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This paper studies an appointment scheduling problem under schedule-dependent patient no-show behav-

ior. The problem is motivated by our studies of independent datasets from countries in two continents

which identify a significant time-of-day effect on patient show-up probabilities. We deploy a distributionally

robust model, which minimizes the worst case total expected cost of patient waiting and service provider’s

idle and overtime, by optimizing the scheduled arrival times of patients. We show that this model under

schedule-independent patient show-up behavior can be reformulated as a copositive program and then be

approximated by semidefinite programs. These formulations are obtained by a new technique that uses a

completely positive program to equivalently represent a linear program with uncertainties present in both the

objective function and the right-hand side of the constraint sets. To tackle the case when patient no-shows

are endogenous on the schedule, we construct a set of dual prices to guide the search for a good schedule

and use the technique iteratively to obtain a near optimal solution. Our computational studies reveal a sig-

nificant reduction in total expected cost by taking into account the time-of-day variation in patient show-up

probabilities as opposed to ignoring it.
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1. Introduction

Consider the following situation: Amy has an appointment with her dentist at noon. However, she

is requested to attend a business meeting announced last minute that is scheduled at 12:30pm.

As a result, she cannot attend the appointment as she is supposed to. If she has had an 8am

appointment, she would have been able to see her dentist first and come to work right after.

Such patient nonattendance (or commonly known as “no-show”) behavior frequently arises in

clinic appointment scheduling. Due to the uncertainties patient no-show brings into the picture, its

prevalence in different medical specialties and geographic regions as well as its potential detrimental

impact on patient health outcomes and service provider revenues (Moore et al. 2001, Ulmer and

Troxler 2004), patient no-show is a crucial factor for ambulatory care providers, such as primary

care doctors, dentists and physical therapists, to consider when designing appointment templates.

A provider’s daily appointment template specifies the expected number of patients to be seen in a

day and the scheduled arrival times of these patients.

To mitigate the effects of patient no-shows, it is common that an appointment template allows

over-booking appointment time slots (i.e., scheduling two or more patients into the same time slot).

Over-booking will certainly reduce service provider’s idle time, and therefore increase throughput

by seeing more patients per day. It will, however, increase service provider’s overtime and patient’s

waiting time, and in turn may hurt service provider’s satisfaction and patient’s experience. As

healthcare moves towards more patient-centered, payers shift from the traditional pay-for-service

scheme to pay-for-performance by linking reimbursement rates to service providers with patient

satisfaction rating (Press Ganey 2008). At the same time, the booming of social media websites

significantly increases information transparency in the healthcare market (McCormack 2013), and

leads to a soaring competition among healthcare providers in their service quality. For outpatient

care providers, it thus becomes more important than ever to adopt an appointment template that

achieves the best tradeoff between capacity utilization and patient experience.

A significant amount of operations research efforts have been devoted to investigating the opti-

mal appointment scheduling under patient no-show behavior. Some recent literature on this topic

includes Kaandorp and Koole (2007), Robinson and Chen (2010), Hassin and Mendel (2008),

LaGanga and Lawrence (2012), Luo et al. (2012), Jiang et al. (2015). Interested readers are referred

to Cayirli and Veral (2003) and Denton and Gupta (2003) for a review of the earlier literature.

Most, if not all, of this prior literature on appointment scheduling assumes that patient show-up

probabilities (or the distributions) are exogenously determined.

As we illustrated in our earlier example, however, in many situations whether or not a patient

will show up for an appointment can depend on the time-of-day of her appointment. Working

professionals, like Amy, usually have less control of their availability as their work day progresses.
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As a result, in that specific occasion, Amy has to miss her noon appointment, but she would have

come for an 8am appointment.

There is a surge of interest in using data analytics to improve no-show prediction in healthcare

by incorporating more complex factors such as the time-of-day effect. For instance, Gabriel Belfort

and nine teammates (at a MIT Hacking Medicine event) built a prototype for the start-up “Smart

Scheduling.” Using hundreds of patient demographics and punctuality data, their system is able

to predict cancelled or missed appointments up to 70% accuracy (c.f. The Boston Globe, July 14,

2014). This allows clinics to efficiently target reminders and double-book appointments, to provide

better service availability and to improve patient experience.

A few studies have also pointed out that patient no-show rates may depend on their appointment

times of day, but the patterns are not uniform. Lacy et al. (2004) laid out a few reasons for patient

no-shows, some of which are related to time (for example, trouble getting off work, transportation,

etc.). Moore et al. (2001) reported that morning appointments are more likely to be kept than

afternoon slots. LaGanga and Lawrence (2008) showed that no-show rates may vary by appointment

slots. Another prospective study of nonattendance in a physiotherapy clinic in Ireland showed that

late afternoon slots produce a lower no-show rate compared to morning and early afternoon slots

(French et al. 2005).

In order to gain more insights on this phenomenon, we use two independent large datasets from

countries in two continents to systematically analyze the impact of appointment time-of-day on

patient show-up probabilities. Controlling for patient-level and provider-level factors, we find sig-

nificant empirical evidences that patient show-up probabilities indeed depend on their appointment

times of day. Specifically, we find that patients in a US community healthcare facility are more

likely to show up for their appointments at the beginning or the end of the day in weekdays. In

a Chilean pediatric practice, however, show-up rates tend to be lower in the early morning. Such

different temporal effects of appointment times may be explained by the differences in patient

populations and culture. More importantly, the temporal effect size can be quite significant. For

instance, our analysis shows that for a US patient scheduled on Wednesday, her show-up probabil-

ity can increase from 56% to 81% when given an appointment at 8am rather than at noon. These

interesting findings motivate our research questions in this paper: (1) how to design an appointment

template when time-of-day affects patient no-show behavior; and (2) how much efficiency gain/cost

reduction can be achieved by accounting for such time-of-day effect compared to ignoring it?

Specifically, we consider a fixed set of patients to be scheduled in a given clinic session for a single

service provider. A clinic session is referred to a consecutive time window during which a service

provider serves patients without taking a break. We focus on the design of appointment template

that specifies the scheduled arrival times of these patients. As an appointment template is usually
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determined before appointments are actually made and without the knowledge of each potential

patient’s individual characteristics, we do not consider the impact of individual characteristics on

patient show-up probabilities in our model. Patient show-up probabilities depend on their scheduled

arrival times. All patients, if show up, arrive on time; and no walk-ins are allowed. The overall

goal of our model is to design an appointment template that increases throughput by seeing more

patients per day (or in other words, limits service provider’s idle time), but not at the expense of

overwhelming patient waiting time and staff overtime. Following the convention of the literature

on this topic, our objective is to minimize the sum of service provider’s idle cost and overtime cost

as well as patient’s waiting cost.

From a practical point of view, the scheduler may not have sufficient data to confidently estimate

the exact probability distribution of patient no-shows. In contrast, estimating only the first two

moments of show-up rates is much less cumbersome. Therefore, we deploy a two-stage stochas-

tic optimization framework from a distributionally robust perspective to solve the appointment

scheduling problem mentioned above. In the second stage, we evaluate the total cost given an

schedule and the realization of patient no-show status. In the first stage, instead of assuming a

specific distribution of show-up rates, we use a set of distributions with given first and second

moment information to find out the worst case optimal schedule that minimizes the maximum cost

among the family of distributions. Such distributionally robust solutions guarantee the schedule

to perform well under all possible distributions. This approach is also versatile enough to handle

various salient features of the scheduling problems.

To solve this scheduling problem, we encounter several unaddressed technical challenges in the

optimization literature. First, incorporating patient no-show behavior demands solving a com-

pletely positive program in which uncertainties occur both in the objective function and the right-

hand side (RHS) of the constraint sets. In addition, because patient show-up probabilities depend

on time of day, uncertainties in the system related to patient no-shows are actually endogenous on

the schedule – our decision variables. Standard stochastic programming approach does not work

here due to such schedule-dependent show-up probabilities. Specifically, we cannot generate ran-

dom samples to guide the design of the schedule without knowing the schedule. To the best of our

knowledge, Pflug G. (1990) was the first to address exogenous uncertainty where the underlying

stochastic process depends on the optimization decisions. See Goel and Grossmann (2006) for a

review of this area of research. These problems are often approached using a scenario tree repre-

sentation and a mixed integer programming approach to handle the discrete number of scenarios.

To tackle this challenge, we develop a new modeling technique that enables us to reformulate

such a problem with patient no-show. We first solve the appointment scheduling problem with
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static show-up rate (i.e., schedule-independent), and then apply the method iteratively to tackle

the case with endogenous patient no-show behavior (i.e., schedule-dependent).

To test our proposed methods, we carry out extensive numerical studies. We show that, com-

paring to the front-loading pattern observed in the optimal schedule with a static show-up rate

(Zacharias and Pinedo 2014), when patient show-up probabilities increase over time (e.g., in the

case presented by the Chile dataset), the optimal schedule still observes a front-loading pattern

but it is postponed. However, when patient show-up probabilities decrease over time (e.g., in the

case presented by the US dataset), it is better to spread out patients rather than front loading the

system. In both situations, we find significant reductions in the total expected cost by explicitly

taking into account the impact of schedule-dependent patient no-show probabilities.

In summary, this paper makes three main contributions to the literature. First, we use two large

datasets from countries in two continents to study and quantify the impact of appointment time-

of-day on patient show-up probabilities, controlling for patient-level and provider-level factors.

We identify significant evidences on the temporal effect of appointment times on patient show-up

probabilities in both datasets. Second, comparing to the “classic” front-loading schedule pattern

arising from assuming a constant patient show-up rate over time (Zacharias and Pinedo 2014), our

model reveals an optimal schedule with different patterns in cognizance of time-varying patient

no-show behavior. More importantly, we demonstrate a significant cost reduction that can result

from the schedules derived from our model. Third, from a methodological perspective, we develop a

general technique that uses completely positive program to equivalently represent a distributionally

robust linear program (LP) with uncertainties present in both the objective function and the RHS

of the constraint sets. By doing so, we are able to reformulate such a technically challenging problem

as a completely positive program that can be approximated by semidefinite programs. This paper

offers a general approach to solve problems with this structure.

Two papers most relevant to ours are Kong et al. (2013) and Zacharias and Pinedo (2014). Com-

pared to models developed in these two papers, ours is much more general. The modeling technique

of this paper is inspired by Kong et al. (2013), which considers an appointment system with random

service durations and assumes that all patients show up for appointments. They develop a linear

copositive program to solve the appointment scheduling problem under the worst case distribu-

tion. From a technical point of view, our model is much more challenging, as in their formulation

the uncertainty only appears in the objective function, but in our problem the uncertainties of

patient show-up rate are present in both the objective function and the RHS of the constraint

sets. The modeling technique developed in this work can be used to solve general problems of this

kind. To derive the exact optimal schedule, Zacharias and Pinedo (2014) require constant, i.e.,

time-homogeneous, patient no-show behavior. In contrast, our model allows for schedule-dependent
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show-up rates. We develop an iterative method to solve this problem, and our computational

results suggest that significant efficiency gain can be achieved when accounting for the time-of-day

variation in patient no-show behavior. Furthermore, we show that even though our model aims to

solve the optimal schedule for the worse-case distribution, such robust schedules can also be near-

optimal in terms of the total expected costs when compared to the optimal schedules generated

by Zacharias and Pinedo (2014). Another paper that is also relevant is LaGanga and Lawrence

(2012), which is the only work that we know considering time-varying show-up probabilities in

appointment scheduling. In their model, patient service times are deterministic and are equal to

the length of an appointment slot. The decision is to identify the number of patients scheduled

for each slot. Given the combinatorial nature of this problem, they use complete enumeration and

develop a heuristic approach to solve it. Our work significantly advances theirs by providing a uni-

fied optimization framework for a more general class of the problems and by developing algorithms

to solve the model efficiently.

The rest of the paper is organized as follows. Section 2 presents a predictive analysis of the time-

of-day effect on patient show-up probabilities while controlling for other factors. Section 3 develops

the new approach needed to analyze a distributionally robust LP with uncertainties in both the

objective and the RHS of constraints. Section 4 introduces the appointment scheduling model with

schedule-dependent show-up probabilities, and applies the new approach developed in Section 3 to

this model. Section 5 discusses our numerical results, and Section 6 draws our concluding remarks.

2. Time-of-day Effects on Patient Show-up Probabilities

Previous literature has shown that patient characteristics (e.g., gender, age, new or established

patient) and provider-level factors (e.g., provider type and relationship with patients) are impor-

tant predictors for patient no-shows; see, e.g., Ulmer and Troxler (2004). We hypothesize that,

controlling for these factors above, time-of-day also has a significant impact on patient attendance

behavior, for potential reasons to be discussed soon. In this section, we use two datasets on patients

appointment records, one from the US and the other from Chile, to investigate our hypothesis.

2.1. US data

The US data contain patient appointment records from a large urban community health center

located in New York City. This center offers comprehensive medical and dental care to the local

community and has more than twenty healthcare providers including physicians, nurse practition-

ers, nutritionists and care managers. The annual visits to this center amount up to more than

25,000.

Our data are extracted from the EMR (Electronic Medical Record) system of this center. This

large dataset spans over three years ranging from January 2011 to December 2013. When analyzing
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this dataset, we focus on adult primary care visits, i.e., visits to internists, family medicine doctors

or nurse practitioners. We exclude walk-in patients from the analysis because they did not schedule

their appointments in advance. Among scheduled visits, we exclude those mandated by school or

work, e.g., visits for PPD skin tests or vaccine shots, because these visits have much higher show-up

probabilities compared to other regular visits. The final dataset contains 35,094 patient visits made

by 4,142 distinct patients.

Because some patients made multiple visits, our data has a panel data structure, for which we

develop a mixed-effects logistic regression model to account for potential within-subject correlation.

Patient visit status (show-up vs. no-show or cancellation) is the dependent variable, and time-

of-day is the independent variable of interest. We also control for a number of other potential

factors available in the dataset, including patient age, gender, visit type (new vs. established),

provider type (family medicine, internal medicine or nurse practitioner) and day of week. For the

age variable, we dichotomize patients into younger and elder patients based on a median split at

age 52 for ease of interpretation. We use a random intercept to capture individual patient effect.

A full regression model reveals that gender effect is not significant, i.e., male and female patients

have statistically the same attendance behavior. The difference between visits to family medicine

and internal medicine is not significant either. This is not surprising, as these are all visits to

physicians who usually practice in a similar manner. The difference in patient no-show rates due

to provider practice manner, if any, should present in comparison between the visits to physicians

and nurses. We also find that patient show-up probabilities are (similar and) higher in Tuesday,

Wednesday and Thursday compared to other days in the week, controlling for other factors. Thus,

we group days into two categories: Tuesday to Thursday, and other days in the week. In our analysis,

we model appointment time as a categorical variable in the regression to explore the temporal

effect of appointment time. Our final regression model, after excluding non-significant predictors,

takes the following form.

logit(pij) = β0 +β1AppHourij +β2MidWeekij +β3Physicianij +β5Y oungij +αi,

in which pij is the probability of patient i showing up for his/her jth appointment in the dataset ;

β0 is the fixed intercept and αi ∼N(0, σ2
α) represents the unobserved individual random effect with

σ2
α being its variance to be estimated; AppHour is a categorical variable for different appointment

times in a day; MidWeek=1 if it is Tuesday, Wednesday or Thursday; Physician=1 if the patient

sees an physician (not a nurse practitioner); Young = 1 if patient’s age is lower than the median

age 52 of the sample. As we will discuss later, patient show-up patterns appear quite different

in weekdays compared to Saturday, so we develop two regression models, one using full data and
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the other using non-Saturday visits. The estimated model coefficients are shown in Table 7 of the

Appendix A.

We use the likelihood-ratio test to assess the significance of appointment times which consist of

multiple levels, and this test lends strong empirical support for our hypothesis that appointment

times have a significant impact on patient show-up rates, controlling for other factors (p < 0.05 for

the full data model, and p < 0.01 for the model excluding Saturday visits). The impact of other

factors on patient show-up probabilities is discussed in the Appendix A.

To explore the effect size of time-of-day, we plot, by day of week, the average marginal show-

up probabilities over different hour of day in Figure 1. Specifically, for each day of week, we fit

a separate mixed-effects logistic regression model; and then for each appointment hour, we use

the fitted model to predict the show-up probability for each patient in our dataset for that day

of week, holding his/her other characteristics unchanged. We then average the predicted show-up

probabilities over all patients in the data for that day. This average is shown as the curved bold

line in figures 1a to 1f, representing how the “expected” show-up rate of a random patient in this

population changes should s/he be scheduled at different times of a day.

We observe that, in weekdays, the show-up probabilities tend to be higher either in early morning

(except for Tuesday) or in late afternoon. However, Saturday exhibits a different pattern: show-

up probabilities peak in the middle of the day (a dome-shape). This difference may be explained

by people’s different life schedules during weekdays and weekends. During weekdays, early morn-

ing slots may be the most “convenient” ones from patients’ perspectives because attending these

appointments slots has the least interruption to one’s work/life and thus these slots are less likely

to be missed. On Saturday, however, people tend to have a relaxed schedule (and a late breakfast),

and thus early morning slots are associated with lower show-up probabilities.

2.2. Chile data

The Chile data consist of patient appointment records from an ENT (ear, nose and throat) depart-

ment of a public teaching pediatric hospital located in Santiago, Chile. This hospital offers various

services including speciality consultation, emergence, and surgical/medical hospitalization. In 2013,

this hospital had around 16,500 discharges, 5,500 major surgeries and 90,000 outpatient visits.

Our ENT dataset covers one year period from October 2012 to October 2013. During this period,

appointments are scheduled from 8am to 4pm Monday through Friday, and there are 7,352 patient

visits made by 3,302 distinct patients.

We explore this dataset using a similar approach as for the US data. We control for the following

potential predictors in our regression model: age, gender, status (initial visit vs. follow-up visit),

provider type (speech specialists, physicians and surgeons), distance from residence to hospital,
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(f) Saturday

Figure 1 Sample-Average Probabilities of Show-up over Different Times of Day (the US Data).

day of week and time of day. We use a random intercept to capture individual patient effect. For

the age variable, we dichotomize patients into younger and elder patients based on a median split

at age 6. Our dataset has some information on patients’ residence, using which we are able to

group patients into three categories: close to hospital (these are patients who live in counties very

close to the hospital location); inside the city (these are patients who live in the same metropolitan

area where the hospital is located), and outside the city (these are patients who do not live in the

metropolitan area of the hospital).

Our regression analysis reveals that gender and age effects are not significant. Distance, thought

to have an impact on patient no-show rates, does not appear to be significant either. One possible

explanation for these three factors not being significant is that parents were doing their best to

bring their children to see the service provider regardless of their residence location or their children’

gender and age. We find that patients who visit speech specialists and surgeons tend to have similar

attendance behavior, and thus we group these two types of patients in a single category. We also

find that patient show-up probabilities are higher on Thursdays but lower on Fridays compared to

other days of the week. As a result, we group days into three categories: Monday to Wednesday,

Thursday and Friday.
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We refer the readers to the Appendix A for details of the final model (see Table 8), and the

interpretation of the results. Here, we focus on the temporal effect of appointment times on patient

show-up probabilities in different days of week. As we did for the US data, we plot the sample-

average marginal show-up probabilities over different times of the day for any given day of week,

as well as the aggregated marginal show-up probability over all days of week (because the daily

patterns look similar in the Chile data); see Figure 2. Note that the office hour in the Chilean

practice is different from that in the US, and very few patients visit at 1pm so we exclude those.

We observe an interesting pattern of show-up probabilities in this Chile dataset in contrast to

the US data. In general, patient show-up rates increase over time since early morning, peak at the

middle of the day, and then decrease (see Figure 2f). This pattern is different from the weekday

pattern in the US data, but similar to Saturday there. There may be a few explanations. First, this

is a pediatric population, and parents may need extra preparation time for the visit. Thus, mid of

a day appears to be the most convenient times. Second, it is possible due to the less-work-oriented

Latino culture and the fact that Latinos usually have a more relaxed attitudes towards time (Flores

and Vega 1998).
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(f) Aggregate

Figure 2 Sample-Average Probabilities of Show-up over Different Times of Day (Chile Data).
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3. An Approach of Completely Positive Decomposition

As we demonstrated in Section 2 that, appointment time-of-day is an important factor that affects

the variation in patient show-up rates. We are interested in finding out the structure of the optimal

policies to schedule patients by incorporating this new empirical evidence.

We develop a copositive programming reformulation to solve the no-show problem, based on an

approach first developed in Kong et al. (2013). However, our problem is more challenging due to

two reasons: first, incorporating patient no-show behavior demands a completely positive model

with uncertainties in both the objective function and RHS of the constraints; second, patient show-

up probabilities depend on our scheduling decision variables. To address the second issue, we use

the dual prices associated with the moment cones in the copositive program to guide the search for

the optimal appointment schedule, and apply this method iteratively to tackle the problem with

endogenous patient no-show behavior (i.e., schedule-dependent).

We first develop in this section the theories on how to use completely positive program to solve

LPs with uncertainties in both objective and the RHS of constraints. Later we will apply these

results to solve the problem of appointment scheduling with no-shows in Section 4.

3.1. Linear Optimization with Uncertainties in both Objective and Right-Hand
Side

We consider a general LP with uncertainties occurring in both the objective c̃ and the RHS of the

constraint sets b̃. For ease of exposition, we assume the objective function c̃ is a linear function of

b̃. i.e.,

c̃i = ci(b̃) = kT
i b̃ + li,∀i∈ {1,2, ..., n} ,

where ki ∈Rm1 is the coefficient vector1. We consider the following linear optimization problem:

ZP (b̃) = max c(b̃)Tx

s.t. Ax = b̃, Hx = d, x≥ 0
(1)

where A := (a1 a2 ... am1
)
>

, H := (h1 h2 ... hm2
)
>

.

Without loss of generality, we assume that our linear optimization problem satisfies the following

conditions:

(1) The feasible region is bounded;

(2) if Hx = 0 and x≥ 0, then x = 0.

Note that the first condition can be used to construct a redundant deterministic constraint
n∑
i=1

xi ≤M that we can add to the model to ensure that the second condition holds.

1 Throughout this paper, we use boldface notation to denote vectors. For example, we use b̃ to denote (b̃1, b̃2, ..., b̃m1).
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We assume further that the distribution of b̃ lies in a set of multiple distributions supported on

Rm1
+ with finite first moment µ and finite second moment Σ, denoted as b̃∼ (µ,Σ)+. We solve the

following distributionally robust optimization problem:

(P ) : ZP = sup
b̃∼(µ,Σ)+

E
[
ZP (b̃)

]
(2)

3.2. Completely Positive Decomposition

Before showing the main theorem, we first introduce some necessary notation and briefly review

related concepts.

A completely positive cone is defined as

CPn := {A∈ Sn|∃V ∈Rn×m+ , such that A= V V >}

:= {A∈ Sn|∃v1,v2, ...,vk ∈Rn+, such that A=
k∑
i=1

viv
>
i },

where Sn is n×n symmetric matrices.

A copositive cone is defined as

COn := {A∈ Sn|∀v ∈Rn+,vTAv≥ 0}

A copositive cone is the dual of a completely positive cone.

In the following sections of this paper, we use X ≥cp 0 (resp. X ≥co 0) to represent X ∈ CPn
(resp. X ∈ COn). For more information on completely positive cone and copositive cone, we refer

interested readers to Berman A (2003).

Let x(b̃) denote the optimal solution of problem (1) obtained under b̃. Let

p := E[x(b̃)]

X := E[x(b̃)x(b̃)
T
]

Y := E[x(b̃)b̃T]

We observe that 1 µT pT

µ Σ Y T

p Y X

=E


 1

b̃

x(b̃)

 1

b̃

x(b̃)

T
 is a completely positive matrix, as

 1

b̃

x(b̃)

∈Rm1+n+1
+ .

Furthermore, since c̃i = ci(b̃) = kT
i b̃ + li,∀i∈ {1,2, ..., n}, we have

E

[
ZP (b̃)

]
=E

[∑
i

(kT
i b̃ + li)xi(b̃)

]
=
∑
i

(
kT
iE[b̃xi(b̃)] + liE[xi(b̃)]

)
,

According to Natarajan et al. (2011), the constraint hT
j x(b̃) = dj is well studied and can be

formulated as conic constraint by lifting, i.e.

E
[
(hT

j x(b̃))2
]

= d2
j
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For the constraint aT
i x(b̃) = b̃i,∀i, we have

E
[
(aT
i x(b̃))2

]
=E

[
(aT
i x(b̃))b̃i

]
=E

[
b̃2
i

]
,∀i

Then we can further infer

∑
i

E
[
(aT
i x(b̃))2

]
=
∑
i

E
[
(aT
i x(b̃))b̃i

]
=
∑
i

E
[
b̃2
i

]
,

and written in matrix form, we have

(ATA) •E
[
x(b̃)x(b̃)T

]
=AT •E

[
x(b̃)b̃T

]
= I •E

[
b̃b̃T

]
Let K denote the matrix

(
k1 k2 ... kn

)
and l = (l1, . . . , ln). We now consider the following

completely positive program ZC , obtained by reformulating the problem ZP using the variables

X,Y and p:
(C) : ZC = max K •Y T + lTp

s.t.

 1 µT pT

µ Σ Y T

p Y X

 ≥cp 0

(ATA) •X = AT •Y
(ATA) •X = I •Σ

Hp = d
diag(HXHT) = diag(ddT)

(3)

Note that diag(M) denotes a vector of the diagonal elements of matrix M . The main result derived

in this section is the following:

Theorem 1. ZC =ZP

To show that (C) is actually equivalent to (P ), we need to construct a (non-negative) distribution

obtained from (C) that satisfies the moment conditions, with corresponding objective value ZP . The

construction hinges on the following observations: consider any completely positive decomposition

of matrix  1 µ> pT

µ Σ Y>

p Y X

=
∑
k∈κ

αk
βk
γk

αk
βk
γk

T

where αk ∈R+, βk, γk ∈Rn+. Let κ+ = {k ∈ κ | αk > 0}, κ0 = {k ∈ κ | αk = 0}. The constraints in (C)

ensure that

• Aγk =βk,∀k ∈ κ

• H γk
αk

= d,∀k ∈ κ+

• γk = 0,∀k ∈ κ0.



Author: Schedule Dependent No-Show
14 Article submitted to Management Science; manuscript no. MS-0001-1922.65

Our approach is motivated by the construction in Natarajan et al. (2011), which uses completely

positive decomposition to obtain such a desired distribution in the limit. The difference is that,

their approach only deals with problems with uncertainties occurring in the objective function

alone, whereas in our model, uncertainties are present in both the objective function and the RHS

of the constraint sets. Therefore, our model further requires that each constraint with uncertainties

in the RHS has to hold in each completely positive decomposition.

4. The Model

In this section, we present a stylized mathematic model to understand the effect on the optimal

appointment schedule when patient no-show rates depend on the schedule. Let N = {1,2, ...,m} be

the index set of all patients, where m denote the number of patients scheduled to arrive in a day.

The number of appointment slots available per day is n, each of unit length. We assume m ≥ n
for the purpose of focusing on the overbooking effect. The basic assumptions of our appointment

scheduling model are listed as follows:

• The service sequence is fixed.

• Patients arrive punctually at the scheduled appointment times, if they show up.

• There is a single service provider in the clinic. The service provider arrives at the same time

with the first patient and operates with a work conserving policy (i.e., server does not idle as long

as there are patients waiting in the queue).

• Walk-in patients are not considered.

We define si as the length of time slot scheduled for ith patient in the sequence, indicating the

arrival interval between the ith and i+ 1’th patient. We create a dummy patient, who does not

consume any consultation time, arriving at the beginning of the appointment session (i.e., time 0),

and thus the time allowance for this dummy patient, denoted as s0, indicates the first patient’s

arrival time (and also the arrival time of the service provider). We also add a m+ 1’th patient

to arrive at the end of the clinical session to capture the amount of overtime. All patients are

scheduled to arrive before the m+ 1’th patient.

Let ui denote patient i’s consultation time. We use b̃i(s)∈ {0,1} to denote the show-up status of

the ith patient, with b̃i(s) = 1 if the ith patient shows up, and 0 otherwise. Note that the show-up

state is a function of the schedule s.

We consider three types of costs in our model: (i) the waiting cost of patients, (ii) the idle cost,

and (iii) the overtime cost of service provider. The scheduler determines the length of time slot si

for patient i.

The unit waiting cost for each patient is denoted by ci, ∀i = 1, ...,m. If the last patient is

completed after the nth slot, then an overtime cost cO is charged per unit of time. If the service

provider is idle sometime during the day, that incurs an idle cost of cI per unit of time.
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Let Wi denote the waiting time of the ith patient in the system. Since Wm+1 denotes the amount

of overtime work, and
m∑
i=1

b̃i(s)ui denotes the amount of work brought into the system, the total

cost can be represented as

f(s, b̃(s)) :=
m∑
i=1

ci(b̃i(s)Wi) + cOWm+1 + cI(n+Wm+1−s0−
m∑
i=1

b̃i(s)ui), (4)

in which f(s, b̃(s)) denotes the total cost incurred given a schedule s and the show-up state of each

patient b̃(s).

Using the recursion

Wi = max
{

0,Wi−1 + b̃i−1(s)ui−1− si−1

}
i= 2, ...,m+ 1, (5)

we can use a network flow approach to model the total cost function, as shown in Figure 32. In

order to capture patient no-show in a network flow representation, we change the inflow to node i to

cib̃i(s),∀i= 1, ...,m. Therefore if patient i does not show up, the inflow coming into node i becomes

0. In addition, the inflow to node (m+ 1) is cI + cO which corresponds to the term (cO + cI)Wm+1

in (4).

Figure 3 Network Flow Representation

2 We add an auxiliary patient who arrives at the end of the appointment session (i.e., node (m+1)) to represent the
service provider’s overtime. We also create a dummy patient arriving at the beginning of appointment session (i.e.,
node 0), her/his scheduled slot length determines the arrival of the first patient. In Kong et al. (2013), all the inflow
to network is deterministic as patient no-show is not considered there.
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In the rest of the paper, for ease of exposition we assume that each consultation duration uses

exactly one appointment slot, i.e., ui = 13 Using this network structure, our problem can be refor-

mulated as

f(s, b̃(s)) = max
m∑
i=1

(b̃i(s)− si)yi + cI(n−
m∑
i=1

b̃i(s))− s0y0

s.t. z0− y0 = 1

zi− yi + yi−1 = b̃i(s)ci, ∀i= 1,2, ...,m
zm+1 + ym = cO + cI

y,z ≥ 0

(6)

To ensure that the formula satisfies the two assumptions proposed in Section 3, we need to add a

redundant constraint
m∑
i=1

b̃i(s)≤m into the set of constraints in the cone. To see how this constraint

helps to justify the two assumptions, we refer the readers to Appendix C.

We deploy a two-stage stochastic optimization framework to solve the appointment schedul-

ing problem in the case of schedule-independent show-up rate from the distributionally robust

perspective. Specifically, we consider the following model:

min
s∈Ωs

{
sup

b̃(s)∼(µ(s),Σ(s))+

{
E[f(s, b̃(s))]

}}
(7)

where E[f(s, b̃)] is the expected sum of service provider’s idle cost and overtime cost as well as

patient’s waiting cost in the second stage when a schedule s is given, and Ωs is the set of constraints

on the schedule in the first stage.

The first step is to calculate worst case expected cost of the second stage problem. For any

schedule s, we consider the maximization problem

Zp(s) := sup
b̃(s)∼(µ(s),Σ(s))+

{
E[f(s, b̃(s))]

}
(8)

4.1. Reformulation

We can apply our results from Section 3 to solve problem (8). We first present model (6) in a

general form as follows:

f(s, b̃(s)) = max
∑
i

(kT
i b̃(s))xi− sTx + fTb̃(s) + c0

s.t. Ax = cw ◦ b̃(s)
Hx = d

1T
mb̃(s) + sl =m

x≥ 0

To obtain an equivalent completely positive model as we showed in Section 3, we first define the

following notation:

p :=E[x(b̃(s))] Y :=E[x(b̃(s))b̃(s)T] X :=E[x(b̃(s))x(b̃(s))T]

ss :=E[sl(b̃(s))2] yµ :=E[b̃(s)sl(b̃(s))] yx :=E[x(b̃(s))sl(b̃(s))]

ps :=E[sl(b̃(s))] µ(s) :=E[b̃(s)] Σ(s) :=E[b̃(s)b̃(s)
>

]

3 Our method can be adopted to handle the case when service durations are random.
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Let K denote the matrix
(
k1 k2 ... k2m+3

)
. Based on our results in Section 3, we consider the

following completely positive program

ZC(s) = max K •Y T− sTp + fTµ(s) + c0

s.t.

 1 µ(s)T pT ps
µ(s) Σ(s) Y T yµ

p Y X yx

ps yµ
T yx

T ss

 ≥cp 0

(ATA) •X = AT • ((1cw
T) ◦Y )

(ATA) •X = Λ(cwcw
T) •Σ(s)

Hp = d
diag(HXHT) = diag(ddT)(
1T
m 1

)(µ(s)
ps

)
= m(

1T
m 1

)(Σ(s) yµ
yT
µ ss

)(
1m
1

)
= m2

(9)

We observe that our second stage problem is a maximization problem, while the first stage min-

imizes the total cost by making schedule decisions. In the literature, one approach to tackle such

a min-max problem is to take the dual of the inner maximization problem, and as a result, refor-

mulate the min-max problem as a min-min problem, so that the two stages of the problem can be

combined into one. We use α0 ∈R, β0 ∈Rm, Γ0 ∈Rm×m to denote the dual variables corresponding

to moment constraints; and α1, α2,w(1), w(2), η1, η2 to denote the dual variables corresponding to

each of the equality constraints in (9). Let Λ(·) be the operation of taking the diagonal matrix and

Diag(·) be the operation that converts a vector to a diagonal matrix. Define

W :=


α0

1
2
(β0 + η11m)T 1

2
w(1)TH 1

2
η1

1
2
(β0 + η11m) Γ0−α2Λ(cwcw

T) + η21m1T
m − 1

2
α1A ◦ (cw1T) η21m

1
2
HTw(1) − 1

2
(α1A ◦ (cw1T))T ATA(α1 +α2) +HTDiag(w(2))H 0

1
2
η1 η21

T
m 0T η2



and C(s) :=


0 0T 0T − 1

2
sT 0

0 0 0 1
2
K 0

0 0 0 0 0
− 1

2
s 1

2
KT 0 0 0

0 0T 0T 0T 0


Then the dual of the second stage problem can be written as

ZD(s) = minα0 +µ(s)Tβ0 + Σ(s) •Γ0 + dTw(1) + dTDiag(w(2))d + η1m+ η2m
2 + fTµ(s) + c0

s.t. W −C(s)≥co 0

(10)

Note that additional constraints on s can be added to the cone when required. The above

conic programming model therefore provides a unified approach to study many different classes of

appointment scheduling systems.
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4.2. Iterative Procedure

We use g to denote the scheduled arrival time of each patient. As we stated before,

gi = s0 + s1 + ...+ si−1,∀i= 1, ..,m,

where s0 represents the scheduled time slot for the dummy patient. We define L∈R(m+1)×(m+1) and

Li+1,j = 1, i= 1, ...,m; j = 1, ..., i. Assuming g0 = 0, we can then rewrite the relationship between s

and g in matrix form as

g =Ls

Let p(t) denote a patient’s show-up probability if he is scheduled to arrive at time t. For simplicity,

we assume that the show-up probability depends solely on the time of arrival and does not depend

on patient demographic features. In this case, for any given schedule s,

µ(s) = p(g), Σ(s) = p(g)p(g)
>

+Diag(p(g) ◦ (1m−p(g)))

We consider a linear function of show-up probability p(g) to illustrate our approach4 . Without

loss of generality, we assume p(g) = a+ bg, 0≤ g≤ n, where p(g) is linearly increasing in g if b > 0

and decreasing otherwise. In this way, we can model Σ(s) as a quadratic function in s which can

be easily modelled using the conic approach.

In the schedule-dependent case, the two stage problem is formulated as

min α0 +µ(s)Tβ0 + Σ(s) •Γ0 + dTw(1) + dTDiag(w(2))d + η1m+ η2m
2 + fTµ(s) + c0

s.t. W −C(s)≥co 0
s∈Ωs

(11)

Note that the model is non-convex due to the product term µ(s)Tβ0 and Σ(s)•Γ0 in the objective

function. The constraint set, however, is still linear conic, which enables us to apply an iterative

method to solve this problem. The main idea is to separate the two sets of decision variables

(µ(s),Σ(s)) and (β0,Γ0). We fix the value of one pair and solve the above linear conic programs to

arrive at a local equilibrium solution in an iterative manner. Note that the objective value obtained

this way decreases monotonically.

To do that, our first step is to use the average show-up probability over all slots. We denote the

corresponding first and second moments of this average probability as (µ0,Σ0). This reduces the

problem to the schedule-independent case. We can solve (12) to obtain an optimal schedule s0 and

the corresponding β01, Γ01 by setting (µ(s),Σ(s)) = (µ0,Σ0). We refer s0 as the static schedule

because we use average show-up rates across time of the day. After that, we start the iteration

4 If p(g) is nonlinear in g, we can approximate p(g) by its gradient to apply this iterative method on more general
show up function.
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from β01, Γ01 and incorporate time-dependent show-up probabilities into the model to generate a

new pair of first and second moments, and then obtain the new schedule along the way.

Specifically, after fixing (β0,Γ0) = (β01,Γ01), the next step is to obtain a new schedule s1 and

the corresponding moments (µ(s1),Σ(s1)). In the case of p(g(s1)) = a+ bg(s1),0≤ g(s1)≤ n, the

function of the first moment on patient’s arrival time can be presented as µ(s1) = a1m+bg(s1), and

the second moment can be simply written as Σ(s1) = µ(s1)µ(s1)T +Diag(µ(s1) ◦ (1m − µ(s1))).

We next solve the following quadratic programming problem

min α0 +
(
a1m + bg(s)

)T
β0 +

(
µ(s)µ(s)T +Diag(µ(s) ◦ (1m−µ(s))

)
•Γ0

+dTw(1) + dTDiag(w(2))d + η1m+ η2m
2 + fT

(
a1m + bg(s)

)
+ c0

s.t. W −C(s)≥co 0
s∈Ωs

(12)

This model is still nonlinear, but the objective now has a quadratic form g(s)g(s)T and g(s) = Ls.

We can reformulate this quadratic problem as a conic problem by replacing

ss> =Zss, g(s)g(s)> =Zgg,

and reformulate the first stage constraints in conic form. Specifically, in the case of continuous slot

length, the first stage constraints s ∈ Ωs =

{
s∈Rm+1

+ |
m∑
i=0

si = n, si ≥ 0

}
can be reformulated in

conic form as  1 sT gT

s Zss Z
T
gs

g Zgs Zgg

≥cp 0

1T
m+1s = n

1T
m+1Zss1m+1 = n2(
L −Im+1

)( s
g

)
= 0

diag

((
L −Im+1

)(Zss ZT
gs

Zgs Zgg

)(
L −Im+1

)T)
= 0

(13)

By solving (13) we can obtain a new schedule s1 and a corresponding show-up rate and moment

conditions. This leads to the next iteration of our numerical procedure to obtain a new (β0,Γ0).

4.3. Fixed Slot Length

In practice, healthcare appointment systems often adopt a scheduling template with fixed-length

appointment slots (for example, each appointment slot is 20-minute long in many clinics). In that

case, the length of appointment slot is no longer continuous. Instead, the constraint set Ωs can be

presented as Ωs =

{
s∈Rm+1

+ |
m∑
i=0

si = n, si ∈ {0,1}
}

, where si is a binary variable that indicates

whether or not the ith patient is scheduled the same time as patient i+ 1. If the ith patient is

scheduled the same time as the i+ 1st patient, si = 0; otherwise si = 1. By doing so, we obtain the

number of patients scheduled at each appointment slot.
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The binary constraint set adds more difficulties to the problem. Based on Burer (2009), which

presents an equivalent completely positive representation for quadratic program with binary vari-

ables, we can capture the binary constraints using a completely positive program.

Denote

ΩCs :=


 1 sT sl

T

s Zss Y
T

sl Y Zll

≥cp 0

1T
m+1s = n

1T
m+1Zss1m+1 = n2

diag(Zss) = s(
ei
ei

)T(
s
sl

)
= 1,∀i(

ei
ei

)T(
Zss Y

T

Y Zll

)(
ei
ei

)
= 1,∀i


.

We can add ΩCs to constrain the set of feasible schedule s of model (10), and round the solution

to the conic program to 0-1 solution for the schedule s.

5. Computational Studies

We briefly introduce the choice of cost parameters used in our experiments. Three types of costs

are involved in determining the optimal schedule: patient’s waiting cost rate cw, service provider’s

idle cost rate cI , and overtime cost rate cO. What matters in the optimization is the ratios among

these cost rates, but not their magnitudes. Thus we set cI = 1.0 without loss of generality. One

classic way to measure the value of time is its opportunity cost, which is typically assumed to be

the wage rate (Becker 1965). As a typical primary care physician’s income is about $220,942 and

the median personal income in the US is $24,062, we consider cw = 0.1 as a base case in our study.

However, we vary cw ∈ [0.05,0.5] to study the impact of different waiting costs. To set the overtime

cost rate, we adopt the US federal government mandate that overtime salary rate should be at

least 1.5 times of the regular time salary rate, and thus we set cO = 1.5. Note that the ranges of

these cost parameters are also similar to those considered in the previous literature, e.g., Zacharias

and Pinedo (2014).

5.1. Demonstration of the Iteration Method

This section uses a simple example of a 12-slot clinic session to illustrate the iteration method

developed above. We assume the consultation time is deterministic and each patient spends exactly

one time slot with the service provider. We set cw = 0.1, cI = 1, cO = 1.5; and consider two patterns

of show-up probabilities: the decreasing case

p(t) = 0.9− 0.8

12
t, t= 0,1, · · · ,12, (14)

in which patient show-up probabilities linearly decrease from 0.9 to 0.1 over time and the increasing

case

p(t) = 0.1 +
0.8

12
t, t= 0,1, · · · ,12, (15)
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Table 1 Performance of the Iterative Method under Decreasing Show-up Probabilities

m 13 14 15 16 17 18 19 20
Static schedule 13.1657 14.4350 13.2988 12.3526 11.7105 11.0076 10.6449 10.7975

Iterative method 5.9862 5.5848 5.3458 5.2119 5.0513 5.0388 5.1173 5.2168
Improvement (%) 54.53 61.31 59.80 57.81 56.87 54.22 51.93 51.68

Table 2 Performance of the Iterative Method under Increasing Show-up Probabilities

m 13 14 15 16 17 18 19 20
Static schedule 13.2002 13.2924 12.7287 12.1040 11.6465 11.8348 10.9509 10.7546

Iterative method 7.8485 7.7065 7.5828 7.4635 7.3813 7.8811 7.1959 7.1141
Improvement (%) 40.54 42.02 40.43 38.34 36.62 33.41 34.29 33.85

where patient show-up rates linearly increase from 0.1 to 0.9 over time. We vary the number of

patients to be scheduled m∈ {13,14, . . . ,20} to test the impact of different overbooking levels.

To implement the iterative method described in Section 4.2, we first use the average show-

up probability over all slots (which is 0.5 in both the increasing the decreasing cases) to get

the corresponding optimal schedule. We call this schedule the static schedule because show-up

probabilities are static over time. To iterate, we solve for the next schedule using patient show-up

probabilities calculated based on the last obtained schedule.

For each m, we perform 500 iterations. We report the average worse case expected cost in the

last 100 iterations; see row 2 in Tables 1 and 2. We also show the worse case expected cost of

the static schedule (that ignores schedule-dependent no-shows) while schedule-dependent no-shows

indeed present and the percentage improvement made by the iterative method that considers

schedule-dependent no-shows; see rows 1 and 3 in both tables. We observe that the iterative method

converges quickly; the average coefficients of variation in the last 100 iterations is less than 0.1% for

all cases we tested. In addition, the optimal schedule obtained under the iterative method makes a

significant improvement (30%− 60%) over the static schedule in terms of the worse case expected

cost.

5.2. Analysis of Schedule Patterns

In this section, we study how show-up probabilities and patient’s waiting cost affect the optimal

schedule.

5.2.1. Impact of Show-up Probabilities We assume that there are n = 12 slots in the

clinic session and consider both increasing and decreasing show-up rates (14) and (15) described

in Section 5.1. We use m = 18 to illustrate the impact of show-up probabilities on the optimal

schedule. Figure 4 plots the optimal schedules under both sets of show-up probabilities as well

as the optimal static schedule (assuming show-up probability is 0.5 throughout the day). The

horizontal axis indicates the index of patients, and the vertical axis shows the scheduled arrival
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time for each patient. As expected, the static schedule demonstrates an obvious pattern of “front

loading.” In particular, the first four patients are scheduled to come at the beginning of the clinic

session. This observation is consistent with the pattern of an optimal schedule under the total

expected cost criteria when patient show-up probabilities are constant over time; see, e.g., Hassin

and Mendel (2008).

When show-up probabilities increase over time, we still observe a front-loading pattern in the

optimal schedule but it is postponed. That is, a group of patients are asked to arrive together not at

the beginning of the session but later in the day. This is likely due to the low show-up probabilities

at the beginning of the session, and thus it makes more sense to have patients come later to

avoid idle time of the service provider5. This finding suggests that service providers may want to

proactively delay the start of their service time if observing a high level of no-show probabilities

at the beginning of the day.

When show-up probabilities decrease over time, however, patients are in general scheduled to

arrive later compared to the static schedule and the schedule under increasing show-up probabilities.

This is because higher show-up probabilities at the beginning of the session are likely to build up

wait lines of patients, if they were scheduled densely at the beginning of the session. As a result,

the optimal schedule in this case tends to “smooth” the workload later into the day.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Patient sequence

A
rr

iv
al

 ti
m

e

 

 

Decreasing
Increasing
Static

Figure 4 Optimal Schedules under Different Show-up Probabilities

5.2.2. Schedule under Different Waiting Costs In this section, we vary the waiting costs

from 0.1 to 0.5 to examine its effect on the optimal schedule. This analysis sheds light on the design

of appointment templates for patient populations with different valuations of waiting. Similar to

the previous section, we fix n= 12,m= 18 and consider both increasing and decreasing show-up

probabilities (14) and (15). Figures 5a and 5b show the optimal schedules under these two sets

5 Note that the service provider comes together with the first patient.
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of show-up probabilities, respectively. A close comparison of these two figures reveals that under

decreasing show-up probabilities, a larger waiting cost rate leads to less front-loading. In contrast,

with increasing show-up probabilities, a larger waiting cost rate results in more significant front-

loading. One intuitive explanation is that as the waiting cost gets higher, we want to avoid patient

waiting by possibly reducing the “expected” number of patients who show up. Thus, the optimal

schedule tends to assign more patients to appointment slots with lower show-up probabilities. As a

result, when waiting cost increases, fewer patients are assigned early in the session when show-up

probabilities peak at the beginning the session; but more patients get assigned early in the session

when show-up probabilities bottom at the beginning of the session.
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Figure 5 Schedule under Different Waiting Costs

5.3. Value of Incorporating Schedule-Dependent No-Shows

Our optimal schedule is determined based on minimizing the worst case total cost. It is therefore

of natural interest to examine its performance in terms of the total expected cost. To do so, we run

simulations (10,000 replications) to calculate the expected total costs under our robust optimal

schedule (which takes into account schedule-dependent no-shows) and the static schedule (which

ignores that). Similar to above, we consider two patterns of show-up probabilities (14) and (15).

Table 3 shows the results associated with the decreasing show-up rates (14). The first two rows

show the total expected costs under the static schedule and the robust optimal schedule over a

range of overbooking levels. The third row represents the average cost reduction percentage. We

observe a significant improvement (3.24% to 54.92% reduction) in total expected cost due to explicit

consideration of schedule-dependent no-shows. Furthermore, when the overbooking level increases,

the improvement becomes more significant. In Section 5.2.2, we note that the static schedule assigns

quite a few patients early in the session when the overbooking level is high (m= 18). As this does

not recognize the fact that show-up rates are higher (than average) at the beginning of the session,

it leads to more waiting costs and thus larger total expected costs. Therefore, the cost difference

becomes more significant when more patients need to be scheduled.
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Table 4 shows the results under increasing show-up rates (15). We see a significant improvement

(12.37% to 27.04%) in total expected cost by explicitly taking into account the impact of patient

increasing show-up rates. In contrast to the case of decreasing show-up rates, the cost reduction

is higher when the overbooking level is lower. As discussed in Section 5.2.1, patients will be post-

poned to come under increasing show-up probabilities. With fewer patients to be scheduled, such

a postponement is likely to be more effective. If, however, there are a larger number of patients to

be scheduled, postponement will lead to longer patient wait later in the day and thus has a smaller

room to make improvement.

Table 3 Comparison of Total Expected Costs under Decreasing Show-up Rates

m 13 14 15 16 17 18 19 20
Static schedule 5.2443 5.3194 5.5416 5.8990 6.5564 7.4330 8.6695 10.0161

Iterative method 5.0742 4.8016 4.7510 4.7976 4.5542 4.1783 4.2586 4.5149
Improvement (%) 3.24 9.73 14.27 18.67 30.54 43.79 50.88 54.92

Table 4 Comparison of Total Expected Costs under Increasing Show-up Rates

m 13 14 15 16 17 18 19 20
Static schedule 8.0677 7.9187 7.5349 7.1644 6.8241 6.4858 6.1691 5.9093

Iterative method 5.9578 5.7775 5.6014 5.4852 5.3661 5.2704 5.1990 5.1784
Improvement (%) 26.15 27.04 25.66 23.44 21.37 18.74 15.73 12.37

5.4. Case Studies

In this section, we apply our methodology to two case studies inspired by real data. In particular,

we consider designing appointment templates under patient show-up probabilities found in our

US and Chile datasets. We are interested in fixed-interval-length appointment templates. Since

the schedule proposed by the copositive model is fractional, we develop a rounding heuristic for

generating binary schedules during the iterations, i.e., to get a fix-interval-length appointment

template in each step of the iterative method (see the Appendix D).

To evaluate the performance of our rounding heuristics, we benchmark our binary schedules with

those presented in Zacharias and Pinedo (2014) that provide the lowest total expect cost. Similar to

their setup, we let cI = 1, cO = 1.5,cw = 0.1, n= 12, m= 18; and vary patient no-show probability

from 0 to 0.8.6 See Appendix E for detailed schedules.

For ease of cost comparison, Figure 6 illustrates the total expected total cost, waiting cost,

overtime cost and idle cost under our schedules and those in Zacharias and Pinedo (2014). We see

that even though our model focuses on the worst case perspective, the resulting schedules perform

6 Note that the patient show-up probability here is constant over time of day.
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fairly close to those in Zacharias and Pinedo (2014) in terms of total expected cost. Furthermore,

our model replicates the key insights obtained by Zacharias and Pinedo (2014) that there exists an

optimal level of no-show probability to achieve the lowest total expected cost for a given number

of patients to be scheduled. These results indicate that our rounding heuristics can generate fix-

interval-length appointment templates that are near optimal in the sense of total expected cost.
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Figure 6 Cost Decomposition under Different Show-up Probabilities

5.4.1. The US Case Instead of modeling each single day, we consider the overall range of

show-up probabilities in the US dataset. From the predictive analysis in Section 2, the show-up

probability ranges approximately between 0.8 to 0.4. As service providers often take a lunch break

at noon, it makes sense to consider a half day. Specifically, we consider the morning sessions in

which patient show-up rates decrease in most days in the US dataset. We assume that patient

show-up probabilities linearly decrease from 0.8 to 0.4. In our calculations, we use the optimal

schedule obtained from Zacharias and Pinedo (2014) with a static show-up probability 0.6 as the

starting point of the iteration method. Assuming cw = 0.1, cI = 1, cO = 1.5, we apply the iterative

method and rounding heuristics described previously to get the robust optimal schedule. We then

use simulations to estimate the corresponding total expected costs, and compare these costs with

those under the static schedule derived based on Zacharias and Pinedo (2014) and assuming a

constant no-show probability over time. Table 5 presents the detailed results.

We observe a significant reduction (7%-13%) in total expected costs when schedules are obtained

by incorporating the schedule-dependent no-show behaviors. More importantly, this improvement

is relatively insensitive to the waiting cost rate and overbooking level, suggesting that service
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Table 5 Case Study Results for the US data

cw = 0.05 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 3.3715 3 2 1 2 1 2 1 2 1 1 1 1 18

Iterative 3.1381 6.92% 1 2 1 2 1 2 2 1 2 1 2 1 18
cw = 0.1 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 4.0613 3 1 2 1 2 1 1 2 1 1 1 1 17

Iterative 3.6167 10.95% 1 1 2 1 2 1 2 1 2 1 2 1 17
cw = 0.15 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m

Static 4.2574 2 2 1 1 2 1 2 1 1 1 1 1 16
Iterative 3.8740 9.01% 1 1 2 1 2 1 1 2 1 2 1 1 16
cw = 0.2 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 4.7362 2 1 2 1 2 1 1 2 1 1 1 1 16

Iterative 4.2864 9.5% 1 1 2 1 2 1 1 2 1 2 1 1 16
cw = 0.25 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m

Static 5.2880 2 1 2 1 2 1 1 2 1 1 1 1 16
Iterative 4.6898 9.5% 1 1 2 1 2 1 1 2 1 2 1 1 16
cw = 0.3 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 5.0494 2 1 1 2 1 1 2 1 1 1 1 1 15

Iterative 4.5597 9.7% 1 1 1 2 1 1 2 1 1 2 1 1 15
cw = 0.4 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 5.7294 2 1 1 2 1 1 1 2 1 1 1 1 15

Iterative 5.0577 11.72% 1 1 1 2 1 1 2 1 1 2 1 1 15
cw = 0.5 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 5.6311 2 1 1 1 1 2 1 1 1 1 1 1 14

Iterative 4.9934 11.33% 1 1 1 1 2 1 1 1 2 1 1 1 14
cw = 0.6 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 5.5526 2 1 1 1 1 1 1 1 1 1 1 1 13

Iterative 4.8491 12.67% 1 1 1 1 1 1 2 1 1 1 1 1 13

providers may always benefit significantly from taking into account the schedule-dependent no-

show behavior regardless of patient valuation of waiting and patient demand level. In addition,

the optimal robust schedule exhibits a quite different pattern compared to the static schedule. It

does not exhibit a front-loading pattern; instead, it spreads out the overbooked slots throughout

the session.

5.4.2. The Chile Case We follow a similar rationale above to conduct a case study based on

Chile data. We observe the show-up probability in Chile data ranges roughly from 0.5 to 0.9, and

increases over time of day. In contrast to the US data case, we see more front-loading in the robust

optimal schedule compared to the static schedule; see Table 6. This seems to contradict with our

earlier finding in Section 5.2.1 that front-loading would be postponed when show-up probabilities

increase over time. But note that in our case study we do not allow flexible arrival times, and

only consider fixed-interval-length schedules. Enforcing this integer constraint turns out to assign

more patients to the slots with lower show-up probability, in particular, the first slot. As a result,
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Table 6 Case Study Results for Chile data

cw = 0.05 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 2.6908 2 2 1 1 2 1 1 1 1 1 1 1 15

Iterative 2.6678 0.85% 2 2 2 1 1 1 1 1 1 1 1 1 15
cw = 0.1 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 3.0306 2 1 2 1 1 2 1 1 1 1 1 1 15

Iterative 2.9821 1.60% 2 2 2 1 1 1 1 1 1 1 1 1 15
cw = 0.15 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m

Static 3.4120 2 1 1 1 2 1 1 1 1 1 1 1 14
Iterative 3.2540 1.60% 2 1 2 1 1 1 1 1 1 1 1 1 14
cw = 0.2 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 3.4779 2 1 1 1 2 1 1 1 1 1 1 1 14

Iterative 3.3947 1.60% 2 1 2 1 1 1 1 1 1 1 1 1 14
cw = 0.25 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m

Static 3.5388 2 1 1 1 1 2 1 1 1 1 1 1 14
Iterative 3.7190 1.60% 2 1 2 1 1 1 1 1 1 1 1 1 14
cw = 0.3 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 3.6287 2 1 1 1 1 1 1 1 1 1 1 1 13

Iterative 3.6287 0% 2 1 1 1 1 1 1 1 1 1 1 1 13
cw = 0.4 Total Cost Improvement 1 2 3 4 5 6 7 8 9 10 11 12 m
Static 3.7449 2 1 1 1 1 1 1 1 1 1 1 1 13

Iterative 3.7449 0% 2 1 1 1 1 1 1 1 1 1 1 1 13

both the robust optimal schedule and the static schedule present (relatively similar) front-loading

patterns, and thus their performances do not differ too much.

6. Conclusion

In this paper, we study an appointment scheduling problem in the presence of schedule-dependent

patient no-show behavior. The problem is well motivated by the studies of two independent datasets

from countries in two continents. Specifically, we find that patients in a US adult practice are

more likely to attend their appointments at the beginning or the end of the day in weekdays. In

contrast, in a Chilean pediatric clinic facility, patients are less likely to show up for early morning

appointments. We incorporate these interesting findings into the problem of appointment template

design, analyze the pattern of the optimal schedule and the efficiency gain achieved by accounting

for such time-of-day effects.

One critical difficulty here is that we can not generate random samples without knowing the

schedule, if system uncertainties (i.e., patient no-show rates) are endogenous on our decision vari-

ables (i.e., the schedule). To tackle this challenge, we develop a distribution-free two stage stochastic

programming problem formulation and show that the problem can be reduced into a single stage

conic programming problem. The dual prices obtained from the conic program can be used iter-

atively to guide the algorithm to search for a good scheduling solution in the case when no-show

rate is schedule-dependent.
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We present the distributionally robust solutions for the situations when the appointment slots are

continuous-length or fixed-length, respectively. Through an extensive set of numerical experiments

we show that the optimal schedule generated under the worst case optimization also gives near-

optimal solutions in terms of the total expected cost. Furthermore, the iterative method converges

quickly, and results in a significant reduction (30% - 60%) in total expected cost as opposed to

ignoring the time-of-day effect on patient no-show rate.

Based on realistic examples motivated by our two large datasets, our model reveals that an

optimal appointment schedule in cognizance of schedule-dependent no-show rates may exist differ-

ent patterns compared to the classic “front-loading” or “dome-shaped” patterns reported in the

literature that assumes constant show-up rate. Specifically, we show that health care providers

should spread out the overbooked slots when patient show-up rate decreases over time (e.g., the

case presented by our US dataset), but the optimal schedule should present a postponed front-

loading pattern when patient show-up rate increases over time (e.g., the case presented by our

Chile dataset). By taking into account the time-of-day effect, the overall cost reduction can be up

to 13% in our case studies.

In summary, our study empirically demonstrates how appointment time-of-day impact patient

no-show behavior. Relying on only the first and second moment information, our modeling

approaches are suitable for a clinic provider who has a limited amount of data on patient atten-

dance behavior. Our results offer insights on the structure of the optimal appointment template

that corresponds to different time-varying patterns of patient no-show rates, and our model can

be used by any ambulatory care provider to design his or her appointment template when facing

a specific patient no-show pattern.

Our work also points to several avenues for future research. First, patients may have different

schedule-dependent attendance behaviors depending on their work and life styles, e.g., employed

vs. retired. Taking into account such heterogeneities, how can one design an appointment template?

The other interesting direction is to consider the impact of additional uncertainties that may incur

in the system, e.g., patient unpunctual arrivals. In addition, our model focuses on the design of a

daily appointment template. One may consider evaluating the performance of these appointment

templates in a rolling-horizon setting in which patients arrive randomly each day. Technical analysis

of such systems is likely to be difficult, but a simulation study may lead to meaningful results.

Acknowledgments

References

Becker, G. S. 1965. A theory of the allocation of time. The economic journal 75(299) 493–517.



Author: Schedule Dependent No-Show
Article submitted to Management Science; manuscript no. MS-0001-1922.65 29

Berman A, Shaked-Monderer N. 2003. Completely Positive Matrices. World Scientific, Singapore, Republic

of Singapore.

Burer, S. 2009. On the copositive representation of binary and continuous nonconvex quadratic programs.

Mathematical Programming 120 479–495.

Cayirli, T., E. Veral. 2003. Outpatient scheduling in health care: A review of literature. Production and

Operations Management 12(4) 519–549.

Denton, B., D. Gupta. 2003. A sequential bounding approach for optimal appointment scheduling. IIE

Transactions 35(11) 1003–1016.

Flores, G., L. R¿ Vega. 1998. Barriers to health care access for latino children: a review. FAMILY MEDICINE-

KANSAS CITY- 30 196–205.

French, H., E. McGrane, G. Cooke. 2005. A prospective study of non-attendance to a physiotherapy outpa-

tient department. Physiother Ireland 26 16–22.

G., Pflug. 1990. On-line optimization of simulated markovian processes. Math. Oper. Res 15(3) 381–395.

Math. Oper. Res. 1990.

Goel, Vikas, Ignacio E. Grossmann. 2006. A class of stochastic programs with decision dependent uncertainty.

Mathematical Programming 108(2) 355–394. Mathematical Programming . September, 2006.

Hassin, R., S. Mendel. 2008. Scheduling arrivals to queues: A single-server model with no-shows. Management

Science 54(3) 565–572.

Jiang, R., S. Shen., Y. Zhang. 2015. Distributionally robust appointment scheduling with random no-shows

and service durations. Working paper. University of Michigan, Ann Arbor.

Kaandorp, G. C., G. Koole. 2007. Optimal outpatient appointment scheduling. Health Care Management

Science 10(3) 217–229.

Kong, Q., C.Y. Lee, C.P. Teo, Z. Zheng. 2013. Scheduling arrivals to a stochastic service delivery system

using copositive cones. Operations research 61(3) 711–726.

Lacy, N. L., A. Paulman, M. D. Reuter, B. Lovejoy. 2004. Why we dont come: patient perceptions on

no-shows. The Annals of Family Medicine 2(6) 541–545.

LaGanga, L., S. R. Lawrence. 2012. Appointment overbooking in health care clinics to improve patient

service and clinic performance. Production and Operations Management Forthcoming.

LaGanga, L. R., S. R. Lawrence. 2008. Clinic no-shows and overbooking: Reflections and new directions

in appointment yield management. Proceedings of Decision Sciences Institute Annual Conference,

Baltimore, Maryland .

Laurant, M., D. Reeves, R. Hermens, J. Braspenning, R. Grol, B. Sibbald, et al. 2005. Substitution of doctors

by nurses in primary care. Cochrane Database Syst Rev 2(2).

Lerner, B. 2007. When patients do not follow up? The New York Times. November 13, 2014.



Author: Schedule Dependent No-Show
30 Article submitted to Management Science; manuscript no. MS-0001-1922.65

Luo, J., V. G. Kulkarni, S. Ziya. 2012. Appointment scheduling under patient no-shows and service inter-

ruptions. Manufacturing and Service Operations Management Forthcoming.

McCormack, M. 2013. How to treat patient wait time woes. Software Advice: IndustryView Retrieved on

June 24, 2015,

http://www.softwareadvice.com/medical/industryview/how-to-treat-patient-wait-time-woes/.

Moore, C. G., P. Wilson-Witherspoon, J. C. Probst. 2001. Time and money: Effects of no-showsat a family

practice residency clinic. Family Medicine 33(7) 522–527.

Natarajan, K., C.P. Teo, Z. Zheng. 2011. Mixed zero-one linear programs under objective uncertainty: a

completely positive representation. Operations Research 59 713–728.

Press Ganey. 2008. The impact of patient satisfaction on pay-for-performance in medical practices. White

Papers. Retrieved on June 24, 2015,

http://pressganey.com.

Robinson, L. W., R. R. Chen. 2010. A comparison of traditional and open-access policies for appointment

scheduling. Manufacturing & Service Operations Management 12(2) 330–346.

Ulmer, T., C. Troxler. 2004. The economic cost of missed appointments and the open access system. Com-

munity Health Scholars. University of Florida, Gainsville, FL.

Zacharias, C., M. Pinedo. 2014. Appointment scheduling with no-shows and overbooking. Production and

Operations Management 23(5) 788–801.



Author: Schedule Dependent No-Show
Article submitted to Management Science; manuscript no. MS-0001-1922.65 31

Appendix A: Predictive Analysis

Table 7 Estimated Regression Coefficients for Patient Show-up Probabilities (US data).

All days Weekdays only
Est. Coef. 95% CI p-value Est. Coef. 95% CI p-value

Intercept 0.871 [0.624, 1.119] N.A. 0.896 [0.635, 1.159] N.A.

9am -0.134 [-0.382, 0.114]

<0.05

-0.165 [-0.427, 0.098]

<0.01

10am -0.163 [-0.411, 0.085] -0.207 [-0.469, 0.052]
11am -0.177 [-0.425, 0.072] -0.246 [-0.510, 0.017]
12pm -0.281 [-0.536, -0.027] -0.378 [-0.649, -0.108]
1pm -0.217 [-0.500, 0.067] -0.255 [-0.579, 0.070]
2pm -0.216 [-0.465, 0.033] -0.266 [-0.529, -0.002]
3pm -0.247 [-0.497, 0.004] -0.307 [-0.572, -0.042]
4am -0.273 [-0.533, -0.014] -0.332 [-0.606, -0.059]
5pm -0.289 [-0.561, -0.017] -0.346 [-0.632, -0.060]
6pm -0.080 [-0.424, 0.264] -0.138 [-0.495, 0.219]

MidWeek 0.116 [0.068, 0.165] < 0.01 0.118 [0.067, 0.169] < 0.01

Physician -0.167 [-0.224, -0.110] < 0.01 -0.136 [-0.198, -0.074] < 0.01

Young -0.450 [-0.520, -0.380] < 0.01 -0.436 [-0.510, -0.363] < 0.01
Obs. 35094 32157
Patient num. 4142 4038
AIC 45175.93 41427.56
LogLik -22572.96 -20698.78

Interpretation of Table 7: Patients who schedule visits during Tuesday, Wednesday and Thursday are

more likely to show up with 12%(= e0.116−1) higher in odds. This may be explained by the fact that people

are busy catching up with work on Monday and planning for the weekend on Friday, and thus have more

free time in the middle of the week. We also find that an appointment with physicians is less likely to be

retained compared to a nurse practitioner’s appointment (17%= 1−e−0.167 lower in odds). This is consistent

with earlier findings that patients are in general more satisfied with care provided by nurse practitioners as

they usually spend much more time with patients than physicians (Laurant et al. 2005). In addition, young

patients are less likely to show up compared to their older counterparts (36%= 1− e−0.45 lower in odds),

likely due to that younger people is more risk-taking and thus is more likely not to follow physicians’ advice.

Interpretation of Table 8: In contrast to the US data, patients are more likely to show up (34.9% =

e0.299−1 higher in odds) in an appointment with physicians. This can be probably explained by the fact that

Chile does not have nurse practitioners so patients spend most of their consultation time with physicians.

Besides, show-up rate for initial visits is 158.6% (= e0.95 − 1) higher in odds compared to follow-up visits.

This is consistent with the major concern that patients tend to think of follow-up no longer necessary once

they feel better and thus not come for follow-up appointments (Lerner 2007).
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Table 8 Estimated Regression Coefficients for Patient Show-up Probabilities (Chile Data).

Est. Coef. 95% CI p-value
Intercept 0.582 [0.387, 0.777] N.A.

9am 0.298 [0.093, 0.504]

<0.01

10am 0.378 [0.155, 0.601]
11am 0.578 [0.345, 0.810]
12pm 0.472 [0.202, 0.742]
14pm 0.409 [0.104, 0.714]
15pm 0.031 [-0.272, 0.332]
16pm 0.051 [-0.321, 0.422]

Thursday 0.235 [0.092, 0.378]
<0.01

Friday -0.371 [-0.554, -0.188]

Physician 0.299 [0.023, 0.575] < 0.05

Initial visit 0.950 [0.785, 1.114] < 0.01
Observations 7281
Patient # 3166
AIC 7686.80
LogLik -3830.400

Appendix B: Proofs of the Results

Lemma 1. ZC ≥ZP

Proof of Lemma 1

Proof: For each feasible solution x(b̃) of ZP , it is trivial to see that from hT
i x(b̃) = di, we have

hT
i x(b̃)xT(b̃)hi = d2

i , by taking expectation, we can derive

hT
i p= di ∀i∈ I2 = {1, ...,m2}

hT
iXhi = d2

i ∀i∈ I2 = {1, ...,m2}

As for constraint Ax(b̃) = b̃, note that it is equivalent to

(Ax(b̃))TAx(b̃)− 2b̃T(Ax(b̃)) + b̃Tb̃ = (Ax(b̃)− b̃)T(Ax(b̃)− b̃)
= 0

(16)

Rewriting (16) as

trace((ATAx(b̃))x(b̃)
T
)− 2trace((Ax(b̃))b̃T) + trace(b̃b̃

T
)

= trace(ATA(x(b̃)x(b̃))T)− 2trace(A(x(b̃)b̃
T
)) + trace(b̃b̃

T
)

= 0

(17)

Hence Ax(b̃) = b̃ can be equivalently written as (ATA) • (x(b̃)x(b̃)
T
)− 2AT • (x(b̃)b̃

T
) + b̃ • b̃> = 0. By

taking expectation we can get (A>A) •X − 2A> • Y + I •Σ = 0. Note that the objective can be written as

K • Y T + lTp = trace(KT(b̃xT)) + lTp = trace((KTb̃)xT) + lTp = xT(KTb̃) + lTp = E[
n∑
i=1

kT
i b̃xi +

n∑
i=1

lixi] =

E[
n∑
i=1

ci(b̃)xi +
n∑
i=1

lixi]. Therefore it is clear that ZC is a relaxation of ZP . Hence ZC ≥ZP . Q.E.D.
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Lemma 2. Let (Y,X) be a feasible solution to ZC, and consider any completely positive decomposition of

matrix (
Σ Y T

Y X

)
=
∑
k∈κ

(
βk
γk

)(
βk
γk

)T

βk ∈Rm1
+ ,γk ∈Rn+,∀k ∈ κ,

then

Aγk =βk,∀k ∈ κ.

Proof of Lemma 2

Proof: From the decomposition, we have

Y =
∑
k∈κ

γkβ
T
k , X =

∑
k∈κ

γkγ
T
k , Σ =

∑
k∈κ

βkβ
T
k

Then from (ATA) •X =AT •Y , we have

(ATA) •
∑
k∈κ

γkγ
T
k =AT •

∑
k∈κ

γkβ
T
k

which can be equivalently rewritten as:∑
k∈κ

(ATA) •γkγT
k =

∑
k∈κ

AT •γkβT
k

Hence, ∑
k∈κ

(Aγk)
TAγk =

∑
k∈κ
βT
k (Aγk) (18)

And similarly from (ATA) •X = I •Σ, we can derive

∑
k∈κ

(ATA) •γkγT
k =

∑
k∈κ

βk •βT
k

Hence, ∑
k∈κ

(Aγk)
TAγk =

∑
k∈κ
βT
kβk (19)

Combining (18) and (19), we get∑
k∈κ

(Aγk−βk)T(Aγk−βk)

=
∑
k∈κ

(Aγk)
TAγk− 2

∑
k∈κ
βT
kAγk +

∑
k∈κ
βT
kβk = 0

As (Aγk−βk)T(Aγk−βk)≥ 0, we have for every k ∈ κ,

(Aγk−βk)T(Aγk−βk) = 0,

which implies Aγk =βk,∀k ∈ κ. Q.E.D.

Lemma 3. (Natarajan et al. (2011)) Let (p,X) be a feasible solution to ZC, and consider any completely

positive decomposition of matrix (
1 pT

p X

)
=
∑
k∈κ

(
αk
γk

)(
αk
γk

)T

where αk ∈ R+, γk ∈ Rn+,∀k ∈ κ, denote κ+ = {k ∈ κ | αk > 0}, κ0 = {k ∈ κ | αk = 0}, then (1) H γk

αk
=

d,∀k ∈ κ+; (2)γk = 0,∀k ∈ κ0.
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Proof of lemma 3

Proof: From the decomposition, we can rewrite the constraints

hT
i p = di ∀i= 1, ...,m2

hT
iXhi = d2

i ∀i= 1, ...,m2

as follows:
hT
i

∑
k∈κ

αkγk = di

hT
i

∑
k∈κ
γkγ

T
khi = d2

i

(20)

note that
∑
k∈κ

α2
k = 1, then based on (20), we have

(
∑
k∈κ

α2
k)
∑
k∈κ

(hT
i γk)

2 = (
∑
k∈κ

αkh
T
i γk)

2

By the equality condition of Cauchy-Schwartz inequality, ∃ζ such that ζαk = hT
i γk. Note di =∑

k∈κ
αkh

T
i γk =

∑
k∈κ

αkζαk = ζ
∑
k∈κ

α2
k = ζ, so for k ∈ κ+, we get hT

i
γk

αk
= di,∀i = 1, ...,m2, for k ∈ κ0, we have

hT
i γk = 0,∀i= 1, ...,m2. Based on Assumption 2, we can derive γk = 0 for k ∈ κ0. Q.E.D.

Proof of Theorem 1

Proof: We have shown ZC is a relaxation of ZP in Lemma 1. Let

 1 µT pT

µ Σ Y T

p Y X

 denote an optimal solution

of ZC , do the completely positive decomposition: 1 µT pT

µ Σ Y T

p Y X

=
∑
k∈κ

αk
βk
γk

αk
βk
γk

T

and define κ+ := {k ∈ κ | αk > 0}, κ0 := {k ∈ κ | αk = 0}

From Lemma 2 and Lemma 3, we have

Aγk =βk, ∀k ∈ κ and H γk

αk
= d, ∀k ∈ κ+, γk = 0, ∀k ∈ κ0

It follows that βk = 0,∀k ∈ κ0 and γk

αk
is a feasible solution to the original LP for all k ∈ κ+.

The optimal solution of ZC can be decomposed as

 1 µT pT

µ Σ Y T

p Y X

=
∑
k∈κ+

α2
k

 1
βk

αk
γk

αk

 1
βk

αk
γk

αk

T

(21)

And for k ∈ κ+, γk

αk
satisfies all the constraints in ZP .

Finally, we construct a distribution based on the decomposition (21). Define P ((b̃∗,x∗(b̃∗)) = (βk

αk
, γk

αk
)) =

α2
k,∀k ∈ κ+, then x∗(b̃∗) is feasible solution of ZP .

First note that it is a valid distribution, because

∑
k∈κ+

α2
k = 1
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Also,
E[b̃∗] =

∑
k∈κ+

βk

αk
α2
k =

∑
k∈κ+

αkβk = µ

E[b̃∗b̃∗T] =
∑
k∈κ+

βk

αk

βT
k

αk
α2
k =

∑
k∈κ+

βkβ
T
k = Σ

E[x∗(b̃∗)] =
∑
k∈κ+

γk

αk
α2
k =

∑
k∈κ+

αkγk = p

E[x∗(b̃∗)x∗(b̃∗)∗T] =
∑
k∈κ+

γk

αk

γk
T

αk
α2
k =

∑
k∈κ+

γkγ
T
k = X

E[x∗(b̃∗)b̃∗T] =
∑
k∈κ+

γk

αk

βk
T

αk
α2
k =

∑
k∈κ+

γkβ
T
k = Y

Thus,
ZP = sup

b̃∼(µ,Σ)

E[ZP (b̃)]

≥ E[ZP (b̃∗)]

≥ E[c(b̃∗)
T
x∗(b̃∗)]

= K •Y T + lTp
= ZC

i.e., ZC =ZP . Q.E.D.

Appendix C: Assumption Justification

In this part we illustrate how the redundant constraint
m∑
i=1

b̃i+sl =m helps to ensure (6) satisfies Assumption

2.

Consider any completely positive decomposition of an optimal solution of ZC(s):

 1 µT pT ps
µ Σ Y T yµ
p Y X yx

ps yµ
T yx

T ss

 :=


1 µT pz

T py
T ps

µ Σ Y T
z Y T

y yµ
pz Yz Zzz Z

T
yz yz

py Yy Zyz Zyy yy

ps yµ
T yz

T yy
T ss

=
∑
k∈κ


αk
βk
γk
θk
sk



αk
βk
γk
θk
sk


T

where αk ∈R+,βk ∈Rm+ ,γk ∈Rm+1
+ ,θk ∈Rm+ , sk ∈R+. Based on Lemma 2, the first two sets of constraints

of ZC(s) guarantee that

A

(
γk
θk

)
= cw ◦βk

Applying the same approach in Lemma 3, we can prove for k ∈ κ+, the third and forth set of constraints

imply γk0− θk0 = 0 and γk,m+1 + θkm = 0, then γk,m+1 = 0, θkm = 0 since γk ∈Rm+1
+ ,θk ∈Rm+ . While it does

not imply γk = 0,θk = 0,∀k ∈ κ0. To ensure that, we rewrite the last two sets of constraints, which is the

conic formulation of
m∑
i=1

b̃i + sl =m, based on the decomposition:

(
1T
m 1

) ∑
k∈κ

αk

(
βk
sk

)
= m(

1T
m 1

) ∑
k∈κ

(
βk
sk

)(
βk
sk

)T(
1m
1

)
= m2

Similar to Lemma 3, by applying equality condition of Cathy-Schwartz inequality, we have(
1T
m 1

)( βk

αk
sk
αk

)
=m,∀k ∈ κ+, βk = 0, sk = 0,∀k ∈ κ0.



Author: Schedule Dependent No-Show
36 Article submitted to Management Science; manuscript no. MS-0001-1922.65

combined with θkm = 0,∀k ∈ κ0, γk0− θk0 = 0 and A1

(
γk
θk

)
= (cw ◦βk)∀k ∈ κ, we can prove

γk = 0,θk = 0,∀k ∈ κ0

Q.E.D.

Appendix D: Iterative Method for Fixed Slot Length

Following the same procedure as the iterative method in the case of continuous slot length, we first use

the average show-up probabilities over time, i.e. letting (µ(s),Σ(s)) = (µ0,Σ0), to solve (22) and obtain an

optimal schedule s0 and the corresponding β01, Γ01. And again refer the static schedule as s0. Note that

the obtained s in the following completely positive cone represents the expected schedule obtained under

different show-up scenario, which is fractional. To obtain a binary solution, we need to apply some rounding

heuristic. We defer the discussion of rounding method at the end of this part.

ZD = minα0 +µ(s)Tβ0 + Σ(s) •Γ0 + dTw(1) + dTDiag(w(2))d + η1m+ η2m
2 + fTµ(s) + c0

s.t. W −C(s) ≥co 0
1T
m+1s = n

1T
m+1Zss1m+1 = n2(
ei
ei

)T(
s
sl

)
= 1, ∀i(

ei
ei

)T(
Zss Y

T

Y Zll

)(
ei
ei

)
= 1, ∀i

diag(Zss) = s
(22)

Similarly, after fixing (β0,Γ0) = (β01,Γ01), the next step is to obtain a new schedule s1 and the corre-

sponding moments (µ(s1),Σ(s1)). In the case of p(g(s1)) = a+ bg(s1),0≤ g(s1)≤ n, the function of the first

moment on patient’s arrival time can be written as µ(s1) = a1m + bg(s1). And the second moment can be

simply written as Σ(s1) = µ(s1)µ(s1)T +Diag(µ(s1) ◦ (1m − µ(s1))), where Diag(·) denote the operation

that converts a vector to a diagonal matrix. Then we can obtain a new s and g by solving (23).

Z1(β01,Γ01) = minα0 + a1T
mβ01 + a2(1m1T

m) • (Γ01−Λ(Γ01)) + b(βT
01 + a1T

mΓ01 + a1T
mΓT

01

−2adiag(Γ01)T + diag(Γ01)T + bfT)ĝ + b2(Γ01−Λ(Γ01)) • Ẑgg + adiag(Γ01)T1m
+dTw(1) + dTDiag(w(2))d + η1m+ η2m

2 + afT1m + c0
s.t. W −C(s) ≥co 0

1 sT gT sl
T

s Zss Z
T
gs Z

T
ls

g Zgs Zgg Z
T
lg

sl Zls Zlg Zll

 ≥cp 0

(
L −Im+1

)( s
g

)
= 0

diag(
(
L −Im+1

)(Zss ZT
gs

Zgs Zgg

)(
L −Im+1

)T
) = 0

1T
m+1s = n

1T
m+1Zss1m+1 = n2(
ei
ei

)T(
s
sl

)
= 1, ∀i(

ei
ei

)T(
Zss Z

T
sl

Zsl Zll

)(
ei
ei

)
= 1, ∀i

diag(Zss) = s
(23)
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Where ĝ denotes the arrival time for all the patients excluding the dummy one, Ẑgg denotes the right

lower m×m submatrix of Zgg. Then we use the new obtained s to update the moment information.

D.1. Rounding Heuristic

Note that each completely positive decomposition of

(
1 sT

s Zs

)
represents the schedule under one patients

show-up scenario. We then use spectral decomposition to approximate the completely positive decomposition

and take each eigenvector to generate a schedule. This procedure results in m+ 1 fractional schedules. We

then apply two rounding methods described below to get a set of binary schedules.

(1) Consecutive Rounding method

For each i∈ {1,2.., n}, if
t−1∑
j=1

s0j < i and
t∑

j=1

s0j ≥ i, then set s0t = 1.

(2) Ranking based rounding method

1. Sort the fractional schedule s in an increasing order, denoted by
(
s(1), ..., s(m)

)
.

2. Set the si corresponding to the m−n smallest ones
(
s(1), ..., s(m−n)

)
to be 0, others to be 1.

Appendix E: Schedule Comparison with Zacharias and Pinedo (2014)

This appendix presents the schedules generated by our rounding heuristics (Table 9 and 10) and the optimal

schedules given by Zacharias and Pinedo (2014)(Table 11 and 12). q represents patient no-show probability.

cw q = 0.2 m

0.01 3 1 1 1 1 1 1 1 1 1 1 1 14
0.05 3 1 1 1 1 1 1 1 1 1 1 1 14
0.1 2 1 1 1 1 1 1 1 1 1 1 1 13
0.15 2 1 1 1 1 1 1 1 1 1 1 1 13
0.2 1 1 1 1 1 1 1 1 1 1 1 1 12
0.25 1 1 1 1 1 1 1 1 1 1 1 1 12
0.3 1 1 1 1 1 1 1 1 1 1 1 1 12
0.4 1 1 1 1 1 1 1 1 1 1 1 1 12
0.5 1 1 1 1 1 1 1 1 1 1 1 1 12
0.6 1 1 1 1 1 1 1 1 1 1 1 1 12
0.7 1 1 1 1 1 1 1 1 1 1 1 1 12

Table 9 Schedules Given by Rounding Heuristics under q = 0.2
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w q = 0.3 m q = 0.4 m

0.01 5 1 1 1 1 1 1 1 1 1 1 1 16 7 1 1 1 1 1 1 1 1 1 1 1 18
0.05 3 1 1 2 1 2 1 1 1 1 1 1 16 4 1 1 1 1 1 3 1 1 1 1 1 17
0.1 3 1 1 2 1 1 1 1 1 1 1 1 15 4 1 1 1 2 1 1 1 1 1 1 1 16
0.15 2 1 1 1 1 2 1 1 1 1 1 1 14 2 1 1 1 2 2 1 1 1 1 1 1 15
0.2 2 1 1 1 1 2 1 1 1 1 1 1 14 2 2 1 1 1 1 2 1 1 1 1 1 15
0.25 2 1 1 1 1 1 1 1 1 1 1 1 13 2 2 1 1 1 1 2 1 1 1 1 1 15
0.3 2 1 1 1 1 1 1 1 1 1 1 1 13 2 1 1 1 1 2 1 1 1 1 1 1 14
0.4 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1 1 1 1 1 1 1 1 1 1 1 13
0.5 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1 1 1 1 1 1 1 1 1 1 1 13
0.6 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1 1 1 1 1 1 1 1 1 1 1 13
0.7 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 12

Table 10 Schedules Given by Rounding Heuristics under q = 0.3 and q = 0.4

w q = 0.2 m

0.01 3 1 1 1 1 1 1 1 1 1 1 1 14
0.05 2 1 2 1 1 1 1 1 1 1 1 1 14
0.1 2 1 1 1 1 1 1 1 1 1 1 1 13
0.15 2 1 1 1 1 1 1 1 1 1 1 1 13
0.2 2 1 1 1 1 1 1 1 1 1 1 1 13
0.25 1 1 1 1 1 1 1 1 1 1 1 1 12
0.3 1 1 1 1 1 1 1 1 1 1 1 1 12
0.4 1 1 1 1 1 1 1 1 1 1 1 1 12
0.5 1 1 1 1 1 1 1 1 1 1 1 1 12
0.6 1 1 1 1 1 1 1 1 1 1 1 1 12
0.7 1 1 1 1 1 1 1 1 1 1 1 1 12

Table 11 Optimal Schedules under q = 0.2((Zacharias and Pinedo 2014))

w q = 0.3 m q = 0.4 m

0.01 3 2 1 2 1 1 1 1 1 1 1 1 16 4 2 1 2 1 2 1 1 1 1 1 1 18
0.05 2 2 1 1 2 1 1 1 1 1 1 1 15 3 2 1 2 1 2 1 2 1 1 1 1 18
0.1 2 1 2 1 1 2 1 1 1 1 1 1 15 3 1 2 1 2 1 1 2 1 1 1 1 17
0.15 2 1 1 1 2 1 1 1 1 1 1 1 14 2 2 1 1 2 1 2 1 1 1 1 1 16
0.2 2 1 1 1 2 1 1 1 1 1 1 1 14 2 1 2 1 2 1 1 2 1 1 1 1 16
0.25 2 1 1 1 1 2 1 1 1 1 1 1 14 2 1 2 1 2 1 1 2 1 1 1 1 16
0.3 2 1 1 1 1 1 1 1 1 1 1 1 13 2 1 1 2 1 1 2 1 1 1 1 1 15
0.4 2 1 1 1 1 1 1 1 1 1 1 1 13 2 1 1 2 1 1 1 2 1 1 1 1 15
0.5 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1 1 1 1 2 1 1 1 1 1 1 14
0.6 1 1 1 1 1 1 1 1 1 1 1 1 12 2 1 1 1 1 1 1 1 1 1 1 1 13
0.7 1 1 1 1 1 1 1 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 1 1 12

Table 12 Optimal Schedules under q = 0.3 and q = 0.4((Zacharias and Pinedo 2014))
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