
ar
X

iv
:1

70
8.

07
46

6v
3

 [
st

at
.C

O
]

 2
6

O
ct

 2
01

8

Randomized Dimension Reduction for Monte Carlo Simulations

Nabil Kahalé ∗

October 29, 2018

Abstract

We present a new unbiased algorithm that estimates the expected value of f(U) via
Monte Carlo simulation, where U is a vector of d independent random variables, and f is
a function of d variables. We assume that f does not depend equally on all its arguments.
Under certain conditions we prove that, for the same computational cost, the variance of
our estimator is lower than the variance of the standard Monte Carlo estimator by a factor
of order d. Our method can be used to obtain a low-variance unbiased estimator for the
expectation of a function of the state of a Markov chain at a given time-step. We study
applications to volatility forecasting and time-varying queues. Numerical experiments show
that our algorithm dramatically improves upon the standard Monte Carlo method for large
values of d, and is highly resilient to discontinuities.

Keywords: dimension reduction; variance reduction; effective dimension; Markov chains; Monte
Carlo methods

1 Introduction

Markov chains arise in a variety of fields such as finance, queuing theory, and social networks.
While much research has been devoted to the study of steady-states of Markov chains, sev-
eral practical applications rely on the transient behavior of Markov chains. For example, the
volatility of an index can be modelled as a Markov chain using the GARCH model (Hull 2014,
Ch. 23). Financial institutions conducting stress tests may need to estimate the probability
that the volatility exceeds a given level in a few years from now. Also, due to the nature of
human activity, queuing systems in areas such as health-care, manufacturing, telecommunica-
tion and transportation networks, have often time-varying features and do not have a steady-
state. For instance, empirical data show significant daily variation in traffic in wide-area net-
works (Paxson 1994, Thompson, Miller and Wilder 1997) and vehicular flow on roads (Nagel,
Wagner and Woesler 2003). Estimating the expected delay of packets in a wide-area network at
a specific time of the day (12pm, say) could be used to dimension such networks. Similarly, esti-
mating the velocity of cars in a region at 6pm could be used to design transportation networks.
In the same vein, consider the problem of estimating the queue-length at the end of a business
day in a call center that operates with fixed hours. In such call centers, knowing how many calls
would still need to be answered at 5pm could be an important metric that would be needed
in estimating their staffing requirements. Methods to determine appropriate staffing levels in
call centers and other many-server queueing systems with time-varying arrival rates have been
designed in (Feldman, Mandelbaum, Massey and Whitt 2008). Also, approximation tools have
been developed to study time-varying queues (see (Whitt 2017) and references therein). How-
ever, in many situations, there are no analytical tools, except Monte Carlo simulation, to study
accurately systems modeled by a Markov chain. A drawback of Monte Carlo simulation is its

∗ESCP Europe, Labex ReFi, Big data research center, 75011 Paris, France; e-mail: nkahale@escpeurope.eu.

1

http://arxiv.org/abs/1708.07466v3

high computation cost. This motivates the need to design efficient simulation tools to study the
transient behavior of Markov chains, with or without time-varying features.

This paper gives a new unbiased algorithm to estimate E(f(U)), where U = (U1, . . . , Ud)
is a vector of d independent random variables U1, . . . , Ud taking values in a measurable space
F , and f is a real-valued Borel-measurable function on F d such that f(U) is square-integrable.
For instance, F can be equal to R or to any vector space over R. Under certain conditions,
we show that our algorithm yields substantial lower variance than the standard Monte Carlo
method for the same computational effort. Our techniques can be used to efficiently estimate
the expected value of a function of the state of a Markov chain at a given time-step d, for a
class of Markov chains driven by independent random variables. An alternative algorithm for
Markov chains estimation, based on Quasi-Monte Carlo sequences, that substantially improves
upon standard Monte Carlo in certain numerical examples, is given in (L’Ecuyer, Lécot and
Tuffin 2008), with bounds on the variance proven for special situations where the state space
of the chain is a subset of the real numbers.

In a standard Monte Carlo scheme, E(f(U)) is estimated by simulating n independent
vectors in F d having the same distribution as U , and taking the average of f over the n vectors.
In the related Quasi-Monte Carlo method (see (Glasserman 2004, Ch. 5)), f is evaluated at
a predetermined deterministic sequence of points. In several applications, the efficiency of
Quasi-Monte Carlo algorithms can be improved by reordering the Ui’s and/or making a change
of variables, so that the value of f(U) depends mainly on the first few Ui’s. For instance,
the Brownian bridge construction and principal components analysis have been used (Caflisch,
Morokoff and Owen 1997, Acworth, Broadie and Glasserman 1998, Åkesson and Lehoczky 2000)
to reduce the error in the valuation of financial derivatives via Quasi-Monte Carlo methods
(see (Caflisch 1998) for related results). The relative importance of the first variables can
formally be measured by calculating the effective dimension in the truncation sense, a concept
defined in (Caflisch, Morokoff and Owen 1997): when the first variables are important, the
effective dimension in the truncation sense is low in comparison to the nominal dimension. It
is proven in (Sloan and Woniakowski 1998) that Quasi-Monte Carlo methods are effective for a
class of functions where the importance of Ui decreases with i. L’Ecuyer and Lemieux (2000)
apply Quasi-Monte Carlo methods to queueing simulation and option pricing, and examine
their connection to the effective dimension. The truncation dimension and a related notion, the
effective dimension in the superposition sense, are studied in (Sobol 2001, Owen 2003, Liu and
Owen 2006). It is shown in (Wang and Fang 2003, Wang and Sloan 2005, Wang 2006) that
the Brownian bridge and/or principal components analysis algorithms substantially reduce the
truncation dimension of certain financial instruments. Alternative linear transformations have
been proposed in (Imai and Tan 2006, Wang and Sloan 2011, Wang and Tan 2013) to reduce
the effective dimension of financial derivatives and improve the performance of Quasi-Monte
Carlo methods.

Other previously known variance reduction techniques have exploited the importance of cer-
tain variables or states. For instance, stratified sampling along important directions is used in
pricing path-dependent options (Glasserman, Heidelberger and Shahabuddin 1999, Glasserman
2004, Section 4.3.2). Importance sampling methods aim to increase the number of samples
that hit an important set via a change of measure technique (Asmussen and Glynn 2007, Sec-
tion V.5). When d = 2 and f(U1, U2) is more influenced by U1 than by U2, and the expected
time to generate U1 is much lower than the expected time to generate U2, the splitting tech-
nique (Asmussen and Glynn 2007, Section V.5) simulates several independent copies of U1 for
each copy of U2. Asmussen and Glynn (2007, Section V.5) give the variance of the splitting
estimator and the optimal number of copies of U1, and show that the splitting technique is
related to the conditional Monte Carlo method. Multilevel splitting techniques are often used
for variance reduction in the estimation of rare event probabilities (Asmussen and Glynn 2007,
VI.9). The idea is to split each path that reaches an important region into a number of subpaths

2

in order to produce more paths that hit the rare event set. The rare event probability is then
evaluated via a telescoping product. Ermakov and Melas (1995) analyse multilevel splitting
techniques that estimate functionals of Markov chains with a discrete state space and of ergodic
Markov chains in their steady state. Glasserman, Heidelberger, Shahabuddin and Zajic (1999)
analyse the performance of multilevel splitting techniques for rare event estimation and give,
under certain conditions, the optimal degree of splitting as the probability of the event goes to
0. Multilevel splitting methods have had many applications, such as the estimation of network
reliability (Botev, L’Ecuyer, Rubino, Simard and Tuffin 2013) and of rare events in Jackson
networks (Blanchet, Leder and Shi 2011). Multilevel splitting techniques for rare event simula-
tion with finite time constraints are analysed in (Jiang and Fu 2017). A comprehensive survey
on multilevel splitting techniques with applications to rare event simulations, sampling from
complicated distributions, Monte Carlo counting, and randomized optimization, can be found
in (Rubinstein and Kroese 2016, Ch. 9).

Another technique, the multilevel Monte Carlo (MLMC) method introduced in (Giles 2008),
which relies on low dimensional approximations of the function to be estimated, dramatically
reduces the computational complexity of estimating an expected value arising from a stochastic
differential equation. Related randomized multilevel methods that produce unbiased estima-
tors for equilibrium expectations of functionals defined on homogeneous Markov chains have
been provided in (Glynn and Rhee 2014). These methods apply to the class of positive Harris
recurrent Markov chains, and to chains that are contracting on average. It is shown in (Rhee
and Glynn 2015) that similar randomized multilevel methods can be used to efficiently com-
pute unbiased estimators for expectations of functionals of solutions to stochastic differential
equations. The MLMC method has had numerous other applications (e.g., (Rosenbaum and
Staum 2017)).

The basic idea behind our algorithm is that, if f does not depend equally on all its arguments,
the standard Monte Carlo method can be inefficient because it simulates all d arguments of f
at each iteration. Assuming that the expected time needed to simulate f(U) is of order d
and that the variance of f(U) is upper and lower-bounded by constants, the expected time
needed to achieve variance ǫ2 by standard Monte Carlo simulation is Θ(dǫ−2). In contrast,
our algorithm simulates at each iteration a random subset of arguments of f , and reuses the
remaining arguments from the previous iteration. Under certain conditions, we show that our
algorithm estimates E(f(U)) with variance ǫ2 in O(d + ǫ−2) expected time. We also establish
central limit theorems on the statistical error of our algorithm. When d = 2, our method is very
similar to the splitting technique in (Asmussen and Glynn 2007, Section V.5). Our approach
can thus be viewed as a multidimensional version of this technique. However, in contrast with
existing multilevel splitting algorithms where splitting decisions typically depend on the current
state, in our method, the arguments of f to be redrawn are independent of previously generated
copies of U .

In order to optimize the performance of our estimator, we minimize the asymptotic product
of the variance and expected running time, in the same spirit as stratified sampling (Glasserman
2004, Section 4.3.1), the splitting technique (Asmussen and Glynn 2007, Section V.5)), MLMC
(Giles 2008), and related methods (Rhee and Glynn 2015). This minimization is performed
via a new geometric algorithm that solves in O(d) time a d-dimensional optimisation problem.
Our geometric algorithm is of independent interest and can be used to solve an optimization
problem of the same type that was solved in (Rhee and Glynn 2015, Section 3) in O(d3) time.
We are not aware of other previous algorithms that solve this problem. This work extends the
research in (Kahalé 2016), where the variance properties of the randomized estimator presented
in this paper were announced without proof.

Our method has the following features:

1. Under certain conditions, it estimates E(f(U)) with variance ǫ2 in O(d + ǫ−2) expected
time. We are not aware of any previous method that achieves, under the same condi-

3

tions, such a tradeoff between the expected running time and accuracy. In contrast with
stratified sampling, which can be performed in practice only along a small number of di-
mensions (Glasserman 2004, Example 4.3.4), our method is targeted at high-dimensional
problems. The efficiency of our method typically increases with d, even though it can be
used in principle for any d ≥ 2.

2. It is easy to implement, does not make any continuity assumptions on f , nor does it
require a detailed knowledge of the structure of f or U . In contrast, importance sampling,
multilevel splitting and multilevel Monte Carlo methods can achieve substantial variance
reduction by exploiting the structure of the simulated model. The standard Quasi-Monte
Carlo method does not necessitate a detailed knowledge of the model structure, but makes
regularity assumptions on the function to be integrated, and its efficiency does not increase
with d.

The rest of the paper is organized as follows. §2 presents our generic randomized dimension
reduction algorithm and analyses its performance. §3 describes the aforementioned geometric
algorithm and gives a numerical implementation of the randomized dimension reduction algo-
rithm. §4 provides applications to Markov chains. §5 presents and analyses a deterministic
version of our algorithm. §6 compares our algorithm to a class of MLMC algorithms. §7 gives
numerical simulations. §8 contains concluding remarks. Most proofs are contained in the ap-
pendix. The connection between our approach and the ANOVA decomposition and truncation
dimension is studied in the appendix. The appendix explores further the relation between our
method, the splitting technique, and the conditional Monte Carlo method, and contains more
numerical simulations.

2 The generic randomized dimension reduction algorithm

2.1 The algorithm description

We assume that all random variables in this paper are defined on the same probability space
(Ω,F ,P). Our algorithm estimates E(f(U)) by performing n iterations, where n is an arbitrary
positive integer. The algorithm samples more often the first arguments of f than the last ones.
It implicitly assumes that, roughly speaking, the importance of the i-th argument of f decreases
with i. In many Markov chain examples, the last random variables are more important than the
first ones, but our algorithm can still be used efficiently after re-ordering the random variables,
as described in detail in §4. A general approach to rank input variables according to their
importance is described in (Sobol 2001), but we will not use such an approach in our examples.

Let
A = {(q0, . . . , qd−1) ∈ R

d : 1 = q0 ≥ q1 ≥ · · · ≥ qd−1 > 0}.
Throughout the paper, q = (q0, . . . , qd−1) denotes an element of A. Our generic algorithm takes
such a vector q as parameter. Let (Nk), k ≥ 1, be a sequence of independent random integers
in [1, d] such that P(Nk > i) = qi for 0 ≤ i ≤ d− 1 and k ≥ 1. The algorithm simulates n copies
V (1), . . . , V (n) of U and consists of the following steps:

1. First iteration. Simulate a vector V (1) that has the same distribution as U and calculate
f(V (1)).

2. Loop. In iteration k+1, where 1 ≤ k ≤ n−1, let V (k+1) be the vector obtained from V (k)

by redrawing the first Nk components of V (k), and keeping the remaining components
unchanged. Calculate f(V (k+1)).

3. Output the average of f(V (1)), . . . , f(V (n)).

4

More formally, consider a sequence (U (k)), k ≥ 1, of independent copies of U such that the
two sequences (Nk), k ≥ 1, and (U (k)), k ≥ 1, are independent. Define the sequence (V (k)),
k ≥ 1, in F d as follows: V (1) = U (1) and, for k ≥ 1, the first Nk components of V (k+1) are the
same as the corresponding components of U (k+1), and the remaining components of V (k+1) are
the same as the corresponding components of V (k). The algorithm then outputs

fn ,
f(V (1)) + · · ·+ f(V (n))

n
.

Note that fn is an unbiased estimator of E(f(U)) since V (k) d
=U for 1 ≤ k ≤ n.

2.2 Performance analysis

For ease of presentation, we ignore the time needed to generate Nk and the running time of the
third step of the algorithm. For 1 ≤ i ≤ d, let ti be the expected time needed to generate V (k+1)

and calculate f(V (k+1)) when Nk = i. Equivalently, ti is the expected time needed to perform
Step 2 of the algorithm when Nk = i. Thus, ti is the expected time needed to re-draw the first
i components of U and recalculate f(U), and td is the expected time needed to simulate f(U).
By convention, t0 = 0. We assume for simplicity that ti is a strictly increasing function of i.
In many examples (see §2.4 and §4), it can be shown that ti = O(i). As P(Nk = i) = qi−1 − qi
for 1 ≤ i ≤ d and k ≥ 1, where qd = 0, the expected running time of a single iteration of our
algorithm, excluding the first one, is equal to T , where

T ,

d∑

i=1

(qi−1 − qi)ti =

d−1∑

i=0

qi(ti+1 − ti). (2.1)

For 0 ≤ i ≤ d, define
C(i) , Var(E(f(U)|Ui+1, . . . , Ud)).

Thus, C(0) = Var(f(U)), while C(d) = 0, and we can interpret C(i) as the variance captured
by the last d − i components of U . Note that if f depends only on its first i arguments, then
f(U) is independent of (Ui+1, . . . , Ud), and so

E(f(U)|Ui+1, . . . , Ud) = E(f(U)),

which implies that C(i) = 0. More generally, if the last d− i arguments of f are not important,
the conditional expectation E(f(U)|Ui+1, . . . , Ud) is “almost” constant, and its variance C(i)
should be small. Thus C(i)/C(0) can be used to measure the importance of the last d − i
components of U . As shown in the appendix, when U is uniformly distributed on the d-
dimensional unit cube [0, 1]d, this ratio coincides with a global sensitivity index for the subset
{i + 1, . . . , d}, defined in (Sobol 2001, Definition 3) in terms of the ANOVA decomposition
of f . Proposition 2.1 below shows that (C(i)), 0 ≤ i ≤ d, is always a decreasing sequence,
and gives an alternative expression for C(i), which can be viewed as a variant of Theorem 2
of (Sobol 2001).

Proposition 2.1. The sequence (C(i)), 0 ≤ i ≤ d, is decreasing. If U ′
1, . . . , U

′
i are random

variables such that U ′
j

d
=Uj for 1 ≤ j ≤ i, and U ′

1, . . . , U
′
i , U are independent, then

C(i) = Cov(f(U), f(U ′
1, . . . , U

′
i , Ui+1, . . . , Ud)). (2.2)

Theorem 2.1 below establishes a formal relationship between the variance of fn and the
C(i)’s. Let ν∗ be the vector of Rd+1 with ν∗0 = C(0) and ν∗i = 2C(i) for 1 ≤ i ≤ d.

5

Theorem 2.1. For n ≥ 1,

nVar(fn) ≤
d−1∑

i=0

ν∗i − ν∗i+1

qi
. (2.3)

Furthermore, the LHS of (2.3) converges to its RHS as n goes to infinity.

As, for ν = (ν0, . . . , νd) ∈ R
d × {0},

d−1∑

i=0

νi − νi+1

qi
= ν0 +

d−1∑

i=1

νi(
1

qi
− 1

qi−1
), (2.4)

the RHS of (2.3) is a weighted combination of the C(i)′s, with positive weights. Thus, the
smaller the C(i)’s, the smaller the RHS of (2.3). Furthermore, as C(i) is the variance of the
conditional expectation E(f(U)|Ui+1, . . . , Ud), which can be considered as a smoothed version
of f(U), we expect our algorithm to be resilient to discontinuities of f .

Denote by R+ the set of nonnegative real numbers. For q ∈ A, and ϑ = (ϑ0, . . . , ϑd) ∈
{0} ×R

d
+, and ν = (ν0, . . . , νd) ∈ R

d
+ × {0}, set

R(q;ϑ, ν) = (

d−1∑

i=0

qi(ϑi+1 − ϑi))(

d−1∑

i=0

νi − νi+1

qi
). (2.5)

The expected time needed to perform n iterations of the algorithm, including the first one, is
Tn = (n − 1)T + td. Theorem 2.1 and (2.1) imply that TnVar(fn) converges to R(q; t, ν∗) as
n goes to infinity, where t = (t0, . . . , td). By (2.4), R(q;ϑ, ν) is an increasing function with
respect to ν, i.e. R(q;ϑ, ν) ≤ R(q;ϑ, ν ′) for ν ≤ ν ′, where the symbol ≤ between vectors
represents componentwise inequality. Similarly, it is easy to see that R(q;ϑ, ν) is increasing
with respect to ϑ. Let T tot(q, ǫ) be the total expected time it takes for our algorithm to
guarantee that Std(fn) ≤ ǫ. Corollary 2.1 below gives an upper bound on T tot(q, ǫ) in terms of
R(q; t, ν∗). It also implies that, if R(q; t, ν∗) is upper bounded by a constant independent of d,
and Var(f(U)) = Θ(1), then our algorithm outperforms the standard Monte Carlo algorithm
by a factor of order td. More precisely, running our algorithm for n = ⌈tdT−1⌉ iterations has
the same expected cost, up to a constant, as a single iteration of the standard Monte Carlo
method, but produces an unbiased estimator of E(f(U)) with O(1/td) variance.

Corollary 2.1. For ǫ > 0,
T tot(q, ǫ) ≤ td +R(q; t, ν∗)ǫ−2. (2.6)

Furthermore, if n = ⌈tdT−1⌉, the expected running time of n iterations of the algorithm is at
most 2td, and

Var(fn) ≤
R(q; t, ν∗)

td
. (2.7)

Proof. Theorem 2.1 and (2.1) imply that nVar(fn)T ≤ R(q; t, ν∗). Thus, Std(fn) ≤ ǫ for
n = ⌈R(q; t, ν∗)T−1ǫ−2⌉. The expected time needed to calculate fn is Tn, which is upper-
bounded by td+R(q; t, ν∗)ǫ−2 since n−1 ≤ R(q; t, ν∗)T−1ǫ−2. Hence (2.6). On the other hand,
if n = ⌈tdT−1⌉, then Tn ≤ 2td since (n− 1)T ≤ td, and (2.7) holds since nT ≥ td.

Theorem 2.2 below establishes a central limit theorem on fn. It also establishes a central
limit theorem on the estimate of E(f(U)) that can be obtained with a computational budget
c, using the framework described by Glynn and Whitt (1992). Denote by Ñ(c) the number of
iterations generated by our algorithm in c units of computation time. In other words, Ñ(c)
is the maximum integer n such that fn is calculated within c time (with f0 , 0). As the
time to calculate fn is random, Ñ(c) is a random integer. Let ⇒ denote weak convergence
(see (Billingsley 1999)).

6

Theorem 2.2. As n→∞,

√
n(fn − E(f(U)))⇒ N(0, σ2), (2.8)

where

σ2 =

d−1∑

i=0

ν∗i − ν∗i+1

qi
.

Furthermore, as c→∞,

√
c(fÑ(c) − E(f(U)))⇒ N(0, R(q; t, ν∗)). (2.9)

In light of above, we will use R(q; t, ν∗) to measure the performance of our algorithm.
The smaller the C(i)’s and ti’s, the smaller R(q; t, ν∗), and the better the performance of our
algorithm. Proposition 2.2 below shows that C(i) is small if f is well-approximated by a function
of its first i arguments.

Proposition 2.2. For 1 ≤ i ≤ d, if fi is a measurable function from F i to R such that
fi(U1, . . . , Ui) is square-integrable, then

C(i) ≤ Var(f(U)− fi(U1, . . . , Ui)).

2.3 Explicit and semi-explicit distributions

An optimal choice for q is a one that minimizes R(q; t, ν∗). A numerical algorithm that performs
such minimization is presented in §3. This subsection gives explicit or semi-explicit choices for
q, with corresponding upper-bounds on R(q; t, ν∗).

Proposition 2.3 below gives upper bounds on R(q; t, ν∗) if ti = O(i) and (C(i)) decreases at
a sufficiently high rate. It implies in particular that, if ti = O(i) and C(i) = O((i + 1)γ) with
γ < −1, then T tot(q, ǫ) = O(d+ ǫ−2).

Proposition 2.3. Assume that d ≥ 2 and there are constants c and c′ and γ < 0 independent
of d such that ti ≤ ci and C(i) ≤ c′ (i + 1)γ for 0 ≤ i ≤ d. Then, for qi = (i + 1)(γ−1)/2,
0 ≤ i ≤ d− 1, there is a constant c1 independent of d such that

R(q; t, ν∗) ≤







c1, γ < −1,
c1 ln

2(d), γ = −1,
c1 d

γ+1, −1 < γ < 0.

(2.10)

Below is a simple example where C(0) = 1 and the C(i)’s do not meet the conditions of
Proposition 2.3.

Example 2.1. Suppose that F = R and that U1, . . . , Ud are square-integrable real-valued random
variables with unit variance. Assume that f(x1, . . . , xd) = d−1/2(

∑d
j=1 xj) for (x1, . . . , xd) ∈ R

d.
As f depends equally on its arguments, our algorithm does not improve upon the standard Monte
Carlo method. Since

E(f(U)|Ui+1, . . . , Ud) = d−1/2(E(U1 + · · ·+ Ui) + Ui+1 + · · ·+ Ud),

C(i) = (d − i)/d. The conditional variance C(i) decreases very slowly i since C(d/2) has the
same order of magnitude as C(0). Thus the C(i)’s do not meet the conditions of Proposition 2.3.

When upper-bounds on the C(i)’s and ti’s satisfying a convexity condition are known, Propo-
sition 2.4 below gives an explicit vector q together with an upper bound on R(q; t, ν∗).

7

Proposition 2.4. Assume that ti ≤ ϑi for 0 ≤ i ≤ d, where ϑ0, . . . , ϑd is a strictly increasing
sequence with ϑ0 = 0. Assume further that ν0, . . . , νd−1 are positive real numbers such that
C(i) ≤ νi for 0 ≤ i ≤ d− 1, and that the sequence

θi =
νi+1 − νi
ϑi+1 − ϑi

,

0 ≤ i ≤ d− 1, is increasing (by convention, νd = 0). Then, for qi =
√

θi/θ0, 0 ≤ i ≤ d− 1,

R(q; t, ν∗) ≤ 2

(
d−1∑

i=0

√

(νi − νi+1)(ϑi+1 − ϑi)

)2

.

Proof. We first observe that θi ≤ θd−1 < 0 for 0 ≤ i ≤ d − 1. Thus q is well-defined and
belongs to A. Let ϑ = (ϑ0, . . . , ϑd). As t ≤ ϑ and ν∗ ≤ 2ν, and since R(q; ., .) is increasing with
respect to its second and third arguments, we have R(q; t, ν∗) ≤ R(q;ϑ, 2ν). This concludes the
proof.

Proposition 2.5 below yields an upper bound on
√

R(q; t, ν∗) in terms of a weighted sum of
the square roots of the C(i)’s, for a semi-explicit vector q.

Proposition 2.5. Assume that C(d− 1) > 0. If, for 0 ≤ i ≤ d− 1,

qi =

√

t1C(i)

ti+1C(0)
,

then

R(q; t, ν∗) ≤ 8

(
d−1∑

i=0

(
√

ti+1 −
√
ti)
√

C(i)

)2

. (2.11)

Proposition 2.6 below gives an explicit distribution which is optimal up to a logarithmic
factor, without requiring any prior knowledge on the C(i)’s.

Proposition 2.6. For any q ∈ A,

R(q; t, ν∗) ≥
d−1∑

i=0

C(i)(ti+1 − ti). (2.12)

Furthermore, if qi = t1/ti+1 for 0 ≤ i ≤ d− 1, then

R(q; t, ν∗) ≤ 2(1 + ln(
td
t1
))

d−1∑

i=0

C(i)(ti+1 − ti). (2.13)

2.4 A Lipschitz function example

Assume that F = R and that U1, . . . , Ud are square-integrable real-valued random variables, with
σ1 ≥ · · · ≥ σd > 0, where σi is the standard deviation of Ui. Assume also that f(x1, . . . , xd) =
g(
∑d

j=1 xj) for (x1, . . . , xd) ∈ R
d, where g is a real-valued 1-Lipschitz function on R that can

be calculated in constant time. For instance, f(x1, . . . , xd) = max(
∑d

j=1 xj −K, 0), where K is
a constant, satisfies this condition. Assume further that each Ui can be simulated in constant
time. For 1 ≤ k ≤ n, let Sk be the sum of all components of V (k). Thus Sk+1 can be calculated
recursively in O(Nk) time by adding to Sk the first Nk components of V (k+1) and subtracting
the first Nk components of V (k). Hence ti ≤ ci, for some constant c.

8

In order to bound the C(i)’s, we show that f(U) can be approximated by fi(U1, . . . , Ui),
where fi(x1, . . . , xi) = g(

∑i
j=1 xj +

∑d
j=i+1E(Uj)) for (x1, . . . , xi) ∈ R

i. Let ||Z|| =
√

E(Z2)
for a real-valued random variable Z. By Proposition 2.2,

C(i) ≤ ||f(U)− fi(U1, . . . , Ui)||2

≤ ||
d∑

j=i+1

(Uj − E(Uj))||2

= Var(
d∑

j=i+1

Uj)

=
d∑

j=i+1

σ2
j . (2.14)

The second equation follows from the assumption that g is 1-Lipschitz. By applying Proposi-
tion 2.4, with ϑi = ci and νi =

∑d
j=i+1 σ

2
j , and setting qi = σi+1/σ1, 0 ≤ i ≤ d − 1, we infer

that

R(q; t, ν∗) ≤ 2c(
d∑

i=1

σi)
2.

Thus, if σi = O(iγ), with γ < −1, then R(q; t, ν∗) = O(1) and T tot(q, ǫ) = O(d + ǫ−2). Also,
by (2.14) and a standard calculation, C(i) = O((i + 1)2γ+1) for 0 ≤ i ≤ d. As 2γ + 1 < −1,
Proposition 2.3 is also applicable in this case.

3 The optimal distribution

We now seek to calculate a vector q that minimizes R(q; t, ν∗). Given a vector ν in R
d × {0}

whose first d components are positive, Theorem 3.1 below gives a geometric algorithm that finds
in O(d) time a vector q∗ that minimizes R(q; t, ν) under the constraint that q ∈ A. Note that
the vector q∗ depends on ν. In (Rhee and Glynn 2015, Section 3), a dynamic programming
algorithm that calculates such a vector q∗ in O(d3) time has been described.

Let ν ′ = (ν ′0, . . . , ν
′
d) ∈ R

d+1 be such that the set {(ti, ν ′i) : 0 ≤ i ≤ d} forms the lower hull
of the set {(ti, νi) : 0 ≤ i ≤ d}. In other words, ν ′ is the supremum of all sequences in R

d+1

such that ν ′ ≤ ν and the sequence (θi) is increasing, where

θi =
ν ′i+1 − ν ′i
ti+1 − ti

, (3.1)

0 ≤ i ≤ d − 1. For instance, if d = 6, with ti = i and ν = (20, 21, 13, 8, 7, 2, 0), then ν ′ =
(20, 16, 12, 8, 5, 2, 0), as illustrated in Fig. 1. §3.1 shows how to calculate ν ′ in O(d) time.

Theorem 3.1. Let ν be a vector in R
d × {0} whose first d components are positive. For

0 ≤ i ≤ d − 1, set q∗i =
√

θi/θ0, where θi is given by (3.1), and let q∗ = (q∗0 , . . . , q
∗
d−1). Then

q∗ = argminq∈AR(q; t, ν), and

R(q∗; t, ν) =

(d−1∑

i=0

√

(ν ′i − ν ′i+1)(ti+1 − ti)

)2

. (3.2)

3.1 Lower hull calculation

Given ν, the following algorithm, due to (Andrew 1979), first generates recursively a subset
B(j) of {1, . . . , d}, 2 ≤ j ≤ d, then calculates ν ′ via B(d). The algorithm runs in O(d) time.

9

Figure 1: Lower hull

0 1 2 3 4 5 6
0

5

10

15

20

25

i

ν

ν ′

1. Set B(2) = {1, 2}.

2. For j = 3 to d, denote by i1 < · · · < im the elements of B(j − 1). Let k be the largest
element of {2, . . . ,m} such that (tik , νik) lies below the segment [(tik−1

, νik−1
), (tj , νj)], if

such k exists, otherwise let k = 1. Set B(j) = {i1, . . . , ik, j}.

3. For i = 1 to d, let i′ and i′′ be two elements of B(d) with i′ ≤ i ≤ i′′. Set ν ′i so that (ti, ν
′
i)

lies on the segment [(ti′ , νi′), (ti′′ , νi′′)].

3.2 Estimating the C(i)’s

The calculation of a vector q∗ ∈ A that minimizes R(q; t, ν∗) requires the knowledge of the C(i)′s.
Proposition 3.1 below can be used to estimate C(i) via Monte Carlo simulation. Assuming that
f(U) can be approximated by a function of its first i arguments, we expect that both components
of the product in the RHS of (3.3) to be small, on average. Thus, (3.3) can be considered as a
“control variate” version of (2.2), and should yield a more accurate estimate of C(i) via Monte
Carlo simulation for large values of i.

Proposition 3.1. Assume that U ′
1, . . . , U

′
d, and U ′′

i+1, . . . , U
′′
d , are random variables such that

U ′
j

d
=Uj for 1 ≤ j ≤ d, and U

′′

j
d
=Uj for i + 1 ≤ j ≤ d, and U ′

1, . . . , U
′
d, U , U

′′

i+1, . . . , U
′′

d are
independent. Then

C(i) = E((f(U)− f(U1, . . . , Ui, U
′
i+1, . . . , U

′
d))

(f(U ′
1, . . . , U

′
i , Ui+1, . . . , Ud)− f(U ′

1, . . . , U
′
i , U

′′

i+1, . . . , U
′′

d)). (3.3)

3.3 Numerical algorithm

Building upon the previously discussed elements, the algorithm that we have used for our
numerical experiments is as follows. It constructs a vector (ν0, . . . , νd) and uses it as a proxy
for ν∗.

1. For i = 0 to d− 1, if i+ 1 is a power of 2, estimate C(i) by Monte Carlo simulation with
1000 samples via Proposition 3.1.

10

2. Set ν0 = C(0), and νd = 0. For 1 ≤ i ≤ d− 1, let νi = 2C(j), where j is the largest index
in [0, i] such that j + 1 is a power of 2.

3. For i = d− 1 down to 1, set νi ← max(νi, νi+1). Set ν0 ← max(ν0, ν1/2).

4. Let (ν ′0, . . . , ν
′
d) ∈ R

d+1 be such that the set {(ti, ν ′i) : 0 ≤ i ≤ d} forms the lower hull of
the set {(ti, νi) : 0 ≤ i ≤ d}. For 0 ≤ i ≤ d−1, set qi =

√

θi/θ0, where θi is given by (3.1).

5. Calculate T via (2.1). For 0 ≤ i ≤ d− 1, set

qi ← min(1,max(qi,
T

ti+1 ln(td/t1)
)).

6. Run Steps 1 through 3 of the generic randomized dimension reduction algorithm of §2.1
using q.

The purpose of Steps 3 and 5 is to reduce the impact on q of statistical errors that arise in
Step 1. Because of statistical errors, Step 1 may underestimate or overestimate the C(i)′s.
Step 3 guarantees that the νi’s are non-negative, so that the qi’s can be calculated in Step 4.
Step 5 yields a cap on the RHS of (2.3) by ensuring that the qi’s are not too small. Using
(2.1) and the proof of Proposition 2.6, and assuming that td ≥ 2t1, it can be shown that Step 5
increases T by at most a constant multiplicative factor. An alternative way to implement our
algorithm is to skip Steps 1 through 5 and run the generic algorithm with qi = t1/ti+1 for
0 ≤ i ≤ d− 1. By Proposition 2.6, the resulting vector q is optimal up to a logarithmic factor.

4 Applications to Markov chains

In queueing systems, the performance metrics at a specific time instant are heavily dependent
on the last busy cycle, i.e., the events that occurred after the queue was empty for the last time.
Thus, the performance metrics depend a lot more on the last random variables driving the
system than on the initial ones. Nevertheless, we can apply our algorithm to queueing systems
by using a time-reversal transformation inspired from (Glynn and Rhee 2014). More generally,
using such a time-reversal transformation, this section shows that our algorithm can efficiently
estimate the expected value of a function of the state of a Markov chain at time-step d, for a
class of Markov chains driven by independent random variables.

Let (Xm), 0 ≤ m ≤ d, be a Markov chain with state-space F ′ and deterministic initial
value X0. Assume that there are independent random variables Yi, 0 ≤ i ≤ d − 1, that take
values in F , and measurable functions gi from F ′ × F to F ′ such that Xi+1 = gi(Xi, Yi) for
0 ≤ i ≤ d − 1. We want to estimate E(g(Xd)) for a given positive integer d, where g is a
deterministic real-valued measurable function on F ′ such that g(Xd) is square-integrable. For
1 ≤ i ≤ d, set Ui = Yd−i. It can be shown by induction that Xd = Gi(U1, . . . , Ui,Xd−i), where
Gi, 0 ≤ i ≤ d, is a measurable function from F i × F ′ to F ′, and so there is a real-valued
measurable function f on F d with g(Xd) = f(U1, . . . , Ud). We can thus use our randomized
dimension reduction algorithm to estimate E(g(Xd)). Recall that, in iteration k+1 in Step 2 of
the generic algorithm of §2.1, conditioning on Nk = i, the first i arguments of f are re-drawn,
and the remaining arguments are unchanged. This is equivalent to re-drawing the last i random
variables driving the Markov chain, and keeping the first d − i variables unchanged. In light
of above, the generic randomized dimension reduction algorithm for Markov chains estimation
takes as parameter a vector q ∈ A and consists of the following steps:

1. First iteration. Generate recursively X0, . . . ,Xd. Calculate g(Xd).

2. Loop. In iteration k+1, where 1 ≤ k ≤ n−1, keepX0, . . . ,Xd−Nk
unchanged, and calculate

recursively Xd−Nk+1, . . . ,Xd by re-drawing Yd−Nk
, . . . , Yd−1, where Nk is a random integer

in [1, d] such that P(Nk > i) = qi. Calculate g(Xd).

11

3. Output the average of g over the n copies of Xd generated in the first two steps.

We assume that g and the gi’s can be calculated in constant time, and that the expected
time needed to simulate each Yi is upper-bounded by a constant independent of d. Thus, given
Nk, the expected time needed to perform iteration k + 1 is O(Nk). Hence ti ≤ ci, for some
constant c independent of d. Proposition 4.1 below shows that, roughly speaking, C(i) is small
if Xd−i and Xd are “almost” independent.

Proposition 4.1. For 0 ≤ i ≤ d, we have C(i) = Var(E(g(Xd)|Xd−i)).

By Proposition 2.3, if there are constants c′ > 0 and γ < −1 independent of d such that
C(i) ≤ c′(i+1)γ for 0 ≤ i ≤ d− 1, then R(q; t, ν∗) is upper-bounded by a constant independent
of d, where qi = (i + 1)(γ−1)/2 for 0 ≤ i ≤ d − 1. The analysis in (Asmussen and Glynn 2007,
Section IV.1a), combined with Proposition 4.1, suggests that C(i) decreases exponentially with
i for a variety of Markov chains.

For x ∈ F
′, and 0 ≤ i ≤ d, let

Xi,x = Gi(U1, . . . , Ui, x).

In other words, Xi,x is the state of the chain at time-step d if the chain is at state x at time-step
d− i. Intuitively, we expect Xi,x to be close to Xd for large i if Xd depends mainly on the last
Yj’s. By Proposition 2.2, if g(Xi,x) is square-integrable,

C(i) ≤ ||g(Xd)− g(Xi,x)||2. (4.1)

In the following examples, we prove that under certain conditions, R(q; t, ν∗) is upper-bounded
by a constant independent of d for an explicit vector q ∈ A, and so T tot(q, ǫ) = O(d+ ǫ−2).

4.1 GARCH volatility model

In the GARCH(1,1) volatility model (see (Hull 2014, Ch. 23)), the variance Xi of an index
return between day i and day i + 1, as estimated at the end of day i, satisfies the following
recursion:

Xi+1 = w + αXiY
2
i + βXi,

i ≥ 0, where w, α and β are positive constants with α+ β < 1, and Yi, i ≥ 0, are independent
standard Gaussian random variables. The variable Yi is known at the end of day i + 1. At
the end of day 0, given X0 ≥ 0, a positive integer d and a real number z, we want to estimate
P(Xd > z). In this example, F = F ′ = R, and gi(x, y) = w + αxy2 + βx, with g(u) = 1{u > z}
for u ∈ R. Proposition 4.2 below shows that C(i) decreases exponentially with i.

Proposition 4.2. There is a constant κ independent of d such that C(i) ≤ κ(α + β)i/2 for
0 ≤ i ≤ d− 1.

By applying Proposition 2.4 with ϑi = ci and νi = κ(α + β)i/2, and setting qi = (α + β)i/4

for 0 ≤ i ≤ d− 1, we infer that R(q; t, ν∗) is upper-bounded by a constant independent of d.

4.2 Gt/D/1 queue

Consider a queue where customers arrive at time-step i, 1 ≤ i ≤ d, and are served by a single
server in order of arrival. Service times are all equal to 1. Assume the system starts empty
at time-step 0, and that Ai customers arrive at time-step i, 0 ≤ i ≤ d, where A0 = 0 and the
Ai’s are independent square-integrable random variables. Let Xi be the number of customers
waiting in the queue at time-step i. Then X0 = 0 and (Xi) satisfies the Lindley equation

Xi+1 = (Xi + Yi)
+,

12

for 0 ≤ i ≤ d − 1, with Yi = Ai+1 − 1. We want to estimate E(Xd). In this example, g is the
identity function, F = F ′ = R, and gi(x, y) = (x+ y)+. Proposition 4.3 below shows that C(i)
decreases exponentially with i under certain conditions on the service times.

Proposition 4.3. If there are constants γ > 0 and κ < 1 independent of d such that

E(eγYi) ≤ κ (4.2)

for 0 ≤ i ≤ d− 1, then C(i) ≤ γ′κi for 0 ≤ i ≤ d− 1, where γ′ is a constant independent of d.

By applying Proposition 2.4 with ϑi = ci and νi = γ′κi, and setting qi = κi/2 for 0 ≤ i ≤ d−1,
we conclude that, under the assumption of Proposition 4.3, R(q; t, ν∗) is upper-bounded by a
constant independent of d. The assumption in Proposition 4.3 can be justified as follows. Given
i ∈ [0, d − 1], if E(Ai) < 1 and the function h(γ) = E(eγYi) is bounded on a neighborhood of
0, then h′(0) = E(Yi) < 0. As h(0) = 1, there is γ > 0 such that h(γ) < 1, and (4.2) holds for
κ = h(γ). The assumption in Proposition 4.3 says that γ and κ can be chosen independently
of i and of d.

4.3 Mt/GI/1 queue

Consider a Mt/GI/1 queue where customers are served by a single server in order of arrival.
We assume that customers arrive according to a Poisson process with positive and continuous
time-varying rate λs ≤ λ∗, where λ∗ is a fixed positive real number. The service times are
assumed to be i.i.d. and independent of the arrival times. Assume that the system starts empty
at time 0. For simplicity, we assume that the number of customers that arrive in any bounded
time interval is finite (rather than finite with probability 1). Consider a customer present in
the system at a given time s. If the customer has been served for a period of length τ , its
remaining service time is equal to its service time minus τ , and if the customer is in the queue,
its remaining service time is equal to its service time. The residual work Ws at time s is defined
as the sum of remaining service times of customers present in the system at s. We want to
estimate the expectation of Wθ, where θ is a fixed time. Let d = ⌈λ∗

θ⌉, and assume that d ≥ 2.
For 0 ≤ i ≤ d, let Xi = Wiθ/d be the residual work at time iθ/d. For 0 ≤ i ≤ d − 1, let Yi be
the vector that consists of arrival and service times of customers that arrive during the interval
(iθ/d, (i+1)θ/d]. In this example, g is the identity function, F is equal to the set of real-valued
sequences with finite support, and F ′ = R. Let 0 ≤ s < s′. If no costumers arrive in (s, s′]
then Ws′ = (Ws − s′ + s)+. On the other hand, if no costumers arrive in (s, s′) and a customer
with service time S arrives at s′, then Ws′ = S + (Ws − s′ + s)+. Thus, given the set of arrival
and service times of customers that arrive in (s, s′], we can calculate iteratively Ws′ from Ws.
This implies that Xi+1 is a deterministic measurable function of Xi and Yi, for 0 ≤ i ≤ d − 1.
Proposition 4.4 below shows that C(i) decreases exponentially with i under certain conditions
on the arrival and service times.

Proposition 4.4. For 0 ≤ s ≤ θ, let Zθ(s) be the cumulative service time of costumers that
arrive in [s, θ]. Assume there are constants γ > 0 and κ < 1 independent of d such that, for
0 ≤ s ≤ s′ ≤ θ and s′ − s ≤ 1/λ∗,

E(eγ(Zθ(s
′)−Zθ(s)−1/λ∗)) ≤ κ. (4.3)

Then C(i) ≤ γ′κi/2 for 0 ≤ i ≤ d− 1, where γ′ is a constant independent of d.

By applying Proposition 2.4 with ϑi = ci and νi = γ′κi/2, and setting qi = κi/4 for 0 ≤ i ≤
d− 1, we conclude that, under the assumption of Proposition 4.4, R(q; t, ν∗) is upper-bounded
by a constant independent of d. The assumption in Proposition 4.4 can be justified as follows.
For 0 ≤ s ≤ s′ ≤ θ and s′ − s ≤ 1/λ∗, the cumulative service times of customers that arrive

13

in [s, s′) is Zθ(s
′) − Zθ(s). If E(Zθ(s

′) − Zθ(s)) < s′ − s and h(γ) = E(eγ(Zθ(s
′)−Zθ(s)−1/λ∗)) is

bounded on a neighborhood of 0, then h′(0) < 0. Thus h(γ) < 1 for some γ > 0 and (4.3) holds
for κ = h(γ). The assumption in Proposition 4.4 says that γ and κ can be chosen independently
of d, s and s′.

5 Deterministic dimension reduction

This section studies a deterministic dimension reduction algorithm that performs the same steps
as the generic randomized dimension reduction algorithm of §2.1, but uses a deterministic inte-
gral sequence (Nk), k ≥ 1, taking values in [1, d], to estimate E(f(U)). As for the randomized
algorithm, denote by fn the output of the deterministic dimension reduction algorithm, and by
Tn its expected running time, where n is the number of iterations, including the first one. The
sequence (Nk), k ≥ 1, may depend on n. As the algorithm generates n copies of U , the random
variable fn is an unbiased estimator of E(f(U)).

Assume that C(d − 1) > 0 and let q̂ = argminq∈AR(q; t, C), where C denotes the vector
(C(0), . . . , C(d)). The existence of q̂ follows from Theorem 3.1. Define the integers µ0, . . . , µd−1

recursively as follows. Let µ0 = 1 and, for 1 ≤ i ≤ d− 1, let µi be the largest multiple of µi−1

in the interval [0, 1/q̂i], i.e.

µi = µi−1⌊
1

µi−1q̂i
⌋.

It can be shown by induction that µi is well-defined and positive. Let q̄ be the vector in A
defined by q̄i = 1/µi, for 0 ≤ i ≤ d− 1. As ⌊x⌋ ≤ x < 2⌊x⌋ for x ≥ 1, we have µi ≤ 1/q̂i < 2µi.
It follows that, for 0 ≤ i ≤ d− 1,

q̂i ≤ q̄i < 2q̂i. (5.1)

Define the sequence (N̄k), k ≥ 1, as follows:

N̄k = max{i ∈ [1, d] : k is a multiple of µi−1}.
As µ0 = 1, such i always exists. For 0 ≤ i ≤ d− 1 and k ≥ 1, if N̄k = j with j > i, then k is a
multiple of µj−1, and so k is a multiple of µi, since µj−1/µi is an integer. Conversely, if k is a
multiple of µi then, by construction, N̄k > i. Hence

N̄k > i⇔ k ≡ 0 (mod µi). (5.2)

Given i ∈ [0, d − 1], the inequality N̄k > i occurs once as k ranges in a set of µi consecutive
positive integers. The sequence (N̄k) can thus be considered as a deterministic counterpart to
the random sequence (Nk) generated by the randomized dimension reduction algorithm when
q = q̄.

Theorem 5.1 below gives a lower bound on the performance of the deterministic dimension
reduction algorithm for any sequence (Nk), k ≥ 1, and analyses the algorithm when Nk = N̄k

for k ≥ 1.

Theorem 5.1. For n ≥ 1 and any deterministic sequence (Nk), k ≥ 1,

TnVar(fn) ≥ R(q̂; t, C). (5.3)

If Nk = N̄k for k ≥ 1 then, for n ≥ 1,

Tn = td +
d−1∑

i=0

⌊(n − 1)q̄i⌋(ti+1 − ti), (5.4)

and

nVar(fn) ≤
d−1∑

i=0

C(i)− C(i+ 1)

q̄i
. (5.5)

Furthermore, the LHS of (5.5) converges to its RHS as n goes to infinity.

14

Using again the framework of (Glynn and Whitt 1992), we measure the performance of
an estimator via the work-normalized variance, i.e. the product of the variance and expected
running time. If Nk = N̄k for k ≥ 1 then, by Theorem 5.1,

TnVar(fn)→ R(q̄; t, C)

as n goes to infinity. Furthermore, it follows from (2.5) and (5.1) that R(q̄; t, C) ≤ 2R(q̂; t, C).
Thus, up to a factor of 2, the sequence (N̄k) asymptotically minimizes the work-normalized
variance of the deterministic dimension reduction algorithm. Moreover, by definition of q̂, and
since C ≤ ν∗,

R(q̂; t, C) ≤ R(q∗; t, C) ≤ R(q∗; t, ν∗),

where q∗ = argminq∈AR(q; t, ν∗). Hence R(q̄; t, C) ≤ 2R(q∗; t, ν∗). Similarly, as ν∗ ≤ 2C,

R(q∗; t, ν∗) ≤ R(q̄; t, ν∗) ≤ 2R(q̄; t, C).

Thus, the asymptotic work-normalized variances of the randomized dimension reduction algo-
rithm, with q = q∗, and of the deterministic dimension reduction algorithm, with Nk = N̄k for
k ≥ 1, are within a factor of 2 from each other.

Proposition 5.1 below shows that if, after generating the first copy of U , we generate the next
n(q0− q1) samples by only changing the first component of the U in the previous iteration, and
the next n(q1− q2) samples by only changing the first two components of the U in the previous
iteration, and so on, the resulting algorithm is asymptotically less efficient than standard Monte
Carlo.

Proposition 5.1. Assume that C(d− 1) > 0. Let q ∈ A with qd−1 < 1. If Nk = i for 1 ≤ i ≤ d
and integer k ∈ (n(1− qi−1), n(1 − qi)], then nVar(fn)→∞ as n goes to infinity.

6 Comparison with a class of multilevel algorithms

We compare our method to a class of MLMC algorithms, adapted from (Giles 2008), that
efficiently estimate E(f(U)) under the assumption that f is approximated, in the L2 sense, by
functions of its first arguments. Under conditions described in §6.1, we prove that, up to a
constant, the randomized dimension reduction algorithm is at least as efficient as this class of
MLMC algorithms. It should be stressed, however, that there may exist other MLMC algorithms
that estimate E(f(U)) more efficiently than the class of MLMC algorithms described below.

6.1 The MLMC algorithms description and analysis

Let L be a positive integer and let (ml), 0 ≤ l ≤ L, be a strictly increasing integral sequence,
with m0 = 0 and mL = d. For 1 ≤ l ≤ L, let φl be a square-integrable random variable equal
to a deterministic measurable function of U1, . . . , Uml

, with φL = f(U). The φl’s are chosen so
that, as l increases, φl gets closer to f(U), in the L2 sense. For instance, L can be proportional
to ln(d), the ml’s can increase exponentially with l, and φl could equal f(U1, . . . , Uml

, x, . . . , x
︸ ︷︷ ︸

d−ml

),

for some x ∈ F . For 1 ≤ l ≤ L, let φ̂l be the average of nl independent copies of φl − φl−1

(with φ0 , 0), where nl is a positive integer to be specified later. Assume that the estimators
φ̂1, . . . , φ̂L are independent. As

E(f(U)) =
L∑

l=1

E(φl − φl−1),

15

φ̂ =
∑L

l=1 φ̂l is an unbiased estimator of E(f(U)). Following the analysis in (Giles 2008),

Var(φ̂) =

L∑

l=1

Vl

nl
,

where Vl , Var(φl − φl−1) for 1 ≤ l ≤ L. The expected time needed to simulate φ̂ is TML ,
∑L

l=1 nl t̂l, where t̂l is the expected time needed to simulate φl − φl−1. As the variance of the
average of n i.i.d. square-integrable random variables is proportional to 1/n, for ǫ > 0, we
need ⌈Var(φ̂)ǫ−2⌉ independent samples of φ̂ to achieve an estimator variance at most ǫ2. Thus
the total expected time TMLMC(ǫ) needed for the MLMC algorithm to estimate E(f(U)) with
variance at most ǫ2 satisfies the relation

TMLMC(ǫ) = Θ(TML + TMLVar(φ̂)ǫ
−2). (6.1)

The first term in the RHS of (6.1) accounts for the fact that φ̂ is simulated at least once. As
shown in (Giles 2008), the work-normalized variance TMLVar(φ̂) is minimized when the nl’s are

proportional to
√

Vl/t̂l (ignoring the integrality constraints on the nl’s), in which case

TMLVar(φ̂) =

(L∑

l=1

√

Vl t̂l

)2

. (6.2)

In line with (Giles 2008, Theorem 3.1), if t̂l = O(2l) and ||φl − φL||2 = O(2βl), with β < −1,
where the constants behind the O-notation do not depend on d, then TMLVar(φ̂) is upper-
bounded by a constant independent of d. This can be shown by observing that

Vl ≤ ||φl − φl−1||2 ≤ (||φl − φL||+ ||φl−1 − φL||)2.

Theorem 6.1 below shows that, under certain conditions, the randomized dimension reduction
method is, up to a multiplicative constant, at least as efficient as the class of MLMC methods
described above. Indeed, under the assumptions of Theorem 6.1, by (2.6), T tot(q, ǫ) = O(d +
TMLVar(φ̂)ǫ

−2). On the other hand, TML ≥ t̂L ≥ ĉd since mL = d. Thus (6.1) implies that
TMLMC(ǫ) ≥ c′(d+ TMLVar(φ̂)ǫ

−2), for some constant c′.

Theorem 6.1. Assume that there are constants c and ĉ independent of d such that ti ≤ ci
for 1 ≤ i ≤ d, and t̂l ≥ ĉml for 1 ≤ l ≤ L, and that C(d − 1) > 0. Then R(q; t, ν∗) ≤
(32c/ĉ)TMLVar(φ̂) if, for 0 ≤ i ≤ d− 1,

qi =

√

C(i)

(i+ 1)C(0)
.

7 Numerical experiments

Our simulation experiments, using the examples in §4, were implemented in the C++ program-
ming language. The randomized dimension reduction algorithm (RDR) was implemented as
described in §3.3. The deterministic dimension reduction algorithm (DDR) was implemented
similarly with Nk = N̄k. In both algorithms, n was chosen so that the expected total number of
simulations of the Ui’s in iterations 2 through n is approximately 10d. The actual total number
of simulations of the Ui’s, denoted by “Cost” in our computer experiments, is about 11d because
it includes the d simulations of the first iteration.

We have implemented the multilevel algorithm (MLMC) described in §6.1, with L = ⌊log2(d)⌋+
1, and ml = ⌊2l−Ld⌋ for 1 ≤ l ≤ L, and φl = f(U1, . . . , Uml

,X0, . . . ,X0
︸ ︷︷ ︸

d−ml

). The Vl’s were esti-

mated by Monte Carlo simulation with 1000 samples, and the nl’s were scaled up so that the

16

Table 1: P(Xd > z) estimation in GARCH model, with z = 4.4 × 10−5, using 1000 samples,
where Xd is the daily variance at time-step d.

n 90% confidence interval Std Cost Cost × Std2 VRF
d = 1250 RDR 277 0.3918 ± 2.1× 10−3 4.0× 10−2 1.367× 104 ± 8.9× 101 21 14

DDR 596 0.3935 ± 1.8× 10−3 3.4× 10−2 1.355× 104 15 19
MLMC 134 0.3946 ± 6.5× 10−3 1.2× 10−1 1.375× 104 215 1.4
QMC 4096 0.39365 ± 2.4× 10−4 4.6× 10−3 5.120× 106 109 2.7

d = 2500 RDR 529 0.3933 ± 1.4× 10−3 2.8× 10−2 2.745× 104 ± 1.7× 102 21 28
DDR 1167 0.3939 ± 1.3× 10−3 2.4× 10−2 2.734× 104 16 37
MLMC 266 0.3919 ± 4.6× 10−3 8.9× 10−2 2.847× 104 226 2.6
QMC 4096 0.39348 ± 2.5× 10−4 4.8× 10−3 1.024× 107 238 2.5

d = 5000 RDR 970 0.3923 ± 1.0× 10−3 2.0× 10−2 5.490× 104 ± 3.4× 102 21 56
DDR 1899 0.39285 ± 9.4× 10−4 1.8× 10−2 5.207× 104 17 71
MLMC 524 0.3931 ± 3.4× 10−3 6.5× 10−2 5.339× 104 227 5.3
QMC 4096 0.39372 ± 2.4× 10−4 4.6× 10−3 2.048× 107 435 2.8

actual total number of simulations of the Ui’s is about 11d. We have also implemented a random-
ized quasi-Monte Carlo method (QMC) with a random shift (Glasserman 2004, Section 5.4). Our
implementation uses the C++ program available at http://web.maths.unsw.edu.au/~fkuo/sobol
to generate d-dimensional Sobol sequences of length n = 4096. For practical reasons linked to
computing time and storage cost, the QMC algorithm was tested for d up to 104.

In Tables 1 through 6 and in the appendix, the variable Std refers to the standard deviation
of fn for the RDR and DDR algorithms, to the standard deviation of φ̂ for the MLMC algorithm,
and to the standard deviation of the Quasi-Monte Carlo estimator for the QMC algorithm. The
variable Std and a 90% confidence interval for E(f(U)) were estimated using 1000 independent
runs of these two algorithms. For the RDR algorithm, a 90% confidence interval for the variable
Cost was reported as well. The variance reduction factor VRF is defined as

VRF =
dVar(f(U))

Cost× Std2
.

We estimated Var(f(U)) by using 10000 independent samples of U .

7.1 GARCH volatility model

Table 1 shows results of our simulations of the GARCH volatility model for estimating P(Xd >
z), with z = 4.4 × 10−5, X0 = 10−4, α = 0.06, β = 0.9, and w = 1.76× 10−6. As expected, the
variable Cost is about 11d for the RDR, DDR, and MLMC algorithms. For these algorithms,
the variable Cost × Std2 is roughly independent of d, and the variance reduction factors are
roughly proportional to d. In contrast, for the QMC algorithm, the variable Cost × Std2 is
roughly proportional to d, and the variance reduction factors are roughly constant. The 90%
confidence interval of the RDR algorithm running time has a negligible length in comparison to
the running time. The RDR algorithm outperforms the MLMC algorithm by about a factor of
10, and the QMC algorithm by a factor ranging from 5 to 20. In all our numerical experiments,
the DDR algorithm outperforms the RDR algorithm by a factor between 1 and 2.

7.2 Gt/D/1 queue

Assume that Ai has a Poisson distribution with time-varying rate λi = 0.75 + 0.5 cos(πi/50),
for 1 ≤ i ≤ d, (recall that A0 = 0). These parameters are taken from (Whitt and You 2016).
Table 2 estimates E(Xd), and Table 3 gives VRFs in the estimation of P(Xd > z), for selected
values of z. Once again, for the RDR, DDR, and MLMC algorithms, the variable Cost × Std2 is
roughly independent of d, and the variance reduction factors are roughly proportional to d. The
VRFs of the RDR and DDR algorithms in Table 3 are greater than or equal to the corresponding
VRFs in Table 2, which confirms the resiliency of these algorithms to discontinuities of g. In

17

Table 2: E(Xd) estimation inGt/D/1 queue, 1000 samples, whereXd is the number of customers
in the queue at time-step d.

n 90% confidence interval Std Cost Cost × Std2 VRF
d = 104 RDR 2.3× 103 5.5243± 4.6× 10−3 8.8× 10−2 1.106 × 105 ± 6.3× 102 8.5× 102 1.8× 102

DDR 2.8× 103 5.5221± 4.5× 10−3 8.6× 10−2 1.032 × 105 7.7× 102 2.0× 102

MLMC 7.1× 103 5.524± 5.9× 10−3 1.1× 10−1 1.076 × 105 1.4× 103 1.1× 102

d = 105 RDR 2.3× 104 5.5232± 1.5× 10−3 2.8× 10−2 1.101 × 106 ± 5.3× 103 8.6× 102 1.8× 103

DDR 3.6× 104 5.5229± 1.5× 10−3 2.8× 10−2 1.046 × 106 8.3× 102 1.8× 103

MLMC 6.3× 104 5.5241± 2.0× 10−3 3.8× 10−2 1.096 × 106 1.6× 103 9.5× 102

d = 106 RDR 2.3× 105 5.52325 ± 4.9× 10−4 9.4× 10−3 1.103 × 107 ± 4.8× 104 9.8× 102 1.5× 104

DDR 2.6× 105 5.52363 ± 4.5× 10−4 8.7× 10−3 1.047 × 107 7.9× 102 1.9× 104

MLMC 6.6× 105 5.5231± 5.7× 10−4 1.1× 10−2 1.119 × 107 1.4× 103 1.1× 104

Table 3: VRFs for P(Xd > z) estimation in Gt/D/1 queue.
z 0 2 4 6 8 10
d = 104 RDR 2.8× 102 2.3× 102 2.1× 102 2.1× 102 1.9× 102 1.8× 102

DDR 4.7× 102 2.8× 102 2.3× 102 2.4× 102 2.2× 102 1.9× 102

MLMC 2.1× 101 3.7× 101 5.1× 101 6.5× 101 7.7× 101 7.2× 101

d = 105 RDR 3.1× 103 2.2× 103 2.1× 103 1.9× 103 1.7× 103 1.8× 103

DDR 4.3× 103 3.0× 103 2.4× 103 2.5× 103 2.2× 103 2.0× 103

MLMC 2.1× 102 3.6× 102 4.5× 102 5.9× 102 5.9× 102 5.8× 102

d = 106 RDR 3.3× 104 2.2× 104 1.9× 104 1.8× 104 1.7× 104 1.9× 104

DDR 4.1× 104 2.9× 104 2.2× 104 2.2× 104 1.9× 104 2.2× 104

MLMC 2.0× 103 3.3× 103 4.4× 103 5.3× 103 5.7× 103 5.8× 103

contrast, the VRFs of the MLMC algorithm in Table 3 are lower than the corresponding VRFs
in Table 2. The RDR algorithm outperforms the MLMC algorithm by a factor ranging from
1 to 2 in Table 2, and a factor ranging from 2 to 17 in Table 3. Table 4 estimates E(Xd) for
shifted values of d. The results in Table 4 are similar to those of Table 2, but the values of
E(Xd) in Table 4 are significantly smaller than those in Table 2. This can be explained by
observing that λd is maximized (resp. minimized) at the values of d listed in Table 2 (resp.
Table 4).

7.3 Mt/GI/1 queue

Assume that λs = 0.75 + 0.5 cos(πs/50) for s ≥ 0. These parameters are taken from (Whitt
and You 2016). Assume further that, for j ≥ 1, the service time Sj for the j-th customer has a
Pareto distribution with P(Sj ≥ z) = (1+ z/α)−3 for z ≥ 0, for some constant α > 0. A simple
calculation shows that E(Sj) = α/2. In our simulations, we have set d = ⌈θ⌉. Table 5 gives our
simulation results for estimating P(Wθ > 1) when α = 2, and Table 6 lists VRFs for estimating
P(Wθ > 1) for selected values of α. Here again, for the RDR, DDR, and MLMC algorithms,
the variable Cost × Std2 is roughly independent of d, and the VRFs are roughly proportional
to d. The RDR algorithm outperforms the MLMC algorithm by a factor ranging from 1 to 10,
depending on the value of α. In Table 6, the RDR, DDR, and MLMC algorithms become less
efficient as α increases. This can be explained by noting that, as α increases, the length of the

Table 4: E(Xd) estimation in Gt/D/1 queue, 1000 samples, with shifted dimensions.
n 90% confidence interval Std Cost Cost × Std2 VRF

d = 10050 RDR 8.5× 102 0.6599 ± 4.1× 10−3 7.8× 10−2 1.100 × 105 ± 6.1× 102 6.7× 102 6.2× 101

DDR 2.4× 103 0.6599 ± 4.1× 10−3 7.9× 10−2 1.065 × 105 6.6× 102 6.3× 101

MLMC 1.5× 103 0.659± 4.5× 10−3 8.6× 10−2 1.106 × 105 8.2× 102 5.0× 101

d = 100050 RDR 7.8× 103 0.6594 ± 1.3× 10−3 2.5× 10−2 1.101 × 106 ± 5.3× 103 7.2× 102 5.6× 102

DDR 7.0× 103 0.6593 ± 1.4× 10−3 2.6× 10−2 1.025 × 106 7.2× 102 5.6× 102

MLMC 1.1× 104 0.6587 ± 1.6× 10−3 3.1× 10−2 1.115 × 106 1.1× 103 3.6× 102

d = 1000050 RDR 6.7× 104 0.66007 ± 4.5× 10−4 8.6× 10−3 1.101 × 107 ± 4.8× 104 8.2× 102 5.3× 103

DDR 6.2× 104 0.66019 ± 4.4× 10−4 8.4× 10−3 1.034 × 107 7.4× 102 5.9× 103

MLMC 1.1× 105 0.66033 ± 5.6× 10−4 1.1× 10−2 1.135 × 107 1.3× 103 3.3× 103

18

Table 5: P(Wθ > 1) estimation in Mt/GI/1 queue, α = 2, with 1000 samples, where Wθ is the
residual work at time θ.

n 90% confidence interval Std Cost Cost × Std2

θ = 104 RDR 3.9× 103 0.85389 ± 4.9× 10−4 9.4× 10−3 1.108× 105 ± 6.2× 102 10
DDR 7.6× 103 0.85333 ± 4.0× 10−4 7.7× 10−3 1.037× 105 6
MLMC 1.0× 104 0.8541 ± 1.6× 10−3 3.1× 10−2 1.142× 105 106

θ = 105 RDR 3.0× 104 0.85385 ± 1.6× 10−4 3.0× 10−3 1.100× 106 ± 5.3× 103 10
DDR 4.8× 104 0.85373 ± 1.3× 10−4 2.5× 10−3 1.031× 106 6
MLMC 8.3× 104 0.85322 ± 4.9× 10−4 9.5× 10−3 1.092× 106 98

θ = 106 RDR 2.5× 105 0.853762 ± 5.1× 10−5 9.8× 10−4 1.103× 107 ± 4.9× 104 11
DDR 4.5× 105 0.853779 ± 4.4× 10−5 8.4× 10−4 1.040× 107 7
MLMC 8.5× 105 0.8539 ± 1.6× 10−4 3.2× 10−3 1.114× 107 111

Table 6: VRF for P(Wθ > 1) estimation in Mt/GI/1 queue.
α 0.5 1 1.5 2
θ = 104 RDR 4.3× 102 2.6× 102 2.3× 102 1.3× 102

DDR 5.6× 102 4.0× 102 3.0× 102 2.0× 102

MLMC 3.2× 102 1.4× 102 5.2× 101 1.2× 101

θ = 105 RDR 4.1× 103 2.6× 103 1.8× 103 1.2× 103

DDR 5.2× 103 3.8× 103 2.4× 103 1.9× 103

MLMC 2.3× 103 1.1× 103 5.3× 102 1.2× 102

θ = 106 RDR 3.8× 104 2.7× 104 1.7× 104 1.2× 104

DDR 4.7× 104 3.5× 104 2.5× 104 1.7× 104

MLMC 2.6× 104 1.1× 104 4.4× 103 1.1× 103

last busy cycle increases as well, which renders Wθ more dependent on the first Yi’s.

8 Conclusion

We have described a randomized dimension reduction algorithm that estimates E(f(U)) via
Monte Carlo simulation, assuming that f does not depend equally on all its arguments. We
formally prove that under some conditions, in order to achieve an estimator variance ǫ2, our
algorithm requires O(d+ ǫ−2) computations as opposed to O(dǫ−2) under the standard Monte
Carlo method. Our algorithm can be used to efficiently estimate the expected value of a function
of the state of a Markov chain at time-step d, for a class of Markov chains driven by random
variables. The numerical implementation of our algorithm uses a new geometric procedure of
independent interest that solves in O(d) time a d-dimensional optimisation problem that was
previously solved in O(d3) time. We have argued intuitively that our method is resilient to
discontinuities of f , and have described and analysed a deterministic version of our algorithm.
Our numerical experiments confirm that our approach highly outperforms the standard Monte
Carlo method for large values of d, and show its high resilience to discontinuities. Whether our
approach can be combined with the Quasi-Monte Carlo method to produce a provably efficient
estimator is left for future work.

Acknowledgments

This research has been presented at the 9th NIPS Workshop on Optimization for Machine
Learning, Barcelona, December 2016, the Stochastic Methods in Finance seminar at École des
Ponts Paris-Tech, March 2018, and the 23rd International Symposium on Mathematical Pro-
gramming, Bordeaux, July 2018. The author thanks Bernard Lapeyre, seminar and conference
participants for helpful conversations. He is grateful to three anonymous referees, an anonymous
associate editor, and Baris Ata (department editor), for insightful comments and suggestions.
This work was achieved through the Laboratory of Excellence on Financial Regulation (Labex
ReFi) under the reference ANR-10-LABX-0095. It benefitted from a French government support
managed by the National Research Agency (ANR).

19

A Proof of Proposition 2.1

For 0 ≤ i ≤ d, let
f (i) = E(f(U)|Ui+1, . . . , Ud).

Thus, C(i) = Var(f (i)). By the tower law, for 0 ≤ i ≤ d− 1,

E(f (i)|Ui+2, . . . , Ud) = f (i+1),

and so
C(i+ 1) = Var(E(f (i)|Ui+2, . . . , Ud)).

As the variance decreases by taking the conditional expectation, it follows that C(i+1) ≤ C(i),
as desired.

We now prove (2.2). Let W = (U ′
1, . . . , U

′
i , Ui+1, . . . , Ud). Since U and W are conditionally

independent given Ui+1, . . . , Ud, and E(f(W)|Ui+1, . . . , Ud) = f (i),

E(f(U)f(W)|Ui+1, . . . , Ud)) = (f (i))2.

Hence, by the tower law,
E(f(U)f(W)) = E((f (i))2).

On the other hand, using the tower law once again,

E(f(U)) = E(f(W)) = E(f (i)),

and so the RHS of (2.2) is equal to Var(f (i)), as required.

B Proof of Theorem 2.1

We first prove Lemma B.1 below, which follows by classical calculations (see e.g. (Asmussen
and Glynn 2007, Section IV.6a)).

Lemma B.1. Let (Zk), k ≥ 1, be an homogeneous stationary Markov chain in R
d, and let

g be a real-valued Borel-measurable function on R
d such that g(Z1) is square-integrable, and

aj = Cov(g(Z1), g(Z1+j)) is non-negative for j ≥ 0. Assume that
∑∞

j=1 aj is finite. Then

n−1Var(

n∑

m=1

g(Zm)) ≤ a0 + 2

∞∑

j=1

aj . (B.1)

Furthermore, the LHS of (B.1) converges to its RHS as n goes to infinity.

Proof. Since (Zk), k ≥ 1, is homogeneous and stationary, Cov(g(Zm)g(Zm+j)) = aj for m ≥ 1
and j ≥ 0. Thus,

Var(

n∑

m=1

g(Zm)) =

n∑

m=1

Var(g(Zm)) + 2
∑

1≤m<m+j≤n

Cov(g(Zm)g(Zm+j))

= na0 + 2
n∑

j=1

(n− j)aj .

Hence

n−1Var(
n∑

m=1

g(Zm)) = a0 + 2
n∑

j=1

n− j

n
aj ,

which implies (B.1). Using Lebesgue’s dominated convergence theorem concludes the proof.

20

We now prove Theorem 2.1. Since the C(i)’s and the variance of fn remain unchanged
if we add a constant to f , we can assume without loss of generality that E(f(U)) = 0. For
0 ≤ i ≤ d− 1, set pi = 1− qi. Let m < k be two integers in [1, n]. For 0 ≤ i ≤ d− 1,

P(max
m≤j<k

Nj ≤ i) = pi
k−m

and so, for 1 ≤ i ≤ d− 1,

P(max
m≤j<k

Nj = i) = pi
k−m − pi−1

k−m.

For i ∈ [1, d], conditional on the event maxm≤j<k Nj = i, the first i components of V (m) and
V (k) are independent, and the last d − i components of V (m) and V (k) are the same. This is
because, if Nj = i, with m ≤ j < k, the vector V (m) and the first i components of V (j+1) are
independent. Thus, by Proposition 2.1,

E(f(V (m))f(V (k))| max
m≤j<k

Nj = i) = C(i). (B.2)

As C(d) = 0, it follows from Bayes’ formula that

E(f(V (m))f(V (k))) =

d−1∑

i=1

P(max
m≤j<k

Nj = i)C(i)

=

d−1∑

i=1

(pi
k−m − pi−1

k−m)C(i).

Let aj = Cov(f(V (1)), f(V (1+j))). Thus, for j > 0,

aj =
d−1∑

i=1

(pi
j − pi−1

j)C(i)

is non-negative, and

∞∑

j=1

aj =
d−1∑

i=1

(
pi

1− pi
− pi−1

1− pi−1
)C(i)

=

d−1∑

i=1

(
1

1− pi
− 1

1− pi−1
)C(i)

= −C(1) +

d−1∑

i=1

C(i)−C(i+ 1)

qi

is finite. Since a0 = C(0), it follows that

a0 + 2

∞∑

j=1

aj = C(0)− 2C(1) + 2

d−1∑

i=1

C(i)− C(i+ 1)

qi
. (B.3)

We conclude the proof using Lemma B.1.

21

C Proof of Proposition 2.2

Let U ′
1, . . . , U

′
i be random variables satisfying the conditions of Proposition 2.1, and W =

(U ′
1, . . . , U

′
i , Ui+1, . . . , Ud). Since (U1, . . . , Ui) and W are independent,

Cov(fi(U1, . . . , Ui), f(W)) = 0.

Similarly,

Cov(fi(U1, . . . , Ui), fi(U
′
1, . . . , U

′
i)) = Cov(f(U), fi(U

′
1, . . . , U

′
i)) = 0.

Thus, by Proposition 2.1 and bilinearity of the covariance,

C(i) = Cov(f(U)− fi(U1, . . . , Ui), f(W)− fi(U
′
1, . . . , U

′
i))

≤ Std(f(U)− fi(U1, . . . , Ui)) Std(f(W)− fi(U
′
1, . . . , U

′
i))

= Var(f(U)− fi(U1, . . . , Ui)).

The last equation follows by observing that f(W)− fi(U
′
1, . . . , U

′
i)

d
= f(U)− fi(U1, . . . , Ui).

D Proofs of Propositions 2.3 and 2.5

We first prove the following.

Proposition D.1. Let ν = (ν0, . . . , νd) be an element of Rd × {0}. Assume that ν0, . . . , νd−1

are positive, and that the sequence (νi/ti+1), 0 ≤ i ≤ d − 1, is decreasing. For 0 ≤ i ≤ d − 1,
set qi =

√

(t1νi)/(ν0ti+1). Then

R(q; t, ν) ≤ 4

(
d−1∑

i=0

√
νi(
√

ti+1 −
√
ti)

)2

.

Proof. Applying the inequality x − y ≤ 2
√
x(
√
x − √y), which holds for x ≥ 0 and y ≥ 0, to

x = νi and y = νi+1 yields

d−1∑

i=0

νi − νi+1

qi
≤ 2

√
ν0
t1

d−1∑

i=0

(
√
νi −

√
νi+1)

√

ti+1

= 2

√
ν0
t1

d−1∑

i=0

√
νi(
√

ti+1 −
√
ti).

Similarly, since ti+1 − ti ≤ 2
√
ti+1(

√
ti+1 −

√
ti),

d−1∑

i=0

qi(ti+1 − ti) ≤ 2

√
t1
ν0

d−1∑

i=0

√
νi(
√

ti+1 −
√
ti).

Taking the product completes the proof.

We now prove Proposition 2.3. Set t′ = (t′0, . . . , t
′
d), with t′i = ci, 0 ≤ i ≤ d, and let

ν = (ν0, . . . , νd−1, 0), with νi = c′ (i + 1)γ , 0 ≤ i ≤ d − 1. Thus R(q; t, ν∗) ≤ R(q; t′, 2ν) since
t ≤ t′ and ν∗ ≤ 2ν. By Proposition D.1,

R(q; t′, 2ν) ≤ 8cc′

(
d−1∑

i=0

(i+ 1)γ/2(
√
i+ 1−

√
i)

)2

.

22

As
√
i+ 1−

√
i ≤ (i+ 1)−1/2 for i ≥ 0, it follows that

R(q; t, ν∗) ≤ 8cc′(

d∑

i=1

i(γ−1)/2)2.

The inequality
d∑

i=1

i(γ−1)/2 ≤ 1 +

∫ d

1
x(γ−1)/2 dx

implies that

d−1∑

i=0

i(γ−1)/2 ≤







1 + 2/(γ + 1), γ < −1,
1 + ln(d), γ = −1,
2 d(γ+1)/2/(γ + 1), − 1 < γ < 0.

We conclude that there is a constant c1 such that (2.10) holds. This concludes the proof of
Proposition 2.3.

We now prove Proposition 2.5. By applying Proposition D.1 to ν = (2C(0), . . . , 2C(d−1), 0),
it follows that R(q; t, ν) is upper-bounded by the RHS of (2.11). Since R(q; t, ν∗) ≤ R(q; t, ν),
this implies (2.11).

E Proof of Proposition 2.6

Since R(q; t, ν) is increasing with respect to ν,

R(q; t, ν∗) ≥ R(q; t, C(0), . . . , C(d))

= (

d−1∑

i=0

C(i)− C(i+ 1)

qi
)(

d−1∑

i=0

qi(ti+1 − ti)).

However, as
∑d−1

j=0 qj(tj+1 − tj) ≥ qiti+1 for 0 ≤ i ≤ d − 1, and since (C(i)) is a decreasing
sequence,

(

d−1∑

i=0

C(i)− C(i+ 1)

qi
)(

d−1∑

j=0

qj(tj+1 − tj)) ≥
d−1∑

i=0

(C(i)− C(i+ 1))ti+1.

This implies (2.12) since

d−1∑

i=0

(C(i)− C(i+ 1))ti+1 =

d−1∑

i=0

C(i)(ti+1 − ti). (E.1)

Assume now that qi = t1/ti+1 for 0 ≤ i ≤ d − 1. Since R(q; t, ν) is increasing with respect
to ν,

R(q; t, ν∗) ≤ R(q; t, 2C(0), . . . , 2C(d))

= 2(
d−1∑

i=0

C(i)− C(i+ 1)

qi
)(

d−1∑

i=0

qi(ti+1 − ti))

= 2(
d−1∑

i=0

(C(i)− C(i+ 1))ti+1)(
d−1∑

i=0

ti+1 − ti
ti+1

).

Furthermore, as (ti+1 − ti)/ti+1 ≤ ln(ti+1/ti) for 1 ≤ i ≤ d− 1,

d−1∑

i=0

ti+1 − ti
ti+1

≤ 1 + ln(
td
t1
).

Using (E.1) once again yields (2.13).

23

F Relation with the ANOVA decomposition and the truncation

dimension

This section assumes that f is a square-integrable function on [0, 1]d, and that each Ui is
uniformly distributed on [0, 1], with Var(f(U)) > 0. Consider a decomposition of f in the
following form:

f =
∑

Y⊆{1,...,d}

fY , (F.1)

where fY is a measurable function on [0, 1]d and fY (u) depends on u only through (uj)j∈Y ,
for u = (u1, . . . , ud) ∈ [0, 1]d. For instance, f∅ is a constant, f{j}(u) is a function of uj, and
f{j,k}(u) is a function of (uj , uk). The relation (F.1) is called ANOVA representation of f if, for

Y ⊆ {1, . . . , d}, any vector u ∈ [0, 1]d, and any j ∈ Y ,

∫ 1

0
fY (u1, . . . , uj−1, x, uj+1, . . . , ud) dx = 0.

It can be shown (Sobol 2001, p. 272) that there is a unique ANOVA representation of f , that
the fY ’s are square-integrable, and that

Var(f(U)) =
∑

Y⊆{1,...,d}

σ2
Y ,

where σY is the standard deviation of fY (U). Furthermore, for 0 ≤ i ≤ d− 1,

E(f(U)|Ui+1, . . . , Ud) =
∑

Y⊆{i+1,...,d}

fY (U),

and the covariance between fY (U) and fY ′(U) is null if Y 6= Y ′. Hence, for 0 ≤ i ≤ d− 1,

C(i) =
∑

Y⊆{i+1,...,d}

σ2
Y . (F.2)

It follows that C(i) is equal to the variance corresponding to the subset {i+ 1, . . . , d}, as defined
in (Sobol 2001, Eq. 4). Thus, C(i)/C(0) is equal to the global sensitivity index S{i+1,...,d} for
the subset {i+ 1, . . . , d} (see (Sobol 2001, Definition 3)).

Proposition F.1 below relates the performance of our algorithm to the truncation dimension
dt of f , defined in (Owen 2003) as

dt ,

∑

Y⊆{1,...,d},Y 6=∅
max(Y)σ2

Y

Var(f(U))
.

Under the conditions in Proposition F.1, if td = Θ(d) and dt is upper bounded by a constant
independent of d, the asymptotic (as n goes to infinity) work-normalized variance of our algo-
rithm is O(ln(d)Var(f(U))), whereas the work-normalized variance of the standard Monte Carlo
algorithm is Θ(dVar(f(U))).

Proposition F.1. Assume that there is a real number c such that ti ≤ ci for 1 ≤ i ≤ d, and
that qi = 1/(i + 1) for 0 ≤ i ≤ d− 1. Then

R(q; t, ν∗) ≤ 2c(1 + ln(d))dtVar(f(U)).

Proof. For 0 ≤ i ≤ d− 1, we can rewrite (F.2) as

C(i) =
∑

Y⊆{1,...,d},Y 6=∅

1{i < min(Y)}σ2
Y .

24

Hence,

d−1∑

i=0

C(i) =
∑

Y⊆{1,...,d},Y 6=∅

d−1∑

i=0

1{i < min(Y)}σ2
Y

=
∑

Y⊆{1,...,d},Y 6=∅

min(Y)σ2
Y

≤ dtVar(f(U)).

Let t′i = ci for 0 ≤ i ≤ d, and t′ = (t′0, . . . , t
′
d). The proof of (2.13) shows that this relation still

holds if t is replaced by any increasing sequence of length d+ 1 starting at 0. Replacing t by t′

implies that

R(q; t′, ν∗) ≤ 2c(1 + ln(d))

d−1∑

i=0

C(i)

≤ 2c(1 + ln(d))dtVar(f(U)).

Moreover, R(q; t, ν∗) ≤ R(q; t′, ν∗) since t ≤ t′. This completes the proof.

G Proof of Theorem 3.1

We use the following proposition, whose proof follows immediately from (2.4).

Proposition G.1. If ν ∈ R
d × {0} and ν ′ ∈ R

d × {0} are such that ν ′ ≤ ν, and q ∈ A, then
R(q; t, ν ′) ≤ R(q; t, ν), with equality if ν0 = ν ′0 and, for 1 ≤ i ≤ d− 1, (νi − ν ′i)(qi−1 − qi) = 0.

By definition of the lower hull, (θi), 0 ≤ i ≤ d − 1, is an increasing sequence. Furthermore,
θd−1 < 0 since it is equal to the slope of a segment joining (ti, νi) to (td, 0), for some i ∈ [0, d−1].
Hence θi < 0 for 0 ≤ i ≤ d − 1, and so q∗ is well defined and belongs to A. Furthermore, (ν ′i),
0 ≤ i ≤ d, is a decreasing sequence, and ν ′d = νd = 0. On the other hand, by (2.5),

R(q∗; t, ν ′) =

(d−1∑

i=0

√

(ν ′i − ν ′i+1)(ti+1 − ti)

)2

.

Since, by the Cauchy-Schwartz inequality, for all non-negative sequences (xi) and (yi),

(

d−1∑

i=0

√
xiyi)

2 ≤ (

d−1∑

i=0

xi)(

d−1∑

i=0

yi),

it follows that R(q∗; t, ν ′) ≤ R(q; t, ν ′) for q ∈ A. Furthermore, by Proposition G.1, R(q; t, ν ′) ≤
R(q; t, ν), and so R(q∗; t, ν ′) ≤ R(q; t, ν). On the other hand, (νi − ν ′i)(q

∗
i−1 − q∗i) = 0 for

1 ≤ i ≤ d−1. This is because, if νi 6= ν ′i, then the point (ti, νi) does not belong to the lower hull
of the set {(tj , νj) : 0 ≤ i ≤ d}. Hence (ti, ν

′
i) belongs to the segment ((ti−1, ν

′
i−1), (ti+1, ν

′
i+1),

which implies that θi−1 = θi and q∗i−1 = q∗i . Thus, as ν0 = ν ′0, Proposition G.1 shows that
R(q∗; t, ν) = R(q∗; t, ν ′). This implies (3.2) and that R(q∗; t, ν) ≤ R(q; t, ν) for q ∈ A, as
desired.

H Proof of Proposition 3.1

The random vectors W (1) = (U1, . . . , Ui, U
′
i+1, . . . , U

′
d), W

(2) = (U ′
1, . . . , U

′
i , Ui+1, . . . , Ud), and

W (3) = (U ′
1, . . . , U

′
i , U

′′

i+1, . . . , U
′′

d) have the same distribution as U . Hence

E((f(U) − f(W (1)))(f(W (2))− f(W (3))) = Cov(f(U)− f(W (1)), f(W (2))− f(W (3))).

25

As W (1) and W (2) are independent,

Cov(f(W (1)), f(W (2)) = 0.

Similarly,
Cov(f(W (1)), f(W (3)) = Cov(f(U), f(W (3)) = 0.

By bilinearity of the covariance, it follows that

E((f(U)− f(W (1)))(f(W (2))− f(W (3))) = Cov(f(U), f(W (2)).

We conclude the proof using Proposition 2.1.

I Proof of Proposition 4.1

We first prove the following Markov property.

Proposition I.1. Let i ∈ [0, d]. If H is a bounded random variable which is measurable with
respect to the σ-algebra generated by Xi, Yi, . . . , Yd−1, then

E(H|Y0, . . . , Yi−1) = E(H|Xi). (I.1)

Proof. Let H be the vector space of bounded real-valued random variables H satisfying (I.1).
Clearly, the constant random variables belong toH. Let (Hm), m ≥ 0, be an increasing sequence
of positive elements of H such that H = supm≥0 Hm is bounded. For m ≥ 0,

E(Hm|Y0, . . . , Yi−1) = E(Hm|Xi). (I.2)

By the conditional Lebesgue dominated convergence theorem (Shiryaev 1996, Theorem 2, p.
218), the LHS (resp. RHS) of (I.2) converges to E(H|Y0, . . . , Yi−1) (resp. E(H|Xi)) as m goes
to infinity, and so H ∈ H.

Let G (resp. G′) be the set of bounded real-valued random variables which are measurable
with respect to the σ-algebra generated by Xi (resp. (Yi, . . . , Yd−1)), and let C be the set of
random variables of the form GG′, with G ∈ G and G′ ∈ G′. For G ∈ G and G′ ∈ G′,

E(GG′|Y0, . . . , Yi−1) = GE(G′|Y0, . . . , Yi−1)

= GE(G′).

The first equation holds since Xi is a measurable function of Y0, . . . , Yi−1, which implies that
G is measurable with respect to the σ-algebra generated by Y0, . . . , Yi−1. The second equation
follows from the independence of (Yi, . . . , Yd−1) and (Y0, . . . , Yi−1). Similarly, since (Yi, . . . , Yd−1)
and Xi are independent,

E(GG′|Xi) = GE(G′|Xi) = GE(G′).

Thus, GG′ ∈ H, and so C ⊆ H. As C is closed under pointwise multiplication, by the monotone
class theorem (Revuz and Yor 1999, Theorem 2.2, p. 3), H contains all bounded random
variables which are measurable with respect to the σ-algebra generated by the elements of
C. Since Yi, . . . , Yd−1 and Xi belong to C, it follows that H contains all bounded random
variables which are measurable with respect to the σ-algebra generated by Xi, Yi, . . . , Yd−1.
This completes the proof.

26

As g(Xd) is a measurable function of (Xi, Yi, . . . , Yd−1), for any integer m, the random
variable min(m, g+(Xd)) belongs to H. By the conditional Lebesgue dominated convergence
theorem, taking the limit as m goes to infinity implies that

E(g+(Xd)|Y0, . . . , Yi−1) = E(g+(Xd)|Xi).

A similarly equation holds for g−(Xd). Thus,

E(g(Xd)|Y0, . . . , Yi−1) = E(g(Xd)|Xi).

Replacing i with d− i implies that

E(g(Xd)|Ui+1, . . . , Ud) = E(g(Xd)|Xd−i).

Taking the variance of both sides concludes the proof.

J Proof of Proposition 4.2

For 0 ≤ i ≤ d − 1, set Zi = αY 2
i + β, so that Xi+1 = w + ZiXi. It can be shown by induction

on i that Xd = w +wZd−1Z
′ + Z ′′ for 2 ≤ i ≤ d, where

Z ′ =

i−1∑

j=1

j
∏

k=2

Zd−k

and
Z ′′ = Zd−i · · ·Zd−1Xd−i.

By convention, the product over an empty set is equal to 1. Since Xi,0 is equal to the state
of the Markov chain at step d if Xd−i = 0, it follows that Xi,0 = w + wZd−1Z

′. Note that
E(Z ′′) = (α+ β)iE(Xd−i) as E(Y 2

i) = 1. By (Hull 2014, Eq. 23.13), for 0 ≤ m ≤ d,

E(Xm) ≤ max(X0,
w

1− α− β
),

and so
E(Z ′′) ≤ max(X0,

w

1− α− β
)(α + β)i.

Since the density of Yd−1 is upper-bounded by 1/2, for γ ≤ γ′,

P(γ ≤ Zd−1 ≤ γ′) = 2P(

√

(γ − β)+

α
≤ Yd−1 ≤

√

(γ′ − β)+

α
)

≤
√

(γ′ − β)+

α
−
√

(γ − β)+

α

≤
√

γ′ − γ

α
. (J.1)

The last equation follows from the inequality
√
y′ −√y ≤ √y′ − y, which holds for 0 ≤ y ≤ y′.

On the other hand, as Xi,0 ≤ Xd,

g(Xd)− g(Xi,0) =

{

1 if Xi,0 ≤ z < Xd,

0 otherwise.

Thus, by (4.1),

C(i) ≤ ||g(Xd)− g(Xi,0)||2

= P(Xi,0 ≤ z < Xd).

27

But

P(Xi,0 ≤ z < Xd) = P(
z − Z ′′ − w

wZ ′
< Zd−1 ≤

z − w

wZ ′
)

= E(P(
z − Z ′′ − w

wZ ′
< Zd−1 ≤

z − w

wZ ′
|Z ′, Z ′′))

≤ E(

√

Z ′′

αwZ ′
)

≤ κ(α+ β)i/2,

where κ is a constant that depends only on w, X0, α and β. The third equation follows from (J.1)
and the independence of Zd−1 and (Z ′, Z ′′). The last equation follows from Jensen’s inequality
and the inequality Z ′ ≥ 1. Hence C(i) ≤ κ(α + β)i/2 for 2 ≤ i ≤ d. This inequality also holds
for 0 ≤ i ≤ 1 by replacing κ with max(κ, 1/(α + β)).

K Proof of Proposition 4.3

By classical calculations (see, e.g., (Asmussen and Glynn 2007, §I, Eq. (1.4))), it can be shown
by induction on d that Xd = max0≤j≤d Sj, where Sj =

∑d−1
k=d−j Yk for 1 ≤ j ≤ d, with S0 = 0.

For 0 ≤ i ≤ d − 1, since Xi,0 is the number of customers in the queue at time-step d if there
are no costumers in the queue at time-step d − i, it can be shown by induction on d that
Xi,0 = max0≤j≤i Sj. Hence

Xd = max(Xi,0, max
i+1≤j≤d

Sj).

Thus
Xd −Xi,0 ≤ max

i+1≤j≤d
Sj

+,

and so

C(i) ≤ ||Xd −Xi,0||2

≤
d∑

j=i+1

||Sj
+||2.

On the other hand, since the Yi’s are independent, E(eγSj) ≤ κj for 0 ≤ j ≤ d. Furthermore,

as (x+)2 ≤ 2ex for x ∈ R, γ2(S+
j)

2 ≤ 2eγSj . Taking expectations implies that γ2||Sj
+||2 ≤ 2κj ,

and so C(i) ≤ γ′κi, where γ′ = 2γ−2/(1− κ).

L Proof of Proposition 4.4

It can be shown by induction on the number of arrivals in (θ′, θ] (see also (Ma and Whitt 2017))
that, if the system is empty at time θ′ ∈ [0, θ],

Wθ = sup
s∈[θ′,θ]

{Zθ(s)− (θ − s)}.

Hence
Xd = sup

s∈[0,θ]
{Zθ(s)− (θ − s)}.

Also, for 0 ≤ i ≤ d, since Xi,0 is the residual work at time θ if the residual work at time
(d− i)θ/d is 0,

Xi,0 = sup
s∈[(d−i)θ/d,θ]

{Zθ(s)− (θ − s)}.

28

Thus, by a calculation similar to the proof of Proposition 4.3,

Xd −Xi,0 ≤ sup
0≤s≤(d−i)θ/d

{Zθ(s)− (θ − s)}+.

For non-negative integer j, set

Sj = Zθ((θ −
j

λ∗
)+)− j − 1

λ∗
.

Fix s ∈ [0, (d− i)θ/d], and let j = ⌈(θ− s)λ∗⌉. As θ− j/λ∗ ≤ s and Zθ is a decreasing function,

Zθ(s) ≤ Zθ((θ −
j

λ∗
)+).

Since θ − s ≥ (j − 1)/λ∗, this implies that Zθ(s) − (θ − s) ≤ Sj . But 2j ≥ i as j ≥ iλ∗θ/d and
λ∗θ ≥ d/2. Hence

Xd −Xi,0 ≤ sup
j≥i/2

S+
j .

By calculations similar to the proof of Proposition 4.3, it follows that

C(i) ≤
∑

j≥i/2

||Sj
+||2.

On the other hand, (4.3) implies that E(eγ(Sj+1−Sj)) ≤ κ for j ≥ 0, and so E(eγSj) ≤ eγ/λ
∗

κj .
We conclude the proof in a way similar to the proof of Proposition 4.3.

M Proof of Theorem 2.2

If C is a collection of random variables, denote by σ[C] the σ-algebra generated by the elements
of C. Let (ξk), k ≥ 1, be a stationary sequence of real-valued random variables. For k ≥ 1, define
the σ-algebras Fk = σ[ξn : 1 ≤ n ≤ k] and F ′

k = σ[ξn : n ≥ k]. Following (Billingsley 1999,
p. 203), for n ≥ 1, let

ϕn = sup
k≥1

sup{P(B′|B)− P(B′) : B ∈ Fk,P(B) > 0, B′ ∈ F ′
k+n}.

The sequence (ϕn) is used to study the mixing proprieties of the sequence (ξk). Theorem M.1
below establishes a functional central limit theorem on the partial sums of (ξk) under certain
conditions on (ϕn). Theorem M.1 follows immediately from Theorem 19.2 and the discussion
on p. 203 of (Billingsley 1999). Let D∞ denote the set of real-valued functions on the interval
[0,∞) that are right-continuous and have left-hand limits, endowed with the Skorokhod topology
(see (Billingsley 1999, Section 16)).

Theorem M.1 (Billingsley (1999)). Assume that (ξk), k ≥ 1, is stationary, that ξ1 is square-
integrable, and that

∞∑

n=0

√
ϕn <∞. (M.1)

Then the series

σ̄2 = Var(ξ1) + 2

∞∑

k=2

Cov(ξ1, ξk) (M.2)

converges absolutely. If σ̄ > 0 and Sn =
∑n

k=1(ξk −E(ξk)) then, as n→∞,

S⌊ns⌋√
n
⇒ σ̄Bs (M.3)

in the sense of D∞, where Bs is a standard Brownian motion.

29

We show that the conditions of Theorem M.1 hold when ξk = f(V (k)) for k ≥ 1. As (V (k)),
k ≥ 1, is a stationary Markov chain, the sequence (f(V (k))), k ≥ 1, is stationary. We first prove
the following lemma, which follows intuitively from the fact that if all components of the copy
of U are redrawn at a certain iteration, future copies of U are independent of past ones.

Lemma M.1. For positive integers n and k, if B ∈ Fk and B′ ∈ F ′
k+n, then B and B′ ∩ I are

independent, where

I = Ik,n = {ω ∈ Ω : ∃j ∈ [k, k + n− 1], Nj(ω) = d}.

Proof. Let Gk = σ[Nj , U
(j+1) : j ≥ k]. Fix l ≥ k + n. By construction, if ω ∈ I, there is

j ∈ [k, k + n− 1] is such that V (j+1)(ω) = U (j+1)(ω). Hence, if ω ∈ I, the vector V (l) does not
depend V (k). More precisely, it can be shown by induction that there is a measurable function
H : F d(l−k) × R

(l−k) → F
d such that, for ω ∈ I,

V (l)(ω) = H(U (k+1)(ω), . . . , U (l)(ω), Nk(ω), . . . , Nl−1(ω)).

For ω ∈ Ω, let

G(ω) = f(H(U (k+1)(ω), . . . , U (l)(ω), Nk(ω), . . . , Nl−1(ω))).

Thus, f(V (l)(ω)) = G(ω) for ω ∈ I. As the maps f and H are measurable, and since the
random variables U (k+1), . . . , U (l) and Nk, . . . , Nl−1 are measurable with respect to Gk, the
random variable G is measurable with respect to Gk as well. For z ∈ R, let Bz = {ω ∈ Ω :
f(V (l)(ω)) < z}. Since I ∈ Gk and

Bz ∩ I = {ω ∈ Ω : G(ω) < z} ∩ I,

we have Bz ∩ I ∈ Gk. Thus Bz ∈ G′k for any real number z, where

G′k = {B ∈ F : B ∩ I ∈ Gk}.

It is easy to check that G′k is a σ-algebra. We conclude that f(V (l)) is measurable with respect
to G′k, for any l ≥ k + n, and so F ′

k+n ⊆ G′k. Consequently, if B ∈ Fk and B′ ∈ F ′
k+n, then

B′ ∈ G′k, and so B′ ∩ I ∈ Gk. Since Fk and Gk are independent, so are B and B′ ∩ I.

We now prove the theorem. For positive integers n and k, let B ∈ Fk with P(B) > 0 and
B′ ∈ F ′

k+n, and define I as in Lemma M.1. Thus,

P(B′ ∩ I|B) = P(B′ ∩ I).

Since
P(B′) ≤ P(B′ ∩ I) + P(Ic),

it follows that
P(B′) ≤ P(B′|B) + P(Ic).

Replacing B′ with its complement and noting that P(Ic) = (1− qd−1)
n, we conclude that

|P(B′|B)− P(B′)| ≤ (1− qd−1)
n.

Hence ϕn ≤ (1− qd−1)
n, and so (M.1) holds. Thus the conclusions of Theorem M.1 hold for the

sequence (f(V (k))), k ≥ 1. It follows from (B.3) and (M.2) that σ̄ = σ. By (M.3), as n→∞,

⌊ns⌋(f⌊ns⌋ − E(f(U)))√
n

⇒ σ̄Bs (M.4)

30

in D∞. Setting s = 1, which can be justified by applying the continuous mapping theo-
rem (Billingsley 1999, Theorem 2.7) with the projection map (Billingsley 1999, Theorem 16.6),
implies (2.8). Let τk denote the random amount time to generate V (k) and calculate f(V (k)).
Thus E(τk) = T . By the strong law of large numbers, with probability 1,

1

n

n∑

k=1

τk → T (M.5)

as n goes to infinity. By (M.4), (M.5) and (Glynn and Whitt 1992, Theorem 1), it follows that

√
c(fÑ(c) − E(f(U)))⇒ N(0, Tσ2),

as c→∞. Since Tσ2 = R(q; t, ν∗), this implies (2.9).

N Proof of Theorem 5.1 and of Proposition 5.1

For convenience, set N0 = N̄0 = d. For 0 ≤ i ≤ d− 1, let

Si = Si(n) = {k ∈ [0, n − 1] : Nk > i}. (N.1)

Let ui(0) = 0, ui(1), . . . , ui(|Si| − 1) be the elements of Si sorted in increasing order. Set

ui(|Si|) = n and let Q(i) = Q(i, n) =
∑|Si|

l=1(ui(l) − ui(l − 1))2. Note that S0 = {0, . . . , n − 1}
and Q(0) = n. The following lemma gives an alternative characterization of Q(i).

Lemma N.1. For 0 ≤ i ≤ d− 1,

∑

1≤m<k≤n

1{ max
m≤j<k

Nj ≤ i} = 1

2

(
Q(i)− n).

Proof. Given integers m and k with 1 ≤ m < k ≤ n, the condition maxm≤j<k Nj ≤ i holds if
and only if [m,k) ∩ Si = ∅. It is thus equivalent to the existence of an integer l ∈ [1, |Si|] such
that ui(l − 1) < m < k ≤ ui(l). Hence

∑

1≤m<k≤n

1{ max
m≤j<k

Nj ≤ i} = 1

2

|Si|∑

l=1

(ui(l)− ui(l − 1))(ui(l)− ui(l − 1)− 1).

We conclude the proof by noting that

|Si|∑

l=1

(ui(l)− ui(l − 1)) = n.

Lemma N.2 below relates the variance of fn to the Q(i)’s and C(i)’s.

Lemma N.2. For n ≥ 1,

Var(fn) = n−2
d−1∑

i=0

Q(i)(C(i) − C(i+ 1)).

31

Proof. As in the proof of Theorem 2.1, we assume without loss of generality that E(f(U)) = 0.
Let m < k be two integers in [1, n]. By arguments similar to those that lead to (B.2),

E(f(V (m))f(V (k))) = C(max
m≤j<k

Nj).

Since, for 0 ≤ l ≤ d,

C(l) =

d−1∑

i=l

(C(i)− C(i+ 1))

=

d−1∑

i=0

1{l ≤ i}(C(i) −C(i+ 1)),

it follows that

E(f(V (m))f(V (k))) =
d−1∑

i=0

1{ max
m≤j<k

Nj ≤ i}(C(i) − C(i+ 1)).

As

Var(fn) = n−2(

n∑

m=1

E((f(V (m)))2) + 2
∑

1≤m<k≤n

E(f(V (m))f(V (k)))),

and E((f(V (m)))2) = C(0) for 1 ≤ m ≤ n, we conclude that

Var(fn) = n−2(nC(0) + 2

d−1∑

i=0

∑

1≤m<k≤n

1{ max
m≤j<k

Nj ≤ i}(C(i)− C(i+ 1))).

Thus, by Lemma N.1,

Var(fn) = n−2(nC(0) +
d−1∑

i=0

(Q(i) − n)(C(i)− C(i+ 1))),

which, after some simplifications, completes the proof.

We now prove Theorem 5.1. By the Cauchy-Schwartz inequality, for 0 ≤ i ≤ d− 1 and any
sequence (xl), 1 ≤ l ≤ Si,

(

|Si|∑

l=1

xl)
2 ≤ |Si|(

|Si|∑

l=1

x2l).

Replacing xl with ui(l)− ui(l − 1) shows that n2 ≤ |Si|Q(i). By Lemma N.2, it follows that

Var(fn) ≥
d−1∑

i=0

C(i)− C(i+ 1)

|Si|
.

For 0 ≤ k ≤ n − 1, the expected running time of iteration k + 1 is ti if Nk = i. Furthermore,
for i ∈ [1, d], there are |Si−1| − |Si| integers k in [0, n − 1] with Nk = i, where Sd , ∅, and so

Tn =

d∑

i=1

(|Si−1| − |Si|)ti =
d−1∑

i=0

|Si|(ti+1 − ti). (N.2)

Thus,
TnVar(fn) ≥ R(q; t, C),

32

where qi = |Si|/n for 0 ≤ i ≤ d− 1. This implies (5.3).
Assume now that Nk = N̄k for k ≥ 1. Then, by (5.2), for 0 ≤ i ≤ d− 1,

Si = {k ∈ [0, n − 1] : k is a multiple of µi}. (N.3)

Thus |Si| = 1+ ⌊(n− 1)q̄i⌋ which, by (N.2), implies (5.4). Since ui(l) = lµi for 0 ≤ l ≤ |Si| − 1,

Q(i) = µi

|Si|−1
∑

l=1

(ui(l)− ui(l − 1)) + (n−max(Si))2

= µimaxSi + (n−max(Si))2.

As 0 ≤ n − max(Si) ≤ µi, it follows that µi(n − µi) ≤ Q(i) ≤ µin. By Lemma N.2, this
implies (5.5) and shows that, as n goes to infinity, the LHS of (5.5) converges to its RHS.

We now prove Proposition 5.1. Assume that (Nk) satisfies the conditions in the proposition,
and that nqd−1 > 1. Then Sd−1 consists of the integers belonging to {0} ∪ (n − nqd−1, n), and
so Q(d − 1) ≥ n2(1 − qd−1)

2. By Lemma N.2, it follows that Var(fn) ≥ (1 − qd−1)
2C(d − 1),

which completes the proof.

O Proof of Theorem 6.1

We first prove the following lemma.

Lemma O.1. Let (νi), 0 ≤ i ≤ d, be a decreasing sequence such that νml
≤ Var(φL − φl) for

0 ≤ l ≤ L, with νd = 0. Then

d−1∑

i=0

√
νi

i+ 1
≤ 2

L∑

l=1

√

mlVl.

Proof. Since the sequence (νi) is decreasing and (i+ 1)−1/2 ≤ 2(
√
i+ 1−

√
i) for i ≥ 0,

k−1∑

i=j

√
νi

i+ 1
≤ 2(
√
k −

√

j)
√
νj ,

for 0 ≤ j ≤ k ≤ d. Hence,

d−1∑

i=0

√
νi

i+ 1
=

L−1∑

l=0

ml+1−1
∑

i=ml

√
νi

i+ 1

≤ 2

L−1∑

l=0

(
√
ml+1 −

√
ml)
√
νml

≤ 2
L−1∑

l=0

(
√
ml+1 −

√
ml)Std(φL − φl)

= 2

L∑

l=1

√
ml(Std(φL − φl−1)− Std(φL − φl))

≤ 2

L∑

l=1

√

mlVl,

where the last equation follows by sub-linearity of the standard deviation.

33

We now prove Theorem 6.1. Since φl is square-integrable and is a measurable function of
U1, . . . , Uml

, by Proposition 2.2, C(ml) ≤ Var(φL − φl) for 0 ≤ l ≤ L. By Proposition 2.1, the
sequence (C(i)), 0 ≤ i ≤ d, is decreasing, and so it satisfies the conditions of Lemma O.1. Thus,

d−1∑

i=0

√

C(i)

i+ 1
≤ 2

L∑

l=1

√

mlVl.

Furthermore, by Proposition 2.5,

R(q; t, ν∗) ≤ 8c

(
d−1∑

i=0

(
√
i+ 1−

√
i)
√

C(i)

)2

.

Since
√
i+ 1−

√
i ≤ (i+ 1)−1/2, it follows that

R(q; t, ν∗) ≤ 32c

(
L∑

l=1

√

mlVl

)2

.

Using (6.2) concludes the proof.

P Relation with splitting and conditional Monte Carlo

Like the splitting algorithm described in (Asmussen and Glynn 2007, Section V.5) when d = 2,
our method samples more often important random variables. This section explores further the
relation between our method and the splitting and conditional Monte Carlo methods. Fix n ≥ 1
and assume for simplicity that the sequence (Nk) is deterministic. We first analyse the relation
between our method and the conditional Monte Carlo method in the general case, then show
that the generic dimension reduction algorithm for Markov chains estimation can be efficiently
cast as a splitting algorithm.

P.1 Relation with conditional Monte Carlo

Define Si via (N.1) for 0 ≤ i ≤ d− 1, and set Sd = {0}. For 0 ≤ i ≤ d and m ∈ Si, let

Si,m = {k ∈ [m,n− 1] : (m,k] ∩ Si = ∅}, (P.1)

and

fi,m =
1

|Si,m|
∑

k∈Si,m

f(V (k+1)).

Thus, if (m,m′) are consecutive elements of Si∪{n}, then Si,m = {m, . . . ,m′−1}. In particular,
for 0 ≤ m ≤ n−1, we have S0,m = {m}, and so fm,0 = f(V (m+1)). Similarly, Sd,0 = {0, . . . , n−1}
and fd,0 = fn. For 0 ≤ i ≤ d, m ∈ Si, and k ∈ Si,m, we have Nl ≤ i for m < l ≤ k, and so the
last d− i components of V (k+1) and V (m+1) are the same. In other words,

V
(k+1)
j = V

(m+1)
j , for 0 ≤ i < j ≤ d and k ∈ Si,m. (P.2)

We can thus view fi,m as a discrete analog to E(f(V (m+1))|V (m+1)
i+1 , . . . , V

(m+1)
d). The following

proposition shows that the random variables fi,m, for 0 ≤ i ≤ d and m ∈ Si, can be calculated
inductively via (P.3). This is reminiscent of the conditional Monte Carlo method, where an
expectation is estimated via an average of conditional expectations.

34

Proposition P.1. For 1 ≤ i ≤ d and m ∈ Si,

fi,m =
∑

k∈Si−1∩Si,m

|Si−1,k|
|Si,m|

fi−1,k, (P.3)

and
|Si,m| =

∑

k∈Si−1∩Si,m

|Si−1,k|. (P.4)

Proof. We first show that

Si,m =
⋃

k∈Si−1∩Si,m

Si−1,k. (P.5)

If k ∈ Si−1 ∩ Si,m and k′ ∈ Si−1,k, we have (m,k] ∩ Si = ∅ and (k, k′] ∩ Si−1 = ∅. As Si ⊆ Si−1

and m ≤ k ≤ k′, this implies that (m,k′] ∩ Si = ∅, and so k′ ∈ Si,m. Thus

⋃

k∈Si−1∩Si,m

Si−1,k ⊆ Si,m.

Conversely, given k′ ∈ Si,m, let
k = max([0, k′] ∩ Si−1). (P.6)

Sincem ∈ [0, k′]∩Si−1, the integer k is well-defined and m ≤ k. Since k ≤ k′ and (m,k′]∩Si = ∅,
we have (m,k]∩Si = ∅. Hence k ∈ Si,m, and so k ∈ Si−1∩Si,m. Furthermore, (k, k′]∩Si−1 = ∅
by (P.6). Thus k′ ∈ Si−1,k, and so

Si,m ⊆
⋃

k∈Si−1∩Si,m

Si−1,k.

This implies (P.5). Moreover, if k ∈ Si−1 and j ∈ Si−1,k, then (k, j] ∩ Si−1 = ∅, and so
k = max([0, j]∩Si−1). Thus, if k and k′ are distinct elements of Si−1, the sets Si−1,k and Si−1,k′

are disjoint. Together with (P.5), this immediately implies (P.3) and (P.4).

P.2 The Markov chains case

Using the same notation and assumptions as in §4, we show how to cast the generic dimension
reduction algorithm for Markov chains estimation as a splitting algorithm. For each integer

k in [1, n], define the Markov chain (X
(k)
i), 0 ≤ i ≤ d, by induction on i as follows: X

(k)
0 =

X0 and X
(k)
i+1 = gi(X

(k)
i , V

(k)
d−i) for 0 ≤ i ≤ d − 1. Then it can be shown by induction that

X
(k)
d = Gd(V

(k),X0), and that g(X
(k)
d) = f(V (k)). The generic dimension reduction algorithm

for Markov chains estimation described in §4 thus outputs the average of g(X
(1)
d), . . . , g(X

(n)
d).

Furthermore, it can be shown by induction that, for 0 ≤ i ≤ d and 1 ≤ k ≤ n, the random

variable X
(k)
i is a deterministic function of (V

(k)
j), d− i < j ≤ d. On the other hand, by (P.1),

for 0 ≤ i ≤ d and 0 ≤ k ≤ n − 1, if m = max([0, k] ∩ Sd−i) then k ∈ Sd−i,m. The integer m is
well-defined since 0 ∈ Sd−i. By (P.2), the last i components of V (k+1) and V (m+1) are the same,

and so X
(k+1)
i = X

(m+1)
i . However, for 0 ≤ i ≤ d− 1 and k ∈ Sd−i−1, we have V

(k+1)
d−i = U

(k+1)
d−i

since Nk ≥ d− i, and so

X
(k+1)
i+1 = gi(X

(m+1)
i , U

(k+1)
d−i), with m = max([0, k] ∩ Sd−i). (P.7)

We can calculate X
(k+1)
i by induction on i via (P.7) for 0 ≤ i ≤ d and k ∈ Sd−i. Recalling that

S0 = {0, . . . , n− 1}, this allows us to simulate X
(1)
d , . . . ,X

(n)
d . The generic dimension reduction

algorithm for Markov chains estimation described in §4 can thus be rewritten as follows:

35

Table 7: Comparison with QMC in E(Xd) estimation in Gt/D/1 queue, 1000 samples, where
Xd is the number of customers in the queue at time-step d.

n 90% confidence interval Std Cost Cost × Std2 VRF
d = 2500 RDR 649 5.525± 8.9× 10−3 1.7× 10−1 2.736 × 104 ± 1.5× 102 8.0× 102 48

DDR 782 5.526± 8.6× 10−3 1.7× 10−1 2.608 × 104 7.2× 102 53
QMC 4096 5.5235± 1.0× 10−3 2.0× 10−2 1.024 × 107 3.9× 103 10

d = 5000 RDR 1225 5.521± 6.5× 10−3 1.2× 10−1 5.462 × 104 ± 3.2× 102 8.4× 102 92
DDR 1400 5.518± 6.2× 10−3 1.2× 10−1 5.174 × 104 7.3× 102 105
QMC 4096 5.5225± 8.2× 10−4 1.6× 10−2 2.048 × 107 5.1× 103 15

d = 10000 RDR 2295 5.5243± 4.6× 10−3 8.8× 10−2 1.106 × 105 ± 6.3× 102 8.5× 102 182
DDR 2822 5.5221± 4.5× 10−3 8.6× 10−2 1.032 × 105 7.7× 102 202
QMC 4096 5.5234± 1.1× 10−3 2.0× 10−2 4.096 × 107 1.7× 104 9

1. Generate Nk for 1 ≤ k ≤ n− 1 and calculate the sets Si, 0 ≤ i ≤ d.

2. Set X
(1)
0 = X0.

3. For i = 0, . . . , d − 1 and k ∈ Sd−i−1, sample a copy U
(k+1)
d−i of Yi and calculate X

(k+1)
i+1

via (P.7).

4. Output the average of g(X
(1)
d), . . . , g(X

(n)
d).

Step 3 generates one or several copies of Xi+1 for each copy of Xi, and so the above algorithm
may be viewed as a splitting algorithm. Assume now that Nk = N̄k for k ≥ 1. Step 1 can
then be implemented via (N.3). In (P.7), m = 0 if i = 0 and, by (N.3), m = ⌊k/µd−i⌋µd−i

if 1 ≤ i ≤ d − 1. The expected running times of this algorithm and of the algorithm in §4
are within a constant from each other as they are both proportional to the number of sampled
copies of the Ui’s.

Q Further numerical experiments

Q.1 Comparison with Quasi-Monte Carlo

Consider the Gt/D/1 queue with the same parameters as in §7.2. Table 7 estimates E(Xd),
and Table 8 gives VRFs in the estimation of P(Xd > z), for selected values of z. Our numerical
results for the RDR and DDR algorithms are similar to those of §7.2. Once again, for the
RDR and DDR algorithms, the variable Cost × Std2 is roughly independent of d, and the
variance reduction factors are roughly proportional to d. In contrast, for the QMC algorithm,
the variable Cost × Std2 is roughly proportional to d, and the variance reduction factors are
roughly constant. The VRFs of the RDR and DDR algorithms in Table 8 are, in general,
greater than or equal to the corresponding VRFs in Table 7, which confirms the resiliency of
these algorithms to discontinuities of g. In contrast, the VRFs of the QMC algorithm in Table 8
are lower than the corresponding VRFs in Table 7. The RDR and DDR algorithms outperform
the QMC algorithm. The VRFs of the QMC algorithm in Tables 7 and 8 are of the same
order of magnitude as those obtained by L’Ecuyer and Lemieux (2000), who have reduced the
variance in the simulation of a M/M/1 queue by a factor ranging between 5 and 10 via lattice
rules.

Q.2 Gt/D/1 queue with time-varying amplitude

Consider a Gt/D/1 queue where Ai has a Poisson distribution with time-varying rate

λi = (1− 1

ln(i+ 2)
)(0.75 + 0.5 cos(

πi

50
)),

36

Table 8: VRFs for P(Xd > z) estimation in Gt/D/1 queue.
z 0 2 4 6 8 10
d = 2500 RDR 83 60 59 49 50 51

DDR 125 76 67 71 63 61
QMC 1.8 2.2 2.5 2.7 2.1 1.7

d = 5000 RDR 149 120 109 101 101 107
DDR 215 165 132 122 116 110
QMC 1.1 1.8 2.8 2.4 2.2 1.8

d = 10000 RDR 280 227 206 208 188 179
DDR 470 280 228 237 220 189
QMC 1.2 2 2.5 2.2 2.3 1.9

Table 9: E(Xd) estimation in Gt/D/1 queue with time-varying amplitude, 1000 samples, where
Xd is the number of customers in the queue at time-step d.

n 90% confidence interval Std Cost Cost × Std2 VRF
d = 104 RDR 2.7× 103 3.693± 3.5× 10−3 6.7× 10−2 1.103 × 105 ± 6.1× 102 4.9× 102 2.1× 102

DDR 3.8× 103 3.6955± 3.5× 10−3 6.6× 10−2 1.029 × 105 4.5× 102 2.3× 102

MLMC 8.7× 103 3.696± 4.1× 10−3 7.9× 10−2 1.084 × 105 6.8× 102 1.5× 102

d = 105 RDR 2.6× 104 4.0264± 1.2× 10−3 2.3× 10−2 1.099 × 106 ± 5.4× 103 5.8× 102 1.9× 103

DDR 2.9× 104 4.0255± 1.2× 10−3 2.3× 10−2 1.040 × 106 5.7× 102 1.9× 103

MLMC 7.3× 104 4.0271± 1.4× 10−3 2.8× 10−2 1.103 × 106 8.5× 102 1.3× 103

d = 106 RDR 2.5× 105 4.2573± 3.7× 10−4 7.2× 10−3 1.098 × 107 ± 4.9× 104 5.6× 102 2.1× 104

DDR 2.7× 105 4.25687 ± 3.8× 10−4 7.3× 10−3 1.051 × 107 5.6× 102 2.1× 104

MLMC 7.3× 105 4.2566± 4.6× 10−4 8.8× 10−3 1.127 × 107 8.7× 102 1.3× 104

for 1 ≤ i ≤ d (recall that A0 = 0). Thus, up to a time-varying multiplicative factor, λi has the
same expression as in §7.2. Table 9 estimates E(Xd), and Table 10 gives VRFs in the estimation
of P(Xd > z), for selected values of z. Our numerical results are similar to those of §7.2, except
that there is a big difference in the means at different times. Once again, for the RDR, DDR,
and MLMC algorithms, the variable Cost × Std2 is roughly independent of d, and the variance
reduction factors are roughly proportional to d. The VRFs of the RDR and DDR algorithms in
Table 10 are, in most cases, greater than or equal to the corresponding VRFs in Table 9, which
confirms the resiliency of these algorithms to discontinuities of g. In contrast, the VRFs of the
MLMC algorithm in Table 10 are lower than the corresponding VRFs in Table 9. The RDR
algorithm outperforms the MLMC algorithm by a factor ranging from 1 to 2 in Table 9, and a
factor ranging from 2 to 14 in Table 10.

Q.3 A multi-frequency Gt/D/1 queue

Consider a Gt/D/1 queue where Ai has a Poisson distribution with time-varying rate

λi = 0.75 + 0.2 cos(
πi

50
) + 0.1 cos(

πi

5000
) + 0.05 cos(

πi

500000
),

for 1 ≤ i ≤ d, with A0 = 0. Table 11 estimates E(Xd). Once again, for the RDR, DDR,
and MLMC algorithms, the variable Cost × Std2 is roughly independent of d, and the variance

Table 10: VRFs for P(Xd > z) estimation in Gt/D/1 queue with time-varying amplitude.
z 0 2 4 6 8 10
d = 104 RDR 3.1× 102 2.4× 102 2.2× 102 2.1× 102 2.3× 102 2.2× 102

DDR 4.4× 102 2.7× 102 2.4× 102 2.6× 102 3.0× 102 2.8× 102

MLMC 3.8× 101 6.1× 101 7.4× 101 8.7× 101 7.8× 101 7.9× 101

d = 105 RDR 3.3× 103 2.3× 103 2.0× 103 2.0× 103 1.9× 103 2.1× 103

DDR 3.9× 103 2.8× 103 2.6× 103 2.4× 103 2.0× 103 2.4× 103

MLMC 3.3× 102 5.3× 102 6.3× 102 7.5× 102 6.8× 102 7.6× 102

d = 106 RDR 3.5× 104 2.3× 104 2.0× 104 1.9× 104 1.8× 104 1.8× 104

DDR 4.5× 104 3.0× 104 2.6× 104 2.3× 104 2.3× 104 2.4× 104

MLMC 3.2× 103 4.7× 103 6.2× 103 7.8× 103 7.3× 103 6.5× 103

37

Table 11: E(Xd) estimation in a multi-frequency Gt/D/1 queue, 1000 samples, where Xd is the
number of customers in the queue at time-step d.

n 90% confidence interval Std Cost Cost × Std2 VRF
d = 104 RDR 4.2× 102 5.6± 1.6× 10−2 3.0× 10−1 1.104 × 105 ± 6.6× 102 1.0× 104 2.5× 101

DDR 9.8× 102 5.616± 1.4× 10−2 2.6× 10−1 1.028 × 105 7.2× 103 3.4× 101

MLMC 2.1× 103 5.607± 2.0× 10−2 3.8× 10−1 1.065 × 105 1.6× 104 1.6× 101

d = 105 RDR 6.0× 103 5.1944± 4.5× 10−3 8.7× 10−2 1.101 × 106 ± 5.6× 103 8.4× 103 2.7× 102

DDR 7.8× 103 5.1961± 4.0× 10−3 7.7× 10−2 1.030 × 106 6.1× 103 3.6× 102

MLMC 2.0× 104 5.187± 5.9× 10−3 1.1× 10−1 1.108 × 106 1.4× 104 1.6× 102

d = 106 RDR 4.8× 104 5.6118± 1.7× 10−3 3.3× 10−2 1.102 × 107 ± 5.0× 104 1.2× 104 2.1× 103

DDR 1.0× 105 5.6111± 1.5× 10−3 3.0× 10−2 1.042 × 107 9.1× 103 2.8× 103

MLMC 1.8× 105 5.6113± 2.2× 10−3 4.2× 10−2 1.124 × 107 2.0× 104 1.3× 103

Table 12: P(Xd > z) estimation in GARCH model, with z = 4.4× 10−5, where Xd is the daily
variance at time-step d.

n 90% confidence interval Std Cost Cost × Std2 Bias
d = 1250 RDR 277 0.393471 ± 7.3× 10−5 3.9× 10−2 1.368× 104 ± 3.2 21 0

DDR 596 0.393483 ± 6.2× 10−5 3.4× 10−2 1.355× 104 16 0
Long-run − 0.415353 ± 4.4× 10−5 7.9× 10−2 1.250× 103 7.7 0.0219

d = 2500 RDR 529 0.39339 ± 7.2× 10−5 2.8× 10−2 2.742× 104 ± 8.5 21 0
DDR 1167 0.393489 ± 6.3× 10−5 2.4× 10−2 2.734× 104 16 0
Long-run − 0.404431 ± 4.4× 10−5 5.6× 10−2 2.500× 103 7.9 0.0109

d = 5000 RDR 970 0.39346 ± 7.4× 10−5 2.0× 10−2 5.494× 104 ± 23 22 0
DDR 1899 0.393506 ± 6.5× 10−5 1.8× 10−2 5.207× 104 16 0
Long-run − 0.398968 ± 4.4× 10−5 4.0× 10−2 5.000× 103 7.9 0.0055

reduction factors are roughly proportional to d. The RDR algorithm outperforms the MLMC
algorithm by about a factor of 1.5.

Q.4 Comparison with a long-run average estimator

In several examples, when d is large, the Markov chain (Xm), 0 ≤ m ≤ d, has some notion of
stationarity, and so E(g(Xd)) can be estimated via a suitable long-run average. A drawback of
such an estimator is that it is biased. We compare below a long-run average estimator with the
RDR and DDR algorithms. In Tables 12 through 15, the RDR and DDR algorithms use 109/d
samples, while the long-run algorithm uses 11 × 109/d samples. Thus, for each of the three
algorithms and each d, the total number of simulations of the Uis throughout the independent
samples is roughly 11× 109. The bias of the long-run average estimator is calculated by taking
the difference with the DDR estimator.

For the GARCH volatility example of §7.1, a natural long-run average estimator for Pr(Xd >
z) is

1

d

d∑

i=1

1{Xi > z}.

Table 12 compares this estimator with the RDR and DDR estimators. The work-normalized
variance of each of the three algorithms is roughly independent of d. The work-normalized
variance of the long-run average estimator is smaller than those of the RDR and DDR algorithms
by about a factor of 3 and 2, respectively. The bias of the long-run average estimator decreases
as d increases, but is much larger than the standard deviations of the long-run average and
DDR estimators.

For the Gt/D/1 queue example of §7.2 (resp. §Q.2), the arrival rate is periodic (resp. almost
periodic) with period 100, and so a long-run average estimator for E(Xd) is

1

⌈d/100⌉

⌈d/100⌉−1
∑

i=0

Xd−i∗100.

38

Table 13: E(Xd) estimation in Gt/D/1 queue, where Xd is the number of customers in the
queue at time-step d, with Ai ∼ Poisson(0.75 + 0.5 cos(πi/50)) for 1 ≤ i ≤ d.

n 90% confidence interval Std Cost Cost × Std2

d = 104 RDR 2.3× 103 5.52351 ± 4.8× 10−4 9.2× 10−2 1.100 × 105 ± 6.2× 101 9.2× 102

DDR 2.8× 103 5.52333 ± 4.4× 10−4 8.5× 10−2 1.032 × 105 7.4× 102

Long-run − 5.5238± 6.2× 10−4 3.9× 10−1 1.000 × 104 1.5× 103

d = 105 RDR 2.3× 104 5.52324 ± 4.8× 10−4 2.9× 10−2 1.100 × 106 ± 1.7× 103 9.4× 102

DDR 3.6× 104 5.52339 ± 4.7× 10−4 2.8× 10−2 1.046 × 106 8.4× 102

Long-run − 5.5238± 6.2× 10−4 1.2× 10−1 1.000 × 105 1.5× 103

d = 106 RDR 2.3× 105 5.52325 ± 4.9× 10−4 9.4× 10−3 1.103 × 107 ± 4.8× 104 9.8× 102

DDR 2.6× 105 5.52363 ± 4.5× 10−4 8.7× 10−3 1.047 × 107 7.9× 102

Long-run − 5.5238± 6.1× 10−4 3.9× 10−2 1.000 × 106 1.5× 103

Table 14: E(Xd) estimation in Gt/D/1 queue, where Xd is the number of customers in the
queue at time-step d, with Ai ∼ Poisson((1− 1/ln(i+ 2))(0.75 + 0.5 cos(πi/50)))

n 90% confidence interval Std Cost Cost × Std2 Bias
d = 104 RDR 2.7× 103 3.69517 ± 3.5× 10−4 6.7× 10−2 1.100 × 105 ± 6.0× 101 5.0× 102 0

DDR 3.8× 103 3.69535 ± 3.4× 10−4 6.5× 10−2 1.029 × 105 4.4× 102 0
Long-run − 3.4862± 4.8× 10−4 3.1× 10−1 1.000 × 104 9.5× 102 −0.209

d = 105 RDR 2.6× 104 4.02661 ± 3.7× 10−4 2.3× 10−2 1.100 × 106 ± 1.7× 103 5.7× 102 0
DDR 2.9× 104 4.02676 ± 3.7× 10−4 2.2× 10−2 1.040 × 106 5.3× 102 0
Long-run − 3.8854± 5.1× 10−4 1.0× 10−1 1.000 × 105 1.1× 103 −0.141

d = 106 RDR 2.5× 105 4.2573± 3.7× 10−4 7.2× 10−3 1.098 × 107 ± 4.9× 104 5.6× 102 0
DDR 2.7× 105 4.25687 ± 3.8× 10−4 7.3× 10−3 1.051 × 107 5.6× 102 0
Long-run − 4.1582± 5.3× 10−4 3.4× 10−2 1.000 × 106 1.1× 103 −0.099

Tables 13 and 14 compares this estimator with the RDR and DDR estimators. The work-
normalized variance of the long-run average estimator is larger than those of the RDR and
DDR estimators by a factor ranging from 1.5 and 2.2. The bias of the long-run algorithm is not
reported in Table 13 because it is not statistically significant. In Table 14, however, the bias
of the long-run average estimator is much larger than the standard deviations of the long-run
average and DDR estimators.

Consider now the Mt/GI/1 queue example of §7.3, and assume that θ is an integer. In our
experiments, we have set d = θ and Xi = Wi for 0 ≤ i ≤ d, and so a long-run average estimator
for P(Wθ > 1) is

1

⌈d/100⌉

⌈d/100⌉−1
∑

i=0

1{Xd−i∗100 > 1}.

Table 15 compares this estimator with the RDR and DDR estimators. The work-normalized
variance of the long-run average estimator is larger than those of the RDR and DDR estimators
by about a factor of 1.3 and 2, respectively. Here again, the bias of the long-run algorithm is
not reported because it is not statistically significant.

In summary, for large d and Markov chains with periodic features, E(g(Xd)) can be estimated
via a suitable biased long-run average estimator. The order of magnitude of the bias depends on

Table 15: P(Wθ > 1) estimation in Mt/GI/1 queue, α = 2, where Wθ is the residual work at
time θ.

n 90% confidence interval Std Cost Cost × Std2

d = 104 RDR 3.9× 103 0.853775 ± 4.9× 10−5 9.3× 10−3 1.100 × 105 ± 6.1× 101 9.6
DDR 7.6× 103 0.853788 ± 3.9× 10−5 7.6× 10−3 1.037 × 105 5.9
Long-run − 0.853734 ± 5.6× 10−5 3.6× 10−2 1.000 × 104 13

d = 105 RDR 3.0× 104 0.85385 ± 5.0× 10−5 3.0× 10−3 1.100 × 106 ± 1.7× 103 10
DDR 4.8× 104 0.853799 ± 4.1× 10−5 2.5× 10−3 1.031 × 106 6.5
Long-run − 0.853837 ± 5.6× 10−5 1.1× 10−2 1.000 × 105 13

d = 106 RDR 2.5× 105 0.853762 ± 5.1× 10−5 9.8× 10−4 1.103 × 107 ± 4.9× 104 11
DDR 4.5× 105 0.853779 ± 4.4× 10−5 8.4× 10−4 1.040 × 107 7.3
Long-run − 0.853847 ± 5.6× 10−5 3.6× 10−3 1.000 × 106 13

39

the application and on the value of d. The bias of the long-run average estimator is difficult to
evaluate without using an alternative estimator, though. In the examples in this subsection, the
work-normalized variances of the long-run average, RDR and DDR estimators have the same
order of magnitude. In the Gt/D/1 queue example of §Q.3, however, the arrival rate is periodic
with period 106. This example does not seem to admit a suitable long-run average estimator
for the values of d listed in Table 11.

References

Acworth, P. A., Broadie, M. and Glasserman, P. (1998). A comparison of some Monte Carlo
and quasi Monte Carlo techniques for option pricing, in H. Niederreiter, P. Hellekalek,
G. Larcher and P. Zinterhof (eds), Monte Carlo and Quasi-Monte Carlo Methods 1996,
Vol. 127 of Lecture Notes in Statistics, Springer New York, pp. 1–18.

Åkesson, F. and Lehoczky, J. P. (2000). Path generation for quasi-Monte Carlo simulation of
mortgage-backed securities, Management Science 46(9): 1171–1187.

Andrew, A. M. (1979). Another efficient algorithm for convex hulls in two dimensions, Inf.
Process. Lett. 9(5): 216–219.

Asmussen, S. and Glynn, P. W. (2007). Stochastic simulation: algorithms and analysis, Vol. 57,
Springer Science & Business Media.

Billingsley, P. (1999). Convergence of probability measures, second edn, Wiley, New York.

Blanchet, J., Leder, K. and Shi, Y. (2011). Analysis of a splitting estimator for rare event
probabilities in jackson networks, Stochastic Systems 1(2): 306–339.

Botev, Z. I., L’Ecuyer, P., Rubino, G., Simard, R. and Tuffin, B. (2013). Static network
reliability estimation via generalized splitting, INFORMS Journal on Computing 25(1): 56–
71.

Caflisch, R. E. (1998). Monte Carlo and quasi-Monte Carlo methods, Acta Numerica 7: 1–49.

Caflisch, R. E., Morokoff, W. J. and Owen, A. B. (1997). Valuation of mortgage backed securities
using Brownian bridges to reduce effective dimension, Journal of Computational Finance
1: 27–46.

Ermakov, S. and Melas, V. (1995). Design and analysis of simulation experiments, Vol. 339,
Springer Science & Business Media, Dordrecht, The Netherlands.

Feldman, Z., Mandelbaum, A., Massey, W. A. and Whitt, W. (2008). Staffing of time-varying
queues to achieve time-stable performance, Management Science 54(2): 324–338.

Giles, M. B. (2008). Multilevel Monte Carlo path simulation, Operations Research 56(3): 607–
617.

Glasserman, P. (2004). Monte Carlo methods in financial engineering, Vol. 53, Springer, New
York.

Glasserman, P., Heidelberger, P. and Shahabuddin, P. (1999). Asymptotically optimal impor-
tance sampling and stratification for pricing path-dependent options, Mathematical finance
9(2): 117–152.

Glasserman, P., Heidelberger, P., Shahabuddin, P. and Zajic, T. (1999). Multilevel splitting for
estimating rare event probabilities, Operations Research 47(4): 585–600.

40

Glynn, P. W. and Rhee, C.-h. (2014). Exact estimation for Markov chain equilibrium expecta-
tions, Journal of Applied Probability 51(A): 377–389.

Glynn, P. W. and Whitt, W. (1992). The asymptotic efficiency of simulation estimators, Oper-
ations research 40(3): 505–520.

Hull, J. (2014). Options, Futures and Other Derivatives, ninth edn, Prentice-Hall, Incorporated.

Imai, J. and Tan, K. S. (2006). A general dimension reduction technique for derivative pricing,
Journal of Computational Finance 10(2): 129.

Jiang, G. and Fu, M. C. (2017). Importance splitting for finite-time rare event simulation, IEEE
Transactions on Automatic Control .

Kahalé, N. (2016). Optimized sampling for Monte Carlo simulations via dimension reduction,
9th NIPS Workshop on Optimization for Machine Learning, Barcelona, Spain. http://opt-
ml.org/index.html.

L’Ecuyer, P., Lécot, C. and Tuffin, B. (2008). A randomized quasi-Monte Carlo simulation
method for Markov chains, Operations Research 56(4): 958–975.

L’Ecuyer, P. and Lemieux, C. (2000). Variance reduction via lattice rules, Management Science
46(9): 1214–1235.

Liu, R. and Owen, A. B. (2006). Estimating mean dimensionality of analysis of variance de-
compositions, Journal of the American Statistical Association 101(474): 712–721.

Ma, N. and Whitt, W. (2017). A rare-event simulation algorithm for periodic single-server
queues, INFORMS Journal on Computing 30(1): 71–89.

Nagel, K., Wagner, P. and Woesler, R. (2003). Still flowing: Approaches to traffic flow and
traffic jam modeling, Operations Research 51(5): 681–710.

Owen, A. B. (2003). The dimension distribution and quadrature test functions, Statistica Sinica
13(1): 1–18.

Paxson, V. (1994). Empirically derived analytic models of wide-area TCP connections,
IEEE/ACM Transactions on Networking (TON) 2(4): 316–336.

Revuz, D. and Yor, M. (1999). Continuous martingales and Brownian motion, third edn,
Springer-Verlag, Berlin.

Rhee, C.-h. and Glynn, P. W. (2015). Unbiased estimation with square root convergence for
SDE models, Operations Research 63(5): 1026–1043.

Rosenbaum, I. and Staum, J. (2017). Multilevel Monte Carlo Metamodeling, Operations Re-
search 65(4): 1062–1077.

Rubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the Monte Carlo method, Vol. 10,
John Wiley & Sons, Hoboken, New Jersey.

Shiryaev, A. N. (1996). Probability, Vol. 95 of Graduate texts in mathematics, Springer-Verlag,
New York.

Sloan, I. H. and Woniakowski, H. (1998). When are quasi-Monte Carlo algorithms efficient for
high dimensional integrals?, Journal of Complexity 14(1): 1 – 33.

Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates, Mathematics and computers in simulation 55(1-3): 271–280.

41

Thompson, K., Miller, G. J. and Wilder, R. (1997). Wide-area internet traffic patterns and
characteristics, IEEE network 11(6): 10–23.

Wang, X. (2006). On the effects of dimension reduction techniques on some high-dimensional
problems in finance, Operations Research 54(6): 1063–1078.

Wang, X. and Fang, K.-T. (2003). The effective dimension and quasi-Monte Carlo integration,
Journal of Complexity 19(2): 101 – 124.

Wang, X. and Sloan, I. H. (2005). Why are high-dimensional finance problems often of low
effective dimension?, SIAM Journal on Scientific Computing 27(1): 159–183.

Wang, X. and Sloan, I. H. (2011). Quasi-Monte Carlo methods in financial engineering: An
equivalence principle and dimension reduction, Operations Research 59(1): 80–95.

Wang, X. and Tan, K. S. (2013). Pricing and hedging with discontinuous functions: quasi-Monte
Carlo methods and dimension reduction, Management Science 59(2): 376–389.

Whitt, W. (2017). Time-varying queues. Columbia University, New York, NY,
http://www.columbia.edu/~ww2040/allpapers.html.

Whitt, W. and You, W. (2016). Time-varying robust queueing. Columbia University, New
York, NY, http://www.columbia.edu/~ww2040/allpapers.html.

42

	1 Introduction
	2 The generic randomized dimension reduction algorithm
	2.1 The algorithm description
	2.2 Performance analysis
	2.3 Explicit and semi-explicit distributions
	2.4 A Lipschitz function example

	3 The optimal distribution
	3.1 Lower hull calculation
	3.2 Estimating the C(i)'s
	3.3 Numerical algorithm

	4 Applications to Markov chains
	4.1 GARCH volatility model
	4.2 Gt/D/1 queue
	4.3 Mt/GI/1 queue

	5 Deterministic dimension reduction
	6 Comparison with a class of multilevel algorithms
	6.1 The MLMC algorithms description and analysis

	7 Numerical experiments
	7.1 GARCH volatility model
	7.2 Gt/D/1 queue
	7.3 Mt/GI/1 queue

	8 Conclusion
	A Proof of Proposition 2.1
	B Proof of Theorem 2.1
	C Proof of Proposition 2.2
	D Proofs of Propositions 2.3 and 2.5
	E Proof of Proposition 2.6
	F Relation with the ANOVA decomposition and the truncation dimension
	G Proof of Theorem 3.1
	H Proof of Proposition 3.1
	I Proof of Proposition 4.1
	J Proof of Proposition 4.2
	K Proof of Proposition 4.3
	L Proof of Proposition 4.4
	M Proof of Theorem 2.2
	N Proof of Theorem 5.1 and of Proposition 5.1
	O Proof of Theorem 6.1
	P Relation with splitting and conditional Monte Carlo
	P.1 Relation with conditional Monte Carlo
	P.2 The Markov chains case

	Q Further numerical experiments
	Q.1 Comparison with Quasi-Monte Carlo
	Q.2 Gt/D/1 queue with time-varying amplitude
	Q.3 A multi-frequency Gt/D/1 queue
	Q.4 Comparison with a long-run average estimator

