Aj −Aj)2 represents the range of job j’s usage. Re-arranging the equation, we obtain

for each machine i:

N∑
j=1

µjxij +D(α)

√√√√ N∑
j=1

bjxij ≤ V yi, (3)

where in this case, D(α) =
√
−0.5 ln(1−α). Note that in this setting the (BPCC) and the (SMBP)

problems are not equivalent. We only have that any solution of the latter is a feasible solution for

the former. We will demonstrate in Section 7 that despite being very conservative, this formulation

based on Hoeffding’s inequality actually yields good practical solutions.

The next case is a generalization of the last two.

3. Distributionally robust formulations: Assume that the random variables Aj are inde-

pendent with some unknown distribution. We only know that this distribution belongs to a family

of probability distributions D. We consider two commonly used examples of such families. First,

we consider the family D1 of distributions with a given mean and (diagonal) covariance matrix,

µ and Σ, respectively. Second, we look at D2, the family of generic distributions of independent

random variables over bounded intervals [Aj,Aj].

In this setting, the chance constraint is assumed to be enforced robustly with respect to the

entire family D of probability distributions on A = (A1,A2, . . . ,AN), meaning that:

inf
A∼D

P
( N∑
j=1

Ajxij ≤ V yi
)
≥ α. (4)

In this context, we have the following result.

Proposition 1. Consider the robust bin packing problem with the capacity chance constraints

(4) for each machine i. Then, for any α∈ (0,1), we have:

• For the family D1 of distributions with a given mean and diagonal covariance matrix, the

robust problem is equivalent to the (SMBP) with bj = σ2
j and D1(α) =

√
α/(1−α).

• For the family D2 of generic distributions of independent random variables over bounded inter-

vals, the robust problem can be approximated by the (SMBP) with bj = (Aj −Aj)2 and D2(α) =√
−0.5 ln(1−α).

The details of the proof are omitted for conciseness. In particular, the proof for D1 is analogous to

an existing result in continuous optimization that converts linear programs with a chance constraint

into a linear program with a convex second-order cone constraint (see Calafiore and El Ghaoui

(2006) and Ghaoui et al. (2003)). The proof for D2 follows directly from the fact that Hoeffding’s

inequality applies for all such distributions, and thus for the infimum of the probability.
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We have shown that the (SMBP) problem is a good approximation for the bin packing problem

with chance constraints. For the case of independent random variables with a given mean and

covariance, the approximation is exact and for the case of distributions over independent bounded

intervals, the approximation yields a feasible solution. We investigate practical settings in Section

7, and show that these approximate formulations all yield good solutions to the original problem.

From now on, we consider solving the (SMBP) problem, that is repeated here for convenience:

BS(α) = min
xij ,yi

N∑
i=1

yi

s.t.
∑N

j=1 µjxij +D(α)
√∑N

j=1 bjxij ≤ V yi ∀i

N∑
i=1

xij = 1 ∀j

xij ∈ {0,1} ∀i, j

yi ∈ {0,1} ∀i

(SMBP)

As discussed, the capacity constraint is now replaced by the following equation, called the modified

capacity constraint :

N∑
j=1

µjxij +D(α)

√√√√ N∑
j=1

bjxij ≤ V yi. (5)

One can interpret equation (5) as follows. Each machine has a capacity V . Each job j consumes

capacity µj in expectation, as well as an additional buffer to account for the uncertainty. This

buffer depends on two factors: (i) the variability of the job, captured by the parameter bj; and (ii)

the acceptable level of risk through D(α). The function D(α) is increasing in α, and therefore we

impose a stricter constraint as α approaches 1 by requiring this extra buffer to be larger.

Equation (5) can also be interpreted as a risk measure applied by the scheduler. For each machine

i, the total (random) load is
∑N

j=1Ajxij. If we consider that µj represents the expectation and bj

corresponds to the variance, then
∑N

j=1 µjxij and
√∑N

j=1 bjxij correspond to the expectation and

the standard deviation of the total load on machine i respectively. As a result, the right hand side of

equation (5) can be interpreted as an adjusted risk utility, where D(α) is the degree of risk aversion

of the scheduler. The additional amount allocated for job j can be interpreted as a safety buffer to

account for the uncertainty and for the risk that the provider is willing to bear. As we discussed,

this extra buffer decreases with the number of jobs assigned to the same machine. In Section 4, we

develop efficient methods to solve the (SMBP) with analytical performance guarantees.
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2.5. Two naive approaches

In this section, we explore the limitations of two approaches that come to mind. The first attempt

is to rewrite the problem as a linear integer program: the decision variables are all binary and the

non-linearity in (SMBP) can actually be captured by common modeling techniques, as detailed

in Appendix A. Unfortunately, solving this IP is not a viable option. Similarly as for the classical

deterministic bin packing problem, solving even moderately large instances with commercial solvers

takes several hours. Moreover, applying the approach to smaller, specific toy instances provides

little insight about the assignment policy, and how the value of α affects the solution. Since our

goal is to develop practical strategies for the online problem, we chose not to further pursue exact

solutions.

The second potential approach is to develop an algorithm for a more general problem: the

bin packing with general monotone submodular capacity constraints. Unfortunately, using some

machinery and results from Goemans et al. (2009) and Svitkina and Fleischer (2011), we next show

that it is in fact impossible to find a solution within any reasonable factor from optimal.

Theorem 1. Consider the bin packing problem with general monotone submodular capacity con-

straints for each machine. Then, it is impossible to guarantee a solution within a factor better than
√
N

ln(N)
from optimal.

The proof can be found in Appendix A. We will show that the (SMBP) problem that we consider

is more tractable as it concerns only a specific class of monotone submodular capacity constraints

that capture the structure of the chance-constrained problem. In the next session, we start by

addressing simple special cases in order to draw some structural insights.

3. Results and insights for special cases

In this section, we consider the (SMBP) problem for some given µj, bj, N and D(α). Our goals are

to: (i) develop efficient approaches to solve the problem; (ii) draw some insights on how to schedule

the different jobs and; (iii) study the effect of the different parameters on the outcome. This will

ultimately allows us to understand the impact of overcommitment in resource allocation problems,

such as cloud computing.

3.1. Identical distributed jobs

We consider the symmetric setting where all the random variables Aj have the same distribution,

such that µj = µ and bj = b in the (SMBP) problem. By symmetry, we only need to find the number

of jobs n to assign to each machine. Since all the jobs are interchangeable, our goal is to assign as
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many jobs as possible in each machine. In other words, we want to pick the largest value of n such

that the constraint (5) is satisfied, or equivalently:

nµ+D(α)
√
nb≤ V

D(α)2 ≤ [V −nµ]2

nb
.

For a given value of α, this is the largest integer smaller than:

n(α) =
V

µ
+

1

2µ2

[
bD(α)2−

√
b2D(α)4 + 4bD(α)2V µ

]
. (6)

• For a given value of α, the number of jobs n(α) increases with V/µ. Indeed, since µ represents

the expected job size, increasing the ratio V/µ is equivalent to increasing the number of ”average”

jobs a machine can host. If the jobs are smaller or the machines larger, one can fit more jobs per

machine, as expected.

• For a given value of V/µ, n(α) is a non-increasing function of α. When α increases, it means

that we enforce the capacity constraint in a stricter manner (recall that α= 1 corresponds to the

case without overcommitment). As a result, the number of jobs per machine cannot increase.

• For given values of α and V/µ, n(α) is a non-increasing function of b. Recall that the parameter

b corresponds to some measure of spread (the variance in the Gaussian setting, and the range for

distributions with bounded support). Therefore, when b increases, it implies that the jobs’ resource

usage is more volatile and hence, a larger buffer is needed. Consequently, the number of jobs cannot

increase when b grows.

• For given values of α and V , n(α) is non-increasing with
√
b/µ. The quantity

√
b/µ represents

the coefficient of variation of the random job size in the Gaussian case, or a similarly normalized

measure of dispersion in other cases. Consequently, one should be able to fit less jobs, as the

variability increases.

The simple case of identically distributed jobs allows us to understand how the different factors

affect the number of jobs that one can assign to each machine. In Figure 1, we plot equation (6)

for an instance with A = 1, A = 0.3, µ = 0.65, V = 30 and 0.5 ≤ α < 1. The large dot for α = 1

in the figure represents the case without overcommitment (i.e., α= 1). Interestingly, one can see

that when the value of α approaches 1, the benefit of allowing a small probability of violating the

capacity constraint is significant, so that one can increase the number of jobs per machine. In this

case, when α = 1, we can fit 30 jobs per machine, whereas when α = 0.992, we can fit 36 jobs,

hence, an improvement of 20%. Note that this analysis guarantees that the capacity constraint is

satisfied with at least probability α. As we will show in Section 7 for many instances, the capacity

constraint is satisfied with an even higher probability.
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Figure 1 Parameters: A= 1, A= 0.3, µ= 0.65, V = 30

Alternatively, one can plot α as a function of n (see Figure 2a for an example with different

values for V/µ). As expected, the benefit of overcommitting increases with V/µ, i.e., one can fit a

larger number of jobs per machine. In our example, when V/µ= 25, by scheduling jobs according

to A (i.e., α = 1, no overcommitment), we can schedule 14 jobs, whereas if we allow a 0.1%

violation probability, we can schedule 17 jobs. Consequently, by allowing 0.1% chance of violating

the capacity constraint, one can save more than 20% in costs.

(a) Parameters: A= 1, A= 0.3, µ= 0.65 (b) Parameters: V = 30

Figure 2 Example for identically distributed jobs

We next discuss how to solve the problem for the case with a small number of different classes

of job distributions.
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3.2. Small number of job distributions

We now consider the case where the random variables Aj can be clustered in few different categories.

For example, suppose standard clustering algorithms are applied to historical data to treat similar

jobs as a single class with some distribution of usage. For example, one can have a setting with

four types of jobs: (i) large jobs with no variability (µj is large and bj is zero); (ii) small jobs with

no variability (µj is small and bj is zero); (ii) large jobs with high variability (both µj and bj are

large); and (iv) small jobs with high variability (µj is small and bj is high). In other words, we

have N jobs and they all are from one of the 4 types, with given values of µj and bj. The result for

this setting is summarized in the following Observation (the details can be found in Appendix C).

Observation 1. In the case where the number of different job classes is not too large, one can

solve the problem efficiently as a cutting stock problem.

The resulting cutting stock problem (see formulation (14) in Appendix C) is well studied in many

contexts (see Gilmore and Gomory (1961) for a classical approach based on linear programming,

or the recent survey of Delorme et al. (2016)). For example, one can solve the LP relaxation of

(14) and round the fractional solution. This approach can be very useful for cases where the cloud

provider have enough historical data, and when the jobs can all be regrouped into a small number

of different clusters. This situation is sometimes realistic but not always. Very often, grouping all

possible customer job profiles into a small number of classes, each described by a single distribution

is likely unrealistic in many contexts. For example, virtual machines are typically sold with 1, 2, 4,

8, 16, 32 or 64 CPU cores, each with various memory configurations, to a variety of customers with

disparate use-cases. Aggregating across these jobs is already dubious, before considering differences

in their usage means and variability. Unfortunately, if one decides to use a large number of job

classes, solving a cutting stock problem is not scalable. In addition, this approach requires advance

knowledge of the number of jobs of each class and hence, cannot be applied to the online version

of our problem.

4. Online constant competitive algorithms

In this section, we analyze the performance of a large class of algorithms for the online version of

problem (SMBP). We note that the same guarantees hold for the offline case, as it is just a simpler

version of the problem. We then present a refined result for the offline problem in Section 6.1.

4.1. Lazy algorithms are 8
3
-competitive

An algorithm is called lazy, if it does not purchase/use a new machine unless necessary. The formal

definition is as follows.

Definition 1. We call an online algorithm lazy if upon arrival of a new job, it assigns the job

to one of the existing (already purchased) machines given the capacity constraints are not violated.
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In other words, the algorithm purchases a new machine if and only if non of the existing machines

can accomodate the newly arrived job.

Several commonly used algorithms fall into this category, e.g., First-Fit, Best-Fit, Next-Fit,

greedy type etc. Let OPT be the optimal objective, i.e., the minimum number of machines needed

to serve all the jobs {1,2, · · · ,N}. Recall that in our problem, each job 1≤ j ≤N , has two char-

acteristics: µj and bj which represent the mean and the uncertain part of job j respectively. For a

set of jobs S, we define the corresponding cost Cost(S) to be
∑

j∈S µj +
√∑

j∈S bj. Without loss of

generality, we can assume (by normalization of all µj and bj) that the capacity of each machine is

1 and that D(α) is also normalized to 1. We call a set S feasible, if its cost is at most the capacity

limit 1. In the following Theorem, we show that any lazy algorithm yields a constant approximation

for the (SBBP) problem.

Theorem 2. Any lazy algorithm ALG purchases at most 8
3
OPT machines, where OPT is the

optimum number of machines to serve all jobs.

Proof. Let m be the number of machines that ALG purchases when serving jobs {1,2, · · · ,N}.

For any machine 1≤ i≤m, we define Si to be the set of jobs assigned to machine i. Without loss

of generality, we assume that the m machines are purchased in the order of their indices. In other

words, machines 1 and m are the first and last purchased ones respectively.

For any pair of machines 1≤ i < i′ ≤m, we next prove that the set Si ∪Si′ is infeasible for the

modified capacity constraint, i.e.,
∑

j∈Si∪Si′
µj +

√∑
j∈Si∪Si′

bj > 1. Let j be the first job assigned

to machine i′. Since ALG is lazy, assigning j to machine i upon its arrival time was not feasible,

i.e., the set {j}∪Si is infeasible. Since we only assign more jobs to machines throughout the course

of the algorithm, and do not remove any job, the set Si′ ∪Si is also infeasible.

In the next Lemma, we lower bound the sum of µj + bj for the jobs in an infeasible set.

Lemma 1. For any infeasible set T , we have
∑

j∈T (µj + bj)>
3
4
.

Proof. For any infeasible set T , we have by definition
∑

j∈T µj +
√∑

j∈T bj > 1. We denote

x=
∑

j∈T µj, and y =
√∑

j∈T bj. Then, y > 1− x. If x is greater than 1, the claim of the lemma

holds trivially. Otherwise, we obtain:

x+ y2 >x+ (1−x)2 = x2−x+ 1 = (x− 1

2
)2 +

3

4
≥ 3

4
.

We conclude that
∑

j∈T (µj + bj)>
3
4
. �

As discussed, for any pair of machines i < i′, the union of their sets of jobs Si∪Si′ is an infeasible

set that does not fit in one machine. We now apply the lower bound from Lemma 1 for the infeasible
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set Si ∪ Si′ and imply
∑

j∈Si∪Si′
(µj + bj)>

3
4
. We can sum up this inequality for all

(
m
2

)
pairs of

machines i and i′ to obtain: ∑
1≤i<i′≤m

∑
j∈Si∪Si′

(µj + bj)>
3

4

(
m

2

)
. (7)

We claim that the left hand side of inequality (7) is equal to (m−1)
∑N

j=1(µj + bj). We note that

for each job j ∈ Sk, the term µj + bj appears k−1 times in the left hand side of inequality (7) when

i′ is equal to k. In addition, this term also appears m− k times when i is equal to k. Therefore,

every µj + bj appears k − 1 +m− k = m− 1 times, which is independent of the index k of the

machine that contains job j. As a result, we obtain:

N∑
j=1

(µj + bj)>
3

4(m− 1)

(
m

2

)
=

3m

8
.

On the other hand, we use the optimal assignment to upper bound the sum
∑N

j=1(µj+bj), and relate

m to OPT . Let T1, T2, · · · , TOPT be the optimal assignment of all jobs to OPT machines. Since Ti is

a feasible set, we have
∑

j∈Ti
µj+

√∑
j∈Ti

bj ≤ 1, and consequently, we also have
∑

j∈Ti
(µj+bj)≤ 1.

Summing up for all the machines 1≤ i≤OPT , we obtain:
∑N

j=1(µj + bj) =
∑OPT

i=1

∑
j∈Ti

(µj + bj)≤

OPT . We conclude that:

OPT ≥
N∑
j=1

(µj + bj)>
3m

8
.

This completes the proof of m< 8OPT
3

. �

Theorem 2 derives an approximation guarantee of 8/3 for any lazy algorithm. In many practical

settings, one can further exploit the structure of the set of jobs, and design algorithms that achieve

better approximation factors. For example, if some jobs are usually larger relative to others, one

can incorporate this knowledge into the algorithm. We next describe the main intuitions behind the

8/3 upper bound. In the proof of Theorem 2, we have used the following two main proof techniques:

• First, we show a direct connection between the feasibility of a set S and the sum
∑

j∈S(µj+bj).

In particular, we prove that
∑

j∈S(µj + bj)≤ 1 for any feasible set, and greater than 3/4 for any

infeasible set. Consequently, OPT cannot be less than the sum of µj + bj for all jobs. The gap of

4/3 between the two bounds contributes partially to the final upper bound of 8/3.

• Second, we show that the union of jobs assigned to any pair of machines by the lazy algorithm

is an infeasible set, so that their sum of µj + bj should exceed 3/4. One can then find m/2 disjoint

pairs of machines, and obtain a lower bound of 3/4 for the sum µj + bj for each pair. The fact

that we achieve this lower bound for every pair of machines (and not for each machine) contributes

another factor of 2 to the approximation factor, resulting to 4
3
× 2 = 8

3
.
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Note that the second loss of a factor of 2 follows from the fact that the union of any two machines

forms an infeasible set and nothing stronger. In particular, all machines could potentially have a

cost of 1/2 + ε for a very small ε, and make the above analysis tight. Nevertheless, if we assume

that each machine is nearly full (i.e., has Cost close to 1), one can refine the approximation factor.

Theorem 3. For any 0≤ ε≤ 0.3, if the lazy algorithm ALG assigns all the jobs to m machines

such that Cost(Si)≥ 1− ε for every 1≤ i≤m, we have m≤ ( 4
3

+ 3ε)OPT , i.e., a ( 4
3

+ 3ε) approxi-

mation guarantee.

Proof. To simplify the analysis, we denote β to be 1− ε. For a set Si, we define x=
∑

j∈Si
µj

and y=
√∑

j∈Si
bj. Since Cost(Si) is at least β, we have x+ y≥ β. Assuming x≤ β, we have:

∑
j∈Si

(µj + bj) = x+ y2 ≥ x+ (β−x)2 =
(
x− 2β− 1

2

)2

+β− 1

4
≥ β− 1

4
=

3

4
− ε,

where the first equality is by the definition of x and y, the second inequality holds by x+ y ≥ α,

and the rest are algebraic manipulations. For x > β, we also have
∑

j∈Si
(µj + bj)≥ x > β > 3

4
− ε.

We conclude that
∑N

j=1(µj + bj)≥m× ( 3
4
− ε). We also know that OPT ≥

∑N

j=1(µj + bj), which

implies that m≤ OPT
3/4−ε ≤OPT ( 4

3
+ 3ε) for ε≤ 0.3. �

A particular setting where the condition of Theorem 3 holds is when the capacity of each machine

is large compared to all jobs, i.e., max1≤j≤N µj +
√
bj is at most ε. In this case, for each machine

i 6=m (except the last purchased machine), we know that there exists a job j ∈ Sm (assigned to the

last purchased machine m) such that the algorithm could not assign j to machine i. This means

that Cost(Si ∪ {j}) exceeds one. Since Cost is a subadditive function, we have Cost(Si ∪ {j}) ≤

Cost(Si) +Cost({j}). We also know that Cost({j})≤ ε which implies that Cost(Si)> 1− ε.

Remark 1. As elaborated above, there are two main sources for losses in the approximation

factors: non-linearity of the cost function that can contribute up to 4/3, and machines being only

partially full that can cause an extra factor of 2 which in total implies the 8/3 approximation

guarantee. In the classical bin packing case (i.e., bj = 0 for all j), the cost function is linear, and

the non-linearity losses in approximation factors fade. Consequently, we obtain that (i) Theorem

2 reduces to a 2 approximation factor; and (ii) Theorem 3 reduces to a (1 + ε) approximation

factor, which are both consistent with known results from the literature on the classical bin packing

problem.

Theorem 3 improves the bound for the case where each machine is almost full. However, in

practice machines are often not full. In the next section, we derive a bound as a function of the

minimum number of jobs assigned to the machines.
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4.2. Algorithm First-Fit is 9
4
-competitive

So far, we considered the general class of lazy algorithms. One popular algorithm in this class

(both in the literature and in practice) is First-Fit. By exploring the structural properties of

allocations made by First-Fit, we can provide a better competitive ratio of 9
4
< 8

3
. Recall that

upon the arrival of a new job, First-Fit purchases a new machine if the job does not fit in any of

the existing machines. Otherwise, it assigns the job to the first machine (based on a fixed ordering

such as machine IDs) that it fits in. This algorithm is simple to implement, and very well studied

in the context of the classical bin packing problem. First, we present an extension of Theorem 2

for the case where each machine has at least K jobs.

Corollary 1. If the First-Fit algorithm assigns jobs such that each machine receives at least

K jobs, the number of purchased machines does not exceed 4
3
(1 + 1

K
)OPT , where OPT is the

optimum number of machines to serve all jobs.

One can prove Corollary 1 in a similar fashion as the proof of Theorem 2 and using the fact that

jobs are assigned using First-Fit (the details are omitted for conciseness). For example, when

K = 2 (resp. K = 5), we obtain a 2 (resp. 1.6) approximation. We next refine the approximation

factor for the problem by using the First-Fit algorithm.

Theorem 4. The number of purchased machines by Algorithm First-Fit for any arrival order

of jobs is not more than 9
4
OPT + 1.

The proof can be found in Appendix D. We note that the approximation guarantees we developed

in this section do not depend on the factor D(α), and on the specific definition of the parameters

µj and bj. In addition, as we show computationally in Section 7, the performance of this class of

algorithm is not significantly affected by the factor D(α).

5. Insights on job scheduling

In this section, we show that guaranteeing the following two guidelines in any allocation algorithm

yields optimal solutions:

• Filling up each machine completely such that no other job fits in it, i.e., making each machine’s

Cost equal to 1.

• Each machine contains a set of similar jobs (defined formally next).

We formalize these properties in more detail, and show how one can achieve optimality by

satisfying these two conditions. We call a machine full if
∑

j∈S µj +
√∑

j∈S bj is equal to 1 (recall

that the machine capacity is normalized to 1 without loss of generality), where S is the set of jobs

assigned to the machine. Note that it is not possible to assign any additional job (no matter how

small the job is) to a full machine. Similarly, we call a machine ε-full, if the the cost is at least 1− ε,



Cohen, Keller, Mirrokni and Zadimoghaddam: Overcommitment in Cloud Services - Bin packing with Chance Constraints
24

i.e.,
∑

j∈S µj +
√∑

j∈S bj ≥ 1− ε. We define two jobs to be similar, if they have the same b/µ ratio.

Note that the two jobs can have different values of µ and b. We say that a machine is homogeneous,

if it only contains similar jobs. In other words, if the ratio bj/µj is the same for all the jobs j

assigned to this machine. By convention, we define bj/µj to be +∞ when µj = 0. In addition, we

introduce the relaxed version of this property: we say that two jobs are δ-similar, if their b/µ ratios

differ by at most a multiplicative factor of 1 + δ. A machine is called δ-homogeneous, if it only

contains δ-similar jobs (i.e., for any pair of jobs j and j′ in the same machine,
bj/µj
b′j/µ

′
j

is at most

1 + δ).

Theorem 5. For any ε ≥ 0 and δ ≥ 0, consider an assignment of all jobs to some machines

with two properties: a) each machine is ε-full, and b) each machine is δ-homogeneous. Then, the

number of purchased machines in this allocation is at most OPT
(1−ε)2(1−δ) .

The proof can be found in Appendix E.

In this section, we proposed an easy to follow recipe in order to schedule jobs to machines. Each

arriving job is characterized by two parameters µj and bj. Upon arrival of a new job, the cloud

provider can compute the ratio rj = bj/µj. Then, one can decide of a few buckets for the different

values of rj, depending on historical data, and performance restrictions. Finally, the cloud provider

will assign jobs with similar ratios to the same machines and tries to fill in machines as much as

possible. In this paper, we show that such a simple strategy guarantees a good performance (close

to optimal) in terms of minimizing the number of purchased machines while at the same time

allowing to strategically overcommit.

6. Extensions

In this section, we present two extensions of the problem we considered in this paper.

6.1. Offline 2-approximation algorithm

Consider the offline version of the (SMBP) problem. In this case, all the N jobs already arrived,

and one has to find a feasible schedule so as to minimize the number of machines. We propose

the algorithm Local-Search that iteratively reduces the number of purchased machines, and

also uses ideas inspired from First-Fit in order to achieve a 2-approximation for the offline

problem. Algorithm Local-Search starts by assigning all the jobs to machines arbitrarily, and

then iteratively refines this assignment. Suppose that each machine has a unique identifier number.

We next introduce some notation before presenting the update operations. Let a be the number of

machines with only one job, A1 be the set of these a machines, and S1 be the set of jobs assigned to

these machines. Note that this set changes throughout the algorithm with the update operations.
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We say that a job j /∈ S1 is good, if it fits in at least 6 of the machines in the set A1
7. In addition,

we say that a machine is large, if it contains at least 5 jobs, and we denote the set of large machines

by A5. We say that a machine is medium size, if it contains 2, 3, or 4 jobs, and we denote the set

of medium machines by A2,3,4. We call a medium size machine critical, if it contains one job that

fits in none of the machines in A1, and the rest of the jobs in this machine are all good. Following

are the update operations that Local-Search performs until no such operation is available.

• Find a job j in machine i (i is the machine identifier number) and assign it to some other

machine i′ < i if feasible (the outcome will be similar to First-Fit).

• Find a medium size machine i that contains only good jobs. Let j1, · · · , j` (2≤ `≤ 4) be the

jobs in machine i. Assign j1 to one of the machines in A1 that it fits in. Since j1 is a good job,

there are at least 6 different options, and the algorithm picks one of them arbitrarily. Assign j2 to

a different machine in A1 that it fits in. There should be at least 5 ways to do so. We continue

this process until all the jobs in machine i (there are at most 4 of them) are assigned to distinct

machines in A1, and they all fit in their new machines. This way, we release machine i and reduce

the number of machines by one.

• Find a medium size machine i that contains one job j that fits in at least one machine in A1,

and the rest of the jobs in i are all good. First, assign j to one machine in A1 that it fits in. Similar

to the previous case, we assign the rest of the jobs (that are all good) to different machines in A1.

This way, we release machine i and reduce the number of purchased machines by one.

• Find two critical machines i1 and i2. Let j1 and j2 be the only jobs in these two machines

that fit in no machine in A1. If both jobs fit and form a feasible assignment in a new machine,

we purchase a new machine and assign j1 and j2 to it. Otherwise, we do not change anything

and ignore this update step. There are at most 6 other jobs in these two machines since both are

medium machines. In addition, the rest of the jobs are all good. Therefore, similar to the previous

two cases, we can assign these jobs to distinct machines in A1 that they fit in. This way, we release

machines i1 and i2 and purchase a new machine. So in total, we reduce the number of purchased

machines by one.

We are now ready to analyze this Local-Search algorithm that also borrows ideas from

First-Fit. We next show that the number of purchased machines is at most 2OPT +O(1), i.e., a

2-approximation.

Theorem 6. Algorithm Local-Search terminates after at most N 3 operations (where N is

the number of jobs), and purchases at most 2OPT + 11 machines.

7 The reason we need 6 jobs is technical, and will be used in the proof of Theorem 6.
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The proof can be found in Appendix F.

We conclude this section by comparing our results to the classical (deterministic) bin packing

problem. In the classical bin packing problem, there are folklore polynomial time approximation

schemes (see Section 10.3 in Albers and Souza (2011)) that achieve a (1− ε)-approximation factor

by proposing an offline algorithm based on clustering the jobs into 1/ε2 groups, and treating them

as equal size jobs. Using dynamic programming techniques, one can solve the simplified problem

with 1/ε2 different job sizes in time O(npoly(1/ε)). In addition to the inefficient time complexity of

these algorithms that make them less appealing for practical purposes, one cannot generalize the

same ideas to our setting. The main obstacle is the lack of a total ordering among the different

jobs. In the classical bin packing problem, the jobs can be sorted based on their sizes. However,

this is not true in our case since the jobs have the two dimensional requirements µj and bj.

6.2. Alternative constraints

Recall that in the (SMBP) problem, we imposed the modified capacity constraint (5). Instead, one

can consider the following family of constraints, parametrized by 0.5≤ p≤ 1:

N∑
j=1

µjxij +D(α)
( N∑
j=1

bjxij

)p
≤ V yi, (8)

Note that this equation is still monotone and submodular in the assignment vector x, and captures

some notion of risk pooling. In particular, the “safety buffer” reduces with the number of jobs

already assigned to each machine. The motivation behind such a modified capacity constraint lies

in the shape that one wishes to impose on the term that captures the uncertain part of the job. In

one extreme (p= 1), we consider that the term that captures the uncertainty is linear and hence,

as important as the expectation term. In the other extreme case (p = 0.5), we consider that the

term that captures the uncertainty behaves as a square root term. For a large number of jobs per

machine, this is known to be an efficient way of handling uncertainty (similar argument as the

central limit theorem). Note also that when p= 0.5, we are back to equation (5), and when p= 1

we have a commonly used benchmark (see more details in Section 7). One can extend our analysis

and derive an approximation factor for the online problem as a function of p for any lazy algorithm.

Corollary 2. Consider the bin packing problem with the modified capacity constraint (8).

Then, any lazy algorithm ALG purchases at most 2
f(p)

OPT machines, where OPT is the optimum

number of machines to serve all jobs and f(p) is given by:

f(p) = 1− (1− p)p 1
p−1.

The proof is in a very similar spirit as in Theorem 2 and is not repeated due to space limitations.

Intuitively, we find parametric lower and upper bounds on
(∑N

j=1 bjxij
)p

in terms of
∑N

j=1 bjxij.
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Note that when p= 0.5, we recover the result of Theorem 2 (i.e., a 8/3 approximation) and as p

increases, the approximation factor converges to 2. In Figure 3, we plot the approximation factor

as a function of 0.5≤ p≤ 1.

Figure 3 Approximation factor 2
f(p)

as a function of p

Finally, one can also extend our results for the case where the modified capacity constrain is

given by:
∑N

j=1 µjxij +D(α) log
(

1 +
∑N

j=1 bjxij

)
≤ V yi.

7. Computational experiments

In this section, we test and validate the analytical results developed in the paper by solving

the (SMBP) problem for different realistic cases, and investigating the impact on the number of

machines required (i.e., the cost). We use realistic workload data inspired by Google Compute

Engine, and show how our model and algorithms can be applied in an operational setting.

7.1. Setting and data

We use simulated workloads of 1000 jobs (virtual machines) with a realistic VM size distribution

(see Table 1). Typically, the GCE workload is composed of a mix of CPU usages from virtual

machines belonging to cloud customers. These jobs can have highly varying workloads, including

some large ones and many smaller ones.8 More precisely, we assume that each VM arrives to the

cloud provider with a requested number of CPU cores, sampled from the distribution presented in

Table 1.

8 The average distribution of workloads we present in Table 1 assumes small percentages of workloads with 32 and
16 cores, and larger percentages of smaller VMs. A “large” workload may consist of many VMs belonging to a single
customer whose usages may be correlated at the time-scales we are considering, but heuristics ensure these are spread
across different hosts to avoid strong correlation of co-scheduled VMs. The workload distributions we are using are
representative for some segments of GCE. Unfortunately, we cannot provide the real data due to confidentiality.
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Table 1 Example distribution of VM sizes in one Google data center

Number of cores 1 2 4 8 16 32
% VMs 36.3 13.8 21.3 23.1 3.5 1.9

In this context, the average utilization is typically low, but in many cases, the utilization can be

highly variable over time. Although we decided to keep a similarl VM size distribution as observed

in a production data center, we also fitted parametric distributions to roughly match the mean and

the variance of the measured usage. This allows us to obtain a parametric model that we could vary

for simulation. We consider two different cases for the actual CPU utilization as a fraction of the

requested job size: we either assume that the number of cores used has a Bernoulli distribution, or

a truncated Gaussian distribution. As discussed in Section 2.4, we assume that each job j has lower

and upper utilization bounds, Aj and Aj. We sample Aj uniformly in the range [0.3,0.6], and Aj

in the range [0.7,1.0]. In addition, we uniformly sample µ′j and σ′j ∈ [0.1,0.5] for each VM to serve

as the parameters for the truncated Gaussian (not to be confused with its true mean and standard

deviation, µj and σj). For the Bernoulli case, µ′j = µj determines the respective probabilities of the

realization corresponding to the lower or upper bound (and the unneeded σ′j is ignored).

For each workload of 1000 VMs generated in this manner, we solve the online version of the

(SMBP) problem by implementing the Best-Fit heuristic, using one of the three different variants

for the values of D(α) and bj. We solve the problem for various values of α ranging from 0.5 to

0.99999. More precisely, when a new job arrives, we compute the modified capacity constraint

in equation (5) for each already-purchased machine, and assign the job to the machine with the

smallest available capacity that can accommodate it9. If the job does not fit in any of the already

purchased machines, the algorithm opens a new machine. We consider the three variations of the

(SMBP) discussed earlier:

• The Gaussian case introduced in (2), with bj = σ2
j and D(α) = Φ−1(α). This is now also

an approximation to the chance constrained (BPCC) formulation since the true distributions are

truncated Gaussian or Bernoulli.

• The Hoeffding’s inequality approximation introduced in (3), with bj = (Aj−Aj)2 and D(α) =√
−0.5 ln(1−α). Note hat the distributionally robust approach with the family of distributions D2

is equivalent to this formulation.

• The distributionally robust approximation with the family of distributions D1, with bj = σ2
j

and D1(α) =
√
α/(1−α).

9 Note that we clip the value of the constraint at the effective upper bound
(∑

j xijAj
)
, to ensure that no trivially

feasible assignments are excluded. Otherwise, the Hoeffding’s inequality-based constraint may perform slightly worse
relative to the policy without over-commitment, if it leaves too much free space on the machines.
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7.2. Linear benchmarks

We also implement the following four benchmarks which consist of solving the classical (DBP)

problem with specific problem data. First we have:

• No overcommitment – This is equivalent to setting α= 1 in the (SMBP) problem, or solving

the (DBP) problem with sizes Aj.

Three other heuristics are obtained by replacing the square-root term in constraint (5) by a linear

term, specifically we replace the constraint with:

N∑
j=1

µjxij +D(α)
N∑
j=1

√
bjxij =

N∑
j=1

(
µj +D(α)

√
bj

)
xij ≤ V yi (9)

to obtain:

• The linear Gaussian heuristic that mimics the Gaussian approximation in (2).

• The linear Hoeffding’s heuristic that mimics the Hoeffding’s approximation in (3).

• The linear robust heuristic that mimics the distributionally robust approach with the family

of distributions D1.

Notice that the linearized constraint (9) is clearly more restrictive for a fixed value of α by concavity

of the square root, but we do of course vary the value of α in our experiments. We do not expect

these benchmarks to outperform our proposed method since they do not capture the risk-pooling

effect from scheduling jobs concurrently on the same machine. They do however still reflect different

relative amounts of ”padding” or ”buffer” above the expected utilization of each job allocated due

to the usage uncertainty.

The motivation behind the linear benchmarks lies in the fact that the problem is reduced to the

standard (DBP) formulation which admits efficient implementations for the classical heuristics.

For example, the Best-Fit algorithm can run in time O(N logN) by maintaining a list of open

machines sorted by the slack left free on each machine (see Johnson (1974) for details and linear -

time approximations). In contrast, our implementation of the Best-Fit heuristic with the non-linear

constraint (5) takes time O(N 2) since we evaluate the constraint for each machine when each new

job arrives. Practically, in cloud VM scheduling systems, this quadratic-time approach may be

preferred anyway since it generalizes straightforwardly to more complex “scoring” functions that

also take into account additional factors besides the remaining capacity on a machine, such as

multiple resource dimensions, performance concerns or correlation between jobs (see, for example,

Verma et al. (2015)). In addition, the computational cost could be mitigated by dividing the data

center into smaller “shards”, each consisting of a fraction of the machines, and then trying to assign

each incoming job only to the machines in one of the shard. For example, in our experiments we

found that there was little performance advantage in considering sets of more than 1000 jobs at
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a time. Nevertheless, our results show that even these linear benchmarks may provide substantial

savings (relative to the no-overcommitment policy) while only requiring very minor changes to

classical algorithms: instead of Aj, we simply use job sizes defined by µj, bj and α.

7.3. Results and comparisons

We compare the seven different methods in terms of the number of purchased machines and show

that, in most cases, our approach significantly reduces the number of machines needed.

We consider two physical machine sizes: 32 cores and 72 cores. As expected, the larger machines

achieve a greater benefit from modeling risk-pooling. We draw 50 independent workloads each

composed of 1000 VMs as described above. For each workload, we schedule the jobs using the Best-

Fit algorithm and report the average number of machines needed across the 50 workloads. Finally,

we compute the probability of capacity violation as follows: for each machine used to schedule each

of the workloads, we draw 5000 utilization realizations (either from a sum of truncated Gaussian

or a sum of Bernoulli distributions), and we count the number of realizations where the total CPU

usage of the jobs scheduled on a machine exceeds capacity.

The sample size was chosen so that our results reflect an effect that is measurable in a typical

data center. Since our workloads require on the order of 100 machines each, this corresponds to

roughly 50 × 100 × 5000 = 25,000,000 individual machine-level samples. Seen another way, we

schedule 50× 1000 = 50,000 jobs and collect 5000 data points from each. Assuming a sample is

recorded every 10 minutes, say, this corresponds to a few days of traffic even in a small real data

center with less than 1000 machines10. The sample turns out to yield very stable measurements,

and defining appropriate service level indicators is application-dependent and beyond the scope of

this paper, so we do not report confidence intervals or otherwise delve into statistical measurement

issues. Similarly, capacity planning for smaller data centers may need to adjust measures of demand

uncertainty to account for the different scheduling algorithms, but any conclusions are likely specific

to the workload and data center, so we do not report on the variability across workloads.

In Figure 4, we plot the average number of machines needed as a function of the probability

that a given constraint is violated, in the case where the data center is composed of 72 CPU core

machines. Each point in the curves corresponds to a different value of the parameter α. Without

overcommitment, we need an average of over 54 machines in order to serve all the jobs. By allowing

10 The exact time needed to collect a comparable data set from a production system depends on the data center size
and on the sampling rate, which should be a function of how quickly jobs enter and leave the system, and of how
volatile their usages are. By sampling independently in our simulations, we are assuming that the measurements from
each machine are collected relatively infrequently (to limit correlation between successive measurements), and that
the workloads are diverse (to limit correlation between measurements from different machines). This assumption is
increasingly realistic as the size of the data center and the length of time covered increase: in the limit, for a fixed
sample size, we would record at most one measurement from each job with a finite lifetime, and it would only be
correlated with a small fraction of its peers.
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a small chance of violation, say a 0.1% risk (or equivalently, a 99.9% satisfaction probability), we

only need 52 machines for the Bernoulli usage, and 48 machines for the truncated Gaussian usage.

If we allow a 1% chance of violation, we then only need 50 and 46 machines, respectively. The

table of Figure 6 summarizes the relative savings, which are roughly 4.5% and 11.5% with a 0.1%

risk, and roughly 8% and 14% with a 1% risk, for the Bernoulli and truncated Gaussian usages,

respectively. In terms of the overcommitment factor defined in Section 2.3, the reported savings

translate directly to the fraction of the final capacity that is due to overcommitment,

B(1)−B(α)

B(1)
=
OCF (α)−OCF (1)

OCF (α)
.

Figure 4 shows that all three variations of our approach (the Gaussian, Hoeffding’s, and the

distributionally robust approximations) yield very similar results. This suggests that the results

are robust to the method and the parameters. The same is true for the corresponding linear

benchmarks, though they perform worse, as expected. We remark that although the final perfor-

mance tradeoff is nearly identical, for a particular value of the α parameter, the achieved violation

probabilities vary greatly. For example, with α= 0.9 and the truncated normal distribution, each

constraint was satisfied with probability 0.913 when using the Gaussian approximation, but with

much higher probabilities 0.9972 and 0.9998 for the Hoeffding and robust approximations, respec-

tively. This is expected, since the latter two are relatively loose upper bounds for a truncated

normal distribution, whereas the distributions N(µj, σj) are close approximations to the truncated

Gaussian with parameters µ′j and σ′j. (This is especially true for their respective sums.) Practically,

the normal approximation is likely to be the easiest to calibrate and understand in cases where the

theoretical guarantees of the other two approaches are not needed, since it would be nearly exact

for normally-distributed usages.

In Figure 5, we repeat the same tests for smaller machines having only 32 physical CPU cores. The

smaller machines are more difficult to overcommit since there is a smaller risk-pooling opportunity,

as can be seen by comparing the columns of Table 6. The three variations of our approach still

yield similar and significant savings, but now they substantially outperform the linear benchmarks:

the cost reduction is at least double with all but the largest values of α. We highlight that with

the “better behaved” truncated Gaussian usage, we still obtain a 5% cost savings at 0.01% risk,

whereas the linear benchmarks barely improve over the no-overcommit case.

As mentioned in Section 2.2, the value of α should be calibrated so as to yield an acceptable

risk level given the data center, the workload and the resource in question. Any data center has

a baseline risk due to machine (or power) failure, say, and a temporary CPU shortage is usually

much less severe relative to such a failure. On the other hand, causing a VM to crash because of a

memory shortage can be as bad as a machine failure from the customer’s point of view. Ultimately,
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(a) Bernoulli usage (b) Truncated Gaussian usage

Figure 4 Average number of 72-core machines needed to schedule a workload, versus the probability that any

given machine’s realized load exceeds capacity

(a) Bernoulli usage (b) Truncated Gaussian usage

Figure 5 Results for 32 core machines

the risk tolerance will be driven by technological factors, such as the ability to migrate VMs or

swap memory while maintaining an acceptable performance.

7.4. Impact

We conclude that our approach allows a substantial cost reduction for realistic workloads. More

precisely, we draw the following four conclusions.

• Easy to implement: Our approach is nearly as simple to implement as classical bin packing

heuristics. In addition, it works naturally online and in real-time, and can be easily incorporated

to existing scheduling algorithms.
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Figure 6 Percentage savings due to overcommitment for two CPU usage distributions, using the three

proposed variants of the chance constraint. The linear Gaussian benchmark is shown for comparison

• Robustness: The three variations we proposed yield very similar results. This suggests that

our approach is robust to the type of approximation. In particular, the uncertain term bj and the

risk coefficient D(α) do not have a strong impact on the results. It also suggests that the method

is robust to estimation errors in the measures of variability that define bj.

• Significant cost reduction: With modern 72-core machines, our approach allows a 8-14%

cost savings relative to the no overcommitment policy. This is achieved by considering a manageable

risk level of 1%, which is comparable to other sources of risk that are not controllable (e.g., physical

failures and regular maintenance operations).

• Outperforming the benchmarks: Our proposals show a consistent marked improvement

over three different “linear” benchmarks that reduce to directly apply the classical Best-Fit heuris-

tic. The difference is most substantial in cases where the machines are small relative to the jobs

they must contain, which is intuitively more challenging. Although our approach does not run in

O(n logn) time, ”sharding” and (potentially) parallelization mitigate any such concerns in practice.

8. Conclusion

In this paper, we formulated and practically solved the bin-packing problem with overcommit-

ment. In particular, we focused on a cloud computing provider that is willing to overcommit when

allocating capacity to virtual machines in a data center. We modeled the problem as bin packing

with chance constraints, where the objective is to minimize the number of purchased machines,

while satisfying the physical capacity constraints of each machine with a very high probability.

We first showed that this problem is closely related to an alternative formulation that we call the

SMBP (Submodular Bin Packing) problem. Specifically, the two problems are equivalent under

the assumption of independent Gaussian job sizes, or when the job size distribution belongs to the

distributionally robust family with a given mean and (diagonal) covariance matrix. In addition, the
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bin packing problem with chance constraints can be approximated by the SMBP for distributions

with bounded supports.

We first showed that for the bin packing problem with general monotone submodular capacity

constraints, it is impossible to find a solution within any reasonable factor from optimal. We then

developed simple algorithms that achieve solutions within constant factors from optimal for the

SMBP problem. We showed that any lazy algorithm is 8/3 competitive, and that the First-Fit

heuristic is 9/4 competitive. Since the First-Fit and Best-Fit algorithms are easy to implement and

well understood in practice, this provides an attractive option from an implementation perspective.

Second, we proposed an algorithm for the offline version of the problem, and showed that it

guarantees a 2-approximation. Then, we used our model and algorithms in order to draw several

useful insights on how to schedule jobs to machines, and on the right way to overcommit. We

convey that our method captures the risk pooling effect, as the “safety buffer” needed for each job

decreases with the number of jobs already assigned to the same machine. Moreover, our approach

translates to a transparent and meaningful recipe on how to assign jobs to machines by naturally

clustering similar jobs in terms of statistical information. Namely, jobs with a similar ratio b/µ

(the uncertain term divided by the expectation) should be assigned to the same machine.

Finally, we demonstrated the benefit of overcommitting and applied our approach to realistic

workload data inspired by Google Compute Engine. We showed that our methods are (i) easy to

implement; (ii) robust to the parameters; and (iii) significantly reduce the cost (1.5-17% depending

on the setting and the size of the physical machines in the data center).
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Appendix A: Details for Section 2.5

IP formulation

By taking the square on both sides of the submodular capacity constraint (5), we obtain:

V 2yi +
( N∑
j=1

µjxij

)2

− 2V yi

N∑
j=1

µjxij ≥D(α)2 ·
N∑
j=1

bjxij .

Note that since yi is binary, we have y2
i = yi. We next look at the term: yi

∑N

j=1 µjxij . One can linearize this

term by using one of the following two methods.

1. Since yi = 1 if and only if at least one xij = 1, we have the constraint:
∑N

j=1 xij ≤Myi, for a large

positive number M (actually, one can take M =N). Consequently, one can remove the yi in the above term.

2. One can define a new variable tij , yixij and add the four following constraints:

tij ≤ yi; tij ≤ xij ; tij ≥ 0; tij ≥ xij + yi− 1.

Next, we look at the term:
(∑N

j=1 µjxij

)2

. Since x2
ij = xij , we remain only with the terms xij ·xik for k > j.

One can now define a new variable for each such term, i.e., zijk , xij ·xik with the four constraints as before:

zijk ≤ xij ; zijk ≤ xik; zijk ≥ 0; zijk ≥ xij +xik− 1.

The resulting formulation is a linear integer program. Note that the decision variables tij and zijk are

continuous, and only xij and yi are binary.

Appendix B: Proof of Theorem 1

Proof. In this proof, we make use of the submodular functions defined by Svitkina and Fleischer (2011)

for load balancing problems. Denote the jobs by 1,2, · · · ,N , and for every subset of jobs S ⊆ [N ], let f(S) be

the cost of the set S (i.e., the capacity cost induced by the function f). We use two submodular functions f

and f ′ (defined formally next) which are proved to be indistinguishable with a polynomial number of value

oracle queries (see Lemma 5.1 of Svitkina and Fleischer (2011)). Let denote x= ln(N). Note that Svitkina

and Fleischer (2011) require x to be any parameter such that x2 dominates ln(N) asymptotically and hence,

includes the special case we are considering here. Define m0 = 5
√
N
x

, α0 = N
m0

, and β0 = x2

5
. We choose N such

that m0 takes an integer value. Define f(S) to be min{|S|, α0}, and f ′(S) to be min{
∑

i
min{β0, |S∩Vi|}, α0}

where {Vi}m0
i=1 is a random partitioning of [N ] into m0 equal sized parts. Note that by definition, both set

functions f and f ′ are monotone and submodular.

As we mentioned, it is proved in Svitkina and Fleischer (2011) that the submodular functions f and

f ′ cannot be distinguished from each other with a polynomial number of value oracle queries with high

probability. We construct two instances of the bin packing problem with monotone submodular capacity

constraints by using f and f ′ as follows. In both instances, the capacity of each machine is set to β0.

In the first instance, a set S is feasible (i.e., we can schedule all its jobs in a machine) if and only if

f(S)≤ β0. By definition, f(S) is greater than β0 if |S| is greater than β0. Therefore, any feasible set S in

this first instance consists of at most β0 jobs. Consequently, in the first instance, any feasible assignment of

jobs to machines requires at least N
β0

machines.
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We define the second instance of the bin packing problem based on the submodular function f ′. A set S

is feasible in the second instance, if and only if f ′(S)≤ β0. Since f ′(Vj) is at most β0 for each 1≤ j ≤m0,

each set Vj is a feasible set in this second instance. Therefore, we can assign each Vj to a separate machine

to process all jobs, and consequently, m0 machines suffice to do all the tasks in the second instance. We note

that with our parameter setting, m0 is much smaller that N
β0

. We then conclude that the optimum solutions

of these two instances differ significantly.

We next prove the claim of Theorem 1 by using a contradiction argument. Assume that there exists a

polynomial time algorithm ALG for the bin packing problem with monotone submodular capacity constraints

with an approximation factor better than
√
N

ln(N)
. We next prove that by using ALG, we can distinguish

between the two set functions f and f ′ with a polynomial number of value oracles, which contradicts the

result of Svitkina and Fleischer (2011). The task of distinguishing between the two functions f and f ′ can

be formalized as follows. We have value oracle access to a set function g, and we know that g is either the

same as f or the same as f ′. The goal is to find out whether g = f or g = f ′ using a polynomial number of

value oracle queries. We construct a bin packing instance with N jobs, capacity constraints g, and ask the

algorithm ALG to solve this instance. If ALG uses less than N
β0

machines to process all jobs, we can say

that g is the same as f ′ (since with capacity constraints f , there does not exist a feasible assignment of all

jobs to less than N
β0

machines). On the other hand, if ALG uses at least N
β0

machines, we can say that g is

equal to f . This follows from the fact that if g was equal to f ′, the optimum number of machines would have

been at most m0. Since ALG has an approximation factor better than
√
N

ln(N)
, the number of machines used

by ALG should have been less than m0 ×
√
N

ln(N)
= 5

√
N
x
×
√
N

ln(N)
= N

β0
. Therefore, using at least N

β0
machines

by ALG is a sufficient indicator of g being the same as f . This argument implies that an algorithm with an

approximation factor better than
√
N

ln(N)
for the bin packing problem with monotone submodular constraints

yields a way of distinguishing between f and f ′ with a polynomial number of value oracle queries (since

ALG is a polynomial time algorithm), which contradicts the result of Svitkina and Fleischer (2011). �

Appendix C: Details related to Observation 1

For ease of exposition, we first address the case with two job classes. Classes 1 and 2 have parameters (µ1, b1)

and (µ2, b2) respectively. For example, an interesting special case is when one class of jobs is more predictable

relative to the other (i.e., µ1 = µ2 = µ, b2 = b and b1 = 0). In practice, very often, one class of jobs has low

variability (i.e., close to deterministic), whereas the other class is more volatile. For example, class 1 can

represent loyal recurring customers, whereas class 2 corresponds to new customers.

We assume that we need to decide the number of machines to purchase, as well as how many jobs of types

1 and 2 to assign to each machine. Our goal is to find the right mix of jobs of classes 1 and 2 to assign to

each machine (note that this proportion can be different for each machine). Consider a given machine i and

denote by n1 and n2 the number of jobs of classes 1 and 2 that we assign to this machine. We would like to

ensure that the chance constraint is satisfied in each machine with the given parameter α. Assuming that

V > n1µ1 +n2µ2, we obtain:

[V −n1µ1−n2µ2]2

n1b1 +n2b2
=D(α)2. (10)
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For a given α, one can find the value of n1 as a function of n2 that satisfies equation (10):

n1(n2) =
V −n2µ2

µ1

+
1

2µ2
1

[
b1D(α)2−

√
b21D(α)4 + 4b1D(α)2(V −n2µ2)µ1 + 4µ2

1n2b2D(α)2
]
. (11)

As we discussed, an interesting special case is when both classes of jobs have the same expectation, i.e.,

µ1 = µ2 = µ but one type of jobs is much more predictable (i.e., smaller range or variance). In the extreme

case, one can assume that class 1 jobs are deterministic, (i.e., b1 = 0). In this case, equation (11) becomes:

n1(n2) =
V −n2µ

µ
−
√

2n2b2B

2µ
. (12)

Alternatively, by directly looking at the modified capacity constraint (5) for this special case, we obtain:

V = (n1 +n2)µ+D(α)
√
n2b2. (13)

Equation (13) can be interpreted as follows. Any additional job of type 1 takes µ from the capacity budget

V , whereas any additional job of type 2 is more costly. The extra cost depends on both the uncertainty of

the job (through b2) and the overcommitment policy (through D(α)). The higher is one of these two factors,

the larger is the capacity we should plan for jobs of type 2 (i.e., “safety buffer”). Note that the submodular

nature of constraint (5) implies that this marginal extra cost decreases with the number of jobs n2. In other

words, when n2 becomes large, each additional job of type 2 will converge to take a capacity of µ, as the

central limit theorem applies. More generally, by taking the derivative of the above expression, any additional

job of type 2 will take µ+ 0.5D(α)
√
b2/
√
n2 (where n2 here represents how many jobs of type 2 are already

assigned to this machine).

In Figure 7, we plot equation (12) for a specific instance with V = 30 and different values of α. As expected,

if n2 = 0, we can schedule n1 = 50 jobs of class 1 to reach exactly the capacity V , no matter what is the

value of α. On the other hand, for α= 0.99, if n1 = 0, we can schedule n2 = 38 jobs of class 2. As the value

of n2 increases, the optimal value of n1 decreases. For a given value of α, any point (n1, n2) on the curve

(or below) guarantees the feasibility of the chance constraint. The interesting insight is to characterize the

proportion of jobs of classes 1 and 2 per machine. For example, if we want to impose n1 = n2 in each machine,

what is the optimal value for a given α? In our example, when α= 0.99, we can schedule n1 = n2 = 21 jobs.

If we compare to the case without overcommitment (i.e., α= 1), we can schedule 18 jobs from each class.

Therefore, we obtain an improvement of 16.67%. More generally, if the cost (or priority) of certain jobs is

higher, we can design an optimal ratio per machine so that it still guarantees to satisfy the chance constraint.

To summarize, for the case when V = 30, µ= 0.65, A= 1, A= 0.3 and α= 0.99, one can schedule either 50

jobs of class 1 or 38 jobs of class 2 or any combination of both classes according to equation (12). In other

words, we have many different ways of bin packing jobs of classes 1 and 2 to each machine.

We next consider solving the offline problem when our goal is to schedule N1 jobs of class 1 and N2 jobs of

class 2. The numbers N1 and N2 are given as an input, and our goal is to minimize the number of machines

denoted by M∗, such that each machine is assigned a pair (n1, n2) that satisfies equation (11). Since n1 and

n2 should be integer numbers, one can compute for a given value of α, all the feasible pairs that lie on the

curve or just below (we have at most K = mini=1,2 maxni such pairs). In other words, for each k= 1,2, . . . ,K,
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Figure 7 Parameters: A= 1, A= 0.3, µ= 0.65, V = 30.

we compute a pair of coefficients denoted by (βk, γk). The optimization problem becomes a cutting stock

problem:

M∗ = min
zk

K∑
k=1

zk

s.t.

K∑
k=1

βkzk ≥N1

K∑
k=1

γkzk ≥N2

zk ≥ 0, integer ∀k.

(14)

The decision variable zk represents the number of times we use the pair (βk, γk), and M∗ denotes the optimal

number of machines. As a result, assuming that we have only two classes of jobs (with different µs and bs),

one can solve the deterministic linear integer program in (14) and obtain a solution for problem (SMBP).

Note that the above treatment can easily be extended to more than two classes of jobs.

Appendix D: Proof of Theorem 4

Proof. Let n1 be the number of machines purchased by First-Fit with only a single job, and S1 be the

set of n1 jobs assigned to these machines. Similarly, we define n2 to be the number of machines with at least

two jobs, and S2 be the set of their jobs. The goal is to prove that n1 + n2 ≤ 9
4
OPT + 1. We know that

any pair of jobs among the n1 jobs in S1 does not fit in a single machine (by the definition of First-Fit).

Therefore, any feasible allocation (including the optimal allocation) needs at least n1 machines. In other

words, we have OPT ≥ n1. This observation also implies that the sum of µj + bj for any pair of jobs in S1 is

greater than 3
4

(using Lemma 1). If we sum up all these inequalities for the different pairs of jobs in S1, we

have: (n1−1)
∑

j∈S1
(µj +bj)>

(
n1

2

)
3
4
. We note that the n1−1 term on the left side appears because every job

j ∈ S1 is paired with n1−1 other jobs in S1, and the
(
n1

2

)
term on the right side represents the total number

of pairs of jobs in S1. By dividing both sides of this inequality by n1− 1, we obtain
∑

j∈S1
(µj + bj)>

3n1

8
.

We also lower bound
∑

j∈S2
(µj + bj) as a function of n2 as follows. Let m1 < m2 < · · · < mn2

be the

machines that have at least two jobs, and the ordering shows in which order they were purchased (e.g.,
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m1 was purchased first). Define Mi to be the set of jobs in machine mi. By definition of First-Fit, any

job j in machine mi+1 could not be assigned to machine mi because of the feasibility constraints for any

1≤ i < n2. In other words, the set of jobs Mi with any job j ∈Mi+1 form an infeasible set. Therefore, we

have µj + bj +
∑

j′∈Mi
(µj′ + bj′)>

3
4
. For each 1≤ i < n2, one can pick two distinct jobs j1 and j2 from Mi+1,

and write the following two inequalities:

µj1 + bj1 +
∑
j′∈Mi

(µj′ + bj′)>
3

4
and µj2 + bj2 +

∑
j′∈Mi

(µj′ + bj′)>
3

4
.

Summing up these two inequalities implies that: µj1 + bj1 +µj2 + bj2 + 2
∑

j′∈Mi
(µj′ + bj′)>

3
2
. Since j1 and

j2 are two distinct jobs in Mi+1, we have:∑
j∈Mi+1

(µj + bj) + 2
∑
j′∈Mi

(µj′ + bj′)>
3

2
.

Now we sum up this inequality for different values of i∈ {1,2, · · · , n2− 1} to achieve that:

2
∑
j∈M1

(µj + bj) + 3

n2−1∑
i=2

∑
j∈Mi

(µj + bj) +
∑
j∈Mn2

(µj + bj)>
3

2
× (n2− 1),

and consequently, we have 3
∑n2

i=1

∑
j∈Mi

(µj + bj) >
3
2
× (n2 − 1). This is equivalent to

∑
j∈S2

(µj + bj) >

1
2
× (n2 − 1). Combining both inequalities, we obtain:

∑
j∈S1∪S2

(µj + bj) >
3
8
n1 + 1

2
(n2 − 1). On the other

hand, OPT is at least
∑

j∈S1∪S2
(µj + bj). We then have the following two inequalities:

OPT ≥ n1, (15)

OPT >
3

8
n1 +

1

2
(n2− 1). (16)

We can now multiply (15) by 1
4

and (16) by 2, and sum them up. We conclude that 9
4
OPT + 1 is greater

than n1 +n2, which is the number of machines purchased by Algorithm First-Fit. �

Appendix E: Proof of Theorem 5

We first state the following Lemma that provides a lower bound on OPT . For any a, b ≥ 0, we define the

function f(a, b) =
2a+b+

√
b(4a+b)

2
.

Lemma 2. For any feasible set of jobs S, the sum
∑

j∈S f(µj , bj) is at most 1.

Proof. Define µ̄=
∑

j∈S µj

|S| and b̄=
∑

j∈S bj

|S| . Since the function f is concave with respect to both a and

b, using Jensen’s inequality we have
∑

j∈S f(µj , bj)≤ |S|f(µ̄, b̄). Since S is a feasible set, Cost(S) = |S|µ̄+√
|S|b̄≤ 1. The latter is a quadratic inequality with variable x=

√
|S|, so that we we can derive an upper

bound on |S| in terms of µ̄ and b̄. Solving the quadratic form µ̄X +
√
b̄X = 1 yields:

X =
−
√
b̄±
√
b̄+ 4µ̄

2µ̄
.

We then have
√
|S| ≤

√
4µ̄+b̄−

√
b̄

2µ̄
= 2√

(4µ̄+b̄)+
√
b̄
. Therefore, |S| ≤ 4

4µ̄+b̄+b̄+2
√
b̄(4µ̄+b̄)

= 1
f(µ̄,̄b)

, where the equality

follows by the definition of the function f . Equivalently, |S|f(µ̄, b̄)≤ 1, and hence
∑

j∈S f(µj , bj)≤ 1. �
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Proof of Theorem 5. For any arbitrary allocation of jobs, applying Lemma 2 to all the machines implies

that the number of machines is at least
∑N

j=1 f(µj , bj). So it suffices to upper bound the number of machines

as a function of
∑N

j=1 f(µj , bj). For any given machine, we prove that the sum of f(µj , bj) for all jobs j

assigned to this machine is at least 1−O(ε+ δ). Consider the set of jobs S assigned to a given machine.

Similar to the proof of Lemma 2, we define µ̄=
∑

j∈S µj

|S| and b̄=
∑

j∈S bj

|S| . Define r=
∑

j∈S bj∑
j∈S µj

= b̄
µ̄

. We start by

lower bounding f(µj , bj) as a function of f(µj , rµj). Recall that each machine is δ-homogeneous, i.e., for all

pairs of jobs in the same machine, the ratios
bj

µj
are at most a multiplicative factor of 1 + δ away from each

other. Hence, any ratio
bj

µj
is at least r

(1+δ)
. Consequently, we have bj ≥

rµj

1+δ
which implies that:

f(µj , bj)≥ f
( µj

1 + δ
, bj
)
≥ f
( µj

1 + δ
,
rµj

1 + δ

)
=

1

1 + δ
f(µj , rµj)≥ (1− δ)f(µj , rµj).

The first and second inequalities follow from the monotonicity of the function f , the equality follows from

the definition of f , and the last inequality holds since δ ≥ 0. It now suffices to lower bound
∑

j∈S f(µj , rµj)

so as to obtain a lower bound for
∑

j∈S f(µj , bj). We note that for any η ≥ 0, we have f(ηµ, ηb) = ηf(µ, b)

by the definition of f . Applying η= µj , µ= 1 and b= r, we obtain f(µj , rµj) = µjf(1, r) which implies:∑
j∈S

f(µj , rµj) =
∑
j∈S

µjf(1, r) = f(A,B),

where A=
∑

j∈S µj , and B = r
∑

j∈S µj =
∑

j∈S bj . The last equality above follows from f(ηµ, ηb) = ηf(µ, b)

with η = A. Recall that each machine is ε-full, i.e., Cost(S) ≥ 1− ε or equivalently, A+
√
B ≥ 1− ε. Let

A′ = A
(1−ε)2 and B′ = B

(1−ε)2 . Then, we have:

A′+
√
B′ =

A

(1− ε)2
+

√
B

1− ε
≥ A+

√
B

1− ε
≥ 1.

Since B = rA, we also have B′ = rA′, and the lower bound can be rewritten as follows: A′+
√
rA′ ≥ 1, which

is the same quadratic form as in the proof of Lemma 2. Similarly, we prove that A′ ≥ 4

4+2r+2
√
r(4+r)

which

is equal to 1
f(1,r)

. We also know that f(A′,B′) = f(A′, rA′) =A′f(1, r). We already proved that A≥ 1
f(1,r)

,

so we have f(A′,B′) ≥ 1. By definition of A′ and B′, we know thatf(A,B) = (1− ε)2f(A′,B′) ≥ (1− ε)2.

We conclude that the sum
∑

j∈S f(µj , bj)≥ (1− δ)f(A,B)≥ (1− δ)(1− ε)2. As a result, for each machine

the sum of f(µj , bj) is at least (1− δ)(1− ε)2. Let m be the number of purchased machines. Therefore, the

sum
∑N

j=1 f(µj , bj) is lower bounded by (1− δ)(1− ε)2m, and at the same time upper bounded by OPT .

Consequently, m does not exceed OPT
(1−δ)(1−ε)2 and this concludes the proof. �

Appendix F: Proof of Theorem 6

Proof. We first prove that the algorithm terminates in a finite number of iterations. Note that all the

update operations (except the first one) reduce the number of purchased machines, and hence, there are

no more than N of those. As a result, it suffices to upper bound the number of times we perform the first

update operation. Since we assign jobs to lower id machines, there cannot be more than N2 consecutive first

update operations. Consequently, after at most N ×N2 =N3 operations, the algorithm has to terminate.

Next, we derive an upper bound on the number of purchased machines at the end of the algorithm. Note

that all the machines belong to one of the following four categories:

• Single job machines, i.e., the set A1.
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• Medium machines with only one non-good job – denoted by the set B.

• Medium machines with at least two non-good jobs – denoted by the set C.

• Large machines, i.e., the set A5.

Let a, b, c, and d be the number of machines in A1,B,C, and A5 respectively. Since no update operation is

possible (as the algorithm already terminated), the b non-good jobs assigned to the machines in the set B

do not fit in any of the single job machines, and no pair of them fit together in a new machine. Consider

these b non-good jobs in addition to the a jobs in the machines of the set A1. No pair of these a+ b jobs fit

in one machine together and therefore, OPT ≥ a+ b.

We also know that OPT ≥
∑N

j=1(µj + bj). Next, we derive a more elaborate lower bound on OPT by

writing the sum of µj + bj as a linear combination of the sizes of the sets A1,B,C, and A5. For each machine

i, let Mi be the set of jobs assigned to this machine. Let i1 < i2 < · · ·< id be the indices of machines in the

set A5, where d = |A5|. Since we cannot perform the first update operation anymore, we can say that no

job in machine i`+1 fits in machine i` for any 1≤ ` < d. Therefore, µj + bj +
∑

j′∈Mi`
(µj′ + bj′)>

3
4

for any

j ∈Mi`+1
(using Lemma 1). We write this inequality for 5 different jobs (arbitrarily chosen) in Mi`+1

(recall

that there are at least 5 jobs in this machine), and for all the values of 1 ≤ ` < d. If we sum up all these

5(d−1) inequalities, then the right hand side would be 5(d−1)× 3
4
. On the other hand, the term µj + bj for

every job in these d machines appears on the left hand side at most 5 + 1 = 6 times. Therefore, by summing

up these inequalities, we obtain:
∑

i∈A5

∑
j∈Mi

(µj + bj)>
3
4
× 5(d−1)

6
= 5(d−1)

8
.

Each machine in A5 has at least 5 jobs. Therefore, the term 5
6

appears in the lower bound. With a similar

argument, each machine in either B or C has at least 2 jobs and hence, this term is now replaced by 2
3
. The

inequalities for every pair of machines in B and C are then:
∑

i∈B

∑
j∈Mi

(µj + bj)>
3
4
× 2(b−1)

3
= b−1

2
, and∑

i∈C

∑
j∈Mi

(µj + bj)>
3
4
× 2(c−1)

3
= c−1

2
.

Next, we lower bound
∑

i∈A1∪C

∑
j∈Mi

(µj + bj) as a function of a and c in order to complete the proof.

Recall that each machine in C has at least two non-good jobs. If we pick one of these non-good jobs j, and a

random machine i from A1, with probability at least a−5
a

, job j does not fit in machine i. This follows from

the fact that a non-good job fits in at most 5 machines in A1 and hence, a random machine in A1 would

not be be able to fit job j with probability at least a−5
a

. Therefore, µj + bj +
∑

j′∈Mi
(µj′ + bj′) ≥ 3

4
with

probability at least a−5
a

. We next consider two different cases depending on the value of c.

If c is at least a
2
, we pick a random machine in C, and two of its non-good jobs j1 and j2 arbitrarily. We

also pick a random machine in A1. For each of these two jobs, the sum µj + bj of the non-good job and the

single job in the selected machine in A1 is greater than 3
4

with probability at least a−5
a

. Summing up these

two inequalities, we obtain:

2

a

[∑
i∈A1

∑
j∈Mi

(µj + bj)
]

+
1

c

[∑
i∈C

∑
j∈Mi

(µj + bj)
]
>
a− 5

a
× 3

2
. (17)

The left hand side of the above equation is composed of two terms. The first term is obtained through

picking a random machine in A1 (i.e., with probability 1
a
), and once the machine is picked, we sum up both

equations so we obtain 2
a
. For the second term, every machine in the set C is chosen with probability 1

c
.
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When the machine is picked, we sum up on all the jobs and hence get an upper bound. As we have shown,∑
i∈C

∑
j∈Mi

(µj + bj)≥ c−1
2

. Combining these two inequalities leads to (using c≥ a
2
):∑

i∈A1∪C

∑
j∈Mi

(µj + bj)>
a

2
× 3(a− 5)

2a
+ (1− a

2c
)× c− 1

2
≥ 3a

4
− 15

4
+
c

2
− a

4
− 1

2
=
a+ c

2
− 4.25.

By combining the three different bounds (on A1∪C, B and A5), we obtain
∑N

j=1(µj+bj)≥ a+b+c
2

+ 5d
8
−5.875.

Since OPT ≥
∑N

j=1(µj + bj), we conclude that the number of purchased machines a+ b+ c+ d is no more

than 2OPT + 11.

In the other case, we have c < a
2
. Note that inequality (17) still holds. However, since the coefficient 1− a

2c

becomes negative, we cannot combine the two inequalities as before. Instead, we lower bound the sum µj +bj

of jobs in A1. We know that there is no pair of a jobs in the A1 machines that fit together in one machine.

Therefore,
∑

i∈A1

∑
j∈Mi

(µj + bj)≥ 3a
8

. Next, we multiply inequality (17) by c, and combine it with this new

lower bound on
∑

i∈A1

∑
j∈Mi

(µj + bj), to obtain (using c < a
2
):∑

i∈A1∪C

∑
j∈Mi

(µj + bj)> c×
3(a− 5)

2a
+ (1− 2c

a
)× 3a

8
>

3c

2
− 5

4
+

3a

8
− 3c

4
=

3a

8
+

3c

4
− 5

4
.

Combining this inequality with similar ones on the sets B and A5, we obtain OPT ≥
∑N

j=1(µj + bj) >

3a
8

+ b
2

+ 3c
4

+ 5d
8
− 19

8
. Finally, combining this with OPT ≥ a+b leads to a+b+c+d≤ 8

5
OPT + 2

5
OPT + 19

5
=

2OPT + 3.75, which concludes the proof. �
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