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We propose a dynamic portfolio choice model with the mean-variance criterion for log-returns. The model

yields time-consistent portfolio policies and is analytically tractable even under some incomplete market

settings. The portfolio policies conform with conventional investment wisdom (e.g. richer people should invest

more absolute amount of money in risky assets; the longer investment time horizon, the more proportional

amount of money should be invested in risky assets; and for long-term investment, people should not short

sell major stock indices whose returns are higher than the risk-free rate), and the model provides a direct

link with the CRRA utility maximization in a complete market.
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1. Introduction

Portfolio optimization has a long history in finance, dating back to celebrated works of sin-

gle period mean-variance analysis by Markowitz [47] and continuous-time expected utility

maximization by Merton [49]. However, both the expected utility maximization model and

the mean-variance model need further improvements.

For example, in a utility maximization model, it is difficult to estimate investors’ risk

profile, which is given by the utility function.1 On the other hand, although one can easily

elicit investors’ mean variance parameters in the single period model by asking the investor

1 Even for a special case like CRRA utility function, the estimation of the risk aversion coefficient is not easy. For

example, Kydland and Prescott [41] find that the relative risk aversion parameter is between 2 and 3 for most
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about the target returns, the dynamic mean variance policies in the existing literature

either may be time inconsistent or contradict conventional investment wisdom, such that

(i) rich people should invest more absolute amount of money in risky assets; (ii) the longer

the investment horizon, the more proportional amount of money may be invested in risky

assets; and (iii) for long-term investment, people should not short sell major stock indices

whose returns are higher than the risk-free rate.2

In this paper, we propose a dynamic portfolio choice model with mean-variance criterion

for portfolio log-returns (hereafter log-MV criterion, for short), instead of with the standard

mean-variance criteria for terminal wealth in the existing literature.3 By combining certain

advantages of both Markowitz’s and Merton’s models, our contribution is fourfold:

(1) In a complete market with constant market parameters, the model leads to an explicit

formula for the optimal time-consistent mean-variance policy. There is a one-to-one map-

ping between the policy and the well-known Merton’s myopic policy for constant relative

risk aversion (CRRA) utilities in the complete market. Furthermore, similar to the single-

period Markowitz model, we can elicit the mean-variance preference parameter by asking

an investor to input the target annual return in the complete market; see Section 3.

(2) The model is analytically tractable even under some incomplete market settings,

and the resulting trading policies consists of familiar myopic and hedging components.

In cases where analytical solutions are unavailable, we propose a link to some backward

stochastic differential equations (BSDEs), which can be solved numerically to find the

optimal time-consistent policies; see Section 4.

(3) The model is capable of handling portfolio constraints such as the no-borrowing and

no short-sale constraints; see Section 5.

(4) Using the analytical solutions for the dynamic log-MV model in two special cases, a

general Heston’s stochastic volatility setting and a Gaussian mean return setting, we find

that the optimal trading policies in both settings conform with the three criteria of the

investors; however, to explain the equity premium puzzle, the relative risk aversion parameter should be at least

larger than 11 (e.g., Mehra and Prescott [48] and Mankiw and Zeldes [46]).

2 Here we list the three investment criteria because they are widely accepted by the general public, and they are

useful to serve as a basis to make a comparison with other dynamic mean-variance models in the literature.

3 See, e.g., Bajeux-Besnainou and Portait [2], Basak and Chabakauri [4], Basak and Chabakauri [5], Björk, Murgoci,

and Zhou [11], Cochrane [22], Li and Ng [42], and Zhou and Li [57].
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conventional investment wisdom mentioned above; see, e.g., Propositions 1 and 2. We also

find that our mean-variance portfolios mimic the corresponding CRRA portfolios under

the above market settings; see Figures 5 and 6, and compare the similarity between (23)

and (25), and the similarity between (29) and (31).

1.1. Literature Review: General Literature

We study a dynamic portfolio choice problem with the log-MV criterion under general

incomplete markets and obtain analytical solutions for two special settings, the general

Heston’s stochastic volatility and the time-varying Gaussian mean return. These two spe-

cial settings have been widely studied with different objectives. For example, the expected

utility maximization problems with the CRRA utility under the market settings are solved

by Liu [43, 44] and Kim and Omberg [40], respectively. Basak and Chabakauri [4] consider

a dynamic mean-variance criterion for terminal wealth under both of the market settings.

Campbell and Viceira [17] study portfolio optimization with the Epstein-Zin recursive util-

ity under the Gaussian mean return setting in discrete time. Some extensions are also

studied by others, e.g. Chacko and Viceira [19] for the consumption and investment prob-

lem with a special stochastic volatility setting and recursive utility, and Wachter [55] for

the consumption and investment problem with a special Gaussian mean return setting.

In this paper we choose to conduct mean-variance analysis, rather than the expected util-

ity maximization, mainly because it is difficult or less straightforward to give an accurate

estimate of the risk aversion parameter implied by utility functions. In fact, estimating the

risk aversion parameter involved in the expected utility maximization theory is non-trivial

even for professional people.

Many techniques have been suggested to mitigate the sensitivity of the mean-variance

analysis to the parameter estimation. For example, shrinkage estimators, such as the James-

Stein estimator, may be used; see, e.g, Jorion [39]. Alternatively, Jagannathan and Ma [38]

show that imposing a short sale constraint is equivalent to shrinking the elements of the

covariance matrix. One can use advanced big data techniques to estimate the covariance

matrices and to impose short sale constraints; see, e.g., Fan, Zhang, and Yu [33], Fan,

Liao, and Mincheva [32], Fan, Fan, and Lv [30], Fan, Liao, and Liu [31]. We do not study

statistical estimation in this paper, but our model can incorporate portfolio constraints.
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1.2. Literature Review: Dynamic Mean Variance Analysis

The single-period mean-variance portfolio choice has been widely used in both academia

and financial industry. Nevertheless, generalizing the mean-variance analysis to a dynamic

setting (multi-period or continuous time) is usually challenging due to the inherent time

inconsistency, namely that a mean-variance policy that is optimal today might not be

optimal tomorrow. A simple way of handling this time inconsistency is to optimise the

myopic mean-variance objective in each period, and roll up until maturity (e.g., Ait-Sahalia

and Brandt [1]; Campbell and Viceira [18]). However, there is growing evidence that such

a myopic policy is suboptimal in the presence of stochastic volatility or stochastic returns

(e.g., Brandt [13]; Campbell and Viceira [17]). An alternative way is to seek a mean-variance

strategy that is optimal at the initial time, and stick to the strategy until maturity.4 This

strategy, known as the pre-committed strategy, disregards the sub-optimality in the future

and leads to a time-inconsistent decision.

A breakthrough is made by Basak and Chabakauri [4] who obtain an explicit time-

consistent optimal policy for the mean-variance criterion for terminal wealth. In their

model, the optimal dollar amount invested in stocks is, however, independent of investors’

total wealth, which implies that both the rich and the poor should allocate the same dollar

amount to stocks, similar to the Merton’s strategy for constant absolute risk aversion

(CARA) investors. Björk, Murgoci, and Zhou [11] introduce wealth-dependent preference

into the dynamic mean-variance criterion for terminal wealth, and the resulting stock

investment is proportional to investors’ total wealth, which caters to the taste of CRRA

investors. However, their policy suggests that, even with a positive stock risk premium,

the dollar amount of the stock investment may be negative when the investment horizon

is sufficiently large, which violates the investment rule that short sale of a “good” index

is not recommended in the long run. In addition, their model needs to numerically solve

an integral equation (thus lacking analytical tractability) even in a complete market with

constant market parameters, which makes it difficult to handle a more general market

setting.

Comparing to Björk, Murgoci, and Zhou [11], our model leads to a wealth dependent

policy that conforms with the investment wisdom that short-sale is never optimal for a

4 See, e.g., Li and Ng [42], Zhou and Li [57], Bielecki et al. [7], Cvitanic, Lazrak, and Wang [24], Dai, Xu, and Zhou

[26] and references therein.
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“good” index. Moreover, our model is more tractable and is able to deal with various

incomplete markets (e.g. the general Heston’s stochastic volatility and the time-varying

Gaussian mean return). As in the CRRA utility maximization case, our explicit optimal

portfolio policy consists of familiar myopic and intertemporal terms, where the intertem-

poral term reflects the intertemporal hedging demand of an investor who faces stochastic

volatility and stochastic returns. In particular, with reasonable parameter values, the stock

investment is increasing with the investment horizon, which is consistent with the conven-

tional financial wisdom that people with longer investment horizon should invest more in

stock.

There are several reasons that we adopt the log-MV criterion in this paper. First, it

inherits the spirit of Markowitz’s one period mean-variance analysis which is essentially

on portfolio returns. In a continuous time setting, it is natural to consider log-returns of

portfolio, as returns are continuously compounded. In addition, Luenberger [45] provides an

axiom justification of the one-period log-MV criterion. Second, in practice, fund managers

keep track of their fund return because money tends to flow into (out of) the fund whose

return is higher (lower) than the return of a benchmark index.5 Therefore, fund managers

pursue a trade-off between high portfolio return and stability, which is perfectly captured

by our criterion. Third, such a criterion naturally leads to a wealth-dependent strategy. In

fact, our optimal trading strategy turns out to tally with the criteria of the conventional

financial wisdom aforementioned, some of which are violated in previous mean-variance

models. Table 1 summarizes a comparison of this paper versus some key papers.

Our model can handle portfolio constraints such as the no-borrowing and no short-sale

constraints. In a complete market with portfolio constraints, our mean-variance policy is

analytically available and is the same as that under the CRRA utility maximization (see,

e.g., Cvitanic and Karazatzs [23] and Dai, Jin, and Liu [25]); the policy is myopic with

respect to portfolio constraints in the sense that no action is taken before the constraints

are binding. However, in incomplete markets, our mean-variance optimization is no longer

myopic with respect to portfolio constraints.

It is also straightforward to extend our model to a multiple stocks setting. Moreover, in

the absence of analytical solutions, we can employ either the finite difference method for

5 See, e.g., Gruber [35], Brown, Harlow, and Starks [16], Chevalier and Ellison [21], Sirri and Tufano [53], and Basak

and Makarov [6].
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Table 1 A comparison of key literature

A: Dynamic Time-Consistent Mean-Variance Strategy (positive risk premium)

The rich invest No short People with longer time horizon

more money in stock invest more money in stock

Basak & Chabakauri (2010) No Yes Not Always

Björk, Murgoci & Zhou (2014) Yes No Not Applicable

This paper Yes Yes Yes

B: General Dynamic Portfolio Optimization

Liu (2001, 2007) Continuous time, CRRA utility under the general Heston model

Kim & Omberg (1996) Continuous time, CRRA utility under the Gaussian mean return model

Campbell & Viceira (1999) Discrete time, a recursive utility under the Gaussian mean return model

Fan, Zhang & Yu (2012) Mean-variance with estimation of large covariance matrices and short sale constraints

This paper Dynamic mean-variance analysis for portfolio log-returns under both the general

Heston model and the Gaussian mean return model with portfolio constraints

partial differential equations (PDEs) or Monte Carlo simulation for BSDEs to numerically

find optimal policy; see Online Supplement A.

Technically our paper is connected to equilibrium solutions for dynamic decision making

with time-inconsistency, dating back to 1950’s.6 In comparison with this line of literature,

our paper is the first one to consider the time consistency solution for the dynamic log-MV

portfolio choice. Moreover, in terms of methodologies, we use the BSDE technique to prove

the existence of equilibrium solutions and to find optimal policies; this appears to be new

for dynamic mean variance.

The rest of the paper is organized as follows. In the next section, we present two dynamic

log-MV formulations and show their connection. In Section 3, we study the dynamic log-

MV portfolio choice in a complete market with constant market parameters and provide

an intuitive way to identify the mean-variance preference parameter used in our model.

Section 4 is devoted to the portfolio choice under general incomplete market settings. An

extension of our model to incorporate portfolio constraints is given in Section 5. Section

6 concludes. An extension to the multiple risky assets case, a Monte-Carlo simulation

approach for implementing our model, and all technical proofs are relegated to Online

Supplement.

6 See, e.g., Strotz [54], Peleg and Yaari [51], Ekeland and Lazrak [28], Ekeland and Pirvu [29], Björk, and Murgoci

[9], and Björk, Khapko, and Murgoci [10]
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2. Log Mean-Variance Criterion

In this section, we present two formulations for dynamic log-MV criterion, and show the

connection between the two formulations.

2.1. Problem Setting

We start with a market in which there are two assets available for investment: a risk-

less asset (bond) with interest rate rt, and a risky asset (stock). The stock price evolves

according to

dSt = µtStdt+σtStdBt, (1)

where the drift rate µt and volatility σt > 0, together with the interest rate rt, are all

adapted processes, and Bt is a standard Brownian motion. A self-financing wealth process

Wt can be described by

dWt = [rtWt + (µt− rt)ut]dt+σtutdBt, (2)

where ut is an adapted process representing the dollar amount invested in the stock at

time t. In this paper, we do not allow investors to go bankrupt, i.e., Wt > 0 almost surely.

As a result, we can rewrite the wealth process as follows:

dWt

Wt

= [rt + (µt− rt)πt]dt+σtπtdBt, (3)

where πt := ut/Wt, the fraction of the total wealth in the stock, stands for a trading strategy

which is admissible if πt is adapted and E[
∫ T

0
|σtπt|2dt]<+∞.

Let T be the investment horizon. Almost all of the existing literature on dynamic mean-

variance portfolio choice focuses on the mean-variance criteria for terminal wealth WT . In

contrast, we propose a dynamic mean-variance criterion for log-return of the portfolio, that

is, at any time t < T , we aim to maximize the objective

Et
[
ln
WT

Wt

]
− γt

2
V art

[
ln
WT

Wt

]
(4)

by choosing an admissible strategy πt, subject to (3), where Et and V art represent the

conditional expectation and the conditional variance at time t, respectively, and γt > 0 can

be regarded as the mean-variance preference parameter measuring the tradeoff between

risk and return at time t.
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It should be emphasized that dynamic portfolio choice (4) is time-inconsistent, and we

are concerned with time-consistent strategies under a certain sense of optimality.7 We will

follow Björk, Khapko, and Murgoci [10] to introduce the concept of an equilibrium strategy

to our dynamic mean-variance problem. In what follows, we assume an incomplete market

setting with stochastic market parameters in which the riskfree rate, the stock return rate,

and the stock volatility are all deterministic functions of time t and a stochastic state

variable Xt, namely, rt = r(t,Xt), µt = µ(t,Xt), σt = σ(t,Xt), and Xt follows the dynamics:

dXt =m (t,Xt)dt+ ν (t,Xt)dB
X
t , (5)

where BX
t is another standard Brownian motion correlated with Bt by E[dBX

t dBt] = ρdt

with constant ρ∈ [−1,1], and m(·, ·) and v(·, ·) are two deterministic functions. All of these

deterministic functions are assumed to be right continuous in t. Without extra effort, we

can extend it to a more general case such as these deterministic functions depending on St

as well.

To simplify notation, we denote Rt = lnWt which satisfies

dRt =

[
rt + (µt− rt)πt−

1

2
σ2
t π

2
t

]
dt+σtπtdBt. (6)

Due to the well-known Markovian property implied by (6) and (5), we restrict attention to

feedback strategy πt = π(t,Rt,Xt). The maximization problem with the objective function

(4) can be rewritten as

max
π∈At

Et
[
RT

]
− γt

2
V art

[
RT

]
t∈ [0, T ), (7)

where the set of admissible strategies At is defined as

At =

{
πs = π(s,Rs,Xs) : Et

[∫ T

t

|σsπ(s,Rπ
s ,Xs)|2ds

]
<+∞

}
.

To emphasize the dependence of the log-return process on π, we denote by Rπ
t the

log-return process associated with π. The reward function related to π is denoted by

J(t,Rt,Xt;π) := Et
[
Rπ
T

]
− γt

2
V art

[
Rπ
T

]
.

7 We point out that the dynamic mean-variance criterion for log-return does not yield an analytical solution for the

optimal pre-committed policy even under the geometric Brownian motion model. In contrast, Zhou and Li [57] present

the explicit optimal pre-committed policy for the dynamic mean-variance criterion for terminal wealth, where the

optimal dollar amount in stock is an affine function of the current wealth level.
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Following Björk, Khapko, and Murgoci [10], we now define an equilibrium solution to

problem (7), which leads to an equilibrium strategy that is optimal locally at any time

given that the strategy will be followed in the future.

Definition 1. An admissible trading strategy π̂(·, ·, ·) is called an (optimal) equilibrium

strategy for problem (7) if, at any time t, for any admissible perturbation strategy πh,v ∈A

defined by

πh,v(τ, y, x) =


v, for t≤ τ < t+h,

π̂(τ, y, x), for t+h≤ τ ≤ T,

with any h∈R+ and v ∈R, the reward function J(t, y, x; π̂) is locally better off, namely,

lim inf
h→0+

J(t, y, x; π̂)− J(t, y, x;πh,v)

h
≥ 0.

The equilibrium value function V generated by the equilibrium strategy π̂ is thus defined

as V (t, y, x) = J(t, y, x; π̂).

This definition implicitly imposes time-consistency in the sense that, at any time t < T ,

given the trading strategy in the future the investor will not deviate from her current

trading strategy. It should be pointed out in a discrete-time setting, this kind of time-

consistency can also be achieved by imposing backward induction and a new optimization

problem at any time t (see, e.g., [9] and [52]). However, in a continuous-time setting,

because of the lack of “the previous time spot” and “the next time spot”, the backward

induction constraint cannot be easily adopted.

It is worthwhile pointing out that unlike in Björk, Murgoci, and Zhou [11], our formu-

lation (7) does not lead to a dependence on the wealth value at time t. Therefore, we

do not need the technique developed by Björk, Khapko, and Murgoci [10] for handling

such dependence. Instead, we develop a BSDE approach to solve problem (7) in a general

market setting, due to the fact that the log wealth process involves a quadratic control

variable.
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In the formulation (7), we need to prescribe the mean-variance preference parameter γt

that is less intuitive. Let us consider an alternative dynamic mean variance formulation

loyal to the original (one-period) Markowitz’s model:

min
π∈At

V art(RT ), subject to
1

T − t
Et[RT −Rt]≥ ât, (8)

where ât is a predetermined adaptive process, representing the investor’s expected annual

target return at time t. The formulation (8) indicates that the investor dynamically mini-

mizes her risk subject to a predetermined target annual return, ât, which may depend on

the investment horizon and the realized sample path.

We can similarly define equilibrium solution to problem (8). Indeed, we only need to

replace J and At in Definition 1 by J̄(t,Rt,Xt;π) := −V art
[
Rπ
T

]
and Āt = {π ∈ At :

1
T−sEs[R

π
T −Rπ

s ]≥ âs, s∈ [t, T )}, respectively.

Recently He and Jiang [36] independently study the formulation (8), but focus on myopic

strategies, by considering only deterministic drift and volatility. In contrast, we have a

more general setting, resulting in an extra non-myopic term (known as intertemporal hedg-

ing demand) in markets with stochastic coefficients; in addition, similar to Basak and

Chabakauri [4] and Björk, Khapko, and Murgoci [10], our focus is the formulation (7),

and the formulation (8) will be employed to mainly identify the mean-variance preference

parameter in a complete market.

2.2. Connection between Two Formulations

We have an interesting link from the formulation (7) to the formulation (8).

Theorem 1. Let π̂ be an equilibrium policy to (7) and Rπ̂
t be the associated optimal

return. Then π̂ must be an equilibrium policy to (8) with

ât =
1

T − t
Et[Rπ̂

T −Rπ̂
t ].

In general, there is no easy connection for the reverse direction, i.e. from an equilibrium

policy for (8) to that for (7). Throughout the rest of this paper (unless otherwise stated),

we always make the following assumption, and mainly focus on the formulation (7) in

which the investor’s mean-variance preference is characterized by a constant γ.
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Assumption A: The mean-variance preference parameter γ for an individual investor is

a positive constant and remains unchanged.

A natural and challenging question is how to estimate the mean-variance preference

parameter γ that measures the trade-off between mean return and variance. It is well-

known that in the single-period mean-variance model, there exists a one-one mapping

between γ and the expected target return. As a consequence, one may instead request the

investor to input a target return, from which one can infer γ. The advantage of this idea is

that the target return is very intuitive to investors who are given the market information

(e.g. the expected return level and variance level of risky assets, and the risk-free rate

level in the market). Moreover, investors do not need to know the formula between γ and

the target return, or to understand any optimization behind the mean-variance portfolio

selection. Interestingly, as will be shown in (12), under the complete market with constant

investment opportunity, our dynamic model also reveals a one-one mapping between γ and

the annual target return. This allows us to borrow the idea used in the single-period model

to estimate γ via a fictitious complete market. Thanks to Assumption A, the parameter γ

will be used to solve our mean-variance problem in an incomplete market.

3. Portfolio Choices for a Complete Market

In this section, we study the dynamic log-MV portfolio choice under a complete market

setting with constant market parameters µt ≡ µ, rt ≡ r, and σt ≡ σ.

3.1. An Equilibrium Solution

The portfolio choice problem with reward function (7) yields a closed form equilibrium

solution in the complete market as follows.

Theorem 2. Consider the mean-variance criterion (7) subject to (6) under the complete

market setting with constant market parameters.

(i) An equilibrium strategy is given by

π̂≡ µ− r
(1 + γ)σ2

. (9)
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(ii) The target annual return associated with the equilibrium strategy is constant, namely,

1

T − t
Et[Rπ̂

T −Rπ̂
t ]≡ â=: r+

(
1

1 + γ
− 1

2

1

(1 + γ)2

)
θ2, (10)

where θ= (µ− r)/σ. Moreover, â∈ (r, r+ 1
2
θ2).

Basak and Chabakauri [4] link a certain dynamic mean variance asset allocation to

CARA preferences, generalizing the well-known connection between mean variance and

utility maximization in a one-period setting. In contrast, part (i) of the above theorem

establishes an equivalence between dynamic mean-variance and CRRA preferences in the

complete market. More precisely, the dynamic mean-variance equilibrium strategy as given

by (9) is the same as the optimal solution for CRRA utility maximization (Merton [49])

max
π

Et

[
W 1−γ̃

T − 1

1− γ̃

]
subject to the self-finance process (3), where the relative risk aversion parameter of the

CRRA optimizer γ̃ = 1 + γ. Note that CRRA utility is effectively a moment generating

function of the log return:

Et

[
W 1−γ̃

T − 1

1− γ̃

]
=Et

[
e(1−γ̃) lnWT − 1

1− γ̃

]
=Et

[
1− e−γ lnWT

γ

]
=Et

[
lnWT −

γ

2
(lnWT )2 +

γ2

3!
(lnWT )3− γ

3

4!
(lnWT )4 + · · ·

]
, (11)

which indicates that CRRA preferences make use of all moments of log-return, whereas

mean-variance uses only the first two.8 It is easy to see that when γ→ 0 (γ̃→ 1), the mean-

variance optimization and the CRRA utility maximization are identical and thus yield the

same optimal solution. For γ > 0 (γ̃ > 1), the two optimization problems have different

implications, and the CRRA utility maximization is naturally time consistent whereas the

mean-variance optimization is not. However, they share the same optimal strategy, despite

that the optimality is achieved in different senses. Notice that the equivalence holds only for

γ > 0 and the mean-variance optimization does not make sense for γ < 0, which coincides

with the fact that the estimated value of the CRRA parameter γ̃ is usually larger than 1.

8 Based on this observation, the risk sensitive asset management model, e.g. in Bielecki and Pliska [8] and Davis and

Lleo [27], is also relevant to our dynamic mean-variance model. However, there is no literature on estimating the risk

aversion parameter in the risk sensitive asset management model.
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Later we will see that in incomplete markets, our dynamic mean-variance optimization

and the CRRA utility maximization are not equivalent in general; instead, they are linked

via a measure transformation. See Online Supplement ??. Since (11) remains valid in any

markets, it is not surprising that our mean-variance policy still mimics the Merton’s policy

with CRRA preferences in incomplete markets; see Figures 5 and 6 in Section 4.

Part (ii) of Theorem 2 reveals that under a complete market setting with constant

market parameters, the expected annual return of the equilibrium strategy is constant. It

is easy to see that the return is monotonically decreasing with γ, which coincides with the

intuition that the higher the mean-variance preference parameter, the lower the expected

target return. Part (ii) also suggests that the mean-variance maximizer cannot expect an

unreasonable target return: At time t, any target return that is higher than r+ 1
2
θ2 is never

attainable.

3.2. Recovery of mean-variance preference

Note that (10) can be rewritten as

γ =
1

1−
√

1− 2(â− r)/θ2
− 1, (12)

which indicates a one-one mapping between the mean-variance preference parameter γ and

the expected target annual return â. By Theorem 2, we infer the following result.

Corollary 1. Assume a complete market setting with constant market parameters.

Consider the mean-variance criterion (8) with constant target annual return ât ≡ â∈ (r, r+

1
2
θ2]. Then an equilibrium strategy π̂ is given by (9) and γ is as given by (12).

With constant target annual return, problem (8) is intuitively more appealing. The above

corollary indicates that under a complete market setting with constant market parameters,

problem (8) with a given constant target annual return â shares the same equilibrium policy

as problem (7) with constant mean-variance preference parameter γ computed by (12).

This observation suggests a simple and intuitive way, which can be employed to identify

the mean-variance preference parameter γ used in our dynamic mean-variance criterion

(7): Given a “fictitious” complete market with (exogenously given) constant parameters µ,

sigma and r, an individual investor is asked in a questionnaire to input his/her constant
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target annual return â; then the investor’s mean-variance preference parameter γ used in

(7) can be identified through (12).

The one-to-one mapping in (12) between â and γ is special for the complete market with

constant market parameters (µ, r,σ). In an incomplete market or a complete market with

time-varying market parameters, in which investment opportunity is varying, investors are

unlikely to maintain a constant annual target return â; see, e.g., (19). As a result it may

be difficult to infer investors’ mean-variance preference parameter via their target returns.

That is why we propose a fictitious complete market in the questionnaire to recover the

preference parameter; and then, thanks to Assumption A, we can use the parameter γ to

solve the dynamic mean-variance problem in incomplete markets.

It should be pointed out that as in the single-period Markowitz framework, the estima-

tion suffers a drawback: it may not be robust in the sense that a change in the expected

target return may lead to a different γ. To partially overcome this disadvantage, we may

repeat the estimation with several sets of market parameters and provide an average esti-

mate of λ.

More precisely, in practice we can show investors in the questionnaire several constant

investment environments, e.g. (µi, ri, σi), i= 1,2,3,4, and ask investors to input their target

returns âi within the range between ri and ri + 1
2
θ2
i , i = 1,2,3,4, respectively. Then we

can get γi, i = 1,2,3,4 using (12) and recover bounds on the mean-variance preference

parameter. Note that estimating the mean-variance preference parameter is a special case

of estimating the risk profile of an investor. In general, how to estimate the risk profile in

a robust way is a difficult problem in decision science.

Figure 1 plots the magnitude of γ against the target return level â for given parameter

values r= 0.02, µ= 0.08, and σ= 0.15. This figure shows that the portfolio’s annual target

return input by an investor implies his risk aversion degree in the complete market. For

example, given the market parameter values, an annual target return â= 0.06 corresponds

to the risk aversion parameter γ = 2.5 in our model. Observe that γ is monotonically

decreasing as â increases, which implies that the more risk averse people are, the lower the

annual return level they target. In addition, Theorem 2 indicates that the target return

does not exceed a certain range, which is also verified by Figure 1.
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Figure 1 The change of the mean-variance preference parameter γ against the target annual return â under

the complete market setting with constant market parameters. Default parameter values: r= 0.02, µ= 0.08,

σ= 0.15. This figure indicates that the portfolio’s annual return that an investor targets implies his risk aversion

degree. For example, given the market parameter values, an annual target return â= 0.06 corresponds to the risk

aversion parameter γ = 2.5 in our model.

3.3. A Comparison of Different Strategies

We shall compare our model with two existing dynamic mean-variance models that also

seek equilibrium solutions. Basak and Chabakauri [4] study the following dynamic mean-

variance criterion for terminal wealth, namely,

Et[WT ]− γ
2
V art(WT ),

subject to (2), where γ is constant, and bankruptcy is permitted. In the complete market,

they find that an equilibrium strategy is to invest the following dollar amount in the stock:

µ− r
γσ

e−r(T−t),

which indicates that as in the case of CARA utility maximization, the investment policy

is independent of current wealth. The policy is economically less reasonable because the

rich and the poor should not have the same investment strategy.

Björk, Murgoci, and Zhou [11] propose a dynamic mean-variance criterion with wealth-

dependent mean-variance preference described as follows:

Et[WT ]− γ

2Wt

Vart(WT ).
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Assuming that rt, µt, and σt are all constant, they find a wealth-dependent optimal strat-

egy, where the dollar amount invested in the stock at time t is π∗(t)Wt, with π∗(t) being

the unique solution to the integral equation

π∗ (t) =
µ− r
γσ2

{
e−

∫ T
t [r+(µ−r)π∗(s)+σ2π2

∗(s)]ds + γe−
∫ T
t σ2π2

∗(s)ds− γ
}
. (13)

Since the integral equation does not permit analytical solutions, one has to rely on numer-

ical solutions even in the complete market with constant market parameters, which makes

it difficult to handle a more general market setting.

Numerical results show that with a shorter investment horizon, the integral equation

indeed permits a unique positive solution for positive risk premium µ− r > 0. Unfortu-

nately, it is easy to see

lim
T−t→+∞

π∗(t) =−µ− r
σ2

,

which suggests that in the long run, one needs to short sell a “good” stock (namely, a

stock with positive risk premium). This result is somewhat counter-intuitive, since short

sale of a major index is rare for a long-term investment. In contrast, our model not only

generates a economically reasonable trading policy but also is analytically more tractable:

it can be seen later that our model permits analytical solutions even in many incomplete

markets.

Table 2 summarizes key differences between our model and the models of Basak and

Chabakauri [4] and Björk, Murgoci, and Zhou [11]. It is easy to verify that our model

possesses nice properties consistent with conventional investment rules. For example, 1)

our model can deal with the no-bankruptcy constraint (see Section 5.1); 2) Given a positive

stock risk premium, one should not short sell the stock with positive risk premium, i.e. a

stock with µ> r; and 3) the dollar amount invested in the stock is monotonically increasing

in wealth and stock return, which implies that the rich invest more dollar amount in

the stock than the poor do, and that the higher the stock risk premium, the more the

investment in the stock. The optimal polices of Basak and Chabakauri [4] and Björk,

Murgoci, and Zhou [11] may violate some of these desirable properties.

Figure 2 plots the dollar amounts invested in the stock against total wealth at time 0

for the three strategies with parameter values γ = 1, σ = 0.17, µ = 0.08, r = 0.03, and

T = 30. It can be observed that given the parameter values, the policy of Björk, Murgoci,
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Table 2 A comparison of optimal strategies for dynamic mean-variance models (µ> r)

optimal dollar bankruptcy short sale monotonicity of stock

amount in stock investment in Wt and µ

Basak-Chabakauri µ−r
γσ2 e

−r(T−t) possible never only in µ

Björk-Murgoci-Zhou π∗(t)Wt, with π∗(t) never possible depending on

given in (13) investment horizon

This paper µ−r
(1+γ)σ2 ·Wt never never both

and Zhou [11] is to short-sell stock even with the positive risk premium µ− r = 0.05, the

dollar amount in stock for Basak and Chabakauri [4] is independent of wealth, and our

strategy is to keep a constant (positive) fraction of total wealth in stock.

Figure 2 The dollar amounts invested in stock against the dollar amount of total wealth for our model and the

models of Basak and Chabakauri [4] and Björk, Murgoci, and Zhou [11], respectively, under the complete market

setting with constant market parameters. Parameter values: γ = 1, σ= 0.17, µ= 0.08, r= 0.03, T = 30. It can be

seen that given the parameter values, the policy of Björk, Murgoci, and Zhou [11] is to short-sell stock even with

the positive risk premium µ− r= 0.05, the dollar amount in stock for Basak and Chabakauri [4] is independent of

wealth, while our policy is to hold 86.5% of total wealth in stock.

4. Portfolio Choices for Incomplete Markets

In this section, we consider the dynamic log-return mean-variance criterion under incom-

plete market settings. We will show that the model is still analytically tractable in some

cases. Moreover, given reasonable market parameters, the resulting investment policies also

comply with the popular investment advice mentioned earlier.
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4.1. A General Theorem

It turns out that under the incomplete market settings as described by (1) and (5), a

semi-analytical equilibrium solution is still available, and the corresponding percentage

allocation to the stock π̂t = π̂(t,Xt) is independent of Rt. The result is stated in the

following.

Theorem 3. Consider the mean-variance criterion (7) subject to (6) under the incom-

plete market setting (1) and (5). Assume

E
[∫ T

0

θ2
sds

]
<+∞, E[e

− γ2ρ2

(1+γ)2
(
∫ T
0 (rt+θ2t /2)dt+

∫ T
0 θt/ρdBXt )

]<+∞,

where θt = θ(t,Xt) = µ(t,Xt)−r(t,Xt)
σ(t,Xt)

. Then we have the following results.

(i) An equilibrium policy is given by

π̂ (t,Xt) =
µt− rt

(1 + γ)σ2
t

− ργZt
(1 + γ)σt

, (14)

where Zt is uniquely determined by the BSDE

dYt =−g(t,Zt)dt+ZtdB
X
t , YT = 0 (15)

with g(t, z) = rt + 1
2
θ2
t −

γ2(θt+ρz)2

2(1+γ)2
.

(ii) For the non-trivial case ρ 6= 0, there exists a deterministic function f(·, ·) such that

the solution (Y,Z) for the BSDE (15) satisfies

Yt = f(t,Xt) =:−(1 + γ)2

γ2ρ2
lnEt

[
e
− γ2ρ2

(1+γ)2
(
∫ T
t (rs+

θ2s
2

)ds+
∫ T
t θs/ρdBXs )

]
, (16)

Zt = ν(t,Xt)
∂f

∂x
(t,Xt). (17)

Moreover, if f(·, ·) is C1,2, then f(·, ·) solves
∂f

∂t
+m(t, x)

∂f

∂x
+
ν2(t, x)

2

∂2f

∂x2
+ g
(
t, ν(t, x)

∂f

∂x

)
= 0

f(T,x) = 0.

(18)
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Furthermore,

1

T − t
Et[Rπ̂

T −Rπ̂
t ] =

1

T − t
f(t,Xt), t∈ [0, T ). (19)

Part (i) of the above theorem shows that the equilibrium policy consists of two terms. The

first term, µt−rt
(1+γ)σ2

t
, corresponds to the myopic demand fully determined by the current values

of market parameters, which is the same as the equilibrium policy obtained in a complete

market with constant market parameters. The second term, − ργZt
(1+γ)σt

=− ργνt
(1+γ)σt

∂f
∂x

, is often

referred to as the intertemporal hedging demand (Merton [49], Basak and Chabakauri [4]),

which is to hedge against the fluctuations in exogenous random investment opportunities.

Note that the hedging demand vanishes when the correlation ρ= 0, as there is no feasible

way of hedging.

Part (ii) of the above theorem presents a semi-explicit equilibrium policy in a general

incomplete market, which provides two numerical ways to find the optimal policies, either

via the Monte Carlo simulation for the expectation expression (16) or via the finite dif-

ference method for PDE (18). Note that the expectation expression (16) can be extended

to the multi-asset case provided the stochastic state variable Xt is one-dimensional; when

Xt is multi-dimensional, such an expectation expression is no longer available, but we are

still able to use Monte-Carlo simulations for BSDEs to numerically find equilibrium policy.

This is because our problem can be formulated as BSDEs and there exist efficient Monte-

Carlo simulations for BSDEs in literature (e.g., Chassagneux and Richou [20]). In Online

Supplement ??, we show how to employ the Monte-Carlo simulation approach developed

by Chassagneux and Richou [20] to compute f(t, x) and its derivatives.

In contrast to the invariant annual target return in a complete market with constant

market parameters, (19) indicates that in an incomplete market, the target annual return

associated with the equilibrium solution depends on the stochastic variable Xt as well as

the time to maturity, which is consistent with the intuition that the investor’s expected

return may change subject to market performance and investment horizon. Unlike a com-

plete market with constant parameters in which investment opportunity is invariant, an

incomplete market leads to time-varying investment opportunity. Consequently, specifying

an invariant (i.e. independent of time or state variables) annual target return may make

no sense. Therefore, it is impossible to elicit investors’ mean-variance preference parame-

ter γ in an incomplete market by only use of an invariant annual target return. That is

 Electronic copy available at: https://ssrn.com/abstract=3437268 



Author: Dynamic Mean-Variance Analysis

20 ;

why we resort to a fictitious complete market with constant investment opportunity in the

questionnaire to recover investors’ risk preferences.

When directly considering the mean-variance problem (8) in incomplete markets, we

face a difficulty of specifying reasonable dynamic annual target return ât. To mitigate the

difficulty, noting that Theorem 1 also applies to incomplete markets, we conclude from

Theorem 1 and Theorem 3(ii) that the equilibrium solution as given in (14) for the mean-

variance problem (7) with constant mean-variance preference parameter also solves the

mean-variance problem (8) with a time-varying and state-dependent annual target return

ât = 1
T−tf(t,Xt), where f(·, ·) is as given by (16). Due to the difficulty in specifying ât in

(8) for incomplete markets, this paper only focuses on the mean-variance problem (7) for

incomplete markets.

Although in incomplete markets the mean-variance criterion for wealth is different from

the CARA-type utility maximization, Basak and Chabakauri [4] show that their optimal

equilibrium strategy is identical to the policy obtained by a CARA-type utility maximiza-

tion through a change of probability measure. We can derive a similar result that links our

mean-variance criterion for log returns to CRRA preferences. Indeed, let π̂ be the equi-

librium strategy as given in (14). Define the random variable ε by ε= e−
γ2

2

∫ T
0 Vart(dEt[Rπ̂T ]),

where V art(dEt[R
π̂
T ]) is the conditional variance of the local increment of Et[R

π̂
T ].9 Since

ε > 0, we can construct a new probability measure Q by the density ε
E[ε]

. Then the strategy

(14) is the same as the optimal policy for the CRRA utility maximization max
π

EQ

[
W 1−γ̃

T

1− γ̃

]
with γ̃ = 1 + γ. A detailed proof is in Online Supplement ??.

4.2. Analytical Solutions for Two Cases

The PDE problem (18) usually does not admit analytical solutions for a general process

of Xt. However, some special structures in Xt may lead to explicit equilibrium solutions

and allow us to explore the implications of dynamic mean-variance investment policies for

markets with stochastic coefficients.

4.2.1. Stochastic Volatility Consider a stochastic volatility model in which the stock

price St and a state variable Xt follow

dSt
St

= (r+ δX
1+α
2α
t )dt+X

1
2α
t dBt, (20)

9 The notation
∫ T
0

Vart(dEt[Rπ̂T ]) is not mathematically rigorous. A rigorous notation can be used, if we denote

Zt = Et[Rπ̂T ], then
∫ T
0

Vart(dEt[Rπ̂T ])=〈Z〉T is the quadratic variation of the process Z over the time interval [0, T ].
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dXt = λ
(
X̄ −Xt

)
dt+ ν̄

√
XtdB

X
t , (21)

where α 6= 0 is the constant elasticity of the market price of risk δX
1
2
t , δ ∈R, λ> 0, ν̄ > 0,

and X̄ ∈R are all constants. Dynamic portfolio choice under this market setting has been

widely studied. See, e.g., Liu [43] for CRRA preferences for the terminal wealth, Chacko

and Viceira [19] for recursive preferences of intermediate consumption (the case α=−1),

and Basak and Chabakauri [4] for the mean-variance preferences for terminal wealth.

Proposition 1. An equilibrium investment policy for the stochastic volatility market

(20)-(21) is given by

π̂ (t,Xt) =
δ

1 + γ
X

α−1
2α
t + Ĥ(t,Xt), (22)

where

Ĥ(t,Xt) =− ιγρν̄δ2

(1 + γ)2X
α−1
2α
t

eq̄(T−t)− 1(
b̄+ q̄

)
(eq̄(T−t)− 1) + 2q̄

,

ι=
1 + 2γ

1 + γ
, q̄=

1

1 + γ

[
γ2 (λ+ ρν̄δ)2 +λ2 (2γ+ 1)

] 1
2 , b̄= λ+

γ2ρδν̄

(1 + γ)2 . (23)

Consequently,

(i) the optimal percentage allocation to the stock π̂(t,Xt) is positive (negative) for δ > 0

(δ < 0);

(ii) π̂(t,Xt) is increasing (decreasing) in the market price of risk δX
1
2
t when α < 0 or

α> 1 (α∈ (0,1));10

(iii) The hedging demand Ĥ(t,Xt) is positive (negative) when ρ< 0 (ρ> 0);

(iv) π̂(t,Xt) is increasing (decreasing) in the investment horizon T−t when ρ< 0 (ρ> 0).

10 It can be seen immediately that π̂ is independent of Xt when α= 1, i.e. in the case of Heston’s stochastic volatility

model.
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Proposition 1 presents a percentage allocation rule. As is common, the optimal percent-

age allocation to the stock comprises familiar myopic and intertemporal hedging terms.

Part (i) of Proposition 1 shows that for a “good” stock with positive risk premium (i.e.

δ > 0), the optimal policy is to keep a certain positive fraction of total wealth to the stock,

which generalizes the similar result under a complete market setting with constant market

parameters. The result π̂ > 0 for δ > 0 has two implications consistent with financial advice.

First, the mean-variance optimizer should not short sell a “good” stock. Second, the rich

should invest more dollar amount in stock than the poor, because the optimal percentage

allocation π̂ does not depend on wealth.

Part (ii) shows that the stock investment policy is increasing in the market price of

risk when the elasticity of market price of risk with respect to stock volatility is either

negative (α< 0) or relatively high (α> 1). Part (iii) indicates that the sign of the hedging

demand depends on the sign of the correlation between the stock and the state variable. A

negative correlation induces a positive hedging demand to offset the fluctuation risk due

to stochastic investment opportunities. Similar properties and implications are presented

by Basak and Chabakauri [4], though their investment policy is independent of current

wealth.

Part (iv) of Proposition 1 characterizes the monotonicity of the the stock investment

with respect to the investment horizon.

The case of α= 1 corresponds to the well-known Heston’s stochastic volatility model for

which empirical studies support a negative correlation between stochastic volatility and

stock return (see [37]). We then deduce that in a market driven by the Heston model,

people having longer investment horizon should invest more in stock, which is consistent

with conventional financial wisdom. It should be pointed out that the optimal policy of

Basak and Chabakauri [4] may not be monotone in the investment horizon (see Part (iv)

in Corollary 2 in their paper).

Our model also suggests an asymptotic long-term investment policy, as T − t→∞ in

(22), π̂∞ (t,Xt), where

π̂∞ (t,Xt) =
δ

1 + γ
X

α−1
2α
t − ιγρν̄δ2

(1 + γ)2X
α−1
2α
t

1

b̄+ q̄
, (24)

with ι, b̄, and q̄ defined by (23). Note that π̂∞ (t,Xt) = 0 in Basak and Chabakauri [4].
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As mentioned earlier, our mean-variance optimization problem takes the first two

moments of the log return, while the CRRA utility maximization uses all moments. In a

complete market, the two problems yield the same optimal investment policy. However, in

an incomplete market, their policies differ due to different hedging demands. Interestingly,

their hedging demands possess the same structure for this stochastic volatility market

setting. Indeed, assuming CRRA risk aversion γ̃ = γ + 1, the optimal CRRA investment

policy takes the same form as in (22) except that (23) is replaced by (see Liu [43])

ι= 1, q̄=

[
λ2 +

γ

1 + γ

(
2λρν̄δ+ δ2ν̄2

)] 1
2

, b̄= λ+
γρδν̄

1 + γ
. (25)

4.2.2. Time-Varying Gaussian Mean Return Consider the time-varying Gaussian

mean return model in which the stock price St and the market price of risk Xt are governed

by

dSt
St

= (r+σXt)dt+σdBt, (26)

dXt = λ
(
X̄ −Xt

)
dt+ νdBX

t , (27)

where r, σ, λ, ν, and X̄ are all positive constants.11 Dynamic portfolio choice under this

market setting or its special case has also been widely studied by Merton [49], Kim and

Omberg [40], Campbell Viceira [17], Wachter [55], and Basak and Chabakauri [4]. Note

that all these literature, except Basak and Chabakauri [4], consider utility maximization.

Here, as in Basak and Chabakauri [4], we consider the mean-variance type problem.

Proposition 2. An equilibrium policy for the time-varying Gaussian mean return mar-

ket (26)-(27) is given by

π̂ (t,Xt) =
Xt

σ (1 + γ)
+ Ĥ(t,Xt), (28)

where

Ĥ(t,Xt) =− ιγρν

(γ+ 1)2σ

q
(
e2q(T−t)− 1

)
Xt +λ

(
eq(T−t)− 1

)2
X̄

q [(b+ q) (e2q(T−t)− 1) + 2q]
,

ι=
1 + 2γ

1 + γ
, q=

1

γ+ 1

[
γ2 (λ+ ρν)2 +λ2 (2γ+ 1)

] 1
2 , b= λ+

γ2ρν

(1 + γ)2 . (29)

11 For late analysis, we always assume E [Xt] = X̄ for all t. That is, X̄ is the statistic mean value of Xt.
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Consequently,

(i) the optimal percentage allocation to the stock π̂(t,Xt) is increasing in the market

price of risk Xt;

(ii) The optimal mean percentage allocation to the stock E[π̂(t,Xt)] is positive (negative)

when average market price of risk X̄ is positive (negative);

(iii) The mean hedging demand E[Ĥ(t,Xt)] is positive (negative) for ρ< 0 (ρ> 0) when

X̄ > 0, and the converse is true for X̄ < 0;

(iv) The optimal mean percentage allocation to the stock E[π̂(t,Xt)] is increasing

(decreasing) in the investment horizon for ρ < 0 (ρ> 0) when X̄ > 0, and the converse is

true for X̄ < 0.

The above proposition presents a percentage allocation rule for the mean-variance

investor in the market with time-varying Gaussian return. Again, the optimal percentage

allocation to the stock has two components: the myopic demand and the intertemporal

hedging demand Ĥ(t,Xt). The policy also inherits all of desirable properties in Basak

and Chabakauri [4], as presented in parts (i)-(iii) of Proposition 2, where some properties

heavily depend on the magnitude of the market price of risk, therefore we characterize the

optimal policy in the average sense. In addition, part (iv) of Proposition 2 shows the mono-

tonicity of optimal mean investment policy in the investment horizon. All implications are

similar to those for the stochastic volatility model. Note that the result of monotonicity in

the investment horizon does not hold in the model of Basak and Chabakauri [4].

As in the case with stochastic volatility, our model also suggests an asymptotic long-term

investment behavior, as T − t→∞ in (28):

π̂∞ (t,Xt) =
Xt

σ (1 + γ)
− ιγρν

(γ+ 1)2 σ (b+ q)

(
Xt +

λ

q
X̄

)
, (30)

where ι, b, and q are as given in (29).
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For comparison, we present the optimal investment policy, derived by Kim and Omberg

[40] for CRRA utility maximization with risk aversion γ̃ = γ + 1, which takes the same

form as in (28) except that (29) is replaced by

ι= 1, q=

[
λ2 +

γ

1 + γ

(
ν2 + 2λρν

)] 1
2

, b= λ+
γρν

1 + γ
. (31)

Table 3 summarizes a comparison of optimal investment policies between our model and

Basak-Chabakauri’s model under two incomplete market settings: stochastic volatility and

Gaussian mean return. Both policies inherit the properties under the complete market. In

addition, our stock investment is monotone in investment horizon, while theirs is not.

Table 3 A comparison of optimal policies between our model and Basak-Chabakauri’s model under incomplete

markets (µt > rt)

wealth-dependent bankruptcy short sale monotonicity of stock

policy investment in investment horizon

Stochastic Volatility

Basak-Chabakauri no possible never not always

This paper yes never never yes

Gaussian Mean Return

Basak-Chabakauri no possible never not always

This paper yes never never yes

4.3. Numerical Results

We now conduct numerical analysis to demonstrate our model. Without loss of generality,

we focus on the time-varying Gaussian mean-return market, where the parameter values

estimated from the historical data by Wachter [55] are used: ρ=−0.93, r= 1.7%, σ= 15%,

X0 = X̄ = 0.273, λ= 0.27, and ν = 6.5%.

4.3.1. Differences between Our Model and the Mean Variance Model for Terminal

Wealth. Figure 3 presents the mean dollar amount invested dynamically across the time

(or equivalently against different investment horizon cross-sectionally requested by different

investors) for different initial wealth. It can be observed that our policy has two monotonic

properties: It is an increasing function of both the investment time horizon and the initial
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wealth. This conforms with the empirical finding of Brennan, Schwartz, and Lagnado [14]

and Barberis [3] that “the 20-year strategy always invests more in stock than the one-

month strategy, and the differences are often large.” As a comparison, Figure 3 also plots

the policy of Basak and Chabakauri [4], which is independent of initial wealth and is not

monotone against investment horizon.

The analytical investment policy indicates that the myopic term is independent of the

investment horizon. Hence, the phenomenon that people having longer investment horizon

should invest more in stock arises from the time-dependence of the intertemporal term,

known as the hedging demand. From Figure 3 we can observe that as the investment

horizon tends to zero, the hedging demand vanishes and the percentage of wealth in stock

(i.e. the case of wealth=1) equals the myopic term X0

(1+γ)σ
= 45.5%.

Figure 3 The expected optimal dollar amounts invested in stock with different wealth against investment

horizon under the time-varying Gaussian mean return model. Note that curve for wealth= 1 is also the curve for

the relative amount (i.e. the mean percentage allocation) invested in stock. As a comparison, the dash line is

from the policy in Basak and Chabakauri [4]. It can be seen that our investment policy satisfies those criteria of

the conventional investment wisdom, namely that the richer should invest more dollar amount in stocks, people

with longer investment horizon should invest more in stocks, and investors never short a good stock in long run.

Parameter values estimated by Wachter [55] are used: ρ=−0.93, r= 0.017, σ= 0.15, X0 = X̄ = 0.273, γ = 3,

λ= 0.27, and ν = 0.065.

Under the time-varying Gaussian mean return market, the stock return may change

with Xt. Figure 4, reports the expected target annual return of portfolio, â0, against initial

instantaneous stock return rate µ0 = r + σX0. It is not surprising to observe that the

expected target annual return is increasing with µ0.

As in Campbell and Viceira [17] and Basak and Chabakauri [4], we assess the significance

of the intertemporal hedging demands by the ratio of the average intertemporal hedging
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Figure 4 The expected target annual return â0 against initial instantaneous stock return rate r+σX0 under

the time-varying Gaussian mean return model. Default parameter values: ρ=−0.93, r= 0.017, σ= 0.15, T = 20,

X̄ = 0.273, γ = 3, λ= 0.27, ν = 0.065. It can be seen that the expected target annual return is increasing with the

initial instantaneous stock return rate.

demand over the average total demand, namely, E[Ĥ(t,Xt)]/E[π̂(t, X̄)]. Table 4 reports the

ratios with those of Basak and Chabakauri [4] (in parentheses), for different values of ρ and

λ. It can be seen that the ratios are large for longer investment horizons, which indicates

that the intertemporal hedging demand is significant for a long-term investment12.

4.3.2. Similarity between Our Mean-Variance Model and the CRRA Model. Using

the default parameter values, we compare in Figure 5 the asset allocation policies derived

from the CRRA utility maximization model and our mean-variance model under the Gaus-

sian mean return market setting. It can be seen that the two models yield similar asset

allocation policies.

To further examine the linkage between our mean-variance model and the CRRA one, we

define the equivalent welfare loss rate, L, for an investor with CRRA utility using instead

the dynamic mean-variance portfolio as follows:

JCRRA
(
t,X, (1−L)W ;πCRRA

)
= JCRRA (t,X,W ; π̂)

12 Note that the mean-variance preference parameter γ does not affect the average intertemporal hedging ratio in

Basak and Chabakauri [4] but does in our model, and interestingly, we find that our average hedging ratio converges

to the one of Basak and Chabakauri [4] as γ in our model tends to infinity (see the last group of Table 4), which is

also proved in Online Supplement ??. A possible explanation is that our model is for a relative risk aversion investor,

thus the intertemporal hedging ratios depend on the mean-variance preference parameter γ; as γ is sufficiently large,

the investor tends to be absolutely risk averse and the intertemporal hedging ratio becomes insensitive to the change

of γ.
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Horizon

ρ 6-month 1-year 10-year 20-year

-1.00 3.90 7.18 25.98 27.88
(5.90) (10.79) (38.61) (41.89)

-0.93 3.64 6.69 24.38 26.15
(5.50) (10.08) (36.31) (39.35)

-0.50 1.97 3.66 13.85 14.83
(3.00) (5.54) (20.86) (22.46)

0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

0.50 -2.02 -3.82 -15.65 -16.64
(-3.09) (-5.85) (-24.07) (-25.45)

1.00 -4.08 -7.79 -33.18 -35.10
(-6.27) (-12.03) (-51.38) (-53.85)

Horizon

λ 6-month 1-year 10-year 20-year

0.00 3.88 7.59 52.16 73.23
(5.87) (11.39) (70.15) (91.09)

0.27 3.64 6.69 24.38 26.15
(5.50) (10.08) (36.31) (39.35)

0.30 3.61 6.60 22.63 23.88
(5.46) (9.94) (33.83) (36.03)

0.60 3.36 5.78 12.56 12.60
(5.10) (8.73) (19.06) (19.13)

0.90 3.14 5.09 8.53 8.54
(4.76) (7.71) (12.98) (12.98)

Horizon

γ 6-month 1-year 10-year 20-year

1 2.09 3.87 14.37 15.33
3 3.64 6.69 24.38 26.15
5 4.22 7.76 28.14 30.27
10 4.79 8.78 31.74 34.25
30 5.24 9.61 34.66 37.5
60 5.37 9.84 35.46 38.41

(5.50) (10.08) (36.31) (39.35)

Table 4 Average intertemporal hedge ratios in percentage. The default parameters are γ = 3 and those in

Wachter [55] as used throughout this section. The numbers in parentheses are taken from Basak and Chabakauri

[4]. It appears that the intertemporal term is quite significant especially for a long time horizon.

where the left and right hand sides are the expected CRRA utilities from the optimal

CRRA policy πCRRA with risk aversion γ̃ and from our optimal mean-variance policy π̂

with mean-variance preference γ = γ̃ − 1, respectively. Due to the homogeneity, it is easy

to see that L does not depend on initial wealth W . Figure 6 plots the certainty equivalent

welfare loss rate L for a CRRA investor using the dynamic mean variance strategy against
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Figure 5 The optimal mean percentage allocations in stock against investment horizon for the CRRA utility

maximization model with risk aversion γ̃ and our mean-variance model with mean-variance preference γ = γ̃− 1

under a Gaussian mean return market setting. Parameter values estimated by Wachter [55] are used: ρ=−0.93,

r= 0.017, σ= 0.15, X0 = X̄ = 0.273, λ= 0.27, and ν = 0.065.

investment horizon for different risk aversion. Note that L is small; in particular, with 20

years investment horizon, the largest loss rate is no more than 1.2%. Furthermore, the lower

the risk aversion parameter, the lower the equivalent welfare loss rate, because our mean-

variance model is reduced to the log utility maximization model when we send γ̃→ 1.13

On the other side, it is not surprising that the welfare loss is increasing with investment

horizon.

Figure 6 The certainty equivalent welfare loss rate when an investor having a CRRA utility instead uses our

mean-variance policy under a Gaussian mean return market setting. Note that the loss rate is small, indicating

the similarity between the CRRR optimal policy and our dynamic mean variance policy. Parameter estimated in

Wachter [55] are used: ρ=−0.93, r= 0.017, σ= 0.15, X0 = X̄ = 0.273, λ= 0.27, and ν = 0.065.

13 It should be pointed out that this monotonicity may not be true for a extremely big γ̃ for which there is almost

no investment in stock and few welfare losses would be incurred as a result.
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5. Extension to Portfolio Constraints

We shall show that our analysis can be extended to incorporate portfolio constraints. The

extension to multiple stocks is placed in Online Supplement ??.

We impose the following portfolio constraints to the incomplete market setting described

in Section 4:

πt ≤ πt ≤ π̄t for any t∈ [0, T ], (32)

where πt and π̄t are both adapted stochastic processes, and −∞ ≤ πt < π̄t ≤ +∞. The

constraints cover the widely used no-short-sale constraint (πt ≡ 0) and no-borrowing con-

straint (π̄t ≡ 1). We can similarly define equilibrium solutions under this setting. It turns

out that a semi-analytical equilibrium solution is still available as follows.

Proposition 3. Consider the mean-variance criterion (7) subject to (6) in the incom-

plete market with portfolio constraints (32). Assume

E[

∫ T

0

θ2
sds]<+∞, E[e−

γ
1+γ

(ρ
∫ T
0 (rt+θ2t /2)dt+

∫ T
0 θtdBXt )]<+∞.

Then we have the following statements:

(i) There is an equilibrium policy14

π̂t =

[(
µt− rt

(1 + γ)σ2
t

− ργZt
(1 + γ)σt

)
∨πt

]
∧ π̄t, (33)

where Zt is uniquely determined by the BSDE (15) with

g(t, z) = rt +
1

2
θ2
t −

1

2

(
(θt−σtπt)∧

γ(θt + ρz)

1 + γ
∨ (θt−σtπ̄t)

)2

(34)

(ii) If πt = π(t,Xt) and π̄t = π̄(t,Xt) for some deterministic functions π(·, ·) and π̄(·, ·),

there exists a deterministic function f(·, ·) such that the solution (Y,Z) for the BSDE (15)

14 Here we use the notations a∨ b= max(a, b) and a∧ b= min(a, b). In addition, to ensure the equilibrium policy π̂

depends on Xt and t only, we assume that π and π̄ are FB
X

t -adapted.
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with (34) satisfies Yt = f(t,Xt) and Zt = ν(t, x)∂f
∂x

. Moreover, if f(·, ·) is C1,2, then f(·, ·)

solves the PDE problem (18) with g(·, ·) as given by (34).

In a complete market with constant parameters, the optimal policy (33) reduces to

π̂t :=

(
µ− r

(1 + γ)σ2
∨πt

)
∧ π̄t,

which is the same as the policy under the CRRA utility maximization with relative risk

aversion parameter γ̃ = γ+ 1 (see, e.g., Cvitanic and Karazatzs [23] and Dai, Jin, and Liu

[25]). The policy is myopic with respect to portfolio constraints in the sense that no action

is taken before the constraints are binding.

However, in an incomplete market, the optimal policy is usually non-myopic with respect

to portfolio constraints because the hedging demand is affected by the constraints through

g(·, ·). Figure 7 shows the stock allocation for the stochastic volatility model with and

without portfolio constraints, where the default parameter values are α = 1, ρ = −0.52,

r = 0.017, δ = 1, X0 = X̄ = 0.04, γ = 2.5, λ = 0.3374, T = 15, ν̄ = 0.6503, bt ≡ 0.4, and

b̄t = +∞. For this special case without portfolio constraint, our analytical result shows

that the percentage stock allocation is independent of the level of market price of risk.

The same property holds for the portfolio constraint case. Moreover, we can observe a

nonmyopic phenomenon: In anticipation of the constraint being likely binding in the future,

the investor reacts before binding. Since the constraint implies a minimum fraction of

wealth invested in stock and the correlation ρ is negative, more hedging demand is incurred

such that the investor raises stock investment before binding.

6. Conclusion

We propose a dynamic, time consistent, mean-variance model for portfolio log-returns.

The optimal policy is obtained analytically even in some incomplete markets. We show

that the asset allocation policy satisfies three investment criteria from the conventional

wisdom, such that (1) rich people should invest more dollar amount in risky assets; (2)

the longer the investment horizon, the more proportional amount of money should be

invested in risky assets; (3) for long-term investment, people should not short sell major

stock indices, whose returns are higher than the risk-free rate. These three requirements

pose challenges to existing portfolio theories. The model can also elicit the mean-variance
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Figure 7 The fraction of total wealth in stock against time for the stochastic volatility model with and without

portfolio constraints. Default parameter values: α= 1, ρ=−0.52, r= 0.017, δ= 1, X0 = X̄ = 0.04, γ = 2.5,

λ= 0.3374, T = 15, ν̄ = 0.6503, bt ≡ 0.4, and b̄t = +∞.

preference parameter by asking investors to input their desired expected returns in a ficti-

tious complete market. Further, the model is extended to incorporate portfolio constraints

and to handle multiple stocks.

It will be interesting to investigate further how to apply the model to study the asset

allocation part of robo-advising, by incorporating other factors such as taxes, retirement

and educational needs of investors, and age of investors. We will leave this for future study.
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Online Supplement
A Dynamic Mean-Variance Analysis for Log Returns

Min Dai, Hanqing Jin, Steven Kou, Yuhong Xu

A. Extension to Multiple Stocks
We now extend our baseline analysis to the case of multiple stocks. Assume that a riskless
bond and N risky stocks are available for investment. The stock prices Si, i= 1, ...,N , satisfy

dSit

Sit

= µi (t,Xt)dt+
N∑
j=1

σij (t,Xt)dBjt,

where Bt ≡ (B1t, ...,BNt)
⊤ is a standard N -dimensional Brownian motion, and µi and σij

are deterministic functions of t and K state variables, X = (X1, ...,XK)
⊤, which satisfy

dXjt =mj (t,Xt)dt+
K∑
k=1

νjk (t,Xt)dB
X
kt , (35)

where BX
t ≡ (BX

1t , ...,B
X
Kt)

⊤ is another standard K-dimensional Brownian motion, and mj

and νjk are deterministic functions of t and X. We assume E(BitB
X
jt ) = ρijdt, for all i and

j.
To simplify notations, we denote by µ≡ (µ1, ..., µN)

⊤ the vector of stock expected return
rates, and σ ≡ (σij)N×N the volatility matrix (assumed invertible), respectively. Similarly,
m≡ (m1, ...,mK)

⊤ and ν ≡ (νij)K×K denote the expected growth and the volatility matrix of
X, respectively, and ρ= (ρij)N×K denotes the correlation matrix of B and BX . The investor’s
wealth is then governed by

dWt

Wt

=
(
r+π⊤

t (µ− r1)
)
dt+π⊤

t σdBt,

where π = (π1, ..., πN)
⊤ denotes the vector of percentage allocations of wealth in the N

stocks, and 1 denotes the N -dimension unit vector (1, . . . ,1)⊤. Consequently, the log-return
RT = lnWT follows

dRt = [r+π⊤
t (µ− r1)− 1

2
π⊤
t σσ

⊤πt]dt+π⊤
t σdBt. (36)

The dynamic mean-variance problem is the same as before. We maximize the objective
function (7) subject to (36). By analogous analysis, we have the following result.
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Proposition 4. Assume the above multiple-stock market setting with E[
∫ T

0
θ2sds]<+∞

and E

[
e

γ2

(1+γ)2

(∫ T
0 [|ρ|2(rt+ 1+2γ

(1+γ)2
|θt|

2

2
)− 1

2
γ2

(1+γ)2
|ρ⊤θt|2]dt−

∫ T
0 θ⊤t ρdBX

t

)]
<+∞.

(i) There is an equilibrium policy

π̂ (t,Xt) =
1

1+ γ

(
σσ⊤)−1

(µ− r1)− γ

1+ γ
(σ−1)⊤ρZt, (37)

where Zt is uniquely determined by the BSDE with multiple Brownian motions

dYt =−g(t,Zt)dt+Z⊤
t dB

X
t , YT = 0, (38)

with g(t, z) = rt+
1
2
|θt|2− 1

2
γ2

(1+γ)2
|θt + ρz|2.

(ii) In the case K = 1, i.e., X is a 1-dimensional process generated by a 1-dimensional

standard Brownian motion BX
t , denote15

k=
γ

1+ γ
, β(t, x) =

θ(t, x)⊤ρ

|ρ|2
.

α(t, x) = r(t, x)+
1− k2

2
|θ(t, x)|2+ k2

2

|θ(t, x)⊤ρ|2

|ρ|2
.

Then

Yt =
−1

|kρ|2
lnEt[e

−|kρ|2(
∫ T
t α(s,Xs)ds+

∫ T
t β(s,Xs)dBX

s )].

(iii) There exists a deterministic function f(·, ·) such that the solution (Y,Z) for the BSDE

(38) satisfies Yt = f(t,Xt) and Zt = ν(t,X) ∂f
∂X

. Moreover, if f(·, ·) is C1,2, then f = f(t,X)

satisfies the following PDE:16

∂f

∂t
+

(
m− γ2

(1+ γ)2
νρ⊤σ−1 (µ− r1)

)⊤
∂f

∂X
+

1

2
Tr

(
ν⊤ ∂2f

∂X2
ν

)
− 1

2

γ2

(1+ γ)2

(
ρν⊤ ∂f

∂X

)⊤

ρν⊤ ∂f

∂X
+

2γ+1

2(γ+1)2
(µ− r1)⊤

(
σσ⊤)−1

(µ− r1)+ r= 0,

15 Again, we consider the non-trivial case |ρ| ̸= 0.
16 Here Tr

(
ν⊤ ∂2f

∂X2 ν
)

means the trace of the matrix ν⊤ ∂2f
∂X2 ν.
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subject to terminal condition f (T,X) = 0, and we denote

∂f

∂X
≡
(

∂f

∂X1

, ...,
∂f

∂XK

)⊤

and ∂2f

∂X2
≡
(

∂2f

∂Xi∂Xj

)
K×K

,

respectively.

In the case that X is a multi-dimensional process generated by a multi-dimensional Brow-
nian motion, due to the interplay among the components of Brownian motion, we cannot
get an explicit solution for the BSDE (38) in terms of conditional expectation as done in
Basak and Chabakauri [4]. Note that a general quadratic BSDE usually does not have an
explicit solution except for the 1-dimension case. For example, under some mild regularity
condition, the quadratic BSDE

dYt =−1

2
αZ2

t dt+ZtdBt, YT = ξ

with 1-dimension standard Brownian motion Bt admits an explicit solution Yt =
1
α
lnEt[e

αξ];
while in the case of 2-dimension standard Brownian motion (B1,t,B2,t), the quadratic BSDE

dYt =−1

2
(αZ2

1,t+βZ2
2,t)dt+Z1,tdB1,t +Z2,tdB2,t, YT = ξ

does not admit an explicit solution unless α= β.
However, we can still use Monte-Carlo simulations for BSDE (38) to numerically find the

equilibrium policy for the high-dimensional problem.17 See Online Supplement B.
It can be seen that the optimal percentage allocation still contains two parts: one reflects

the myopic demand, and the other reflects the intertemporal hedging demand. As in Basak
and Chabakauri [4], Proposition 4 reveals a cross-correlation effect on the optimal allocation.
Due to this cross-correlation effect, some conventional investment rules that hold in the
single-stock case may no longer be true. For example, given all positive stock premiums (i.e.,
µi > r for all i), short-selling some stocks is likely optimal.18 Hence, for the multiple stocks
case, it may make more sense to examine the properties of the total percentage of wealth
invested in stocks, 1⊤π̂.

17 This comment also applies to the portfolio constraints case in Proposition 3.
18 For example, given µi >µj > r, we may long stock i and short stock j in some scenarios.
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The overall no-short-sale

Let us first examine when 1⊤π̂ ≥ 0, which implies the overall no-short-sale. Construct a

covariance-weighted portfolio π̃ =
(
σσ⊤)−1

1, whose wealth process is denoted by W π̃
t . Let

W π̂
t be the wealth process associated with the optimal portfolio π̂. It is easy to see

Et[dW
π̃
t dW

π̂
t ] = π̃⊤σσ⊤π̂W π̃W π̂dt= 1⊤π̂W π̃W π̂dt.

We then infer that 1⊤π̂ ≥ 0 if and only if the returns of the covariance-weighted portfolio

and the optimal portfolio are not negatively correlated.

The monotonicity of the total percentage stock allocation with investment horizon

Now let us examine when the total percentage stock allocation is monotonically increasing

with investment horizon, namely, the monotonicity of 1⊤π̂ with respect to T − t. For sim-

plicity, we assume K = 1, and µ = µ(X), r = r(X), σ = σ(X), m =m(X), ν = ν(X) > 0,

and ρ= ρ(X) are all independent of time. It follows

∂

∂t

(
1⊤π̂

)
=− γ

1+ γ
ν
(
ρ⊤σ−11

) ∂

∂t

(
∂f

∂X

)
.

Assuming ∂
∂t

(
∂f
∂X

)
< 0,19 we deduce that the total percentage stock allocation is monotoni-

cally increasing with investment horizon T − t if and only if

ρ⊤σ−11< 0. (39)

This condition reduces to ρ < 0 for N = 1, consistent with the result obtained in Section 4.

Note that the covariance

Et[dW
π̃
t dXt] = ρ⊤σ−11νW π̃

t dt,

where W π̃
t is the wealth associated with the covariance-weighted portfolio π̃ as defined before.

Hence, the condition (39) implies a negative correlation between dXt and the return of the

covariance-weighted portfolio.

19 As in the single-stock case, we will see that this is true for the time-varying Gaussian mean return model with two

stocks presented in Online Supplement C.8.
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A time-varying Gaussian mean returns model with two stocks

To better understand (39), we provide a time-varying Gaussian mean returns model with
two stocks. More specifically, the two stock prices have dynamics

dSit

Sit

= (r+ δiXt)dt+σidB̂it, i= 1,2,

where r, δ1, δ2, σ1, σ2 are all positive constants, B̂1t and B̂2t are two one-dimension Brownian
motions with constant correlation ρS. The state Xt follows the mean-reverting process (27).
We assume E(BX

t B̂it) = ρSXi dt, i= 1,2.
In Online Supplement C.8, we show that an analytical formula of f(t,X) is available,

∂
∂t

(
∂f
∂X

)
< 0, and

ρ⊤σ−1 =
1

σ1σ2 (1− ρ2S)

(
σ2(ρ

SX
1 − ρSρ

SX
2 ), σ1(ρ

SX
2 − ρSρ

SX
1 )
)
. (40)

As a consequence, the condition (39) is equivalent to

σ2(ρ
SX
1 − ρSρ

SX
2 )+σ1(ρ

SX
2 − ρSρ

SX
1 )< 0. (41)

When ρSX1 < 0, ρSX2 < 0 and ρS < 0, (41) apparently holds, then we deduce that π1 + π2

is increasing with investment horizon. In fact, from (37) and (40) we can infer that both π1

and π2 are increasing with investment horizon given the negative correlations.

Two numerical examples

Now we present numerical results for the time-varying Gaussian mean-return model with
two stocks. Consider the first case in which ρSX1 =−0.15, ρSX2 =−0.93, ρS =−0.1, σ1 = 0.15,
σ2 = 0.17, δ1 = 0.09, δ2 = 0.11, and other parameters are the same as in Figure 4. It can be
seen that the returns of two stocks are both negatively correlated with the market state Xt,
and the two stock returns are negatively correlated. Hence, from (37) and (40), we infer that
the percentage allocation in each stock must be monotonically increasing with investment
horizon, which is demonstrated by Figure 8.

Consider the second case in which the two stock returns are positively correlated (ρS = 0.3),
and other parameters are the same as in the first case. It is easy to verify σ2(ρ

SX
1 −ρSρ

SX
2 ) =

0.0119 and σ1(ρ
SX
2 −ρSρ

SX
1 ) =−0.0272. According to our analysis, the percentage allocation

in stock 1 is decreasing with investment horizon, while the percentage allocation in stock
2 is increasing with investment horizon. Note that σ2(ρ

SX
1 − ρSρ

SX
2 ) + σ1(ρ

SX
2 − ρSρ

SX
1 ) =

0.0119− 0.0272< 0. As a result, the total percentage allocation in stocks is still increasing
with investment horizon, although π1 is not; this is illustrated in Figure 9.

 Electronic copy available at: https://ssrn.com/abstract=3437268 



Author: Dynamic Mean-Variance Analysis
O–6 Article submitted to Management Science; manuscript no. MS-xxxx-xxxx.xx

Figure 8 The optimal percentage stock allocations against investment horizon for the time-varying Gaussian
mean return model with two negatively correlated stocks. Default parameter values: ρSX

1 =−0.15, ρSX
2 =−0.93,

ρS =−0.1, σ1 = 0.15, σ2 = 0.17, δ1 = 0.09, δ2 = 0.11, and other parameters are the same as in Figure 4. It can be
seen that both of the percentage stock allocations are increasing with investment horizon.

Figure 9 The optimal percentage stock allocations against investment horizon for the time-varying Gaussian
mean return model with two positively correlated stocks. Default parameter values: ρS = 0.3, and other

parameters are the same as in Figure 8. It can be seen that the percentage allocation for stock 2 is increasing
with investment horizon, while the percentage allocation for stock 1 is decreasing with investment horizon, but

the total percentage allocation in stocks is still increasing with investment horizon.

B. Monte-Carlo Simulation for Quadratic BSDEs
In this section, we use a Monte-Carlo simulation method proposed by Chassagneux and
Richou [20] to solve our quadratic BSDE (38) for the general case of multiple stocks.

The BSDE (38) is in fact the backward part of the (decoupled) forward-backward SDE,
in which the forward part is the the SDE for the market state process X given by (35).
To simulate the BSDE (38), we have to simulate the process X efficiently. To do so, we
use the Markovian quantization method in Chassagneux and Richou [20], which has two
components.
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The first component is to simulate the Brownian sample paths efficiently. Given a partition
T = {0 = t0 < t1 < · · ·< tI = T} on the time interval [0, T ], denote hi = ti+1 − ti. We first
simulate the K-dimensional Brownian increment ∆BX

i over each subinterval [ti, ti+1), and
then use its quantization approximation ∆B̂X

i =
√
hiGM

(
∆BX

i√
hi

)
to simulate the Brownian

paths. Here the function GM is designed to capture the standard (K-dimensional) Gaussian
distribution by an optimal grid with only M points in RK . Pages, Pham and Printems [50]
and the optimal grid data can be downloaded from the website: http://www.quantize.maths-
fi.com/gaussian_database.

The second component is to project the simulated X into a grid with finite points, which
is constructed as follows. Let ZK be the set of K-dimensional integer numbers. Given an
initial value X0 ∈ RK of the forward process X, we construct the following bounded grid
centered at X0 for a fixed δ̂ > 0 and a fixed positive integer κ,

{x∈RK :
x−X0

δ̂
∈ZK and |xj −Xj

0 |
δ̂

≤ κ, 1≤ j ≤K}.

With this grid, a simulated RK-value x= (x1, · · · , xK)⊤ of X can be projected by an operator
Π(x) = (Π(1)(x1), · · · ,Π(K)(xK))⊤ with

Π(j)(xj) =


δ̂
⌊
δ̂−1(xj −Xj

0)+
1
2

⌋
+Xj

0 , if |xj −Xj
0 | ≤ κδ̂;

κδ̂+Xj
0 , if xj −Xj

0 >κδ̂;

−κδ̂+Xj
0 , if xj −Xj

0 <−κδ̂.

Here, for any real number z, bzc means the nearest integer less than or equal to z.
With these two quantization components, the Euler scheme for the forward process X can

be carried out by the iterationsX̂T
i+1 =Π

[
X̂T

i +him
(
i, X̂T

i

)
+ ν

(
i, X̂T

i

)
∆B̂X

i

]
,

X̂T
0 =X0.

Note that the truncated process X̂T is a Markovian process on Γ.
For a classical FBSDE with the Lipschitz condition, the BTZ-scheme in Bouchard and

Touzi [12] and Zhang [56] uses Monte Carlo simulation and Malliavin derivative to compute
a numerical solution. However the quadratic BSDE like (38) may have a quadratic growth,
which violates the Lipschitz condition. Chassagneux and Richou [20] propose a truncation on
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the trouble-making component Z in the generator, and modify the BTZ-scheme together with

the quantization to get a numerical solution
(
Ŷ T , ẐT

)
0≤i≤I

. Given the simulated forward
process X̂T

i , simulated Brownian increment ∆B̂X
i , and a big real number n for truncation,

their algorithm is as follows.

(i) The terminal condition is
(
Ŷ T
I , ẐT

I

)
= (0,0);

(ii) For i < I, the transition from step i+1 to step i is given by

Ŷ T
i =Eti [Ŷ

T
i+1+hig(t, X̂

T
i ,φn(Ẑ

T
i ))],

ẐT
i =Eti [Ŷ

T
i+1Λ

R
i ],

where
(
ΛR

i

)l
= −R√

hi
∨ (∆B̂X

i )
l

√
hi

∧ R√
hi

, with R≥ ln(n), and 1≤ l≤K; the truncated function φn

is defined as φn(z) =

 z, if |z| ≤ n

z |z|∧n
|z| , if |z|>n

.

Chassagneux and Richou [20] prove the following two propositions to ensure that the

scheme works for our purpose.

Proposition 5. (Convergence of the scheme) Denote (Y,Z) to be the solution to

the BSDE (38). In the algorithm if we take δ∼ n−3/2, κ∼ n3/2+η̃ and M ∼ n(1+α)K for some

α ∈ (0,1/2) and η̃ > 0, then for any η > 0 there exists a constant Cα,η,η̃ only depending on

α,η, η̃, such that

|Y0− Ŷ T
0 | ≤Cα,η,η̃ h

1/2−η.

Proposition 6. (Markovian property of the solutions ) We have
(
Ŷ T , ẐT

)
is a

Markovian process. More precisely, for all i∈ {0, . . . , I}, there exist two sequences of functions

uT (ti, ·) : Γ 7→R and vT (ti, ·) : Γ 7→R1×K such that

Ŷ T
i =UT

(
ti, X̂

T
i

)
and ẐT

i = V T
(
ti, X̂

T
i

)
,
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with terminal conditions given by uT (tI , x) = 0 and vT (tI , x) = 0. The two sequences of

functions can be computed on the grids by the following backward induction: for all i ∈

{0, . . . , I} and x∈ Γ,

V T (ti, x) =E[UT (ti+1,Π
(
x+him (ti, x)+

√
hiν (ti, x)GM(ξ)

)) GR
M (ξ)√
hi

],

UT (ti, x) =E[UT (ti+1,Π
(
x+him (ti, x)+

√
hiν (ti, x)GM(ξ)

))
]

+hign
(
ti, x,V

T (ti, x)
)

for i < I,

(42)

with Gaussian distribution ξ ∼ N (0,1) and
(
GR

M(·)
)l

= (−R) ∨ (GM(·))l ∧ R, for l ∈

{0, . . . , I}.

Note that, unlike the traditional Monte Carlo simulation which usually needs to simulate
many paths to calculate an expectation, the scheme (42) only involves a weighted sum with
finite number M , which significantly reduces the amount of computation.

Numerical examples

We assume the Gaussian mean return market setting and implement the above Monte-Carlo
simulation approach with I = 50, κ= 50, δ̂ = 0.025, M = 100, n= 9, R= 6 in the following
two examples.

(1) One stock and one state process.
In this case we have an explicit optimal policy as shown before. We use the parameter

values estimated by Wachter [55]: ρ=−0.93, r= 0.017, σ= 0.15, X0 = X̄ = 0.273, λ= 0.27,
and ν = 0.065, and take γ = 3 and T = 2. We find that compared with the explicit optimal
policy, the relative error of the Monte-Carlo simulation approach is merely 0.32%.

(2) Two stocks and two state processes.
The two stocks’ prices are assumed to evolve according to:

dSit

Sit

= (r+

2∑
j=1

ϵijXjt)dt+

2∑
j=1

σijdBjt, (43)

dXit = λi

(
X̄i−Xit

)
dt+

2∑
j=1

νijdB
X
jt , (44)
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for i= 1,2, where E[dBitdB
X
jt ] = ρijdt. No explicit solutions are available in this case. Using

the above Monte-Carlo simulation approach, we obtain (π1, π2), the optimal mean percentage
allocations in stock 1 and stock 2, as shown in Figure 10.

Figure 10 The optimal mean percentage allocations in stock 1 and stock 2 for our mean-variance model in the
Gaussian mean return market setting (43)-(44). Here we use the Monte-Carlo simulation approach. Default

parameter values: T = 2, γ = 3, r= 0.017, [ρ11, ρ12;ρ21, ρ22] = [−0.15,−0.1;−0.1,−0.93],
[σ11, σ12;σ21,σ22] = [0.15,0;−0.05,0.15], [X0,1,X0,2] = [X̄1, X̄2] = [0.273,0.3], [λ1, λ2] = [0.27,0.28],

[ν11, ν12;ν21, ν22] = [0.065,0;−0.01,0.08], [ϵ11, ϵ12; ϵ21, ϵ22] = [0.06,0.04; 0.04,0.06].

C. Proofs of Theorems, Propositions and Some Assertions
C.1. Proof of Theorem 1

If there exists a perturbation v at time t, such that lim infh→0+ −Vart(Rπ̂
T )−Vart(Rπh,v

T )

h
< 0, then

lim inf
h→0+

J(t, y, x; π̂)− J(t, y, x;πh,v)

h

= lim inf
h→0+

(
Et[R

π̂
T ]−Et[R

πh,v

T ]
)
− γ

2

(
Vart(R

π̂
T )−Vart(R

πh,v

T )
)

h

≤ lim inf
h→0+

−γ

2

Vart(R
π̂
T )−Vart(R

πh,v

T )

h
< 0,

which contradicts the fact that π̂ is an equilibrium strategy. �

C.2. Proof of Theorem 2

For any deterministic trading policy π·, we can get Et[RT ] = Rt +∫ T

t

(
r+πs(µ− r)− 1

2
π2
sσ

2
)
ds and Vart(RT ) =

∫ T

t
π2
sσ

2ds. Since π̂ is deterministic,

J(t,Rt,Xt; π̂) =Rt +

∫ T

t

(
r+ π̂s(µ− r)− 1+ γ

2
(π̂s)

2σ2

)
ds.
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Similarly, for any perturbation πh,v
s := v1s∈[t,t+h) + π̂s1s∈[t+h,T ], which is also deterministic,

we also have

J(t,Rt,Xt;π
h,v) =Rt +

∫ T

t

(
r+πh,v

s (µ− r)− 1+ γ

2
(πh,v

s )2σ2

)
ds

= J(t,Rt,Xt; π̂)+

∫ t+h

t

([
v(µ− r)− 1+ γ

2
v2σ2

]
−
[
π̂(µ− r)− 1+ γ

2
(π̂s)

2σ2

])
ds.

Since π̂s = argmaxv∈R
{
v(µ− r)− 1+γ

2
v2σ2

}
, we know J(t,Rt,Xt;π

h,v) ≤ J(,Rt,Xt; π̂).

Hence π̂ is an equilibrium solution. Part (ii) then follows by a direct calculation.

C.3. Proofs of Theorem 3, and Propositions 3 and 4

Let us first consider the general multi-asset market described in Online Supplement A.

Furthermore, we impose a constraint on the proportional portfolio: πt ∈Πt for some FBX

t -

adapted closed convex subset Πt ⊆ Rn with 0 ∈ Πt, where rt = r(t,Xt), µt = µ(t,Xt),

σt = σ(t,Xt), mt = m(t,Xt), andνt = ν(t,Xt). Recall θt := θ(t,Xt) = σ−1
t (µt − rt). Denote

a(t, π) = rt +
|θt|2
2

− 1
2
|σ⊤

t π − θt|2. For later use, we define for any z ∈ RK , v̂(t, z) =

argminπ∈Πt
|σ⊤

t π− θt|2 + γ|σ⊤
t π+ ρz|2 and g(t, z) := a(t, v̂(t, z)) = rt +

1
2
|θt|2 − 1

2
|σ⊤

t v̂(t, z)−

θt|2. It is easy to see

|g(t, z)| ≤ |rt|+
1

2
|θt|2+

1

2

(
|σ⊤

t v̂(t, z)− θt|2+ γ|σ⊤
t v+ ρz|2

)
≤ |rt|+

1

2
|θt|2+

1

2

(
|θt|2+ γ|ρz|2

)
, (45)

by which we say g is quadratic dominated.

We now give a general result.

Theorem 4. Suppose E[
∫ T

0
|θt|2dt]<+∞. Consider the BSDE (38) with g(·, ·) being as

given in (45).

(i) If the BSDE admits a solution (Y,Z) in the classical sense. Then πt = v̂(t,Zt) is an

equilibrium policy with the expected annual return rate 1
T−t

Et[R̂T − R̂t] =
Yt

T−t
.
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(ii) If Πt =Π(t,Xt) for some deterministic set-value function Π, and the solution (Y,Z)

to (38) is unique, then there exists a deterministic function f(·, ·) such that Yt = f(t,Xt).

Further, if f is C1,2, then f satisfies the PDE

0 =
∂f

∂t
+

(
∂f

∂x

)⊤

m(t, x)+
1

2
Tr

(
ν(t, x)⊤

∂2f

∂x2
ν(t, x)

)
+ g(t,Zt) (46)

with the terminal condition f(T,x, s) = 0, Zt = ν(t, x)⊤ ∂f
∂x
(t, x, s), and the equilibrium policy

is given by π̂(t,Rt,Xt) = π̂t := v̂(t,Zt).

Proof
(i) Given E[

∫ T

0
|θt|2dt]<+∞, we can easily see that

E
[∫ T

0

|σ⊤
t π̂t|2dt

]
≤ E

[∫ T

0

(
|σ⊤

t π̂t − θt|2+ γ|σ⊤
t π̂+ ρZ|2+ |θt|2

)
dt

]
≤ E

[∫ T

0

(
|θt|2+ γ|ρZ|2+ |θt|2

)
dt

]
<+∞.

Hence π̂(t,Rt,Xt)≡ π̂t is admissible. Denote by Ŵ· its wealth process and R̂t = lnŴt. We
can assume that Zt is right continuous, or simply take its right continuous version. By the
definition of the solution to the BSDE and the fact that g is quadratic dominiated, we know
E[
∫ T

0
g(t,Zt)

2ds]<+∞. By the BSDE (38), we know Mt := Yt+
∫ t

0
g(s,Zs)ds is a martingale

with MT =
∫ T

0
g(s,Zs)ds, so for any t∈ [0, T ], we have

Yt +

∫ t

0

g(s,Zs)ds=Mt =Et

[∫ T

0

g(s,Zs)ds

]
=

∫ t

0

g(s,Zs)ds] +Et

[∫ T

t

g(s,Zs)ds

]
,

which gives Yt = Et

[∫ T

t
g(s,Zs)ds

]
= Et[R̂T − R̂t]. For any local perturbation πh,v

s =

π̂s1s ̸∈[t,t+h)+ v1s∈[t,t+h), denote its log return process as Rh,v
· , then Rh,v

T −Rh,v
t+h = R̂T − R̂t+h,

which implies Et+h[R
h,v
T ] =Rh,v

t+h +Yt+h. It follows

J(t,Rt,Xt, St;π
h,v) =Et[R

h,v
T ]− λ

2
Vart(R

h,v
T )

= Et

[
Et+h[R

h,v
T ]− λ

2
Vart+h(R

h,v
T )

]
− λ

2
Vart(Et+h[R

h,v
T ])

= Et

[
Rh,v

t+h +Yt+h −
λ

2
Vart+h(R

h,v
T −Rh,v

t+h)

]
− λ

2
Vart(R

h,v
t+h +Yt+h)

= Et

[
R̂t+h +Yt+h −

λ

2
Vart+h(R̂T − R̂t+h)

]
+Et[R

h,v
t+h− R̂t+h]−

λ

2
Vart(R

h,v
t+h+Yt+h)

= J(t,Rt,Xt, St; π̂)+Et[R
h,v
t+h− R̂t+h]−

λ

2
Vart(R

h,v
t+h+Yt+h).
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On one hand, Et[R
h,v
t+h− R̂t+h] =

∫ t+h

t
Et[a(s, v)−a(s, π̂s)]ds. On the other hand, noting that

Rh,v
t+h−Rt =

∫ t+h

t

a(s, v)ds+

∫ t+h

t

v⊤σsdBs and Yt+h = Yt−
∫ t+h

t

a(s, π̂s)ds+

∫ t+h

t

Z⊤
s dB

X
s ,

we get

Rh,v
t+h +Yt+h =Rt +Yt+

∫ t+h

t

[a(s, v)− a(s, π̂s)]ds+

∫ t+h

t

(σ⊤
t v)

⊤dBs+

∫ t+h

t

Z⊤
s dB

X
s .

It is not hard to see that Et[
∫ T

t
|a(s, v)− a(s, π̂s)|ds]<+∞, hence

Vart(R
h,v
t+h +Yt+h) =Et

[∫ t+h

t

ϕ(s,σsv)ds

]
+ o(h),

where ϕ(s,x) := |x|2+ |Zs|2+2x⊤ρZs. Then

lim
h↓0

J(t,Rt,Xt, St;π
h,v)− J(t,Rt,Xt, St; π̂)

h

= lim
h↓0

Et

[∫ t+h

t
a(s, v)− a(s, π̂s)− γ

2
ϕ(s,σ⊤

s v)+
γ
2
ϕ(s,σ⊤

s π̂s)ds
]

h

= a(t, v)− γ

2
ϕ(t, σ⊤

t v)− a(t, π̂t)+
γ

2
ϕ(t, σ⊤

t π̂t).

Note that a(t, v)− γ
2
ϕ(t, σ⊤

t v) = rt +
1
2
|θt|2 − 1

2
|σ⊤

t v − θt|2 − γ
2

(
|σ⊤

t v|2+ |Zs|2+2v⊤σtρZt

)
,

whose maximal value for v ∈Π is achieved at π̂t. This implies that π̂ is an equilibrium policy.
(ii) In this case the BSDE (38) is a Markovian system, hence we can write Yt = f(t,Xt).

If f is C1,2, then we can apply Itô’s formula to get the PDE (46) and Z as presented in the
theorem. The desired result then follows. �
From Theorem 4 we immediately have the following corollary.

Corollary 2. Assume the same condition in Proposition 4.

(i) If Πt ≡Rn, then

v̂(t, z) =
1

1+ γ
(σ⊤

t )
−1 [θ− γρz] , g(t, z) = rt+

1

2
|θt|2−

1

2

γ2

(1+ γ)2
|θt+ ρz|2,

and the BSDE (38) for Y admits a unique solution.

(ii) If N =K = 1 and Πt = [πt, π̄t] for some FBX

t -adapted processes πt and π̄t, then

v̂(t, z) = πt ∨
(

1

1+ γ
σ−1
t [θ− γρz]

)
∧ π̄t,
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g(t, z) = rt +
1

2
θ2t −

1

2

(
(θt−σtπt)∧

γ(θt + ρz)

1+ γ
∨ (θt−σtπ̄t)

)2

.

It is easy to see that Proposition 3 and Proposition 4 are exactly part (ii) and part (i) of
Corollary 2, respectively, and the existence and uniqueness of the solution to the BSDE (38)
can be deduced from Briand and Hu [15]. Finally, Theorem 3 is a special case of Proposition 4
(other than part (ii), whose proof is given after this corollary), where the regularity condition
for θ is weakened in terms of the explicit solution to the BSDE as given in the theorem.

It remains to prove part (ii) in Theorem 3. We rewrite the function g as

g(t, z) = rt+
1− k2

2
|θt|2−

k2

2

(
2zθ⊤t ρ+ z2|ρ|2

)
= α(t,Xt)−

|kρ|2

2
(z+β(t,Xt))

2.

Define Ẑt =Zt +β(t,Xt), and Mt = Yt +
∫ t

0
α(s,Xs)ds+

∫ t

0
β(s,Xs)dB

X
s . Then

dMt =
|kρ|2

2
Ẑ2

t dt+ ẐtdB
X
t , MT =

∫ T

0

α(t,Xt)dt+

∫ T

0

β(t,Xt)dB
X
t . (47)

It is easy to check that Mt =
−1
|kρ|2 lnEt[e

−|kρ|2(
∫ T
0 α(s,Xs)ds+

∫ T
0 β(s,Xs)dBX

s )] with e−|kρ|2Mt being
a martingale. So

Yt =
−1

|kρ|2
lnEt[e

−|kρ|2(
∫ T
t α(s,Xs)ds+

∫ T
t β(s,Xs)dBX

s )].

C.4. Proof of Proposition 1

Using a transformation, f (t, x) =− (1+γ)2

γ2ρ2
lnu (t, x)+ r(T − t), PDE (18) becomes

∂u

∂t
+

(
m(x)− γ2ρν(x)

(1+ γ)2
θ(t, x)

)
∂u

∂x
+

1

2
ν(x)2

∂2u

∂x2
− (2γ+1)γ2ρ2

2 (γ+1)4
θ(t, x)2u= 0 (48)

with terminal condition u (T,x) = 1.
For the stochastic volatility model, PDE (48) reduces to

∂u

∂t
+
(
λX̄ − b̄x

) ∂u
∂x

+
1

2
ν̄2x

∂2u

∂x2
− c̄xu= 0, (49)

where c̄= (2γ+1)γ2ρ2δ2

2(γ+1)4
≥ 0, and b̄ is as given in (23). We assert u (t, x) = exp{g (t)x+h (t)}.

Indeed, using (49), we deduce the following ordinary differential equation (ODE) system: gt − b̄g+ 1
2
ν̄2g2− c̄= 0, g (T ) = 0,

ht +λX̄g= 0, h (T ) = 0.
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Let q̄ be as given in (23). Owing to q̄≥
∣∣b̄∣∣, it is easy to verify

g (t) =
−2c̄

(
eq̄(T−t) − 1

)(
b̄+ q̄

)
(eq̄(T−t) − 1)+ 2q̄

≤ 0.

Note that f (t, x) =− (1+γ)2

γ2ρ2
[g (t)x+h (t)]. Hence

∂f

∂x
=−(1+ γ)2

γ2ρ2
g (t) =

(2γ+1) δ2

(γ+1)2
eq̄(T−t) − 1(

b̄+ q̄
)
(eq̄(T−t) − 1)+ 2q̄

≥ 0.

Plugging this into (14) yields (22).
Note that π̂ (t,Xt) =

δ
(1+γ)

X
α−1
2α

t I, where

I = 1− (2γ+1)γρν̄δ

(1+ γ)2
eq̄(T−t) − 1(

b̄+ q̄
)
(eq̄(T−t) − 1)+ 2q̄

.

If ρδ≤ 0, then obviously I ≥ 0. For ρδ > 0,

I ≥
eq̄(T−t)

[
(1+ γ)2

(
b̄+ q̄

)
− (2γ+1)γρν̄δ

]
(1+ γ)2

[(
b̄+ q̄

)
(eq̄(T−t) − 1)+ 2q̄

] ≥ (1+ γ)2 q̄− (γ+1)γρν̄δ

(1+ γ)2
[(
b̄+ q̄

)
(eq̄(T−t) − 1)+ 2q̄

]
≥ (γ+1)γ (λ+ ρν̄δ)− (γ+1)γρν̄δ

(1+ γ)2
[(
b̄+ q̄

)
(eq̄(T−t) − 1)+ 2q̄

] ≥ 0.

Hence, part (i) holds. Part (ii) follows by part (i) and the property of function X
α−1
2α

t . Part
(iii) is obvious.

It remains to prove part (iv). Note that

eq̄(T−t)− 1(
b̄+ q̄

)
(eq̄(T−t) − 1)+ 2q̄

=
1

b̄+ q̄

[
1− 2q̄(

b̄+ q̄
)
(eq̄(T−t) − 1)+ 2q̄

]
is increasing in T − t, which yields the desired result. �

C.5. Proof of Proposition 2

For this model, PDE (48) reduces to

∂u

∂t
+
(
λX̄ − bx

) ∂u
∂x

+
1

2
ν2∂

2u

∂x2
− cx2u= 0 (50)

with u (T,x) = 1, where c = (2γ+1)γ2ρ2

2(γ+1)4
and b is as given in (29). We assert that V (t, x) =

exp{Θ(t)x2+Ψ(t)x+Φ(t)}. Indeed, substituting this form of V into the PDE (50) gives
Θt − 2bΘ+2ν2Θ2− c= 0, Θ(T ) = 0

Ψt +(2ν2Θ− b)Ψ+2λX̄Θ= 0, Ψ(T ) = 0

Φt+λX̄Ψ+ 1
2
ν2 (Ψ2+2Θ)= 0, Φ(T ) = 0.

(51)
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From the first equation of (51), we get

Θ(t) =
−c
(
e2q(T−t)− 1

)
(b+ q) (e2q(T−t) − 1)+ 2q

,

where q is as given in (29). Owing to q≥ |b|, we have Θ≤ 0. Solving the second equation of
(51) gives

Ψ(t) =
−2λX̄c

(
eq(T−t) − 1

)2
q [(b+ q) (e2q(T−t) − 1)+ 2q]

.

Plugging ∂f
∂x

=− (1+γ)2

γ2ρ2
[Ψ (t)+ 2Θ(t)x] into (14) leads to the desired result.

(i) Note that π̂ (t,Xt) =Xt · I + ν(γ+1)
ρσγ

Ψ, where

I =
1

σ (1+ γ)
+

2ν (γ+1)

ρσγ
Θ.

Hence, π̂ is increasing in Xt if I ≥ 0. Obviously, I ≥ 0 when ρ< 0. For ρ> 0, we denote

D= (b+ q)
(
e2q(T−t) − 1

)
+2q. (52)

By the expressions of b, c, q and Θ, we have

I =
1

σ (1+ γ)3D

[
e2q(T−t)

(
(1+ γ)2 (q+λ)− (γ+1)γρν

)
+ (1+ γ)2 (q− b)+ (2γ+1)γρν

]
≥ 1

σ (1+ γ)3D
e2q(T−t)

(
(1+ γ)

√
λ2 (2γ+1)+ γ2 (λ+ ρν)2− (γ+1)γρν

)
≥ 1

σ (1+ γ)2D
γ (|λ+ ρν| − ρν)≥ 0.

This is desired.
(ii) From (28), obviously Eπ̂ > 0 when ρ< 0. It remains to show the case ρ> 0. Note that

(1+ γ)2 q2 ≥ γ2ρνλ. Then

Eπ̂=
X̄

σ (1+ γ)3 qD
{2λ (2γ+1)γρνeq(T−t) +(1+ γ)2 q (q− b)+ (2γ+1)γρν (q−λ)+ e2q(T−t)Î}

≥ X̄

σ (1+ γ)3 qD
e2q(T−t)Î ≥ 0,

where

Î = (1+ γ)2 q (b+ q)− (2γ+1)γρν (λ+ q)≥ (1+ γ)2 q(
γ2ρν

(1+ γ)2
+ q)− γ2ρν (λ+ q)

= (1+ γ)2 q2− γ2ρνλ≥ 0,
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which is desired.
(iii) It follows by Ψ< 0, Θ< 0, and E[Ĥ(t,Xt)] =

ν(γ+1)
ρσγ

(
Ψ+2ΘX̄

)
.

(iv) Note that |E[Ĥ(t,Xt)]|=
(2γ+1)γ|ρνX̄|

(γ+1)3σ
Ĩ , where

Ĩ =
1

qD

[
q
(
e2q(T−t) − 1

)
+λ

(
eq(T−t) − 1

)2]
=

1

q

{
λ+ q

b+ q
−h (z)

}
,

with z = eq(T−t), C1 =
(q+λ)(q−b)

q+b
+ (q−λ), C2 =

q−b
q+b

, and h (z) = 2λz+C1

z2+C2
. Note that q ≥ b,

q ≥ λ, and h′ (z) = −2λz2−2C1z+2λC2

(z+C2)
2 . Denote ϕ (z) = −2λz2 − 2C1z + 2λC2. Notice ϕ (1) =

− 4q2

q+b
< 0 and −C1

2λ
< 0. Hence h′ (z) < 0 for z ≥ 1. It follows that −h

(
eq(T−t)

)
and Ĩ are

increasing in T − t. This yields the desired result. �

C.6. Proof of Equivalence between Dynamic Mean-Variance and CRRA Preferences

Denote vt =−ργν(t,Xt)
∂f(t,Xt)

∂X
, then σ(t,Xt)π̂(t,Xt) =

1
1+γ

(θ(t,Xt)+vt). We decompose Bt

into Bt = ρBX
t +

√
1− ρ2B⊥

t with B⊥
t being a standard BM independent with B·.

We use the notation a(t, π), R̂· and Yt as in Theorem 4. Denote at = a(t, π̂t). Since Yt =

f(t,Xt) and Yt+
∫ t

0
asds (as in Theorem 4) is a martingale, hence dYt+atdt=

∂f
∂x
ν(t,Xt)dB

X .
This gives ∫ T

0

asds= Y0+

∫ T

0

∂f(s,Xs)

∂X
ν(s,Xs)dB

X
s .

Define Qv by dQv

dP = e−
∫ T
0 (

vt
ρ
)2/2dt+

∫ T
0

vt
ρ
dBX

t , then (B⊥
t ,B

X −
∫ t

0
vs
ρ
ds) is a standard Qv-BM,

and hence Bv
t :=BX

t −
∫ t

0
vs
ρ
ds is a Qv-BM.

Note that

dQv

dP
= e−

∫ T
0 (γν(t,Xt)

∂f(t,Xt)
∂X

)2/2dt−
∫ T
0 (γν(t,Xt)

∂f(t,Xt)
∂X

)dBX
t = e−

∫ T
0 (γν(t,Xt)

∂f(t,Xt)
∂X

)2/2dt−γ
∫ T
0 atdt+γY0 .

Define AT := eγ
∫ T
0 [π̂tσt(θt+vt)−(1+γ)|σtπ̂t|2/2]dt. Recall the ε= e−

γ2

2

∫ T
0 Vart(dEt[R̂T ]) in the descrip-

tion of the equivalence in Section 4.1. To determine ϵ, we define Zt :=Et[R̂T ] = f(t,Xt)+Rt,
which is a martingale, hence

dZt =
∂f

∂x
ν(t,Xt)dB

X
t + π̂tσtdBt

=

(
∂f

∂x
ν(t,Xt)+ ρπ̂tσt

)
dBX

t +
√

1− ρ2π̂tσtdB
⊥
t ;

d〈Z〉t =

[(
∂f

∂x
ν(t,Xt)+ ρπ̂tσt

)2

+(1− ρ2)(π̂tσt)
2

]
dt

=

[
|σtπ̂t|2− 2vtσtπ̂t/γ+

(
∂f

∂X
ν(t,Xt)

)2
]
dt.
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Hence

ε= e−
γ2

2
⟨Z⟩T = eγ

∫ T
0 (− γ

2
|σ′

tπ̂t|2+vtσtπ̂t)dte−
∫ T
0 (γ ∂f

∂X
ν(Xt))2/2]dt

= eγ
∫ T
0 [rt+π̂σt(θt+vt)− 1+γ

2
|σtπ̂t|2]dte−

∫ T
0 (γν(Xt)

∂f(t,Xt)
∂X

)2/2dt−γ
∫ T
0 atdt

= AT e
−γY0+γ

∫ T
0 rtdt

dQv

dP
.

For any portfolio π·, denote W· as its wealth process starting from initial W0 =w, then
1

−γ
W−γ

T =
w−γ

−γ
e−γ

∫ T
0 (r+πtσt(θt+vt)−|σtπt|2/2)dt−

∫ T
0 γπtσtdBv

t

=
(werT )−γ

−γ
e−γ

∫ T
0 (πtσt(θt+vt)−(1+γ)|σtπt|2/2)dte−

∫ T
0 |γσtπt|2/2dt−

∫ T
0 γπtσtdBv

t

≤ (werT )−γ

−γ

1

AT

e−
∫ T
0 |γσtπt|2/2dt−

∫ T
0 γπtσtdBv

t ,

and the equality hold if π= π̂. Hence

E
[
ε
W−γ

T

−γ

]
= e−γY0EQv

[
AT e

γ
∫ T
0 rtdt

W−γ
T

−γ

]
≤ e−γY0

w−γ

−γ
EQve−

∫ T
0 |γσtπt|2/2dt−

∫ T
0 γπtσtdBv

t ≤ e−γY0
w−γ

−γ
.

When π= π̂, the equality in the first inequality holds; Under some regularity condition, the
equality in the second inequality holds, hence π̂ is an optimal portfolio. �

C.7. Convergence of the Hedge Ratio to That in Basak and Chabakauri [4] as γ→∞

for the Stochastic Return Model

Denote E[π̂(t, X̄)] = F (γ) X̄
σ(1+γ)

. Then E[Ĥ(t,Xt)]

E[π̂(t,X̄)]
= F (γ)−1

F (γ)
. Sending γ→∞, we get b= λ+ ρν

and q= |λ+ ρν|. A direct calculation gives

lim
γ→∞

F (γ) = 1− 2ρν
|λ+ ρν|

(
e2|λ+ρν|(T−t) − 1

)
+λ

(
e|λ+ρν|(T−t) − 1

)2
|λ+ ρν| [((λ+ ρν)+ |λ+ ρν|) (e2|λ+ρν|(T−t) − 1)+ 2 |λ+ ρν|]

= 1− ρν

{
1− e−2(λ+ρν)(T−t)

λ+ ρν
+λ

(
1− e−(λ+ρν)(T−t)

)2
(λ+ ρν)2

}
,

which is desired. �

C.8. The Proof for the Gaussian Time-Varying Mean-Return Model with Two Stocks

To be consistent with the notations in Proposition 4, we define B1t = B̂1t, B2t =
B̂2t−ρSB̂1t√

1−ρ2S
.

It follows

σ=

 σ1 0

ρSσ2

√
1− ρ2Sσ2

 , ρ=

(
ρSX1 ,

ρSX2 − ρSρ
SX
1√

1− ρ2S

)⊤

.
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A direct calculation gives (40).
The PDE that f(t, x) satisfies has the same structure as that in Proposition 2. Using the

same approach as in the proof of Proposition 2 we can show the monotonicity of ∂f
∂x

with
respect to the investment horizon.
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