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Abstract

A major credit shock can induce large intra-day variation margin payments between
counterparties in derivatives markets, which may force some participants to default on
their payments. These payment shortfalls become amplified as they cascade through
the network of exposures. Using detailed DTCC data we model the full network of
exposures, shock-induced payments, initial margin collected, and liquidity buffers for
about 900 firms operating in the U.S. credit default swaps market. We estimate the
total amount of contagion, the marginal contribution of each firm to contagion, and
the number of defaulting firms for a systemic shock to credit spreads. A novel feature
of the model is that it allows for a range of behavioral responses to balance sheet
stress, including delayed or partial payments. The model provides a framework for
analyzing the relative effectiveness of different policy options, such as increasing margin
requirements or mandating greater liquidity reserves.
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1 Introduction

The recent financial crisis highlighted the potential risks posed by derivatives markets.

As the crisis unfolded, large sellers of protection such as American International Group,

Inc. (AIG) became liable for payments on credit default swaps (CDS) contracts they had

previously sold to banks and dealers as protection against credit defaults. Until the crisis,

these protection sellers received a steady stream of payments from protection buyers and

rarely had to pay out claims. When the crisis hit, the sudden calls for payments put great

pressure on the sellers, some of which had a thin capital base. In particular, AIG had to be

rescued by the U.S. Federal Reserve in order to meet its margin obligations on CDS contracts

to dealers, who in turn were threatened if the payments were not made.

This incident casts a spotlight on the potential risks posed by the CDS market to the

stability of the financial system. Prior to the crisis this market grew rapidly. From its

inception in the 1990s to 2007 the total notional value of CDS contracts rose to about $60

trillion, though it has since declined to about $9.4 trillion (Bank for International Settlements

(2018)). Under a shock to credit markets the sellers of CDS protection become liable for

payments to the buyers. AIG got into trouble because it had sold protection on large pools

of subprime mortgages to a variety of banks and broker-dealers. During the crisis the value

of these mortgages deteriorated sharply, which triggered margin calls that AIG was unable

to meet (Financial Crisis Inquiry Commission (2011)).

Since the crisis, various reforms have been introduced to mitigate destabilizing risks

in the financial system. First, requirements for posting initial margin as security against

nonpayment have been strengthened. This has occurred both in the scope of firms that

are required to post initial margin and in the segregation of initial margin accounts, so

that one counterparty’s losses cannot be covered by another counterparty’s funds. These

developments have facilitated a movement towards exchanging variation margin on a daily

basis. Variation margin payments, or bilateral exchanges in contractual value, were more

infrequent prior to the financial crisis and were not the subject of regulation.

1



A second reform prompted by the crisis was to incentivize firms to trade contracts through

central counterparties (CCPs). Central clearing has been encouraged through higher capital

and margin requirements for non-centrally cleared contracts.1 An advantage of central clear-

ing is that it fosters contractual standardization and shortens intermediation chains, which

can help to reduce network contagion (Cont and Minca (2016)). A disadvantage is that it

concentrates risk at a single point of failure and imposes on the CCP’s counterparties much

shorter variation margin compliance windows than existed before the crisis.

In this paper we model the propagation of losses in derivatives markets through network

spillover effects, taking account of the short time frame within which payments must be made

(typically a few hours), and also the key role played by the CCP. The focus of our analysis is

the CDS market. Given a shock to credit spreads, we estimate the total amount of contagion,

and the contribution of individual firms to contagion, under a range of assumptions about

their response to balance sheet stress. The model builds on the framework of Eisenberg and

Noe (2001), but it has several novel elements that are specific to OTC derivatives markets. In

particular, the model incorporates two safety valves that mitigate network spillover effects.

One is the posting of initial margin as a security deposit against potential default. The second

is the maintenance of in-house cash reserves and dedicated lines of credit to manage daily

fluctuations in the demand for variation margin payments. Initial margins and cash reserves

vary substantially among firms depending on the risk characteristics of their portfolios, which

we observe in the data. The model therefore incorporates heterogeneity in firms’ balance

sheets as well as their positions in the network.

A second contribution of this paper is to allow for a range of possible strategies to cope

with short-term liquidity stress, including delayed or partial payment and payment with

illiquid collateral. We show how to accommodate a range of such responses in the model

and then explore their implications for contagion using detailed exposure data provided to

the Office of Financial Research by the Depository Trust & Clearing Corporation (DTCC).

1However these incentives may not be sufficient to induce firms to clear in all cases; for an analysis of
this issue see Ghamami and Glasserman (2016).
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The data provide a detailed picture of the network of counterparty exposures in the United

States CDS market at particular dates, including exposures between banks, dealers, hedge

funds, asset managers, and insurance companies. We also use the data to estimate the initial

margin posted by each counterparty and the liquidity buffers that they maintain to manage

daily fluctuations in margin calls.

We then apply the framework to estimate the total payment shortfalls that would re-

sult from a severe but not implausible market shock, namely, the Federal Reserve’s 2015

Comprehensive Capital Analysis and Review (CCAR) trading book shock. This shock was

designed to test the robustness of the financial system under severe conditions, while embed-

ding co-movements in the value of credit instruments that we are not in a position to estimate

ourselves. The shock implies a sudden decrease in the value of corporate and sovereign debt

on which CDS contracts are written, and thus results in large demands for variation margin

payments between counterparties to these contracts.

The plan of the paper is as follows. In the next section we provide an overview of the

literature on network contagion, including recent papers on CDS markets. In section 3

we introduce the network model and demonstrate the existence of a payments equilibrium

under very general conditions on the firms’ response functions. In section 4 we discuss

specific examples of such response functions. Sections 5-6 describe the DTCC data in detail

and show how it can be used to estimate the initial margins posted by counterparties, the

amount of cash reserves firms need to manage their own accounts, and the variation margin

payments induced by a shock.

In section 7 we bring these elements of the model together and estimate the total amount

of contagion that would be produced by the CCAR shock. We also conduct a sensitiv-

ity analysis to assess how the amount of contagion is affected by the size of the liquidity

buffers, the amount that firms post in initial margin, and the strategies they use to manage

balance-sheet stress. We find that even when liquidity buffers are large enough to handle

daily fluctuations in variation margin payments with 99.7% probability, and initial margins
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are large enough to cover payment delinquencies with 99.5% probability (based on historical

DTCC data), the amount of default contagion under the CCAR shock could be very sub-

stantial. In particular, the shortfall in payments is on the order of 5-12% of total payment

obligations, and 15-17% of all market participants default. Interestingly, the CCP does not

default, although it must reach into its guarantee fund to cover its obligations to member

firms.

The model also permits a forensic analysis of the sources of contagion. In particular, we

can estimate each firm’s marginal contribution to contagion by calculating the amount by

which payment shortfalls would be reduced throughout the system if that firm’s obligations

could be fully guaranteed by government intervention. We find that, by this measure, exactly

one (non-member) firm is responsible for a very significant proportion of total systemic losses

due to its large size and the imbalance between its buy and sell positions. A second key

finding is that even though the member firms contribute less to contagion at the margin due

to their balanced portfolios, they tend to amplify contagion (through spillover effects) due

to their central position in the network. A third finding is that, although the CCP is the

most centrally located of the nodes, it contributes relatively little to contagion because it

has a perfectly matched buy and sell portfolio, stringent initial margin requirements, and a

large guarantee fund that acts as liquidity buffer.

2 Related Literature

The financial crisis of 2007-09 has sparked a rapidly growing literature, both theoretical

and empirical, on financial networks and systemic risk. A central theme of this literature is

the relationship between network structure and the risk of contagion. Network connections

can have a positive effect by diversifying the risk exposures of individual market participants,

but they can also have a negative effect by creating channels through which shocks can

spread. The tension between these two forces has been explored in a variety of papers; see
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among others Allen and Gale (2000); Freixas et al. (2000); Gai and Kapadia (2010); Gai

et al. (2011); Haldane and May (2011); Blume et al. (2011); Cont et al. (2013); Elliott et al.

(2014); Acemoglu et al. (2015).

A key methodology for analyzing how networks propagate contagion is due to Eisenberg

and Noe (2001), who show how payment shortfalls that originate at some nodes can cascade

through the network causing an ever-widening series of defaults. There is now a substantial

literature that builds on their approach (as we do here); see in particular Upper and Worms

(2004), Elsinger (2009), Rogers and Veraart (2013), Elliott et al. (2014), Glasserman and

Young (2015) and Acemoglu et al. (2015). For general surveys of the literature see Bisias

et al. (2012) and Glasserman and Young (2016).

There is also a literature that focuses specifically on the network structure of CDS mar-

kets. The potential for contagion in these markets was first highlighted by Cont (2010),

who emphasized the importance of adequate liquid reserves to cope with large and sudden

demand for variation margin. Cont (2010) also analyzed the extent to which a CCP can

mitigate contagion, a topic that was subsequently treated by Duffie and Zhu (2011), Cont

and Kokholm (2014) and Cont and Minca (2016). Of crucial importance is how the CCP

sets margin requirements. Capponi and Cheng (2018) examine the tension between setting

member fees and collateral levels and how, if made effectively, these choices limit contagion

from portfolio shocks. Various empirical studies examine how CCPs set margin levels in

practice (Duffie et al. (2015); Capponi et al. (2017)). These studies find that value-at-risk

approaches tend to underestimate CCP collateral levels. For this reason we shall use the

CCP’s reported collateral instead of attempting to estimate it.

Various authors have studied the structure of CDS exposures and the potential for con-

tagion among European banks; see in particular Brunnermeier et al. (2013), Peltonen et al.

(2014), Vuillemey and Peltonen (2015), and Clerc et al. (2014). Cont and Minca (2016) ana-

lyze the combined network of exposures in the CDS and interest rate swap markets together,

and argue that central clearing in both markets can significantly reduce the probability and

5



magnitude of illiquidity spirals. Their work differs from the present paper in the method-

ologies used to study contagion, and in the focus on the European rather than the U.S.

market.2 More recently, Ali et al. (2016) examine the network structure of the CDS market

in the United Kingdom. These authors argue, as do Glasserman and Young (2016), that the

systemic importance of market participants is not fully captured by conventional measures

of centrality. The size and structure of financial firms’ balance sheets, in addition to their

position in the network, is crucial to understanding how much risk they pose to the system

as a whole.

3 Network Contagion Model

We take as given the network of CDS contracts that exist between counterparties at

a given point in time and study the impact of a sudden shock to credit markets. Such a

shock triggers large variation margin (VM) payments from the sellers to the buyers of CDS

protection. Suppose, for example, that a firm sold $100 million in protection against the

default of corporation C over the next five years. The shock decreases the value of C’s debt

and correspondingly increases the implied probability that C will default within the contract

period. This increases the value of the CDS contract to the buyer, and increases the liability

of the seller to the buyer. This change in value must be paid by the seller to the buyer as

variation margin; moreover the payment is typically due within one day. The upshot is that

shocks to credit markets impose expectations of rapid cash payments between participants

in the CDS market.

Let p̄ij denote the VM payment obligation from firm i to firm j that results from a given

shock. Let p̄i =
∑

j 6=i p̄ij denote the total payment obligation of i to all other firms. In

what follows we shall restrict attention to those firms i such that p̄i > 0. The others do

2There has been less research on the CDS market in the United States, mainly due to limited data access.
To get around this difficulty, Markose et al. (2012) use imputation techniques to estimate CDS exposures
from publicly reported balance sheet data (see also Markose (2012) and the BIS Macroeconomic Assessment
Group on Derivatives (2013)).
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not transmit payment shortfalls; instead they act as shock absorbers. In the present context

these firms are solely buyers of protection (not sellers) and under a shock they will have no

VM obligations.

The relative liability of firm i to firm j is

aij = p̄ij/p̄i. (1)

Note that for each i,
∑

j 6=i aij ≤ 1; moreover
∑

j 6=i aij < 1 if firm i owes payments to

one or more firms with no obligations (which are not indexed). It follows that the matrix

A = (aij) is row substochastic.

Consider a node i, and let cki denote the amount of initial margin (IM) it collects from

counterparty k. The purpose of the IM is to cover the shortfall in VM payments. In particular

if counterparty k fails to pay VM to i in a timely manner, the position will be closed out or

novated to another firm, and the IM will be applied to any losses that are incurred between

the time the payment was due and the time it takes to novate or close out the position.

In addition, each firm i maintains cash reserves and short-term lines of credit that allow

it to manage daily fluctuations in VM payments and receipts. These constitute i’s liquidity

buffer bi. In section 5.3 we shall show how to estimate these buffers from the DTCC data.

Given a shock, let pki ≤ p̄ki denote the actual payment made by k to i. If pki < p̄ki

the difference will be made up out of the IM sitting in k’s account at firm i provided that

p̄ki− pki ≤ cki. If p̄ki− pki > cki, however, then the difference p̄ki− (pki + cki) must be borne

by i. We define the initial stress at i, s0i , to be the difference between i’s payment obligations

to others and its liquidity buffer plus payment obligations from others:

s0i = p̄i −
∑
k 6=i

p̄ki − bi. (2)

The stress at i, si, is the amount in equilibrium by which i’s payment obligations exceed

its incoming payments (supplemented by the counterparties’ initial margins) plus i’s liquidity
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buffer, that is,

si = si(p) = p̄i −
∑
k 6=i

((pki + cki) ∧ p̄ki)− bi. (3)

Note that even when all of i’s counterparties pay in full, that is pki = p̄ki for all k, stress

will still be positive if i’s payments obligations exceed its incoming payments by more than

its liquidity buffer bi.

The final element of the model is to specify how balance sheet stress translates into

actual payments. We argue that in practice firms will respond to stress in diverse ways,

depending on their access to credit, their relationship with counterparties, and their risk

management practices. We do not have enough information about individual firms to model

these responses explicitly. Instead we shall consider a range of possible responses, and then

show how they can be used to bound the total amount of network contagion holding other

parameters fixed.

Given a level of stress si at firm i, let sij(p) = aijsi(p), and let pij = fij(sij, p̄ij) ∈ [0, p̄ij]

be the expected payment that i makes to counterparty j. We call fij a stress response

function.3 We shall impose two regularity conditions: (i) fij is monotone nonincreasing in

sij, that is higher levels of stress lead to lower (or at least not higher) payments; (ii) fij is

upper-semicontinuous in sij, that is, for every convergent sequence {skij} → s∗ij and for every

p̄ij,

lim sup
skij→s∗ij

fij(s
k
ij, p̄ij) ≤ fij(s

∗
ij, p̄ij). (4)

In the next section we shall describe specific examples of such stress response functions.

Given the functions fij, we are now in a position to define the notion of payments equilibrium.

For every payment vector p = (pij)1≤i,j≤n such that 0 ≤ pij ≤ p̄ij, define the function

3Note that fij(sij , p̄ij) ≥ p̄ij − sij because the latter is the maximum that i can pay j.
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∀i 6= j, Φ(p)ij = fij(sij(p), p̄ij) (5)

It is straightforward to show that sij(p) is continuous in p, hence Φ(p) is upper-semicontinuous

in p. (The composition of a continuous function and an upper-semicontinuous function is

upper-semicontinuous.) The function Φ(p) is monotone and order-preserving on the bounded

lattice L = Π1≤i,j≤n[0, p̄ij] ∈ Rn2
, where the (partial) order on L is defined by p ≤ p

′
if

pij ≤ p
′
ij for all i, j.

Consider the recursively defined sequence

p1 = Φ(p̄), p2 = Φ(p1), p3 = Φ(p2), . . . (6)

Proposition 1. The sequence in (6) converges to the greatest fixed point of Φ.

Proof. Since p̄ is the maximal element in L, p1 = Φ(p̄) ≤ p̄. Since Φ is order-preserving

p2 = Φ(p1) ≤ Φ(p̄) = p1. Proceeding inductively we see that the sequence {pk} in (6) is

monotone non-increasing. It is also bounded below by the zero-vector. By the monotone

convergence theorem, {pk} converges to its greatest lower bound.

We claim that p∗ is a fixed point of Φ. Since Φ is order-preserving and p∗ ≤ pk for all

k, Φ(p∗) ≤ lim
k→∞

Φ(pk). Since Φ is upper-semicontinuous, Φ(p∗) = Φ( lim
k→∞

pk) ≥ lim
k→∞

Φ(pk).

It follows that Φ(p∗) = lim
k→∞

Φ(pk). By construction pk+1 = Φ(pk) for all k, hence Φ(p∗) =

lim
k→∞

Φ(pk) = lim
k→∞

pk+1 = p∗, so p∗ is fixed point of Φ.

By Tarski’s Theorem (Tarski (1955)), Φ has a greatest fixed point p+ ∈ L. Clearly

p+ ≤ p̄, hence p+ = Φ(p+) ≤ Φ(p̄) = p1. Applying Φ repeatedly, we conclude that p+ ≤ pk

for all k, hence p+ ≤ p∗ = lim
k→∞

pk. By assumption p+ is the maximal fixed point and we

have just shown that p∗ is also a fixed point, hence p+ = p∗.

A number of fixed-point results in the literature are particular instances of this proposi-

tion; see among others Rogers and Veraart (2013) and Elliott et al. (2014).

To illustrate the recursive computation of payments equilibrium, consider the three-firm
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example shown in Figure 1. Each firm collects IM from each of its counterparties, and these

amounts are held in separate boxes. In addition each firm has a liquidity buffer that is held

in a diamond. The amounts owed are shown next to the corresponding arrows. For example,

firm A is owed 120 by C, and owes 80 to B and 40 to D. In what follows we shall assume

that when a firm defaults it pays its counterparties the amount it owes them minus the pro

rata stress, that is, fij(sij, p̄ij) = p̄ij − sij for all i and j.

Figure 1: Example Payment Network

A

D

C BF E

5

55

3

5

55

0

5

55

5

20

100

20

12
0 80

40

Note: Arc labels, diamonds, and squares denote variation margin payment obligations,
liquidity buffers, and initial margin stocks, respectively.
Source: Authors’ creation.

Now suppose that firms E and F default completely. Then B can seize the 5 units of IM

posted by E, but not the IM posted by its other two counterparties (A and C). In the first

iteration of the algorithm, assume that B pays whatever it can to C: 5 in IM it collected

from E, plus 5 in B’s liquidity buffer, plus the anticipated 80 in payments from A. Thus in

the first round we find that p1BC = 90. This is less than B owes C, hence C can seize the 5

in IM it collected from B plus the 5 in IM it collected from F (which is in default) plus the
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90 in anticipated payments from B, and pay 100 to A: p1CA = 100. This is less than C owes

A, hence A seizes the 5 in IM it collected from C, adding 3 from its liquidity diamond, and

pays 108 to D and B in the proportions of one to two. Thus at the end of round 1 of the

algorithm we have the (hypothetical) payments shown in Figure 2. Note, however that the

ingoing and outgoing payments, supplemented by the IM and liquidity buffers, are not in

balance. Therefore we need to apply the function Φ again to determine the next round of

payments. This process converges to the payments equilibrium shown in Figure 3.

Figure 2: Example Payment Network at the End of Round 1
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33

5
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00

55

555

55

0

90

0

10
0 72

36

Note: Firms E and F default, which results in reduced payments (relative to obligations)
from B to C, C to A, and A to B. B and C both seize their failing counterparties’ IM
stocks and resort to their own liquidity buffers. The resulting payment shortfall generates a
corresponding response from A. Exhausted stocks and buffers are indicated with a stricken
line.
Source: Authors’ creation.
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Figure 3: Example Network Equilibrium
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3
3

Note: In equilibrium every firm’s incoming payments, plus IM seizures and liquidity buffer,
equal its outgoing payments.
Source: Authors’ creation.

4 Stress Response Functions

We now consider the form of the stress response functions in more detail. Recall that

when firm i is under stress (si > 0), it is unable to meet its payment obligations in full, even

after seizing the IM posted by the counterparties who failed to pay and after exhausting its

own liquidity buffer. The question is how much a firm will pay its counterparties (on the day

when VM payments are due) and how much it will hold back. In the Eisenberg-Noe model

it is assumed that each firm’s assets are fully distributed to its counterparties as they would

be in resolution. In this case the stress response function takes the form

fij(sij, p̄ij) = p̄ij − sij, (7)

where sij = aijsi is the pro rata shortfall from i to j. We shall call this the soft default
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option (see Figure 4, left panel).

In the present context, however, this scenario seems overly optimistic: if i is unable to

pay in full, it will suffer default – and the consequent reputational loss – even if it pays as

much as it can. Thus there would seem to be little benefit to making a partial payment if

default is going to ensue in any case. In the extreme, the response would be to pay nothing

whenever si > 0, that is

fij(sij, p̄ij) =


0 whenever sij > 0,

p̄ij if sij = 0.

(8)

We call this the hard default option (see Figure 4, right panel).

It seems likely that firms’ actual stress response functions lie somewhere in between

these two extremes. If the anticipated shortfall sij is sufficiently large (relative to p̄ij), i

may declare default and pay nothing; if sij is small, i may make its best effort to close

the gap and perhaps receive temporary forbearance from counterparty j, who might prefer

to receive some payment immediately rather than foreclose on i.4 In this case the stress

response function might take the intermediate form shown in Figure 4 (middle panel).

In the empirical applications to follow, we shall not attempt to estimate the response

functions for particular firms. Rather we shall treat hard and soft default as bounds on the

range of plausible responses, and estimate the amount of contagion produced by each.

4Counterparty j’s willingness to extend forbearance to i will depend on how much collateral it collected
from i, how likely it is that i will be able to close the gap if given extra time, and how much pressure j is
under from its counterparties. These factors will vary significantly among firms.
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Figure 4: Stress Response Functions

(a) Soft Default (b) Intermediate Default (c) Hard Default

Note: Three cases are illustrated: (a) describes the situation where i pays the maximum
amount available (as it would in resolution); (c) is the situation where i defaults and pays
nothing; (b) is an intermediate situation in which i makes a reduced payment if sij is not
too large, and pays nothing when sij exceeds a certain threshold.
Source: OFR analysis.

5 Estimating the Model Parameters

In this section we show how to estimate the key elements of the network contagion model

– variation margin, initial margin, and liquidity buffers – from the DTCC data. The data

reports the positions on all standardized and confirmed CDS involving U.S. entities since

2010. Positions represent extant swap transactions with comparable risk characteristics be-

tween counterparties. They include detailed information about underlying reference entities,

notional amount bought and sold, inception and termination dates, and other terms of con-

tracts. We also use data from Markit to estimate single-name credit spreads for all reference

entities in the positions we observe.

5.1 Variation Margin

Variation margin (VM) payments are cash transfers made by a firm to its counterparties

to account for changes in the value of the CDS contracts. These variation margin payments

are made on a daily basis. From the protection seller’s perspective a CDS derives positive

value from premia received until the contract terminates or the underlying reference entity

defaults (whichever comes first); in the latter case the seller’s contract value is reduced by
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the expected protection payment. The sources of value are switched from the standpoint of

the protection purchaser: at contract inception, the present value of premia paid is balanced

by the expected value of default payments. The value of the contract varies with market

credit spreads through their concurrent impact on the present value of premia receipts and

the expected value of default payments.

Consider a contract k that is established between counterparties i and j at time t, on a set

of reference entity characteristics rk and a notional amount of protection Nk. Through the

use of a bootstrapping procedure to value CDS contracts using the term structure of credit

spreads at t, we are able to estimate the net present value of the contract (Luo (2005)). The

change in value of contract k between successive periods t and t+ 1 determines the variation

margin VMij(Nk, rk, t, t + 1) payable on the kth contract. The sum of changes across all

contracts between i and j is the bilateral variation margin

VMij(t, t+ 1) =
∑
k

VMij(Nk, rk, t, t+ 1). (9)

We estimate the weekly change in contract values, and the induced VM payments, for

each pair of firms in our data set over the period January 1, 2010 to October 21, 2016. The

term of the firms’ CDS contracts come from DTCC while data on credit spreads and discount

rates come from Markit and Bloomberg, respectively. Contracts on indices or portfolios of

reference entities are handled by disaggregating them into their single-name equivalents. The

details of these calculations are described in the Appendix.

5.2 Initial Margin

The role of initial margin (IM) is to cover potential shortfall in VM payments by a

firm’s counterparties, including the cost of closing out or transforming the position in case

of default. Initial margins collected from counterparties are held in segregated accounts and

can only be used to cover losses induced by a given counterparty’s failure to pay. A portion
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of the IM is typically held in cash or cash equivalents, and the remainder is held in assets

that can be liquidated on short notice but not necessarily at full value. Not all counterparties

are required to post IM. For example broker-dealers only need to post IM on contracts with

other broker-dealers and the CCP. Other market participants, such as hedge funds and asset

managers, need to post IM with broker-dealers, commercial banks, and the CCP but not

with each other.

To determine the amount of IM posted (where IM is required) we adopt a conventional

portfolio-at-risk measure, namely a 99.5 percent value-at-risk (VaR) with a 10-day margin

period of risk (BCBS and IOSCO (2015)). For each pair of firms i and j, the DTCC data

report the portfolio of CDS contracts for which i and j were the counterparties on the date

of the shock. Using Markit data we can infer the price changes, and hence the VM that

would have been exchanged between i and j, if they had held this same portfolio over the

prior 1,000 days. We then find the amount cij such that on all but five days out of 1,000 the

net amount of VM that i owed j was less than cij.

In the case of the CCP, VaR approaches tend to underestimate CCP collateral levels

(Duffie et al. (2015); Capponi et al. (2017)). Hence in this case we estimate the IM that

would be required to meet a 10-day 99.5 percent VaR bilaterally for each of its counterparties,

and then scale up the estimates by a common factor so that the total IM collected corresponds

to the CCP’s total reported IM at the end of 2014 (ICE (2016)).

5.3 Liquidity Buffers

The IM collected by firm i from its counterparties is dedicated to covering shortfalls in

payments to i from its counterparties; it cannot be accessed to meet i’s obligations to others.

To cover its own obligations the firm maintains a liquidity buffer bi, which includes cash or

cash-equivalents and short-term lines of credit. These buffers are not part of the DTCC

data, nor are they available from public data sources. Instead we estimate their magnitude

by considering how much cash a prudently managed firm would need to manage its net VM
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obligations. These numbers can be estimated from the weekly inflows and outflows of VM

at the firm level, which are derived from DTCC data as described above.5

Fix a firm i and let Xi(t) denote the total net VM payment that i owes to all of its

counterparties on a given day t. If Xi(t) > 0 then i owes more than it is owed; the reverse

holds if Xi(t) < 0. Let Ni(t) be the gross notional value of i’s CDS contracts at time t

and let X̃i(t) = Xi(t)/Ni(t). There is considerable heterogeneity in the volatility of X̃i(t)

between different types of firms, reflecting differences in their overall risk management policy

and degree of hedging (see Table 1). In particular, the members of the CCP have an average

portfolio volatility that is an order of magnitude smaller than the portfolio volatility of non-

member commercial banks. Moreover, the latter are less than half as volatile as the holdings

of hedge funds, asset managers, and insurance companies.

Table 1: Average Portfolio Volatility by Type of Firm

Firm Type Standard Deviation
Members 0.0009

Non-members:
Commercial Banks 0.0106

HF/Asset Managers 0.0235
Insurance & Pensions 0.0224

Note: For each firm we compute the standard deviation of X̃i(t) over the period January 1,
2010 to October 21, 2016 using weekly data from DTCC, and take the average of those
standard derivations over all firms of a given type.
Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

To estimate the size of i’s liquidity buffer, we employ a portfolio value-at-risk (VaR)

measure. Let Fi(X̃) be the CDF of X̃i over the period of observation, and let θ be a VaR

level such as θ = 0.99 or θ = 0.997. In particular, θ = 0.99 corresponds to the third largest

net negative change in VM, and θ = 0.997 to the largest net negative change in VM over

the period of observation. Let x̃i,θ be the value such that Fi(x̃i,θ) = θ. At a given date

5Similarly, bank holding companies compute their liquidity coverage ratios by estimating the largest net
outflow of funds they would have incurred over a look-back period of several years.
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t∗ ∈ [0, T ], we estimate i’s liquidity buffer to be bi,θ = x̃i,θNi(t
∗).

In the case of the CCP, we use the actual size of the guarantee fund, reported for the

quarter, instead of estimating its liquidity buffer. At the date of this study, ICE Clear

Credit’s guarantee fund had assets worth about $2.4 billion (ICE (2016)).

Although the portfolio volatility of CCP members is on average much smaller than that

of non-members, the size of their portfolios is so much larger that many of them require

higher absolute amounts to manage their VM payments at a given level of risk (see Table

2).

Table 2: Average Liquidity Buffer by Type of Firm (in millions of dollars).

Firm Type θ = 0.95 θ = 0.99 θ = 0.997
Members 35.4 91.4 334

Non-members:
Commercial Banks 1.1 3.2 9.1

HF/Asset Managers 4.0 11.0 41.0
Insurance & Pensions 5.8 13.7 34.7

CCP 2,400 2,400 2,400

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

In what follows we shall adopt the most conservative of these scenarios (θ = 0.997) as

our estimate of firms’ liquidity buffers.

6 VM Payments Induced by the CCAR Shock

The Federal Reserve’s 2015 CCAR severely adverse global market trading shock pre-

scribes a sudden widening of credit spreads for corporate, state, municipal, and sovereign

debt according to their rating class (Federal Reserve Board (2016)). The shock is applied to

all outstanding positions as of October 6, 2014. The change in credit spreads alters the value

of the premium and payment legs of CDS contracts that reference various classes of debt.

These changes in CDS contract values induce variation margin (VM) payment obligations
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between counterparties. The methodology for estimating these VM payments is described

in detail in the Appendix.

Figure 5 shows the net VM payment obligations between the CCP, members of the CCP,

and other non-member firms on the CCAR shock date.6 In addition, there are many non-

member firms that have positions directly with members, as well as positions with the CCP

that are guaranteed by members. There are over 900 such firms, including a wide variety

of hedge funds, asset managers, and insurance companies.

Two key features of the network are: (i) non-members tend to owe members rather than

each other; (ii) the largest non-members contribute substantially more stress than the largest

members because they are large net sellers of CDS protection. These points are highlighted

in Table 3, which shows the average VM owed by the top five members versus the average

VM owed by the top five commercial banks, the top five hedge funds and asset managers,

and the top five insurance companies, ordered by the amount of VM owed. The market

structure described here affects the results described in Section 7 in several critical ways.

First, liquidity buffers (and additionally for the CCP its default fund) will play critical roles

in resolving stress in the network. The exhaustion of such resources for members and the

CCP leads to payments contagion. Second, the initial channel for stress are payments due

from non-members to members, which in some cases are several times larger than their

liquidity buffers.

6For each pair of firms, payments are bilaterally netted, e.g. if A owes B 100 and B owes A 90, then the
net payment is 10 from A to B.

6The CCP actually has 30 members but the exposures of several of them are aggregated in the data at
the bank holding company level, which leads to 26 observable members.
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Figure 5: Variation Margin Payment Network for CCP Members and a subsample of Non-
members, based on the 2015 CCAR Shock.

Note: The network diagram plots the central counterparty clearing house (CCP) (in
green), CCP members (in blue), and a sample of CCP non-members (in black). The width
and direction of each arrow indicate the relative size of the net VM payment owed
bilaterally between counterparties.
Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

Table 3: Aggregate Variation Margin Payments under the CCAR Shock

Firms
Gross Notional Variation Margin Variation Margin Net Variation Liquidity
Exposure($b) Owed By($m) Owed To($m) Margin Owed($m) Buffer($m)

Top 5 Members 7,151 8,396 5,510 2,886 2,276
Non-members:

Top 5 Commercial Banks 31 268 8 259 80
Top 5 HF/Asset Managers 296 9,730 263 9,466 1,742

Top 5 Insurance & Pensions 30 557 48 509 184
CCP 3,344 8,747 8,747 - 2,400

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.
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7 Empirical Analysis

We now apply this framework to estimate the total amount of contagion that would be

produced by a large and sudden credit shock, as well as the amount that each individual

firm contributes to contagion at the margin. Define the impact of a credit shock to be the

total shortfall in VM payments, net of initial margin seized, over all pairs of counterparties

in the network. Specifically, if pij is the equilibrium payment from i to j, then the payment

shortfall from i to j is dij = (p̄ij − pij − cij)+, and the total shortfall is

D =
∑

1≤i,j≤n

dij. (10)

An alternative measure of impact is the proportion of firms who default on their payments.

We provide estimates of both measures of impact in the subsequent analysis, although our

preferred measure is (10) because it accounts for the magnitude, and not just the number,

of defaults.

Table 4 shows the percentage of firms in default in each of five categories: (i) CCP

members (broker-dealers), (ii) commercial banks, (iii) hedge funds and asset managers, (iv)

insurance companies and pension funds, and (v) the CCP itself. Over the entire population

of firms, 15 percent are in default under the soft default scenario and 17 percent under the

hard default scenario. Thus, there is surprisingly little difference between the two scenarios

in the overall number of firms that default, although there is a marked increase in the number

of members that default.

Table 5 shows the aggregate payment shortfall for each type of firm. Observe first that

the CCP does not default under either scenario, although it must dip into its guarantee fund

in order to meet its payment obligations. A notable difference between the two scenarios is

that under hard default the members’ payment shortfalls are more than seven times larger

than under soft default; moreover in the hard default case these shortfalls represent over half

the total shortfall of all firms.
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Table 4: Percentage of Firms with Payment Shortfall under the 2015 CCAR Shock

Soft Default Hard Default
Total 15 17

Members 35 58
Non-members:

Commercial Banks 24 29
HF/Asset Managers 12 13

Insurance & Pensions 19 26
CCP 0.0 0.0

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

Table 5: Initial Stress and Equilibrium Payment Shortfall under the 2015 CCAR Shock

Initial Stress Soft Default SD Amplification Hard Default HD Amplification
Total 9,985 11,215 1.12 27,112 2.72

Members 812 2,004 2.46 15,285 18.82
Non-members:

Commercial Banks 244 246 1.01 432 1.77
HF/Asset Managers 8,577 8,602 1.00 11,292 1.32

Insurance & Pensions 334 345 1.04 968 2.90
CCP - - - - -

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

Table 5 also clarifies the extent to which network spillover effects amplify the initial shock.

Recall from expression (2) that the initial stress to a firm’s balance sheet is the amount of

outgoing payments due, less the incoming payments due plus the firm’s liquidity buffer.

These figures are given in the first column of Table 5. In equilibrium, however, the incoming

payments are often less than the payments due, which increases balance sheet stress. The

ratio of equilibrium stress to initial stress is the amplification factor due to network effects.

Observe that the amplification factor is especially large for the CCP members. There are

two reasons for this effect: (i) members have fairly balanced initial positions, so their initial

stress is low relative to the extent of their exposure, and (ii) members are central to the

network and hence are particularly vulnerable to waves of defaults that cascade through the

network and inundate them with payment shortfalls by their counterparties.
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The model can also be used to assess the amount that individual firms contribute to

contagion at the margin. Given a default scenario (hard or soft), let D =
∑

1≤i,j≤n dij

be the total shortfall in payments summed over all firms. Now choose a particular firm

i and suppose (hypothetically) that its payment obligations to all counterparties could be

guaranteed, say by giving i access to an emergency central bank loan. Let Di be the total

payment shortfalls over all firms in the network under this scenario. We define i’s marginal

contribution to contagion to be the relative difference (D − Di)/D, that is, the percentage

by which total payment shortfalls are reduced when i’s payments are guaranteed.

Figure 6: Distribution of Firms’ Marginal Contributions to Contagion
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(b) Hard Default

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

Figure 6 shows the marginal contribution of the largest contributors to contagion under

hard and soft default. In both cases, the largest single contributor to contagion is an asset

manager that is a large net seller of protection. Under the CCAR shock this firm owes much

more than its is owed, and the resulting shortfall in payments to its counterparties triggers

contagion throughout the system. Figure 6 demonstrates that if this firm’s obligations could

be guaranteed, total payment shortfalls would be greatly reduced under either soft or hard

default.7 Figure 6 also shows that several clearing members each contribute over 10% to

systemic risk in the hard default scenario. These firms have fairly balanced portfolios, but

7It is an interesting fact that, although this firm triggers a great deal of contagion in the system, its
initial stress is very nearly the same as its final equilibrium stress, that is, the stress at this particular firm is
not greatly amplified. The reason is that it is relatively peripheral to the network and does not suffer much
in the way of payment shortfalls by its counterparties.
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unlike the large asset manager they are quite central to the network and therefore amplify

payment defaults by their counterparties.

Our framework can also be used to evaluate the effectiveness of tightening initial margin

requirements or increasing firms’ liquidity buffers. Table 6 shows the total amount of initial

margin posted by all firms under the standards prevailing in 2015. We conduct a sensitivity

analysis by computing the equilibrium payments shortfall that would result if all IM require-

ments were boosted by 50 percent or by 100 percent.8 In the soft default scenario the impact

of doubling IM requirements is quite small, whether measured by the reduction in payment

shortfall ($0.8 billion) or by the number of firms in default (0.1 percent). In the hard default

scenario the impact is still relatively moderate. When IM is doubled the shortfall is reduced

by $2.8 billion, but this comes at a system-wide cost of posting an additional $20.2 billion

in collateral; moreover the percentage of firms in default is only reduced by 0.2 percent.

Table 6: Payment Shortfall and Firms in Default under Increased Initial Margins

Total Initial Soft Default Hard Default
Margin($b) Shortfall($b) Firms in Default(%) Shortfall($b) Firms in Default(%)

Current 20.3 11.1 14.7 27.1 16.8
Plus 50% 30.4 10.7 14.6 25.6 16.7

Plus 100% 40.5 10.3 14.6 24.3 16.6

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

We now conduct a similar analysis for increases in liquidity buffers. In theory each dollar

added to a firm’s liquidity buffer should go further than a dollar of additional IM posted to

one of its counterparties, because the former can be applied to all of its payment obligations,

whereas the latter can only be applied to payments to that particular counterparty. Table 7

shows the impact of increasing liquidity buffers at all firms (and the CCP’s guarantee fund)

by 50 percent and also by 100 percent. Note that the absolute dollar amounts are roughly

twice that of the corresponding increases in IM in Table 6.

8Since the CCP does not post IM to anyone, its posted margin is not affected. However members’ posted
margin to the CCP is increased by 50 percent and 100 percent, so the CCP collects more IM.
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Table 7: Payment Shortfall and Firms in Default under Increased Liquidity Buffers

Total Liquidity Soft Default Hard Default
Buffer($b) Shortfall($b) Firms in Default(%) Shortfall($b) Firms in Default(%)

Current 42.1 11.1 14.7 27.1 16.8
Plus 50% 63.7 8.6 11.4 24.1 12.4

Plus 100% 84.2 7.0 9.0 21.3 9.3

Source: Authors’ calculations using data provided by Depository Trust & Clearing
Corporation and Markit.

In the soft default scenario the shortfall is reduced by about $4.1 billion when liquidity

buffers are doubled. In the hard default scenario the shortfall is reduced by about $5.8

billion. Thus, on a dollar for dollar basis, there is not much difference in the effectiveness

of liquidity buffers versus initial margin in reducing the shortfall.9 Moreover, in both cases

the benefit (in reduced shortfall) is quite modest given the large amount of additional liquid

collateral that would be required.

What is the explanation for this somewhat surprising result? It turns out that, even when

liquidity buffers are doubled, there is still one non-member firm that is under severe stress

and triggers a great deal of contagion; moreover there are still several members that amplify

contagion due to their central position in the network. The basic problem is that even when

liquidity buffers are set at a very high level, they may be insufficient to handle extreme

tail events (such as CCAR) and their network spillover effects. Whether this warrants an

increase in liquidity buffers (or initial margins) is for policy makers to decide, but our results

suggest that the adequacy of these safety valves can only be fully evaluated by constructing

stress tests within the framework of a network model.

9Doubling of IM “costs” an additional $20.2 billion in collateral and “saves” $2.8 billion in reduced
contagion, whereas a doubling of liquidity buffers costs an additional $42.1 billion and saves $5.8 billion.
These results are nearly identical on a dollar for dollar basis.
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8 Conclusion

In this paper, we have analyzed the network of counterparty exposures in the CDS market.

In contrast to much of the prior work on stress testing, contagion, and fire sales, we track

the potential effects of a shock using actual financial exposures and the Federal Reserve’s

supervisory stress scenario as of a particular date. We estimate the impact of the shock on

the value of market participants’ portfolios, and by implication the variation margin (VM)

owed between the contracting parties. A significant feature of this market is that demands

for VM must be met over very short time horizons. A failure to meet these demands leads

to payment shortfalls that become amplified as they cascade through the network.

We have examined the potential contribution to network contagion of the 30 members of

the major CCP in this market (ICE Clear Credit), and also the potential contribution of the

major non-members. We find that network exposures significantly increase the amount of

contagion. Furthermore there are many members (and some non-members) that contribute

substantially more to contagion than does the CCP. Our analysis suggests that more at-

tention should be paid to firms that are very large, have highly unbalanced CDS positions,

and whose failure can trigger large systemic losses, as happened with AIG in 2008. It also

highlights the key role of initial margin and liquidity buffers in coping with large and sudden

demands for variation margin that result from a credit shock.

Our study is limited to the analysis of a specific part of the derivatives market and does

not encompass the full range of shocks to which firms may be exposed. In particular, we

have not included exposures to interest rate swaps, which form a substantially larger market

(in notional terms) than the CDS market, but which are not part of our data set. Under a

severe credit shock, firms may be subjected to simultaneous payment demands over multiple

lines of business, increasing the stress on their resources and possibly leading to even higher

losses than we have estimated here.
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Appendix – Evaluating CDS Portfolios

Here we describe the methodology for estimating the mark-to-market value of each coun-

terparty’s exposures at a given date for both single-name and index positions. We describe

a bootstrap procedure to generate a schedule of hazard rates consistent with the market for

all traded credit curves. We then describe the process of index disaggregation to single-name

equivalents. Finally, we describe how we arrive at expressions for variation margin payments

under stress.

A.1 Bootstrapping Credit Curves

We calibrate hazard rate schedules associated with each of the reference entities in the

contracts we observe. The CDS market quotes credit spreads through a range of standard

terms: 1-year, 3-year, 5-year, 7-year, and 10-year, and sometimes longer maturities. Each

additional term generates a hazard rate over a corresponding increment: the 3-year term

generates a 1-3 year increment, the 5-year term generates a 3-5 year increment, and so on

through 10 years. The bootstrapping technique we employ here generates a piecewise con-

stant schedule of hazard rates. A CDS contract struck at inception at the market spread for a

standard maturity, and valued using the schedule of hazard rates through that maturity, will

have equal default and premium legs. Bootstrapping permits us to value any position whose

remaining maturity at the time of stress may not correspond to market-quoted maturities.

The CDS payment and premium legs are implicit functions of a hazard rate, λ, which en-

ters the expression for the survival probability S(0, t, λ) through its definition as exp
(
−
∫ u
t
λds
)
.

Let Z(0, ti) denote the risk-free discount factor through period i, which we compute from

LIBOR rates from 1 through 6 months and swap rates from 9 months through 30 years.

We assume CDS premia are paid on International Money Market (IMM) payment dates,

consistent with market convention. Finally, to allow for the possibility that a default oc-

curs intra-period, CDS premia are pro-rated to the time of default. For simplicity assume
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that α = 0.5 (i.e., that any default occurs at the inter-period halfway point). In subse-

quent notation, ∆t represents the daycount fraction for the time interval (t− 1, t) such that∑T
t=1 ∆t = T . We use the ACT/365 convention standard in the CDS market.

We express the CDS premium leg through maturity T as follows:

V 0→T
prem (λ, sT ) = sT

T∑
t=1

Z(0, t)∆t ((1− α)S(0, t) + αS(0, t− 1)) . (A1)

In any period, the payment leg derives its value from the incremental default probability

over that time. Given the relationship between the default probability P (t, u, λ) and the

survival probability S(t, u, λ), S(t, u, λ) = 1 − P (t, u, λ), we express the payment leg as

follows:

V 0→T
pay (λ) = (1−R)

T∑
t=1

Z(0, t) (P (0, t)− P (0, t− 1)) . (A2)

Let λ∗ be the solution that sets the CDS payment and premia legs to fair value (equality)

at inception, that is V 0→T
contract(λ

∗, sT ) = V 0→T
pay (λ)− V 0→T

prem (λ, sT ) = 0.

Credit spreads are quoted for a sequence of maturities T1, T2, ... Tk. Quotes consis-

tent across the term structure require that for each Ti ≥ T , a vector of hazard rates λ∗ =

{λ∗0,Ti , λ
∗
Ti,Ti+k

} exists such that V
0→Ti+k

contract (λ
∗, sTi+k

) = V 0→Ti
contract(λ

∗
0,Ti
, sTi+k

)+V
Ti→Ti+k

contract (λ∗Ti,Ti+k
, sTi+k

)

for all k. We adopt a bootstrap procedure from Luo (2005) that ensures this by construction.

The procedure generates hazard rates
{
λ∗0,T1 , λ

∗
T1,T2

, ... λ∗Tk−1,Tk

}
that correspond to quoted

maturities of {T1, T2, ... Tk}. The default probability at any time t such that Tk ≤ t ≤ Tm,

can be expressed as a function of bootstrapped hazard rates as follows:

P (0, t,λ∗) = P (0, Tk, λ
∗
0,Tk

)P (Tk, t, λ
∗
Tk,Tm

). (A3)

For notational convenience we will refer to P (0, t,λ∗) from here on as P (t). We make the

simplifying assumption that maturity dates fall upon IMM payment dates. We start from

the premise that λ∗
0,Tk

is known and is either a) the solution that equates (A1) and (A2), or

32



b) is the bootstrapped solution vector described by the preceding recursive procedure. The

parameters sTm are derived from market quotes. The conditional premia and payment legs

are given as follows:

V 0→Tm
prem (λTk,Tm ; sTm , λ

∗
0,Tk

) = sTm

{
C(λ∗

0,Tk
) +D(λTk,Tm)

−
Tm∑

t=Tk+1

Z(0, t)∆t

(
P (t)− P (Tk)− α

P (t)− P (t− 1)

2

)}
,

(A4)

where

C(λ∗
0,Tk

) =
∑

(Ti,Tj)∈
{(0,T1)...

(Tk−1,Tk)}

Tj∑
t=Ti

Z(0, t)∆t

[
(1− P (t)) + α

(P (t)− P (t− 1))

2

]
,

D(λTk,Tm) =
Tm∑
t=Tk

Z(0, t)∆t(1− P (Tk)).

Similarly,

V 0→Tm
pay (λTk,Tm ; λ∗

0,Tk
) =A(λ∗

0,Tk
) +

Tm∑
t=Tk+1

(1−R)Z(0, t)

(
P (t)− P (t− 1)

)
, (A5)

where

A(λ∗
0,Tk

) =
∑

(Ti,Tj)∈
{(0,T1)...

(Tk−1,Tk)}

Tj∑
t=Ti

(1−R)Z(0, t) (P (t)− P (t− 1)) .

Here λ∗Tk,Tm is the value that sets Equations (A4) and (A5) to parity. Once this value

is determined, the hazard rate vector λ∗
0,Tm

can be derived for subsequent stages of the

bootstrap recursion. The resulting bootstrapped hazard rate schedule allows us to value
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a contract of any term by applying its contracted spread and the hazard rate schedule

associated with its term.

A.2 Portfolios of Single Name Equivalents

We disaggregate Markit credit indices to single-name constituents. For each position

referencing a Markit credit index, we decompose the index using Markit RED data. This

source provides the composition of the index at any point in time, taking into account index

revisions and defaults. We employ the disaggregation technique described by Siriwardane

(2015) in Section 2.

Each Markit credit index is described by its series and version. A series may have one

or more versions. An index series factor, fi is defined for every version i as fi = 1 − Di

N
,

where Di is the number of defaults for an index series version i ∈ {1, 2, 3 ...}. Version 1 is

characterized by D1 = 0, so f1 = 1. The weight of a constituent within a version must be

computed on a given valuation date and is a function of the index composition on the date

the position was established (trade date). In general, the index composition at the trade

date may not be its composition at inception. The constituent u’s weight in index version i

can be expressed by wi(u), and its weight at inception is given as w1(u) = 1
N

. Subsequent

versions’ weights are given by

wi(u) =
w1(u)

fi
∀ i ≥ 1. (A6)

As an example, an index with 43 original constituents at inception would have a per-

constituent weight of w1(u) =
1
43

1
= 0.0233. Following the default of one constituent, version

2 of the index would have a per-constituent weight of w2(u) =
1
43

0.977
= 0.0238. The per-

constituent weight is scaled by the notional value of the index position to arrive at the

effective single-name notional equivalent. We perform all calculations in this paper on firms’

single-name equivalent CDS positions.
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A.3 Estimating Variation Margin

At the CCAR valuation date, we generate stressed portfolio values using the following

approach. The change in the value of exposures under stress follows from their valuation at

baseline and revaluation after the market shock, which specifies an increase in credit spreads.

These increases are shown in Table A1 for various classes of debt.

Table A1: The Impact of the 2015 CCAR Severely Adverse Global Market Trading Shock.

Corporate Credit
Advanced Economies

AAA AA A BBB BB B <B or Not Rated
Spread Widening (%) 130 133 110 202 269 265 265

Emerging Markets
AAA AA A BBB BB B <B or Not Rated

Spread Widening (%) 192 217 243 278 402 436 466

State & Municipal Credit
AAA AA A BBB BB B <B or Not Rated

Spread Widening (bps) 12 17 37 158 236 315 393

Sovereign & Supra Credit
See FRB worksheet: CCAR-2015-Severely-Adverse-Market-Shocks-data.xlsx

Source: Federal Reserve Board (2016)

We incorporate counterparty flows in the description of the net present value (NPV) as fol-

lows. Suppose that firm x writes the payment leg, while firm y writes the premium leg. Incor-

porating such flows and suppressing some earlier notation, we express V 0→T
prem (λm

∗; s, λm−1
∗)

as V prem
x (λ; s, T ) and similarly the payment leg as V pay

y (λ, Tm). The hazard rate environ-

ment that exists at valuation date t is given by λt. Analogously, the environment at t under

stress is λshock.

The NPV of a swap of $N notional on the as-of-date T is defined as follows:

NPVxy(N, λ
T , s, T ) = N

[
V prem
x (λT ; s, T )− V pay

y (λT , T )
]
. (A7)
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Similarly, the NPV of the swap under stress is:

NPVxy(N, λ
shock, s, T ) = N

[
V prem
x (λshock, s, T )− V pay

y (λshock, T )
]
. (A8)

The difference between these values determines the shock-induced variation margin pay-

ment due from x to y for each contract, from which we deduce the net payment due by

summing over all contracts between the two parties.
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