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Abstract

Stochastic programming and distributionally robust optimization seek deterministic deci-

sions that optimize a risk measure, possibly in view of the most adverse distribution in an am-

biguity set. We investigate under which circumstances such deterministic decisions are strictly

outperformed by random decisions which depend on a randomization device producing uniformly

distributed samples that are independent of all uncertain factors affecting the decision problem.

We find that in the absence of distributional ambiguity, deterministic decisions are optimal if

both the risk measure and the feasible region are convex, or alternatively if the risk measure

is mixture-quasiconcave. We show that several risk measures, such as mean (semi-)deviation

and mean (semi-)moment measures, fail to be mixture-quasiconcave and can therefore give rise

to problems in which the decision maker benefits from randomization. Under distributional

ambiguity, on the other hand, we show that for any ambiguity averse risk measure satisfying a

mild continuity property we can construct a decision problem in which a randomized decision

strictly outperforms all deterministic decisions.

Keywords: stochastic programming; risk measures; distributionally robust optimization; am-

biguity aversion; randomized decisions
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1 Introduction

Would you choose your life partner by spinning the fortune wheel? Would you decide on a company

merger by tossing a coin? Replacing sound reasoning with the flip of a coin appears to violate the

very fundamentals of rational decision-making, namely that actions should be assessed in view of

their desirability towards a goal, and that eliminating uncertainty is always desirable. Nevertheless,

random decision-taking, or flipism,1 has a long history. The Kantu’ farmers in Borneo selected their

farming sites through a ritualized form of birdwatching, the Naskapi hunters in Canada chose their

hunting sites by reading the cracks on the scapula of a caribou, and the Azande people of central

Africa took difficult decisions by poisoning a chicken and seeing whether it survived.2 Public

officials in ancient Athens were frequently chosen by lottery, and the nobles of Renaissance Venice

selected their head of state through a partially randomized process so that no group could impose

its will without an overwhelming majority or exceptional luck. More recently, British Columbia and

Ontario have used randomly selected panels of Canadian citizens to propose changes in electoral

regulations, and the International Skating Union adopted a random voting system in figure-skating

competitions. Many more examples of randomized decision-making in politics, military and society

have been compiled by Stone (2011). We conclude that randomization—either in its explicit form

or disguised as a divine dispensation—has survived and thrived as a quick, cheap and fair decision

aid that avoids unintentional biases and deliberate interferences in the decision-making process.

In this paper we explore whether randomization can help a rational decision maker who has all

the resources to determine an optimal solution, and who is not subjected to the strategic reactions of

other agents. To this end, we assume that the decision maker has access to a randomization device

which produces a uniformly distributed sample from the interval [0, 1] that is independent of all

uncertain factors impacting the decision problem, and we investigate under which circumstances the

decision maker can benefit from taking decisions that depend on the outcome of this randomization

device. We illustrate this seemingly counterintuitive idea with an example.

Example 1 (Project Selection). A manager must implement one out of five candidate projects.

1Flipism refers to a pseudophilosophy under which all decisions are made by flipping a coin. The name originates

from the Disney comic “Flip Decision” (Walt Disney Comics & Stories 149, Vol. 13, No. 5, 1953).
2After visiting the Azande in the 1920s, the British anthropologist E. E. Evans-Pritchard adopted this custom

and concluded: “I found this as satisfactory a way of running my home and affairs as any other I know of”.
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Low NPV High NPV Mean M/SV

Project 1 0.45 0.59 0.52 −0.52

Project 2 0.04 1.79 0.92 −0.53

Project 3 −0.05 3.50 1.73 −0.15

Project 4 −0.10 5.39 2.65 1.13

Project 5 −0.51 6.62 3.06 3.30

Table 1. Low and high NPV scenar-

ios (in $1, 000, 000), as well means and

mean semi-variances (‘M/SV’) of the

five projects from Example 1.
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Figure 1. Low and high

NPV scenarios.

The projects’ net present values (NPVs) follow independent Bernoulli distributions that assign

equal probabilities pLi = pHi = 0.5 to the low and high NPV scenarios from Table 1, see also

Figure 1. Note that projects with higher indices display a higher expected NPV as well as a higher

dispersion, as indicated by the increasing spread between the associated NPV scenarios. If the

manager aims to maximize the expected NPV, then she selects project 5. The manager cannot

improve upon this pure ( i.e., deterministic) choice by making a random choice as long as the NPVs

are independent of the randomization device. If the manager is risk-averse and uses the mean

semi-variance ρ(X) = −E[X] + E[E[X] − X]2+ to measure the risk of an uncertain position X,

on the other hand, then the best pure choice is to select project 2 (with risk −0.53), followed by

projects 1 (with risk −0.52) and 3 (with risk −0.15). Interestingly, the manager could reduce her

risk exposure to −0.57 by randomly selecting one of the individually suboptimal projects 1 and 3

with equal probability. In fact, this randomized decision results in an expected NPV of

E[X] =
1

2

(
1

2
· 0.45 +

1

2
· 0.59

)
+

1

2

(
−1

2
· 0.05 +

1

2
· 3.50

)
= 1.23

and a semi-variance of

E[E[X]−X]2+ =
1

2

(
1

2
· [1.225− 0.45]2+ +

1

2
· [1.225− 0.59]2+

)
+

1

2

(
1

2
· [1.225 + 0.05]2+ +

1

2
· [1.225− 3.50]2+

)
= 0.66.
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One can show that the globally optimal strategy randomizes over the projects 1 and 4 with probabil-

ities 81% and 19%, respectively, and that it yields a mean semi-variance of −0.69.

The example highlights that the potential benefits of randomization are, at least in part, de-

termined by the choice of risk measure. In the remainder of the paper, we will call a risk measure

randomization-receptive if a decision maker employing the risk measure can benefit from randomiza-

tion, and we call the risk measure randomization-proof otherwise. We will see that randomization-

receptiveness is intimately related to the mixture-quasiconcavity of the considered risk measure.

Traditionally, decision theory assumes that the probability distribution governing the stochas-

tic problem parameters is known precisely. This often contradicts managerial practice, where this

distribution can neither be deduced from theoretical models nor be approximated to a satisfac-

tory degree from historical obserations. For such settings, the distributionally robust optimization

literature suggests to construct an ambiguity set that contains all plausible distributions, and to

optimize a risk measure in view of the worst (i.e., most adverse) distribution from within the ambi-

guity set (Delage and Ye 2010, Wiesemann et al. 2014b). This approach enjoys strong justification

from decision theory, where it has been argued that decision makers exhibit a low tolerance towards

distributional ambiguity (Epstein 1999, Gilboa and Schmeidler 1989). In such cases, randomization

can reduce, and sometimes even eliminate, the effects of ambiguity.

Example 2 (The Ellsberg Urn Game). Consider an urn that contains an unknown number of red

and blue balls in equal proportion. A player is asked to name one of the two colors and to draw a

random ball from the urn. If the chosen ball has the stated color, the player incurs a penalty of $1;

otherwise, the player is rewarded $1. One readily verifies that the player receives an expected reward

of $0 under either choice (‘red’ or ‘blue’). Assume now that the same game is played with an urn

that contains red and blue balls, but neither the number of balls nor the proportions of their colors

are known. Since the distribution of colors is completely ambiguous, the worst scenario is that all

balls in the urn have the color named by the player, in which case the penalty of $1 arises with

certainty. Thus, an ambiguity-averse player is indifferent between any pure strategy ( i.e., naming

red or blue) and paying a fixed amount of $1. Assume instead that the player randomly names ‘red’

(or ‘blue’) with probability p (or 1− p), and that the (unknown) probability of the drawn ball being

red (or blue) is q (or 1− q). In that case, an ambiguity-averse player would then be confronted with
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the following optimization problem:

maximize
p∈[0,1]

min
q∈[0,1]

[pq + (1− p)(1− q)] · (−$1) + [p(1− q) + (1− p)q] · $1 .

The inner minimization problem has the parametric optimal solution q? = 1 if p > 1/2; q? ∈ [0, 1]

if p = 1/2; q? = 0 if p < 1/2, which results in an objective value of −2|p− 1/2|. Under the optimal

choice p? = 1/2 ( i.e., picking a color based on the throw of a fair coin), the player can completely

suppress the ambiguity and receive the same expected reward of $0 as in the first urn game where

the proportions of colors are known, and the player should consider both games as equivalent.

We will show that under distributional ambiguity, every risk measure satisfying a mild regularity

condition is randomization-receptive. We illustrate this with our earlier project selection example.

Example 3 (Project Selection cont’d). We again consider the project selection problem from Ex-

ample 1. Assume now that the probabilities pLi and pHi corresponding to the low and high NPV

scenarios of the i-th project are ambiguous, and that they are only known to satisfy

pLi =
1

2
+ min

{
0.3µi,

1

2

}
zi and pHi =

1

2
−min

{
0.3µi,

1

2

}
zi (1)

for some zi ∈ [−1,+1] with
∑5

i=1 |zi| ≤ 1, where µi denotes project i’s expected NPV under the

nominal Bernoulli distribution from Table 1. Thus, the possible deviations of the probabilities

(pLi , p
H
i ) from their nominal values (1/2, 1/2) are proportional to the project’s expected NPV under

the nominal distribution. Assume further that the manager maximizes the worst-case expected NPV

over all distributions satisfying (1). In this case, the optimal pure strategy selects project 5, resulting

in a worst-case expected value of 0.50, whereas the optimal randomized strategy chooses projects 3,

4 and 5 with probabilities 47%, 30% and 23%, respectively, yielding an almost three times as large

worst-case expected value of 1.48.

In this paper, we take a first step towards exploring the implications of randomization in de-

cision problems affected by risk (stochastic programming) and ambiguity (distributionally robust

optimization). More specifically, the contributions of this paper can be summarized as follows.

1. We show that in the absence of distributional ambiguity, there is no benefit in randomization

when (i) both the risk measure and the set of feasible decisions are convex, or if (ii) the risk

measure is mixture-quasiconcave, irrespective of the structure of the feasible set.
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2. We show that although many risk measures are mixture-quasiconcave and thus randomization-

proof, several convex risk measures, such as mean (semi-)deviation and mean (semi-)moment

measures, can benefit from randomization if the set of feasible decisions is nonconvex.

3. We develop a formal model for decision-making under risk and ambiguity, and we define

the notion of an ambiguity averse risk measure which offers an axiomatic justification of the

popular distributionally robust optimization paradigm.

4. We show that for any ambiguity averse risk measure satisfying a mild continuity property

there exists a decision problem with a nonconvex feasible set in which a randomized strategy

strictly dominates all pure strategies.

Our findings imply that a large number of stochastic and distributionally robust optimization

problems in classical combinatorial optimization (Cheng et al. 2014, 2016) as well as applications

in healthcare (Meng et al. 2015, Mittal et al. 2014), energy (Jiang et al. 2016, Yu 2007), finance

(Kellerer et al. 2000) and supply chain management (Chan et al. 2015, Gounaris et al. 2013) may

benefit from randomization.

The remainder of the paper is structured as follows. Section 2 briefly surveys the literature

on randomization in decision theory and related fields. Sections 3–5 discuss randomized decisions

in the absence of distributional ambiguity. After a theoretical characterization of the decision

problems that can benefit from randomization in Section 3, Sections 4 and 5 delineate the classes

of randomization-receptive and randomization-proof risk measures. Section 6 extends the concept

of randomized decision-making to problems with distributional ambiguity. We finally discuss the

question of time consistency in Section 7 and conclude in Section 8.

2 A Survey of Relevant Literature

Decision-making under risk (where the probability distribution of the outcomes is known) and am-

biguity (where the probability distribution of the outcomes is itself unknown) has a long history

that dates back to the early work of Keynes (1921), Knight (1921) and others. Within this broad

domain, our work is most closely related to the fields of stochastic programming and (distribution-

ally) robust optimization, which model, analyze and numerically solve decision problems affected

by risk and ambiguity. In these problems, risk is quantified by a suitably chosen risk measure, such
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as the expected value, the variance or the (conditional) value-at-risk, and ambiguity is accounted

for by evaluating the risk measure over the most adverse distribution from within an ambiguity set.

We refer to Ben-Tal et al. (2009), Birge and Louveaux (2000) and Shapiro et al. (2009) for surveys

of the extensive stochastic programming and distributionally robust optimization literature. We

emphasize that in contrast to our paper, both literature streams have to date solely focused on

the choice of pure decisions. A notable exception is the recent research on distributionally robust

Markov decision processes, which has shown that randomized strategies can increase the worst-case

expected reward in certain classes of dynamic decision problems where the underlying stochastic

process is itself only partially known (Tallec 2007, Wiesemann et al. 2014a).

Randomized strategies have a long history in game theory. Nash (1951) has shown that a large

class of non-cooperative, simultaneous-move games have an equilibrium if the players are allowed

to randomize between their strategies. Moreover, it has been shown that ambiguity-averse players

may have additional incentives to randomize (Klibanoff 1996, Lo 1996). More recently, it has

been observed that in Stackelberg leader-follower games, the leader can benefit from randomized

strategies whenever the follower is oblivious, that is, rather than observing the actually implemented

decision, the follower can only observe the probabilities with which different decisions are selected.

Stackelberg games with randomized decisions have numerous applications in security games, see

An et al. (2016), Bertsimas et al. (2016), Korzhyk et al. (2011) and Mastin et al. (2014).

Randomized decision-making has also received significant attention in the wider economic lit-

erature, which offers explanations that broadly fall into three categories (Agranov and Ortoleva

2017): (i) random utility models, where decision makers randomize over time as their preferences

evolve (see, e.g., Gul and Pesendorfer 2006); (ii) bounded rationality models, where agents take the

best pure decision over a randomly formed consideration set (see, e.g., Manzini and Mariotti 2014);

and (iii) deliberate randomization models, where randomized strategies are deliberately taken as

they outperform the available pure choices. Since our paper most closely aligns to the third model

class, we restrict our review to these models.

Randomization-seeking preferences have been studied under different decision-theoretic frame-

works (Eichberger et al. 2016, Eichberger and Kelsey 1996, Saito 2015). While there seems to be a

general consensus that decision makers should not benefit from ex ante randomization, where the

outcome of the randomization device is observed before taking the decision, in some frameworks
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decision makers can benefit from ex post randomization, where they commit themselves here-and-

now to a strategy that depends on the subsequently observed outcome of the randomization device

(Eichberger et al. 2016, Saito 2012). In these frameworks, the preference for randomized strategies

is envisaged by the axioms, for example through the comonotonic independence axiom in Choquet

expected utility theory (Schmeidler 1989) and the uncertainty aversion axiom in maximin expected

utility theory (Gilboa and Schmeidler 1989). In contrast, we focus on risk measures that are used in

finance, stochastic programming and distributionally robust optimization, and we investigate under

which conditions a randomized strategy can outperform all pure choices. It is perhaps surprising

that the benefits of randomization have not yet been explored in those literature streams.

On the empirical side, the economics literature remains inconclusive about the prevalence of

and the motivation underlying randomized decision-making. A number of lab and field experiments

provide evidence that agents deliberately randomize in practice (see, e.g., Sopher and Narramore

2000 and Agranov and Ortoleva 2017), which indicates that models of randomized decision-making

may capture an important feature of human behavior. Reasons for randomization include, among

others, the desire to minimize the anticipated regret when taking difficult decisions (Dwenger et al.

2016), the presence of incomplete preferences (Cettolin and Riedl 2016) or social aspects that trigger

fairness concerns (Kircher et al. 2013). Other studies conclude that agents randomize mistakenly

rather than intentionally (Hey and Carbone 1995, Rubinstein 2002), while others even observe a

dispreference for randomization (DeJarnette et al. 2015, Dominiak and Schnedler 2011).

Randomized decisions also play a crucial role in the design of algorithms for, among others, data

manipulation, computational geometry, number theory and control theory (Campi 2010, Motwani

and Raghavan 1995). In those fields, the performance of a deterministic algorithm is typically

measured by the worst-case runtime over all instances of a fixed size. Thus, the optimal design of

a deterministic algorithm can be viewed as a Stackelberg game between a leader that specifies an

algorithm and a follower that selects the most adverse problem instance for the algorithm. In many

cases, randomized algorithms, which employ randomness as part of their logic, offer probabilistic

runtime guarantees that are competitive with those of the best deterministic algorithms, while at

the same time being significantly easier to implement. In the design of error-correcting codes in

communication theory, Shannon’s noisy channel coding theorem shows that a randomly constructed

error-correcting code is essentially as good as the best possible code (Cover and Thomas 1991).
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3 Randomization under Stochastic Uncertainty

Assume that uncertainty is modeled via a probability space (Ω0,F0,P0), where Ω0 represents

the set of outcomes, F0 the σ-algebra of events and P0 the probability measure. We denote by

L∞(Ω0,F0,P0) the space of all real-valued random variables that are essentially bounded with re-

spect to P0. We can think of each X ∈ L∞(Ω0,F0,P0) as a financial position or revenue, and we

denote by FX the distribution function of X under P0 defined through FX(x) = P0(X ≤ x) for all

x ∈ R. Throughout the paper we will assume that the probability space (Ω0,F0,P0) is non-atomic.

Definition 1 (Non-Atomic Probability Space). The probability space (Ω0,F0,P0) is non-atomic if

there exists U0 ∈ L∞(Ω0,F0,P0) that follows a uniform distribution on [0, 1].

Definition 1 is equivalent to the requirement that the probability space does not contain

any atoms, that is, any smallest measurable sets with strictly positive probability, see Lemma 6

in Dhaene and Kukush (2011). Working with a non-atomic probability space implies that L∞(Ω0,F0,P0)

is rich enough to contain random variables with arbitrary distributions. To formalize this statement,

we define D as the set of all distributions with bounded support, i.e., D comprises all nondecreasing

right-continuous functions F : R→ [0, 1] that attain both 0 and 1.

Lemma 1 (Richness of L∞(Ω0,F0,P0)). If (Ω0,F0,P0) is non-atomic, then for all F ∈ D there

exists X ∈ L∞(Ω0,F0,P0) with FX = F .

Proof. Proof. As (Ω0,F0,P0) is non-atomic, there exists a standard uniformly distributed random

variable U0 ∈ L∞(Ω0,F0,P0). Choose now an arbitrary F ∈ D and denote by F−1 the correspond-

ing quantile function defined through F−1(y) = inf{x : F (x) ≥ y} for all y ∈ R. By construction,

X = F−1(U0) is an element of L∞(Ω0,F0,P0) with distribution function FX = F .

A risk measure is a functional ρ0 : L∞(Ω0,F0,P0) → R that assigns each financial position a

risk index. We will focus exclusively on law invariant risk measures, which quantify the risk of a

position X solely on the basis of its distribution function FX .

Definition 2 (Law Invariance). A risk measure ρ0 : L∞(Ω0,F0,P0)→ R is called law invariant if

it satisfies the following condition for all random variables X,Y ∈ L∞(Ω0,F0,P0):

Law invariance: If FX = FY , then ρ0(X) = ρ0(Y ).
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Any law invariant risk measure ρ0 on a non-atomic probability space corresponds to a real-valued

functional %0 on the space D of all distribution functions with bounded support.

Proposition 1 (Existence and Uniqueness of %0). If (Ω0,F0,P0) is non-atomic and ρ0 is a law

invariant risk measure on L∞(Ω0,F0,P0), then there is a unique functional %0 on D with

ρ0(X) = %0(FX) ∀X ∈ L∞(Ω0,F0,P0). (2)

Proof. Proof. The existence of %0 follows immediately from the law invariance of ρ0. As for the

uniqueness, assume to the contrary that (2) is satisfied by two functionals %0, %
′
0 such that there is

F ∈ D with %0(F ) 6= %′0(F ). Lemma 1 then implies that F = FX for some X ∈ L∞(Ω0,F0,P0). We

then obtain ρ0(X) = %0(FX) = %0(F ) 6= %′0(F ) = %′0(FX) = ρ0(X), which is a contradiction.

Proposition 1 shows that the assumptions of non-atomicity and law invariance allow us to

conclude that the distribution mapping %0 associated with the risk measure ρ0 is defined over all

distribution functions in D. In other words, under these two assumptions the decision maker is able

to quantify the risk of every random outcome associated with any possible probability distribution

F ∈ D, not just those random outcomes that correspond to feasible decisions. Below we will use this

insight to assign a unique risk to randomized decisions, some of which may correspond to random

outcomes whose probability distributions are not attained by any feasible deterministic decision.

In principle, we could drop the assumption of non-atomicity as long as %0 is naturally defined over

all distribution functions in D (as is the case for any commonly used law invariant risk measure ρ0

from the literature). To keep the discussion general, we prefer to postulate non-atomicity explicitly.

Several commonly encountered properties of risk measures are reviewed below.

Definition 3 (Monetary Risk Measure). A risk measure ρ0 : L∞(Ω0,F0,P0)→ R is called mone-

tary if it satisfies the following conditions for all random variables X,Y ∈ L∞(Ω0,F0,P0):

Monotonicity: If X ≥ Y P0-almost surely, then ρ0(X) ≤ ρ0(Y ).

Translation invariance: If t ∈ R, then ρ0(X + t) = ρ0(X)− t.

Definition 4 (Convex Risk Measure). A risk measure ρ0 : L∞(Ω0,F0,P0)→ R is called convex if

it satisfies the following condition for all random variables X,Y ∈ L∞(Ω0,F0,P0):

Convexity: If θ ∈ [0, 1], then ρ0(θX + (1− θ)Y ) ≤ θρ0(X) + (1− θ)ρ0(Y ).
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We alert the reader that we do not implicitly assume convex risk measures to be monetary as

is frequently done in the literature. The explicit distinction between convex and convex monetary

risk measures will facilitate a more concise description of the main results in this paper.

Definition 5 (Coherent Risk Measure). A risk measure ρ0 : L∞(Ω0,F0,P0)→ R is called coherent

if it is convex and monetary, and if it additionally satisfies the following condition for all random

variables X ∈ L∞(Ω0,F0,P0):

Scale invariance: If λ ≥ 0, then ρ0(λX) = λρ0(X).

The class of coherent risk measures has been popularized by Artzner et al. (1999). However,

many widely-used risk measures are not scale invariant and thus fail to be coherent.

Consider now a decision maker who needs to select a financial position from a feasible set

X0 ⊆ L∞(Ω0,F0,P0). If the disutility of each position is quantified using a risk measure ρ0, then

the decision maker may solve the following optimization problem in pure strategies.

(Pure Strategy Problem) minimize
X∈X0

ρ0(X) (3)

Alternatively, the decision maker might optimize over a class of randomized strategies by using

a randomization device that is independent of all X ∈ L∞(Ω0,F0,P0). We assume henceforth that

this randomization device generates samples from the uniform distribution U on the interval [0, 1]

equipped with the Borel σ-algebra B[0,1]. To formalize the optimization problem over randomized

strategies, we thus introduce an augmented probability space (Ω,F ,P) with Ω = Ω0 × [0, 1], F =

F0⊗B[0,1] and P = P0×U. Elements of Ω0 will usually be denoted by ω0, while elements of Ω will

be denoted by ω = (ω0, u). For X ∈ L∞(Ω,F ,P), we denote by FX the distribution function of X

under the product measure P0 × U. We further define the feasible set of randomized strategies as

X = {X ∈ L∞(Ω,F ,P) : X(·, u) ∈ X0 ∀u ∈ [0, 1]} .

Note that any randomized strategy X ∈ X can be viewed as a decision rule that assigns each

possible outcome u ∈ [0, 1] of the randomization device a pure strategy X(·, u) ∈ X0. Moreover,

the space of pure strategies X0 can naturally be embedded into X by identifying the elements of X0

with those elements of X that are constant in u. We will henceforth refer to such random variables

as being independent of the randomization device.
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Remark 1 (Expressiveness of the Randomization Device). Focusing on a randomization device

that generates uniform samples from [0, 1] is non-restrictive as the pure strategies X ∈ X0 often

admit a d-dimensional parameterization for some d ∈ N. For instance, in portfolio selection the

pure strategies are parameterized by a portfolio weight vector in Rd, where d equals the number of

assets. Then, all randomized portfolio strategies are implementable if we can sample from general

distributions on Rd. A uniform randomization device indeed enables us to do so:

(i) If the samples of the randomization device are represented in binary as u = 0.u1u2 . . ., then

all digits ui, i ∈ N, follow independent Bernoulli random variables that are equal to 0 or 1

with probability 1
2 each. The binary numbers 0.ui ui+d ui+2d . . . for i = 1, . . . , d constructed

from u are thus independent and uniformly distributed on [0, 1]. If we can sample uniformly

from the interval [0, 1], we can therefore also sample uniformly from the hypercube [0, 1]d.

(ii) Uniform samples from [0, 1]d can systematically be transformed to samples from an arbitrary

distribution on Rd via the inverse Rosenblatt transformation (Rosenblatt 1952). Thus, if we

can sample uniformly from [0, 1]d, then we can sample from any multivariate distribution.

In order to be able to quantify the risk of a randomized strategy, we need to extend the risk

measure ρ0 on L∞(Ω0,F0,P0) to another risk measure ρ on L∞(Ω,F ,P). We will show below in

Proposition 2 that this extension is unique if we insist that ρ must be law invariant and coincide

with ρ0 on the subspace of all random variables that are independent of the randomization device.

By slight abuse of notation, for Z ∈ L∞(Ω0,F0,P0) we use ρ(Z) to denote the risk of the natural

extension of the random variable Z to the space L∞(Ω,F ,P), where Z is constant in u and thus is

independent of the randomization device.

Proposition 2 (Law Invariant Extension). If (Ω0,F0,P0) is non-atomic and ρ0 is a law invariant

risk measure on L∞(Ω0,F0,P0), then the unique extension of ρ0 to a law invariant risk measure ρ

on L∞(Ω,F ,P) is given by ρ(X) = %0(FX) for all X ∈ L∞(Ω,F ,P).

Proof. Proof. Let ρ be any law invariant risk measure that extends ρ0 to L∞(Ω,F ,P), and note

that (Ω,F ,P) is non-atomic as it is an extension of a non-atomic probability space. Proposition 1

thus ensures the existence of a mapping % : D → R with ρ(X) = %(FX) for all randomized strategies

X ∈ L∞(Ω,F ,P). Hence, for all X ∈ L∞(Ω0,F0,P0), we have %(FX) = ρ(X) = ρ0(X) = %0(FX),

where the second equality follows from the requirement that ρ must coincide with ρ0 on the subspace
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of all random variables that are independent of the randomization device, while the third equality

holds by the definition of %0. Lemma 1 then implies that %(F ) = %0(F ) for all F ∈ D. Thus, we

indeed have ρ(X) = %(FX) = %0(FX) for all randomized strategies X ∈ L∞(Ω,F ,P), and ρ is the

only law invariant risk measure that extends ρ0 to L∞(Ω,F ,P).

We note that the assumption of law invariance implies that the decision maker agrees with the

reduction of compound lotteries axiom (Samuelson 1952) over the probability space (Ω,F ,P) and

therefore measures risk solely based on the distribution function of the random outcome. In other

words, she is indifferent between the uncertainty due to a selected decision and the uncertainty

caused by the randomization process. This could possibly be problematic when the outcome u of

the randomization device is observed earlier than the outcome ω0 of the implemented decision. We

will discuss this issue in Section 7.

We can now formulate the counterpart of (3) that optimizes over all randomized strategies as

(Randomized Strategy Problem) minimize
X∈X

ρ(X). (4)

It is clear that the optimal value of (4) is never worse (that is, never strictly larger) than the

optimal value of (3). Indeed, problem (3) can be recovered from (4) by restricting X to those

random variables that are independent of the randomization device. Instead, there are interesting

situations where the best randomized strategy is strictly preferred to the best pure one, that is,

where the optimal value of (4) is strictly smaller than the optimal value of (3), see, e.g., Example 1.

Popular law invariant risk measures that can benefit from randomization are presented in Section 4.

In the following we demonstrate that there is no benefit in adopting a randomized strategy

when either (i) ρ0 is convex and X0 is a convex feasible set, or (ii) ρ0 is mixture-quasiconcave.

Definition 6 (Mixture-Quasiconcavity). A law invariant risk measure ρ0 is called mixture-quasi-

concave if the corresponding mapping %0, defined on the set of distribution functions, is quasicon-

cave, that is, if %0 satisfies the following property for all X,Y ∈ L∞(Ω0,F0,P0):

Mixture-quasiconcavity: If θ ∈ [0, 1], then %0(θFX + (1− θ)FY ) ≥ min{%0(FX), %0(FY )}.

To simplify the subsequent arguments, we introduce the following notational shorthand.

Definition 7. For any X,Y ∈ L∞(Ω0,F0,P0) and θ ∈ [0, 1], we define the random variable

X⊕θY ∈ L∞(Ω,F ,P) through X⊕θY (ω0, u) = X(ω0) if u ≤ θ and X⊕θY (ω0, u) = Y (ω0) if u > θ.
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Remark 2. The distribution function FX of a random variable X ∈ L∞(Ω,F ,P) is given by

FX(x) =

∫
Ω

1{X(ω)≤x} P(dω) =

∫ 1

0

∫
Ω0

1{X(ω0,u)≤x} P0(dω0) du =

∫ 1

0
FX(·,u)(x) du.

Thus, FX corresponds to an infinite convex combination of the distribution functions associated

with the random variables X(·, u) ∈ X0 for u ∈ [0, 1]. In particular, the distribution function of the

mixture X⊕θY is given by the convex combination θFX + (1− θ)FY .

We first demonstrate that under a convex risk measure the convex combination of two pure

positions is always weakly preferred to the mixture of these positions when the mixture probabilities

are used as convex weights.

Theorem 1. If ρ is the unique law invariant extension of a convex law invariant risk measure ρ0,

then we have for any X,Y ∈ L∞(Ω0,F0,P0) and θ ∈ [0, 1] that ρ(X⊕θY ) ≥ ρ(θX + (1− θ)Y ).

Proof. Proof. For any s ∈ [0, 1], we define the auxiliary random variable X⊕sθY ∈ L∞(Ω,F ,P)

throughX⊕sθY (ω0, u) = X(ω0) if (u+s mod 1) ∈ [0, θ] andX⊕sθY (ω0, u) = Y (ω0) if (u+s mod 1) ∈

(θ, 1]. Note that, for any s ∈ [0, 1], the random variable X⊕sθY mixes X and Y with probabilities

θ and 1− θ, respectively. Thus, X⊕sθY has the same law as X⊕θY irrespective of s.

By construction, integrating X⊕sθY scenariowise over s ∈ [0, 1] yields the convex combination

θX + (1− θ)Y , which is independent of the randomization device. To see this, observe that∫ 1

0
X⊕sθY (ω0, u) ds =

∫ 1

0
X(ω0)1{(u+s mod 1)∈[0,θ]} ds+

∫ 1

0
Y (ω0)1{(u+s mod 1)∈(θ,1]} ds

= θX(ω0) + (1− θ)Y (ω0).

Since ρ inherits convexity from ρ0, which we will prove below, Jensen’s inequality implies

ρ(θX + (1− θ)Y ) = ρ

(∫ 1

0
X⊕sθY ds

)
≤
∫ 1

0
ρ (X⊕sθY ) ds =

∫ 1

0
ρ (X⊕θY ) ds = ρ(X⊕θY ),

where the second equality follows from the law invariance of ρ.

We are left with demonstrating that ρ inherits convexity from ρ0. To this end, let (X,Y ) be

any pair of random variables in L∞(Ω,F ,P) with the joint distribution function FX,Y : R2 → [0, 1].

Since (Ω0,F0,P0) is non-atomic, it contains a uniformly distributed random variable U0 which we
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can use to create a pair of random variables (X0, Y0) in L∞(Ω0,F0,P0) whose distribution function

equals FX,Y , see Remark 1. For any θ ∈ [0, 1], we then obtain that

ρ(θX + (1− θ)Y ) = ρ0(θX0 + (1− θ)Y0) ≤ θρ0(X0) + (1− θ)ρ0(Y0) = θρ(X) + (1− θ)ρ(Y ) ,

where the equalities hold since ρ is the law invariant extension of ρ0, and the inequality follows

from the assumed convexity of ρ0. This completes the proof.

Unless Jensen’s inequality in the proof of Theorem 1 is binding, the risk of the mixture X⊕θY

is strictly larger than the risk of the convex combination θX + (1 − θ)Y . This is the case, for

instance, if X 6= Y , θ ∈ (0, 1) and ρ is strictly convex.

Using a similar strategy as in the proof of Theorem 1, we can further show that randomization

is never beneficial if ρ0 is convex and X0 constitutes a convex feasible set.

Theorem 2. Assume that ρ is the unique law invariant extension of the convex law invariant risk

measure ρ0 and that X0 is convex. Then, problems (3) and (4) attain the same optimal value.

Proof. Proof. As (3) is a restriction of (4), it suffices to show that the optimal value of (3) is never

larger than that of (4). To this end, we define Ts : Ω→ Ω through Ts(ω0, u) = (ω0, (u+ s mod 1))

for all (ω0, u) ∈ Ω. By construction, Ts is a measurable bijection. A direct calculation shows that

P(T−1
s (A)) = P(A) for every A ∈ F , and thus Ts is in fact a measure preserving transformation.

Choose now any X ∈ X , and note that X ◦ Ts ∈ X has the same law as X. Next, define

Y ∈ L∞(Ω,F ,P) via

Y (ω0, u) =

∫ 1

0
X ◦ Ts(ω0, u) ds =

∫ 1

0
X(ω0, (u+ s mod 1)) ds ∀(ω0, u) ∈ Ω.

By construction, Y (ω0, u) is constant in u implying that Y is independent of the randomization

device. Moreover, for all u ∈ [0, 1], we have that Y (·, u) ∈ X0 because X0 is convex and Y (·, u)

can be viewed as an infinite convex combination of the random variables X(·, (u+ s mod 1)) ∈ X0

across all s ∈ [0, 1]. As ρ inherits convexity from ρ0 (see proof of Theorem 1), Jensen’s inequality

implies

ρ(Y ) = ρ

(∫ 1

0
X ◦ Ts ds

)
≤
∫ 1

0
ρ(X ◦ Ts) ds =

∫ 1

0
ρ(X) ds = ρ(X),

where the second equality follows from the law invariance of ρ. As any X ∈ X gives rise to some

Y ∈ X0 with weakly smaller risk, the optimal value of (3) is never larger than that of (4).
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In the following we show that there is no benefit in randomization if the risk measure ρ0 is

mixture-quasiconcave, even if X0 is nonconvex.

Theorem 3. Assume that ρ is the unique law invariant extension of a law invariant risk measure

ρ0 that is mixture-quasiconcave. Then, problems (3) and (4) attain the same optimal values.

Proof. Proof. As (3) is a restriction of (4), it suffices to show that the optimal value of (3) is never

larger than that of (4). To this end, we recall that the law invariance of ρ implies that there exists

a functional % from the space of distribution functions of all bounded random variables to R with

the property that ρ(X) = %(FX) for all X ∈ L∞(Ω,F ,P). Using similar arguments as in the proof

of Theorem 1, one can show that ρ inherits mixture-quasiconcavity from ρ0, which means that % is

quasiconcave. Select now any X ∈ L∞(Ω,F ,P) and recall from Remark 2 that the distribution of

X can be expressed as the infinite convex combination FX(x) =
∫ 1

0 FX(·,u) du. Hence, we have

ρ(X) = %(FX) = %

(∫ 1

0
FX(·,u) du

)
≥ inf

u∈[0,1]
%
(
FX(·,u)

)
≥ inf

X0∈X0

ρ0(X0),

where the first inequality follows from the quasiconcavity of %, while the second inequality holds

because X(·, u) ∈ X0 for all u ∈ [0, 1]. As the risk of any X ∈ X is bounded below by the optimal

value of (3), the claim follows.

Theorem 3 provides the justification for the following definition.

Definition 8 (Randomization-Proofness and -Receptiveness). A law invariant risk measure ρ0 is

called randomization-proof if its law invariant extension ρ satisfies ρ(X⊕θY ) ≥ min{ρ(X), ρ(Y )}

for all θ ∈ [0, 1] and all X,Y ∈ L∞(Ω0,F0,P0). Otherwise, ρ0 is called randomization-receptive.

Theorem 3 shows that mixture-quasiconcavity implies randomization-proofness in the sense of

Definition 8. If, on the other hand, ρ0 is randomization-proof, then its extension ρ must sat-

isfy ρ(X ⊕θ Y ) ≥ min{ρ0(X), ρ0(Y )} for all θ ∈ [0, 1] and all X,Y ∈ L∞(Ω0,F0,P0). Proposi-

tion 2 and Remark 2 then imply that %0(θFX + (1 − θ)FY ) = ρ(X ⊕θ Y ) ≥ min{ρ0(X), ρ0(Y )} =

min{%0(FX), %0(FY )), that is, ρ0 is mixture-quasiconcave. We thus conclude that a risk measure is

randomization-proof if and only if it is mixture-quasiconcave.

Remark 3. Randomization-receptiveness ( i.e., ρ0 not being mixture-quasiconcave) is closely re-

lated to but distinct from the axiom of uncertainty aversion in maximin expected utility theory
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(Gilboa and Schmeidler 1989). Translated into our context, uncertainty aversion (as initially in-

troduced in Schmeidler 1989) requires the risk measure ρ0 to be mixture-quasiconvex, that is, the

law invariant extension ρ has to satisfy ρ(X⊕θY ) ≤ max{ρ(X), ρ(Y )} for all θ ∈ [0, 1] and all

X,Y ∈ L∞(Ω0,F0,P0). Uncertainty aversion states that mixing risky positions cannot increase

the risk, whereas randomization-receptiveness implies that there are mixtures of risky positions that

strictly decrease the risk.

4 Randomization-Receptive Risk Measures

We now identify 4 classes of randomization-receptive risk measures. All of these risk measures are

law invariant, translation invariant and convex, but some are not monotonic and/or scale invariant.

Mean Moment of Order p. The order-p mean moment risk measure ρ0(X) = EP0 [−X] +

αEP0 |EP0 [X]−X|p with p ≥ 1 and α > 0 is law invariant, translation invariant and convex, but it

fails to be monotonic or scale invariant in general.

We will show in Section 5.4 that order-2 mean moment (i.e., mean variance) risk measures

are randomization-proof. For every other p ≥ 1 and any α > 0, however, these risk measures are

randomization-receptive. Indeed, consider the following two random variables:

X ∼


1 w.p. 1/2,

−1 w.p. 1/2,

Y ∼


0.91 w.p. 2/3,

−1.11 w.p. 1/3.

(5)

For p = 4 and α = 1, we obtain ρ(X) = 1, ρ(Y ) = 0.997 and ρ(X⊕1/2Y ) = 0.934, that is,

ρ(X⊕1/2Y ) < min{ρ(X), ρ(Y )}. Indeed, we have the following general result.

Theorem 4. The order-p mean moment risk measure ρ0(X) = EP0 [−X] + αEP0 |EP0 [X] −X|p is

randomization-receptive for every order p ∈ [1, 2) ∪ (2,∞) and for any weighting α > 0.

We relegate the proof of Theorem 4 to the appendix. The above example (5) with p = 4 and

α = 1 follows the construction proposed in that proof if we fix ε = 0.238.

Mean Deviation of Order p. The order-p mean deviation risk measure ρ0(X) = EP0 [−X] +

α(EP0 |EP0 [X] − X|p)1/p with p ≥ 1 and α > 0 is law invariant, translation invariant, convex and

scale invariant, but it typically fails to be monotonic (Shapiro et al. 2009, Example 6.19).
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We will show in Section 5.4 that order-2 mean deviation risk measures are randomization-proof.

For every other p and any α > 0, however, these risk measures are randomization-receptive. To see

this, consider the following two random variables:

X ∼


1 w.p. 1/2,

−1 w.p. 1/2,

Y ∼


0.88 w.p. 2/3,

−1.32 w.p. 1/3.

(6)

For p = 4 and α = 1, we obtain ρ(X) = 1, ρ(Y ) = 1.001 and ρ(X⊕1/2Y ) = 0.992, which implies

that ρ(X⊕1/2Y ) < min{ρ(X), ρ(Y )}. Indeed, we have the following general result.

Theorem 5. The order-p mean deviation risk measure ρ0(X) = EP0 [−X]+α(EP0 |EP0 [X]−X|p)1/p

is randomization-receptive for every order p ∈ [1, 2) ∪ (2,∞) and for any weighting α > 0.

The proof of Theorem 5 can be found in the appendix. The above example (6) with p = 4 and

α = 1 follows the construction proposed in that proof if we fix ε = 0.146.

Mean Semi-Moment of Order p. The order-p mean semi-moment risk measure ρ0(X) =

EP0 [−X] + αEP0 [EP0 [X] − X]p+ with p ≥ 1 and α > 0 is law invariant, translation invariant and

convex, but it is neither monotonic nor scale invariant in general. For p = 2, it reduces to the mean

semi-variance risk measure, which we have shown to be randomization-receptive in Example 1.

Order-p mean semi-moment risk measures are randomization-receptive for every p > 1 and any

α > 0. To see this, consider the following two random variables:

X ∼


√

2 w.p. 1/2,

−
√

2 w.p. 1/2,

Y ∼


−0.97 w.p. 2/3,

−1.05 w.p. 1/3.

(7)

For p = 2 and α = 1, we obtain ρ(X) = 1, ρ(Y ) = 0.998 and ρ(X⊕1/2Y ) = 0.833, which implies

that ρ(X⊕1/2Y ) < min{ρ(X), ρ(Y )}. Indeed, we have the following general result.

Theorem 6. The order-p mean semi-moment risk measure ρ0(X) = EP0 [−X]+αEP0 [EP0 [X]−X]p+

is randomization-receptive for every order p ≥ 1 and for any weighting α > 0.

The proof of Theorem 6 is relegated to the appendix. The above example (7) with p = 2 and

α = 1 follows the construction proposed in that proof if we fix ε = 0.999.
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Mean Semi-Deviation of Order p. The order-p mean semi-deviation risk measure ρ0(X) =

EP0 [−X] +α(EP0 [EP0 [X]−X]p+)1/p with p ≥ 1 and α > 0 is translation invariant, convex and scale

invariant. Additionally, it is monotonic (and thus coherent) when α ∈ [0, 1], see Example 6.20 in

Shapiro et al. (2009).

Order-p mean semi-deviation risk measures are randomization-receptive for every p > 1 and

any α > 0. To see this, consider the following two random variables:

X ∼


√

2 w.p. 1/2,

−
√

2 w.p. 1/2,

Y ∼


−0.22 w.p. 2/3,

−1.31 w.p. 1/3.

(8)

For p = 2 and α = 1, we obtain ρ(X) = 1, ρ(Y ) = 1.029 and ρ(X⊕1/2Y ) = 0.990, which implies

that ρ(X⊕1/2Y ) < min{ρ(X), ρ(Y )}. Indeed, we have the following general result.

Theorem 7. The order-p mean semi-deviation risk measure ρ0(X) = EP0 [−X] + α(EP0 [EP0 [X]−

X]p+)1/p is randomization-receptive for every order p ≥ 1 and for any weighting α > 0.

The proof of Theorem 7 can be found in the appendix. The above example (8) with p = 2 and

α = 1 follows the construction proposed in that proof if we fix ε = 0.581.

5 Randomization-Proof Risk Measures

We now present commonly used law invariant risk measures that are randomization-proof. Specif-

ically, we discuss spectral risk measures in Section 5.1, divergence risk measures in Section 5.2 and

shortfall risk measures in Section 5.3. Other randomization-proof risk measures that fit into none

of these categories are discussed in Section 5.4.

5.1 Spectral Risk Measures

Spectral risk measures3 can be defined axiomatically as convex law invariant monetary risk measures

that are also comonotonic. The latter property captures the intuitive idea that if two positions

X and Y are comonotone, then X cannot serve as a hedge for Y , and thus the risks of X and Y

should add up.

3The class of spectral risk measures coincides with the class of concave distortion risk measures, see, e.g., Föllmer

and Schied (2011).

19



Definition 9 (Spectral Risk Measure). A monetary risk measure ρ0 : L∞(Ω0,F0,P0) → R is

called spectral if it is convex and law invariant and satisfies the following condition for all X,Y ∈

L∞(Ω0,F0,P0):

Comonotonicity: If X and Y are comonotone, that is, if (X(ω0)−X(ω′0))(Y (ω0)− Y (ω′0)) ≥ 0

for all ω0, ω
′
0 ∈ Ω0, then ρ0(X + Y ) = ρ0(X) + ρ0(Y ).

Lemma 2. For convex risk measures, comonotonicity implies scale invariance.

Proof. Proof. Let ρ0 : L∞(Ω0,F0,P0)→ R be a comonotonic convex risk measure. Note first that

ρ0(0) = ρ0(0+0) = 2ρ0(0) by comonotonicity. Thus, we find ρ0(0) = 0. Moreover, for any i ∈ N we

find ρ0(iX) = ρ0(X+(i−1)X) = ρ0(X)+ρ0((i−1)X) = 2ρ0(X)+ρ0((i−2)X) = · · · = iρ0(X), where

the second and third equality etc. follow again from comonotonicity. As the function f(λ) = ρ0(λX)

inherits convexity from ρ0 for every fixed X and as f(i) = if(1) for every i ∈ N ∪ {0}, we may

conclude that f(λ) = λf(1) for every λ ≥ 0. Thus, ρ0 is scale invariant.

Lemma 2 implies the well-known fact that every spectral risk measure is coherent.

Example 4 (Spectral Risk Measures). We list examples of spectral risk measures.

(i) Expected loss: ρ0(X) = EP0 [−X] = −
∫

Ω0
X(ω0)P0(dω0). Note that the expected value is

additive for all pairs and, in particular, for all pairs of comonotone random variables.

(ii) Essential supremum: ρ0(X) = ess sup(−X) = infs∈R{s : P0(−X ≤ s) = 1}.

(iii) Conditional value-at-risk: ρ0(X) = CV@Rα(X) = infs∈R s+ 1
1−αEP0 [−X−s]+ with α ∈ [0, 1).

Note that the conditional value-at-risk reduces to the expected value for α = 0 and to the

essential supremum for α ↑ 1. Thus, it is common to define CV@R1(X) = ess sup(−X).4

(iv) Mixture of conditional value-at-risk: ρ0(X) =
∫ 1

0 CV@Rα(X)µ(dα) with µ a Borel probability

measure on [0, 1]. In fact, every spectral risk measure can be represented as a mixture of

conditional value-at-risk (Kusuoka 2001).

Theorem 8. Every spectral risk measure ρ0 : L∞(Ω0,F0,P0)→ R is randomization-proof.

4The conditional value-at-risk can even strictly discourage randomization. To see this, set X = −1 and assume

that the random variable Y takes the values 0 and −2 with probabilities 0.75 and 0.25, respectively. In this case, we

have CV@R50%(X⊕1/2Y ) = 1.25 even though CV@R50%(X) = CV@R50%(Y ) = 1.
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Proof. Proof. Select any X,Y ∈ L∞(Ω0,F0,P0), and denote by F−1
X and F−1

Y their respective

quantile functions. As (Ω0,F0,P0) is non-atomic, there exists a standard uniformly distributed

random variable U0 ∈ L∞(Ω0,F0,P0), which we use to define the random variables X ′ = F−1
X (U0)

and Y ′ = F−1
Y (U0). By construction, X ′ and Y ′ have the same distributions as X and Y , respec-

tively. As distribution and quantile functions are nondecreasing, we find that X ′(ω0) ≥ X ′(ω′0) is

equivalent to U0(ω0) ≥ U0(ω′0), which in turn is equivalent to Y ′(ω0) ≥ Y ′(ω′0) for any ω0, ω
′
0 ∈ Ω0.

Thus, X ′ and Y ′ are comonotone. Next, choose any θ ∈ [0, 1]. Remark 2 implies that X⊕θY and

X ′⊕θY ′ share the same distribution. If ρ is the unique law invariant extension of ρ0, then

ρ(X⊕θY ) = ρ(X ′⊕θY ′) (by law invariance)

≥ ρ(θX ′ + (1− θ)Y ′) (by Theorem 1)

= ρ(θX ′) + ρ((1− θ)Y ′) (by comonotonicity)

= θρ(X ′) + (1− θ)ρ(Y ′) (by scale invariance)

≥ min{ρ(X ′), ρ(Y ′)} (since θ ∈ [0, 1])

= min{ρ(X), ρ(Y )} (by law invariance).

The second equality in the above derivation holds because ρ inherits comonotonicity from ρ0. Thus,

ρ0 is randomization-proof.

As we have seen in Section 4, the mean semi-deviation is randomization-receptive despite being

coherent and law invariant. This is only possible because it is not comonotonic.

5.2 Divergence Risk Measures

The divergence risk of a position X is defined as the worst-case expectation of the corresponding

loss −X across all probability measures Q that are absolutely continuous with respect to P0, where

any Q 6= P0 is assigned a divergence penalty.

Definition 10 (Divergence Risk Measure). A mapping ρ0 : L∞(Ω0,F0,P0) → R is a divergence

risk measure if there exists a convex lower semicontinuous function ϕ : R → [0,∞] with ϕ(1) = 0

and if

ρ0(X) = sup
Q�P0

EQ[−X]− Iϕ(Q,P0),
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where Iϕ(Q,P0) = EP0 [ϕ( dQ
dP0

)] is the ϕ-divergence of the probability measure Q with respect to P0,

while Q� P0 indicates that Q admits a Radon-Nikodym derivative dQ
dP0

with respect to P0.

It follows directly from their definition that divergence risk measures are monetary and convex.

The following theorem offers an intuitive physical interpretation of divergence risk measures.

Theorem 9 (Optimized Certainty Equivalent). If ρ0 : L∞(Ω0,F0,P0) → R is the divergence risk

measure generated by a convex lower semicontinuous function ϕ : R→ [0,∞] with ϕ(1) = 0, then

ρ0(X) = − sup
s∈R

s− EP0 [ϕ∗(s−X)],

where ϕ∗(s) = supt∈R st− ϕ(t) is the convex conjugate of ϕ.

Proof. Proof. See Theorem 4.2 in Ben-Tal and Teboulle (2007).

On the one hand, Theorem 9 implies that divergence risk measures are law invariant. Moreover,

note that u(s) = −ϕ∗(−s) can be interpreted as a normalized utility function. Specifically, we have

u(0) = 0 because 0 is the minimum of ϕ, and 0 ∈ ∂u(0) because 1 is a minimizer of ϕ. The

utility function u can be used to define the optimized certainty equivalent sups∈R s+EP0 [u(X−s)],

which quantifies the expected utility of an optimized payment schedule that splits an uncertain

future revenue X into an amount s that is paid today and a remainder X − s that is paid after

the uncertainty has been revealed. By Theorem 9, the divergence risk measure induced by ϕ thus

coincides with the negative optimized certainty equivalent corresponding to the utility function u.

Example 5 (Divergence Risk Measures). We list examples of divergence risk measures.

(i) Expected value: ρ0(X) = EP0 [−X] is obtained by setting ϕ(t) = 0, that is, u(s) = s.

(ii) Conditional value-at-risk: ρ0(X) = CV@Rα(X) for α ∈ [0, 1) is obtained by setting ϕ(t) = 0

if 0 ≤ t ≤ 1
1−α and ϕ(t) =∞ else, which corresponds to u(s) = 1

1−α min{s, 0}.

(iii) Entropic risk measure: ρ0(X) = 1
θ lnEP0 [e−θX ] with θ > 0 is obtained by setting ϕ(t) =

1
θ (1− t+ t ln t), which corresponds to u(s) = 1

θ (1− e−θs).

The example of the entropic risk measure indicates that divergence risk measures are not nec-

essarily scale invariant and may thus fail to be coherent, see also Theorem 3.1 in Ben-Tal and

Teboulle (2007).
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Theorem 10. Every divergence risk measure ρ0 : L∞(Ω0,F0,P0)→ R is randomization-proof.

Proof. Proof. Select any X,Y ∈ L∞(Ω0,F0,P0) and θ ∈ [0, 1], and denote by ρ the unique law

invariant extension of ρ0. Then, we have

ρ(X⊕θY ) = inf
s∈R
−s+ EP [ϕ∗(s−X⊕θY )]

= inf
s∈R
−s+ θEP [ϕ∗(s−X)] + (1− θ)EP [ϕ∗(s− Y )]

≥ θ
(

inf
s∈R
−s+ EP [ϕ∗(s−X)]

)
+ (1− θ)

(
inf
s∈R
−s+ EP [ϕ∗(s− Y )]

)
= θρ(X) + (1− θ)ρ(Y ) ≥ min{ρ(X), ρ(Y )},

where the first equality follows from Theorem 9, and the second equality holds due to Remark 2.

The two inequalities follow from the superadditivity of the infimum operator and the fact that

θ ∈ [0, 1], respectively. Thus, ρ0 is randomization-proof.

5.3 Shortfall Risk Measures

The shortfall risk of a position X is the smallest cash amount that must be added to X in order to

lift the expected utility of X above a prescribed threshold or acceptability level. The shortfall risk

measures belong to the class of elicitable risk measures (Bellini and Bignozzi 2015), which encom-

passes also nonconvex risk measures such as the value-at-risk. All elicitable and—a fortiori—all

shortfall risk measures exhibit favorable statistical properties and thus lend themselves to historical

backtesting (Bellini and Bignozzi 2015).

Definition 11 (Shortfall Risk Measure). A mapping ρ0 : L∞(Ω0,F0,P0) → R is called a utility-

based shortfall risk measure if there is a concave nondecreasing utility function u : R→ R with

ρ0(X) = inf
s∈R
{s : EP0 [u(X + s)] ≥ u(0)}.

One can readily verify that shortfall risk measures are monetary, convex and law invariant.

Example 6 (Shortfall Risk Measures). We list examples of shortfall risk measures.

(i) Expected value: ρ0(X) = EP0 [−X] is obtained by setting u(s) = s.

(ii) Entropic risk measure: ρ0(X) = 1
θ lnEP0 [e−θX ] with θ > 0 is obtained by setting u(s) = −e−θs.

23



(iii) Expectiles are shortfall risk measures induced by positive homogeneous utility functions of the

form u(s) = min{τs, (1 − τ)s} for τ ∈ [1
2 , 1]. The family of the expectiles coincides with the

class of all coherent shortfall risk measures (Bellini and Bignozzi 2015, Theorem 4.9).

We now establish that shortfall risk measures are randomization-proof.

Theorem 11. Every shortfall risk measure ρ0 : L∞(Ω0,F0,P0)→ R is randomization-proof.

Proof. Proof. Select any X,Y ∈ L∞(Ω0,F0,P0) and θ ∈ [0, 1], and denote by ρ the unique law

invariant extension of ρ0 to (Ω,F ,P). Then, we have

ρ(X⊕θY ) = inf{s : EP[u(X⊕θY + s)] ≥ u(0)}

= inf{s : θEP0 [u(X + s)] + (1− θ)EP0 [u(Y + s)] ≥ u(0)}

≥ min{inf{sX : EP0 [u(X + sX)] ≥ u(0)}, inf{sY : EP0 [u(Y + sY )] ≥ u(0)}}

= min{ρ(X), ρ(Y )},

where the second equality is due to Remark 2, and the inequality holds because for every s feasible

in the second line either sX = s is feasible in the first minimization problem or sY = s is feasible

in the second minimization problem in the third line. Thus, the claim follows.

5.4 Other Randomization-Proof Risk Measures

Below we survey several popular law invariant risk measures that are randomization-proof but do

not fit into any of the categories considered so far.

Value-at-Risk. The value-at-risk ρ0(X) = inf {x ∈ R : P0(X ≤ −x) ≥ α} at level α ∈ [0, 1] is

a monetary risk measure but fails to be convex (Föllmer and Schied 2011, Example 4.11). Note

that it is reminiscent of a shortfall risk measure with a non-concave utility function. To show that

the value-at-risk is randomization-proof, one can thus use similar arguments as in the proof of

Theorem 11. Details are omitted for brevity of exposition.

Mean Variance. The mean variance or Markowitz risk measure ρ0(X) = EP0 [−X]+αEP0 [EP0 [X]−

X]2 with α > 0 is convex and translation invariant but fails to be monotonic and scale invari-

ant (Shapiro et al. 2009, Example 6.18). It is well-known that the mean variance risk measure can
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be reformulated as ρ0(X) = EP0 [−X] +α inft∈R EP0 [X− t]2, see, e.g., Example 2.2.6 in Casella and

Berger (2002), which implies that it is mixture-concave and thus randomization-proof.

Mean Standard-Deviation. Similar to the mean variance, the convex, translation invariant

and scale invariant (but not monotonic) risk measure ρ0(X) = EP0 [−X] + α
√
EP0 [(X − EP0 [X])2],

where α > 0, can be reformulated as ρ0(X) = EP0 [−X]+inft∈R α
√

EP0 [(X − t)2]. We thus conclude

that the mean standard-deviation is mixture-concave and therefore randomization-proof.

Mean (Semi-)Deviation from Target. The mean deviation from target ρ0(X) = EP0 [−X] +

α (EP0 |τ −X|p)
1/p and the mean semi-deviation from target ρ0(X) = EP0 [−X]+α

(
EP0 [τ −X]p+

)1/p
with α > 0, p ≥ 1 and τ ∈ R are monotonic and convex but fail to be translation invariant and scale

invariant. By construction, both risk measures are mixture-concave and thus randomization-proof.

Mean (Semi-)Moment from Target. Consider a risk measure of the form ρ0(X) = EP0 [−X]+

αEP0 |τ − X|p or ρ0(X) = EP0 [−X] + αEP0 [τ − X]p+, where α > 0, p ≥ 1 and τ ∈ R. This risk

measure is monotonic and convex, but it is neither translation invariant nor scale invariant. By

definition, ρ0 is mixture-affine and thus randomization-proof.

Mean Weighted Mean-Deviation from Quantile. The mean weighted mean-deviation from

quantile is defined as ρ0(X) = EP0 [−X]+αEP0

[
max{ε(X − F−1

X (1− ε)), (1− ε)(F−1
X (1− ε)−X)}

]
,

where α > 0, ε ∈ [0, 1] and F−1
X represents the quantile function of X. It is translation invariant,

convex and scale invariant but fails to be monotonic in general. It is shown in §6.2.3 of Shapiro et al.

(2009) that ρ0(X) can be reformulated as ρ0(X) = EP0 [−X]+inft∈R αEP0 [max{ε(X − t), (1− ε)(t−X)}].

From this representation we conclude that ρ0 is mixture-concave and thus randomization-proof.

Negative Sharpe Ratio. The negative Sharpe ratio or signal-to-noise ratio ρ0(X) = −(EP0 [X]−

τ)/
√
EP0 [EP0 [X]−X]2 with τ ∈ R is defined for all random variables satisfying EP0 [X] ≥ τ .5 It

fails to be monotonic, translation invariant, convex and scale invariant but enjoys quasiconvexity

in X. To prove that ρ0 is mixture-quasiconcave, it suffices to show that the set of all distribution

functions FX corresponding to random variables satisfying EP0 [X] ≥ τ and ρ0(X) ≥ β is convex

5Here we adopt the convention that c/0 =∞ for all c ≥ 0.
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for every β ∈ R. This holds, however, because the feasible set of the constraint

ρ0(X) ≥ β ⇐⇒ (EP0 [X]− τ) + β
√
EP0 [EP0 [X]−X]2 ≤ 0

⇐⇒ (EP0 [X]− τ) + β inf
t∈R

√
EP0 [X − t]2 ≤ 0

⇐⇒ (EP0 [X]− τ) + β
√
EP0 [X − t]2 ≤ 0 ∀t ∈ R

⇐⇒
(∫

R
x dFX(x)− τ

)
+ β

(∫
R

(x− t)2 dFX(x)

) 1
2

≤ 0 ∀t ∈ R

is convex in FX whenever β ≤ 0 and collapses to the (convex) singleton set {Fτ} for β > 0,

where Fτ is the Dirac distribution that places unit mass on τ . Our argument implies that ρ0 is

mixture-quasiconcave and thus randomization-proof.

6 Randomization under Distributional Ambiguity

In many decision-making situations the probability measure P0 governing all relevant random vari-

ables is itself uncertain. Indeed, P0 must usually be estimated from limited statistical data or

guessed on the basis of expert judgment, and therefore one can typically only guarantee that P0

belongs to a (nonempty) family P0 of distributions that share certain structural or statistical prop-

erties. We will henceforth refer to P0 as the ambiguity set.

In analogy to Section 3, we first formalize the pure and randomized strategy problems under

distributional ambiguity. We then show that under mild assumptions, these decision problems cor-

respond to distributionally robust optimization problems (Delage and Ye 2010, Goh and Sim 2010,

Wiesemann et al. 2014b). At the end of the section, we prove that for any risk measure satisfying

a mild continuity property, we can construct a distributionally robust optimization problem with

a nonconvex feasible region in which a randomized strategy strictly dominates all pure strategies.

We introduce the notion of an ambiguous probability space (Ω,F0,P0), i.e., a measurable space

(Ω,F0) endowed with an ambiguity set P0. Let L∞(Ω0,F0,P0) = ∩P∈P0L∞(Ω0,F0,P) be the space

of all random variables that are essentially bounded with respect to every probability measure in

the ambiguity set, and note that any X ∈ L∞(Ω0,F0,P0) can have multiple distribution functions.

Below, we denote by F P
X the distribution function of X under the probability measure P ∈ P0. We

can then construct the ambiguity set of all possible distributions of X as {F P
X : P ∈ P0}.

We will henceforth assume that the ambiguous probability space (Ω0,F0,P0) is non-atomic.
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Definition 12 (Non-Atomic Ambiguous Probability Space). The ambiguous probability space (Ω,

F0,P0) is non-atomic if there exists a random variable U0 ∈ L∞(Ω0,F0,P0) that follows a standard

uniform distribution under every probability measure P ∈ P0.

Definition 12 can always be enforced by introducing a dummy random variable that is known

to follow the standard uniform distribution, and it implies that L∞(Ω0,F0,P0) is rich enough to

contain—modulo law invariance—all bounded random variables with an unambiguous distribution.

Lemma 3 (Richness of L∞(Ω,F ,P0)). If (Ω0,F0,P0) is non-atomic, then for every F ∈ D there

exists X ∈ L∞(Ω0,F0,P0) with F P
X = F for all P ∈ P0.

Proof. Proof. The proof closely parallels that of Lemma 1 and is thus omitted.

The definition of monetary risk measures naturally extends to ambiguous probability spaces if

we require X ≥ Y P-almost surely for every P ∈ P in the antecedent of the monotonicity condition.

The definitions of convex and coherent risk measures also directly extend to ambiguous probability

spaces. However, the notion of law invariance has to be reconciled in the presence of ambiguity.

Definition 13 (Law Invariance Revisited). A risk measure ρ0 : L∞(Ω0,F0,P0)→ R is called law

invariant if it satisfies the following condition for all X,Y ∈ L∞(Ω0,F0,P0):

Law invariance: If {F P
X : P ∈ P0} = {F P

Y : P ∈ P0}, then ρ0(X) = ρ0(Y ).

Note that Definition 13 reduces to Definition 2 for the singleton ambiguity set P = {P0}. We can

now show that for any law invariant risk measure ρ0 on a non-atomic ambiguous probability space

there is a real-valued functional %0 on the set D of all distribution functions with bounded support

such that ρ0(X) = %0(FX) for each random variable X ∈ L∞(Ω0,F0,P0) with an unambiguous

distribution function FX = F P
X for all P ∈ P0.

Proposition 3 (Existence and Uniqueness of %0). If (Ω0,F0,P0) is non-atomic and ρ0 is a law

invariant risk measure on L∞(Ω0,F0,P0), then there is a unique functional %0 on D such that for

all F ∈ D, we have

%0(F ) = ρ0(X) ∀X ∈ L∞(Ω0,F0,P0) : F P
X = F ∀P ∈ P0. (9)

27



Proof. Proof. The proof parallels that of Proposition 1, i.e., the mapping %0 exists because ρ0

is law invariant, and it is unique because (Ω0,F0,P0) is non-atomic. Details are omitted for

brevity.

By definition, %0 is constructed from ρ0. But it is not possible to reconstruct ρ0 from %0 because

%0 only contains information on the restriction of ρ0 to the space of unambiguous random variables,

i.e., the random variables with an unambiguous distribution function. A unique backtransformation

exists, however, if ρ0 constitutes an ambiguity averse risk measure.

Definition 14 (Ambiguity Averse Risk Measure). A risk measure ρ0 : L∞(Ω0,F0,P0) → R is

called ambiguity averse if it satisfies the following conditions for all X,Y ∈ L∞(Ω0,F0,P0):

Ambiguity aversion: If {F P
X : P ∈ P0} ⊆ {F P

Y : P ∈ P0}, then ρ0(X) ≤ ρ0(Y ).

Ambiguity monotonicity: If %0(F P
X) ≤ %0(F P

Y ) for all P ∈ P0, then ρ0(X) ≤ ρ0(Y ).

Ambiguity aversion implies law invariance in the sense of Definition 13. Thus, Proposition 3

ensures that the functional %0 in the ambiguity monotonicity condition is well-defined. Ambiguity

aversion states that X is weakly preferred to Y if the distribution of X is less ambiguous than

that of Y with respect to the partial order induced by set inclusion. It captures the empirical

observation that many decision makers display a very low tolerance for ambiguity and is in line

with the current thinking in distributionally robust optimization, where one seeks decisions that

are worst-case optimal with respect to all distributions in a prescribed ambiguity set (Delage and

Ye 2010, Goh and Sim 2010, Wiesemann et al. 2014b). Ambiguity monotonicity states that X is

weakly preferred to Y under an ambiguous probability measure if X is weakly preferred to Y under

each fixed probability measure in the given ambiguity set. Ambiguity monotonicity is reminiscent

of the classical monotonicity axiom from Definition 4. We note that there are ambiguity monotone

risk measures that violate the monotonicity axiom from Definition 4. Thus, ambiguity monotonicity

does not imply classical monotonicity in general.

Our next theorem provides an important representation for ambiguity averse risk measures.

Theorem 12 (Reconstructing ρ0 from %0). If (Ω0,F0,P0) is non-atomic and ρ0 represents an

ambiguity averse monetary risk measure on L∞(Ω0,F0,P0), then ρ0(X) = supP∈P0
%0(F P

X).

28



We relegate the proof of Theorem 12 to the appendix. The theorem provides an axiomatic

justification for the distributionally robust optimization approach advocated, among others, by

Delage and Ye (2010), Goh and Sim (2010) or Wiesemann et al. (2014b). In fact, it shows that

any decision maker who employs an ambiguity averse risk measure in the sense of Definition 14

should select actions in view of the worst probability distribution in the ambiguity set. Ambiguity

aversion is a natural property for risk measures under distributional ambiguity, and it is satisfied by

all commonly used risk measures in the distributionally robust optimization literature. Examples

include the worst-case expectation as well as the worst-case variants of the value-at-risk and the

conditional vaue-at-risk, see, e.g., Ghaoui et al. (2003), Postek et al. (2016), Zhu and Fukushima

(2009) and Zymler et al. (2013), among many others.

Let us now contemplate decision problems of the form (3), where ρ0 represents an ambiguity

averse monetary risk measure, while X0 constitutes a subset of L∞(Ω0,F0,P0). As in Section 3,

our main goal is to identify situations in which the optimal value of (3) can be strictly improved

by allowing for randomized strategies. Thus, we introduce a randomization device generating stan-

dard uniformly distributed samples that are independent of all random variables in L∞(Ω0,F0,P0)

under every probability measure in P0. Formally, we augment the ambiguous probability space

(Ω0,F0,P0) to (Ω,F ,P), where Ω = Ω0 × [0, 1], F = F0 ⊗ B[0,1] and P = {P× U : P ∈ P0} with U

denoting the uniform distribution on [0, 1]. The set of all admissible randomized strategies is then

defined as

X = {X ∈ L∞(Ω,F ,P) : X(·, u) ∈ X0 ∀u ∈ [0, 1]} .

It remains to be shown that ρ0 can be uniquely extended to an ambiguity averse monetary risk

measure ρ on (Ω,F ,P) that coincides with ρ0 on L∞(Ω0,F0,P0).

Proposition 4 (Ambiguity Averse Extension). If (Ω0,F0,P0) is non-atomic and ρ0 is an ambiguity

averse monetary risk measure on L∞(Ω0,F0,P0), then the unique extension of ρ0 to an ambiguity

averse monetary risk measure ρ on L∞(Ω,F ,P) is given by ρ(X) = supP∈P %0(F P
X).

Proof. Proof. Let ρ be any ambiguity averse risk measure that extends ρ0 to L∞(Ω,F ,P), and

note that (Ω,F ,P) is non-atomic as an extension of a non-atomic ambiguous probability space.

Proposition 3 and Theorem 12 thus ensure the existence of a mapping % : D → R with ρ(X) =

supP∈P %(F P
X) for all X ∈ L∞(Ω,F ,P). Hence, if X ∈ L∞(Ω0,F0,P0) with F P

X = FQ
X = FX for all
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P,Q ∈ P, then

%(FX) = sup
P∈P

%(F P
X) = ρ(X) = ρ0(X) = sup

P∈P
%0(F P

X) = %0(FX),

where the first and the fifth equalities hold because X is unambiguous, the second and the fourth

equalities follow from the definitions of % and %0, respectively, and the third equality holds because

ρ must equal ρ0 on L∞(Ω0,F0,P0). Lemma 3 then implies that %(F ) = %0(F ) for all F ∈ D. Thus,

ρ(X) = supP∈P %0(F P
X) is the only ambiguity averse risk measure extending ρ0 to L∞(Ω,F ,P).

Remark 4 (Law Invariance in (Ω,F ,P)). Similar to the law invariance in Section 3, the assump-

tion that ρ is ambiguity averse on (Ω,F ,P) implies that the decision maker agrees with a reduction

of compound lotteries axiom (Samuelson 1952) over the ambiguous probability space. It also means

that a random variable X depending on both the randomization device and ω0 ∈ Ω0 is considered

equivalent to a random variable Y that is independent of the randomization device whenever Y

shares the same set of cumulative distribution functions as X. In the context of Example 2 this

implies that “picking a color based on the throw of a fair coin is considered exactly equivalent to

playing a game in which the urn has known equal proportions of blue and red balls.”

By an immediate extension of Theorem 2, one can prove that there is no benefit in adopting

a randomized strategy when minimizing a convex ambiguity averse monetary risk measure over

a convex set X0. In stark contrast to Section 3, however, most ambiguity averse monetary risk

measures induce a strict preference for randomization for some X0. Indeed, under a mild regularity

condition, for any ambiguity averse monetary risk measure there exists a variant of the Ellsberg

urn problem from Section 1 in which a randomized strategy strictly dominates all pure strategies.

We will first motivate this statement through an example and then provide a formal proof.

Example 7 (The Rainbow Urn Game). An urn contains balls of K different colors ( e.g., red,

orange, yellow, . . . , indigo, violet), but the number of balls and the proportions of the colors are

unknown. A player is asked to name a color and to draw a random ball from the urn. If the

chosen ball has the stated color, the player pays a penalty of $1. Otherwise, there is a reward of

$1. As the distribution of colors is completely ambiguous, the worst scenario for a player selecting

color k is that all balls in the urn are painted in color k, in which case the penalty of $1 arises
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with certainty. An ambiguity averse player restricting attention to pure strategies is thus indifferent

between participating in the game and paying a fixed amount of $1. If the player were to select one

of the K pure strategies uniformly at random ( e.g., by rolling a fair K-sided die), however, the

ambiguity could be completely suppressed. Specifically, the player would face a reward of $1 with

probability K−1
K and a penalty of $1 with probability 1

K . Under the vast majority of commonly used

risk measures,6 this option is asymptotically ( i.e., for large K) as attractive as receiving a certain

reward of $1.

In order to facilitate a rigorous treatment of the rainbow urn game, we have to introduce the

notion of a maximally ambiguous random variable.

Definition 15 (Maximally Ambiguous Random Variable). A random variable V ∈ L∞(Ω0,F0,P0)

is maximally ambiguous if it can have any bounded distribution, that is, if {F P
V : P ∈ P0} = D.

Similar to the assumption of non-atomicity, the existence of a maximally ambiguous random

variable is a mild assumption that can be met by augmenting the ambiguous probability space.

We will also focus on ambiguity averse monetary risk measures satisfying the Lebesgue property.

In order to define the Lebesgue property, recall that a sequence of distribution functions Fk ∈ D,

k ∈ N, converges weakly to F ∈ D if limk↑∞ Fk(x) = F (x) for all x ∈ R where F is continuous.

Definition 16 (Lebesgue Property). An ambiguity averse monetary risk measure representable as

ρ0(X) = supP∈P0
%0(F P

X) is said to satisfy the Lebesgue property if limk↑∞ %0(Fk) = %0(F ) whenever

Fk converges weakly to F .

Definition 16 generalizes the original definition of the Lebesgue property in Jouini et al. (2006)

to ambiguous probability spaces. It is a mild technical condition which ensures that the mapping %0

is continuous with respect to weak convergence of distribution functions. Apart from the essential

supremum in Example 4, all risk measures studied in this paper satisfy the Lebesgue property. In

the context of Example 7, the Lebesgue property ensures that for a rainbow urn with sufficiently

many colors K, randomizing uniformly over all K colors outperforms every pure decision.

We are now armed to state the main result of this section.

Theorem 13. Assume that (Ω0,F0,P0) is non-atomic and that there is a maximally ambigu-

ous random variable V ∈ L∞(Ω0,F0,P0). Then, all ambiguity averse monetary risk measures

6The risk measure must satisfy the Lebesgue property introduced in Definition 16 below.
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ρ0 that satisfy the Lebesgue property are randomization-receptive, i.e., there exists a pair X,Y ∈

L∞(Ω0,F0,P0) and a θ ∈ [0, 1] such that ρ(X ⊕θ Y ) < min{ρ(X), ρ(Y )}.

We relegate the proof of Theorem 13 to the appendix. At its core, the proof constructs for any

ambiguity averse monetary risk measure ρ0 satisfying the Lebesgue property an instance of the

rainbow urn game such that the randomized strategy from Example 7 strictly dominates all pure

strategies. To this end, the number of potential colors K in the rainbow urn has to be chosen large

enough so that the probability 1
K of losing under the randomized strategy has a strictly lower risk

than the certain loss under any deterministic decision. The Lebesgue property guarantees that this

is the case for some finite K. It is worth noting that the proof does not exploit the convexity of ρ0,

and thus the theorem generalizes to risk measures that do not capture risk aversion.

Theorem 13 suggests that ambiguity averse decision makers solving problem (3) instead of (4)

may unwittingly expose themselves to avoidable risks and thus act irrationally. Furthermore,

it indicates that various recent distributionally robust optimization problems involving discrete

choices such as appointment scheduling (Mittal et al. 2014), knapsack (Cheng et al. 2014), hospital

admission (Meng et al. 2015), shortest path (Cheng et al. 2016), unit commitment (Jiang et al.

2016), facility location (Chan et al. 2015), and vehicle routing problems (Gounaris et al. 2013) etc.

might benefit from randomization.

7 A Remark about Time Consistency

Consider again Example 1 from Section 1, where the attractiveness of a project was assessed via

the mean semi-variance of its uncertain NPV. We have seen that if exactly one out of the five

projects specified in Table 1 can be chosen, then it is optimal to randomly select projects 1 and 4

with probabilities 81% and 19%, respectively, which results in a mean semi-variance of −0.69.

Upon further reflection one realizes that, by allowing for randomized strategies, the single-stage

project selection problem has essentially been transformed to a two-stage problem. Indeed, the

succession of events is as follows. First, the manager selects a decision rule or contingency plan

that assigns each possible outcome u ∈ [0, 1] of the randomization device a project to be chosen

upon observation of u. Then, “the dice are rolled” and a particular outcome u is observed. Finally,

the project associated with outcome u is implemented. Only then the outcome ω0 associated with
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the exogenous uncertainty is observed, and the corresponding NPV is realized.

An optimal strategy for this two-stage problem is to select project 1 if u ≤ 81% and project 4

if u > 81%. Unfortunately, this strategy suffers from a time inconsistency and may therefore

not be implemented. Indeed, after observing u, the manager could follow the recommendation

of the randomization device and implement project 1 or project 4, which would result in a mean

semi-variance of −0.52 or 1.13, respectively. Instead, she could implement project 2, which would

result in a lower mean semi-variance of −0.53; see Table 1. Thus, as soon as the outcome of the

randomization device is known (and there is no possibility to roll the dice for a second time), there

is an incentive to deviate from the action prescribed by the optimal randomized strategy and to

select the optimal pure strategy instead.

This issue of time inconsistency commonly arises in dynamic decision-making situations where

multiple actions must be implemented over time. A seminal paper in this regard is due to Strotz

(1955–56), who shows that when decision makers maximize their intertemporal utility subject to a

budget constraint, their optimal course of actions will be time inconsistent, even in the absence of

uncertainty, unless future utility is discounted at a constant rate of interest. The paper suggests that

decision makers can overcome this dilemma by locking themselves into implementing the envisaged

course of actions today (in our case, by locking oneself into implementing the randomized decision)

through a commitment device. In our context, the decision maker might settle for a randomized

strategy but outsource the implementation of this policy to a third party. Alternatively, she could

enforce the implementation of the optimal strategy contractually by agreeing to pay a penalty for

any deviations from this strategy. Yet another possibility for the manager would be to publicize the

optimal strategy upfront, thus putting her reputation at stake. For a detailed discussion of com-

mitment devices and their applications in economics and finance, we refer to Bryan et al. (2010).

Some decision makers might feel that the time inconsistency phenomenon outlined above is un-

acceptable and that any decision criteria susceptible to randomization should therefore be rejected

as inappropriate. While we would not argue against such a position, we highlight again that many

randomization-receptive risk measures (both classical and ambiguity averse) are used routinely in

academia and practice. When such risk measures are employed, it is a mathematical fact that

decision makers who neglect randomized strategies might sacrifice performance.
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8 Conclusion

In this paper we investigated whether randomized strategies can strictly outperform the best de-

terministic strategy in stochastic and distributionally robust optimization problems that involve

(worst-case) risk measures. We confirmed that randomization does not help in many common set-

tings, such as in optimization problems that are convex or that minimize spectral, divergence or

shortfall risk measures. Interestingly, however, the optimality of deterministic strategies is not a

direct consequence of the axioms of law invariant and coherent risk measures (see, e.g., the mean

semi-deviation measure in Section 4), and it is not tenable in a distributionally robust setting. This

is in sharp contrast to the expected utility framework commonly adopted in economics, where the

optimality of deterministic strategies directly follows from the independence axiom.

Our results provide a justification for the common practice of focusing on deterministic strate-

gies in stochastic programming whenever the employed risk measure is randomization-proof. On

the other hand, our results indicate that randomized decisions may be beneficial in several classes

of recently studied distributionally robust optimization problems, such as project management, ap-

pointment scheduling, vehicle routing and supply chain design problems. It would be instructive to

explore whether the theoretical analysis in this paper, which shows that randomized decisions may

outperform pure strategies in these settings, translates into practical benefits in these applications.

We thus identify the design of tractable algorithms for optimizing over randomized strategies, as

well as their application in the aforementioned domains, as a promising area for future research.
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A Proofs: Randomization-Receptive Risk Measures

Proof of Theorem 4. Set c = (3/(2 + 2p))1/p and define the two independent random variables

X ∼


1 w.p. 1/2,

−1 w.p. 1/2,

and Y0 ∼


c w.p. 2/3,

−2c w.p. 1/3.

By construction, we have EP0 [X] = EP0 [Y0] = 0 and ρ0(X) = ρ0(Y0) = α.

Next, set Yε = a(ε)Y0 + ε with a(ε) = (1 + ε/α)1/p and ε ∈ (−α, α), implying that EP0 [Yε] = ε

while still ρ0(Yε) = α. To prove that ρ0 is randomization-receptive for p 6= 2, we will argue that

f(ε) = ρ
(
X⊕ 1

2
Yε

)
−min {ρ(X), ρ(Y )} = ρ

(
X⊕ 1

2
Yε

)
− 1

2
ρ(X)− 1

2
ρ(Yε)

is strictly negative if either p < 2 and ε < 0 or p > 2 and ε > 0 for sufficiently small values of ε. To

this end, observe that ρ(Yε) can be written as ρ(Yε) = −ε+ α(2
3 [a(ε)c]p + 1

3 [2a(ε)c]p) and

ρ
(
X⊕ 1

2
Yε

)
= − ε

2
+
α

2

(
1

2

[
1− ε

2

]p
+

1

2

[
1 +

ε

2

]p
+

2

3

[
a(ε)c+

ε

2

]p
+

1

3

[
2a(ε)c− ε

2

]p)
for all ε in a neighborhood of 0, which implies that

f(ε) =
α

4

[
1 +

ε

2

]p
+
α

4

[
1− ε

2

]p
− α

2

+
α

3

[
a(ε)c+

ε

2

]p
− α

3
[a(ε)c]p +

α

6

[
2a(ε)c− ε

2

]p
− α

6
[2a(ε)c]p .
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Note that a(0) = 1 implies f(0) = 0. Moreover, differentiating with respect to ε yields

f ′(ε) =
αp

8

[
1 +

ε

2

]p−1
− αp

8

[
1− ε

2

]p−1

+
αp

3

[
a(ε)c+

ε

2

]p−1
[
a′(ε)c+

1

2

]
− αp

3
[a(ε)c]p−1 a′(ε)c

+
αp

6

[
2a(ε)c− ε

2

]p−1
[
2a′(ε)c− 1

2

]
− αp

6
[2a(ε)c]p−1 2a′(ε)c.

For ε = 0 we then obtain

f ′(0) =
αpcp−1

6
− αp(2c)p−1

12
6= 0

unless p = 2. Thus, for any p ∈ [1, 2) ∪ (2,∞) and α > 0 there is ε(p, α) such that ρ(X⊕ 1
2
Y ) <

min{ρ(X), ρ(Y )} for the random variable Y = Yε(p,α), that is, ρ0 is randomization-receptive.

Proof of Theorem 5. The proof follows the same lines as the proof of Theorem 4 if we replace

the random variable Yε with Yε = a(ε)Y0 + ε, where now a(ε) = 1 + ε/α.

Proof of Theorem 6. Set c = 31/p/2 and define the two independent random variables

X ∼


21/p w.p. 1/2,

−21/p w.p. 1/2,

and Y0 ∼


c w.p. 2/3,

−2c w.p. 1/3.

By construction, we have EP0 [X] = EP0 [Y0] = 0 and ρ0(X) = ρ0(Y0) = α.

Next, set Yε = a(ε)Y0 + ε with a(ε) = (1 + ε/α)1/p and ε ∈ (−α, α), implying that EP0 [Yε] = ε

while still ρ0(Yε) = α. To prove that ρ0 is randomization-receptive for p ≥ 1, we will argue that

f(ε) = ρ
(
X⊕ 1

2
Yε

)
−min {ρ(X), ρ(Y )} = ρ

(
X⊕ 1

2
Yε

)
− 1

2
ρ(X)− 1

2
ρ(Yε)

is strictly negative if p ≥ 1 and ε < 0 for sufficiently small values of ε. To this end, observe that

ρ(Yε) can be written as ρ(Yε) = −ε+ α
3 [2a(ε)c]p and

ρ
(
X⊕ 1

2
Yε

)
= − ε

2
+
α

2

(
1

2

[
21/p +

ε

2

]p
+

1

3

[
2a(ε)c− ε

2

]p)
for all ε in a neighborhood of 0, which implies that

f(ε) =
α

4

[
21/p +

ε

2

]p
+
α

6

[
2a(ε)c− ε

2

]p
− α

2
− α

6
[2a(ε)c]p.
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Note that a(0) = 1 implies f(0) = 0. Moreover, differentiating with respect to ε yields

f ′(ε) =
αp

8

[
21/p +

ε

2

]p−1
+
αp

6

[
2a(ε)c− ε

2

]p−1
[
2a′(ε)c− 1

2

]
− αp

6
[2a(ε)c]p−1 [2a′(ε)c] .

For ε = 0 we then obtain

f ′(0) =
αp

4

[
2−1/p − 3−1/p

]
> 0

for all p ≥ 1. Thus, for any p ≥ 1 and α > 0 there is ε(p, α) < 0 such that ρ(X⊕ 1
2
Y ) <

min{ρ(X), ρ(Y )} for the random variable Y = Yε(p,α), that is, ρ0 is randomization-receptive.

Proof of Theorem 7. The proof follows the same lines as the proof of Theorem 6 if we replace

the random variable Yε with Yε = a(ε)Y0 + ε, where now a(ε) = 1 + ε/α.

B Proofs: Randomization under Distributional Ambiguity

Proof of Theorem 12. The proof proceeds in two steps. First we exploit ambiguity aversion

to argue that ρ0(X) ≥ supP∈P0
%0(F P

X), and then we use ambiguity monotonicity to show that

ρ0(X) ≤ supP∈P0
%0(F P

X).

Step 1: Select X ∈ L∞(Ω0,F0,P0) and Q ∈ P0, and denote by FQ
X ∈ D the distribution function

of X under Q. By Lemma 3, there exists a random variable Y ∈ L∞(Ω0,F0,P0) with F P
Y = FQ

X for

every P ∈ P0. This means that {F P
Y : P ∈ P0} = {FQ

X} ⊆ {F P
X : P ∈ P0}, which in turn implies that

ρ0(X) ≥ ρ0(Y ) = %0(FQ
X), where the inequality follows from the ambiguity aversion of ρ0, while the

equality holds due to the definition of %0 and because Y is unambiguous. As the choice of X and

Q was arbitrary, we may conclude that ρ0(X) ≥ supQ∈P0
%0(FQ

X) for every X ∈ L∞(Ω0,F0,P0).

Step 2: Select again X ∈ L∞(Ω0,F0,P0) and set s = supP∈P0
%0(F P

X). By using translation

invariance twice, which holds because ρ0 is monetary, the degenerate random variable Y = ρ0(s)

can be shown to satisfy

ρ0(Y ) = ρ0(ρ0(s)) = ρ0(0 + ρ0(s)) = ρ0(0)− ρ0(s) = ρ0(0)− ρ0(0 + s) = s.

Thus, we find %0(F P
Y ) = ρ0(Y ) = s ≥ %0(F P

X) for all P ∈ P0, where the first equality holds due to

the definition of %0 and because Y is unambiguous, and the inequality follows from the definition
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of s. Hence, X is weakly preferred to Y under each fixed probability measure in the ambiguity set.

By ambiguity monotonicity, we thus have ρ0(X) ≤ ρ0(Y ) = s = supP∈P0
%0(F P

X).

Proof of Theorem 13. The presence of a maximally ambiguous random variable V allows us

to model the rainbow urn game portrayed in Example 7 on the basis of the ambiguous probability

space (Ω0,F0,P0). Specifically, the reward associated with the pure action “name color k” can

be represented by the random variable Xk = 1 − 2 · 1{(k−1)/K≤W<k/K} (for k < K) or Xk =

1 − 2 · 1{(K−1)/K≤W≤1} (for k = K), with W = V mod 1. The distribution function of Xk under

P ∈ P0 is thus given by

F P
Xk

(x) =


1 if x ≥ 1,

P(k−1
K ≤W < k

K ) if − 1 ≤ x < 1,

0 if x < −1,

for k < K and

F P
Xk

(x) =


1 if x ≥ 1,

P(K−1
K ≤W ≤ 1) if − 1 ≤ x < 1,

0 if x < −1.

for k = K. As V is maximally ambiguous, there exists Pk ∈ P0 with W = V = k−1
K Pk-almost

surely. Thus, Xk = −1 Pk-almost surely, implying that the distribution function of Xk under Pk

satisfies F Pk
Xk

(x) = 1 if x ≥ −1; = 0 if x < −1. We conclude that F Pk
Xk

(x) ≥ F P
Xk

(x) for all x ∈ R and

for all P ∈ P0, that is, F Pk
Xk

first order stochastically dominates every other distribution function

F P
Xk

, P ∈ P0. Thus, the risk of the pure strategy Xk can be expressed as

ρ0(Xk) = sup
P∈P0

%0(F P
Xk

) = %0(F Pk
Xk

) = ρ0(−1),

where the first equality is due to Theorem 12, the second equality holds because any law invariant

convex risk measure on a non-atomic probability space is monotonic with respect to first-order

stochastic dominance (Bäuerle and Müller 2006, Theorem 4.2), and the last equality exploits again

Theorem 12 and the fact that F Pk
Xk

coincides with the distribution function of the degenerate

constant random variable −1. The optimal value of problem (3) over X0 = {Xk : k = 1, . . . ,K} is

thus given by ρ0(−1).

Next, we construct the optimization problem (4) over randomized strategies in the usual manner,

and we exploit the presence of a randomization device to define a random variable U ∈ L∞(Ω,F ,P)
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with U(ω0, u) = u for all (ω0, u) ∈ Ω. By construction, U is unambiguous and follows the standard

uniform distribution irrespective of P ∈ P. The reward associated with the randomized action

“name any color k with probability 1
K ” can thus be represented through the random variable

X1:K =
K−1∑
k=1

1{(k−1)/K≤U<k/K}Xk + 1{(K−1)/K≤U≤1}XK .

Using a similar reasoning as in Example 2, one can further demonstrate that the distribution

function of the randomized strategy X1:K coincides with the equally weighted convex combination

of the distribution functions of all pure strategies Xk, that is,

F P
X1:K

(x) =
1

K

K∑
k=1

F P
Xk

(x) =


0 if x < −1,

1
K if − 1 ≤ x < 1,

1 if x ≥ 1,

where the second equality follows from the observation that

1

K

K−1∑
k=1

P
(
k − 1

K
≤W <

k

K

)
+

1

K
P
(
K − 1

K
≤W ≤ 1

)
=

1

K
P(0 ≤W ≤ 1) =

1

K

irrespective of P ∈ P. Thus, as the number K of colors tends to infinity, F P
X1:K

converges weakly

to F ∈ D defined through F (x) = 0 if x < 1; = 1 if x ≥ 1. For any fixed Q ∈ P we then find

lim
K↑∞

ρ(X1:K) = lim
K↑∞

sup
P∈P

%0(F P
X1:K

) = lim
K↑∞

%0(FQ
X1:K

) = %0(F ) = ρ(1),

where the first equality follows from Proposition 4, the second equality holds because F P
X1:K

is

constant across all P ∈ P, and the third equality follows from the Lebesgue property of ρ0. The last

equality exploits again Proposition 4 and the fact that F coincides with the distribution function

of the degenerate constant random variable 1. By translation invariance, the optimal value of

problem (4) thus converges to ρ(1) = ρ0(−1)− 2 as K grows. Hence, for sufficiently large K there

is a randomized strategy whose risk is strictly smaller than the risk of the best pure strategy.

To complete the proof, we demonstrate how the existence of the risk reducing randomized strat-

egy X1:K implies the existence of X,Y ∈ L∞(Ω0,F0,P0) and θ ∈ [0, 1] such that ρ(X ⊕θ Y ) <

min{ρ(X), ρ(Y )}. To this end, note that for any k = 1, . . . ,K, the randomized strategy X1:k

has the same distribution as some pure strategy X̄1:k ∈ L∞(Ω0,F0,P0) as well as the mix-

ture X̄1:k−1 ⊕(k−1)/k Xk. Therefore, there must exist a k for which ρ(X̄1:k−1 ⊕(k−1)/k Xk) <
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min{ρ(X1:k−1), ρ(Xk)}. Indeed, if this was not the case, we would have that

1 > ρ(X1:K) = ρ(X̄1:K−1 ⊕(K−1)/K XK) ≥ min{ρ(XK), ρ(X1:K−1)}

≥ min{ρ(XK), ρ(XK−1), ρ(X1:K−2)} ≥ . . . ≥ min
k=1,...,K

ρ(Xk) = 1,

where the equations from the first row follow from the fact that ρ(X1:K) < 1, the assumed law invari-

ance of ρ and the assumption that ρ(X̄1:K−1⊕(K−1)/KXK) 6< min{ρ(X1:K−1), ρ(XK)}, respectively.

These steps are then repeated recursively in the second row for all ρ(X1:k) ≥ min{ρ(Xk), ρ(X1:k−1)}

down to ρ(X1:1) = ρ(X1). We thus obtain the contradiction 1 > 1, which completes our proof.
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