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This paper studies an appointment scheduling problem under schedule-dependent patient no-show behav-
ior. The problem is motivated by our studies of independent datasets from countries in two continents
which identify a significant time-of-day effect on patient show-up probabilities. We deploy a distributionally
robust model, which minimizes the worst case total expected cost of patient waiting and service provider’s
idle and overtime, by optimizing the scheduled arrival times of patients. We show that this model under
schedule-independent patient show-up behavior can be reformulated as a copositive program and then be
approximated by semidefinite programs. These formulations are obtained by a new technique that uses a
completely positive program to equivalently represent a linear program with uncertainties present in both the
objective function and the right-hand side of the constraint sets. To tackle the case when patient no-shows
are endogenous on the schedule, we construct a set of dual prices to guide the search for a good schedule
and use the technique iteratively to obtain a near optimal solution. Our computational studies reveal a sig-
nificant reduction in total expected cost by taking into account the time-of-day variation in patient show-up
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1. Introduction

Consider the following situation: Amy has an appointment with her dentist at noon. However, she
is requested to attend a business meeting announced last minute that is scheduled at 12:30pm.
As a result, she cannot attend the appointment as she is supposed to. If she has had an 8am
appointment, she would have been able to see her dentist first and come to work right after.

Such patient nonattendance (or commonly known as “no-show”) behavior frequently arises in
clinic appointment scheduling. Due to the uncertainties patient no-show brings into the picture, its
prevalence in different medical specialties and geographic regions as well as its potential detrimental
impact on patient health outcomes and service provider revenues (Moore et al.[[2001} [Ulmer and
Troxler||2004), patient no-show is a crucial factor for ambulatory care providers, such as primary
care doctors, dentists and physical therapists, to consider when designing appointment templates.
A provider’s daily appointment template specifies the expected number of patients to be seen in a
day and the scheduled arrival times of these patients.

To mitigate the effects of patient no-shows, it is common that an appointment template allows
over-booking appointment time slots (i.e., scheduling two or more patients into the same time slot).
Over-booking will certainly reduce service provider’s idle time, and therefore increase throughput
by seeing more patients per day. It will, however, increase service provider’s overtime and patient’s
waiting time, and in turn may hurt service provider’s satisfaction and patient’s experience. As
healthcare moves towards more patient-centered, payers shift from the traditional pay-for-service
scheme to pay-for-performance by linking reimbursement rates to service providers with patient
satisfaction rating (Press Ganey [2008). At the same time, the booming of social media websites
significantly increases information transparency in the healthcare market (McCormack 2013)), and
leads to a soaring competition among healthcare providers in their service quality. For outpatient
care providers, it thus becomes more important than ever to adopt an appointment template that
achieves the best tradeoff between capacity utilization and patient experience.

A significant amount of operations research efforts have been devoted to investigating the opti-
mal appointment scheduling under patient no-show behavior. Some recent literature on this topic
includes Kaandorp and Koole (2007), Robinson and Chen| (2010), Hassin and Mendel (2008)),
LaGanga and Lawrence| (2012), |Luo et al.| (2012),|Jiang et al.|(2015). Interested readers are referred
to |Cayirli and Veral (2003) and Denton and Guptal (2003) for a review of the earlier literature.
Most, if not all, of this prior literature on appointment scheduling assumes that patient show-up
probabilities (or the distributions) are exogenously determined.

As we illustrated in our earlier example, however, in many situations whether or not a patient
will show up for an appointment can depend on the time-of-day of her appointment. Working

professionals, like Amy, usually have less control of their availability as their work day progresses.
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As a result, in that specific occasion, Amy has to miss her noon appointment, but she would have
come for an 8am appointment.

There is a surge of interest in using data analytics to improve no-show prediction in healthcare
by incorporating more complex factors such as the time-of-day effect. For instance, Gabriel Belfort
and nine teammates (at a MIT Hacking Medicine event) built a prototype for the start-up “Smart
Scheduling.” Using hundreds of patient demographics and punctuality data, their system is able
to predict cancelled or missed appointments up to 70% accuracy (c.f. The Boston Globe, July 14,
2014). This allows clinics to efficiently target reminders and double-book appointments, to provide
better service availability and to improve patient experience.

A few studies have also pointed out that patient no-show rates may depend on their appointment
times of day, but the patterns are not uniform. |Lacy et al.|(2004) laid out a few reasons for patient
no-shows, some of which are related to time (for example, trouble getting off work, transportation,
etc.). Moore et al.| (2001)) reported that morning appointments are more likely to be kept than
afternoon slots. LaGanga and Lawrence| (2008]) showed that no-show rates may vary by appointment
slots. Another prospective study of nonattendance in a physiotherapy clinic in Ireland showed that
late afternoon slots produce a lower no-show rate compared to morning and early afternoon slots
(French et al.|2005).

In order to gain more insights on this phenomenon, we use two independent large datasets from
countries in two continents to systematically analyze the impact of appointment time-of-day on
patient show-up probabilities. Controlling for patient-level and provider-level factors, we find sig-
nificant empirical evidences that patient show-up probabilities indeed depend on their appointment
times of day. Specifically, we find that patients in a US community healthcare facility are more
likely to show up for their appointments at the beginning or the end of the day in weekdays. In
a Chilean pediatric practice, however, show-up rates tend to be lower in the early morning. Such
different temporal effects of appointment times may be explained by the differences in patient
populations and culture. More importantly, the temporal effect size can be quite significant. For
instance, our analysis shows that for a US patient scheduled on Wednesday, her show-up probabil-
ity can increase from 56% to 81% when given an appointment at 8am rather than at noon. These
interesting findings motivate our research questions in this paper: (1) how to design an appointment
template when time-of-day affects patient no-show behavior; and (2) how much efficiency gain/cost
reduction can be achieved by accounting for such time-of-day effect compared to ignoring it?

Specifically, we consider a fixed set of patients to be scheduled in a given clinic session for a single
service provider. A clinic session is referred to a consecutive time window during which a service
provider serves patients without taking a break. We focus on the design of appointment template

that specifies the scheduled arrival times of these patients. As an appointment template is usually
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determined before appointments are actually made and without the knowledge of each potential
patient’s individual characteristics, we do not consider the impact of individual characteristics on
patient show-up probabilities in our model. Patient show-up probabilities depend on their scheduled
arrival times. All patients, if show up, arrive on time; and no walk-ins are allowed. The overall
goal of our model is to design an appointment template that increases throughput by seeing more
patients per day (or in other words, limits service provider’s idle time), but not at the expense of
overwhelming patient waiting time and staff overtime. Following the convention of the literature
on this topic, our objective is to minimize the sum of service provider’s idle cost and overtime cost
as well as patient’s waiting cost.

From a practical point of view, the scheduler may not have sufficient data to confidently estimate
the ezxact probability distribution of patient no-shows. In contrast, estimating only the first two
moments of show-up rates is much less cumbersome. Therefore, we deploy a two-stage stochas-
tic optimization framework from a distributionally robust perspective to solve the appointment
scheduling problem mentioned above. In the second stage, we evaluate the total cost given an
schedule and the realization of patient no-show status. In the first stage, instead of assuming a
specific distribution of show-up rates, we use a set of distributions with given first and second
moment information to find out the worst case optimal schedule that minimizes the maximum cost
among the family of distributions. Such distributionally robust solutions guarantee the schedule
to perform well under all possible distributions. This approach is also versatile enough to handle
various salient features of the scheduling problems.

To solve this scheduling problem, we encounter several unaddressed technical challenges in the
optimization literature. First, incorporating patient no-show behavior demands solving a com-
pletely positive program in which uncertainties occur both in the objective function and the right-
hand side (RHS) of the constraint sets. In addition, because patient show-up probabilities depend
on time of day, uncertainties in the system related to patient no-shows are actually endogenous on
the schedule — our decision variables. Standard stochastic programming approach does not work
here due to such schedule-dependent show-up probabilities. Specifically, we cannot generate ran-
dom samples to guide the design of the schedule without knowing the schedule. To the best of our
knowledge, Pflug |G. (1990) was the first to address exogenous uncertainty where the underlying
stochastic process depends on the optimization decisions. See |(Goel and Grossmann| (2006) for a
review of this area of research. These problems are often approached using a scenario tree repre-
sentation and a mixed integer programming approach to handle the discrete number of scenarios.

To tackle this challenge, we develop a new modeling technique that enables us to reformulate

such a problem with patient no-show. We first solve the appointment scheduling problem with
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static show-up rate (i.e., schedule-independent), and then apply the method iteratively to tackle
the case with endogenous patient no-show behavior (i.e., schedule-dependent).

To test our proposed methods, we carry out extensive numerical studies. We show that, com-
paring to the front-loading pattern observed in the optimal schedule with a static show-up rate
(Zacharias and Pinedo 2014)), when patient show-up probabilities increase over time (e.g., in the
case presented by the Chile dataset), the optimal schedule still observes a front-loading pattern
but it is postponed. However, when patient show-up probabilities decrease over time (e.g., in the
case presented by the US dataset), it is better to spread out patients rather than front loading the
system. In both situations, we find significant reductions in the total expected cost by explicitly
taking into account the impact of schedule-dependent patient no-show probabilities.

In summary, this paper makes three main contributions to the literature. First, we use two large
datasets from countries in two continents to study and quantify the impact of appointment time-
of-day on patient show-up probabilities, controlling for patient-level and provider-level factors.
We identify significant evidences on the temporal effect of appointment times on patient show-up
probabilities in both datasets. Second, comparing to the “classic” front-loading schedule pattern
arising from assuming a constant patient show-up rate over time (Zacharias and Pinedo|2014]), our
model reveals an optimal schedule with different patterns in cognizance of time-varying patient
no-show behavior. More importantly, we demonstrate a significant cost reduction that can result
from the schedules derived from our model. Third, from a methodological perspective, we develop a
general technique that uses completely positive program to equivalently represent a distributionally
robust linear program (LP) with uncertainties present in both the objective function and the RHS
of the constraint sets. By doing so, we are able to reformulate such a technically challenging problem
as a completely positive program that can be approximated by semidefinite programs. This paper
offers a general approach to solve problems with this structure.

Two papers most relevant to ours are Kong et al.| (2013) and Zacharias and Pinedo (2014)). Com-
pared to models developed in these two papers, ours is much more general. The modeling technique
of this paper is inspired by Kong et al.| (2013), which considers an appointment system with random
service durations and assumes that all patients show up for appointments. They develop a linear
copositive program to solve the appointment scheduling problem under the worst case distribu-
tion. From a technical point of view, our model is much more challenging, as in their formulation
the uncertainty only appears in the objective function, but in our problem the uncertainties of
patient show-up rate are present in both the objective function and the RHS of the constraint
sets. The modeling technique developed in this work can be used to solve general problems of this
kind. To derive the exact optimal schedule, |Zacharias and Pinedo| (2014) require constant, i.e.,

time-homogeneous, patient no-show behavior. In contrast, our model allows for schedule-dependent
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show-up rates. We develop an iterative method to solve this problem, and our computational
results suggest that significant efficiency gain can be achieved when accounting for the time-of-day
variation in patient no-show behavior. Furthermore, we show that even though our model aims to
solve the optimal schedule for the worse-case distribution, such robust schedules can also be near-
optimal in terms of the total expected costs when compared to the optimal schedules generated
by |Zacharias and Pinedo| (2014]). Another paper that is also relevant is LaGanga and Lawrence
(2012)), which is the only work that we know considering time-varying show-up probabilities in
appointment scheduling. In their model, patient service times are deterministic and are equal to
the length of an appointment slot. The decision is to identify the number of patients scheduled
for each slot. Given the combinatorial nature of this problem, they use complete enumeration and
develop a heuristic approach to solve it. Our work significantly advances theirs by providing a uni-
fied optimization framework for a more general class of the problems and by developing algorithms
to solve the model efficiently.

The rest of the paper is organized as follows. Section [2| presents a predictive analysis of the time-
of-day effect on patient show-up probabilities while controlling for other factors. Section [3] develops
the new approach needed to analyze a distributionally robust LP with uncertainties in both the
objective and the RHS of constraints. Section [d] introduces the appointment scheduling model with
schedule-dependent show-up probabilities, and applies the new approach developed in Section [3] to

this model. Section [p] discusses our numerical results, and Section [f] draws our concluding remarks.

2. Time-of-day Effects on Patient Show-up Probabilities

Previous literature has shown that patient characteristics (e.g., gender, age, new or established
patient) and provider-level factors (e.g., provider type and relationship with patients) are impor-
tant predictors for patient no-shows; see, e.g., [Ulmer and Troxler| (2004). We hypothesize that,
controlling for these factors above, time-of-day also has a significant impact on patient attendance
behavior, for potential reasons to be discussed soon. In this section, we use two datasets on patients

appointment records, one from the US and the other from Chile, to investigate our hypothesis.

2.1. US data
The US data contain patient appointment records from a large urban community health center
located in New York City. This center offers comprehensive medical and dental care to the local
community and has more than twenty healthcare providers including physicians, nurse practition-
ers, nutritionists and care managers. The annual visits to this center amount up to more than
25,000.

Our data are extracted from the EMR (Electronic Medical Record) system of this center. This

large dataset spans over three years ranging from January 2011 to December 2013. When analyzing
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this dataset, we focus on adult primary care visits, i.e., visits to internists, family medicine doctors
or nurse practitioners. We exclude walk-in patients from the analysis because they did not schedule
their appointments in advance. Among scheduled visits, we exclude those mandated by school or
work, e.g., visits for PPD skin tests or vaccine shots, because these visits have much higher show-up
probabilities compared to other regular visits. The final dataset contains 35,094 patient visits made
by 4,142 distinct patients.

Because some patients made multiple visits, our data has a panel data structure, for which we
develop a mixed-effects logistic regression model to account for potential within-subject correlation.
Patient visit status (show-up vs. no-show or cancellation) is the dependent variable, and time-
of-day is the independent variable of interest. We also control for a number of other potential
factors available in the dataset, including patient age, gender, visit type (new vs. established),
provider type (family medicine, internal medicine or nurse practitioner) and day of week. For the
age variable, we dichotomize patients into younger and elder patients based on a median split at
age b2 for ease of interpretation. We use a random intercept to capture individual patient effect.

A full regression model reveals that gender effect is not significant, i.e., male and female patients
have statistically the same attendance behavior. The difference between visits to family medicine
and internal medicine is not significant either. This is not surprising, as these are all visits to
physicians who usually practice in a similar manner. The difference in patient no-show rates due
to provider practice manner, if any, should present in comparison between the visits to physicians
and nurses. We also find that patient show-up probabilities are (similar and) higher in Tuesday,
Wednesday and Thursday compared to other days in the week, controlling for other factors. Thus,
we group days into two categories: Tuesday to Thursday, and other days in the week. In our analysis,
we model appointment time as a categorical variable in the regression to explore the temporal
effect of appointment time. Our final regression model, after excluding non-significant predictors,

takes the following form.
logit(p;;) = Bo + B1AppHour;; + B2 MidW eek;; + B3 Physician;; + BsY oung;; + o,

in which p;; is the probability of patient i showing up for his/her jth appointment in the dataset ;
By is the fixed intercept and «; ~ N(0,02) represents the unobserved individual random effect with
o2 being its variance to be estimated; AppHour is a categorical variable for different appointment
times in a day; MidWeek=1 if it is Tuesday, Wednesday or Thursday; Physician=1 if the patient
sees an physician (not a nurse practitioner); Young = 1 if patient’s age is lower than the median
age 52 of the sample. As we will discuss later, patient show-up patterns appear quite different

in weekdays compared to Saturday, so we develop two regression models, one using full data and
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the other using non-Saturday visits. The estimated model coefficients are shown in Table [7| of the
Appendix [A]

We use the likelihood-ratio test to assess the significance of appointment times which consist of
multiple levels, and this test lends strong empirical support for our hypothesis that appointment
times have a significant impact on patient show-up rates, controlling for other factors (p < 0.05 for
the full data model, and p < 0.01 for the model excluding Saturday visits). The impact of other
factors on patient show-up probabilities is discussed in the Appendix [A]

To explore the effect size of time-of-day, we plot, by day of week, the average marginal show-
up probabilities over different hour of day in Figure [1} Specifically, for each day of week, we fit
a separate mixed-effects logistic regression model; and then for each appointment hour, we use
the fitted model to predict the show-up probability for each patient in our dataset for that day
of week, holding his/her other characteristics unchanged. We then average the predicted show-up
probabilities over all patients in the data for that day. This average is shown as the curved bold
line in figures [Ta] to [If, representing how the “expected” show-up rate of a random patient in this
population changes should s/he be scheduled at different times of a day.

We observe that, in weekdays, the show-up probabilities tend to be higher either in early morning
(except for Tuesday) or in late afternoon. However, Saturday exhibits a different pattern: show-
up probabilities peak in the middle of the day (a dome-shape). This difference may be explained
by people’s different life schedules during weekdays and weekends. During weekdays, early morn-
ing slots may be the most “convenient” ones from patients’ perspectives because attending these
appointments slots has the least interruption to one’s work/life and thus these slots are less likely
to be missed. On Saturday, however, people tend to have a relaxed schedule (and a late breakfast),

and thus early morning slots are associated with lower show-up probabilities.

2.2. Chile data
The Chile data consist of patient appointment records from an ENT (ear, nose and throat) depart-
ment of a public teaching pediatric hospital located in Santiago, Chile. This hospital offers various
services including speciality consultation, emergence, and surgical /medical hospitalization. In 2013,
this hospital had around 16,500 discharges, 5,500 major surgeries and 90,000 outpatient visits.
Our ENT dataset covers one year period from October 2012 to October 2013. During this period,
appointments are scheduled from 8am to 4pm Monday through Friday, and there are 7,352 patient
visits made by 3,302 distinct patients.

We explore this dataset using a similar approach as for the US data. We control for the following
potential predictors in our regression model: age, gender, status (initial visit vs. follow-up visit),

provider type (speech specialists, physicians and surgeons), distance from residence to hospital,
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Figure 1 Sample-Average Probabilities of Show-up over Different Times of Day (the US Data).

day of week and time of day. We use a random intercept to capture individual patient effect. For
the age variable, we dichotomize patients into younger and elder patients based on a median split
at age 6. Our dataset has some information on patients’ residence, using which we are able to
group patients into three categories: close to hospital (these are patients who live in counties very
close to the hospital location); inside the city (these are patients who live in the same metropolitan
area where the hospital is located), and outside the city (these are patients who do not live in the
metropolitan area of the hospital).

Our regression analysis reveals that gender and age effects are not significant. Distance, thought
to have an impact on patient no-show rates, does not appear to be significant either. One possible
explanation for these three factors not being significant is that parents were doing their best to
bring their children to see the service provider regardless of their residence location or their children’
gender and age. We find that patients who visit speech specialists and surgeons tend to have similar
attendance behavior, and thus we group these two types of patients in a single category. We also
find that patient show-up probabilities are higher on Thursdays but lower on Fridays compared to
other days of the week. As a result, we group days into three categories: Monday to Wednesday,

Thursday and Friday.
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We refer the readers to the Appendix |A| for details of the final model (see Table , and the
interpretation of the results. Here, we focus on the temporal effect of appointment times on patient
show-up probabilities in different days of week. As we did for the US data, we plot the sample-
average marginal show-up probabilities over different times of the day for any given day of week,
as well as the aggregated marginal show-up probability over all days of week (because the daily
patterns look similar in the Chile data); see Figure 2| Note that the office hour in the Chilean
practice is different from that in the US, and very few patients visit at 1pm so we exclude those.

We observe an interesting pattern of show-up probabilities in this Chile dataset in contrast to
the US data. In general, patient show-up rates increase over time since early morning, peak at the
middle of the day, and then decrease (see Figure . This pattern is different from the weekday
pattern in the US data, but similar to Saturday there. There may be a few explanations. First, this
is a pediatric population, and parents may need extra preparation time for the visit. Thus, mid of
a day appears to be the most convenient times. Second, it is possible due to the less-work-oriented
Latino culture and the fact that Latinos usually have a more relaxed attitudes towards time (Flores

and Vega |1998)).
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Figure 2 Sample-Average Probabilities of Show-up over Different Times of Day (Chile Data).
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3. An Approach of Completely Positive Decomposition

As we demonstrated in Section [2] that, appointment time-of-day is an important factor that affects
the variation in patient show-up rates. We are interested in finding out the structure of the optimal
policies to schedule patients by incorporating this new empirical evidence.

We develop a copositive programming reformulation to solve the no-show problem, based on an
approach first developed in |Kong et al.| (2013]). However, our problem is more challenging due to
two reasons: first, incorporating patient no-show behavior demands a completely positive model
with uncertainties in both the objective function and RHS of the constraints; second, patient show-
up probabilities depend on our scheduling decision variables. To address the second issue, we use
the dual prices associated with the moment cones in the copositive program to guide the search for
the optimal appointment schedule, and apply this method iteratively to tackle the problem with
endogenous patient no-show behavior (i.e., schedule-dependent).

We first develop in this section the theories on how to use completely positive program to solve
LPs with uncertainties in both objective and the RHS of constraints. Later we will apply these

results to solve the problem of appointment scheduling with no-shows in Section

3.1. Linear Optimization with Uncertainties in both Objective and Right-Hand
Side

We consider a general LP with uncertainties occurring in both the objective ¢ and the RHS of the
constraint sets b. For ease of exposition, we assume the objective function € is a linear function of
b. ie.,

G=c(b)=Kb+1;,Vie{1,2,...n},

where k; € R™ is the coefficient vector}] We consider the following linear optimization problem:

Zp(b) = max c(b)™x

sit. Ax=b, Hx=d, x>0 (1)

where A:=(a; a, ... aml)T, H:=(h; hy ... hmz)T.
Without loss of generality, we assume that our linear optimization problem satisfies the following
conditions:
(1) The feasible region is bounded;
(2) if Hx =0 and x >0, then x =0.
Note that the first condition can be used to construct a redundant deterministic constraint

n

> x; < M that we can add to the model to ensure that the second condition holds.

=1

! Throughout this paper, we use boldface notation to denote vectors. For example, we use b to denote (l~>1, l~)2, s Bml ).
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We assume further that the distribution of b lies in a set of multiple distributions supported on
R with finite first moment g and finite second moment ¥, denoted as b ~ (1, £)*. We solve the
following distributionally robust optimization problem:

(P): Zp= swp E [Zp(f))} @)
b~ (p,2)F
3.2. Completely Positive Decomposition
Before showing the main theorem, we first introduce some necessary notation and briefly review
related concepts.

A completely positive cone is defined as
CP, = {A€S,]3V e R*™ such that A=VV '}
k
= {A€8,|3v,Va,...,vik € R' ,such that A= ZviviT}
1=1
where S, is n X n symmetric matrices.

A copositive cone is defined as
O, :={A€S,|vwveR?, v Av >0}

A copositive cone is the dual of a completely positive cone.

In the following sections of this paper, we use X >., 0 (resp. X >, 0) to represent X € CP,
(resp. X € CO,,). For more information on completely positive cone and copositive cone, we refer
interested readers to Berman Al (2003)).

Let x(b) denote the optimal solution of problem (1)) obtained under b. Let

b = Bx(b)
X = E[x(b)x(b b)']
Y := E[x(b)b]

We observe that

1pu"p' ! 1 !
uXY' | =F b b is a completely positive matrix, as b |€ R
pY X x(b) x(b) x(b)

Furthermore, since ¢; = ci(f)) = kZTl.:') +1;,Vie{1,2,...,n}, we have
E [Zp(f))] =F [Z(k}t} + li)xi(f))] =) (kiTE[f):vi(f))] + liE[xi(B)]> ,
According to Natarajan et al.| (2011), the constraint hJT:L“(f)) = d; is well studied and can be

formulated as conic constraint by lifting, i.e.
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For the constraint alz(b) = b;, Vi, we have
E [(ajx(b))ﬂ B [(ajx(b))ﬁi} —E [132] Vi
Then we can further infer
> B |(alx(B)’] = 3B |(ala(B))b,| =" £ [b?).
and written in matrix form, we have
(ATA) e E [;p(B)x(B)T} —ATeE {x(B)BT} —JeE [BBT}

Let K denote the matrix (kl ks ... kn) and 1= (ly,...,l,). We now consider the following
completely positive program Zs, obtained by reformulating the problem Zp using the variables

X,Y and p:
(C): Zc=max KeY T +1Tp

1 lJ‘T pT
s.t. pXYT|>,0
pr X 3)
(ATA)e X = ATeY
(ATA) o X = JeX
Hp =d

diag(HXH") = diag(dd")
Note that diag(M) denotes a vector of the diagonal elements of matrix M. The main result derived

in this section is the following:
THEOREM 1. Zo=Z2p

To show that (C) is actually equivalent to (P), we need to construct a (non-negative) distribution
obtained from (C') that satisfies the moment conditions, with corresponding objective value Zp. The

construction hinges on the following observations: consider any completely positive decomposition

of matrix
1u’ p' g o !
w X Y?" :Z B B
pY X ker \ Yk Yi

where oy, € Ry, Bi, v € R} Let k. = {k € k| oy, > 0}, ko = {k € K | @) = 0}. The constraints in (C')
ensure that

o Avi, =0, VkEk

° HZ—’;:d,Vkem

o v, =0,Yk € Kg.
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Our approach is motivated by the construction in Natarajan et al. (2011, which uses completely
positive decomposition to obtain such a desired distribution in the limit. The difference is that,
their approach only deals with problems with uncertainties occurring in the objective function
alone, whereas in our model, uncertainties are present in both the objective function and the RHS
of the constraint sets. Therefore, our model further requires that each constraint with uncertainties

in the RHS has to hold in each completely positive decomposition.

4. The Model

In this section, we present a stylized mathematic model to understand the effect on the optimal
appointment schedule when patient no-show rates depend on the schedule. Let N ={1,2,...,m} be
the index set of all patients, where m denote the number of patients scheduled to arrive in a day.
The number of appointment slots available per day is n, each of unit length. We assume m >n
for the purpose of focusing on the overbooking effect. The basic assumptions of our appointment
scheduling model are listed as follows:

e The service sequence is fixed.

e Patients arrive punctually at the scheduled appointment times, if they show up.

e There is a single service provider in the clinic. The service provider arrives at the same time
with the first patient and operates with a work conserving policy (i.e., server does not idle as long
as there are patients waiting in the queue).

e Walk-in patients are not considered.

We define s; as the length of time slot scheduled for ith patient in the sequence, indicating the
arrival interval between the ¢th and 7 + 1'th patient. We create a dummy patient, who does not
consume any consultation time, arriving at the beginning of the appointment session (i.e., time 0),
and thus the time allowance for this dummy patient, denoted as sq, indicates the first patient’s
arrival time (and also the arrival time of the service provider). We also add a m + 1’th patient
to arrive at the end of the clinical session to capture the amount of overtime. All patients are
scheduled to arrive before the m + 1’th patient.

Let u; denote patient i’s consultation time. We use b;(s) € {0,1} to denote the show-up status of
the ¢th patient, with lN)i(s) =1 if the i¢th patient shows up, and 0 otherwise. Note that the show-up
state is a function of the schedule s.

We consider three types of costs in our model: (i) the waiting cost of patients, (ii) the idle cost,
and (iii) the overtime cost of service provider. The scheduler determines the length of time slot s;
for patient 1.

The unit waiting cost for each patient is denoted by ¢;, Vi = 1,...,m. If the last patient is
completed after the nth slot, then an overtime cost co is charged per unit of time. If the service

provider is idle sometime during the day, that incurs an idle cost of ¢; per unit of time.
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Let W; denote the waiting time of the ¢th patient in the system. Since W,,,; denotes the amount
of overtime work, and ) Bz(s)ul denotes the amount of work brought into the system, the total
i=1
cost can be represented as

F(5.B(5)) = 32 es(B ()W) coW i+ ea(n Woppa =0 = 32 b)) @

in which f(s, b(s)) denotes the total cost incurred given a schedule s and the show-up state of each
patient b(s).

Using the recursion
Wi:maX{O,Wi_l—i-i)i_l(S)ui_l—si_l} 2':2,...,m—|—1, (5)

we can use a network flow approach to model the total cost function, as shown in Figure m In
order to capture patient no-show in a network flow representation, we change the inflow to node i to
CJ)Z-(S),Vi =1,...,m. Therefore if patient ¢ does not show up, the inflow coming into node ¢ becomes

0. In addition, the inflow to node (m + 1) is ¢ + co which corresponds to the term (co + ¢7) W11

in .

Figure 3 Network Flow Representation

1 heg bae,y Bur1Cma bme, €+

i_ 0-5 l 51&;1 5 l J‘bm—lﬁm_l_f

/,,——\ e 1
\ HTK‘/‘(H) \\)‘ ““““ (1 g

rd //
\ \ A // /’/ /"/
s \9 \K ox 0 // B P
(20) ™ LaN (@) (z ) i)
'\ m-1
\‘“\\\\ / =
H\\“\Q N ’///f"'
\\Q‘\\ Q\ {/// ;//
S
£ N
LS

Z.‘:‘:, €, +6¢o e +1

2 We add an auxiliary patient who arrives at the end of the appointment session (i.e., node (m+1)) to represent the
service provider’s overtime. We also create a dummy patient arriving at the beginning of appointment session (i.e.,
node 0), her/his scheduled slot length determines the arrival of the first patient. In (2013), all the inflow
to network is deterministic as patient no-show is not considered there.
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In the rest of the paper, for ease of exposition we assume that each consultation duration uses

exactly one appointment slot, i.e., u; = 1| Using this network structure, our problem can be refor-

mulated as
f(s,b(s)) =max 3" (bi(s) — s:)y; + cr(n— 3 bi(s)) — soyo
=1 =1
s.t. 20 — Yo =1 (6)
Zi_yi‘I“yifl = bi(s)civ Vi:1a2a"'am
Zm+1 + Ym = co+Cr
Y,z >0

To ensure that the formula satisfies the two assumptions proposed in Section [3| we need to add a
redundant constraint i l~),(s) <'m into the set of constraints in the cone. To see how this constraint
helps to justify the tvéglassumptions, we refer the readers to Appendix [C]

We deploy a two-stage stochastic optimization framework to solve the appointment schedul-
ing problem in the case of schedule-independent show-up rate from the distributionally robust
perspective. Specifically, we consider the following model:

min{ sup {E[f(s,f)(s))]}} (7)
S0 | B(s)m(n(s). 2 () +
where E[f (s,f))] is the expected sum of service provider’s idle cost and overtime cost as well as
patient’s waiting cost in the second stage when a schedule s is given, and {2 is the set of constraints
on the schedule in the first stage.

The first step is to calculate worst case expected cost of the second stage problem. For any

schedule s, we consider the maximization problem
Zys)=_ sw_ {Elf(s.bs)]} (8)
b(s)~(u(s),%(s))
4.1. Reformulation
We can apply our results from Section [3| to solve problem . We first present model @ in a
general form as follows:
£(s,b(s)) = max S (kIb(s))z; —s"x + £Tb(s) + ¢,
s.t. Ax =c,, ob(s)

To obtain an equivalent completely positive model as we showed in Section (3| we first define the

following notation:

3 Our method can be adopted to handle the case when service durations are random.
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Let K denote the matrix (k1 ky ... k2m+3). Based on our results in Section (3, we consider the

following completely positive program

Zo(s)=max KeYT —sTp+fTu(s)+cy
L p(s)" P’ ps

b YT
Ps Yu' ¥x' S
(ATA)e X = ATe((lcy")0Y)
(ATA)e X = A(cycy')eX(s) (9)
Hp = d
diag(HXHT) = diag(dd")
( 171 ) p(s) — m

(4 -
We observe that our second stage problem is a maximization problem, while the first stage min-
imizes the total cost by making schedule decisions. In the literature, one approach to tackle such
a min-max problem is to take the dual of the inner maximization problem, and as a result, refor-
mulate the min-max problem as a min-min problem, so that the two stages of the problem can be
combined into one. We use ag € R, B9 € R™, 'y € R™*™ to denote the dual variables corresponding
to moment constraints; and oy, as,w™, w1, n, to denote the dual variables corresponding to
each of the equality constraints in @ Let A(-) be the operation of taking the diagonal matrix and

Diag(-) be the operation that converts a vector to a diagonal matrix. Define

. %) %(,30+771T1m)T . ) swTH . m
Wee 5(?04-7711,,1) Ty —asA(cweyw ') + 121,17 —5a1Ao(cw1' ) N2,
5H1Tw(1) -2 A ol(TcwlT))T ATA(aq + ) +01TLITDzag(W(2))H 0
3™ UPE T 2
0 07 0" —1sT0
0 0 0 1K o0
and C(s):=] 0 O 0 O O
“IsIKT O 0 0

Then the dual of the second stage problem can be written as

Zp(s) = minag + pu(s) B+ 3(s) ey +dTw) +dT Diag(w®)d + nym + nym? + T u(s) + ¢y
s.t. W—C(S) Zcoo
(10)

Note that additional constraints on s can be added to the cone when required. The above
conic programming model therefore provides a unified approach to study many different classes of

appointment scheduling systems.
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4.2. Iterative Procedure

We use g to denote the scheduled arrival time of each patient. As we stated before,
gi; = So —+ S1 + ..+ Sifl,VZ' = 1, .,y

where s, represents the scheduled time slot for the dummy patient. We define L € R(m+1)x(m+1) and
Li,;=1i=1,..,m;j=1,...,i. Assuming g, =0, we can then rewrite the relationship between s
and g in matrix form as

g=1Ls

Let p(t) denote a patient’s show-up probability if he is scheduled to arrive at time ¢. For simplicity,
we assume that the show-up probability depends solely on the time of arrival and does not depend

on patient demographic features. In this case, for any given schedule s,

u(s)=p(g), S(s)=p(g)p(g) + Diag(p(g)o (1. —p(g)))

We consider a linear function of show-up probability p(g) to illustrate our approac}ﬁ . Without
loss of generality, we assume p(g) =a+bg, 0 < g <n, where p(g) is linearly increasing in g if 6> 0
and decreasing otherwise. In this way, we can model X(s) as a quadratic function in s which can
be easily modelled using the conic approach.

In the schedule-dependent case, the two stage problem is formulated as

min o + p(s) B + B(s) e Ty +dTw) +d" Diag(w®)d + nym + nom? + £Tu(s) + ¢
s.t. W —-C(s)>.0 (11)
s e Q)

Note that the model is non-convex due to the product term p(s)" By and X(s) @'y in the objective
function. The constraint set, however, is still linear conic, which enables us to apply an iterative
method to solve this problem. The main idea is to separate the two sets of decision variables
(p(s),2(s)) and (Bo,I'g). We fix the value of one pair and solve the above linear conic programs to
arrive at a local equilibrium solution in an iterative manner. Note that the objective value obtained
this way decreases monotonically.

To do that, our first step is to use the average show-up probability over all slots. We denote the
corresponding first and second moments of this average probability as (g, >). This reduces the
problem to the schedule-independent case. We can solve to obtain an optimal schedule sy and
the corresponding Bo1, I'o1 by setting (u(s), X(s)) = (o, X0). We refer so as the static schedule
because we use average show-up rates across time of the day. After that, we start the iteration

41f p(g) is nonlinear in g, we can approximate p(g) by its gradient to apply this iterative method on more general
show up function.
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from By;, I'g; and incorporate time-dependent show-up probabilities into the model to generate a
new pair of first and second moments, and then obtain the new schedule along the way.
Specifically, after fixing (Bo,9) = (Bo1,101), the next step is to obtain a new schedule s; and
the corresponding moments (g(s1),%(s1)). In the case of p(g(s1)) =a+bg(s1),0 < g(s1) <n, the
function of the first moment on patient’s arrival time can be presented as pu(s;) = al,, +bg(s;), and
the second moment can be simply written as 3(s;) = p(s;)p(s1)" + Diag(p(s:) o (1, — p(s1)))-

We next solve the following quadratic programming problem

min oo + (al,, + bg(s))T,Bo + (p(s)u(s)" + Diag(p(s) o (1, — p(s))) @ T

+d"w +d" Diag(w®)d + nym+nm? +£7 (al,, + bg(s)) + co (12)
s.t. W—-C(s)>.0
s € Qg

This model is still nonlinear, but the objective now has a quadratic form g(s)g(s)" and g(s) = Ls.

We can reformulate this quadratic problem as a conic problem by replacing
ss' =7, 8(s)8(s)" = Zy,,

and reformulate the first stage constraints in conic form. Specifically, in the case of continuous slot

length, the first stage constraints s € ), = {s € RT“ | > si=mn,s; > 0} can be reformulated in
i=0
conic form as
1 s" gl
S Zgs ZgTS > 0
8 Zgs Zgq
1] .s=n
17 Zaalypyy =02 (13)

(L —Lons1) <;) —0

D
diag((L _Im+1) (g: g;’;) (L _Im+1)T> =0

By solving we can obtain a new schedule s; and a corresponding show-up rate and moment

conditions. This leads to the next iteration of our numerical procedure to obtain a new (5o, ).

4.3. Fixed Slot Length

In practice, healthcare appointment systems often adopt a scheduling template with fixed-length
appointment slots (for example, each appointment slot is 20-minute long in many clinics). In that
case, the length of appointment slot is no longer continuous. Instead, the constraint set () can be
presented as Q. = {s€RTT| i si=n,s; € {0,1} p, where s; is a binary variable that indicates
whether or not the ith patientzzig scheduled the same time as patient ¢ + 1. If the ith patient is
scheduled the same time as the ¢ + 1st patient, s; =0; otherwise s; = 1. By doing so, we obtain the

number of patients scheduled at each appointment slot.
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The binary constraint set adds more difficulties to the problem. Based on Burer| (2009), which
presents an equivalent completely positive representation for quadratic program with binary vari-

ables, we can capture the binary c