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Abstract

Asymptotic tests over-reject the null of no predictability in present-value models. We

develop a nonparametric testing approach in state space models, implying reliable finite

sample inference under weak assumptions on price-dividend ratio and dividend shocks. We

find sharp evidence of return predictability in postwar US data, but a less consistent evi-

dence of dividend predictability, which is significant only using cash-flow proxies reflecting

information from mergers and acquisitions. These findings reconcile the diverging conclu-

sions of present-value models and common predictive regressions, in a way that is robust to

the choice of the predictive variables, the sample period and alternative cash-flow proxies.
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1 Introduction

Are stock market returns and dividend growth predictable? Campbell and Shiller (1988) ob-

servation that the price-dividend ratio reflects information on both future expected returns and

expected dividend growth has motivated a vast literature that studies predictability features

based on predictive regressions of returns and cash flow growth on lagged dividend yields.

Univariate predictive regression results typically imply an economically significant evidence

of return predictability in postwar US data, even if the statistical significance is weaker in some

subperiods, and an almost constant expected dividend growth. This evidence suggests that

the price-dividend ratio varies mainly because of discount rate shocks; See Campbell (1991)

and Cochrane (1992), among others.1 The Kalman filter estimation of a benchmark present-

value model with latent dividend and return expectations yields both a predictable return

and a predictable dividend growth, indicating that the price-dividend ratio varies because of

both dividend expectation and discount rate shocks. A possible explanation for these diverging

findings in benchmark present-value models is the higher discriminatory power that these models

imply for detecting joint dividend and predictability structures; see, e.g., Binsbergen and Koijen

(2010).

In this paper, we test the predictability hypotheses of present-value models written in state

space form, based on a new approach with reliable finite-sample inference and valid asymptotic

properties. Our approach relies on a general nonparametric Monte Carlo bootstrap for state

space models, which avoids strong assumptions on the properties of dividend and price-dividend

ratio shocks. Based on the more accurate finite sample inference provided by our approach, we

study and reinterpret the diverging findings of present-value models and standard predictive

regressions. We document that while asymptotic tests strongly over-reject the null of no pre-

dictability in present-value models, our testing method delivers a reliable finite-sample inference.

Importantly, the empirical application of our testing methodology to benchmark present-value

models, which parsimoniously aggregate dividend growth and price-dividend ratio information,

produces a strong evidence of return predictability and a less consistent evidence of dividend

predictability for most cash-flow proxies in the literature, consistent with the evidence produced

by univariate predictive regressions.

1Early predictive regression studies are Rozeff (1984), Schiller (1984), Keim and Stambaugh (1986), Campbell
and Shiller (1988) and Fama and French (1988). The predictive regression findings of no dividend predictability
can also depend on the sample period used for estimation, as the conclusions are opposite for the prewar sample,
or the cash-flow proxy used; see, e.g., Chen (2009), Boudoukh, Michaely, Richardson, and Roberts (2007) and
Sabbatucci (2015).
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Without a reliable testing approach, comparing the findings of present-value models with

those of standard predictive regressions is challenging, as it is well-known that the predictability

inference in the latter context can be difficult to interpret for a number of reasons. First,

the correlation between shocks in stock returns and predictive variables, combined with the

high persistence of the latter, can create finite-sample biases and a non-standard asymptotic

behaviour for common tests of return or dividend predictability; see e.g., Stambaugh (1999)

and Torous, Valkanov, and Yan (2004).2 Second, the dividend yield is a noisy estimate of

expected returns and expected dividend growth, as it reflects expectations of both future stock

returns and future cash flows. This feature creates a standard error-in-variable (EIV) problem

in univariate predictive regressions; see, e.g., Binsbergen and Koijen (2010), among others.

Cochrane (2008a) stresses that the weak evidence of return predictability in earlier univariate

studies is stronger if one considers the joint nature of null hypotheses on the return-dividend

process. Present-value models offer a potentially powerful testing framework for such joint

hypotheses, as they directly incorporate the no-arbitrage constraints on stock returns, cash

flows and valuation ratios.3 However, inference procedures for present-value models written in

state space form are more recent and less studied than in more common predictive regression

settings. Our paper contributes to fill this gap and to reconcile the diverging predictability

findings in the literature.

Similar to predictive regressions, inference in state space models is made tractable by the

existence of an asymptotic theory, which under appropriate conditions implies consistency and

asymptotic normality of parameter and latent state estimates; see, e.g., Liung and Caines

(1979) and Spall and Wall (1984). However, the moderate length of the time series available

in many predictability studies can make the use of asymptotic inference methods potentially

suspect for these models as well.4 To improve over the conventional asymptotic inference, a

2Stambaugh (1999) derives an analytic expression for the bias in univariate predictive regressions. Kothari and
Shanken (1997), Amihud and Hurvich (2004), Lewellen (2004), Torous, Valkanov, and Yan (2004), Campbell and
Yogo (2006) and Polk, Thompson, and Vuolteenaho (2006) develop methods for hypothesis testing in univariate
settings. Amihud, Hurvich, and Whang (2009) propose an analytic method for hypothesis testing in regression
with multiple predictors, while Lettau and Ludvigson (2001) and Ang and Bekaert (2007), among others, use
bootstrap methods in this setting.

3Given the time variation in the price-dividend ratio, at least one between returns and dividend growth must
be predictable. Cochrane (2008a) also derives upper bounds on price-dividend ratio autocorrelations, to deliver
more powerful statistics in the joint testing of return and dividend growth predictability. Recent studies estimating
market expectations for returns and dividends with different present-value models include Menzly, Santos, and
Veronesi (2004), Lettau and Ludvigson (2005), Ang and Bekaert (2007), Lettau and Van Niewerburgh (2008),
Campbell and Thompson (2008), Pastor, Sinha, and Swaminathan (2008), Cochrane (2008a,b), Binsbergen and
Koijen (2010), among others.

4The close relation between present-value models and their (VAR) reduced-form predictive regression rep-
resentations (see, e.g., Cochrane (2008b)) also suggests that if samples must be fairly large before asymptotic
theory is applicable, then this should similarly hold both in predictive regressions and present-value models. See
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useful nonparametric method, which does not rely on strong assumptions about dividend and

price-dividend ratio shocks, is the nonparametric bootstrap first suggested by Efron (1979).

Stoffer and Wall (1991) prove that the bootstrap applied to the innovations of a time-invariant

and stable state space model yields asymptotically correct results. They also demonstrate, by

Monte Carlo simulation and in a number of real-data applications, that a bootstrap approach

can improve over the finite-sample inference of conventional asymptotics.5 We borrow from

these insights and introduce a new class of bootstrap tests of predictability hypotheses that

are computationally accessible in general present-value models with hidden expectations. We

first show the asymptotic validity of our testing method and demonstrate by Monte Carlo

simulation the improved finite-sample properties over conventional asymptotic tests. Key to

the validity and accuracy of our approach, also compared to alternative bootstrap approaches,

is that it is based on a resampling of the standardized prediction errors in the innovation form

representation of the state space model.

Using the new bootstrap tests, we obtain a novel set of findings and interpretations for the

predictability evidence obtained by latent variable approaches within present-value models. The

detailed contributions to the literature are the following.

First, we study the finite-sample properties of tests of predictability in present-value models,

without assuming a particular error distribution, such as, e.g., a normal distribution, by means

of a nonparametric Monte Carlo simulation approach. We find that asymptotic tests imply large

finite-sample biases, which often lead to an incorrect rejection of the null of no predictability.

For instance, while according to a significance level α = 5% the asymptotic critical value of

the likelihood ratio test of no dividend (return) predictability is 7.81 (9.49), the Monte Carlo

finite-sample critical value is 17.13 (15.99). Therefore, the fraction of incorrect rejections of

the null of no time-variation in dividend (return) expectations using the asymptotic test is as

large as 25.8% (60.5%). Our Monte Carlo evidence also shows that the large estimated R2’s

for dividends or returns in the data can arise by chance alone, even under the null of constant

expected dividend growth or expected return. These features are the consequence of the volatile

point estimates for the persistence of dividend and return expectations, which stay in a close

relation to the estimated R2’s. This evidence emphasizes the importance of integrating a pure

also Section A of the Supplemental Appendix.
5Finite sample inference could potentially be improved also using a Bayesian approach that imposes prior

belief information on the relevant parameter space or the degree of predictability; see e.g., Pastor and Stambaugh
(2009) and Wachter and Warusawitharana (2009). In contrast with predictive regression settings with fully
observable state space, an open question in our setting with hidden expectation processes is how to translate
potential prior beliefs about return and dividend growth predictability into mathematically formulated prior
distributions of parameters in the observable and latent variables dynamics that enter the present value restriction.
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estimation approach with a reliable testing method when quantifying the degree of dividend or

return predictability.

Second, we propose a general nonparametric bootstrap test of predictability, by applying

the bootstrap to the dividend and price-dividend ratio shocks in the innovation form of the

state space model, simulated under the relevant null hypothesis. We prove that our bootstrap

test implies a valid asymptotic inference under standard conditions and we document the finite

sample improvements over the asymptotic tests. These findings show that our bootstrap testing

approach better controls the probability of rejecting a null hypothesis because of chance alone,

thus producing a more reliable inference in a number of applications.

Third, we apply our bootstrap tests to US stock market data, using several specifications

of the predictive information set and different proxies of market cash flows. We systematically

find strong evidence in favour of time-varying expected returns in postwar US data, implying

test p−values typically well below 1%, and a clearly weaker and less robust evidence of dividend

growth predictability. Indeed, the null of no dividend predictability is never statistically sig-

nificant at the 5% significance level. It implies p−values of about 9.5% using standard proxies

of market cash flows, a lowest p−value of 7% for cash flow proxies that incorporate informa-

tion from mergers and acquisitions, but also a p−value as large as 16% using total payouts.

These findings confirm that the postwar return (dividend) predictability evidence in benchmark

present-value models is similarly strong (weak) as in standard predictive regression tests. Simi-

larly, we find that returns are unpredictable in the prewar period, while dividend growth clearly

is, very consistently with the tale of two periods documented in the literature using standard

predictive regressions.

Finally, we propose an extension of our bootstrap approach for estimating the distribution

of out-of-sample predictive R-squared. As for the in-sample R-squared, we find that the large

estimated out-of-sample R-squared for dividends in the data can arise by chance alone, under

the null of constant dividend growth expectations.

In summary, the results of our bootstrap tests reconcile the diverging predictability findings

in the literature and offer a new methodology for properly assessing the in-sample and the

out-of-sample predictability properties. These findings are of first-order importance, as they

clearly demonstrate the difficulties in reliably testing predictability hypotheses with asymptotic

tests in benchmark applications of present-value models. Such difficulties have been largely

overlooked in the literature, which has virtually never applied formal bootstrap methods to
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study predictability in present-value models.6

The paper proceeds as follows. Section 2 introduces the benchmark present-value model. It

then briefly discusses the data and estimation strategy, before reporting the estimation results.

Section 3 presents the R-squared for returns and dividend growth implied by the present-value

model. It then summarizes the diverging evidence of likelihood ratio tests of predictability

based on asymptotic critical values and bootstrap critical values, respectively. Section 4 intro-

duces the bootstrap testing approach more formally. It proves its asymptotic validity, studies

the improvements in finite-sample inference compared to standard asymptotic approaches, and

illustrates the advantages compared to alternative bootstrap approaches. Section 5 extends our

bootstrap methodology to study the distribution of in- and out-of-sample predictive R-squared.

Section 6 discusses the robustness of our main findings with respect to the inclusion of the

prewar sample, different cash flow proxies and various predictive information sets. Section 7

concludes.

2 Present-Value Approach

Borrowing from Binsbergen and Koijen (2010), we introduce the benchmark cash flow and

discount rate dynamics. This model offers a tractable framework to estimate the expected

return and expected dividend growth processes, by parsimoniously aggregating the time-series

information from dividend growth and price-dividend ratios. Even though the benchmark model

restricts the information set to be spanned by the history of dividend (or returns) and price-

dividend ratios, it is flexible enough to capture the essential aspects related to the estimation

and testing of predictive relations.7 Our bootstrap testing approach is applicable also in more

general present-value models and the implications of broader specifications of the predictive

information set are studied in detail in Appendix E.

2.1 The benchmark model

Let

rt+1 ≡ log

(
Pt+1 +Dt+1

Pt

)
(1)

6Moreover, our approach would allow to test essentially any parametric hypothesis in state space settings.
7The same setting can result from a general equilibrium framework with multiple securities and time-varying

risk aversions; see, e.g., Menzly, Santos, and Veronesi (2004). Recent studies have investigated predictability in
the context of the model considered in this paper, including Cochrane (2008b), Binsbergen and Koijen (2010),
among others. Model extensions and different special cases have also been considered in Lettau and Ludvigson
(2005), Ang and Bekaert (2007), Lettau and Van Niewerburgh (2008), Campbell and Thompson (2008), Pastor,
Sinha, and Swaminathan (2008), and Yun (2012).
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be the cum-dividend log market return and denote by

∆dt+1 ≡ log

(
Dt+1

Dt

)
, (2)

the aggregate log dividend growth. Expected dividend growth and return, conditional on the

information at time t, are denoted by gt ≡ Et[∆dt+1] and µt ≡ Et[rt+1], respectively. They

follow simple autoregressive processes:

gt+1 = γ0 + γ1(gt − γ0) + εgt+1, (3)

µt+1 = δ0 + δ1(µt − δ0) + εµt+1. (4)

The dividend growth rate is the expected dividend growth plus an orthogonal shock:

∆dt+1 = gt + εdt+1. (5)

The vector of independent and identically distributed shocks (εgt+1, ε
µ
t+1, ε

d
t+1)′ has covariance

matrix

Σ =


σ2
g σgµ σgd

σgµ σ2
µ σµd

σgd σµd σ2
d

 . (6)

The affine explicit expression for the log price-dividend ratio directly follows from a Campbell

and Shiller (1988) log linearisation:

pdt = A−B1(µt − δ0) +B2(gt − γ0), (7)

where A, B1 and B2 are simple functions of the model parameters such that, consistent with

intuition, pdt is decreasing in expected returns and increasing in expected dividend growth.8

2.2 Estimation results

We obtain the with- and without-dividend monthly returns on the value-weighted portfolio of

all NYSE, Amex and Nasdaq stocks, in the period from January 1946 until December 2010,

from the Center for Research in Security Prices (CRSP). We construct annual time series of

8See Binsbergen and Koijen (2010) and Appendix A. Campbell and Shiller (1988) approximation in our
sample holds almost exactly, for yearly data, if annual dividends and prices are constructed as described in
Section 2.2.
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aggregate dividends and prices, assuming that monthly dividends are cash-reinvested at the

30-day T-bill rate. Data on 30-day T-bill rates are also obtained from CRSP.9

We estimate the model with a Kalman filter based on a Gaussian quasi likelihood function,

from the observable time series of dividend growth ∆dt+1 and price-dividend ratios pdt+1.

Due to the present-value relations, market return rt+1 is redundant with respect to ∆dt+1

and pdt+1.10 The parameter estimates are reported in Table 1, with bootstrapped standard

errors in parenthesis.11 We find an unconditional expected log return (dividend growth) of

δ0 = 8.3% (γ0 = 5.7%). Both expectation processes feature some degree of persistence, with

autoregressive roots γ1 and δ1 equal to 0.304 and 0.927, respectively, and expected returns that

are substantially more persistent than expected dividend growth. Finally, expected dividend

growth is estimated as very volatile (σg = 6.5%), while unexpected dividend growth variability

is very low (σd = 0.2%).

3 Dividend and Return Predictability

Let It denote the econometrician’s information set at time t, generated by the history of div-

idends and price-dividend ratios. A nice feature of the Kalman filter is to provide filtered

estimates of the unknown latent states µt and gt, conditional on It. Thus, a standard measure

of the degree of predictability in model (3)-(5) can be computed by the fraction of rt+1 and

∆dt+1 variability explained by µt and gt, respectively:

R2
Ret = 1− V̂ ar(rt+1 − µt)

V̂ ar(rt+1)
, (8)

R2
Div = 1− V̂ ar(∆dt+1 − gt)

V̂ ar(∆dt+1)
, (9)

where V̂ ar denotes sample variances.

9Several studies use market-reinvested instead of cash-reinvested dividends. CRSP computes quarterly or
annual return series under the stock market reinvestment assumption. Chen (2009) and Koijen and Van Nieuwer-
burgh (2011) note that a market reinvestment assumption can be problematic, as it transfers some of the proper-
ties of returns to cash flows, inducing a large volatility of the resulting dividend growth series and a low correlation
with other measures of dividend growth.

10Using (rt+1, pdt+1) as observable variables, the estimation results are almost identical and one can always
recover the missing variable using Campbell and Shiller (1988) approximation; see also Cochrane (2008b), among
others. Details on the estimation procedure are collected in Appendix B. For comparability with Binsbergen and
Koijen (2010) we adopt their identification assumption ρgd = 0. More general identification assumptions allowing
for a non-zero correlation between expected and realized dividends do not affect our predictability findings, see
also Piatti and Trojani (2017).

11Parameter standard errors are obtained using the circular block-bootstrap of Politis and Romano (1992), in
order to account for the potential serial correlation in the data.
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We find that R2
Ret = 8.82% and R2

Div = 17.58% (see also Table 2), suggesting a relatively

high degree of both return and dividend growth predictability. In contrast to these findings,

simple regressions of returns and dividend growth on lagged price-dividend ratios yield R2 of

about 9.9% and 0.95%, respectively. A standard interpretation for these diverging results is the

noisiness of the price-dividend ratio (7) as a signal for expected returns and expected dividend

growth, respectively, which creates a potential EIV problem in predictive regressions of returns

and dividend growth on lagged price-dividend ratios.12 Indeed, the large persistence of return

expectations is linked to a large sensitivity of price-dividend ratios to expected return shocks

(B1 = 10.332) and a smaller sensitivity to dividend expectation shocks (B2 = 1.421), which

could obfuscate the predictive power of dividend expectations in dividend predictive regressions,

leading to the low R2.

It is important to realize that estimated R-squares are per se not sufficient to draw reliable

conclusions about returns and dividend growth predictability. This issue is best addressed

using an appropriate testing framework. As emphasized by Cochrane (2008a), while a point

estimate produces the most likely predictability structure according to a given statistical metric,

hypothesis testing is essential to control for the probability of detecting predictability structures

by chance alone.

3.1 Likelihood ratio tests

Most predictability hypotheses can be formulated by means of simple parametric constrains,

which can be efficiently tested with standard parametric tests. We focus on the likelihood ratio

(LR) test,13 based on the statistic

LRT = 2

(
max

Θ
logL

(
θ, {Yt}Tt=1

)
−max

Θ0

logL
(
θ, {Yt}Tt=1

))
, (10)

where Θ0 is the restricted set of parameters under null hypothesis H0 and logL is the log-

likelihood of the model. Evidence against H0 is collected when LR is large:

{LRT > c1−α} , (11)

relative to critical value c1−α, which is unlikely under H0.

The finite sample distribution of the LR statistic (and the critical value c1−α) is unknown,

12See e.g. Binsbergen and Koijen (2010) and Lettau and Ludvigson (2005).
13This is without loss of generality, since it is straightforward to apply our proposed bootstrap approach to

Wald and score-type tests, which are asymptotically equivalent to the likelihood ratio test.
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but it can be approximated in different ways. A widely used approximation is based on the

well-known asymptotic limit of this distribution as T → ∞, which is a χ2
r distribution with r

degrees of freedom, where r is the number of parameter constraints defining the constrained

parameter set Θ0. Therefore, the choice c1−α = χ2
r,1−α, where χ2

r,1−α is the 1−α quantile of the

chi-square distribution, ensures asymptotically a probability α of rejecting H0 by chance alone:

α = lim
T→∞

PH0(LRT > χ2
r,1−α) . (12)

This paper proposes a novel approach, based on bootstrap, to approximate the finite sample

distribution of the LR statistic under the null hypothesis. In this way, we obtain a novel class of

bootstrap likelihood ratio tests of predictability hypotheses in state space models. We discuss

in this section the diverging conclusions of asymptotic and bootstrap likelihood ratio tests in

the benchmark present-value model. In Section 4, we detail our bootstrap testing procedure,

prove its asymptotic validity and study the finite-sample improvements relative to asymptotic

tests.

3.2 Null hypotheses and test results

Testing return and cash flow growth predictability is equivalent to examining time variation

in expected returns and expected dividend growth, respectively. The null of constant return

expectations is:

H0 : δ1 = σµ = ρgµ = ρµd = 0 . (13)

Similarly, the null of constant dividend growth expectations is:14

H0 : γ1 = σg = ρgµ = 0 . (14)

Table 2 shows that the asymptotic test based on statistic (10) very clearly rejects both null

hypotheses at a significance level α below 0.5%. The evidence provided by the bootstrap

test is strikingly different, as the bootstrap p-values of both tests are much higher than their

asymptotic counterparts. This implies a null hypothesis of no return predictability that can still

be rejected at a 1% significance level, but a null hypothesis of no dividend predictability that

14Under the null (13) (the null (14)) all price-dividend ratio variation comes from variation in expected dividend
growth (returns) and the present-value model collapses to a standard linear regression of dividend growth rates
(returns) on the lagged price-dividend ratio. Note that ρgd = 0 is imposed also in the unconstrained model for
identification purposes, as for instance in Binsbergen and Koijen (2010), see Appendix B.
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can be rejected only at the 10% significance level, with a p-value of about 9.5%. These findings

are consistent with the significant evidence of return predictability and the weaker evidence of

dividend predictability resulting from standard predictive regressions.

Appendix E shows that our main results are unaffected by extensions of the benchmark

present-value model that include additional predictive variables, as the bootstrap p-values are

again systematically larger than the asymptotic p-values and we can never reject the null of no

dividend growth predictability at the 5% significance level. In contrast, in all specifications the

null hypothesis of no return predictability is rejected with p-values lower than 0.5%. Section

6.2 shows that the main findings are even strengthened using proxies of total payouts (dividend

plus repurchases) instead of cash dividends. In this case, the null of no return predictability

is still rejected with a p-value of 1%, but the p-value for the null of no dividend predictability

is only 16%. In contrast, the asymptotic test rejects in all cases also the null of no dividend

predictability with unplausibly low p−values.15

In Section 4, we prove formally and verify by Monte Carlo simulation that bootstrap and

asymptotic p-values are asymptotically equivalent. Therefore, the diverging conclusions of these

two testing methods are the consequence of their different finite sample properties in testing

null hypotheses of no predictability in state space models. We investigate this important aspect

in more detail in the next sections.

4 Bootstrap Tests in the Present-Value Model

We obtain asymptotically valid tests that are less susceptible to finite-sample distortions and less

dependent on specific distributional assumptions using a nonparametric bootstrap method.16

In this section we first introduce our bootstrap testing method in present-value models to then

prove its asymptotic validity and quantify by Monte Carlo simulation the improvements over

conventional asymptotic tests.

15Following the suggestion of an anonymous referee, we also assessed the robustness of our findings with
respect to the pd ratio persistence properties using an equivalent state space specification depending only on
realized dividends and returns, following Rytchkov (2012). The main evidence on dividend growth predictability
produced by this analysis is unchanged.

16As shown in Hall and Horowitz (1996) and Andrews (2002), among others, a desirable property of the
bootstrap is that it may provide more accurate finite-sample approximations of the sampling distribution of
standard t−test statistics for testing the null of no predictability in predictive regression models.
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4.1 State space representation

For observed variables Yt := (∆dt, pdt)
′ and expanded state vector Xt := (ĝt−1, ε

g
t , ε

µ
t , ε

d
t )
′, where

ĝt := gt − γ0, the present-value model can be written in state space form (see Appendix B):

Xt+1 = FXt + ΓεXt+1 , (15)

Yt = M0 +M1Yt−1 +M2Xt , (16)

with matrices F , Γ, M0, M1, M2 that are functions of parameter vector

θ = (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρµd, ρgd)
′ .

Let Xt,t−1 be the best linear prediction of Xt based on observable data {Ys}t−1
s=1, obtained via

the Kalman filter, and ηt = Yt −M0 −M1Yt−1 −M2Xt,t−1 the corresponding prediction error.

The innovations form representation of the present-value model follows from the Kalman filter

as:

Xt+1,t = FXt,t−1 + FKtηt , (17)

Yt = M0 +M1Yt−1 +M2Xt,t−1 + ηt , (18)

where the Kalman gain Kt and the conditional covariance matrix St of innovation ηt are given ex-

plicitly in Appendix B. The advantage of this representation for an efficient bootstrap procedure

is that it allows to easily simulate forward the dynamics of observable variables {Y1, . . . , YT },

given initial conditions Y0, X0,0 and random innovations {η1, . . . , ηT }.17

4.2 Nonparametric bootstrap

Let θ̂ and θ̂0 be the unconstrained and the constrained estimators of the model parameters,

obtained by maximizing the likelihood function (46) in Appendix B over the full and the

H0−constrained parameter set, Θ̂ and Θ̂0, respectively. The observed value of the likelihood

ratio statistic LRT then follows from definition (10).18

We apply a nonparametric bootstrap for time series to the (standardized) innovations

17In practice, we first apply a nonparametric bootstrap for time series to efficiently simulate the joint distri-
bution of innovations {η1, . . . , ηT }. In a second step, we simulate the joint distribution of {Y1, . . . , YT } using the
forward dynamics (17)-(18).

18Bootstrap inference is always conditional on the observed sample of data. With a slight abuse of notation,
in the sequel we denote by LRT the sample value of the likelihood ratio statistics.
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{êt := S
−1/2
t (θ̂)ηt(θ̂)}Tt=1, in order to obtain the standardized bootstrap residuals {ê∗t }Tt=1. The

bootstrap residuals are used to compute a bootstrap distribution of maximum likelihood esti-

mators θ̂∗:

θ̂∗ = arg max
Θ

logL
(
θ, {Y ∗t }Tt=1

)
, (19)

where the sequence {Y ∗t }Tt=1 is simulated with the dynamics (17)-(18) applied to the unstan-

dardized bootstrap residuals {η̂∗t := S
1/2
t (θ̂)e∗t }Tt=1. Stoffer and Wall (1991) prove that this

approach gives rise to a valid bootstrap distribution for
√
T (θ̂∗ − θ̂), which is asymptotically

equivalent to the distribution of
√
T (θ̂ − θ?), where θ? is the true unknown parameter value.

We start from this result to construct a valid nonparametric bootstrap likelihood ratio test of

null hypothesis H0 in the present-value model.

4.3 Bootstrap likelihood ratio test

Our bootstrap likelihood ratio test for state space model (15)-(16) is based on the following

six-steps algorithm.

1) Using the estimated parameter vector under null hypothesis H0, construct the (con-

strained) time series of standardized innovations {ê0t}Tt=1, by setting:

ê0t = S
−1/2
t (θ̂0)ηt(θ̂0) . (20)

2) Applying a nonparametric bootstrap procedure to time series {ê0t}Tt=1, compute a boot-

strap sample {ê∗0t}Tt=1 of standardized innovations.

3) Using the innovation form representation (17)-(18), construct a bootstrap sample {Y ∗t }Tt=1

as follows:

X∗t+1,t = FX∗t,t−1 + FKtS1/2
t ê∗0t , (21)

Y ∗t = M0 +M1Y
∗
t−1 +M2X

∗
t,t−1 + S

1/2
t ê∗0t , (22)

where matrices F , Kt, St, M0, M1, M2 are all evaluated in θ̂0 and the initial conditions

are Y ∗0 = Y0, X∗0,−1 = X0,0.

4) Using bootstrap sample {Y ∗t }Tt=1, compute constrained and unconstrained maximum like-

lihood point estimates θ̂∗0 and θ̂∗, respectively, by maximizing the log likelihood function
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L
(
θ, {Y ∗t }Tt=1

)
, while imposing and not imposing null hypothesis H0, respectively.

5) Following definition (10), compute the value LR∗T of the likelihood ratio statistic in the

bootstrap sample, defined by:

LR∗T = 2
(
L
(
θ̂∗, {Y ∗t }Tt=1

)
− L

(
θ̂∗0, {Y ∗t }Tt=1

))
. (23)

6) Repeat steps 2)-5) a large number of times, B, to obtain a collection of bootstrap values

of the likelihood ratio statistics, {LR∗T,b, 1 ≤ b ≤ B}. The empirical distribution of these

values provides an approximation of the distribution of the likelihood ratio statistic under

the null hypothesis H0.

Remark 1 (i) In step 2) of the algorithm, several bootstrap procedures are applicable to the

standardized innovations {ê0t}Tt=1. We strongly recommend the use of a time-series bootstrap,

such as the circular block-bootstrap (Politis and Romano (1992)), in order to robustify the in-

ference against a potentially left time series dependence in the finite sample distribution of

standardized innovations, which might not have been fully captured by the estimated conditional

moment dynamics. This approach also easily accommodates a possible non normality of stan-

dardized innovations in finite samples. ii) In some cases, it may help to exclude the random

sampling of the innovations for the first 2-3 data points in step 2) of the algorithm, e.g., by set-

ting ê∗0t = ê0t for t = 1, 2, 3. This is useful to avoid start-up problems of the algorithm when the

Kalman filter might have an initially transient behaviour, e.g., with large values of the Kalman

gain Kt.

An important question is whether the proposed bootstrap test delivers correct results in large

samples, i.e., whether the bootstrap likelihood ratio statistic LR∗T follows the same asymptotic

distribution as LRT under H0. The next theorem justifies our bootstrap likelihood ratio test of

null hypothesis H0.

Theorem 1 Under regularity conditions detailed in Appendix C, it follows as B, T → ∞:

LR∗T −→ χ2
r, in distribution.

According to Theorem 1, the bootstrap statistic LR∗T has an asymptotically equivalent distribu-

tion to LRT under H0.19 Therefore, it gives rise to bootstrap tests with the correct significance

19A similar result can be proven with respect to sequences of shrinking local alternative hypotheses HA,T , by

applying the above algorithm to innovations defined by êAt = S
−1/2
t (θ̂A,T )ηt(θ̂A,T ) in step 1), where θ̂A,T is the

constrained maximum likelihood estimator computed under the local alternative HA,T .
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level asymptotically. The most convenient way to define a bootstrap likelihood ratio test of H0

is by means of the so-called bootstrap p−value:

p∗(LRT ) := P ∗(LR∗T > LRT ) =
1

B

B∑
b=1

I(LR∗T,b > LRT ) , (24)

where P ∗ denotes the bootstrap probability measure. Using bootstrap p−values, the bootstrap

test rejects H0 whenever:

p∗(LRT ) < α . (25)

From Theorem 1, this rejection region implies the correct asymptotic size α. The interesting

question is whether our bootstrap test can deliver more reliable results than the asymptotic

test in finite samples. A useful property in this respect is that the inference based on bootstrap

procedures applied to asymptotically pivotal statistics, such as the likelihood ratio statistic in

our setting, is generally more accurate than the inference of conventional asymptotics, in the

sense that the errors made are of lower order in the sample size T ;20 see Beran (1988), Davidson

and MacKinnon (1999b), Hall and Horowitz (1996) and Andrews (2002), among others. As

a consequence, our bootstrap likelihood ratio tests theoretically improve over the conventional

asymptotic inference in finite samples. We systematically verify this important aspect in the

next section using Monte Carlo simulations.

4.4 Finite-sample properties of bootstrap and asymptotic tests

We compare the finite sample properties of asymptotic and bootstrap tests in the benchmark

present-value model, focusing on the finite sample probability of detecting predictive relations

by chance alone. Based on the asymptotic test, this probability is given by:

αT := PH0(LRT > χ2
r,1−α) , (26)

where PH0 is the probability distribution in the present-value model under null hypothesis H0.

Based on the bootstrap test, this probability is given by:

α∗T := PH0(p∗(LRT ) < α) . (27)

20An asymptotically pivotal statistic is a statistic with sampling distribution asymptotically independent of
nuisance parameters.
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Since both these tests are valid asymptotic tests that are asymptotically equivalent, these two

probabilities converge to the significance level α as T → ∞. In the sequel, we investigate how

reliable the target rejection probability α is as an approximation of the finite sample rejection

probabilities αT and α∗T , in the asymptotic and the bootstrap test, respectively.

In order to simulate under probability PH0 , we impose the null hypothesis H0 in the bench-

mark present-value model, using the constrained ML estimator θ̂0. We simulate S = 1000 time

series of dividend growth and price dividend ratios, using our nonparametric bootstrap applied

to the fitted innovations in the present-value model; see again the algorithm in Section 4.3. In

this way, we simulate the empirical distribution of observed data under H0, without imposing

strong assumptions on the joint distribution of dividend and price-dividend ratio shocks.21

The first (second) Panel of Figure 1 displays for null hypothesis (13) (null hypothesis (14))

the quantiles of the empirical distribution of statistic (10), against the quantiles of the asymp-

totic χ2
4 (χ2

3) distribution. Apparently, the finite sample distributions of these likelihood ratio

statistics under H0 deviate substantially from their chi-squared asymptotic limit. For instance,

for an asymptotic level α = 5% the asymptotic critical value in the test of a constant expected

dividend growth is χ2
3,0.95 = 7.81. In contrast, the finite sample critical value is more than two

times larger (17.13), indicating a strong tendency of asymptotic tests to over-reject the given

null hypothesis. We can quantify the finite sample rejection probability αT in the asymptotic

tests using the following Monte Carlo estimator:

α̂T :=
1

S

S∑
b=1

I(LRT,s > χ2
r,1−α) , (28)

where LRT,s is the value of the likelihood ratio statistic in each simulated bootstrap sample

s = 1, . . . , S and I(A) denotes the indicator function of event A.22 We find that the estimated

probability of rejecting null hypothesis (14) (null hypothesis (13)) by chance alone in a test of

asymptotic level α = 5% is as large as α̂T = 25.8% (α̂T = 60.5%); see the first row of Table 3.

This confirms the tendency of asymptotic tests to over-reject in finite samples.

In order to quantify the finite sample rejection probability α∗T in our bootstrap test, we

apply the bootstrap testing method to the simulated data. First, for each simulated time series

21We avoid a parametric Monte Carlo simulation with jointly normal dividend and price-dividend ratios,
because for several null hypotheses relevant to our analysis we have found the finite sample distribution of fitted
model residuals under H0 to deviate from normality. Such deviations from normality can emerge in finite samples
even if the true shocks are conditionally Gaussian, e.g., in presence of a neglected heteroskedasticity or other
forms of neglected time series dependence. See Section 4.5.

22I(A)(ω) = 1 (I(A)(ω) = 0) if and only if ω ∈ A (ω /∈ A).
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indexed by s = 1, . . . , S, we compute a bootstrap distribution of likelihood ratio statistics

LR∗T,b,s, b = 1, . . . , B, which yields a corresponding bootstrap p-value:

p∗(LRT,s) =
1

B

B∑
b=1

I(LR∗T,b,s > LRT,s) .

This bootstrap p-value is computed according to the algorithm in Section 4.3. Finally, we

compute probability α∗T by the following Monte Carlo estimator:

α̂∗T :=
1

S

S∑
b=1

I(p∗(LRT,s) < α) . (29)

Overall, this second Monte Carlo simulation is based on a double-bootstrap simulation scheme

with 2S(B + 1) estimations of the parameters in the present-value model, which is a computa-

tionally demanding procedure. We present our Monte Carlo results for the parameter choices

S = 200, B = 99 and an optimal bootstrap block size of 2.23 Other parameter choices produce

similar results. For null hypothesis (13), we obtain α̂∗T = 5%, which is exactly the nominal level

of the test (α = 5%). For null hypothesis (14), we obtain an empirical size α̂∗T = 8%, which

is clearly much closer to the nominal level (α = 5%) than the rejection frequency α̂T = 25.8%

in the asymptotic test. In summary, the bootstrap test clearly improves on the finite sample

properties of the asymptotic test, by producing a much better control of the probability to

detect predictive relations by chance alone.

4.5 Why a nonparametric bootstrap?

The simplest way to simulate random samples from the present-value model, under the relevant

null hypothesis, is by means of a parametric Monte Carlo simulation, e.g., under a normal-

ity assumption for the innovations in dividends and returns. In contrast, our nonparametric

bootstrap approach renders the inference less dependent on such distributional assumptions.

This is an important property, because the finite sample distribution of estimated shocks in the

present-value model can deviate from normality for some of the relevant null hypotheses.24

To quantify such finite sample deviations from normality, we can test the normality of

23We apply a data driven calibration method for the selection of the block size, similar to the one introduced in
Romano and Wolf (2001) and Camponovo, Scaillet, and Trojani (2009). We choose the block size that minimizes
the difference between empirical and nominal size of the bootstrap test for no return predictability.

24Unreported empirical evidence also shows that mean, standard deviation and autocorrelation of dividend
growth, price-dividend ratio and returns implied by our nonparametric bootstrap tend to be closer to the empirical
sample moments than those obtained using a parametric Monte Carlo simulation.
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estimated dividend and price-dividend ratio shocks in the innovation form representation of

Section 4.1. Jarque and Bera (1987) Lagrange multiplier test is among the most common

tests of normality. The null hypothesis of 0 sample skewness and 3 sample kurtosis is rejected

whenever the statistic

JB =
T

6

(
S2 +

1

4
(K − 3)2

)
a∼ χ2(2), (30)

exceeds the test critical value, where S and K are sample skewness and sample kurtosis, re-

spectively, and T is the sample size.25

Figure 2 plots the p-values of the JB test applied to the standardized dividend and price-

dividend innovations, in the unconstrained present-value model and under several null hypothe-

ses. We find that the p-values for dividend and price-dividend ratio shocks in the unconstrained

estimation are 40.01% and 4.54%, respectively, already highlighting some degree of error non

normality. Under the null of constant expected returns and constant expected dividend growth,

the p-value of the test for the dividend innovation is much lower, with values of 1.43% and

6.09%, respectively. In contrast, we never reject the null of normality of the price-dividend

ratio innovations in these cases. This evidence indicates that the form of the distribution of the

fitted innovations in the present-value model is very sensitive to the particular null hypothesis

being tested.

Note that deviations from normality can be found in finite samples even if the true shocks are

conditionally Gaussian, e.g., in presence of a neglected time series dependence in the underlying

dynamics. To show this concretely, we generate samples of dividend growth, returns and price-

dividend ratios of the same length as the one of the observed data, i.e., 65 years, using a version

of the present-value model in Piatti and Trojani (2017), which includes a simple specification

for the time variation of return and dividend growth risks in a setting with Gaussian shocks.

Then we estimate the benchmark present-value model with constant risks for each simulated

sample and study the properties of the filtered residuals. We find that the null hypothesis of

normality is rejected in more than 50% of the cases, for both the standardised dividend growth

and price-dividend ratio innovations. This result suggests that the failure of the asymptotic test

in finite samples could be related to a neglected time series dependence in dividend growth and

return shocks. As our bootstrap test provides a more robust inference in presence of a neglected

time series dependence, it allows us to avoid taking a stance on the particular form of such time

25While the asymptotic critical values follow from a chi-squared distribution with two degrees of freedom, it
has been noted (e.g., in Deb and Sefton (1996)) that the small-sample quantiles of the test statistic are quite
different from their asymptotic counterparts. Therefore, we interpolate p-values using critical values computed
by Monte Carlo simulation, as provided by the Matlab function jbtest.
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series dependence or the finite sample distribution of model shocks.

In summary, we find that a nonparametric bootstrap approach, which does not rely on

distributional assumptions about dividend and price dividend ratio shocks, is more appropriate

for robustly testing predictability hypotheses in the benchmark present-value model. In such

a setting, the Kalman filter remains valid for error distributions different from the normal and

it produces the best linear filter, even if global optimality is lost. For estimation purposes,

consistency is preserved whenever the first two conditional moments implied by the filter are

correctly specified, with other distributional assumptions beyond this being immaterial.

A second concern in the stock return predictability literature is the high persistence of the

dividend yield. Even though when the dividend price ratio follows a nearly-integrated process

the bootstrap is not valid anymore, this aspect is not a first-order issue in our analysis, due to

the relatively low yearly autocorrelation of the dividend yield, which is about 0.91. In nearly

integrated frameworks, a valid inference can be obtained using different resampling schemes from

the one used in this paper, e.g., based on different versions of the subsampling; see Andrews

and Guggenberger (2010), among others.

4.6 Understanding the difference with other informal bootstrap approaches

A key feature of our nonparametric bootstrap approach is that it is based on a resampling of the

standardized residuals {êt := S
−1/2
t (θ̂)ηt(θ̂)}Tt=1 in the observable dynamics of the innovation

form representation (17)-(18) implied by the present-value model. As we show below, this

feature is essential to obtain formal bootstrap validity. A different informal bootstrap approach,

which might appear intuitive at first sight, could rely on bootstrapping the filtered residuals εXt

of the unobservable state space dynamics in equation (15).26 However, this alternative approach

creates an asymptotic bias that makes the resulting asymptotic bootstrap inference invalid.

We formally prove the asymptotic validity of our bootstrap tests in Section 4.3.27 To un-

derstand the bias produced by the alternative approach, it is useful to recall a key necessary

condition for bootstrap consistency, i.e., that the expected log likelihood under the bootstrap

distribution is maximized at the sample parameter estimate θ̂:

∂E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
∂θ

∣∣∣∣∣
θ=θ̂

= 0, (31)

26Rytchkov (2012), among others, applies a version of the latter approach to test in a robustness check the
null hypothesis of constant expected returns in a present-value setting.

27See also Section 4.2 and Stoffer and Wall (1991) for the asymptotic validity of the resampling scheme applied
to the innovation form representation.
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where E∗ denotes the expectation under the bootstrap distribution. The bootstrap applied

directly to the estimated standardized innovations et enforces condition (31) since:28

E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
= L

(
θ, {Yt}Tt=1

)
. (32)

In contrast, the alternative bootstrap approach based on the filtered state dynamics does not.

To show this, it is convenient to write the log-likelihood L
(
θ, {Yt}Tt=1

)
as a function of the state

innovations εXt , which are those bootstrapped under the second approach. The Kalman filter

in Appendix B yields εXt,t = Γ′Ktηt, where Kt is the Kalman gain. Therefore,

ηt =
(
Γ′Kt

)−1

L
εXt,t, (33)

with (Γ′Kt)−1
L the left inverse of the 3 × 2 matrix Γ′Kt.29 Substituting this expression for

ηt in the log-likelihood function we can show that the difference between L
(
θ, {Yt}Tt=1

)
and

E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
under the second bootstrap approach is explicitly given as

−1

2

T∑
t=1

vec
((

Γ′Kt
)−1′

L
S−1
t

(
Γ′Kt

)−1

L

)′ [
vec

(
εXt,tε

X′
t,t

)
− 1

T

T∑
t=1

vec
(
εXt,tε

X′
t,t

)]
6= 0. (34)

It is not zero because differences from the mean in the square parenthesis are not just summed

over the T observations, but first weighted by a term that varies with t and depends on the

Kalman gain and the filtered covariance of the prediction errors. Therefore, under the alternative

bootstrap approach, E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
is not necessarily maximized in θ̂, which means that

bootstrap consistency cannot be guaranteed.

We can easily quantify the asymptotic bias generated by the second bootstrap approach in

our application. To this end, we first simulate B = 500 bootstrap samples of the observables

{Y ∗t }Tt=1 under both bootstrap approaches, based on the unconstrained parameter estimate θ̂ in

Table 1. We then compute the expected log-likelihood E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
under both bootstrap

distributions, for various parameter values θ on a grid in a neighborhood of θ̂.

As expected, we find that when {Y ∗t }Tt=1 is bootstrapped under our approach the expected

log-likelihood is always maximized at the parameter value in the grid that is closest to the sample

estimate θ̂. In contrast, the expected log-likelihood under the second approach is maximized at

a parameter value that can be quite distant from θ̂.

28The analytical details of all derivations in this subsection are provided in Appendix D.
29The left inverse of a m×n matrix A with m > n and rank n is the n×m matrix A−1

L such that A−1
L A = In

and is computed as A−1
L = (A′A)−1A′.
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Figure 3 illustrates these biases. The largest biases arise for parameters γ1, δ1, and σµ.

Indeed, the maximum of the expected log-likelihood under the second approach yields parameter

values 0.211, 0.867 and 0.010, respectively, which are quite different from the corresponding

components in parameter vector θ̂, which are 0.304, 0.927 and 0.015. Also for parameter σD

(bottom panel) the bias is quite impressive, as the expected log-likelihood under the second

bootstrap distribution is maximized at 0.0005 instead of 0.002.

These biases obviously have first-order implications also for the distribution of simulated

observables {Y ∗t }Tt=1 under the second bootstrap approach. Figure 4 illustrates how the distri-

bution of observables generated by bootstrapping the filtered innovations in the latent states

can fail to capture the characteristics of observed dividends and returns. In particular, a 95%

confidence intervals of the simulated return volatility and of the correlation between returns

and dividend growth does not include the corresponding values in the data. On the contrary,

the distribution of average, standard deviation, autocorrelation and correlation of the simu-

lated observables using the innovation-form approach is always centred around the true values.

Consistent with this evidence, while our bootstrap test does not reject the null hypothesis of

no dividend growth predictability, the alternative (biased) bootstrap approach would reject the

hypothesis.

5 How much Predictability?

The weak evidence of dividend growth predictability produced by bootstrap likelihood-ratio

tests raises the question of the interpretation of the large R-squared (R2
div = 17.58%) esti-

mated in Section 3 for future dividends. Differently from standard predictive regressions, the

asymptotic distribution of estimated R-squares in the present-value model is not known in

closed-form. Therefore, the conventional asymptotic approach cannot be used, e.g., to quantify

the probability of estimating large R-squares because of chance alone. In contrast, our boot-

strap methodology can be applied with no major modification to consistently estimate such

probability, under the assumption that an asymptotic distribution for the estimated R-squares

exists.

Using steps 1)-3) of the algorithm in Section 4.3, we compute bootstrap estimates of param-

eter θ in the present-value model and obtain the bootstrap distribution of estimated R-squared

statistics under a given null hypothesis H0. Figure 5 displays the histogram of the bootstrap

distribution of estimated R-squares for future returns and future dividend growth, under the
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null hypotheses of a constant expected dividend growth. Even though the model-implied R-

squared for dividend growth under H0 is 0%, we find that the variability of estimated R-squares

is quite large. For instance, while the median estimated R2
Div value is 6.02% and the most

frequently estimated R-squared value is 0%, the probability of estimating a dividend R-squared

of at least 17.58%, as in the data, is 11.3%. These findings highlight that finite-sample vari-

ability is important for appropriately interpreting the finite-sample distribution of estimated

R-squares, as large R-squares as in the data can arise by chance alone, in a present-value model

where dividend predictability is absent.

Finally, Figure 6 displays the histogram of the bootstrap distribution of estimated R-squares

for future returns and future dividend growth, under the null hypothesis of a constant expected

return. In this case the probability of estimating a return R-squared larger than in the data,

i.e., 8.82%, is only 2.9%, supporting the return predictability evidence. However, the standard

deviation of the R2 distribution is still large under this null hypothesis and can be a concern

when interpreting the amount of predictability within a present-value model using the R2 metric.

5.1 Out-of-sample predictability

All R2 values reported in the previous sections are estimated using in-sample data. From

the perspective of real-time predictability, out-of-sample prediction is an additional important

aspect. For instance, Goyal and Welch (2008) study the out-of-sample predictive power of a

large set of variables for market returns and find that most of them perform worse than the

historical mean.

Following Campbell and Thompson (2008) and Goyal and Welch (2008), the incremental

out-of-sample predictive power for returns and dividend growth in the present-value model of

Section 2 can be estimated using the metrics:

R2
Ret,OS = 1−

∑T
t=0 (rt+1 − µ̃t)2∑T
t=0 (rt+1 − r̄t)2

, (35)

R2
Div,OS = 1−

∑T
t=0 (∆dt+1 − g̃t)2∑T

t=0

(
∆dt+1 −∆dt

)2 , (36)

where µ̃t and g̃t are the estimated expected return and expected dividend growth in the present-

value model, using observations up to time t, while r̄t and ∆dt are the sample means of returns

and dividend growth using data up to time t.

We estimate the degree of out-of-sample predictability according to measures (35) and (36),
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using an out-of-sample period starting in 1985. Standard predictive regressions of returns and

dividend growth on the lagged price-dividend ratio yield R2
Ret,OS = −12.32% and R2

Div,OS =

−4.38%, while we obtain R2
Ret,OS = −7.31% and R2

Div,OS = 5.88% for the present-value model.30

Thus, the point estimates for the benchmark present-value model might indicate an incremental

degree of out-of-sample predictability for dividend growth with respect to the sample mean

forecast.

Using a natural adaptation of our bootstrap method, we can estimate the distribution of

out-of-sample R-squares (35) and (36) under the null of no return or dividend predictability.

In particular, the distribution of the out-of-sample R-squares of returns and dividend growth

under the null hypothesis H0 is computed based on the following algorithm:

1) Using the estimated model parameters obtained using the first T years of data, under the

null hypothesis H0, denoted θ̂T,0, construct the (constrained) time series of standardized

innovations {ê0t}Tt=1, and a bootstrap sample of observations, {Y ∗t }Tt=1 as in steps 1)-3) in

Section 4.3.

2) Using bootstrap sample {Y ∗t }Tt=1, compute unconstrained maximum likelihood point esti-

mates θ̂∗T , by maximizing the log likelihood function logL
(
θ, {Y ∗t }Tt=1

)
, without imposing

null hypothesis H0.

3) Based on estimated parameters θ̂∗T and filtered state using data until time T , compute the

expected return and dividend growth for year T + 1, µ̃T and g̃T , respectively.

4) Repeat steps 1)-3) for T = Tin, . . . , Tmax − 1, where Tin is the minimum length of the

in-sample period and Tmax is the length of the full sample of data.31

5) The out-of-sample R2 statistics for returns and dividend growth are computed as

R2
Ret,OS = 1−

∑Tmax−1
T=Tin

(rT+1 − µ̃T )2∑Tmax−1
T=Tin

(rT+1 − r̄T )2
,

R2
Div,OS = 1−

∑Tmax−1
T=Tin

(∆dT+1 − g̃T )2∑Tmax−1
t=Tin

(
∆dT+1 −∆dT

)2 ,
30Precisely, we use data between 1946 and 1985 to estimate the parameters of the model and compute expected

return and expected dividend growth for 1986, which are compared to the realized return and dividend growth
in the same year. We then use data between 1946 and 1986 to compute predictions for 1987 and proceed in this
way until the end of the sample. Using data from 1946 to 2007 and starting the out-of-sample computations in
1972, Binsbergen and Koijen (2010) find R2

Ret,OS = 1.06% and R2
Div,OS = 5.76%.

31We start our out-of-sample computations in 1985, which means that the first estimation is done using
Tin = 40 years of data, and the length of the full sample in our case is Tmax = 65 years.
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where r̄T and ∆dT are historical means or returns and dividend growth up until time T .

6) Repeat steps 1)-5) a large number of times, B, to obtain a collection of bootstrap values

of the out-of-sample R2 statistics. The empirical distribution of these values provides an

approximation of the distribution of the R2
Ret,OS and R2

Div,OS statistics under the null

hypothesis H0.

This procedure borrows from Rodriguez and Ruiz (2009), who show how to compute non-

parametric bootstrap prediction intervals in state space models, while taking into account the

uncertainty linked to parameter estimation and not resorting to parametric assumptions for the

shock distribution in the model.

Given the variability of estimated in-sample R2
Div values highlighted previously, it is plausible

that the out-of-sample R-squared distribution might inherit similar features. Figure 7 illustrates

the properties of the bootstrap distributions of out-of-sample R-squares (35) and (36), generated

under the null hypothesis of constant expected cash flow growth in the present-value model.

Both distributions imply a large variability of estimated out-of-sample measures of predictability

for returns (upper panel) and dividend growth (lower panel). Even though under H0 expected

returns are time-varying, the estimated R2
Ret,OS distribution puts a large mass in regions where

no evidence of incremental predictability is estimated. Moreover, despite the absence of dividend

predictability under the null, the distribution of estimated R2
Div,OS puts a significant mass of

about 32% in regions of positive R2
Div,OS values, with a probability of estimating an out-of-

sample R-squared for dividends at least as large as in the data that is about 10%.

Using the same procedure, we obtain the bootstrap distributions of out-of-sample R-squares

(35) and (36), generated under the null hypothesis of constant expected return (see Figure

8). As in the previous case, both distributions imply a large variability of estimated out-of-

sample R-squared. The negative out-of-sample R-squared for returns (R2
Ret,OS = −7.31%) is

not significantly different from zero, with a probability of estimating an even smaller value that

is about 34%.

Overall, these findings show that the conclusions produced by estimated common measures

of out-of-sample predictability in present-value models have to be taken with caution and put

in relation to the finite-sample variability of these quantities under the null of no predictability.

On the one side, the limited amount of data information available can lead to a difficulty in

detecting predictive relations for returns when they are there. On the other side, high out-of-

sample R-squares for dividends can arise by chance alone, in a setting with constant expected
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dividend growth. In this respect, our nonparametric bootstrap approach provides a useful

tool to better interpret also the information provided by estimated out-of-sample measures of

predictability.

6 Robustness to Different Samples and Cash-flow Proxies

This Section discusses the robustness of our main findings with respect to the inclusion of the

prewar sample (Section 6.1) and to the use of different cash-flow proxies (Section 6.2).

6.1 A tale of two periods

The time series of US aggregate dividend growth for the prewar and the postwar periods exhibit

substantially different properties, suggesting a potential structural break in the dividend process

between these two sample periods. While tests based on standard predictive regressions for the

postwar sample find no evidence of dividend predictability, the evidence is reversed for the

prewar sample; see Chen (2009), among others. Therefore, it is natural to test whether our

bootstrap tests of predictability in present-value models can produce consistent results for both

the prewar and postwar samples.

We can parsimoniously account for the structural break in the parameters of the present-

value model, between the prewar and the postwar samples, by allowing the persistence and the

variability of expected returns and dividend growth, parametrized by δ1, γ1, σg, σµ, σd, ρgµ and

ρµd, respectively, to differ before and after 1946. The parameter estimates and p-values for the

LR tests of predictability in the prewar and postwar samples are collected in Table 4.

The estimation results support the evidence of a regime shift in the parameters of the

dividend process, approximately in 1946, since expected dividend growth is estimated as much

more volatile in the prewar sample. Similarly, expected returns are estimated as much less

persistent before 1946. Actually, the point estimate of γ1 in the prewar sample, i.e. γ1p, is even

negative, consistent with a negative autocorrelation of dividend growth between 1927 and 1946.

The asymptotic LR test clearly rejects the null of no dividend predictability in the prewar and

the postwar samples, with a p-value of 0% and 0.06%, respectively. The asymptotic test also

rejects the null of no return predictability for the postwar sample, with a p-value of 0%, but

not in the prewar sample, with a p-value of 9.45%.

The results of the bootstrap test again indicate that asymptotic tests in present-value models

tend to overreject the null of no dividend growth predictability, since all bootstrap p-values are
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larger than the p-values of the corresponding asymptotic test. However, while the null of no

dividend predictability cannot be rejected in the postwar sample at the 10% significance level, it

is clearly rejected in the prewar sample. In contrast, for the null of no return predictability, the

asymptotic and bootstrap test draw the same conclusions for both prewar and postwar samples.

In summary, when accounting for a regime shift in the parameters of the dividend and

return processes, our bootstrap test reconciles the conclusions produced by standard predictive

regressions and present-value models, producing dividend predictability findings consistent with

the evidence in Chen (2009), among others. The findings for the prewar sample also indicate

that our bootstrap test has power to detect dividend and return predictability structures based

on a quite limited data information, as it rejects the null of no dividend growth predictability

in the prewar sample using the information provided by only about 20 yearly observations.

6.2 Measuring cash flows: dividends or payout?

A branch of the recent literature on predictability argues that dividends are not a good measure

of total payout to investors and considers dividend growth and valuation ratios adjusted for stock

repurchases and (potentially) issuances. The underlying motivation refers to the fact that firms

may (partially) substitute dividends with repurchases, due e.g. to taxation or psychological

reasons (dividend smoothing). This alternative way of measuring aggregate dividends and

valuation ratios reflects the view of a representative investor holding the whole market (see,

e.g., Bansal and Yaron (2011)), while in our paper we hold the traditional portfolio view of an

investor holding one share forever.

Boudoukh, Michaely, Richardson, and Roberts (2007), among others,32 find that total and net

payout yields have a stronger predictive power for market returns than the dividend yield.

More recently, Sabbatucci (2015) argues that including M&A cash flows in dividend measures

increases both return and dividend growth predictability evidence from standard predictive

regressions. It is therefore interesting to look at the effects of such alternative cash-flow measures

for the estimation and testing of predictability hypotheses in present-value models.

Annual time series of repurchases and issuances from 1946 to 2003 are obtained from the

dataset constructed by Boudoukh, Michaely, Richardson, and Roberts (2007),33 and we thank

32See, e.g., Robertson and Wright (2006), Larrain and Yogo (2008) and Chen, Da, and Priestley (2012).
33The series are drawn from Michael Roberts’ website: http://finance.wharton.upenn.edu/∼mrrobert/. Data

are available since 1926, but we use data starting from 1946 for comparison with our main results in the paper.
The repurchase yield is only available beginning in 1971, thus repurchases are assumed to be zero until 1970.
Repurchases were of negligible size until the mid 1980s, thus this lack of data is likely to have little effect on
the results. Note that annual yearly returns in Boudoukh, Michaely, Richardson, and Roberts (2007) implicitly
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Serhiy Kozak for providing us with log dividend yield and dividend growth measures including

M&A distribution from 1946 to 2010.34 Figure 9 shows the dynamics of yearly cash-flow growth

(upper panel) and valuation ratios (lower panel) using different measures of cash-flow: dividend

(blue line), total payout (dividend plus repurchases, red line), net payout (dividend plus re-

purchases minus issuances, green line) and cash M&A (cash dividend plus M&A cash flows to

shareholders, magenta line).35 While dividend, total payout and cash M&A share similar pat-

terns (correlations are around 60%), issuances seem to be more related to returns, likely because

of strategic firm behaviour. Therefore, we focus our robustness checks on the total payout and

cash M&A as alternatives for cash dividends. Tables 5 and 6 report the results of the estimation

of the present-value model using total payout data and cash M&A, respectively, without impos-

ing any constraint and under the null hypotheses of no return predictability and no dividend

predictability. The tables also shows the values of the standard likelihood ratio statistics and

the corresponding asymptotic and bootstrap p-values, in percentage. The parameter estimates

are qualitatively similar to those shown in the main text and the conclusions concerning the

main predictability features are also similar: bootstrap p-values are always larger than those

obtained with asymptotic critical values, and they are in line with standard predictive regression

results. In fact, standard predictive regressions of cash flow growth on the log price dividend

ratio adjusted for M&A cash flows yield a marginally significant regression coefficient (of the

right sign) and an adjusted R-squared of 3.76% (see Table 7). Using the bootstrap test, we

also reject the null hypothesis of no dividend predictability at a 10% level but not at 5%. Us-

ing total payout measures, the estimated slope coefficient in standard predictive regressions is

insignificant and has the wrong sign, the adjusted R-squared of the regression is only -0.29%,

and our bootstrap test cannot reject the hypothesis of no dividend growth predictability with

a p-value of 16%.

7 Conclusion

Univariate predictive regressions of future returns and dividend growth on predictive variables

including the lagged price-dividend ratio have produced no apparent evidence of dividend pre-

assume market reinvestment of dividends. Thus, we adjust them to be consistent with our assumption of monthly
dividends reinvested at the risk-free rate.

34They are constructed using a CRSP-based measure of M&A cash dividends, while Sabbatucci (2015) uses
SDC Platinum data after 1980, which includes M&A of non-listed companies.

35Returns, as well as the Campbell-Shiller approximation, should also be adjusted for repurchases. However
to perform these adjustments, we would need information on the time-varying number of repurchased shares.
Therefore, for simplicity we abstract from the issue of time-varying capitalization.
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dictability in the postwar sample, suggesting that price-dividend ratios have mostly varied

because of discount rate shocks in that period. In contrast, latent variable approaches within

present-value models, which parsimoniously incorporate information from the joint time-series

of dividends and returns, have found a stronger evidence of a time-varying expected dividend

growth.

A natural explanation for these contrasting conclusions is the error-in-variable (EIV) prob-

lem inherent to predictability studies. This paper provides sharp evidence for a different ex-

planation, linked to the so far unexplored finite-sample properties of conventional tests of pre-

dictability in models with latent return and dividend expectations.

First, we show that conventional tests frequently reject the null of no dividend predictability

because of chance alone. Moreover, we find that large estimated R-squares for dividends can

arise by chance alone, even under the null of a constant expected dividend growth. These

findings stress the importance of combining a pure estimation approach with a reliable testing

method, when testing and quantifying the actual degree of predictability within present-value

models.

Second, in order to introduce a general and more reliable testing approach, we propose

a class of nonparametric bootstrap tests of predictability hypotheses in present-value models,

by applying the bootstrap to the innovation form of the Kalman filter, generated under the

relevant null hypothesis. We prove that the bootstrap tests imply a valid asymptotic inference

and demonstrate their improved properties in finite samples.

Third, we apply our bootstrap tests to US stock market data, based on a variety of specifica-

tions of the predictive information set. In contrast to the results implied by standard asymptotic

tests, we find a significant evidence in favour of time-varying expected returns, both in the pre-

war and the postwar samples, no evidence of time-varying dividend expectations in the postwar

sample and a strong dividend predictability in the prewar sample. This evidence reconciles the

diverging conclusions in the literature.

We finally propose a natural modification of our bootstrap testing method, which can be

used also to test the presence of out-of-sample predictability, while controlling the probability

of detecting predictive relations by chance alone. We find that the conclusions produced by

estimated common measures of out-of-sample predictability in present-value models have to

be taken with caution and need to be set in relation to the finite-sample variability of these

quantities under the null of no predictability.

From a broader methodological perspective, our bootstrap testing approach and our results
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have implication for a number of potentially more general aspects. First, while our bootstrap

tests can help to control more systematically the probability of rejecting a null hypothesis by

chance alone, our results also indicate that the information generated by the joint time series

of stock market returns and dividends might be insufficient to reliably identify time-variations

in dividend expectations, i.e., tests of dividend predictability in such settings may have a low

power.

A low power might arise because of the short time series available for many predictability

studies or because market price-dividend ratios aggregate into a single observable signal the

expectations of future dividends for different horizons, which are potentially difficult to identify

separately. As shown in Binsbergen, Brandt, and Koijen (2012) and Binsbergen, Hueskes, Koi-

jen, and Vrugt (2013), a more direct identification of dividend expectations at distinct horizons

can rely on the equity yield of dividend strips, which are dividend claims for single maturities.

Annual dividend growth is strongly predictable in the period from October 2002 to April 2011,

with univariate predictive regression R2s between 48% for the 5 year yield and 76% for the 1

year yield. This evidence suggests that dividend strip information can potentially improve the

power of tests of dividend predictability more generally. Tests of predictability in benchmark

present-value models may imply a low power also because of some form of model misspecifi-

cation generated, e.g., by an unmodeled heteroskedasticity or by measurement errors in the

observable variables. Piatti and Trojani (2017) and Schorfheide, Song, and Yaron (2018) study

tests of predictability in more general present value models incorporating heteroskedasticity in

the state dynamics and measurement errors.

Finally, our bootstrap testing method is in principle applicable more generally, in order to

more reliably test the relevant null hypotheses in models estimated by a latent variable approach

using their state space form. For instance, an interesting application could be the analysis of

multi-horizon and multi-scale predictability. However, such settings would require a formal

study of bootstrap validity under more general state dynamics than in this paper, in order to

appropriately model multiple predictability scales.36

36Recent evidence in the literature shows that the aggregation properties of linear ARMA processes are not
well-suited to model the multiple scales of return predictability (see, e.g., Bandi, Perron, Tamoni, and Tebaldi
(2018), Ortu, Tamoni, and Tebaldi (2013) and Bianchi and Tamoni (2016)). We thank an anonymous referee for
suggesting this interesting extension.
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A Price-dividend ratio

In this section we present the detailed derivation of Equation (7) in the text. From Campbell

and Shiller (1988) we have

pdt ' κ+ ρpdt+1 + ∆dt+1 − rt+1. (37)

By iterating this equation we find:

pdt ' κ+ ρ(κ+ ρpdt+2 + ∆dt+2 − rt+2) + ∆dt+1 − rt+1

=
∞∑
j=0

ρjκ+ ρ∞pd∞ +
∞∑
j=1

ρj−1(∆dt+j − rt+j)

=
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j),

(38)

assuming that ρ∞pd∞ = limj→∞ ρ
jpdt+j = 0, at least in expectation. Then, we take expectation

conditional to time t:

pdt '
κ

1− ρ
+
∞∑
j=1

ρj−1Et[∆dt+j − rt+j ]

=
κ

1− ρ
+

∞∑
j=1

ρj−1Et[gt+j−1 − µt+j−1]

=
κ

1− ρ
+

∞∑
j=0

ρjEt[gt+j − µt+j ].

(39)

Iterating the dynamics of µ̂t+1 and ĝt+1 and taking conditional expectation we find

Et[µ̂t+j ] = δj1µ̂t

and

Et[ĝt+j ] = γj1ĝt.
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Therefore,

pdt '
κ

1− ρ
+
∞∑
j=0

ρj [γ0 + γj1ĝt − δ0 − δj1µ̂t]

=
κ

1− ρ
+
γ0 − δ0

1− ρ
+

ĝt
1− ργ1

− µ̂t
1− ρδ1

= A+B2ĝt −B1µ̂t. (40)

The explicit expressions for the present-value coefficients A, B1 and B2 are the following:

A =
κ+ γ0 − δ0

1− ρ
,

B1 =
1

1− ρδ1
,

B2 =
1

1− ργ1
.

B Estimation Methodology

For estimation purposes, we cast the model in state space form, using demeaned state variables

µ̂t ≡ µt − δ0 and ĝt ≡ gt − γ0. We obtain the following linear transition dynamics:

ĝt+1 = γ1ĝt + εgt+1, (41)

µ̂t+1 = δ1µ̂t + εµt+1. (42)

The observable variables are dividend growth ∆dt+1 and the price-dividend ratio pdt+1. Mea-

surement equations for ∆dt+1 and pdt+1 are derived from the model-implied expressions for

dividend growth and price-dividend ratio. The measurement equation for dividend growth is

given by (5) while log price-dividend ratio is given by (7). Note however that Equation (7)

contains no error term, and as shown by Binsbergen and Koijen (2010), this feature can be ex-

ploited to reduce the number of transition equations in the model. By substituting the equation

for pdt in the measurement equation for dividend growth, we arrive at a final system with one

transition equation, (41), and two measurement equations:

∆dt+1 = gt + εdt+1. (43)

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1. (44)
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We use the Kalman filter to derive the likelihood of the model and we estimate it using ML.

The parameters to be estimated are the following:

θ = (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρµd, ρgd).

We assume that expectation processes are stationary, therefore parameters δ1 and γ1 are

bounded to be less than one in absolute value. The covariance matrix of the shocks, (6),

has to be positive definite, thus σg, σµ and σd are constrained to be positive, while the cor-

relation parameters are between −1 and 1.37 Rytchkov (2012) shows that it is impossible to

identify the whole covariance structure of shocks even when an infinitely long history of returns

and dividends is given, but only one element of Σ must be fixed to identify the whole matrix.

Thus, for identification purposes, we impose the constraint ρgd = 0, as in Binsbergen and Koijen

(2010). Overall the model implies 9 free parameters to estimate. The estimation procedure is

the following: We first define an expanded 4-dimensional state vector by the concatenation of

the original state variable ĝ and the process and observation noise random variables:

Xt =


ĝt−1

εgt

εµt

εdt

 ,

which satisfies:

Xt+1 = FXt + ΓεXt+1,

where

εXt+1 =


εgt+1

εµt+1

εdt+1

 ,

with conditional variance Σ, given in (6). Moreover,

F =


γ1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , and Γ =

 01×3

I3

 ,

37Moreover, the condition ρ2gµ + ρ2µd + ρ2gd < 1 has to hold for Σ to be positive definite
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The measurement equation,

Yt =

 ∆dt

pdt

 ,

is of the form

Yt = M0 +M1Yt−1 +M2Xt,

where

M0 =

 γ0

(1− δ1)A

 , M1 =

 0 0

0 δ1

 ,
and

M2 =

 1 0 0 1

B2(γ1 − δ1) B2 −B1 0

 .
The steps of the filter algorithm are the following:

• Initialize with the unconditional mean and covariance of the expanded state:

X0,0 = 04×1,

P0,0 = E(XtX
′
t).

• The time-update equations are

Xt,t−1 = FXt−1,t−1,

Pt,t−1 = FPt−1,t−1F
′ + ΓΣΓ′,

• The prediction error ηt and the variance-covariance matrix of the measurement equations

are then:

ηt = Yt −M0 −M1Yt−1 −M2Xt,t−1,

St = M2Pt,t−1M
′
2, (45)

where Yt is the observed value of the measurement equation at time t.
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• Update filtering:

Kt = Pt,t−1M
′
2S
−1
t ,

Xt,t = Xt,t−1 +Ktηt,

Pt,t = (I −KtM2)Pt,t−1,

where Kt is the Kalman gain.

To estimate model parameters, θ, we define the log-likelihood for each time t, assuming normally

distributed observation errors, as

lt(θ) = −1

2
log |St| −

1

2
η′tS
−1
t ηt,

where ηt and St denote prediction error of the measurement series and the covariance of the mea-

surement series, respectively, obtained from the KF. Model parameters are chosen to maximize

the log-likelihood of the data series:

θ̂ ≡ arg max
Θ
L
(
θ, {Yt}Tt=1

)
, (46)

with

L
(
θ, {Yt}Tt=1

)
=

T∑
t=1

lt(θ),

where T denotes the number of time periods in the sample of estimation.38

C Asymptotic Validity of the Bootstrap Likelihood Ratio Test

In this appendix we prove the validity of our nonparametric bootstrap likelihood ratio testing

procedure, i.e., the equivalence in distribution of LRT and LR∗T in Equations (10) and (23),

respectively, when B, T →∞, under the null hypothesis H0. It is well known that if H0 holds,

as T →∞, LRT follows a χ2
r distribution with r degrees of freedom, where r is the number of

parameter constraints defining the null hypothesis H0. Therefore, we only need to show that

also LR∗T is asymptotically χ2
r distributed.

Without loss of generality, let us consider for brevity the case in which the null hypothesis

to be tested is formed by zero restrictions, i.e., some of the model parameters are equal to

38For yearly data, as in our application, T is the number of years in the sample.
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zero. In such cases, the r restrictions can be written as θ2 = 0r×1, where the parameter vector

θ is partitioned as θ = [θ′1 θ′2]′, possibly after some reordering of the elements, where θ1 is

(k − r)× 1 and θ2 is r × 1-dimensional.

Let θ̂ be the unconstrained ML estimator of θ, while the pseudo-true value of θ in the

population under H0 is denoted by θ? = [θ?′1 01×r]
′, where θ?1 is the pseudo-true value of θ1,

i.e., the maximum of the population expected log likelihood function with respect to θ1 under

the (potentially) incorrect assumption H0 : θ2 = 0r×1.

Stoffer and Wall (1991) show that nonparametric bootstrap applied to the (standardized)

innovations {êt := S
−1/2
t (θ̂)ηt(θ̂)}Tt=1 yields a distribution of bootstrap residuals {ê∗t }Tt=1, which

can be used to compute a bootstrap distribution of ML estimators θ̂∗:

θ̂∗ = arg max
Θ

logL
(
θ, {Y ∗t }Tt=1

)
, (47)

where the Monte Carlo sequence {Y ∗t }Tt=1 is obtained by simulating dynamics (17)-(18) based on

bootstrap residuals {ê∗t }Tt=1 (see steps 1)-3) in Section 4.3). Stoffer and Wall (1991) also provide

an asymptotic justification of this procedure, showing, under general conditions, the equivalence

in distribution of
√
T (θ̂∗− θ̂) and

√
T (θ̂−θ?) as B, T →∞, and assuming for simplicity B = T .

For simplicity of notation we assume that the ML setting holds, but all results hold true with

obvious modifications in a PML setting, using sandwich variance-covariance matrix estimators,

see Stoffer and Wall (1991):

√
T (θ̂ − θ?) d→ N

(
0, I(θ?)−1

)
, (48)

where I(θ) = plimT→∞
1
TE[−∂2 logL(θ)/∂θ∂θ′] is the asymptotic information matrix, and

√
T (θ̂∗ − θ̂) d→ N

(
0, I(θ?)−1

)
. (49)

The constrained ML estimator θ̂0 can then be expressed as θ̂0 =
[
θ̂′1 01×r

]′
, and the

asymptotic distribution of θ̂1 is given by:39

√
T (θ̂1 − θ?1)

d→ N
(
0, I11(θ?1)−1

)
, (50)

where I11(.) is the (k− r)× (k− r) top left block of the asymptotic information matrix I(.) of

39See e.g. Davidson and MacKinnon (1999a), chapter 10.
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the unrestricted model. Analogously, the constrained bootstrap Maximum Likelihood estimator

θ̂∗0 can be partitioned as θ̂∗0 =
[
θ̂∗′1 01×r

]′
and its asymptotic distribution is given by:

√
T (θ̂∗1 − θ̂1)

d→ N
(
0, I11(θ?1)−1

)
. (51)

For ease of notation, let us denote by l(θ, y) the log-likelihood of the model, i.e. l(θ, y) ≡

logL
(
θ, {Yt}Tt=1

)
. Using a second order Taylor expansion around θ̂∗, the bootstrap log-likelihood

l(θ̂∗0, y
∗) can be written as

l(θ̂∗0, y
∗) = l(θ̂∗, y∗)− 1

2
(θ̂∗0 − θ̂∗)′H(θ̄)(θ̂∗0 − θ̂∗). (52)

where H(.) is the Hessian matrix,40 and θ̄ ∈ (θ̂∗0, θ̂
∗). Using (52), the bootstrap likelihood ratio

statistics LR∗T in (23) becomes

LR∗T = 2
(
l(θ̂∗, y∗)− l(θ̂∗0, y∗)

)
= −(θ̂∗0 − θ̂∗)′H(θ̄)(θ̂∗0 − θ̂∗).

Consistency of θ̂∗ implies consistency of θ̄, and using information matrix inequality41 we get:

LR∗T
a
= T (θ̂∗0 − θ̂∗)′I(θ?)(θ̂∗0 − θ̂∗). (53)

Let we now define the score vector g(θ, y) of first derivatives of l(θ, y) with respect to

the elements of θ,42 and the asymptotic score vector s ≡ plimT−1/2g(θ?, y). From a Taylor

expansion of the likelihood equation g(θ̂∗, y∗) = 0 we obtain the following asymptotic equalities:

T 1/2(θ̂∗ − θ̂) a
= I−1T−1/2g(θ?)

T 1/2(θ̂∗1 − θ̂1)
a
= I−1

11 T
−1/2g1(θ?),

which can be used to eliminate the estimators in (53) when we take the limit, obtaining an

expression that involves only asymptotic information matrix and asymptotic score vector, as

40The k × k matrix of second derivatives of the log-likelihood with respect to θ.
41Let the asymptotic Hessian matrix be defined as H(θ) ≡ plim 1

T
H(θ). The information matrix equality,

which assumes correct specification of the model, implies that I(θ) = −H(θ).
42In the same way, g1(θ, y) is the subvector of first derivatives of l(θ, y) with respect to the elements of θ1
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follows:

plimT 1/2(θ̂∗ − θ̂∗0) = plimT 1/2(θ̂∗ − θ̂)− plimT 1/2(θ̂∗0 − θ̂)

= I−1s− I−1
11 s1

= Js, (54)

where s1 is the subvector of s that corresponds to θ1, and

J ≡ I−1 −

 I−1
11 0(k−r)×r

0r×(k−r) 0r×r

 . (55)

Using (54), the probability limit of LR∗T for T →∞ becomes:

plimLR∗T = s′JIJs. (56)

Moreover, from (55), we have that

IJ = Ik −

 I11 I12

I21 I22

 I−1
11 0(k−r)×r

0r×(k−r) 0r×r

 =

 0(k−r)×(k−r) 0(k−r)×r

−I21I−1
11 Ir

 ≡ Q, (57)

which implies I−1Q = J, JQ = J and JIJ = J, from which we conclude that (56) can be

written as

plimLR∗T = s′Js. (58)

Now, notice that s is asymptotically N(0, I), thus s = I1/2s̃, where s̃ is asymptotically standard

normal. Therefore, (58) can be written as

plimLR∗T = s̃′I1/2JI1/2s̃, (59)

which is χ2 distributed with degrees of freedom equal to the rank of matrix I1/2JI1/2:

r(I1/2JI1/2) = r(I−1/2QI1/2) = r,

using the fact that I has full rank and that the rank of Q is r since its first k− r rows are zero.

Therefore, we can conclude that LR∗T
d−→ χ2

r , as we wanted to show.
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D Consistency of Alternative Bootstrap Approaches

A key feature of our nonparametric bootstrap approach is that it is based on a resampling of the

standardized residuals {êt := S
−1/2
t (θ̂)ηt(θ̂)}Tt=1 in the observable dynamics of the innovation

form representation (17)-(18) implied by the present-value model. We show that this feature

is essential to obtain formal bootstrap validity. An alternative informal bootstrap approach,

discussed in Section 4.6, relies on bootstrapping the filtered residuals εXt of the unobservable

state space dynamics. This appendix illustrates in detail the analytic derivations used to show

that this alternative approach creates an asymptotic bias that makes the resulting asymptotic

bootstrap inference invalid.

A necessary condition for bootstrap consistency is that the expected log-likelihood under the

bootstrap distribution is maximized at the sample parameter estimate θ̂. The bootstrap applied

directly to the estimated standardized innovations et enforces condition (31) by construction,

since:

E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
= E∗

[
−1

2

T∑
t=1

(
log |St|+ e∗

′
t e
∗
t

)]

= −1

2

T∑
t=1

(
log |St|+

1

T

T∑
t=1

e′tet

)
,

so that L
(
θ, {Yt}Tt=1

)
− E∗

[
L
(
θ, {Y ∗t }Tt=1

)]
is equal to

−1

2

T∑
t=1

(
e′tet −

1

T

T∑
t=1

e′tet

)
= 0

i.e., θ̂ maximizes E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
.43

The alternative bootstrap approach instead is based on resampling the state innovations εXt .

From the Kalman filter in Appendix B we have:

εXt,t = Γ′Xt,t = Γ′ (FXt−1,t−1 +Ktηt) = Γ′Ktηt, (60)

since Γ′F = 03×4, where Kt is the Kalman gain. Therefore,

ηt =
(
Γ′Kt

)−1

L
εXt,t, (61)

43See also Lemma 1 in Stoffer and Wall (1991).
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with (Γ′Kt)−1
L the left inverse of the 3× 2 matrix Γ′Kt.

The log-likelihood in the model can therefore be written as:

L
(
θ, {Yt}Tt=1

)
= −1

2

T∑
t=1

(
log |St|+ η′tS

−1
t ηt

)
= −1

2

T∑
t=1

(
log |St|+ εX

′
t,t

(
Γ′Kt

)−1′

L
S−1
t

(
Γ′Kt

)−1

L
εXt,t

)
= −1

2

T∑
t=1

[
log |St|+ Tr

((
Γ′Kt

)−1′

L
S−1
t

(
Γ′Kt

)−1

L
εXt,tε

X′
t,t

)]
= −1

2

T∑
t=1

[
log |St|+ vec

((
Γ′Kt

)−1′

L
S−1
t

(
Γ′Kt

)−1

L

)′
vec

(
εXt,tε

X′
t,t

)]
.

(62)

Accordingly, the expected log likelihood under the second bootstrap distribution is:

E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
= −1

2

T∑
t=1

[
log |St|+ vec

((
Γ′Kt

)−1′

L
S−1
t

(
Γ′Kt

)−1

L

)′
E∗
[
vec

(
εX∗t,t ε

X∗′
t,t

)]]

= −1

2

T∑
t=1

[
log |St|+ vec

((
Γ′Kt

)−1′

L
S−1
t

(
Γ′Kt

)−1

L

)′ 1

T

T∑
t=1

vec
(
εXt,tε

X′
t,t

)]
,

(63)

which is different from L
(
θ, {Yt}Tt=1

)
.

The difference between (62) and (63) under the second bootstrap approach is explicitly given

as

−1

2

T∑
t=1

vec
((

Γ′Kt
)−1′

L
S−1
t

(
Γ′Kt

)−1

L

)′ [
vec

(
εXt,tε

X′
t,t

)
− 1

T

T∑
t=1

vec
(
εXt,tε

X′
t,t

)]
6= 0. (64)

It is not zero because differences from the mean in the square parenthesis are not just summed

over the T observations, but first weighted by a term that varies with t and depends on the

Kalman gain and the filtered covariance of the prediction errors. Therefore, under the alternative

bootstrap approach, E∗
[
L
(
θ, {Y ∗t }Tt=1

)]
is not necessarily maximized in θ̂.

E Broader Specifications of the Predictive Information Set

While the benchmark present-value model in Section 2 is useful for highlighting the main issues

of tests of predictability hypotheses, it might not provide the most accurate description for

43



the dynamics of dividend-return expectations and their link to price-dividend ratios. Richer

specifications might improve the evidence of predictability and it is useful to study the robustness

of our previous results, with respect to an enlarged specification of the predictive information

set.

Several potential predictors have been considered in the literature, to improve the statisti-

cal evidence of univariate predictive regressions with the lagged price-dividend ratio.44 Such

predictive variables can naturally extend the benchmark present-value model, in order to par-

simoniously aggregate the joint information generated by the time series of dividend growth,

price-dividend ratios and additional predictors, following the present-value approach proposed

in Yun (2012).

Using the conventional asymptotic approach, variables such as the book-to-market ratio

(bm), the stock market variance (svar), the consumption-wealth-income ratio (cay) and the

BAA-rated corporate bond yield (BAA) significantly improve the forecasts of future returns

and future dividend growth in the present-value model.45 Using our general bootstrap tests of

Section 4, we study the robustness of our findings on dividend and return predictability, with

respect to the choice of the predictive information set.

E.1 The present-value model with additional predictive variables: estima-

tion results

Expected dividend growth, expected return and an additional predictive variable, zt, follow the

following first-order vector autoregression:

gt+1 = γ0 + γ1(gt − γ0) + γ2(zt − ξ0) + εgt+1, (65)

µt+1 = δ0 + δ1(µt − δ0) + δ2(zt − ξ0) + εµt+1, (66)

zt+1 = ξ0 + ξ1(zt − ξ0) + εzt+1. (67)

In contrast to the benchmark dynamics (3)-(4), the additional predictive variable zt can help

to better explain expected returns or expected dividend growth. As such, it appears in the

44Goyal and Welch (2008) and Koijen and Van Nieuwerburgh (2011) give an excellent review of this literature.
Even though less studies have focused on dividend growth predictability, Lettau and Ludvigson (2005) and Favero,
Gozluklu, and Tamoni (2011), among others, provide evidence that predictive variables like cay and proxies of
demographics help forecasting cash flow growth.

45The benchmark present-value model assumes a constant return volatility. Piatti and Trojani (2017) develop
a present-value approach with time-varying return and dividend growth risks to predictive regression.
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price-dividend ratio implied by a standard Campbell and Shiller (1988) log linearization:

pdt = A− (B1µ̂t +B3ẑt) + (B2ĝt +B4ẑt), (68)

where B3 = δ2
δ1−ξ1

(
1

1−ρδ1 −
1

1−ρξ1

)
, B4 = γ2

γ1−ξ1

(
1

1−ργ1 −
1

1−ρξ1

)
and ẑt = zt−ξ0 is the demeaned

additional predictive variable at time t; see, e.g., Yun (2012).

The model is again estimated in state space form with a Kalman filter.46 For brevity,

we report results only for additional predictive variables that significantly predict returns and

dividend growth using standard asymptotic tests. These include the book-to-market ratio (bm),

the stock market variance (svar), the consumption-wealth-income ratio (cay) and the corporate

bond yield on BAA-rated bonds (BAA). The description of the variables is provided by Goyal

and Welch (2008) and their updated time series through 2010 are available at Goyal’s website.47

Estimated present-value model parameters and R-squares for returns and dividend growth

are collected in Table 8, together with the R-squared estimated from standard predictive re-

gressions with the additional predictive variable zt. In each present-value model, the predictive

information set enlarged by the additional predictor zt increases the estimated R-squares for

dividends and returns, relative to the findings for the benchmark model in Section 3. While

estimated R-squares for returns are similar to those obtained from the standard predictive re-

gressions in Panel C of Table 8, the estimated R-squared values for dividend growth are much

higher, consistently with the findings of Section 3 for the benchmark present-value model.

E.2 Tests of constant dividend and return expectations

Cash flow predictability is again tested by testing the null hypothesis of constant expected

dividend growth. In the extended present-value model, this hypothesis is equivalent to the

following constraints, which are tested using a standard LR statistic that is asymptotically χ2
5

distributed:

H0 : γ1 = γ2 = σg = ρgµ = ρgz = 0 . (69)

We test this null hypothesis for zt = bm and zt = svar, which are the variables that seem to

increase more model-implied dividend growth predictability, measured in terms of R-squared,

compared to the benchmark model (see again Panel B of Table 8). Panel B of Table 9 shows that

the asymptotic likelihood ratio test rejects null hypothesis (69) for both choices of predictive

46Supplemental Appendix F accurately describes the state space representation and the Kalman filter estima-
tion procedure for the present-value model with the additional predictor zt.

47See the web page http://www.hec.unil.ch/agoyal/.
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variable zt, with a p-value below 0.5%.

To apply our bootstrap testing approach, we introduce the extended vectors of observed

variables Yt := (∆dt, pdt, zt)
′ and state variables Xt := (ĝt−1, ε

g
t , ε

µ
t , ε

d
t , ε

z
t )
′, in order to write the

present-value model (65)-(67) in state space form:

Xt+1 = FXt +But+1 + ΓεXt+1 , (70)

Yt = M0 +M1Yt−1 +M2Xt , (71)

with parameter-dependent matrices F , B, Γ, M0, M1, M2 and variable ut := zt−1 − ξ0.

Given Xt,t−1 the best linear prediction of Xt based on data {Yt}t−1
s=1 and ηt = Yt −M0 −

M1Yt−1 −M2Xt,t−1, the innovations form representation of model (65)-(67) follows from the

Kalman filter:

Xt+1,t = FXt,t−1 +But+1 + FKtηt , (72)

Yt = M0 +M1Yt−1 +M2Xt,t−1 + ηt . (73)

From this dynamics, the bootstrap likelihood ratio test in the extended present-value model is

performed with the algorithm presented in Section 4.3.48

Panel C of Table 9 shows that the bootstrap likelihood ratio test produces different con-

clusions from the asymptotic test. The bootstrap test p-values are always bigger than the

asymptotic p-values and we can never reject null hypothesis (69) at the 5% significance level,

indicating that the evidence of dividend growth predictability is similarly weak in the extended

present-value models, as it was in Section 3 for the benchmark model.

The null hypothesis of no return predictability in the extended present-value model is equiv-

alent to the following parametric constraints:

H0 : δ1 = δ2 = σµ = ρgµ = ρµd = ρµz = 0 . (74)

For brevity, we test again this null hypothesis using the two predictive variables that mostly

increase the return predictability evidence, as measured by the model-implied R2
Ret, namely

48To run the bootstrap algorithm in the extended present-value model, we replace Equation (17) in step 3) of
the algorithm in Section 4 by the following bootstrap simulation scheme:

X∗t+1,t = FX∗t,t−1 +But+1 + FKtS1/2
t ê∗0t ,

using parameter matrices detailed in Supplemental Appendix F.
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zt = bm and zt = cay; see again Panel B of Table 8. Panel B of Table 10 shows that the

asymptotic likelihood ratio test rejects null hypothesis (74) for all choices of the predictive

variable zt, with a p-value below 0.05%. The p-values for the bootstrap test are reported in

Panel C of Table 10. Consistently with the asymptotic test results and the bootstrap test

results in Section 3 for the benchmark model, null hypothesis (74) is again clearly rejected, with

p-values of about 0.5%.

E.3 Variability of estimated R-squared values

To explain the weak evidence of dividend growth predictability and the large estimated dividend

R-squares in the extended present-value models, Figure VIII of the Supplemental Appendix

plots the bootstrap distribution of estimated R-squares for returns and future dividend growth,

simulated under null hypothesis (69), for two different choices zt = bm (left panels) and zt =

svar (right panels) of the additional predictive variable.

The bootstrap distribution of estimated R-squares under the null of constant expected div-

idend growth is similar to the one estimated in the benchmark model, with a large variability

of estimated R-squares. The increased predictive information generated by zt tends to rise the

probability of correctly estimating an R-squared of 0% for dividend growth under the given null

hypothesis for zt = bm, while the distribution of R2
Div displays more variability for zt = svar.

To illustrate, while the median estimated R2
Div-value is 6.23% for zt = bm (9.41% for zt = svar),

the most frequently estimated R-squared value is 0%, but the probability of estimating a divi-

dend R-squared of at least 22.32% (25.71%), as in the data, is still as large as 8.20% (10.60%).

In summary, finite-sample variability again produces large estimated R-squares by chance alone,

within a present-value model where dividend predictability is absent.
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F Tables and Figures

Table 1: Results of the estimation of the present-value model in Section 2. The model is estimated by
maximum likelihood, using yearly data from 1946 to 2010 on log dividend growth rates and log
price-dividend ratio. Panel A presents estimates of the coefficients of the underlying processes.
Panel B reports resulting coefficients of the present-value decomposition pdt = A−B1µ̂t+B2ĝt.
Bootstrapped standard errors are in parentheses.

Panel A: Maximum likelihood estimates
γ0 δ0 γ1 δ1

0.057 0.083 0.304 0.927
(0.009) (0.010) (0.337) (0.089)

σg σµ σD ρg,µ ρµ,D
0.065 0.015 0.002 0.231 -0.972

(0.023) (0.024) (0.028) (0.419) (0.606)

Panel B: Implied present-value parameters
ρ A B1 B2

0.974 3.637 10.332 1.421
(0.004) (0.140) (2.418) (6.396)
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Table 2: Constrained ML estimates of the present-value model and LR statistics for the tests of no
return predictability (H0 : δ1 = σµ = ρgµ = ρµd = 0) and no dividend growth predictability
(H0 : γ1 = σg = ρgµ = 0). The first column reports the results of the unconstrained estimation,
from Table 1. The second panel reports the R-squares for returns and dividend growth implied
by the estimated present-value model. LogL denotes the pseudo log-likelihood obtained, LR
is the value of the Likelihood Ratio statistic computed using (10), As− pval and Boot− pval
denote percentage p-values of the asymptotic and bootstrap LR tests, respectively.

Unconstrained No Ret Pred No Div Pred

γ0 0.057 0.072 0.055
δ0 0.083 0.079 0.082
γ1 0.304 0.996 0
δ1 0.927 0 0.903
σg 0.065 0.002 0
σµ 0.015 0 0.021
σd 0.002 0.069 0.068
ρgµ 0.231 0 0
ρµd -0.972 0 0.357

R2
ret 8.82% 0.00% 10.46%

R2
div 17.58% −0.12% 0.00%

LogL 230.84 215.91 224.33
LR 29.87 13.02

As− pval 0.00% 0.46%
Boot− pval 0.50% 9.50%

Table 3: Finite-sample sizes of the asymptotic and bootstrap tests, for the null hypotheses of no return
predictaility (H0 : δ1 = σµ = ρgµ = ρµd = 0) and no dividend growth predictability (H0 : γ1 =
σg = ρgµ = 0). The finite-sample sizes of the asymptotic and bootstrap test, denoted α∗

T and
αT , respectively, are computed for a nominal size α of 5%.

No Ret Pred No Div Pred

Asymptotic test 60.5% 25.8%
Bootstrap test 5% 8%
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Table 4: Unconstrained and constrained ML estimates of the present-value model using long sample
(1927-2010) and assuming a regime shift in 1946 for the persistence, volatility and correlation
parameters. The table also shows LR statistics for the tests of constant expected returns
(prewar or postwar) and constant expected dividend growth (prewar and postwar). LogL
denotes the pseudo log-likelihood obtained and LR is the value of the Likelihood Ratio statistic.
As − pval and Boot − pval denote percentage p-values of the asymptotic and bootstrap LR
tests, respectively.

Unconstr No Ret Pred - pre No Ret Pred - post No Div Pred - pre No Div Pred - post

γ0 0.056 0.053 0.050 0.063 0.057
δ0 0.087 0.094 0.089 0.112 0.100
γ1p -0.163 0.517 0.084 0 -0.135
γ1d 0.382 0.442 0.999 0.298 0
δ1p 0.740 0 0.739 0.546 0.483
δ1d 0.951 0.960 0 0.974 0.954
σgp 0.222 0.148 0.223 0 0.233
σgd 0.064 0.064 0.007 0.058 0
σµp 0.051 0 0.042 0.140 0.079
σµd 0.012 0.012 0 0.012 0.015
σdp 0.074 0.125 0.025 0.236 0.066
σdd 0.008 0.009 0.072 0.032 0.068
ρgµp -0.719 0 -0.208 0 -0.658
ρgµd 0.273 0.247 0 0.170 0
ρµdp 0.695 0 0.978 0.242 0.753
ρµdd -0.962 -0.969 0 0.285 0.328

R2
ret,p 3.81% 0.00% 1.19% -21.76% -1.34%

R2
ret,d 7.35% 7.06% 0.00% 7.12% 8.37%

R2
div,p 77.93% 71.44% 85.50% 0.00% 90.08%

R2
div,d 23.44% 23.00% -11.04% 15.59% 0.00%

LogL 284.45 280.49 262.32 261.75 275.83
LR 7.92 44.26 45.40 17.24

As− pval 9.45% 0.00% 0.00% 0.06%
Boot− pval 11% 0.00% 0.00% 14%
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Table 5: Unconstrained and constrained ML estimates of the present-value model using total payout
(dividend plus repurchases) as an alternative measure of dividends. The table also shows LR
statistics for the tests of constant expected returns (H0 : δ1 = σµ = ρgµ = ρµd = 0) and
constant expected dividend growth (H0 : γ1 = σg = ρgµ = 0). LogL denotes the pseudo
log-likelihood obtained and LR is the value of the Likelihood Ratio statistic. As − pval and
Boot−pval denote percentage p-values of the asymptotic and bootstrap LR tests, respectively.

Unconstrained No Ret Pred No Div Pred

γ0 0.067 0.086 0.065
δ0 0.104 0.098 0.102
γ1 0.316 0.994 0
δ1 0.843 0 0.825
σg 0.076 0.003 0
σµ 0.031 0 0.033
σd 0.001 0.080 0.080
ρgµ 0.478 0 0
ρµd 0.878 0 0.403

R2
ret 16.01% 0.00% 6.56%

R2
div 12.79% 0.16% 0.00%

LogL 200.36 187.08 196.39
LR 26.55 7.91

As− pval (%) 0.00% 4.78%
Boot− pval (%) 1.00% 16.00%

Table 6: Unconstrained and constrained ML estimates of the present-value model using cash M&A
(cash dividends plus M&A cash flows) as an alternative measure of dividends. The table also
shows LR statistics for the tests of constant expected returns (H0 : δ1 = σµ = ρgµ = ρµd = 0)
and constant expected dividend growth (H0 : γ1 = σg = ρgµ = 0). LogL denotes the pseudo
log-likelihood obtained and LR is the value of the Likelihood Ratio statistic. As − pval and
Boot−pval denote percentage p-values of the asymptotic and bootstrap LR tests, respectively.

Unconstrained No Ret Pred No Div Pred

γ0 0.080 0.086 0.079
δ0 0.115 0.122 0.114
γ1 0.168 0.881 0
δ1 0.896 0 0.904
σg 0.161 0.034 0
σµ 0.027 0 0.029
σd 0.068 0.173 0.177
ρgµ 0.618 0 0
ρµd 0.216 0 0.682

R2
ret 5.34% 0.00% 6.41%

R2
div 15.21% 4.41% 0.00%

LogL 166.84 161.56 142.56
LR 48.55 10.57

As− pval (%) 0.00% 1.43%
Boot− pval (%) 10.50% 7.00%
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Table 7: This table summarizes the return and dividend growth predictability evidence using different
cash-flow proxies, i.e. standard cash dividends, total payout and dividends corrected for M&A
related cash flows. Data are annual from 1946 to 2010 (to 2003 for total payout). The first
panel shows the estimated slope coefficient of standard predictive regressions, as long as their
Newey-West corrected t-statistics and p-values, and the adjusted R-squared of the regressions.
The second panel shows the R-squares implied by the estimated present-value model and the
p-values of asymptotic and bootstrap tests of predictability.

Panel A: Predictive Regressions Results
Dividends Returns

β tstat p-value R2 β tstat p-value R2

Cash Dividends -0.016 -0.644 52.22% -0.65% -0.122 -2.961 0.43% 8.45%
Total Payout -0.033 -0.947 34.78% -0.29% -0.212 -3.840 0.03% 14.81%
Cash M&A 0.103 1.857 6.81% 3.53% -0.110 -2.589 1.20% 4.83%

Panel B: Present-value Model R-squares and Test Results
R-squares Test p-values

Asymptotic Test Bootstrap Test
R2
Div R2

Ret Div Ret Div Ret
Cash Dividends 17.58% 8.82% 0.46% 0.00% 9.50% 0.50%

Total Payout 12.79% 16.01% 4.78% 0.00% 16.00% 1.00%
Cash M&A 15.21% 5.34% 1.43% 0.00% 7.00% 10.50%
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Table 8: Panel A reports estimation results of the extended present-value model, using as predictor
variables the book-to-market ratio (BM), stock variance (SV AR), CAY and the BAA corpo-
rate bond yield (BAA), respectively. The models are estimated using annual data from 1946
to 2010. Panel B reports the model-implied R-squared values for return and dividend growth,
in percentage, computed as in (8)-(9), while Panel C reports R-squared from standard OLS
predictive regressions of returns and dividend growth on lagged price-dividend ratio and each
predictive variable zt:

rt+1 = ar + brpdt + γrzt + εrt+1

∆dt+1 = ad + bdpdt + γdzt + εdt+1.

BM SV AR CAY BAA

Panel A: Maximum-likelihood estimates
γ0 0.051 0.056 0.050 0.057
δ0 0.071 0.129 0.077 0.090
γ1 0.234 0.475 0.338 0.296
δ1 0.878 0.993 0.926 0.920
σg 0.064 0.078 0.066 0.065
σµ 0.016 0.018 0.031 0.018
σd 0.013 0.018 0.015 0.008
ρgµ 0.220 -0.454 -0.308 0.177
ρµd -0.144 -0.758 -0.596 -0.167
ξ0 0.487 0.020 0 0.082
ξ1 0.913 0.418 0.733 0.939
ρgz -0.298 -0.764 -0.528 -0.250
ρµz 0.567 0.804 0.882 0.485
ρdz 0.597 -0.594 -0.775 0.702
σz 0.102 0.021 0.014 0.010
δ2 0.019 -0.285 -0.396 -0.025
γ2 0.067 1.652 0.837 -0.014

Panel B: Model-implied R-squared
R2
ret 10.13% 9.70% 17.58% 9.65%

R2
div 22.32% 25.71% 19.81% 18.29%

Panel C: Predictive regression R-squared
R2
ret 10.34% 12.24% 15.40% 13.81%

R2
div 4.26% 8.02% 0.95% 3.03%
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Table 9: Test of no dividend growth predictability in the context of the extended present-value model:

H0 : γ1 = γ2 = σg = ρgµ = ρgz = 0.

Panel A reports constrained estimation results, using as predictor variables the book-to-market
ratio (BM) and stock variance (SV AR), respectively. The models are estimated using annual
data from 1946 to 2010. Panel B reports the p-values of the test, using the asymptotic
distribution of the LR statistic, and the effective size of the asymptotic test, for a nominal
size α = 5%, while Panel C reports the p-values of the bootstrap test. Finite sample size
computations and bootstrap tests are based on 1000 bootstrap samples.

BM SV AR

Panel A: Constrained Maximum-likelihood estimates
γ0 0.056 0.055
δ0 0.078 0.094
γ1 0 0
δ1 0.887 0.960
σg 0 0
σµ 0.019 0.031
σd 0.068 0.068
ρgµ 0 0
ρµd 0.382 -0.029
ξ0 0.504 0.021
ξ1 0.904 0.363
ρgz 0 0
ρµz 0.681 0.927
ρdz 0.136 -0.216
σz 0.101 0.022
δ2 0.006 -0.701
γ2 0 0

Panel B: Asymptotic test
p− value (%) 0.22% 0.19%

empirical size (%) 22.70% 28.60%

Panel C: Bootstrap test
p− value (%) 7.40% 10.20%
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Table 10: Test of no return predictability in the context of the extended present-value model:

H0 : δ1 = δ2 = σµ = ρgµ = ρµd = ρµz = 0.

Panel A reports constrained estimation results, using as predictor variables the book-to-
market ratio (BM) and CAY , respectively. The models are estimated using annual data
from 1946 to 2010. Panel B reports the p-values of the test, using the asymptotic distribution
of the LR statistic, and the effective size of the asymptotic test, for a nominal size α = 5%,
while Panel C reports the p-values of the bootstrap test. Finite sample size computations
and bootstrap tests are based on 1000 bootstrap samples.

BM CAY

Panel A: Constrained Maximum-likelihood estimates
γ0 0.070 0.072
δ0 0.075 0.080
γ1 0.960 0.996
δ1 0 0
σg 0.008 0.003
σµ 0 0
σd 0.067 0.069
ξ0 0.234 -0.006
ξ1 0.997 0.857
ρgz 0.811 -0.796
ρµz 0 0
ρdz 0.215 -0.253
σz 0.104 0.014
δ2 0 0
γ2 -0.001 0.015

Panel B: Asymptotic test
p− value (%) 0.01% 0.00%

empirical size (%) 14.10% 28.10%

Panel C: Bootstrap test
p− value (%) 0.50% 0.30%
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Figure 1: The first (second) panel displays the quantiles of the empirical distribution of the LR statistics
for the tests of constant expected returns (dividend growth), obtained through a nonpara-
metric bootstrap simulation procedure, against the quantiles of the asymptotic chi-squared
distribution of the statistics (dotted red line). The vertical dotted line denotes the 95%
quantile of this distribution.
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Figure 2: Test for normality of the filtered innovations for the unconstrained model and under different
null hypotheses (No return predictability, no dividend growth predictability, equal autore-
gressive coefficients and δ1− γ1 = 0.05, 0.15, . . . , 0.95). The two axes show the p-value of the
Jarque-Bera test applied to the filtered dividend and price-dividend shocks, respectively.
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Figure 3: Average log-likelihood, i.e. E∗ [L (θ, {Y ∗
t }Tt=1

)]
, over B = 500 bootstrap samples {Y ∗

t }Tt=1

generated from the innovation approach (Innovation Form, blue line) and the alternative
approach (State Dynamics, red line), as a function of one specific parameter, keeping all

other parameters fixed at their value in θ̂. The vertical line in each panel denotes the value
in θ̂ of the parameter that is allowed to vary. The parameters considered are γ1 (top left), δ1
(top right), σg (middle left), σµ (middle right), and σD (bottom).
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Figure 4: Distribution of selected statistics of the simulated observables over B = 1000 bootstrap
samples {Y ∗

t }Tt=1 generated from the innovation approach (Innovation Form, blue bars) and
the alternative approach (State Dynamics, yellow bars). The vertical red line in each panel
denotes the value in the data. The statistics considered are the standard deviation of returns
(top left), the autocorrelation of returns (top right) and the correlation between returns and
dividend growth (bottom).
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Figure 5: Bootstrapped distribution of the R-squared of returns (upper panel) and dividend growth
(lower panel), starting from the estimates under the constraint of constant expected dividend
growth (γ1 = σg = ρgµ = 0, left panels). Vertical dotted red lines and dashed black lines
denote R-squared from constrained and unconstrained estimations on real data, respectively.
Distributions are based on 1000 bootstrap samples.
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Figure 6: Bootstrapped distribution of the R-squared of returns (upper panel) and dividend growth
(lower panel), starting from the estimates under the constraint of constant expected return
(δ1 = σµ = ρgµ = ρµd = 0). Vertical dotted red lines and dashed black lines denote R-squared
from constrained and unconstrained estimations on real data, respectively. Distributions are
based on 1000 bootstrap samples.
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Figure 7: Bootstrapped distribution of the out-of-sample R-squared of returns (upper panel) and div-
idend growth (lower panel), starting from the estimates under the constraint of constant
expected dividend growth (γ1 = σg = ρgµ = 0). Vertical dotted red lines and dashed black
lines denote out-of-sample R-squared from constrained and unconstrained estimations on real
data, respectively. Distributions are based on 1000 bootstrap samples.
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Figure 8: Bootstrapped distribution of the out-of-sample R-squared of returns (upper panel) and div-
idend growth (lower panel), starting from the estimates under the constraint of constant
expected return (δ1 = σµ = ρgµ = ρµd = 0). Vertical red dotted lines and dashed black lines
denote out-of-sample R-squared from constrained and unconstrained estimations on real data,
respectively. Distributions are based on 1000 bootstrap samples.
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Figure 9: Yearly cash-flow growth (upper panel) and ratio of price over cash-flow (lower panel), using
different measures of cash-flow: dividend (blue line), total payout (dividend plus repurchases,
red line), net payout (dividend plus repurchases minus issuances, green line), and dividends
including M&A cash flows (magenta line). Data are annual from 1946 to 2010 for dividends
and cash M&A and to 2003 for payout and net payout.
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