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Trade credit insurance (TCI) is a risk management tool commonly used by suppliers to guarantee against

payment default by credit buyers. TCI contracts can be either cancelable (the insurer has the discretion

to cancel this guarantee during the insured period) or non-cancelable (the terms cannot be renegotiated

within the insured period). This paper identifies two roles of TCI: The (cash flow) smoothing role (smoothing

the supplier’s cash flows), and the monitoring role (tracking the buyer’s continued creditworthiness after

contracting, which enables the supplier to make efficient operational decisions regarding whether to ship

goods to the credit buyer). We further explore which contracts better facilitate these two roles of TCI

by modeling the strategic interaction between the insurer and the supplier. Non-cancelable contracts rely

on the deductible to implement both roles, which may result in a conflict: A high deductible inhibits the

smoothing role, while a low deductible weakens the monitoring role. Under cancelable contracts, the insurer’s

cancelation action ensures that the information acquired is reflected in the supplier’s shipping decision. Thus,

the insurer has adequate incentives to perform his monitoring function without resorting to a high deductible.

Despite this advantage, we find that the insurer may exercise the cancelation option too aggressively; this

thereby restores a preference for non-cancelable contracts, especially when the supplier’s outside option

is unattractive and the insurer’s monitoring cost is low. Non-cancelable contracts are also relatively more

attractive when the acquired information is verifiable than when it is unverifiable.
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1. Introduction

Trade credit arises when a supplier allows a buyer to delay payment for goods or services already

delivered. There is a large body of work that suggests that trade credit greatly facilitates trade

(Giannetti et al. 2011). However, a supplier that grants credit also runs the risk of payment default

– that is, the buyer may substantially delay payment or fail to pay altogether. Such defaults

can create severe financial difficulties for the suppliers, especially among small and medium-sized
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enterprises (SMEs). In fact, an estimated one in four SME insolvencies in the European Union is

due to payment defaults (Milne 2010).

To protect themselves against such negative events, suppliers often purchase trade credit insur-

ance (TCI), which allows the insured party to recover losses arising from the buyer defaulting. In

deciding whether to ship goods to a credit buyer, a supplier balances the benefit from the trading

transaction against the downside associated with payment default. TCI helps tip the balance in

favor of shipping, and thereby enhances trade. TCI can be used to insure a single supplier-buyer

transaction, which this paper focuses on for simplicity, or the entire trade between a supplier and

a predetermined set of buyers for a fixed duration (typically a year). TCI first became popular

in Europe; however, it now has a substantial global footprint. TCI is offered by specialized trade

credit insurers such as Euler Hermes and Atradius, general insurers such as Swiss Re and AIG,

and national export-import banks (Jones 2010). As of 2016, TCI covered more than e2.3 trillion

of exposure globally (International Credit Insurance and Surety Association 2017).

TCI resembles traditional insurance in certain respects and is distinct in others. Specifically, it

resembles other forms of insurance in that it is meant to guarantee payment to the insured party

(the supplier) under certain conditions. However, distinct from contracts used in other insurance

settings, the TCI contract often allows the insurer to cancel coverage – in whole or in part – at

any time prior to the shipment of goods. This is achieved by first determining the credit limit

(coverage) for a specified time period, but then within this very time period, allowing the insurer to

withdraw or amend these limits if the insurer determines that there has been a significant change

in the credit risk (Jones 2010, Association of British Insurers 2016).1

It is fairly common for insurers to exercise the flexibility to cancel coverage when they believe

that the risk of payment default has deteriorated. In just the first few months of 2009, canceled

TCI credit lines amounted to e75 billion (International Financial Consulting 2012). Once TCI

is withdrawn for their buyers, suppliers tend to stop shipping on credit. This dynamic naturally

undermines both parties’ abilities to trade (Kollewe 2009). It is estimated that 5% to 9% of the

total drop in world exports during the recent financial crisis can be attributed to the withdrawal

of trade credit insurance (van der Veer 2015). An unwarranted cancelation adversely affects the

efficiency of the shipping decision and leads to economic losses.2 Thus, exercise of the cancelation

1 The credit limit is the amount that the insurer will reimburse the insured in case of payment default, minus any
deductible (Association of British Insurers 2016). Note that the credit limits in cancelable TCI may be revised at a
discretionary time; this is distinct from the periodic decision of whether or not to renew a policy and/or revise its
terms, or coverage cancelation based on a set of pre-determined conditions (e.g., the claimholders mis-representing
themselves on their applications), which are commonplace in insurance settings.

2 We refer to a shipping decision as being efficient if it is consistent with the decision when the supplier and the
insurer acts as a single decision-maker.
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option is often contentious owing to its significant operational and financial implications. In the

words of Bill Grimsey, chief executive of Focus DIY, the UK homeware retailer, credit insurers are

“fair-weather friends who don’t go into enough detail, make unilateral decisions at short notice

and jeopardize the futures of businesses” (Stacey 2009).

An alternate approach to contracting for credit insurance, and a response to the concerns about

cancelation, is embodied in non-cancelable coverage. As the name suggests, the credit limits in

non-cancelable coverage cannot be altered within a specified time period (AIG 2013, Association of

British Insurers 2016). Given the high stakes, the relative merits of the two contracting approaches

are being hotly debated in the practitioner community (Aitken 2013).

Motivated by the above discussion, we investigate the following questions in this paper: 1) What

roles does TCI play in a supply chain? 2) What are the relative merits of cancelable versus non-

cancelable contracts, and what principles should guide the choice of contract form?

To answer these questions, we develop a game-theoretic model that captures the strategic inter-

actions between the supplier and the insurer for a single transaction. A risky buyer places a credit

order with the supplier, who incurs financing costs when facing a cash shortfall. The supplier buys

TCI from the insurer to protect itself against the risk of the payment default. Thereafter, the

insurer can exert costly yet unverifiable monitoring effort to obtain updated information about the

buyer’s default risk. This salient feature of the model captures the fact that TCI covers the buyer’s

default risk, which is not internal to the insured firm (supplier) and is evolving. In practice, the

insurer often has a superior capability to gather and analyze information about the buyer’s default

risk from a variety of channels, such as closely monitoring publicly available information sources

(e.g., financial statements), and non-public sources such as site visits, and tracking the buying

firm’s payment history (Jones 2010, Amiti and Weinstein 2011, Association of British Insurers

2016, Euler Hermes 2018). The obtained market intelligence, which may reflect worsening political

or geographical risk (Freely 2012), or the buyer’s deteriorating financial situation (Birchall 2008),

has been proven to be powerful in predicting payment default (Kallberg and Udell 2003, Cascino

et al. 2014). Based on the updated assessment of the buyer’s risk provided by the insurer, the

supplier may revisit her decision to ship the order.

By comparing the centralized benchmark with the scenario in which insurance is not available,

we quantify the two roles that TCI fulfills. First, on the financial side, TCI smoothes the sup-

plier’s cash flow across different possible realizations of buyer’s risk, and thereby mitigates the

adverse financial effect of payment default. We refer to this as the (cash flow) smoothing role of

TCI. Second, and different from other insurance settings, TCI is also an information service that

facilitates operational decisions. Specifically, by gaining access to the information that the insurer

may have gathered regarding the buyer’s evolving creditworthiness, the supplier can make more
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efficient operational (shipping) decisions. By steering the shipping decision towards efficiency, this

monitoring role of TCI creates operational value that goes beyond pure financial considerations.

Fulfilling the monitoring role of TCI requires that the insurer has the incentive to obtain updated

information, and that the supplier makes efficient shipping decisions based on the update. These

two incentive issues are crucial determinants of the optimal form of TCI contracts.

We mainly focus on two forms of TCI contracts: non-cancelable and cancelable contracts. Under

the non-cancelable contract, which is similar to a standard contract in other insurance settings, the

credit payment from the buyer, minus a deductible, is guaranteed by the insurer in exchange for a

premium. A cancelable contract, however, gives the insurer an option to cancel coverage before the

order is shipped. We find that a non-cancelable contract with a deductible is limited in its ability

to fulfill both the smoothing and monitoring roles of TCI. On the one hand, a low deductible does

not deter the supplier from shipping even when the buyer’s creditworthiness deteriorates. Such an

inefficient reaction to the updated information reduces the insurer’s incentive to monitor, thereby

weakening the monitoring role of TCI. On the other hand, a high deductible has two possible

drawbacks: first, it may expose the supplier to higher financing costs, compromising the smoothing

role; second, it may also discourage monitoring by reducing the insurer’s exposure to the credit

loss. As such, non-cancelable contracts are able to recover the full value of TCI only when the

supplier is financially well-off and the insurer’s monitoring cost is low.

By contrast, with cancelable contracts, the insurer’s option to cancel coverage makes it possible to

incorporate his acquired information about the buyer’s risk to appropriately influence the supplier’s

shipping decision. In particular, compared to non-cancelable contracts, the insurer is now more

motivated to invest in costly monitoring because upon learning that the buyer is overly risky, he

can deter the supplier from shipping by exercising the option to cancel, without resorting to a high

deductible. These dynamics explain why cancelable insurance contracts have long prevailed in the

TCI industry.

Despite this advantage, we find that because the insurer does not benefit directly from the

trade after the insurance contract is signed, the insurer may over-cancel, i.e., cancel the supplier’s

coverage even when it is efficient to ship. This incentive hurts the performance of the cancelable

contract when the supplier’s outside option is unattractive (e.g., during an economic downturn),

and the insurer’s monitoring costs are low (which may result from superior information systems

and/or analytical capabilities). Under these circumstances, the supplier may prefer non-cancelable

contracts, which serve as a commitment by the insurer to provide coverage. This preference for

non-cancelable contracts offers a possible explanation for the greater enthusiasm for non-cancelable

coverage following the Great Recession of 2008. We also find that contracts that combine the

advantages of cancelable and non-cancelable features can further enhance the value of TCI.
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Finally, compared to the case when information is verifiable, when the information collected by

the insurer is unverifiable and is subject to strategic manipulation, cancelable contracts in general

become more attractive relative to non-cancelable contracts. This is because the insurer’s cance-

lation action serves as a credible signal of the (unverifiable) information. The result also suggests

that non-cancelable contracts will become relatively more attractive as the acquired information

can be credibly communicated by other channels (e.g., IT integration).

The contribution of the paper is twofold. First, we model and quantify the value of TCI, and

highlight its operational role as linked to the monitoring and shipping decisions. Analyzing this

value enables us to offer a theoretical underpinning for the prevalence of different TCI contracts,

as well as characterize their relative merits. Second, the findings shed light on how insurers can

better design and deploy the most appropriate types of contracts to customers. Our analysis also

provides supply chain professionals with insights on how to select the most suitable trade credit

insurance policy.

2. Related literature

In application, our work is related to two major streams of literature: insurance; and the interface

of operations management, finance, and risk management.

In the insurance literature, the main focus has been on the implications of asymmetric informa-

tion of the insured party, which manifests in the form of adverse selection (e.g., Rothschild and

Stiglitz 1976), or moral hazard (e.g., Shavell 1979). Our paper is related to both streams. First, in

the literature on moral hazard in the insurance setting, the insured and insurer are equally informed

at the time of contracting, yet the insured party may take hidden actions after entering into the

contract, and the optimal insurance contract is designed to induce more efficient actions, with

deductibles as a commonly used mechanism. Winter (2013) provides an excellent overview of the

literature on insurance with moral hazard. Our work contributes to this literature in three respects.

First, to the best of our knowledge, all extant work models only the moral hazard associated

with the insured party’s actions. In our paper, however, as the trade credit insurer plays an active

risk monitoring role, the optimal contract needs to mitigate not only the supplier’s moral hazard

(shipping decision), but also the moral hazard associated with the insurer’s monitoring effort. As

such, we find that a traditional contract (a non-cancelable contract with only a deductible) may

be inefficient to mitigate these moral hazards, and granting the insurer a cancelation option often

improves the contract performance.

Second and relatedly, depending on whether the moral hazard takes place before or after the

focal uncertainty is realized, the extant literature examines either only ex-ante moral hazard, such

as underinvesting in precautionary measures (Hölmstrom 1979); or only ex-post moral hazard, such
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as overspending on medical care when health conditions cannot be contracted upon (Zeckhauser

1970, Ma and Riordan 2002). Differently, our model considers both ex-ante moral hazard (the

insurer’s monitoring effort) and ex-post ones (the supplier’s shipping decision, and the insurer’s

cancelation decision under cancelable contracts). Further, the insurer’s effort results in information

revelation, the value of which depends directly on the supplier’s shipping decision. As such, the two

moral hazards need to be mitigated jointly, and the resulting dynamics are qualitatively different

to those studied in the literature and warrant the different contract forms in TCI.

Third, unlike the literature in which the existence of moral hazard is independent of the contract

used, we study a setting in which moral hazard is endogenous to the contract form. In particular, the

cancelable contract results in the new moral hazard that allows the insurer to cancel the insurance

coverage when it is efficient to ship. This moral hazard, which is absent in a non-cancelable contract,

helps explain why and when the non-cancelable contract can be the preferred contract form.

By examining the case where the information that the insurer acquires is unverifiable (§7), our

paper is also related to the adverse selection problem in insurance. In the literature, the adverse

selection problem arises due to the insured party’s private information before contracting, and the

main issue is how the insurer can use contracts to screen such information. Differently, our model

features the insurer acquiring private information after contracting. As such, the insurer needs to

use a credible message to convey his private information, which is modeled as a signaling game

embedded in the aforementioned moral hazard setting. Our result here also sheds light on the

choice between different contract forms.

Highlighting the operational value of TCI, our work is also related to the fast-growing field of the

interface of operations management, finance, and risk management (e.g., Babich and Sobel 2004,

Dada and Hu 2008, Boyabatlı and Toktay 2011). Within this stream, our work is most related to the

papers on the interaction between insurance and operations. Dong and Tomlin (2012) characterize

a firm’s optimal inventory policy in the presence of business interruption (BI) insurance. Serpa

and Krishnan (2017) also examine BI insurance, focusing on its strategic role in mitigating free

riding. Similar to Serpa and Krishnan (2017), our paper is also built on a game-theoretic model.

Differently, we study trade credit insurance, another sector of insurance closely related to supply

chain management. Because of this setting, we focus on the strategic interaction between the

supplier and the insurer, who serves the dual-role of monitoring and cash smoothing, and study

its implications for contract forms. Our paper is also related to recent papers on the interaction

between agency conflict, operational decisions, and financial contracting (Alan and Gaur 2018, Tang

et al. 2018, Babich et al. 2017), especially those that focus on risk shifting as the main source of

financial friction. Risk shifting under financial contract has been well recognized in finance (Jensen

and Meckling 1976, Myers 1977), and it has been recently studied in the OM in the context of
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inventory (Chod 2016, Iancu et al. 2016), pricing (Besbes et al. 2017), and R&D investment (Ning

and Babich 2018) under external financing. In our paper, once the insurance contract is in place,

the two contracting parties’ behavior may deviate from the first-best, similar to the risk shifting

behavior studied in the above papers. However, our paper differs from the above ones not only in

the context (TCI), but also in the underlying economic mechanism: first, since cancelable contracts

involve recourse to updated information, the risk-shifting behavior may arise from both parties in

the game; second, in our paper, the risk shifting behavior originates from the updated information

generated endogenously by the insurer’s moral hazard. Thus, in our model, risk shifting interacts

with moral hazard. In addition, this work is related to papers on trade credit (Babich and Tang

2012, Kouvelis and Zhao 2012, Peura et al. 2017, Yang and Birge 2018, Chod et al. 2019, Devalkar

and Krishnan 2019), and those on operational and financial means of mitigating supply chain risk

(Gaur and Seshadri 2005, Swinney and Netessine 2009, Yang et al. 2009, Turcic et al. 2015).

Conceptually, since the paper captures the moral hazard on both the insurer and the supplier

side, our paper is related to the literature on double moral hazard, which has been studied in

economics (Bhattacharyya and Lafontaine 1995), and in operations (Corbett et al. 2005, Roels

et al. 2010, Jain et al. 2013). In general, this literature studies moral hazards that are effectively

simultaneous, and thus focuses on performance-based contracts and sharing contracts, which are

static in nature and do not require or possess the ability to incorporate any information updates.

In contrast, in our problem, the moral hazards play out sequentially. In particular, the monitoring

effort of the insurer results in informational gains, which could cause the supplier’s and insurer’s

subsequent moral hazards; consequently, we examine a form of contract with recourse (the option

to cancel) by incorporating the monitoring-generated update. This reactive role is exactly the

purpose served by the cancelability feature in TCI contracts.

3. Model

The model focuses on the strategic interaction between a supplier (she) who offers trade credit to

her buyer and an insurer (he) who offers a TCI product to the supplier which protects her in the

event the buyer defaults on the payment. The buyer does not make any decisions in our model.

3.1. The supplier and the buyer

The supplier receives an order from a buyer who agrees to purchase one unit of a good from the

supplier at credit price r, but is prone to payment default. That is, the buyer is obliged to pay the

supplier an amount r at a specified point in time after the good is delivered; however, there is a

risk that the buyer may default on the payment. Let the buyer’s default risk when the contract is

signed be β̄. Upon default, the supplier receives no money from the buyer.
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To protect herself against payment default, the supplier may purchase insurance. After signing

the insurance contract, if the supplier learns that the buyer’s default risk has deteriorated, she may

then choose not to ship the good on credit, and instead dispose of the good through an alternative

channel (the supplier’s outside option) at price r0, which is assumed to be lower than (1− β̄)r.

That is, the buyer is a priori creditworthy. Thus, offering trade credit to the buyer at price r is ex

ante more profitable than the outside option if the supplier is not financially constrained.

The supplier’s objective is to maximize her (expected) payoff, which includes the incoming

revenue and insurance claim payments, and the outgoing insurance premium and financing-related

costs. Without loss of generality, the risk-free interest rate is normalized to zero. We leave the details

of the insurance premium and claim payment to §3.3, but characterize the supplier’s financing

costs as follows. As documented in the finance literature (Kaplan and Zingales 1997, Hennessy and

Whited 2007, Shleifer and Vishny 2011), when firms face a cash shortfall, for example, due to the

buyer defaulting, they incur external financing costs due to various financial market imperfections

such as transaction costs (e.g., in asset fire sales). The existence of such costs demands that firms

manage cash flow uncertainty using various risk management tools such as hedging and insurance

(Froot et al. 1993, Dong and Tomlin 2012). Specifically, we assume that the supplier’s financing

cost is L(x) = l(T − x)+, where x represents the supplier’s (end of period) net cash flow, which is

equal to her revenue minus the insurance premium and insurance deductible (if applicable), and l

is the marginal financing cost that the supplier incurs if x falls short of an exogenously specified

threshold T , which captures the severity of the supplier’s financial constraint. This financing cost

model is an abstraction of several commonly observed frictions that firms face in reality (e.g., fire

sale discount). Despite the end-of-period financial constraint T , the firm has sufficient short-term

liquidity to cover the insurance premium in the midst of the period.

On the buyer side, we assume that the buyer’s credit risk is evolving between the time when

the supplier and the buyer enter the credit sale contract and that when the supplier ships the

order. Specifically, by the time that the supplier needs to decide whether to ship the order or not,

the buyer’s default risk could be one of three levels: low, medium, or high,3 with corresponding

default probabilities β′1, β
′
2, and β′3, where 0≤ β′1 ≤ β′2 ≤ β′3. The probability that the buyer’s default

probability is β′i is θ′i, where
∑

i θ
′
i = 1 and β̄ =

∑
i θ
′
iβ
′
i. As modeled later, TCI plays an important

role in obtaining information (“signals”) regarding this evolving default risk.

3 Our analysis shows that in order to capture the potential shortcomings of the cancelable contracts, we need at least
three risk levels. Furthermore, additional analytical and numerical results confirm that the main insights of the paper
continue to hold if we consider a model with N > 3 risk levels.
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3.2. The trade credit insurer and risk monitoring

To capture the market structure of the TCI industry and to focus on the operational implications

of TCI, we assume that the insurer is risk-neutral, faces no liquidity constraint, and operates in

a competitive insurance market (Winter 2013). Therefore, the insurer is willing to offer insurance

contracts as long as the premium covers his expected cost.

A salient feature of our model is that we capture the insurer’s risk monitoring action. Specifi-

cally, we assume that after entering the insurance contract, the insurer decides whether to exert

unverifiable monitoring effort at a cost c ≥ 0. By exerting effort, with probability λ ∈ (0,1), the

insurer can obtain updated information (“signals”) that about the buyer’s evolving default risk in

a timely manner before the supplier’s shipping decision. Specifically, the signals that the insurer

obtains can be classified into three categories, corresponding to the three levels of the buyer’s

default risk (low, medium, and high) as characterized above: a signal in the low risk group (i= 1)

reflects that the buyer is operating as usual with its default risk under control, including the case

when no risk-aggravating events are discovered. A signal embodying medium risk (i= 2) captures

the scenario in which there are some worrying signs about the buyer’s creditworthiness. Finally,

a signal within the high risk group (i= 3) shows strong evidence suggesting that a credit sale is

overly risky (e.g., filing for bankruptcy). However, with probability (1 − λ), the insurer fails to

obtain any signal, which cannot be distinguished from the scenario when no negative information

is observed (i= 1).4 Thus, based on the Bayes’ Rule, when obtaining a signal belonging to group

i= 1 or no signal at all, which are not distinguishable from each other, the posterior buyer default

probability is β1 = (1−λ)β̄+λβ′1. The probability of this scenario happening is θ1 = (1−λ) +λθ′1.

When obtaining a signal of medium or high level, the buyer’s posterior default probability βi = β′i

for i = 2,3. The probability of these scenarios happening is θi = λθ′i for i = 2,3 respectively. On

the other hand, if the insurer decides not to exert effort, no updated information is observed, and

the posterior buyer default probability remains the same as the prior, β̄. We note that the above

information generation model is similar to that in Stein (2002), and is consistent with the classic

moral hazard literature in that one cannot use the outcome to determine whether the insurer has

exerted effort, and thus, effort cannot be directly contracted upon.

Finally, depending on whether the information obtained is verifiable or not, we consider two

scenarios regarding how the insurer shares the information with the supplier. In §5 – 6, we focus

on the case when information is verifiable and cannot be strategically manipulated by the insurer.

This is largely consistent with our understanding of practice (e.g., the insurer’s and supplier’s IT

systems are partially connected), and it allows us to focus on the moral hazard associated with

the insurer fulfilling his monitoring role. In §7, we examine the scenario where the information

obtained is unverifiable and the insurer may strategically manipulate information.

4 We note that this inefficiency exists irrespective of whether the information (signal) is verifiable or not.
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3.3. TCI contracts

Motivated by industry practice (Association of British Insurers 2016, AIG 2013, Jones 2010,

Thomas 2013), we mainly focus on the following two types of TCI contracts, with the corresponding

sequence of events as depicted in Figure 1.

Figure 1 Sequence of events under non-cancelable and cancelable policies.

Supplier's Action

Insurer's Action

Non-Cancelable/Cancelable

Cancelable Only

Settles the
claim upon
default

The buyer's
default risk
is realized

Accepts
or rejects

the
contract

Exerts
monitoring
effort at
cost c?

Proposes
contract

parameters

With effort, signal with
default risk βi is received and

shared with the supplier

Receives
order at

credit price
r

Ship on
credit or

receive r0?

Cancels
coverage

and
refunds f?

Supplier's
financing

cost
L(x) =

l(T − x)+

• Non-cancelable TCI: Under a non-cancelable contract, the supplier proposes the deductible

δ and premium p, and the insurer decides to accept or reject the contract. After the contract is

signed, the supplier pays p to the insurer, and the insurer may choose to exert monitoring effort

at a cost c > 0 and share his findings with the supplier. However, regardless of the insurer’s effort

decision and the signal that he receives, as long as the supplier ships the order, the insurer must

pay the supplier’s claim r− δ in the event of the buyer defaulting, and pay zero otherwise.

• Cancelable TCI: Cancelable contracts differ from non-cancelable ones in two respects. First,

the contract includes not only p and δ, but also a refund of the premium f ∈ [0, p]. Second, the

insurer has the option to cancel the insurance at any time before the good is shipped. If he cancels

the coverage, the insurer refunds the supplier f and removes his exposure to the buyer’s credit

risk. If he does not cancel, the insurer pays the supplier r− δ if the buyer defaults. We refer the

readers to TATA-AIG (2017) for the policy wordings used in a typical cancelable contract.5

As insurance market is assumed to be competitive, the equilibrium insurance contract is the one

that leads to the highest payoff to the supplier, which we define as the optimal contract. Relatedly,

we say the shipping decision is efficient if and only if the supplier ships under all signals i with

(1−βi)r≥ r0, the shipping policy under the centralized benchmark as shown later.

5 While allowing different forms of TCI contracts to have different degrees of flexibility, we assume that the two
parties cannot explicitly contract on the realization of the signals. This captures the fact that as the insurer draws
information from multiple sources, it is impractical to write a complete contract that is contingent on all possible
realizations of the signals. We refer the reader to the seminal work of Grossman and Hart (1986) on the difficulties
of contracting on complex events.
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Finally, to focus on the connection between the operational and financial aspects of the model.

We make two technical assumptions. The first one is:

Assumption 1. r0 > (1−β3)r.

This assumption asserts that the outside option is more profitable than shipping to the riskist buyer,

as otherwise the outside option is valueless and obtaining updating information does not have any

operational implications. Further, we note that as β1 < β̄, the earlier condition that r0 < (1− β̄)r

also implies that upon receiving updated information, it is always efficient to ship at signal i= 1.

Combined, these assumptions guarantee that obtaining updated information has operational value.

Moreover, we note that the efficient decision at i= 2 depends on the attractiveness of r0 relative to

β2. In the rest of the paper, we refer to the case r0 > (1−β2)r as the attractive outside option case,

or equivalently, it is not efficient to ship at i= 2, and the case r0 ≤ (1− β2)r as the unattractive

outside option case, i.e., shipping at i= 2 is inefficient.

Second, we assume that the supplier incurs financing costs only if she ships to a buyer who later

defaults. A sufficient condition to assure this is characterized as follows.

Assumption 2. T ∈ [0, r0− (r− r0)).

As the insurance premium never exceeds (r− r0), Assumption 2 guarantees that the supplier does

not incur financing costs when purchasing insurance and then selling to the outside option.

4. The dual roles of TCI and its potential value

Before analyzing the performance of different TCI contracts, we first establish the potential eco-

nomic value of TCI by comparing two benchmarks: The centralized benchmark, where the supplier’s

and insurer’s actions are both controlled by a central decision-maker who is financially uncon-

strained (as the insurer) and maximizes the sum of the two parties’ payoffs; and the no-insurance

benchmark, where the supplier does not have access to any TCI product. In our setting, the central-

ized outcome is equivalent to the first-best outcome, i.e., when the players maximize self-interest

but all actions are contractible (no moral hazard). The difference in the system surplus between the

two benchmark scenarios represents the potential value of TCI, which is formalized in the result

below.

Proposition 1. The potential value of TCI is min{β̄L(0), (1 − β̄)r − r0} + (φ − c)+, where

φ=
∑3

i=1 θi[r0− (1−βi)r]+ is the option value of shipment cancelation.

Proposition 1 reveals that the potential value of TCI has two components: the cash flow-smoothing

value min[β̄L(0), (1−β̄)r−r0] and the monitoring value (φ−c)+. First, like other forms of insurance,

TCI smoothes the insured firm’s cash flow and lowers the cost associated with the supplier’s
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financial constraint. Specifically, without insurance, two possible outcomes arise due to the financing

constraint: The supplier either ships to the risky buyer under all circumstances, and incurs an

(expected) financing cost β̄L(0), or the supplier always ships to its outside option and incurs an

opportunity cost (1− β̄)r− r0. TCI eliminates such costs by smoothing the supplier’s cash flow.

Intuitively, such a value is greater when the supplier is more financially constrained (larger l or T ,

and thus greater L(0)) or faces a less attractive outside option (lower r0).

Second, and more importantly for our purposes, TCI also plays a monitoring role, which is

unique in the TCI setting due to the insurer’s superior capability (relative to the supplier) in

acquiring and analyzing information. Specifically, by exerting costly effort, the insurer obtains

updated information about the buyer’s default risk. This enables the supplier to cancel shipping

upon receiving a signal i such that shipping to the outside option generates a higher payoff than to

the original risky buyer, i.e., r0 > (1− βi)r. This option to cancel shipping creates an operational

value of φ=
∑3

i=1 θi[r0− (1−βi)r]+. Whenever this value is greater than the cost of monitoring c,

exerting monitoring effort is efficient. To avoid the uninteresting case where it is not efficient for

the insurer to exert monitoring effort even in the absence of agency issues (c > φ), the rest of the

paper focus on the regions where c≤ φ.

While the potential value of both roles of TCI is fully realized under a centralized setting, under

a decentralized setting where both the insurer and supplier act to maximize their own interest

respectively, it is expected that the realized value of TCI would depend on whether the insurance

contract can successfully fulfill the two roles of TCI. In particular, note that fulfilling the monitoring

value of TCI depends on the insurer’s incentive to invest in monitoring, as well as the supplier’s

willingness to ship efficiently based on the updated information. These two incentive issues are

intertwined, and together they act as the main driving force behind the efficiency of different TCI

contracts, which is the focus of the following sections. There, we say the supplier receives the full

value of the TCI if the supplier’s payoff under a TCI contract equals that under the centralized

benchmark. Otherwise, the supplier only receives partial value of the TCI.

5. Non-cancelable contracts

We start our analysis by examining the performance of non-cancelable contracts, which are the

norm in other insurance sectors. In this section, we first identify the conditions that incentivize the

insurer to exert effort (§5.1), and then characterize the optimal non-cancelable contracts (§5.2).

5.1. Inducing the insurer’s effort

After entering into a contract with premium p and deductible δ, and having obtained an updated

estimate of the buyer’s default risk, βi, the supplier makes her shipping decision. Under βi, if the

supplier ships the order, her expected payoff is (1−βi)r+βi [r− δ−L(r− δ− p)], where L(r−δ−p)
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is the financing cost in the event of the buyer defaulting. If she does not ship, her payoff is simply

her outside option r0. By comparing the two options, the supplier ships the order if and only if the

payoff from shipping exceeds her outside option, i.e., r−βi [δ+L(r− δ− p)]≥ r0, or equivalently,

βi ≤ B(p, δ) :=
r− r0

δ+L(r− δ− p)
, (1)

where function B(p, δ) represents the threshold default risk at which the supplier is indifferent

between shipping or not under contract (p, δ). For brevity, we suppress the dependence on (p, δ).

This condition reflects the intuition that the supplier is more willing to ship when facing a lower

deductible. In anticipation of the supplier’s shipping decision under contract (p, δ), the insurer’s

decision to exert monitoring effort is governed by the conditions in Lemma 1.

Lemma 1. Under (p, δ), the insurer exerts monitoring effort if and only if all of the following

three conditions are satisfied:

B≥ β̄; (2)

β̄(r− δ)≥ c+ (r− δ)
∑
i

θiβi1βi≤B; (3)

p≥ c+ (r− δ)
∑
i

θiβi1βi≤B. (4)

The conditions reveal that the insurer’s monitoring incentive is closely connected to the supplier’s

shipping decision under coverage. Specifically, the indicator function 1βi≤B(p,δ) governs whether the

supplier ships when receiving signal βi. Equations (2) and (3) are the insurer’s incentive compati-

bility constraints. Specifically, for the insurer to exert effort, his cost of doing so must be lower than

his cost without effort, in which case the supplier makes her shipping decision based on the prior

belief expectation β̄. Clearly, if the supplier does not ship without receiving any updated signal

when she is under coverage, i.e., β̄ > B, then the insurer’s cost without effort is zero, which is lower

than his cost with effort. Thus, the contract must satisfy (2) for the insurer to exert effort. Under

this condition, the supplier always ships without updated information, which leads to the insurer’s

total cost without effort being β̄(r− δ), and (3) guarantees that this cost must be greater than his

total cost with effort, which is equal to the sum of the effort cost c and the expected claim payment

when the supplier ships under any βi that is no greater than B. Lastly, the insurer’s participation

constraint (4) states that the premium p must cover his total expected cost under monitoring.

5.2. The optimal non-cancelable contract and its limitations

After characterizing the condition under which the insurer exerts effort, we identify the optimal

contract by comparing the contracts that could not induce monitoring and those that do.
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Lemma 2. Among all non-cancelable contracts that do not induce the insurer’s effort, the optimal

one satisfies p = β̄(r − δ), where the deductible δ is sufficiently small. Under this contract, the

supplier always ships to the credit buyer and her expected payoff is Π0 = (1− β̄)r.

Intuitively, without insurer’s monitoring effort, the TCI contract focuses on fulfilling its smoothing

role. To achieve that, the deductible has to be sufficiently low such that the supplier avoids financing

costs. Further, the low deductible also induces the supplier to ship regardless of the market signal,

which in turn discourages the insurer to exert effort.

Next, we characterize the optimal contract among the ones that induce the insurer’s effort. After

incorporating her optimal shipping decision under this contract, the supplier’s objective is:

max
p, δ∈[0,r]

−p+ r0
∑
i

θi1βi>B +
∑
i

θi{(1−βi)r+βi[r− δ−L(r− δ− p)]}1βi≤B. (5)

As shown, the supplier’s expected payoff consists of three parts: The insurance premium p; her

revenue when she does not ship (βi > B); and her expected revenue when she ships (βi ≤ B). The

last part further comprises of two components: The supplier’s expected revenue when the buyer

does not default (1− βi)r and her expected payment from the insurer βi(r − δ), as well as her

expected financing cost βiL(r− δ− p) if the buyer defaults. Solving (5) subject to (2) – (4) leads

to the optimal contract that induces the insurer’s effort.

By comparing the optimal contract with the insurer’s effort in the previous section and the one

without (Lemma 2), we can obtain the optimal non-cancelable contract. For brevity, we focus on

the optimal contract when the supplier’s outside option is attractive. Specifically, Proposition 2

presents the case when the outside option is attractive (r0 > (1−β2)r). The case where the supplier

faces an unattractive outside option (r0 ≤ (1 − β2)r), as summarized in Proposition B.1 in the

Appendix, is qualitatively similar.

Proposition 2. When the supplier’s outside option is attractive (r0 > (1−β2)r),

i) for c ≤ φNFV (T ) = φ−
(
β3
β2
− 1
)

(r − r0)−
[
T − (1− β̄)

(
r− r−r0

β2

)]+
, the supplier receives the

full value of TCI under the optimal contract, and ships only at i= 1;

ii) for c > φNFV (T ), the supplier fails to receive the full value of TCI under any non-cancelable

contracts. Specifically, there exist threshold functions φN1 (T ), φN2 (T ), φN3 (T ), and φN4 (T ) where

φN4 (T )≥ . . . φN1 (T )≥ φNFV (T ) such that the supplier’s and insurer’s actions under the optimal non-

cancelable contract are summarized in the following table. Columns 5 and 6 in the table indicate

the existence of two potential sources of inefficiency that the supplier may experience.
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Region Range of c Insurer Supplier Supplier incurs Insurer

name monitors ships if financing cost? extracts rent?

Financing Cost (FC) (φNFV , φ
N
1 ]∪ (φN3 , φ

N
4 ] Yes i= 1 Yes No

Rent to Insurer (RI) (φN1 , φ
N
2 ] Yes i= 1 Yes Yes

Over-Shipping (OS) (φN2 , φ
N
3 ] Yes i= 1,2 Sometimes No

No Monitoring (NM) (φN4 , φ] No i= 1,2,3 No No

Figure 2 Illustration of different regions under the optimal non-cancelable contract when r0 > (1−β2)r.

T

c

FV

FC

NM
RI

φ

OS

φN
FV

(T )

φN
3
(T )

φN
2
(T )

φN
1
(T )

Notes. Different regions correspond to Column 1 in Proposition 2. In this illustrative example, φN3 (T ) = φN4 (T ). See

the proof of Proposition 2 for the definition of φN1 (T ), φN2 (T ), φN3 (T ), and φN4 (T ).

The different regions in Proposition 2 is illustrated in Figure 2. The specific contract terms and

the supplier’s and insurer’s payoffs are cumbersome and are left in the proof for brevity. We note

from φNFV (T ) that under the optimal contract, the supplier receives the full value of TCI when both

c and T are small, while facing various types of operational and financial inefficiencies as either c

or T becomes larger. To see why, recall that the role of TCI consists of two components: smoothing

and monitoring. Fulfilling both imposes divergent forces on the deductible δ. On the one hand,

to unlock the smoothing value of TCI, the deductible needs to be sufficiently low, as otherwise,

the supplier incurs financing costs even under coverage. On the other hand, the monitoring role

requires the supplier to ship efficiently based on the updated information. To deter the supplier

from taking excessive risks, the deductible should be reasonably high. This tension intensifies as

the supplier’s financial constraint becomes more stringent (large T ), deeming it impossible for

the supplier to recover the full value of TCI. Instead, the optimal contract may require a high

deductible in order to enforce the efficient shipping policy, which results in financing costs (Region

FC). Alternatively, if the deductible is kept low in order to reduce financing costs, the optimal

contract then has to allow the supplier to adopt a more aggressive shipping policy (Region OS).
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Eventually, when T is extremely large, it becomes too costly to fulfill the monitoring role of TCI,

resulting in the no-monitoring contract as captured Lemma 2 to be the optimal one (Region NM).

More interestingly, setting aside the smoothing role, the monitoring role also imposes two con-

flicting forces on deductible. As mentioned above, the deductible needs to be sufficiently high to

induce efficient shipping. However, as the monitoring role also requires the insurer to exert effort,

the deductible cannot be too high. This is captured in (3): When the deductible is very high, the

negative impact of the buyer’s default on the insurer is minimal, and thus dulls the insurer’s incen-

tive to monitor. Such tension is more pronounced when the insurer’s cost of effort is high (large

c). Specifically, as c increases, (3) calls for a lower deductible. As the cost of effort is sufficiently

close to the potential benefit of monitoring φ, it is impossible to fully recover the monitoring role.

Thus, the optimal contract adopts one of three alternatives. First, to induce both monitoring effort

and efficient shipping, the contract needs to set the deductible at a level such that the insurer’s

participation constraint (4) is not binding. In other words, the supplier surrenders some rent to

the insurer (Region RI). Alternatively, similar to the case with large T , the optimal contract may

also lead to over-shipping (Region OS), or abandoning monitoring (Region NM).

At a high level, the inefficiency in the optimal non-cancelable contracts is related to the mismatch

between the sequential nature of the incentive conflict under TCI and the static nature of the

contract. Specifically, the monitoring role of TCI relates to the sequential actions of the insurer

and the supplier: The supplier’s decision to ship or not is contingent on the specific information

that the insurer acquires. However, as the the single lever in the contract to mitigate both moral

hazards, deductible is specified before the information update. As such, it is often inadequate for

mitigating the conflicts of interest between the two parties.

6. Cancelable contracts

In this section, we examine cancelable contracts and investigate whether they may mitigate some of

limitations of non-cancelable contracts. Clearly, the insurer’s option to cancel the coverage is only

valuable when he acquires updated information and when he actually exercises this option under

certain circumstances. Thus, in this section, we limit ourselves to those contracts under which the

insurer exerts monitoring effort, and actually cancels coverage upon receiving certain signals.

6.1. The interplay between supplier’s shipping and insurer’s cancelation decisions

To identify the optimal cancelable contract, we first characterize the supplier’s shipping policy and

then the insurer’s cancelation policy under a given insurance contract (p, δ, f), where f ∈ [0, p] is

the refund that the insurer pays to the supplier upon cancelation of the insurance policy.

Depending on whether her coverage is canceled, the supplier’s shipping policy can be discussed

in two scenarios. First, when insurance coverage is not canceled, the supplier’s payoff under signal
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i is r− p− βi[δ+L(r− δ− p)] if she ships, and r0 if she does not ship. Hence, the supplier ships

the order if and only if βi ≤ B(p, δ) where B() was introduced in Eq. (1).

In the case that the insurance is canceled, under the signal i, the supplier’s payoff is r− p+ f −

βi[r+L(f −p)] if she ships, and r0−p+f if she does not. Comparing the two payoffs, the supplier

ships if and only if:

βi ≤ BC(p, f) :=
r− r0

r+L(f − p)
, (6)

where the subscript C represents that the coverage is canceled. Note that as L(·)≥ 0, BC ≤ (r−

r0)/r; this captures the intuition for how the cancelation of coverage could deter the supplier from

over-shipping.

In anticipation of the supplier’s shipping decision described above, the insurer decides whether

or not to cancel coverage. Since the insurer must refund f to the supplier upon cancelation, he

never cancels when βi > B, for which the supplier would never ship the order even under coverage.

However, if the supplier does ship the order when coverage is not canceled (βi ≤ B), the expected

claims cost to the insurer is βi(r − δ). Balancing this cost and the refund f , the insurer cancels

coverage if and only if βi ∈ [BP ,B], where

BP (δ, f) :=
f

r− δ
, (7)

and the subscript P represents the insurer’s cancelation policy. Thus, the insurer only cancels the

coverage when the buyer’s default risk is in the middle range. At the low end, the risk is low

relative to the refund, while at the high end, the supplier herself stops shipping. That said, the

upper threshold B may be higher than β3 when the deductible is sufficiently small, at which point

the insurer’s cancelation policy degenerates to a simple threshold policy.

Lemma 3. Under any cancelable contract in which the insurer exerts effort and actually cancels

coverage at certain signals, B>max(BC ,BP ), and the supplier ships if and only if βi <max(BC ,BP ).

The above result suggests that the supplier’s shipping policy may be completely aligned with the

insurer’s cancelation policy (when BC ≤ BP ), yet she may also ship when the coverage is canceled

(BC > BP ). Under either case, B>max(BC ,BP ) confirms the intuition that a cancelable contract

induces the supplier to ship to the credit buyer more conservatively than without the cancelation

option. As a cancelable contract under which the insurer never cancels the coverage is equivalent

to a non-cancelable contract, we focus on cancelable contracts which satisfy Lemma 3.
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6.2. The power of cancelable insurance

Combining the insurer’s cancelation and the supplier’s shipping decisions, we can characterize the

conditions under which a cancelable contract induces the insurer to exert monitoring effort (see

Lemma B.1 in the Appendix). These conditions (Eq. (12) – (14)) follow a similar structure as under

the non-cancelable case (Lemma 1), but differ in that they incorporate the insurer’s cancelation

policy. Among the contracts (p, δ, f) that satisfy these conditions, it is in the interest of the supplier

to choose the one that maximizes her own payoff, that is,

max
p, δ∈[0,r]
f≤p

− p+
∑
i

θi[r−βi(δ+L(r− p− δ))]1βi<BP +
∑
i

θi[(1−βi)r−βiL(f − p)]1βi∈[BP ,BC)

+ r0
∑
i

θi1βi>max(BP ,BC) + f
∑
i

θi1βi∈[BP ,B). (8)

Eq. (8) shows that under cancelable contracts, the supplier’s expected payoff consists of five

parts: The insurance premium; her net revenue when shipping under coverage (βi < BP ); that

when shipping without coverage (βi ∈ [BP ,BC)); her outside option when she does not ship (βi >

max(BP ,BC)); and finally, the refund when the coverage is canceled (βi ∈ [BP ,B)).

By solving this optimization program, we characterize the optimal contract and the parties’

corresponding actions based on whether the supplier’s outside option is attractive (r0 ≥ (1−β2)r,

Proposition 3) and unattractive (r0 < (1−β2)r, Proposition 4 in §6.3).

Proposition 3. When r0 ≥ (1−β2)r, the following cancelable contract is optimal:

δ= 0; p= f =
c

θ1
+β1r. (9)

Under this contract, the supplier receives the full value of TCI by only shipping at i = 1. Corre-

spondingly, the insurer cancels the coverage upon receiving signal i= 2,3.

In comparison with the performance of the optimal non-cancelable contract as depicted in Propo-

sition 2, we notice that under the same parameter region (r0 ≥ (1− β2)r), the optimal cancelable

contract always enables the supplier to enjoy the full benefit of TCI. The reason is as follows.

Recall that the inefficiency of non-cancelable contracts is mostly due to two sets of conflicts that

pull the deductible in different directions: The conflict within the monitoring role (large c), and

the conflict between the smoothing role and monitoring one (large T ). The cancelable contract,

on the other hand, has its advantages in resolving both conflicts. To see how cancelable contracts

can fully recover the monitoring role, recall from Lemma 3, the supplier ships more aggressively

under coverage than without. Thus, by canceling her coverage, the insurer can effectively nudge

the supplier to adopt a more conservative shipping policy. Put differently, a cancelable contract

(partly) transfers control over the shipping decision from the supplier to the insurer. Furthermore,
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since the insurer does not directly benefit from the upside potential of the trade, the insurer indeed

tends to behave more conservatively, which is consistent with the efficient shipping policy when

the supplier faces an attractive outside option. Consequently, granting more control to the insurer

efficiently deters over-shipping.

Second, by allowing the insurer to cancel coverage, the cancelable contract partially decouples

the two roles of TCI by effectively creating two levels of deductible: When the signal deems shipping

as efficient (i= 1), the supplier is covered by insurance. Under such circumstances, the smoothing

role of TCI is fulfilled as the nominal deductible δ is kept low. This result is also consistent with

the fact that in practice, a majority of cancelable contracts includes zero deductible, while non-

cancelable contracts tend to have large deductibles (Euler Hermes 2018). On the other hand, when

shipping is inefficient (i ≥ 2), the full monitoring value of TCI is realized via the cancelation of

coverage, which results in an effective deductible equal to r.

In summary, the value of cancelable contracts lays in its inherently sequential nature. Specifically,

the insurer’s recourse to cancel is exercised after observing the updated information. Such an ex post

action is contingent on the realization of the signal, and thus enhances the monitoring value of TCI.

In addition, note that the cancelation option can only be exercised before the supplier’s shipping

decision, as cancelation afterwards does not correspond to any recourse that creates economic

value. This is also consistent with the practice that the insurer cannot cancel coverage after the

order is shipped.

6.3. The peril of cancelable contracts: over-cancelation

While Proposition 3 reveals some merits of the cancelable contracts, such contracts are not without

limitation. As shown in the following result, fully recovering the value of TCI is not always feasible

under cancelable contracts when the supplier’s outside option is unattractive.

Proposition 4. When the supplier’s outside option is unattractive (r0 < (1−β2)r),

i) If β2 ≤ β̄, there exist threshold functions φC1 (T )≤ φCFV (T ) = θ1(β2 − β1)max
(
r− r−r0

β3
, T
1−β2

)
such that the performance of the optimal cancelable contract is summarized in the following table.

Region Range of (c,T ) Insurer Supplier Financing Rent to

name cancels if ships if cost insurer

Full-Value (FV) c≥ φCFV i= 3 i= 1,2 No No

RI/FC c∈ [φC1 , φ
C
FV ) i= 3 i= 1,2 Sometimes Sometimes

Under-Insured (UI) c < φC1 and T ≤ (1−β2)r−r0
lβ2

i= 2,3 i= 1,2 Yes No

Under-Shipping (US) c < φC1 and T > (1−β2)r−r0
lβ2

i= 2,3 i= 1 No No

ii) If β2 > β̄, there exist threshold functions φC2 (T ) ≤ φC3 (T ), such that the performance of the

optimal cancelable contract is summarized in the following table.
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Region Range of (c,T ) Insurer Supplier Financing Rent to

name cancels if ships if cost insurer

RI/FC c∈ [φC2 , φ
C
3 ) i= 3 i= 1,2 Sometimes Yes

UI c∈ (0, φC2 )∪ (φC3 , φ) and T ≤ (1−β2)r−r0
lβ2

i= 2,3 i= 1,2 Yes No

US c∈ (0, φC2 )∪ (φC3 , φ) and T > (1−β2)r−r0
lβ2

i= 2,3 i= 1 No No

Figure 3 Illustration of different regions under optimal cancelable contract when r0 < (1−β2)r.

T

c

FV

RI/FC
UI

φ

φC
FV (T )

US

φC
1 (T )

(1−β2)r−r0

lβ2

Notes. The illustration is generated under parameters β2 ≤ β̄.

Proposition 4 is illustrated in Figure 3. The first notable result is that the supplier fails to recover

the full value of TCI when the insurer’s monitoring cost is sufficiently low or when the medium

signal (β2) is deteriorating relative the prior belief.

The reason why a low monitoring cost hurts the performance of cancelable contract, interestingly,

also originates from the insurer’s cancelation option. While such an option increases the flexibility

of the contract, the flexibility is granted to the insurer, and hence may not always benefit the

supplier. Indeed, this flexibility creates an additional moral hazard on the insurer’s side. Similar

to the supplier’s tendency to over-ship, once the contract is in place, the insurer exercises his

cancelation option according to his own best interest, which may not be fully aligned with the

supplier’s. Specifically, as previously shown, for the insurer to not cancel at signal i, his cost of

cancelation (refund f) exceeds the expected claim costs βi(r− δ), i.e.,

f ≥ βi(r− δ). (10)

This constraint alludes to the two scenarios in which the insurer tends to over-cancel, i.e., cancel

at signal i when (1− βi)r > r0. First, when the supplier’s outside option is unattractive (small

r0), it remains efficient to ship at some i when βi is relatively large. Thus, it is more difficult to

satisfy (10) for such i. Second, when the insurer’s monitoring cost is low, the insurance premium
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p also tends to be low. As the refund f is capped by p in practice, (10) becomes more stringent

as c decreases, which also reduces the insurer’s expected cost, holding everything else constant.

When both conditions are met, in order to satisfy (10) for any signal i with (1− βi)r ≤ r0, the

optimal contracts exhibit one of two possible features: They either have a higher deductible, thereby

increasing financing costs; or they have a higher premium to allow a higher refund, which leaves

rent to the insurer. These contracts are captured in the Region RI/FC in Figure 3. As c further

decreases, it becomes too costly to incentivize the insurer to adopt an efficient cancelation policy.

Instead, he cancels coverage at i = 2,3, although shipping at i = 2 is efficient. In response, the

supplier chooses between two alternatives depending on her financial constraints. When she is less

concerned about the financing cost (small T ), the supplier follows the efficient shipping policy,

which means that she ships at i = 2 uninsured (Region UI). However, for large T , the supplier

cannot afford shipping without insurance. Thus, she does not ship at i = 2 even if it is efficient

(Region US). Such a dilemma is often faced by suppliers. For example, in 2009, Total Security

Systems, a small supplier to UK security companies, had to decide whether to ship an order worth

£100,000 after their TCI was canceled. Even though they believed that the buyer’s default risk

was low, they canceled the order as they were unwilling to ship uninsured (Stacey 2009).

Finally, we note that the inefficiency of cancelable contracts is more pronounced when the credit

risk under the medium signal is high (β2 ≥ β̄). In this case, the insurer has a greater tendency

to cancel at i = 2, and the supplier is forced to surrender more rent to the insurer in order to

prevent over-cancelation. As such, the parties are more likely to adopt either inefficient cancelation

or inefficient shipping policies.

6.4. Contracts choice and improvements

By directly comparing the optimal non-cancelable and cancelable contracts, we note that when

the supplier’s outside option is attractive, i.e., r0 ≥ (1−β2)r, the supplier always (weakly) prefers

the cancelable contract, which recovers the full value of TCI, over the non-cancelable one. The

performance of the cancelable contract strictly dominates when the monitoring cost is high, i.e.,

c > φNFV (T ) (in Proposition 2). On the other hand, the supplier’s preference in the presence of an

unattractive outside option is summarized in the following.

Proposition 5. When the outside option is unattractive (r0 < (1−β2)r):

1. For β2 ≤ β̄, there exists threshold function φL(T ) such that the supplier prefers the non-

cancelable contract with monitoring when c≤ φL(T ), and the cancelable one when c > φL(T ).

2. For β2 > β̄, there exist threshold functions φH,1(T )≤ φH,2(T ) such that the supplier prefers the

non-cancelable contract with monitoring when c ≤ φH,1(T ), and the non-cancelable contract

without monitoring when c≥ φH,2(T ).
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The above Proposition confirms that when the outside option is unattractive, the supplier in gen-

eral prefers the non-cancelable contract when the monitoring cost is sufficiently low.6 This result

echoes the recent emergence of non-cancelable contracts. Due to the adoption of superior informa-

tion systems and other technological advances, the insurer’s monitoring costs are now markedly

lower than that in the past. This potentially drives down insurance premiums, and as previously

mentioned, a low premium generally leads to over-cancelation by the insurer, which is also con-

sistent with the fact that TCI insurers have been accused of canceling coverage unreasonably. In

addition, during the financial crisis, suppliers faced challenging market conditions and were often

deprived of attractive outside options. Such situations made suppliers particularly vulnerable to

insurers’ tendency to over-cancel, making non-cancelable contracts a more desirable choice.

As revealed in the previous results, when choosing TCI contracts, the supplier needs to measure

and compare the value of flexibility offered by cancelation, with that of the commitment embod-

ied in non-cancelable coverage. Intuitively, a cancelable contract with part of the coverage being

non-cancelable that blends these two benefits may further improve the performance of TCI. This

type of contract corresponds to an emerging industry practice of adding non-cancelable coverage

onto a cancelable contract, which is sometimes referred to as top-up cover on cancelable coverage

(Insurance Journal 2012). Such a partially cancelable contract is similar to a cancelable contract

with only one difference: upon cancelation, the insurer can only cancel part of the coverage, while

the remaining part, is non-cancelable. By modeling this innovative contract form, we find that

such contracts further expand the region where the supplier receives the full value of TCI (See

Proposition B.2 in the Appendix for details). Our analysis shows that this innovation adds value

through two channels: first, it protects the supplier from financing costs through non-cancelable

coverage; second, it deters the insurer from over-canceling.

7. The implication of unverifiable information

In order to focus on the moral hazard associated with the insurer fulfilling his monitoring role,

we assume in the previous sections that once the insurer obtains the updated information through

monitoring effort, he shares the information with the supplier without distortion. This assumption

is largely consistent with our understanding of practice (e.g., the insurer’s and supplier’s IT sys-

tems are partially connected, thereby making it difficult to distort information). However, there

is a possibility that the insurer may strategically manipulate the acquired information, and it is

probably more likely when the information is acquired from non-public sources and is thus diffi-

cult to verify. This section examines the implication of such unverifiable information. The model,

6 When β2 > β̄ and c∈ (φH,1(T ), φH,2(T )), the dominant contract form depends on specific parameter choices.
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including the TCI contracts, is identical to that in §3, except that upon monitoring, the insurer

can misrepresent the information that he gathers.

In this setting, we first note that the potential value of TCI is the same as depicted in Proposition

1 since the information is directly available to the insurer. Regarding the performance of TCI

contracts when the insurer maximizes his self-interest, it is intuitive that the insurer always has the

incentive to misrepresent the information in order to deter the supplier from shipping the order,

which would rid him of any claim liability. Anticipating this, the supplier deems valueless any

information that the insurer conveys. This in turn discourages the insurer from exerting monitoring

effort, and thus unravels the monitoring role of TCI. Thus, under the non-cancelable contract,

where the insurer has no other credible means to convey the gathered information to the supplier,

the insurer has no incentive to exert effort, and thus fails to fulfill the monitoring role. The resulting

optimal non-cancelable contract is the one depicted in Lemma 2 and it is clear that unverifiable

information hurts the performance of non-cancelable contracts.

The impact of unverifiable information on cancelable contracts, however, is more intricate. We

first note that cancelable contracts equip the insurer with a tool that could potentially convey the

gathered information to the supplier, namely, his cancelation action. The intuition is that the cost

incurred by the insurer to cancel depends on the information he receives: when the information is

positive (low default risk), the cost of cancelation is high, and when negative (high default risk),

cancelation is less costly. Thus, when the supplier observes that her coverage is canceled, she is

more likely to be convinced that the information that the insurer gathers is negative.

To formalize the above argument, we model the interaction between the insurer and the sup-

plier, after contracting and the insurer having exerted monitoring effort, as a signaling game. The

insurer (the sender) conveys his private information to the supplier (the receiver) with the action

of cancelation as the message. We refer the readers to Riley (2001) for a review of signaling games

in the economics literature, and to Lai et al. (2011), Bakshi et al. (2015), and Tang et al. (2018)

for the application in the OM literature. The relevant equilibrium concept is the Perfect Bayesian

equilibrium (PBE). In equilibrium, upon observing the insurer’s cancelation action (the message),

the supplier forms her posterior belief based on the information the insurer gathers, using Bayes’

Rule. Thereafter, the supplier makes her shipment decision accordingly. Specific to the TCI set-

ting, we focus on semi-separating equilibria as the number of possible messages (cancel or not

cancel) is less than the number of information classes (i = 1,2,3), and thus it is impossible to

completely separate each class of information through different action. The other possible type of

equilibria is the pooling equilibria. However, as the insurer has no incentive to exert monitoring

under such equilibria, the resulting cancelable contract will be (weakly) dominated by the optimal

non-cancelable one.
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By studying this signaling game (we refer the readers to Lemma B.2 in the Appendix for details),

we find that under the optimal cancelable contract, the insurer adopts an intuitive threshold

cancelation policy: He cancels the contract upon receiving negative information, and does not

cancel on receiving positive information. In response, the supplier ships if and only if her coverage

is not canceled. For the equilibrium outcome in the signaling game, the analysis regarding the

insurer’s decision to exert monitoring effort and the supplier’s choice of contract terms is similar

to that in §6. We present the performance of the resulting optimal contract as follows.

Proposition 6. When the information gathered by the insurer is unverifiable,

1. For an attractive outside option (r0 ≥ (1− β2)r), the supplier receives the full value of TCI

under the optimal cancelable contract;

2. For an unattractive outside option (r0 < (1−β2)r):

i) If β2 ≤ β̄, there exists threshold functions φU1 (T ) ≥ φUFV (T ) = θ1(β2−β1)T

1−β2
such that the

performance of the optimal cancelable contract is summarized in the following table.

Region Range of c Insurer Supplier Financing Rent to

name cancels if ships if cost insurer

Full Value (FV) [φUFV , φ] i= 3 i= 1,2 No No

RI/FC [φU1 , φ
U
FV ) i= 3 i= 1,2 Sometimes Sometimes

Under-shipping (US) [0, φU1 ) i= 2,3 i= 1 No No

ii) If β2 > β̄, there exist threshold functions φU2 (T )≤ φU3 (T ), such that the performance of the

optimal cancelable contract is summarized in the following table.

Region Range of c Insurer Supplier Financing Rent to

name cancels if ships if cost insurer

RI/FC [φU2 , φ
U
3 ) i= 3 i= 1,2 Sometimes Yes

US [0, φU2 )∪ (φU3 , φ) i= 2,3 i= 1 No No

By comparing the optimal cancelable contract under unverifiable information with the counter-

parts under verifiable information (Propositions 3 and 4), we notice that the cancelable contract

remains efficient in the presence of unverifiable information when the supplier faces an attrac-

tive outside option (r0 ≥ (1− β2)r). However, in the presence of an unattractive outside option

(r0 < (1−β2)r), while the performance of the optimal cancelable contract follows a structure simi-

lar to the verifiable information case, two differences are notable. First, the optimal contract under

unverifiable information allows the supplier to receive the full benefit of TCI over a larger range

of monitoring costs. This is because when the updated information is unverifiable, the supplier is

forced to react to the insurer’s action, instead of the information itself. In this way, the insurer

gains more direct control, and thus, can partially mitigate the supplier’s agency problem. Second,

unverifiable information may also hurt the supplier by, interestingly, the same force. Specifically,
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when the insurer cancels at both i= 2 and 3, the supplier is unable to distinguish these two cases,

and thus loses the potentially valuable option to ship un-insured (Region UI in Proposition 4).

Finally, Proposition 7 compares the above cancelable contract with the non-cancelable one.

Proposition 7. When the information acquired by the insurer is unverifiable,

1. for β2 ≥ β̄, the supplier prefers the cancelable contract;

2. for β2 < β̄, there exists a threshold function φUH(T ) such that the supplier prefers the cancelable

contract if and only if c≤ φUH(T ).

Relative to the results under verifiable information (Proposition 5), cancelable contracts are more

likely to be the dominant contracting form when the gathered information is unverifiable, especially

when the monitoring cost is low. This is because that in addition to its role in mitigating moral

hazard, the cancelation option, which is only present in cancelable contracts, serves as a credible

signal for the insurer to communicate private information. Put differently, if the insurer has other

channels through which he can credibly communicate the gathered information to the supplier

(e.g., through IT integration, or blockchain), the attractiveness of non-cancelable contracts will be

improved, especially under low monitoring cost. This possibly lends another explanation for the

growing popularity of non-cancelable contracts.

8. Conclusion

TCI is a commonly adopted risk management tool for suppliers who extend trade credit to their

buyers. Despite its wide usage in practice, TCI has been largely overlooked in the academic litera-

ture. In this paper, we highlight the operational value of TCI, as linked to the monitoring role that

the insurer plays in the TCI setting. We also highlight the supplier’s and insurer’s moral hazards

associated with this role. Centered around cancelability, a distinctive feature of TCI contracts,

we identify the respective advantages and limitations of the two forms of commonly seen TCI

contracts: cancelable and non-cancelable contracts.

Our paper can be extended along different dimensions. For example, in focusing on the insurer-

supplier interaction, we assumed that the employment of TCI does not influence the buyer’s default

probability. However, in some cases, if the supplier were to withdraw the buyer’s trade credit upon

having her insurance canceled, the buyer may face more severe liquidity constraints and thus be

more likely to fail. Similar dynamics (without TCI) were studied recently in Babich (2010) and

Yang et al. (2015). Yet, the choice of TCI contract in the presence of endogenous default risk

remains an open question. Relatedly, the paper takes the trade credit terms between the supplier

and the buyer as exogenously given. However, the availability of TCI could have an impact on the

terms between the two trading parties, as well as other financing options. Extending the current
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model in this dimension could be a promising direction for future research. Finally, while the paper

focuses on TCI, the principles that we uncovered may apply more generally. Specifically, insurer’s

cancelation option can enhance the value of other types of insurance where the insurer is better

equipped to monitor the insured risk. For example, as an emergent insurance product, contingent

business interruption (CBI) insurance reimburses lost profits and extra expenses resulting from an

interruption of business at the premises of a customer or supplier, and hence also insures a risk

that is not internal to the insured party. Therefore, it is possible that the insurer is more efficient

at monitoring this risk as well. Thus, our results have the potential to inform risk management

practice beyond TCI.
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Appendix A: List of Notation

Table 1 summarizes the notation used in the paper.

Table 1 Notation

r the credit price that the supplier charges to the credit buyer

r0 the supplier’s outside option, r0 < r

T the supplier’s net cash flow threshold (she incurs a financing cost when her net cash
flow is below T )

l the proportional financing cost incurred by the supplier

c the insurer’s cost of exerting monitoring effort

βi the buyer’s default probability when the updated information is of type i= 1,2,3.
0≤ β1 <β2 <β3 ≤ 1

θi the probability that the insurer observes information of group i= 1,2,3,
∑3

i=1 θi = 1

β̄ the prior expectation of the buyer’s default probability,
∑3

i=1 θiβi = β̄; (1− β̄)> r0

p insurance premium p≥ 0

δ deductible, δ ∈ [0, r]

f the refund that the insurer pays to the supplier when the insurance is canceled,
f ∈ [0, p]

φ the maximum cost of effort for monitoring to be efficient. φ=
∑3

i=1 θi[r0−(1−βi)r]+
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Appendix B: Supplemental Results

Proposition B.1 When the supplier’s outside option is unattractive (r0 < (1− β2)r), there exist threshold

functions φNLFV (T ), φN1 (T ), φN2 (T ) and φN3 (T ), where

φNL3 (T )≥ φNL2 (T )≥ φNL1 (T )≥ φNLFV (T ) = φ−
[
T − (1− β̄)

(
r− r− r0

β3

)]+

, (11)

such that the performance of the optimal contract is summarized in the following table.

Region Range of c Insurer Supplier Supplier incurs Insurer

name monitors ships if financing cost? extracts rent?

Full Value (FV) [0, φNLFV ] Yes i= 1,2 No No

Financing Cost (FC) (φNLFV , φ
NL
1 ]∪ (φNL2 , φNL3 ] Yes i= 1,2 Yes No

Under-Shipping (US) (φNL1 , φNL2 ] Yes i= 1 Sometimes Sometimes

No Monitoring (NM) (φNL3 , φ] No i= 1,2,3 No No

Lemma B.1 Under a cancelable contract (p, δ, f), the insurer exerts monitoring effort if and only if all of

the following conditions are satisfied:

B≥ β̄; (12)

β̄(r− δ)≥ c+ (r− δ)
∑
i

θiβi1βi<BP + f
∑
i

θi1βi∈[BP ,B]; (13)

f ≥ c+ (r− δ)
∑
i

θiβi1βi<BP + f
∑
i

θi1βi∈[BP ,B]. (14)

Proposition B.2 Under the optimal partially cancelable contract, if the outside option is unattractive (r0 <

(1−β2)r), the supplier receives the full value of TCI if and only if:

c≥min

(
θ3(β3− β̄)

1− β̄
T,

θ1(β2−β1)

1−β2

(T − γ∗)−
2∑
i=1

θiβiγ
∗

)
. (15)

where γ∗ = r− r−r0
β3
− l

1+l

[
T −

(
r− r−r0

β3

)]+
.

Lemma B.2 Under unverifiable information, under any cancelable contract that induces the insurer’s mon-

itoring effort, in the resulting PBE,

1. the supplier ships if and only if the insurer does not cancel the contract;

2. if the insurer cancels at information class i, he also cancels at all information classes k > i; and

3. the insurer cancels when the received signal i≥ j and the supplier ships at i < j for j = 2,3 if and only

if the contract terms (p, δ, f) satisfy the following three conditions jointly:

BP ∈ [βj−1, βj ]; (16)

B≥
∑

i≤j θiβi∑
i≤j θi

; (17)

BC ≤
∑

i>j
θiβi∑

i>j
θi

; (18)

where B(), BC() and BP () are defined in Sections 5 and 6.
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Appendix C: List of Notation

Table 2 summarizes a list of notation used in this Online Appendix.

Table 2 Notation

Π0 Π0 = (1− β̄)r.

Ci Ci =
∑

j≥i θj[r0− (1−βj)r], for i≥ 1.

Πi Πi = (1− β̄)r+Ci− c, for i≥ 1.

CU
i CU

i =
∑

j≥i θjβj

(
r− r−r0

βi

)
.

τi τi = (1−
∑

j<i θjβj)
(
r− r−r0

βi

)
.

lh lh = θ1(β2−β1)

(1−β2)
∑2
i=1 θiβi

.

ΠN
i the payoff under the optimal non-cancelable contract that induces the supplier to

ship only at signal j < i.

ΠC
i the payoff under the optimal cancelable contract under which the insurer cancels

at signal j ≥ i.
ΠU
i the payoff under the optimal cancelable contract with unverifiable information

under which the insurer cancels at signal j ≥ i.
γ the amount of coverage that is non-cancelable in a cancelable contract with non-

cancelable coverage, γ ∈ [0, r− δ].

Appendix D: Proofs

D.1. Proofs in Section 4

Proof of Proposition 1. To characterize the potential value of trade credit insurance, we first identify

the payoffs under two benchmarks: the first-best benchmark and the no-insurance one. Under the first-best

benchmark, we consider the following two scenarios depending on whether the insurer exerts monitoring

effort.

1. When the insurer does not exert effort, the supplier makes her shipping decision based on the prior

expectation of the buyer’s default probability β̄. Thus, she ships the order if and only if (1− β̄)r≥ r0.

As this condition always holds under Assumption 1, the supplier always ship and the corresponding

payoff is (1− β̄)r.

2. When the insurer exerts effort and hence obtains updated information corresponding to default prob-

ability βi, the supplier ships the order if and only if (1 − βi)r ≥ r0 for i = 1, . . . ,N . The supplier’s

corresponding payoff is (1− β̄)r+
∑

i
θi[r0− (1−βi)r]+− c.
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By comparing the above two scenarios, we can conclude that exerting effort is beneficial if and only if

c≤
∑
i

θi[r0− (1−βi)r]+ = φ, (19)

and the first-best payoff is therefore:

ΠFB = (1− β̄)r+ (φ− c)+
. (20)

Next, we consider the no-insurance benchmark. Without insurance, the supplier makes her shipping deci-

sion based on the prior expected default risk β̄. If she ships, her expected payoff is (1 − β̄)r − β̄L(0). If

she does not ship, her payoff is r0. Therefore, she ships if and only if ΠNI ≥ r0, or equivalently, β̄ ≤ r−r0
r+lT

.

Therefore, the no-insurance payoff is:

ΠNI = max((1− β̄)r− β̄L(0), r0) = (1− β̄)r−min
[
β̄L(0), (1− β̄)r− r0)

]
. (21)

Taking the difference between ΠFB and ΠNI leads to the potential value of TCI as in the Proposition. �

D.2. Proofs in Section 5

Proof of Lemma 1. To facilitate the proof, Figure 4 illustrates the extensive form representation of the

game between the insurer and the supplier after the two parties have entered the (non-cancelable) contract.

Figure 4 Extensive form representation of the game between the insurer and the supplier under a non-cancelable

contract
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For the proof, we first show that all three conditions are necessary for the insurer to exert effort.

1. For (2), we prove it by contradiction. Assume this condition is not satisfied under contract (p, δ), i.e.,

B< β̄. Now we compare the insurer’s total costs (effort cost plus claim payout) when he exerts effort

(the upper branch in Figure 4) that his cost when he does not exert effort (the lower branch in Figure

4). If the insurer does not exert effort, the supplier’s belief on the buyer’s default risk remains to

be the prior expectation, β̄. By the assumption that B < β̄, the supplier never ships, and hence the

insurer’s total cost is zero. On the other hand, if the insurer exerts effort, his total costs is at least c. By

comparing these two costs, we can conclude that under B< β̄, the insurer does not have the incentive

to exert effort. Thus, B≥ β̄ is a necessary condition for the insurer to exert effort.
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2. Regarding (3), when (2) is satisfied, i.e., the supplier always ships when she receives no updated infor-

mation, the insurer’s total cost when he does not exert effort is β̄(r− δ), the expected claim payout.

On the other hand, his total cost with effort is the sum of the effort cost c and (r− δ)
∑

i
θiβi1βi≤B, the

expected payout under the supplier’s optimal shipping decision in response to updated information βis,

i.e., she ships if and only if βi ≤ B. By comparing the insurer’s total costs between these two scenarios,

we can see that the insurer only exerts effort when (3) holds.

3. (4) is the insurer’s participation constraint, where the left hand side is the premium charged by the

insurer, and the right hand side the total cost with effort, as detailed in the previous discussion on (3).

Without this constraint, the premium is not sufficient to compensate the insurer for his total cost, and

hence the insurer will not be willing to offer insurance coverage to the supplier at all.

For the sufficient side, similar to the above steps, when all three conditions are satisfied, anticipating the sup-

plier’s shipping policy (both with and without updated information), the insurer’s total cost under exerting

effort is (weakly) lower than his cost without exerting effort, as well as the insurance premium. Therefore,

the insurer has the incentive to exert effort. �

Proof of Lemma 2. If a contract does not induce the insurer’s monitoring effort, no updated information

will be obtained, and hence the supplier makes her shipping decision based on the prior expectation β̄.

Following the assumption that (1− β̄)r > r0, the highest payoff the supplier can achieve under such contract

is (1− β̄)r, which can be obtained if and only if no financing cost is incurred and the insurer breaks even.

Next, we will show that contracts that satisfy the following two conditions allows the supplier to achieve

this payoff while does not induce insurer’s effort.

δ≤min

(
(1− β̄)r−T

1 + β̄
,
r− r0

β3

)
(22)

p= β̄(r− δ) (23)

Note that under (22), we have: T ≤ r− δ− p, which leads to L(r− δ− p) = 0. Thus, the supplier does not

incur any financing cost when she ships the order. Note that δ≤ (1−β̄)r−T
1+β̄

is also a necessary condition as for

δ greater than this threshold, the supplier will incur financing cost when she ships, which lowers her payoff

under this contract.

Further, (22) also leads to β3 ≤ r−r0
δ

, that is, B = β3, suggesting that the supplier always ships. Substituting

B = β3 into Eq. (3), we can see that for any c > 0 (when c = 0, the insurer always exerts effort, so it is

excluded from this case), Eq. (3) does not hold. Thus, according to Lemma 1, such a contract does not

induce insurer effort.

Finally, we note that Eq. (23) ensures that the insurer breaks even. Thus, under the above contract, the

supplier’s payoff is (1− β̄)r, as desired, and Eq. (22) also imposes an upper bound on δ, as stated. �

Proof of Proposition 2. The proof follows three steps.

1. Step 1. Define the threshold functions in the proposition that separate the five regions in the proof

(full value, financing cost, rent to insurer, over-shipping, and no monitoring).
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2. Step 2. Summarize the five candidate solutions (contracts) that can be optimal (We show in Lemma

E.1 that only these solutions can be optimal).

3. Step 3. Compare the five candidate solutions to determine the optimal one.

Step 1: Define the threshold functions that separate the five regions. The threshold functions

φN1 (T ), φN2 (T ), φN3 (T ), and φN4 (T ) that define the boundary of different regions in the Proposition (illustrated

in Figure 5) depend on the relative magnitude of r0 and the following thresholds:

Ra0 =

1− β2

1 + θ1β1l

θ2(1+l)
(1− θ1β1− θ2β2)

(
1
β2
− 1

β3

)
 r; (24)

Rc0 =

1− β2

1 +
[

1−θ1β1−θ2β2

θ2
− 1+(1−θ1β1)l

lβ̄

θ3β3

θ2

](
1
β2
− 1

β3

)
 r; (25)

Rd0 =

1− β2

1 +
[
θ3β3

θ2
+

l
∑
j≥2 θjβj

(1+l)θ2
(1− θ1β1− θ2β2)

](
1
β2
− 1

β3

)
 r. (26)

1. For r0 ≥Ra0,

φN1 (T ) = min (f1(T ), f2(T )) (27)

φN2 (T ) =

{
min (f2(T ), f3(T ), f7(T )) if r0 /∈ (Rc0,R

d
0)

min (f2(T ), f3(T ), max(f7(T ), f8(T ))) if r0 ∈ (Rc0,R
d
0)

(28)

φN3 (T ) = φN4 (T ) = max (min(f2(T ), f3(T )), f4(T )) . (29)

2. For r0 <R
a
0,

φN1 (T ) = min (f1(T ), f2(T ), f5(T )) ; (30)

φN2 (T ) = min (f2(T ), f3(T ), f7(T ), f5(T )) ; (31)

φN3 (T ) = min (max (min(f2(T ), f3(T )), f4(T )) , f6(T )) ; (32)

φN4 (T ) = max (min(f2(T ), f3(T )), f4(T )) . (33)

where f1(T ) – f8(T ) are:

f1(T ) =CU
2 +

l
∑

j≥2 θjβj

1 + (1− β̄)l
[T − (τ2−CU

2 )]+; (34)

f2(T ) =C2−
l
∑

j<2 θjβj

1 + l
[T − (τ2−C2)] ; (35)

f3(T ) =CU
2 +

l
∑

j≥2 θjβj

1 + l
[T − (τ2−C2)]

+
; (36)

f4(T ) =C3−
l
∑

j<3 θjβj

1 + l
[T − (τ3−C3)]

+
; (37)

f5(T ) =

(
1− θ1β1− θ2β2 +

θ2β2(1 + l)

θ1β1l

)(
r− r− r0

β2

)
−T ; (38)

f6(T ) =

l(θ1β1+θ2β2)

1+l(1−θ1β1−θ2β2)
τ3− lθ1β1

1+l(1−θ1β1)
τ2− θ2β2

(
r− r−r0

β2

)
l(θ1β1+θ2β2)

1+l(1−θ1β1−θ2β2)
− lθ1β1

1+l(1−θ1β1)

−T ; (39)
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f7(T ) =CU
2 +

l
∑

j≥2 θiβj

1 + θ1β1 + (1− β̄)l

[
T − (1− θ1β1− θ3β3)

(
r− r− r0

β2

)]+

; (40)

f8(T ) =CU
2 +

T − (1− θ1β1− θ3β3)
(
r− r−r0

β2

)
+

l
∑
j<3 θjβj

1+l(1−
∑
j<3 θjβj)

(T − τ3 +CU
2 )

1+θ1β1+(1−β̄)l

l
∑
j≥2 θjβj

− l
∑
j<3 θjβj

1+l(1−
∑
j<3 θjβj)

. (41)

According to the definitions of φNi () and fi(), it is easy to verify that φNFV (T )≤ φN1 (T )≤ φN2 (T )≤ φN3 (T )≤
φN4 (T ). For example, φN1 (T )≤ φN2 (T ) because min(f3(T ), f7(T ))> f1(T ).

Figure 5 Threshold functions in Proposition 2.
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Notes. The above threshold functions are drawn for the case r0 ≥Ra0 , where φN3 (T ) = φN4 (T ).

Step 2: Summarize the five candidate solutions. In Lemma E.1, we characterize the optimal one among

all non-cancelable contracts that induce a given shipping policy (e.g., the supplier ships at i = 1, but not

at i= 2,3). By enumerating these solutions across all possible shipping policies, we identify five candidate

non-cancelable contracts: Full Value (FV), Financing Cost (FC), Rent to Insurer (RI), Over-shipping (OS),

and No Monitoring (NM).7 By Lemma E.1 and Lemma 2, the optimal non-cancelable contract can only be

7 Note that the five candidate solutions to the optimal non-cancelable contracts bearing the same name with the five
regions in the Proposition. As shown later, the solution will be the optimal one in the region that bears the same
name. For example, Region FV is defined by the range of c where Solution FV defined below is optimal.
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chosen from these five candidates. In the following, we summarize the contract term and basic properties of

these five candidates.

1. Solution FV : This represents the solution that the supplier receives the full value of TCI, i.e., her

payoff under the contract is ΠFB = θ1(1− β1)r+ (θ2 + θ3)r0 − c. To achieve this payoff, the contract

must satisfy three conditions: 1) the shipping policy is efficiency (ships at i= 1, but not at i= 2,3), the

supplier By examining the candidate solutions in Lemma E.1 and Lemma 2, we note that this payoff

can be achieved under the following contract:

δ =
r− r0

β2

− l(T + c− τ2)+

1 + l(1− θ1β1)
, p= c+ θ1β1(r− δ). (42)

This contract corresponds to Statement 1 in Lemma E.1 (Eq. (123)) with i= 2. Under this contract,

the supplier’s payoff follows ΠNB
2 from Eq. (124), which equals to ΠFB if and only if c≤ φNFV (T ), where

φNFV (T ) is defined in the Proposition.

2. Solution FC: This represents the solution that the supplier ships efficiently, i.e., only ships at i= 1, and

she incurs financing cost, but does not surrender rent to the insurer. This corresponds to Statement 1

in Lemma E.1 with i= 2 when c > φNFV (T ), that is

δ =
r− r0

β2

− l(T + c− τ2)+

1 + l(1− θ1β1)
, p= c+ θ1β1(r− δ). (43)

In this case, the insurer’s participation constraint is binding, and the supplier’s payoff is

ΠNB
2 = Π2−

l
∑

j<2 θjβj

1 + l(1−
∑

j<2 θjβj)
(T + c− τ2)

+
. (44)

When c > φNFV (T ), ΠNB
2 < Π2, and the difference is due to the financing cost incurred. In addition,

according to Lemma E.1, this solution is optimal only if c <min(f1(T ), f2(T )) (when it is feasible and

dominates the contract without effort Π0).

3. Solution RI: This represents the solution that the supplier ships at i= 1, and she surrenders rent to

the insurer. This corresponds to Statement 2 in Lemma E.1 with i= 2, that is,

δ = r− c∑
j≥2 θjβj

, p=
1

l

(
r− r0

β2

− r
)

+

(
1 +

1

l

)
c∑

j≥2 θjβj
−T. (45)

as shown in Lemma E.1, the insurer’s participation constraint is not binding, and and the supplier’s

payoff follows:

ΠNN
2 = Π2−

[
(1− β̄)lc+ (1 +

∑
j<2 θjβjl)(c−CU

2 )

l
∑

j≥2 θjβj
−T

]
. (46)

as given by Eq. (126) in Lemma E.1. By Lemma E.1, this solution can be optimal only if c ∈

(f1(T ), f3(T )] (when it is feasible and dominates Π0).

4. Solution OS: This represents the solution that the supplier ships at i= 1,2, i.e., she over-ships. This

corresponds to Statement 1 in Lemma E.1 with i= 3, that is,

δ =
r− r0

β3

− l(T + c− τ3)+

1 + l(1− θ1β1− θ2β2)
, p= c+ (θ1β1 + θ2β2)(r− δ). (47)
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Under this contract, the insurer’s participation constraint is binding, and the supplier’s payoff is

ΠNB
3 = Π3−

l
∑

j<3 θjβj

1 + l(1−
∑

j<3 θjβj)
(T + c− τ3)

+
. (48)

as given by Eq. (124) in Lemma E.1. We can show that follows ΠNB
3 ≤Π3 <Π2. This solution can be

optimal only if c≤ f4(T ) (when it is feasible and dominates Π0).

5. Solution NM : This represents the solution that the insurer does not exert effort, and the supplier ships

at i= 1,2,3. The supplier’s payoff Π0 as given by Lemma 2, and the insurer’s participation constraint

is binding. Also according to the second part of Lemma E.1, this solution is optimal if and only if

c≥ φN4 (T ) = max(min(f2(T ), f3(T )), f4(T )), when it dominates ΠNB
2 , ΠNN

2 and ΠNB
3 .

Step 3: Compare the candidate solutions and determine the optimal one. From the above summary

of the candidate solutions, we have identified the boundary of Region FV and that of Region NM . In the

following, we prove the boundaries of Region FC, RI, and OS are φN1 () (between FC and RI), φN2 () (between

RI and OS), and φN3 () (between OS and FC), as defined above. To do so, we note that the regions that

Solution FC and Solution RI can be optimal are mutually exclusive, and thus it is not necessary to compare

these two solutions. Therefore, we only need to compare the following two pairs.

1. The comparison between Solution FC (ΠNB
2 ) and Solution OS (ΠNB

3 ) over the region that both can

be optimal, i.e., c∈ (φNFV (T ), min(f1(T ), f2(T ), f4(T ))].

2. The comparison between Solution RI (ΠNN
2 ) and Solution OS (ΠNB

3 ) over the region that both can be

optimal, c∈ (f1(T ), min(f3(T ), f4(T )].

We make these comparisons according to the relative magnitude between r0 and Ra0.

1. When r0 ≥ Ra0, between Solution FC and Solution OS, we can verify that when c ∈

(φNFV (T ), min(f1(T ), f2(T ), f4(T ))], ΠNB
2 ≥ΠNB

3 . Thus, the FC region, where Solution FC is optimal,

is defined as c ∈ (φNFV (T ), φN1 (T )], where φN1 (T ) = min(f1(T ), f2(T )), and φN3 (T ) = φN4 (T ). To further

determine φN2 (T ), we compare Solution RI and Solution OS by the following scenarios:

(a) When r0 ≥
[
1− β2

1+
θ3β3
θ2

(
1
β2
− 1
β3

)
]
r :=Rb0, we can verify that the region where Solution OS can be

optimal, i.e., c≤ f4(T ) and the region that Solution RI can be optimal, i.e., c∈ (f1(T ), f3(T )), do

not overlap. Thus, φN2 (T ) = min(f2(T ), f3(T )) as f7(T )> f3(T ) over the relevant range.

(b) When r0 <Rb0, and r0 /∈ (Rc0, R
d
0), in the region where both Solution OS and Solution RI could

be optimal, i.e., c≤ (f1(T ),min(f3(T ), f4(T )), as ΠNB
3 = Π3, we have that ΠNB

3 >ΠNN
2 if and only

if c > f7(T ). Thus, φN2 (T ) = min(f2(T ), f3(T ), f7(T )).

(c) When r0 <Rb0 and r0 ∈ (Rc0, R
d
0), in the region where both Solution OS and Solution RI can be

optimal, i.e., c≤ (f1(T ),min(f3(T ), f4(T )), we can verify that in the region when ΠNB
3 = Π3, we

have ΠNB
3 >ΠNN

2 if and only if c > f7(T ); and in the region when ΠNB
3 <Π3, ΠNB

3 >ΠNN
2 if and

only if c > f8(T ). Thus, φN2 (T ) = min(f2(T ), f3(T ),max(f7(T ), f8(T ))).

2. When r0 < Ra0, between Solution FC and Solution OS, we can verify that when c ∈

(φNFV (T ), min(f1(T ), f2(T ), f4(T ))], ΠNB
3 > ΠNB

2 if and only if c ∈ (f5(T ), min(f2(T ), f6(T )). Thus,

Solution FC is optimal when c ∈ (φNFV (T ), φN1 (T )) or c ∈ (φN3 (T ), φN4 (T )) where φN1 (T ), φN3 (T ), and
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φN4 (T ) are defined as above. Next, between Solution RI and Solution OS, the result is similar to

the case with r0 ≥ Ra0. Taking into consideration of the definition of φN1 (T ), we have that φN2 (T ) =

min (f2(T ), f3(T ), f7(T ), f5(T )). �

Proof of Proposition B.1. Analogous to the proof of Proposition 2, this proof consists of the following

three steps.

1. Step 1. Define the threshold functions in the proposition that separate the four regions (full value,

financing cost, under-shipping, and no monitoring).

2. Step 2. Summarize the four candidate solutions (contracts) that can be optimal (We show in Lemma

E.1 that only these solutions can be optimal).

3. Step 3. Compare the candidate solutions to determine the optimal one.

Step 1. Define the threshold functions that separate the four regions. The definition of the thresh-

old functions φNL1 (T ), φNL2 (T ), and φNL3 (T ) depending on the relative magnitude of r0 and the following

thresholds:

Re0 :=

1− β̄

1− θ1

(
1− β1

β2

)
+

l
∑
j<3 θiβi

1+l
(1−

∑
j<3 θiβi)

θ1β1

θ2β2

(
1
β2
− 1

β3

)
 r; (49)

Rf0 :=

1− β2

1− θ3(β3−β2)

β̄
+

l
∑
j<3 θjβj

(1+l)θ2
(1− θ1β1− θ2β2)

(
1
β2
− 1

β3

)
 r. (50)

With these definitions, as well as f1() – f8() defined in the proof of Proposition 2, we define φNL1 , φNL2 (T ),

and φNL3 (T ) as follows.

1. For β2 ≤ β̄ or r0 ≤Re0,

φNL1 (T ) = φNL2 (T ) = φNL3 (T ) = f4(T ). (51)

2. For β2 > β̄ and r0 ∈ (Re0,R
f
0 ],

φNL1 (T ) = min(f4(T ), f6(T )); (52)

φNL2 (T ) = φNL3 (T ) = max(f2(T ), f4(T )). (53)

3. For β2 > β̄ and r0 >R
f
0 ,

φNL1 (T ) = φNLFV (T ); (54)

φNL2 (T ) = max(φNLFV (T ), min(f2(T ), f3(T ), f8(T ))); (55)

φNL3 (T ) = max(f4(T ), min(f2(T ), f3(T )). (56)

According to the definition of φNLFV (T ), φNL1 (T ), φNL2 (T ), and φNL3 (T ), we can verify that φNLFV (T )≤ φNL1 (T )≤
φNL2 (T )≤ φNL3 (T ).

Step 2. Summarize the four candidate solutions. We define the four candidate solutions of the optimal

non-cancelable contracts that corresponds to the region with the same name in the Proposition. The candidate

solutions are characterized in Lemma E.1 and Lemma 2.
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1. Solution FV : This represents the solution that the supplier receives the full value of TCI, i.e., her payoff

is Π3. By examining the candidate solutions in Lemma E.1 and Lemma 2, we note that this payoff is

achieved if and only if Statement 1 in Lemma E.1 with i= 3 is the relevant solution, that is,

δ =
r− r0

β3

− l(T + c− τ3)+

1 + l(1− θ1β1− θ2β2)
, p= c+ (θ1β1 + θ2β2)(r− δ). (57)

In this case, the supplier’s payoff follows ΠNB
3 as in Eq. (124), and it equals to ΠFB if and only if

c≤ φNLFV (T ) where φNLFV (T ) is defined in the Proposition.

2. Solution FC: This represents the solution that the supplier ships efficiently, i.e., ships at i= 1, 2, and

she incurs financing cost, but does not surrender rent to the insurer. This corresponds to Statement 1

in Lemma E.1 with i= 3 (as in the FV scenario) when c > φNLFV (T ). In this case, the supplier’s payoff

ΠNB
3 < Π3. In addition, according to Lemma E.1, this solution is optimal only if c ∈ (φNLFV (T ), f4(T )]

(when it is feasible and dominates the contract without effort Π0).

3. Solution US: This represents the solution that the supplier ships only at i = 1, i.e., she under-ships.

This corresponds to Statements 1 or 2 in Lemma E.1 with i = 2, and ΠNB
2 or ΠNN

2 , both of which

are smaller than Π3. This solution can be optimal only if β2 > β̄ and c <min(f2(T ), f3(T )) (when it

dominates Π0).

4. Solution NM : This represents the solution that the insurer does not exert effort, and the supplier

ships at i = 1,2,3. The supplier’s payoff Π0 as given by Lemma 2. Also according to Lemma 2 (the

second part), this solution is optimal if and only if c≥ φNL3 (T ) = max(min(f2(T ), f3(T )), f4(T )), when

it dominates FV , FC, and US.

Step 3. Compare the candidate solutions and determine the optimal one. Based on the above

definition of the solution regions, we have identified the boundary of Region FV and that of Region NM . In

the following, we prove the boundaries of Regions FC and US as in the Proposition. First, we note Solution

US is not relevant when β2 ≤ β̄. Thus, in this region, we have φNL1 (T ) = φNL2 (T ) = φNL3 (T ) = f4(T ).

For the case with β2 > β̄, and further consider the following three scenarios:

1. When r0 ≤Re0, we can verify that ΠNB
3 ≥max(ΠNN

2 , ΠNB
2 ) over the region that Solution FC and US

co-exist. Thus, Solution US is never optimal, and we have φNL1 (T ) = φNL2 (T ) = φNL3 (T ) = f4(T ).

2. When r0 ∈ (Re0,R
f
0), we can show that over the region that ΠNB

3 and ΠNN
2 co-exist, ΠNB

3 ≥ ΠNN
2 .

However, over the region that ΠNB
3 and ΠNB

2 co-exist, ΠNB
3 ≥ ΠNB

2 if and only if c ≤ f6(T ), thus,

φNL1 (T ) = min(f4(T ), f6(T )), and φNL2 (T ) = φNL3 (T ) = max(f2(T ), f4(T )).

3. When r0 > Rf0 , we can show that over the region that ΠNB
3 and ΠNB

2 co-exist, ΠNB
3 ≤ ΠNB

2 .

However, over the region that ΠNB
3 and ΠNN

2 co-exist, ΠNB
3 ≥ ΠNB

2 if and only if c ≥ f8(T ).

Thus, we have φNL1 (T ) = φNLFV (T ), φNL2 (T ) = max(φNLFV (T ), min(f2(T ), f3(T ), f8(T ))), and φNL3 (T ) =

max(f4(T ), min(f2(T ), f3(T )). �
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D.3. Proofs in Section 6

Proof of Lemma 3. We prove B> BC by contradiction. Suppose B≤ BC . By the definition of B and BC ,

this condition is equivalent to:

r+L(f − p)≤ δ+L(r− p− δ) (58)

By the definition of deductible, we must have δ≤ r. Therefore, for (58) to hold, we must have L(r−p− δ)≥

L(f − p), or equivalently,

r− δ≤ f, (59)

for L(x) weakly decreases in x. By the definition of BP in (7), (59) is equivalent to BP ≥ 1, which suggests

that the insurer never cancels at any signal, contradicts with the condition that the insurer cancels coverage

at certain signals, as stated in the Lemma. Therefore, we must have B> BC .

Similarly, we can prove that B > BP . To see this, note that the insurer only cancels when βi ∈ [BP ,B).

If B ≤ BP , the insurer never cancels, which again contradicts with the condition that the insurer cancels

coverage at certain signals.

Combining the above two results, we have that B > max(BC ,BP ). Given this result, we next prove the

supplier’s shipping policy by considering the following four ranges for βi.

1. for βi < BP , as BP < B, the insurer knows that if he does not cancel the coverage, the supplier ships

the order. Even though, in this region, his cost of canceling the contract (the refund f) is greater than

the expected claim payout, βi(r− δ) for βi < BP = f

r−δ . Therefore, in this region, the insurer does not

cancel, and hence the supplier ships.

2. for βi ∈ [BP ,max(BC ,BP )), we further consider two cases,

(a) if BC < BP , max(BC ,BP ) = BP , and hence [BP ,max(BC ,BP )) = ∅, and the two parties’ policies are

thereby irrelevant.

(b) if BC ≥ BP , the above region becomes βi ∈ [BP ,BC). Similar to Case 1 (βi < BP ), as B >

max(BP ,BC), the insurer knows that if he does not cancel, the supplier ships the order. However,

different from Case 1, the insurer’s cost of cancelation (refund f) is smaller than the expected

payout, βi(r− δC) in this region, and hence the insurer cancels. For the supplier, knowing that the

insurer will cancel, her payoff under not shipping, r0, is smaller than her expected payoff under

shipping, (1−βi)r−L(f − p) for βi < BC = r−r0
r+L(f−p) . Therefore, the supplier still ships even when

the insurer cancels her coverage.

3. for βi ∈ [max(BC ,BP ),B], similar as Case 2(b), the insurer knows that if he does not cancel the coverage,

the supplier ships. As such, he cancels the coverage as his cost of doing so (f) is less than the alternative

βi(r−δ). For the supplier, however, observing that her coverage is canceled, the supplier’s payoff under

not shipping, r0, dominates that under shipping, r − L(f − p), because βi ≥ BC . Therefore, she does

not ship the order.
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4. for βi > B, by the definition of B, the insurer knows that even if he does not cancel the insurer’s coverage,

the supplier still does not ship. As such, the insurer’s cost under not canceling is zero, lowering than his

cost by canceling the coverage (f). Therefore, he does not cancel the coverage. For the supplier, even

if the insurer does not cancel, she still not ship because her payoff under shipping is lower than r0.

Summarizing the supplier’s shipping policy over these four regions, the supplier ships if and only if βi ≤

max(BC ,BP ), as stated in the Lemma. �

Proof of Lemma B.1. Similar to the proof of Lemma 1, we first show that (12) – (14) are necessary for

the insurer to exert effort.

First, note that (12) is analogous to (2), and it states that under the contract, if the insurer does not exert

effort, the supplier ships under on the prior expectation β̄.

Next, note that the right hand sides of (13) – (14) are identical, which equal to the insurer’s total cost if

he exerts effort. The cost consists of three parts: the effort cost c, the insurer’s expected payout when the

insurer does not cancel and the supplier ships, (r− δ)
∑

i
θiβi1βi<BP , and the refund the insurer has to pay

when he cancels the coverage, f
∑

i
θi1βi∈[BP ,B]. For the insurer to exert effort, his total cost of doing so must

be (weakly) lower than his other two options, corresponding the left hand side of (13) – (14), respectively:

1. (13) states that it is better off for the insurer to exert effort than participating the contract, but does not

exert effort and never cancels, under which his cost is the expected payout under the prior expectation

β̄ as the supplier always ships, according to (12).

2. (14) states that it is better off for the insurer to exert effort than participating the contract, but does

not exert effort and always cancels, under which his cost is the refund f .

In addition, note that as f ≤ p, (14) also guarantees it is better off for the insurer to exert effort than not

participating the contract, in which case he does not receive the premium p.

For the sufficient side, similar to the proof in Lemma 1, we can see that when all four conditions are

satisfied, anticipating the supplier’s shipping decision and his own cancelation decision, the insurer’s total

cost under exerting effort is (weakly) lower than all of his other options. Therefore, the four conditions are

sufficient to ensure him to exert monitoring effort. �

Proof of Proposition 3. To show that the proposed contract (δ = 0, and p = f = c
θ1

+ β1r) is optimal

and allows the supplier to receive the full value of TCI for r0 ≥ (1− β2)r, it is necessary and sufficient to

show that the supplier’s payoff under such contract is Π2 = θ1(1−β1)r+
∑3

i=2 θir0− c, which is the highest

possible supplier payoff under r0 ≥ (1−β2)r. To show that, we following the following three steps.

First, we note that this payoff can only be achieved when both the insurer’s cancelation policy and the

supplier’s shipping policy are efficient, that is, the insurer cancels at i= 2,3 and the supplier only ships at

i= 1. By Lemma E.2, the optimal contract under such policies are the solution of the following optimization

problem:

max
p,δ∈[0,r],f≤p

−p+ θ1[r−β1(δ+L(r− p− δ))] + (r0 + f)

3∑
i=2

θi; (60)

r0 ≤ r− β̄[r+L(r− δ− p)]; (61)
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β̄(r− δ)≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (62)

f ≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (63)

f ≥ β1(r− δ); (64)

f < β2(r− δ); (65)

r0 ≥ r−β2[r+L(f − p)]; (66)

r0 < r−β3L(r− δ− p). (67)

Specifically, Eq. (60) is the supplier’s payoff (without effort cost) under the specified policy. Following Lemma

B.1, (61) – (63) jointly ensure the insurer to exert effort under such policies. (64) – (65) states that the

insurer cancels at i= 2, but not i= 1. (66) ensures that the supplier does not ship when the insurer cancels

at i= 2, and finally, (67) says that if insurer does not cancel at i= 3, the supplier would have shipped at

that scenario. Thus, jointly, (64) – (67) guarantees that with updated information, the insurer cancels at

i= 2,3 and and the supplier ships only at i= 1.

Second, we verify that the contract stated in the proposition (δ = 0, and p = f = c
θ1

+ β1r) is a feasible

solution to the above optimization problem. To show that, first note that at δ = 0, according to Assumption

2, we have L(r − δ − p) = 0. Next, under the assumption that r0 ≤ (1 − β̄)r, (61) holds. In addition, we

substitute f and δ into (61), which becomes c≤ θ1 [θ2β2 + θ3β3− (θ2 + θ3)β1] r, or equivalently, c≤ [θ2(β2−

β̄) + θ3(β3− β̄)]r. As r0 < (1− β̄)r, the above equation always holds for c≤ φ=
∑3

i=2 θi[r0− (1− βi)r], the

region that we are interested in. Similarly, it is easy to show that (63) – (65) and (67) are all satisfied when

substituting δ = 0 and f = c
θ1

+β1r. Finally, as r0 ≥ (1−β2)r and L(f − p) =L(0)≥ 0, (66) is also satisfied.

Combined, the proposed contract is a feasible solution to the optimization problem.

At last, by substituting the contract into (60), we note that the above contract leads to the highest possible

supplier payoff Π2. Thus, the above contract is optimal. �

Proof of Proposition 4. When r0 < (1 − β2)r, to identify the optimal contract, we first specify all

possible scenarios in terms of the insurer’s cancelation policy; for each scenario, we either identify the optimal

cancelable contract, or show that any cancelable contract under that scenario will be (weakly) dominated

by contracts in other scenarios. By enumerating all possible combinations of the insurer’s cancelation policy,

we find it is sufficient to consider only the following two cases.

1. The insurer cancels at i= 2,3. The optimal contract in this scenario is summarized in Lemma E.3, that

is,

δ = 0; p= f =
c

θ1

+β1r. (68)

We refer to the solution in this scenario Solution C.2 (cancels at i= 2 and above). Under this solution,

the insurance premium equals to the insurer’s expected cost, thus, the insurer does not extract any rent.

However, the supplier faces the problem of over-cancelation, i.e., the insurer cancels at i= 2 even if it

is efficient to ship at i= 2. Further, depending on the supplier’s financial constraint T , the supplier’s

payoff and shipping decision under the optimal contract can be discussed in two cases.
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(a) When T ≤ (1−β2)r−r0
lβ2

, the supplier ships at i= 1,2. That is, the shipping policy is efficient. However,

the supplier is not insured when she ships at i= 2. Therefore, the supplier incurs financing cost.

(b) When T > (1−β2)r−r0
lβ2

, the supplier ships at i= 1. That is, she under-ships. In this case, the supplier

sacrifices operational profit to avoid financing cost.

We refer to the supplier’s payoff under this solution as ΠC
2 , which follows:

ΠC
2 =

{
Π3− lθ2β2T, for T ≤ (1−β2)r−r0

lβ2
;

Π2, for T > (1−β2)r−r0
lβ2

.
(69)

2. The insurer cancels only at i= 3. The optimal contract in this scenario is summarized in Lemma E.4

(cancels at i= 3). We refer to the solution in this case Solution C.3. Under this solution, the supplier

ships at i= 1,2. Thus, both the cancelation and the shipping policies are efficient. However, depending

on the values of the parameters, the supplier may incur financing cost (due to a high deductible) and/or

surrender rent to the insurer (when the premium is greater than the insurer’s expected cost). We refer

to the supplier’s payoff under this solution as ΠC
3 , which is detailed in Lemma E.4.

For contracts that induce other cancelation policies (e.g., the insurer only cancels at i = 2), as shown in

Lemma E.5, they are all (weakly) dominated by Solution C.2 or Solution C.3 as discussed above. Thus, it is

sufficient to compare ΠC
2 (Solution C.2 in Lemma E.3) and ΠC

3 (Solution C.3 in Lemma E.4) when identifying

the optimal cancelable contract.

To compare the two solutions, we define the efficiency loss of a solution as the difference between the first-

best payoff in this case, Π3 = r
∑2

i=1 θi(1− βi) + θ3r0− c and the supplier’s payoffs, ΠC
3 or ΠC

2 . Specifically,

we denote ∆C
3 = Π3−ΠC

3 and ∆C
2 = Π3−ΠC

2 . According to Lemma E.3 and Lemma E.4, we have:

∆C
2 =

{
lθ2β2T, for T ≤ (1−β2)r−r0

lβ2
;

θ2[(1−β2)r− r0], for T > (1−β2)r−r0
lβ2

.
(70)

As for ∆C
3 , we have that for β2 ≤ β̄ (corresponding Solution C.3.L in Lemma E.4),

∆C
3 =



0, for c≥ θ1(β2−β1) max
(
r− r−r0

β3
, T

1−β2

)
;

θ1(β2−β1)
(
r− r−r0

β3

)
− c, for c < θ1(β2−β1) max

(
r− r−r0

β3
,
r− r−r0

β3
+lT

1+(1−β2)l

)
;(

l
lh

)[
θ1(β2−β1)T

1−β2
− c
]
, for c∈

[
θ1(β2−β1)

(
r− r−r0

β3
+lT

)
1+(1−β2)l

, θ1(β2−β1)

(1−β2)
T

)
and l≤ lh;

θ1(β2−β1)T

1−β2
− c, for c∈

[
θ1(β2−β1)

(
r− r−r0

β3
+lT

)
1+(1−β2)l

, θ1(β2−β1)

(1−β2)
T

)
and l > lh;

(71)

where lh is defined in Lemma E.4. Similarly, ∆C
3 for β2 > β̄ corresponds Solution C.3.H in Lemma E.4.

With this notation, we discuss two cases: when β2 ≤ β̄ and β2 > β̄.

First, when β2 ≤ β̄, based on Lemma E.3, we observe that for any T , ∆C
2 is independent in c. By considering

Lemma E.4, and in particular, Solution 3.L, we note that for any given T , ∆C
3 is continuous and decreasing

in c when considering each region independently, and ∆C
3 is continuous on c at the boundaries between

different regions. Combining the monotonicity of ∆C
2 and ∆C

3 , it is clear that for any T , there exists a function

φC1 (T ) ∈ [0, φ] in the Proposition such that Solution C.2 is optimal if and only if c ≤ φC1 (T ). In this case,

according to Lemma E.3, the supplier ships at i= 1,2 when T ≤ (lβ2)−1[(1−β2)r− r0], corresponding to the
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under-insured (UI) region in the Proposition. When T > (lβ2)−1[(1− β2)r− r0], the supplier only ships at

i= 1, corresponding to the under-ship (US) region in the Proposition.

When c > φC1 (T ), we note that Solution C.3.L is optimal. In addition, by Lemma E.4, we have that ΠC
3 = Π3

when c ≥ φCFV (T ) as defined, and by Lemma E.3, ΠC
2 < Π3 when c = φCFV (T ). Thus, by the monotonicity

and continuity of ΠC
3 as proved above, we can show that φCFV (T ) ≥ φC1 (T ). Thus, we have that when c ≥

φCFV (T ), the supplier receives the full value of TCI under Solution C.3, corresponding the FV region in

the Proposition, and when c∈ [φC1 (T ), φCFV (T )), the supplier incurs financing cost or surrenders rent to the

insurer, corresponding to the RI/FC region in the first table in the Proposition.

Next, we consider the case with β2 < β̄. The difference between this case and the previous one (β2 ≥ β̄) is

in Solution C.3. In this case, the corresponding solution is Solution C.3.H. The first observation of Solution

C.3.H is that ΠC
3 <Π3 (due to the rent surrounded to the insurer and possibly financing cost). Combining

this with ΠC
2 < Π3 (Solution C.2), it is clear that the cancelable contract cannot recover the full value of

TCI in this region. Next, we note that in Solution C.3.H, for any T , ∆C
3 first strictly decreases in c and

then strictly increases in c. On the other hand, ∆C
2 is independent of c. Thus, there exists φC2 (T ) and φC3 (T )

where 0≤ φC2 (T )≤ φC3 (T )≤ φ such that ΠC
3 ≥ΠC

2 if and only if c∈ [φC2 (T ), φC3 (T )]. This corresponds to the

RI/FC region in the second table. When c < φC2 (T ) and c > φC3 (T ), ΠC
2 >ΠC

3 , and the structure of UI and

US regions is the same as in the first table. �

Proof of Proposition 5. We first consider the case with β2 ≤ β̄ and compare the optimal cancelable

contract (Proposition 4) and the optimal non-cancelable one (Proposition B.1). Let the supplier’s payoff under

the optimal cancelable contract be ΠC,∗, which equals max(ΠC
2 , ΠC

3 ) as defined in the proof of Proposition 4,

and in Lemmas E.3 and E.4. Similarly, let the supplier’s payoff that under the optimal non-cancelable contract

be ΠN,∗, which equals to max(Π0, ΠNB
3 , ΠNB

2 , ΠNN
2 ) as defined in the proof of Proposition B.1, and in Lemma

E.1. Similar to the proof in Proposition 4, we define the inefficiency gap as ∆C,∗ = Π3−ΠC,∗ = min(∆C
2 , ∆C

3 ),

and ∆N,∗ = max(∆0, ∆NB
3 , ∆NB

2 , ∆NN
2 ). Under this notation, the supplier prefers the cancelable contract if

and only if ∆C,∗ ≤∆N,∗.

By the proof of Proposition 4, for a given T , we note that for c≥ φCFV (T ), the optimal cancelable contract

leads to ∆C,∗ = 0≤∆N,∗. For c < φCFC(T ), we have d∆C,∗

dc
∈ [−1,0]. As for ∆N,∗, by considering Proposition

B.1 and the proof, for any given T , we have the following two cases:

1. If φNL3 (T ) ≤ φCFV (T ), we have that for c ∈ [φNL3 (T ), φCFV (T )], d∆N,∗

dc
= −1, thus ∆N,∗ > ∆C,∗ in this

region. As for c < φNL3 (T ), ∆N,∗ (weakly) increases in c. Thus, ∆N,∗ and ∆C,∗ can cross at most once

in this region.

2. If φNL3 (T )>φCFV (T ), by the same argument, for c < φCFV (T ), ∆N,∗ (weakly) increases in c. Thus, ∆N,∗

and ∆C,∗ can cross at most once in this region.

Combining the above two scenarios, we can show that there exists a threshold function φL(T ) such that

the supplier prefers the cancelable contract when c > φL(T ) and the non-cancelable one when c≤ φL(T ), as

desired.

In the case with β2 > β̄, using the same notation as in the previous case, we have for c≤ φNLFV (T ), ∆N,∗ = 0.

And we also have ∆N,∗ ≤Π3 −Π0 = 0 at c= φ. As for the cancelable contract, we have ∆C,∗ > 0 for all c.
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Thus, there exist threshold functions φH,1(T ) ≤ φH,2(T ) such that the supplier prefers the non-cancelable

contract (with monitoring) when c≤ φH,1(T ), and the non-cancelable contract (without monitoring) when

c > φH,2(T ), as desired. �

Proof of Proposition B.2. When r0 < (1−β2)r, in order for the supplier to receive the full value of TCI

under a partially cancelable contract, the necessary and sufficient conditions are:

1. The insurer exerts effort;

2. The supplier ships at i= 1,2;

3. The supplier does not incur financing cost; and

4. The insurance premium equals to the insurer’s expected costs.

In order for the four conditions to hold jointly, the insurer’s cancelation policy can only be one of the following

two scenarios:

1. The insurer only cancels at i= 3;

2. The insurer cancels at i= 2,3.

Next, we identify the feasible sets that satisfy the four conditions above by considering these two scenarios.

Scenario I: The insurer only cancels at i = 3. Under this cancelation policy, the four necessary and

sufficient conditions to be satisfied jointly is equivalent to that the following inequalities should hold simul-

taneously.

p≥ f ; (72)

p= c+
∑
i≤2

θiβi(r− δ) + θ3f ; (73)

r0 ≤ r− β̄[δ+L(r− δ− p)]; (74)

f + β̄γ ≥ c+
∑
i≤2

θiβi(r− δ) + θ3f ; (75)

β̄(r− δ)≥ c+
∑
i≤2

θiβi(r− δ) + θ3f ; (76)

f +β2γ ≥ β2(r− δ); (77)

f < β3(r− δ); (78)

r0 < r−β2 [r− γ+L(γ+ f − p)] ; (79)

r0 ≥ r−β3 [r− γ+L(γ+ f − p)] ; (80)

r0 ≤ r−β3 [δ+L(r− δ− p)] ; (81)

r− δ− p≥ T. (82)

Among these conditions, (72) follows from the constraint that the refund is no greater than the premium.

(73) makes sure that the premium equals to the insurer’s expected cost (claim and refund, whichever is

applicable). Following the proof in Lemma B.1, (74) – (76) jointly guarantee that the insurer has the incentive

to exert effort under the supplier’s anticipated action. (79) – (80) jointly guarantee that without coverage,

the supplier ships only at i≤ 2. This is because if the supplier does not ship at i= 2 without coverage, the
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optimization problem degenerates to corresponds to a pure cancelable contract. (81) says that the supplier

ships at i≤ 3 if her coverage is not canceled. (77) and (78) confirm that the insurer cancels only at i= 3.

The asymmetry between the two conditions is because that without coverage, the supplier ships at i = 2,

but not i= 3. Thus, the insurer’s total cost under cancelation is f +β2γ at i= 2, but only f at i= 3. Thus,

the insurer’s total cost under cancelation is f +β2γ at i= 2, but only f at i= 3. (82) makes sure that when

the supplier ships under coverage, she does not incur financing cost. Finally, note that γ does not enter the

objective function directly as it is only used to discipline the insurer, and the supplier actually never ships

when the contract is canceled.

The above set of constraints can be simplified as follows: first, given (76), (78) is redundant. Second, when

(82) holds, (81) can be simplified to

δ≤ r− r0

β3

. (83)

Third, notice that everything else being equal, increasing γ loosens all the constraints except for (80).

Therefore, we can set γ so that (80) is binding, i.e.,

γ = r− r− r0

β3

+
l

1 + l

[
T + c− τ3− (1− θ3)f +

2∑
i=1

θiβi

(
r− r0

β3

− δ
)]+

, (84)

where τi =
(

1−
∑

j<i
θjβj

)(
r− r−r0

βi

)
, which is also defined in Lemma E.1. Note that the above equation

also guarantees that (79) is satisfied. Fourth, (84) implies that γ ≥ r− r−r0
β3

. Therefore, for the region of c

that we are interested in, i.e., c≤ φ= θ3[r0− (1−β3)r], we have that θ3β3γ ≥ c. Under this condition, when

(77) holds, (75) becomes redundant.

After applying these four simplifications, the set of inequalities (75) – (82) can be simplified to the following

set.

γ = r− r− r0

β3

+
l

1 + l

[
T + c− τ3− (1− θ3)f +

2∑
i=1

θiβi

(
r− r0

β3

− δ
)]+

; (85)

δ≤ r− r0

β3

; (86)

f ≥ β2(r− γ− δ); (87)

f ≤

(
1−

∑2
i=1 θiβi

)
(r− δ)− (T + c)

θ3

; (88)

f ≤
c+
∑2

i=1 θiβi(r− δ)
1− θ3

; (89)

f ≤ β3(r− δ)− c

θ3

. (90)

Among these constraints, note that (88) – (90) all set an upper bound for f and have the following inter-

pretation: (88) ensures that the supplier does not incur any financing cost when shipping under coverage

(i= 1,2); (89) says that refund cannot be greater than premium; and (90) ensures that it is better for the

insurer to exert effort than to not exert effort and never cancel. By comparing these three constraints, we

can discuss the conditions under which the set of inequalities has a feasible solution based on the following

two scenarios regarding the magnitude of δ.
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Scenario I.A. For δ≤min
(
r− c+(1−θ3)T

1−θ3−
∑2
i=1 θiβi

, r− c
θ3(β3−β̄)

)
, (88) is binding, and hence,

γ = r− r− r0

β3

+
l

1 + l

[
T −

(
r− r− r0

β3

)]+

. (91)

As such, (85) – (90) can be simplified to:

δ≤ r− c+ (1− θ3)T

1− θ3−
∑2

i=1 θiβi
; (92)

δ≤ r− c

θ3(β3− β̄)
; (93)

δ≤ r− r0

β3

; (94)

δ≥ r− r0

β3

−
c+
∑2

i=1 θiβi

(
r− r−r0

β3

)
+ (1−θ3)β2l

1+l

[
T −

(
r− r−r0

β3

)]+
θ1(β2−β1)

. (95)

Note that (95) ensures that if binding, δ≤ r−r0
β3

. Thus, (94) will not be the one that determines the feasibility

of the above set of inequalities. By comparing (92) and (93), we have the following two scenarios.

Scenario I.A.a. For c≥ θ3(β3−β̄)

1−β̄ T, (93) is tighter than (92). Therefore, there exists a feasible δ if and only

if

(β̄−β2)c

θ3(β3− β̄)
+β2

(
r− r− r0

β3

+
l

1 + l

[
T −

(
r− r− r0

β3

)]+
)
≥ 0. (96)

It is easy to check that this inequality also holds for c≤ φ. Thus, (92) – (95) has a feasible solution for all c

such that

c≥ θ3(β3− β̄)

1− β̄
T. (97)

Scenario I.A.b. For c < θ3(β3−β̄)

1−β̄ T, (92) is tighter than (93), and hence there exists a feasible δ for (92) –

(95) if and only if:

c≥
θ1(β2−β1)T − (1− θ3−

∑2
i=1 θiβi)β2

(
r− r−r0

β3
+ l

1+l

[
T −

(
r− r−r0

β3

)]+)
1−β2

, (98)

Combining (98) and (97) leads to the condition (15) in the proposition.

Scenario I.B. For δ > min
(
r− c+(1−θ3)T

1−θ3−
∑2
i=1 θiβi

, r− c
θ3(β3−β̄)

)
, either (89) or (90) is binding. With some

algebra, we can show that the first-best payoff cannot be achieved outside the region as defined in (15) in

the Proposition. The details are omitted for expositional brevity. �

D.4. Proof in Section 7

Proof of Lemma B.2. For the first part of the lemma, we note that as the information is unverifiable, the

supplier can only update her prior belief and act correspondingly based on the insurer’s cancelation decision

(the message). In addition, as the insurer and supplier act sequentially, there is no benefit for the supplier

to adopt a mixed strategy regarding her shipping decision. Therefore, we have in total four possibilities of

how the supplier reacts to the insurer’s cancelation action.

1. The supplier ships whether the insurer cancels or not.
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2. The supplier does not ship whether the insurer cancels or not.

3. The supplier ships when the insurer cancels, and does not ship when he does not cancel.

4. The supplier ships when the coverage is not canceled, and does not ship when the insurer cancels.

Clearly, for the first and third scenarios, the insurer should never cancel as the supplier does not ship any

way. Thus, he does not exert effort either, which contradicts with the assumption in the Lemma that the

contract induces the insurer’s effort. For the second scenario, as the supplier always ships, the only benefit

of the insurer’s cancelation is to limit his own cost. However, as the insurance market is competitive, such

benefit will be reflected in the premium. Thus, the insurer should not exert effort either. This leaves us only

to the last scenario, and hence proves the first part of the lemma.

For the second part, we prove it by contradiction. Assume that the insurer cancels at signal i, but does

not cancel at signal i+1. Then by the lemma above, the supplier does not ship at signal i and ships at signal

i+ 1. Anticipating the supplier’s shipping policy, this cancelation policy is optimal to the insurer only if:

f ≤ βi(r− δ); (99)

f ≥ βi+1(r− δ). (100)

However, as βi <βi+1, these two inequalities cannot hold simultaneously, which contradicts with our assump-

tion. This concludes the proof of the second part of the Lemma.

Finally, for the third part of the Lemma, we note that a PBE consists of a sequentially rational strategy

profile, which includes the insurer’s cancelation strategy and the supplier’s shipping strategy in our case,

and the supplier’s posterior belief. For the specified cancelation strategy and shipping strategy to be in the

PBE, we must have the following two conditions hold jointly:

1. The insurer has no incentive to deviate from the specific cancelation strategy. This condition further

requires two conditions: 1) the insurer has the incentive to cancel coverage at i≥ j, which holds if and

only if f ≤ βj(r− δ). 2) The insurer has no incentive to cancel at i≤ j − 1, which holds if and only if

f ≥ βj−1(r− δ). Combining these conditions leads to BP ∈ [βj−1, βj ], which is the first condition in the

lemma.

2. The supplier ships if and only if i < j. This condition consists of two parts:

(a) the supplier ships at all i < j, which leads to

r−
∑

i≤j θiβi∑
i≤j θi

[δ−L(r− δ− p)]≥ r0, (101)

where
∑
i≤j θiβi∑
i≤j θi

is the supplier’s posterior belief of the buyer’s default risk after observing that the

coverage is not canceled. The above condition can be re-written as
∑
i≤j θiβi∑
i≤j θi

≤ B(p, δ), corresponding

to the second condition in the Lemma;

(b) the supplier does not ship at all i≥ j, which leads to

r−
∑

i>j
θiβi∑

i>j
θi

[r+L(f − p)]≤ r0, (102)

where
∑
i>j θiβi∑
i>j θi

is the supplier’s posterior belief of the buyer’s default risk upon receiving the

cancelation message. The above condition can be re-written as
∑
i>j θiβi∑
i>j θi

≥ BC(p, f), corresponding

to the third condition in the Lemma. �
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Proof of Proposition 6. In order to identify the optimal contract, we need to first identify conditions

under which the insurer has the incentive to exert effort in anticipation of the outcome of the signaling

subgame, in which the insure decides whether to cancel and the supplier decides when to ship. The analysis

is similar to that in Lemma B.1 and the proof. By that, we can identify that under contract (p, δ, f), the

insurer exerts effort if and only if the following three conditions hold jointly:

B≤ β̄; (103)

β̄(r− δ)≥ c+ (r− δ)
∑
i

θiβi1βi≤BP + f
∑

θi1βi>BP (104)

f ≥ c+ (r− δ)
∑
i

θiβi1βi≤BP + f
∑

θi1βi>BP . (105)

The three conditions are analogous to (12) – (14) in Lemma B.1. The proof is also similar to that in Lemma

B.1, and the only difference is the right hand side of (104) – (105), which equals to the insurer’s expected

cost under the cancelation policy depicted in Lemma B.2.

With the above conditions, we can determine the optimal cancelable contract by identifying the optimal

contract that induces different cancelation policies. According to Lemma B.2, it is sufficient to consider the

following two scenarios:

1. The insurer cancels at i= 2,3 (Scenario 1, Solution U.2).

2. The insurer cancels at i= 3 (Scenario 2, Solution U.3).

In the following, we first solve these two scenarios separately, and then compare the performance of the two

when necessary.

Step 1: optimal contracts that induce the insurer to cancel at i = 2,3 (Solution U.2). For this

case, the corresponding optimization problem is as follows:

max
p,δ,f≤p

− p+ θ1 {r−β1[δ+L(r− δ− p)]}+ (θ2 + θ3)(r0 + f); (106)

s.t. r0 ≤ r− β̄[δ+L(r− δ− p)]; (107)

β̄(r− δ)≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (108)

f ≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (109)

f ≥ β1(r− δ); (110)

f ≤ β2(r− δ); (111)

r0 ≥ r−
θ2β2 + θ3β3

θ2 + θ3

[r+L(f − p)] ; (112)

r0 ≤ r−β1[δ+L(r− δ− p)]. (113)

In the optimization problem, (106) is the supplier’s payoff. (107) - (109) follow directly from (103) – (105) with

the insurer’s specific cancelation policy, and (110) – (113) follow directly from (16) – (18) with the insurer’s

specific cancelation policy and the supplier’s shipping policy. Note that compared to their counterparts under

verifiable information, i.e., Eq. (66) – (67), Eq. (112) –(113) are less restrictive. Thus, it is straightforward

that the optimal solution under the unverifiable information case should lead to a (weakly) higher value in

the objective than that under the verifiable information case.
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Next, we note that for Eq. (112) to hold, as f ≤ p, the parameter must satisfy:

T ≥ l−1

[
(θ2 + θ3)(r− r0)

θ2β2 + θ3β3

− r
]
. (114)

Otherwise, the above optimization problem has no feasible solution.

Under (114), we verify that the contract p = f = c
θ1

+ β1r, and δ = 0 is a feasible solution to Eq. (106)

–(113): Based on the proof in Proposition 3, it is clear that Eq. (107) – (111) are all satisfied under the above

contract. (113) is automatically satisfied under (107). In addition, we note that under p= f = c
θ1

+β1r, and

δ = 0, the supplier’s payoff is ΠU
2 = Π2, the highest payoff the supplier can achieve under such policies.

Next, we apply the above optimal contract to the following different scenarios depending on the supplier’s

outside option.

1. When r0 ≥ (1−β2)r, (114) is satisfied. Thus, the above contract allows the supplier to fully recover the

value of TCI. Thus, we do not need to consider the other contracting option. This corresponds to the

first statement in Proposition 6.

2. When r0 < (1−β2)r,

(a) When T ≥− C2

l
∑
i≥2 θiβi

, (114) is satisfied. Thus, under this scenario, the insurer over-cancels, i.e.,

he cancels at i= 2 even though it is efficient to ship at i= 2.

(b) When T <− C2

l
∑
i≥2 θiβi

, this solution is infeasible.

Step 2: Optimal contracts that induce the insurer to cancel at i= 3 (Solution U.3). For this case,

the optimization problem is as follows.

max
p,δ∈[0,r],f≤p

− p+

2∑
i=1

θi {r−βi[δ+L(r− p− δ)]}+ θ3(r0 + f); (115)

s.t. r0 ≤ r− β̄[δ+L(r− δ− p)]; (116)

β̄(r− δ)≥ c+

2∑
i=1

θiβi(r− δ) + θ3f ; (117)

f ≥ c+

2∑
i=1

θiβi(r− δ) + θ3f ; (118)

f ≥ β2(r− δ); (119)

f < β3(r− δ); (120)

r0 ≥ r−β3[r+L(f − p)]; (121)

r0 ≤ r−
(
θ1β1 + θ2β2

θ1 + θ2

)
[δ+L(r− δ− p)]. (122)

Solving this optimization problem leads to the following results regarding the optimal contracts and the

supplier’s payoff ΠU
3 . We refer the readers to Lemma E.6 for the details in the detailed solution. In summary,

the shipping and cancelation decision in this Solution is efficient when r0 > (1− β2)r. However, depending

on the value of parameters, the supplier may incur financing cost and/or surrender rent to the insurer.

Step 3: Compare Solutions U.2 and U.3. Next, we compare Solution U.2 (ΠU
2 ) and Solution U.3 (ΠU

3 )

according to the following scenarios.
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1. For r0 ≥ (1 − β2)r, the full value of TCI is Π2. Based on Solution U.2., ΠU
2 = Π2, i.e., the supplier

receives the full value of TCI. This corresponds to the first statement in the Proposition.

2. For r0 < (1−β2)r, the full value of TCI is Π3. We have two further cases.

(a) If β2 ≤ β̄, for c≥ φUFV (T ) as defined in the Proposition, ΠU
3 = Π3, i.e., the supplier receives the full

value of TCI. For c < φUFV (T ), at a given T , by Lemma E.6, the inefficiency gap ∆U
3 := Π3 −ΠU

3

decreases in c, which ∆U
2 := Π3 −ΠU

2 is independent of c. Thus, there exists a threshold function

φU1 (T ) such that ∆U
3 ≤ ∆U

2 if and only if c ≥ φU1 (T ). This corresponds to Statement 2.i) in the

Proposition.

(b) If β2 ≤ β̄, we note ∆U
3 > 0. In addition, according to Lemma E.6, ∆U

3 first decreases and then

increases in c, and ∆U
2 is still independent of c. Therefore, there exists two threshold functions

φU2 (T )≤ φU3 (T ) such that ∆U
3 ≤∆U

2 if and only if c∈ [φU2 (T )≤ φU3 (T )]. This corresponds to State-

ment 2.ii) in the Proposition. �

Proof of Proposition 7. The proof is analogous to that of Proposition 5. We consider the following two

scenarios.

1. When β2 ≤ β̄, we further consider two cases.

(a) for r0 ≤ (1−β2)r, we have the supplier’s payoff under the optimal cancelable contract ΠU,∗ = ΠU
2 =

Π2, the first-best benchmark. Thus, the supplier always prefers the cancelable contract.

(b) for r0 > (1 − β2)r, we have that when c > φUFV (T ), ΠU,∗ = ΠU
2 = Π3, the first-best benchmark.

Further, ΠU,∗ (weakly) decreases in c, while the supplier’s payoff under the non-cancelable contract,

Π0, is independent of c. Thus, ΠU,∗ >Π0 for all c.

Combining the above two cases, we prove that cancelable contract is preferred when β2 ≤ β̄ (Statement

1 in the Corollary).

2. When β2 > β̄, as ΠU,∗ = max(ΠU
2 ,Π

U
3 ). According to the proof in Proposition 6, ΠU,∗ < Π3. On the

other hand, the payoff under the non-cancelable contract, Π0 = Π3 at c= φ. Thus, at c= φ, ΠU,∗ <Π0.

Further, we note that Π0 is independent of c, while ΠU,∗ (weakly) decreases in c. Thus, there exists

φUH(T ) such that ΠU,∗ ≥Π0 if and only if c≤ φUH(T ). This corresponds to the second statement. �

Appendix E: Technical Lemmas

Lemma E.1 A non-cancelable contract under which the supplier ships if and only if at β1, . . . , βi−1, for

i≥ 2, exists if and only if βi ≥ β̄. and c≤ r
∑

j≥i θjβj.

Under these two conditions, the optimal non-cancelable contract terms (δ, p) and the supplier’s correspond-

ing payoff are:

1. for c≤CU
i +

l
∑
j≥i θjβj

1+(1−β̄)l
[T − (τi−CU

i )]+, the contract terms are:

δ =
r− r0

βi
− l(T + c− τi)+

1 + l(1−
∑

j<i θiβi)
, p= c+

∑
j≤i−1

θjβj(r− δ). (123)

The supplier’s corresponding payoff is:

ΠN
i = Πi−

l
∑

j<i
θjβj

1 + l(1−
∑

j<i
θjβj)

(T + c− τi)+
:= ΠNB

i . (124)

Under this contract, the insurer’s IR constraint is binding.
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2. for c >CU
i +

l
∑
j≥i θjβj

1+(1−β̄)l
[T − (τi−CU

i )]+, the contract terms are:

δ = r− c∑
j≥i θjβj

, p=
1

l

(
r− r0

βi
− r
)

+

(
1 +

1

l

)
c∑

j≥i θjβj
−T. (125)

The supplier corresponding payoff is:

ΠN
i = Πi−

[
(1− β̄)lc+ (1 +

∑
j<i θjβjl)(c−CU

i )

l
∑

j≥i θjβj
−T

]
:= ΠNN

i . (126)

Under this contract, the insurer’s IR constraint is not binding.

By comparing ΠN
i (ΠNB

i and ΠNN
i ) with the optimal payoff without effort Π0 (Lemma 2), we have:

1. ΠNB
i ≥Π0 if and only if

c≤min

(
Ci−

l
∑

j<i
θjβj

1 + l
[T − (τi−Ci)] , CU

i +
l
∑

j≥i θjβj

1 + (1− β̄)l
[T − (τi−CU

i )]+
)
. (127)

2. ΠNN
i ≥Π0 if and only if

c∈
(
CU
i +

l
∑

j≥i θjβj

1 + (1− β̄)l
[T − (τi−CU

i )]+, CU
i +

l
∑

j≥i θjβj

1 + l
[T − (τi−Ci)]

]
. (128)

Lemma E.2 For any j, k, m ∈ {1,2,3}, among all cancelable contracts that induces the insurer to cancel

at signal i ∈ [j,m] and the supplier ships if and only if the signal i≤max(j − 1, k), the optimal contract is

the solution to the following optimization problem:

max
p, δ∈[0,r]
f≤p

r0− p+
∑
i<j

θi[(r− r0)−βi(δ+L(r− p− δ))] +

k∑
i=j

θi[(r− r0)−βi(r+L(f − p))] +

m∑
i=j

θif ; (129)

B≥ β̄; (130)

β̄(r− δ)≥ c+
∑
i<j

θiβi(r− δ) +
∑
i∈[j,m]

θif ; (131)

f ≥ c+
∑
i<j

θiβi(r− δ) +
∑
i∈[j,m]

θif ; (132)

B∈ (βm, βm+1]; (133)

BP ∈ [βj−1, βj); (134)

BC ∈ (βk, βk+1]. (135)

Lemma E.3 (Solution C.2) For r0 < (1−β2)r, a cancelable contract in which the insurer cancels coverage

at i= 2,3 is feasible if and only if:

c≤ θ1[min(β̄, β2)−β1]r. (136)

Within this region, the optimal contract is :

δ = 0; p= f =
c

θ1

+β1r. (137)

Under this contract, the insurer’s payoff is zero.

1. for T ≤ (1−β2)r−r0
lβ2

, the supplier ships at i= 1,2, and her payoff ΠC
2 = Π3− lθ2β2T ;
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2. for T > (1−β2)r−r0
lβ2

, the supplier ships at i= 1, and her payoff ΠC
2 = Π2.

Lemma E.4 (Solution C.3) Let lh = θ1(β2−β1)∑2
i=1 θiβi(1−β2)

. For r0 < (1− β2)r, the optimal cancelable contract

under which the insurer cancels only at i= 3, and the supplier’s corresponding payoff ΠC
3 , is summarized as

follows.

For β2 ≤ β̄ (Solution C.3.L), p= f =
c+
∑2
i=1(r−δ)∑2
i=1 θi

,

1. for c≥ θ1(β2−β1) max
(
r− r−r0

β3
, T

1−β2

)
, δ =

(
r− c

θ1(β2−β1)

)+

, and ΠC
3 = Π3;

2. for c < θ1(β2−β1) max

(
r− r−r0

β3
,
r− r−r0

β3
+lT

1+(1−β2)l

)
, δ = r−r0

β3
, and ΠC

3 = Π3−
[
θ1(β2−β1)

(
r− r−r0

β3

)
− c
]
;

3. for c∈
[
θ1(β2−β1)

(
r− r−r0

β3
+lT

)
1+(1−β2)l

, θ1(β2−β1)

(1−β2)
T

)
;

(a) if l≤ lh, δ = r− c
θ1(β2−β1)

; ΠC
3 = Π3−

(
l
lh

)[
θ1(β2−β1)T

1−β2
− c
]
;

(b) if l > lh, δ = r− T
1−β2

, and ΠC
3 = Π3−

[
θ1(β2−β1)T

1−β2
− c
]
;

For β2 > β̄ (Solution C.3.H), p= f = β2(r− δ) and

1. for c≥ θ3(β3−β2) max
(
r− r−r0

β3
, T

1−β2

)
, δ= r− c

θ3(β3−β2)
, and ΠC

3 = Π3− (β2−β̄)c

θ3(β3−β2)
;

2. for c < θ3(β3 − β2)
(
r− r−r0

β3

)
and T ≤ (1 − β2)

(
r− r−r0

β3

)
, δ = r−r0

β3
, and ΠC

3 = Π3 −[
θ1(β2−β1)

(
r− r−r0

β3

)
− c
]
;

3. for c < θ3(β3−β2)T

(1−β2)
and T > (1−β2)

(
r− r−r0

β3

)
,

(a) if l≤ lh and c <
θ3(β3−β2)

[
r− r−r0

β3
+lT

]
1+(1−β2)l

, δ= r−
r− r−r0

β3
+lT

1+(1−β2)l
, and

ΠC
3 = Π3−

θ1(β2−β1)
(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

− c

− 2∑
i=1

θiβil

T − (1−β2)
(
r− r−r0

β3

)
1 + (1−β2)l

 ; (138)

(b) if l ≤ lh and c ∈
[
θ3(β3−β2)

[
r− r−r0

β3
+lT

]
1+(1−β2)l

, θ3(β3−β2)T

1−β2

)
, δ = r − c

θ3(β3−β2)
, ΠC

3 = Π3 − (β2−β̄)c

θ3(β3−β2)
−∑2

i=1 θiβil
[
T − (1−β2)c

θ3(β3−β2)

]
;

(c) if l > lh, δ = r− T
1−β2

, and ΠC
3 = Π3−

(
θ1(β2−β1)T

1−β2
− c
)
.

Lemma E.5 For r0 < (1−β2)r, the supplier’s payoff under any cancelable contract that induces the insurer

to exert effort and cancel coverage at at least one group of signals is (weakly) dominated by either ΠC
2

(Solution C.2, Lemma E.3) or ΠC
3 (Solution C.3, Lemma E.4).

Lemma E.6 (Solution U.3) The solution to Eq. (115) – (122) in the proof of Proposition 6, and the

supplier’s corresponding payoff ΠU
3 , is summarized as follows.

When β2 ≤ β̄ (Solution U.3.L), p= f =
c+
∑2
i=1(r−δ)∑2
i=1 θi

, and

1. for c≥ θ1(β2−β1)T

1−β2
, δ =

(
r− c

θ1(β2−β1)

)+

, and ΠU
3 = Π3;

2. for c∈
[
θ1(β2−β1)

(
r− r−r0

β̄
+lT

)
1+(1−β2)l

, θ1(β2−β1)

(1−β2)
T

)
,

(a) for l≤ lh, δ = r− c
θ1(β2−β1)

, and ΠU
3 = Π3− l

∑2
i=1 θiβi

[
T − (1−β2)c

θ1(β2−β1)

]
;

(b) for l > lh, δ = r− T
1−β2

, and ΠU
3 = Π3−

[
θ1(β2−β1)T

1−β2
− c
]

;
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3. for c <
θ1(β2−β1)

(
r− r−r0

β̄
+lT

)
1+(1−β2)l

, δ = r−r0
β̄
−

l
[
T−(1−β2)

(
r− r−r0

β̄

)]
1+l(1−β2)

, and

ΠU
3 = Π3−

θ1(β2−β1)
(
r− r−r0

β̄
+ lT

)
1 + (1−β2)l

− c

− l 2∑
i=1

θiβi

T − (1−β2)
(
r− r−r0

β̄

)
1 + (1−β2)l

 . (139)

When β2 > β̄ (Solution U.3.H), p= f = β2(r− δ) and

1. for c≥ θ3(β3−β2)T

1−β2
, δ = r− c

θ3(β3−β2)
, and ΠU

3 = Π3− (β2−β̄)c

θ3(β3−β2)
;

2. for c < θ3(β3−β2)T

1−β2
,

(a) for l≤ lh and c∈
[
θ3(β3−β2)

[
r− r−r0

β̄
+lT

]
1+(1−β2)l

, θ3(β3−β2)T

1−β2

)
, δ = r− c

θ3(β3−β2)
, and

ΠU
3 = Π3−

(β2− β̄)c

θ3(β3−β2)
− l

2∑
i=1

θiβi

[
T − (1−β2)c

θ3(β3−β2)

]
; (140)

(b) for l≤ lh and c <
θ3(β3−β2)

[
r− r−r0

β̄
+lT

]
1+(1−β2)l

, δ = r−
r− r−r0

β̄
+lT

1+(1−β2)l
, and

ΠU
3 = Π3−

θ1(β2−β1)
(
r− r−r0

β̄
+ lT

)
1 + (1−β2)l

− c

− l 2∑
i=1

θiβi

T − (1−β2)
(
r− r−r0

β̄

)
1 + (1−β2)l

 ; (141)

(c) for l≥ lh, δ = r− T
1−β2

, and ΠU
3 = Π3−

[
θ1(β2−β1)T

1−β2
− c
]
.

Appendix F: Proofs of Technical Lemmas

Proof of Lemma E.1. Following the analysis in Section 5, for the supplier to only ship at j = 1, . . . , i−1,

the contract must induce the insurer’s monitoring effort. Therefore, the optimization problem that determines

this optimal non-cancelable contract must have (5) as the objective, and (2) – (4), as well as B(p, δ)∈ (βi−1, βi]

as constraints. For ease of reference, we re-write the optimization problem as follows.

max
p,δ∈[0,r]

r0− p+
∑
j≤i−1

θj {(1−βj)r+βj [r− δ−L(r− δ− p)]− r0} ; (142)

B≥ β̄; (143)

δ≤ r− c∑
j≥i θjβj

; (144)

p≥ c+ (r− δ)
∑
j≤i−1

θjβj ; (145)

B∈ (βi−1, βi]. (146)

By comparing (143) and (146), we note that the math program has no feasible solution when βi < β̄. In

addition, we note that for δ≥ 0 to satisfy (144), we need c≤ r
∑

j≥i θjβj .

Under the condition βi ≥ β̄, note that, according to (1), B decreases in both δ and p. Thus, (143) and

B>βi−1, i.e., the left half in (146), are both relaxed as δ or p decreases. Further, note that as L(x) is weakly

decreasing in x, the objective decreases in both δ and p. Therefore, (143) and B>βi−1 will not be the binding

constraint for the optimization problem. In other words, the optimal solution is determined by (142), (144)

– (145) and B≤ βi, the last of which can be re-written as:

δ+L(r− δ− p)≥ r− r0

βi
. (147)
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Jointly considering (144), (145), and (147), we note that (144) does not involve p. Therefore, at the optimal

solution (p, δ), at least one of (145) and (147) must be binding, otherwise, (p− ε, δ) increases the objective

while not violating any constraints.

Next, we show that any (p, δ) under which (147) is not binding must be (weakly) dominated by another

solution. To see that, let (p, δ) be jointly determined by (144) and (145), that is,

δa = r− c∑
j≥i θjβj

; (148)

pa = c+ (r− δ)
∑
j≤i−1

θjβj . (149)

If (147) is not binding under the above contract, we can confirm that the contract δa1 = δa − ε and pa1 =

pa+ ε
∑

j≤i−1 θjβj for sufficiently small ε > 0 is also a feasible solution that it satisfies (144), (145), and (147).

In addition, substituting the above contract into the objective function, which then becomes:

πa1 :=r0− pa1 +
∑
j≤i−1

θj {(1−βj)r+βj [r− δa1−L(r− δa1− pa1)]− r0} (150)

=r0− pa +
∑
j≤i−1

θj

{
(1−βj)r+βj [r− δa−L(r− δa− pa + ε

∑
j≥i

θiβi)]− r0

}
. (151)

Next, consider two scenarios:

1. if L(r− δa− pa)> 0, then πa1 is greater than the payoff under contract (pa, δa) as L(x) decreases in x.

Therefore, (pa1, δa1) strictly dominates (pa, δa).

2. if L(r− δa − pa) = 0, then let ε= r−r0
βi
− δa. By construction, (147) is binding at (pa1, δa1), which also

satisfy (144) and (145), and πa1 equals to that under (pa, δa) .

Combining the above two scenarios, we can see that any solution (p, δ) that is not binding at (147) is (weakly)

dominated. Therefore, it is sufficient for us to consider contract (p, δ) such that (147) is binding. Under this

condition, we analyze the optimal solution depending on whether the other binding constraint is (144) or

(145). Consider the following two scenarios.

1. If both (144) and (147) are binding, the contract deductible δ is determined by:

δ = r− c∑
j≥i θjβj

=: δNNi . (152)

and the premium p is implicitly determined by:

δ =
r− r0

βi
−L(r− δ− p); (153)

As L(·)≥ 0, we have δ≤ r−r0
βi

, thus c must satisfy:

c≥
∑
j≥i

θjβj

(
r− r− r0

βi

)
=CU

i . (154)

Under this condition, a feasible premium p exists if and only if it satisfies the following two equations.

L

(
c∑

j≥i θiβi
− p

)
=

c−CU
i∑

j≥i θjβj
. (155)

p≥ β̄∑
j≥i θjβj

c. (156)

Further consider two scenarios,
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(a) if c=CU
i , then a feasible p exists if and only if T − (1−β̄)c∑

j≥i θjβj
≤ 0, or equivalently,

c≥
∑

j≥i θjβj

1− β̄
T. (157)

(b) if c >CU
i , then according to (155), p follows l(T − r+ δNCIC,i + p) =

c−CUi∑
j≥i θjβj

, or equivalently,

p=

(
1 +

1

l

)
c∑

j≥i θjβj
− 1

l

(
r− r− r0

βi

)
−T =: pNNi , (158)

which satisfies (156) if and only if:(
1 +

1

l

)
c∑

j≥i θjβj
− 1

l

(
r− r− r0

βi

)
−T ≥ β̄c∑

j≥i θjβj
. (159)

or equivalently,

c≥
CU
i + lT

∑
j≥i θjβj

1 + l(1− β̄)
=: ΦU

i (T ). (160)

which covers the region as defined in (157).

Combining the above two scenarios, we have that when c ≥ max(CU
i ,Φ

U
i (T )), the optimal contract

terms is (pNNi , δNNi ) as defined above. Correspondingly, the supplier’s payoff is:

ΠN
i = r0− pNNi +

∑
j<i

θj
{

(1−βj)r+βj [r− δNNi −L(r− δNNi − pNNi )]− r0

}
(161)

= Πi−

[
(1− β̄)lc+ (1 + l

∑
j<i

θjβj)(c−CU
i )

l
∑

j≥i θjβj
−T

]
=: ΠNN

i . (162)

2. If both (145) and (147) are binding, according to (145), (p, δ) satisfy:

p= c+
∑
j≤i−1

θjβj(r− δ). (163)

Substituting this into (147) leads to:

δ+L

([
1−

∑
j≤i−1

θjβj

]
(r− δ)− c

)
=
r− r0

βi
, (164)

To determine whether δ as determined by the above equation can also satisfy (144), we further consider

two scenarios.

(a) If δ results in L
([

1−
∑

j≤i−1 θjβj

]
(r− δ)− c

)
= 0, it must follows δ = r−r0

βi
. Such δ satisfies both

(144) and L
([

1−
∑

j≤i−1 θjβj

]
(r− δ)− c

)
= 0 if and only if both of the following conditions are

satisfied:

r− r0

βi
≤ r− c∑

j≥i θjβj
; (165)(

1−
∑
j≤i−1

θjβj

)(
r− r0

βi

)
− c≥ T. (166)

or equivalently,

c≤min
(
CU
i , τi−T

)
. (167)



Yang, Bakshi, and Chen: Trade Credit Insurance xxvii

(b) If δ results in L
([

1−
∑

j≤i−1 θjβj

]
(r− δ)− c

)
> 0, using the functional form of L(), δ follows

δ+ l
(
T −

[
1−

∑
j≤i−1 θjβj

]
(r− δ) + c

)
= r−r0

βi
, or equivalently,

δ =
r− r0

βi
− l(T + c− τi)

1 + l(1−
∑

j≤i−1 θjβj)
. (168)

Such a δ satisfies (144) and L
([

1−
∑

j≤i−1 θjβj

]
(r− δ)− c

)
> 0 if and only if:

r− r0

βi
− l(T + c− τi)

1 + l(1−
∑

j≤i−1 θjβj)
≤ r− c∑

j≥i θjβj
, and (169)[

1−
∑
j≤i−1

θjβj

](
r− r− r0

βi
+

l(T + cE − τi)
1 + l(1−

∑
j≤i−1 θjβj)

)
− cE <T. (170)

Or equivalently,

c∈ (τi−T, ΦU
i (T )], (171)

which is non-empty if and only if

T > τi−CU
i . (172)

Combining the above two scenarios, we have that when c≤max(CU
i ,Φ

U
i (T )), the binding constraints

are (145) and (147), and the optimal deductible is:

δ =
r− r0

βi
− l(T + c− τi)+

1 + l(1−
∑

j≤i−1 θjβj)
=: δNBi (173)

and the premium p follows directly from (145), i.e.,

p= c+
∑
j≤i−1

θjβj(r− δNBi ) =: pNBi . (174)

The supplier’s corresponding payoff is:

ΠN
i = r0 +

∑
j<i

θj
{

(1−βj)r−βjL(r− δNCIR,i− pNCIR,i)]− r0

}
− c (175)

= Πi−
∑

j<i
θiβil(T + c− τi)+

1 + l(1−
∑

j<i
θjβj)

=: ΠNB
i . (176)

Finally, note that CU
i <ΦU

i (T ) if and only if

T > (1− β̄)

(
r− r− r0

βi

)
= τi−CU

i . (177)

Under this condition, note that

ΦU
i (T ) =CU

i +
l
∑

j≥i θjβj

1 + (1− β̄)l
[T − (τi−CU

i )]. (178)

Therefore,

max(CU
i ,Φ

U
i (T )) =CU

i +
l
∑

j≥i θjβj

1 + (1− β̄)l
[T − (τi−CU

i )]+, (179)

corresponding the boundary that separates the two cases in the lemma.

Next, we compare ΠN
i (ΠNN

i and ΠNB
i ) with the no effort solution Π0 to prove the final part of the lemma.

In parallel to the above two scenarios, we have:



xxviii Yang, Bakshi, and Chen: Trade Credit Insurance

1. By comparing ΠNB
i and Π0 (the first scenario in the lemma), we have:

ΠNB
i −Π0 = Πi−Π0−

∑
j<i

θjβjl(T + c− τi)+

1 + l(1−
∑

j<i
θjβj)

. (180)

As Πi−Π0 =Ci− c, ΠNB
i −Π0 ≥ 0 if and only if

c≤Ci−
l
∑

j<i
θjβj

1 + l
[T − (τi−Ci)] . (181)

In addition, note that according to the above result, ΠNB
i is only feasible when c≤CU

i +
l
∑
j≥i θjβj

1+(1−β̄)l
[T −

(τi−CU
i )]+. Combining these two conditions, we have that ΠNB

i dominates Π0 if and only if (127) (in

the Lemma) holds.

2. By comparing ΠNN
i (the second scenario in the lemma) and Π0, we have:

ΠNN
i −Π0 =Ci− c−

[
(1− β̄)lc+ (1 + l

∑
j<i

θjβj)(c−CU
i )

l
∑

j≥i θjβj
−T

]
. (182)

Therefore, ΠNN
i ≥Π0 if and only if:

c≤CU
i +

l
∑

j≥i θjβj

1 + l
[T − (τi−Ci)] . (183)

Combining with the condition that defines the feasibility of optimality of ΠNN
i , i.e., c > CU

i +
l
∑
j>i θjβj

1+(1−β̄)l
[T − (τi−CU

i )]+, we obtain that ΠNN
i dominates Π0 if and only if (128) holds. �

Proof of Lemma E.2. As the insurer cancels at i∈ [j,m], we have B∈ (βm, βm+1), i.e., Eq. (133), and BP ∈

[βj−1, βj), i.e., Eq. (134). Similarly, as the supplier ships when signal i≤max(j − 1, k), and BP ∈ [βj−1, βj),

we have BC ∈ (βk, βk+1], i.e., Eq. (135).

With the above mapping, we note that for any expression x, we have
∑

i<j
x=

∑
i
x1βi<BP ,

∑
i∈[j,k] x=∑

i
x1βi∈[BP ,BC) and

∑
i∈[j,m] x =

∑
i
x1βi∈[BP ,B). With the above substitution, the supplier’s payoff (129)

follows from (8), and (130)–(132) follow directly from (12) – (14) in Lemma B.1. �

Proof of Lemma E.3. We first show that Eq. (136) is necessary for such a cancelable contract to be

feasible. Based on Lemma E.2 and using its notation, a cancelable contract with j = 2 and k = 3 is feasible

if and only if the set of following inequalities has a solution.

B≥ β̄; (184)

β̄(r− δ)≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (185)

f ≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (186)

p≥ c+ θ1β1(r− δ) + (θ2 + θ3)f ; (187)

f < β2(r− δ); (188)

f ≥ β1(r− δ); (189)

B>β3. (190)
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As p≥ f , given (186), (187) is redundant. When (190) holds, (184) becomes redundant. Further, when (186)

holds, (189) is redundant. Therefore, the above set of inequalities can be simplified as:

f ≤ (θ2β2 + θ3β3)(r− δ)− c
θ2 + θ3

; (191)

f ≥ c

θ1

+β1(r− δ); (192)

f < β(r− δ); (193)

B>β3. (194)

Note that (191) and (192) can hold jointly if and only if

(θ2β2 + θ3β3)(r− δ)− c
θ2 + θ3

≥ c

θ1

+β1(r− δ), (195)

or equivalently,

c≤ θ1(β̄−β1)(r− δ). (196)

Similarly, (192) and (193) can hold jointly if and only if:

c≤ θ1(β2−β1)(r− δ). (197)

Combining (196) and (197), and setting δ = 0, which makes both constraints the least stringent, leads to

(136) as desired.

Second, we combine the sufficient side with identifying the optimal solution. Note that under the above

cancelation policy, the supplier can have two possible shipping policies: first, she ships at i= 1; second, she

ships at i= 1,2 (and hence the shipment is uninsured at i= 2). In the following, we first establish the best

possible payoff the supplier can achieve under each shipping policy, and then show that the contract in the

lemma, i.e., (137), allows the supplier to achieve this payoff as long as (136) is satisfied.

1. If the supplier ships at i= 1, the best possible payoff she can receive is Π2. Next, note that under the

contract (137), the supplier has no incentive to ship at i= 2 when T > (1−β2)r−r0
lβ2

. And in this region,

under the contract (137), her payoff is indeed Π2. Therefore, (137) is optimal.

2. If the supplier ships at i= 1,2, as the shipment is uninsured at i= 2, the best possible payoff she can

receive is Π3− θ2β2lT . Symmetrical to the previous case, the supplier has the incentive to ship at i= 2

when T ≤ (1−β2)r−r0
lβ2

. And in this region, under the contract (137), her payoff is indeed Π3 − θ2β2lT .

Therefore, (137) is optimal.

Finally, note that the contract (137) has δ = 0, thus, it satisfies (184) – (190) under (136). Thus, this contract

always induces the specific cancelation and shipping decisions as specified in the lemma as long as (136) is

satisfied. �
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Proof of Lemma E.4. Based on Lemma E.2 and using its notation, when the insurer only cancels at

i = 3, and the supplier ships at i = 1,2, we must have j = 3 (if not, i.e., j < 3, then the insurer does not

have the incentive to cancel at i= 3.) and k < 3 (because if k = 3, then the supplier ships under all signals,

and hence the insurer has no incentive to exert effort). By imposing the above j, k and m, we re-write the

optimization problem in Lemma E.2 as follows:

max
p,δ∈[0,r],f≤p

−p+
∑
i≤2

θi {r−βi[δ+L(r− f − δ)]}+ θ3(r0 + f); (198)

r0 ≤ r− β̄ [δ+L(r− δ− p)] ; (199)

β̄(r− δ)≥ c+
∑
i≤2

θiβi(r− δ) + θ3f ; (200)

f ≥ c+
∑
i≤2

θiβi(r− δ) + θ3f ; (201)

f < β3(r− δ); (202)

f ≥ β2(r− δ); (203)

r0 ≤ r−β3 [δ+L(r− δ− p)] ; (204)

r0 ≥ r−β3 [r+L(f − p)] . (205)

We simplify this math program as follows. First, as β̄ < β3, given (204), (199) is redundant. Second, note

that (200) can be simplified as θ3β3(r− δ)≥ c+ θ3f . Under this condition, (202) becomes redundant. Thrid,

as L(f − p)≥ 0 and (1−β3)r < r0, (205) is redundant. Fourth, we note that p only appears in (198), (204),

and in the constraint f ≤ p. As a smaller p improves the objective function and loosens (204), under the

optimal solution, the constraint f ≤ p must be binding, i.e. p= f . Consolidating all the above steps, we can

simplify (198) – (205) as follows.

max
δ∈[0,r],f

∑
i≤2

θi[r−βi(δ+L(r− f − δ))− f ] + θ3r0; (206)

s.t. f ≤ β3(r− δ)− c

θ3

; (207)

f ≥
c+
∑

i≤2 θiβi(r− δ)
θ1 + θ2

; (208)

f ≥ β2(r− δ); (209)

r0 ≤ r−β3 [δ+L(r− δ− f)] . (210)

We observe that for any given δ, decreasing f improves the objective function. In addition, note that as f

decreases, both (207) and (210) are relaxed. Therefore, at the optimal f , at least one of (208) and (209) is

binding. By comparing the two conditions, we can see that the binding one depends on the magnitude of δ.

Specifically, by comparing the right hand side of (208) and (209), we note that

c+
∑

i≤2 θiβi(r− δ)
θ1 + θ2

≥ β2(r− δ) (211)

is equivalent to

δ≥ r− c

θ1(β2−β1)
. (212)
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When this condition is satisfied, (208) is the binding constraint, i.e., the insurer does not extract rent.

However, the supplier may incur financing cost. Otherwise, (209) is the binding constraint, and the insurer

extracts information rent. In the following, we characterize the optimal contract depending on which of the

two constraints are binding.

Scenario I (δ≥ r− c
θ1(β2−β1)

): (208) is the binding constraint, and it can be re-written

f =
c+
∑2

i=1 θiβi(r− δ)∑2
i=1 θi

, (213)

and (206) – (210) can be re-written as follows:

max
δ∈[0,r]

Π3−
2∑
i=1

θiβiL

([
1−

∑2
i=1 θiβi∑2
i=1 θi

]
(r− δ)− c∑2

i=1 θi

)
(214)

s.t. δ≤ r− c

θ3(β3− β̄)
(215)

δ≥ r− c

θ1(β2−β1)
(216)

δ+L

([
1−

∑2
i=1 θiβi∑2
i=1 θi

]
(r− δ)− c∑2

i=1 θi

)
≤ r− r0

β3

(217)

where Π3 is the supplier’s payoff under the first-best benchmark, and the second term in the objective

function captures the potential financing cost the supplier needs to incur. By comparing (215) and (216), we

note that the two constraints can jointly hold if and only if

θ3(β3− β̄)≥ θ1(β2−β1), (218)

or equivalently,

β2 ≤ β̄. (219)

In other words, if β2 ≤ β̄, there exists no cancelable contract under which the insurer does not extract rent

with the specified cancelation and shipping policies. In the original optimization problem, the reason lies in

the fact that when (201) is binding, (200) and (203) cannot hold jointly if β2 > β̄.

Therefore, in the following analysis of Scenario I, we should work under the condition that β2 ≤ β̄. In this

case, we note that the objective function decreases in δ. Therefore, the optimal solution corresponds to the

smallest δ that satisfies (215) – (217). Further note that both (215) and (217) are loosened as δ decreases,

hence, the optimal solution should satisfy:

δ =

(
r− c

θ1(β2−β1)

)+

. (220)

We can verify that under this deductible and β2 ≤ β̄, (215) always holds. To check whether (217) holds under

this contract, we further consider two scenarios, depending on whether δ = 0, i.e., r− c
θ1(β2−β1)

≤ 0.

Scenario I.A: For c ≥ θ1(β2 − β1)r, δ = 0. We can also verify that (217) holds under all T that satisfies

Assumption 2. Thus, the corresponding optimal contract is:

δ = 0; p= f =
c+
∑2

i=1 θiβir∑2
i=1 θi

, (221)
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and the supplier’s payoff is Πu, the first-best benchmark. In other words, the supplier receives the full value

of TCI.

Scenario I.B: For c < θ1(β2−β1)r, the possible optimal solution, if feasible, is:

δ = r− c

θ1(β2−β1)
; p= f =

β2c

θ1(β2−β1)
. (222)

This solution is feasible if and only if it satisfies (217), or equivalently,

r− r0 ≥ β3

[
r− c

θ1(β2−β1)
+L

(
(1−β2)c

θ1(β2−β1)

)]
. (223)

Note that if this inequality does not hold, then the optimization problem (214) – (217) is infeasible. In other

words, there exists no solution in Scenario I under which (208) is binding. Thus, depending on whether the

supplier can avoid financing cost, i.e., T ≤ (1−β2)c

θ1(β2−β1)
, we further consider two cases.

Scenario I.B.a: for T ≤ (1−β2)c

θ1(β2−β1)
, or equivalently,

c≥ θ1(β2−β1)

(1−β2)
T, (224)

the supplier can avoid financing cost. Under this condition, (217) holds if and only if:

c≥ θ1(β2−β1)

(
r− r− r0

β3

)
. (225)

Therefore, we have the following two cases.

1. The contract in (222) achieves first-best Πu when

c≥ θ1(β2−β1) max

(
r− r− r0

β3

,
T

1−β2

)
. (226)

2. No contract under Scenario I is infeasible when

c∈
(
θ1(β2−β1)

1−β2

T, θ1(β2−β1)

(
r− r− r0

β3

))
. (227)

Scenario I.B.b: for T ≥ (1−β2)c

θ1(β2−β1)
, or equivalently,

c≤ θ1(β2−β1)

(1−β2)
T, (228)

(223) can be re-written as:

c≥
θ1(β2−β1)

(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

. (229)

Therefore, we have two cases:

1. Contract (222) is feasible when

c∈

θ1(β2−β1)
(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

,
θ1(β2−β1)

(1−β2)
T

 . (230)

and the supplier’s payoff is Π3−
∑2

i=1 θiβil
[
T − (1−β2)c

θ1(β2−β1)

]
.

2. No contract under Scenario I is feasible when

c≤min

θ1(β2−β1)

(1−β2)
T,

θ1(β2−β1)
(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

 . (231)
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Consolidating Scenario I.A, Scenario I.B.a (two sub-cases) and Scenario I.B.b (two sub-cases), the optimal

contract in Scenario I (for β2 ≤ β̄) can be summarized as follows.

1. The supplier receives the full value of TCI (ΠC
3 = ΠE

3 ) under contract (221) or (222) when

c≥ θ1(β2−β1) max

(
r− r− r0

β3

,
T

1−β2

)
. (232)

2. The contract (222) is feasible, but the supplier incurs financing cost when:

c∈

θ1(β2−β1)
(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

,
θ1(β2−β1)

(1−β2)
T

 . (233)

and the supplier’s payoff is:

ΠC
3 = Π3−

2∑
i=1

θiβil

[
T − (1−β2)c

θ1(β2−β1)

]
, (234)

3. The contract is infeasible when:

c < θ1(β2−β1) max

(
r− r− r0

β3

,
r− r−r0

β3
+ lT

1 + (1−β2)l

)
. (235)

Scenario II (δ≤ r− c
θ1(β2−β1)

): (209) is binding. Thus, we have:

p= f = β2(r− δ). (236)

Under this contract, the insurer will not cancel coverage at i= 2. To achieve this, the insurer may extract

rent. Substituting the above expression of p and f into (206) – (210) leads to:

max
δ∈[0,r]

Π3− [θ1(β2−β1)(r− δ)− c]−
2∑
i=1

θiβil[T − (1−β2)(r− δ)]+ (237)

s.t. δ≤ r− c

θ3(β3−β2)
(238)

δ≤ r− c

θ1(β2−β1)
(239)

δ≤ r− r0

β3

−
l
[
T − (1−β2)

(
r− r−r0

β3

)]+
1 + l(1−β2)

(240)

As shown, the three components of the objective function are: the first-best benchmark Π3, the information

rent surrendered to the insurer, and the expected financing cost. Note that the information rent, θ1(β2 −
β1)(r− δ)− c, decreases in δ, while the financing cost is constant in δ for δ ≤ r− T

1−β2
, and increasing in δ

for δ > r− T
1−β2

. Combining these two forces, as δ increases from zero, the financing cost initially remains

at zero, and hence the objective function increases until δ = r− T
1−β2

.8 For a greater δ, the supplier incurs

financing cost, and

dΠC
3

dδ
= θ1(β2−β1)− l

2∑
i=1

θiβi(1−β2), (241)

which is positive if and only if

l < lh :=
θ1(β2−β1)∑2
i=1 θiβi(1−β2)

. (242)

Therefore, the optimal δ follows two cases depending whether l is greater than lh.

8 We can verify that δ= 0 is a feasible solution to the range of c that we are interested, i.e., c≤ φ= θ3[r0− (1−β3)r]
for β2 > β̄, and c≤ θ1(β2− β1)r for β2 ≤ β̄. The second set of conditions comes from the fact that when β2 ≤ β̄, the
optimal solution in Scenario I.A above can achieve first-best, hence it is unnecessary to consider other solutions.



xxxiv Yang, Bakshi, and Chen: Trade Credit Insurance

1. For l ≤ lh, as δ increases, the corresponding increase in financing cost is not as great as the decrease

in information rent. Therefore, the optimal contract sets the deductible as high as possible, i.e. at the

level that at least one of (238) – (240) is binding. Equivalently,

δ = min

r− c

θ3(β3−β2)
, r− c

θ1(β2−β1)
,
r− r0

β3

−
l
[
T − (1−β2)

(
r− r−r0

β3

)]+
1 + l(1−β2)

 . (243)

2. For l > lh, for δ > r− T
1−β2

, as δ increases, the corresponding increase in financing cost dominates the

decrease in information rent. Therefore, the optimal deductible should be:

δ = min

r− T

1−β2

, r− c

θ3(β3−β2)
, r− c

θ1(β2−β1)
,
r− r0

β3

−
l
[
T − (1−β2)

(
r− r−r0

β3

)]+
1 + l(1−β2)

 .

(244)

Combining the above two cases in Scenario II with the three cases in Scenario I that we summarize above,

we can fully characterize the optimal contract and the corresponding payoff in the format in Lemma E.4.

First, β2 ≤ β̄ (Solution C.3.L in Lemma E.4): under this condition, given (239), (238) will not be the

binding constraint. Depending on the range of c, T , and l, we further consider the following cases.

1. When c ≥ θ1(β2 − β1) max
(
r− r−r0

β3
, T

1−β2

)
, according to Scenario I, the supplier can receive the full

value of TCI. This corresponds to the first statement in Solution C.3.L.

2. When c < θ1(β2 − β1) max

(
r− r−r0

β3
,
r− r−r0

β3
+lT

1+(1−β2)l

)
, Scenario I is infeasible. Therefore, we only need to

consider the optimal solution in Scenario II. By considering (243) and (244), we have that δ = r−r0
β3

,

and her payoff is:

ΠC
3 = Π3−

[
θ1(β2−β1)

(
r− r− r0

β3

)
− c
]
. (245)

This corresponds to the second statement in Solution C.3.

3. When c ∈
[
θ1(β2−β1)

(
r− r−r0

β3
+lT

)
1+(1−β2)l

, θ1(β2−β1)

(1−β2)
T

)
, Scenario I is feasible. Next, consider the following two

cases.

(a) when l > lh, the solution in Scenario II follows (244). By comparing the four scenarios, we can see

that the binding one is δ = r− T
1−β2

. In this case, the supplier can avoid financing cost, and her

payoff:

ΠC
3 = Π3−

[
θ1(β2−β1)T

1−β2

− c
]
. (246)

Comparing this with the supplier’s payoff under the optimal contract in Scenario I (234), we have:

Π3−
(
θ1(β2−β1)T

1−β2

− c
)
−

[
Π3− l

2∑
i=1

θiβi

(
T − (1−β2)c

θ1(β2−β1)

)]
(247)

= (l− lh)

2∑
i=1

θiβi

(
T − (1−β2)c

θ1(β2−β1)

)
≥ 0. (248)

Thus, the solution in Scenario II, i.e., δ = r − T
1−β2

, is optimal. This corresponds to Solution

III.L.3(b) in the lemma.
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(b) when l≤ lh, the optimal contract under Scenario II, i.e., (243), can be simplified into:

δ = min

(
r− c

θ1(β2−β1)
, r−

r− r−r0
β3

+ lT

1 + (1−β2)l

)
. (249)

Consider the following two cases.

i. When c ∈
[
θ1(β2−β1)

[
r− r−r0

β3
+lT

]
1+(1−β2)l

, θ1(β2−β1)T

1−β2

)
, we can show that the optimal contract under

Scenario II, i.e., δ = r− c
θ1(β2−β1)

, is the same as in Scenario I. Therefore, the supplier’s payoff

is the same as in (234). This corresponds to Solution III.L.3(a) in the lemma.

ii. When c <
θ1(β2−β1)

[
r− r−r0

β3
+lT

]
1+(1−β2)l

, the optimal solution under Scenario II is δ = r−
r− r−r0

β3
+lT

1+(1−β2)l
,

and the corresponding payoff, following (237), is:

ΠC
3 = Π3 + c−

θ1(β2−β1)
(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

−
2∑
i=1

θiβil

T − (1−β2)
(
r− r−r0

β3

)
1 + (1−β2)l

 . (250)

With some algebra, we can show that this payoff is always lower than the supplier’s payoff

under Scenario I, i.e., (234).

Combining these two cases, we can show that for l≤ lh, the optimal contract is δ = r− c
θ1(β2−β1)

,

and the supplier’s payoff follows (234).

Second, β2 > β̄ (Solution IIl.H in Lemma E.4): in this case, Scenario I is infeasible. Therefore, we only

need to consider the solution in Scenario II, as governed by (243) and (244). Further, (238) is tighter than

(239). Depending on the range of c, T , and l, we further consider the following cases.

1. When c≥ θ3(β3−β2) max
(
r− r−r0

β3
, T

1−β2

)
, regardless of l, we have: δ = r− c

θ3(β3−β2)
, and the supplier’s

payoff, following (237), is:

ΠC
3 = Π3−

(β2− β̄)c

θ3(β3−β2)
. (251)

This corresponds to Solution III.H.1.

2. When c < θ3(β3−β2)
(
r− r−r0

β3

)
and T ≤ (1−β2)

(
r− r−r0

β3

)
, by considering (243) and (244), we have

that δ = r−r0
β3

, and

ΠC
3 = Π3−

[
θ1(β2−β1)

(
r− r− r0

β3

)
− c
]
. (252)

This corresponds to Solution III.H.2.

3. When c < θ3(β3−β2)T

1−β2
and T > (1−β2)

(
r− r−r0

β3

)
, we further consider the following cases, which corre-

spond to different scenarios in Solution III.H.3.

(a) when l≤ lh, the optimal contract under Scenario II, i.e., (243), can be simplified into:

δ = min

(
r− c

θ3(β3−β2)
, r−

r− r−r0
β3

+ lT

1 + (1−β2)l

)
. (253)

Therefore, consider the following two cases.

i. when c <
θ3(β3−β2)

[
r− r−r0

β3
+lT

]
1+(1−β2)l

, the optimal solution under Scenario II is δ = r−
r− r−r0

β3
+lT

1+(1−β2)l
,

and the corresponding payoff is

ΠC
3 = Π3−

θ1(β2−β1)
(
r− r−r0

β3
+ lT

)
1 + (1−β2)l

− c

− 2∑
i=1

θiβil

T − (1−β2)
(
r− r−r0

β3

)
1 + (1−β2)l

 , (254)

corresponding to Solution C.3.H.3(a).
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ii. when c∈
[
θ3(β3−β2)

[
r− r−r0

β3
+lT

]
1+(1−β2)l

, θ1(β2−β1)T

1−β2

)
, δ = r− c

θ3(β3−β2)
, and hence the supplier’s payoff

is:

ΠC
3 = Π3−

(β2− β̄)c

θ3(β3−β2)
−

2∑
i=1

θiβil

[
T − (1−β2)c

θ3(β3−β2)

]
. (255)

This corresponds to Solution C.3.H.3(b).

(b) when l > lh, the solution in Scenario II follows (244). By comparing the four scenarios, we can see

that the binding one is δ = r− T
1−β2

. In this case, the supplier avoids financing cost, and her payoff

is:

ΠC
3 = Π3−

(
θ3(β3−β2)T

1−β2

− c
)
. (256)

This corresponds to Solution C.3.H.3(c). �

Proof of Lemma E.5. In addition to the cancelation policies covered in Lemmas E.3 and E.4, cancelable

contracts under which the insurer exerts effort, as summarized in Lemma B.1 and Lemma E.2, may induce

the following three types of cancelation policies.

1. If the insurer cancels only at i= 2, which leads to j = 2 and m= 2 using the notation in Lemma E.2. In

terms of the supplier’s shipping decision, by applying Lemma 3, we can show that other the following

scenarios are possible.

(a) The supplier ships only at i= 1, which leads to k= 1.

(b) The supplier ships at i= 1,2, which leads to k= 2.

To see why other shipping policies are not possible, note that according to Lemma 3, the supplier’s

shipping policy is always a one threshold policy. Therefore, for the supplier to ship at any state, which is

a necessary condition for the insurer to exert effort, the supplier must ship at i= 1. Depending whether

she ships at i= 2, we have the above two scenarios. Now, it is clearly that the supplier will not ship at

i= 3, because if she does, she will ship at all signals, which again violates the necessary condition for

the insurer to exert effort. As such, only the above two scenarios are feasible. For the following scenarios

of cancelation policy, the logic is similar and we omit the detail there.

2. If the insurer cancels only at i= 1,2, which leads to j = 1 and m= 2. In terms of the supplier’s shipping

decision, there are two possible scenarios.

(a) The supplier ships only at i= 1, which leads to k= 1.

(b) The supplier ships at i= 1,2, which leads to k= 2.

3. If the insurer cancels at only i = 1, which leads to j = 1 and m = 1, which also leads to k = 1. This

means that the supplier ships at only i= 1.

Rearranging these scenarios based on the supplier’s shipping policy, we arrive at the following two cases.

1. The supplier ships at i= 1 (possibly uninsured). Under this shipping policy, the upper bound of the

supplier’s payoff is Π2. By comparing this with the optimal contract in Lemmas E.3 and E.4, we note

that:
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(a) when β2 < β̄, we further consider two cases.

i. when c≥ θ1(β2−β1) max
(
r− r−r0

β3
, T

1−β2

)
, according to Lemma E.4 (Solution III.L.1), there

exists a contract that can achieve the first-best payoff Π3, which is greater than Π2.

ii. when c < θ1(β2 − β1) max
(
r− r−r0

β3
, T

1−β2

)
, we can verify that the solution in Lemma E.3 is

feasible, and it leads to the payoff ΠC
2 greater than or equal to the upper bound Π2.

(b) when β2 ≥ β̄, we can verify that the solution in Lemma E.3 is feasible, and the corresponding

payoff is greater than or equal to the upper bound Π2.

2. The supplier ships at i = 1,2, and always uninsured at i = 2. Under this shipping policy, the upper

bound of the supplier’s payoff is Π3 − θ2β2lT . Similar to the previous case, we can show that such

contract is (weakly) dominated by ΠC
2 (in Lemma E.3) or ΠC

3 (in Lemma E.4).

Combining the above two cases, we conclude that we do not need to consider cancelable contracts other than

those studied in Lemmas E.3 and E.4. �

Proof of Lemma E.6. We first simplify this set of inequalities. First, we notice that as θ1β1+θ2β2

θ1+θ2
< β̄,

given (116), (122) is redundant. Second, similar to the proof in Lemma E.4, (120) and (121) are redundant,

and without loss of generality, we can set f = p. After consolidating all these simplifications, (115)– (122)

become:

max
δ∈[0,r],f

Π3−
2∑
i=1

θiL(r− f − δ)−

{
2∑
i=1

θi[f −βi(r− δ)]− c

}
; (257)

s.t. r0 ≤ r− β̄[δ+L(r− δ− f)]; (258)

f ≤ β3(r− δ)− c

θ3

; (259)

f ≥
c+
∑2

i=1 θiβi(r− δ)
θ1 + θ2

; (260)

f ≥ β2(r− δ); (261)

The second and third component corresponding represents the potential financing cost and rent surrounded

to the insurer. We observe that for any given δ, decreasing f improves the objective function. In addition,

note that as f decreases, both (258) and (259) become less stringent. Therefore, at the optimal f , at least

one of (260) and (261) is binding. By comparing the two conditions, we can see that the binding one depends

on the magnitude of δ. Specifically, by comparing the right hand side of (260) and (261), we note that

c+
∑

i≤2 θiβi(r− δ)
θ1 + θ2

≥ β2(r− δ) (262)

is equivalent to

δ≥ r− c

θ1(β2−β1)
. (263)

When this condition is satisfied, (260) is the binding constraint, i.e., the insurer does not extract rent.

Otherwise, (261) is the binding constraint, and the insurer extracts rent. In the following, we analyze the

optimal contract depending on which of the two constraints are binding.

Scenario I (δ≥ r− c
θ1(β2−β1)

): (260) is the binding constraint, and it can be re-written:

f =
c+
∑2

i=1 θiβi(r− δ)∑2
i=1 θi

, (264)
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and (257) – (261) can be further simplified to:

max
δ∈[0,r]

Π3−
2∑
i=1

θiβiL

([
1−

∑2
i=1 θiβi∑2
i=1 θi

]
(r− δ)− c∑2

i=1 θi

)
(265)

s.t. δ≤ r− c

θ3(β3− β̄)
(266)

δ≥ r− c

θ1(β2−β1)
(267)

δ+L

([
1−

∑2
i=1 θiβi∑2
i=1 θi

]
(r− δ)− c∑2

i=1 θi

)
≤ r− r0

β̄
(268)

By comparing (266) and (267), we note that the two constraints can jointly hold if and only if θ3(β3− β̄)≥

θ1(β2 − β1), or equivalently, β2 ≤ β̄. In other words, if β2 > β̄, there exists no cancelable contract under

which the insurer does not extract rent with the specified cancelation and shipping policies. Therefore, in

the following analysis of Scenario I, we should work under the condition that β2 ≤ β̄.

Under this condition, we note that the objective function decreases in δ. Therefore, the optimal solution

corresponds to the smallest feasible δ. Further note that both (266) and (268) are loosened as δ decreases,

hence, the optimal solution should satisfy:

δ =

(
r− c

θ1(β2−β1)

)+

. (269)

We can verify that under this deductible and β2 ≤ β̄, (266) always holds. To check whether (268) holds under

this contract, we further consider two scenarios, depending on whether δ = 0, i.e., r− c
θ1(β2−β1)

≤ 0.

Scenario I.A: For c ≥ θ1(β2 − β1)r, δ = 0. We can also verify that (268) holds under all T that satisfies

Assumption 2. Thus, the corresponding optimal contract is:

δ = 0; p= f =
c+
∑2

i=1 θiβir∑2
i=1 θi

. (270)

And the supplier’s payoff is Π3. In other words, the supplier receives the full value of TCI.

Scenario I.B: For c < θ1(β2−β1)r, the possible optimal solution, if feasible, is:

δ = r− c

θ1(β2−β1)
; p= f =

β2c

θ1(β2−β1)
. (271)

This solution is feasible if and only if it satisfies (268), or equivalently,

r− r0 ≥ β̄
[
r− c

θ1(β2−β1)
+L

(
(1−β2)c

θ1(β2−β1)

)]
. (272)

Note that if this inequality does not hold, then the optimization problem (265) – (268) is infeasible. In other

words, there exists no solution in Scenario I under which (267) is binding. Thus, depending on whether the

supplier can avoid financing cost, i.e., T ≤ (1−β2)c

θ1(β2−β1)
, we further consider two cases.

Scenario I.B.a: for T ≤ (1−β2)c

θ1(β2−β1)
, or equivalently,

c≥ θ1(β2−β1)

(1−β2)
T, (273)

the supplier can avoid financing cost. Under this condition, (272) holds if and only if:

c≥ θ1(β2−β1)

(
r− r− r0

β̄

)
, (274)



Yang, Bakshi, and Chen: Trade Credit Insurance xxxix

which always holds as r0 ≤ (1− β̄)r (Assumption 1). Thus, the contract in (271) leads to Π3 in this region.

Scenario I.B.b: for T ≥ (1−β2)c

θ1(β2−β1)
, or equivalently,

c≤ θ1(β2−β1)

(1−β2)
T, (275)

(272) can be re-written as:

c≥
θ1(β2−β1)

(
r− r−r0

β̄
+ lT

)
1 + (1−β2)l

. (276)

Note that (275) and (276) jointly hold if T ≥ 0. Therefore, we have two cases:

1. When (276) holds, contract (271) is feasible, and the supplier’s payoff is Πu−
∑2

i=1 θiβil
[
T − (1−β2)c

θ1(β2−β1)

]
.

2. When c <
θ1(β2−β1)

(
r− r−r0

β̄
+lT

)
1+(1−β2)l

, no contract under Scenario I is feasible.

Combining Scenario I.A, Scenario I.B.a and Scenario I.B.b (two sub-cases), we summarize the optimal

contract in Scenario I (for β2 ≤ β̄) as follows.

1. When c≥ θ1(β2−β1)T

1−β2
, ΠU

3 = Π3 under contract (270) or (271) .

2. When c∈
[
θ1(β2−β1)

(
r− r−r0

β̄
+lT

)
1+(1−β2)l

, θ1(β2−β1)T

1−β2

)
,, the contract (271) is feasible, and

ΠU
3 = Π3−

2∑
i=1

θiβil

(
T − (1−β2)c

θ1(β2−β1)

)
. (277)

3. When c <
θ1(β2−β1)

(
r− r−r0

β̄
+lT

)
1+(1−β2)l

, no contract that satisfy δ≥ r− c
θ1(β2−β1)

is feasible.

Scenario II (δ ≤ r− c
θ1(β2−β1)

): (261) is binding. Thus, we have p= f = β2(r− δ). Substituting the above

expression of p and f into (257) – (261) leads to:

max
δ∈[0,r]

Π3−
2∑
i=1

θiβil[T − (1−β2)(r− δ)]+− [θ1(β2−β1)(r− δ)− c] (278)

s.t. δ≤ r− c

θ3(β3−β2)
; (279)

δ≤ r− c

θ1(β2−β1)
; (280)

δ≤ r− r0

β̄
−
l
[
T − (1−β2)

(
r− r−r0

β̄

)]
1 + l(1−β2)

. (281)

As above, the three components of the objective function are: the first-best benchmark Π3, the expected

financing cost, and the rent surrendered to the insurer. Note that the information rent, θ1(β2−β1)(r−δ)−c,
decreases in δ, while the financing cost is constant in δ for δ≤ r− T

1−β2
, and increasing in δ for δ > r− T

1−β2
.

Combining these two forces, as δ increases from zero, the financing cost initially remains at zero, and hence

the objective function increases until δ = r− T
1−β2

. For a greater δ, the supplier incurs financing cost, and

dΠ
dδ
> 0 if and only if l < lh as defined in Lemma E.4. Therefore, the optimal δ follows two cases depending

whether l is greater than lh.

1. For l ≤ lh, as δ increases, the corresponding increase in financing cost is not as great as the decrease

in information rent. Therefore, the optimal contract sets the deductible as high as possible, i.e. at the

level that at least one of (279) – (281) is binding. Equivalently,

δ = min

(
r− c

θ3(β3−β2)
, r− c

θ1(β2−β1)
, r−

r− r−r0
β̄

+ lT

1 + l(1−β2)

)
. (282)
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2. For l > lh, for δ > r− T
1−β2

, as δ increases, the corresponding increase in financing cost dominates the

decrease in information rent. Therefore, the optimal deductible should be:

δ = min

(
r− T

1−β2

, r− c

θ3(β3−β2)
, r− c

θ1(β2−β1)
, r−

r− r−r0
β̄

+ lT

1 + l(1−β2)

)
. (283)

Combining the above two cases in Scenario II with the three cases in Scenario I that we summarize

above, we can fully characterize the optimal contract and the corresponding payoff.

First, when β2 ≤ β̄ (Solution U.3.L): under this condition, (280) is tighter than (279). Depending on the

range of c, T , and l, we further consider the following cases.

1. When c ≥ θ1(β2−β1)T

1−β2
, according to Scenario I, the supplier can receive the full value of TCI. This

corresponds to Solution U.3.L.1.

2. When c ∈
[
θ1(β2−β1)

(
r− r−r0

β3
+lT

)
1+(1−β2)l

, θ1(β2−β1)

(1−β2)
T

)
, Scenario I is feasible. Next, consider the following two

cases, which correspond to the two cases in Solution U.3.L.2.

(a) when l≤ lh, the optimal contract under Scenario II, i.e., (282), can be simplified into:

δ = min

(
r− c

θ1(β2−β1)
, r−

r− r−r0
β̄

+ lT

1 + (1−β2)l

)
. (284)

Consider the following two cases.

i. When c ∈
[
θ1(β2−β1)

[
r− r−r0

β̄
+lT

]
1+(1−β2)l

, θ1(β2−β1)T

1−β2

)
, we can show that the optimal contract under

Scenario II, i.e., δ = r− c
θ1(β2−β1)

, is the same as in Scenario I. Therefore, the supplier’s payoff

is the same as in (277).

ii. When c <
θ1(β2−β1)

[
r− r−r0

β̄
+lT

]
1+(1−β2)l

, the optimal solution under Scenario II is δ = r−
r− r−r0

β3
+lT

1+(1−β2)l
,

and the corresponding payoff, following (237), is:

ΠU
3 = Π3 + c−

θ1(β2−β1)
(
r− r−r0

β̄
+ lT

)
1 + (1−β2)l

−
2∑
i=1

θiβil

T − (1−β2)
(
r− r−r0

β̄

)
1 + (1−β2)l

 . (285)

With some algebra, we can show that this payoff is always lower than the supplier’s payoff

under Scenario I, i.e., (277).

Combining these two cases, we can show that for l≤ lh, the optimal contract is δ = r− c
θ1(β2−β1)

,

and the supplier’s payoff follows (277). This corresponds to Solution U.3.L.2(a) in the lemma.

(b) when l > lh, the solution in Scenario II follows (283). By comparing the four scenarios, we can see

that the binding one is δ = r− T
1−β2

, and

ΠU
3 = Π3−

[
θ1(β2−β1)T

1−β2

− c
]
, (286)

which is greater than the the supplier’s payoff under Scenario I as given by (277). Thus, the solution

in Scenario II is optimal. This corresponds to Solution U.3.L.2(b).

3. When c <
θ1(β2−β1)

(
r− r−r0

β̄
+lT

)
1+(1−β2)l

, Scenario I is infeasible. Therefore, we only need to consider the optimal

solution in Scenario II. By considering (282) and (283), we have that δ = r−r0
β̄
−

l
[
T−(1−β2)

(
r− r−r0

β̄

)]
1+l(1−β2)

,

and the supplier’s payoff is:

ΠU
3 = Π3−

θ1(β2−β1)
(
r− r−r0

β̄
+ lT

)
1 + (1−β2)l

− c

− l(θ1β1 + θ2β2)
[
T − (1−β2)

(
r− r−r0

β̄

)]
1 + (1−β2)l

. (287)

This corresponds to Solution U.3.L.3.



Yang, Bakshi, and Chen: Trade Credit Insurance xli

Second, in the case with β2 > β̄ (Solution U.3.H in the Lemma), the solution in Scenario I is infeasible.

Therefore, we only need to consider the solution in Scenario II, as governed by (282) and (283). Further,

(279) is tighter than (280). Depending on the range of c, T , and l, we further consider the following cases.

1. When c ≥ θ3(β3−β2)T

1−β2
, regardless of l, we have: δ = r − c

θ3(β3−β2)
, and the supplier’s payoff, following

(278), is ΠU
3 = Π3− (β2−β̄)c

θ3(β3−β2)
. This corresponds to Solution U.3.H.1.

2. When c < θ3(β3−β2)T

1−β2
, depending on l, we consider the following two scenarios.

(a) When l < lh, the optimal contract under Scenario II, i.e., (282), can be simplified into:

δ = min

(
r− c

θ3(β3−β2)
, r−

r− r−r0
β̄

+ lT

1 + (1−β2)l

)
. (288)

Therefore, consider the following two cases.

i. when c∈
[
θ3(β3−β2)

[
r− r−r0

β̄
+lT

]
1+(1−β2)l

, θ1(β2−β1)T

1−β2

)
, δ = r− c

θ3(β3−β2)
, and hence the supplier’s payoff

is:

ΠU
3 = Π3−

(β2− β̄)c

θ3(β3−β2)
−

2∑
i=1

θiβil

[
T − (1−β2)c

θ3(β3−β2)

]
. (289)

This corresponds to Solution U.3.H.2(a).

ii. When c <
θ3(β3−β2)

[
r− r−r0

β̄
+lT

]
1+(1−β2)l

, the optimal solution under Scenario II is δ = r−
r− r−r0

β̄
+lT

1+(1−β2)l
,

and the corresponding payoff is

ΠU
3 = Π3−

θ1(β2−β1)
(
r− r−r0

β̄
+ lT

)
1 + (1−β2)l

− c

− 2∑
i=1

θiβil

T − (1−β2)
(
r− r−r0

β̄

)
1 + (1−β2)l

 , (290)

corresponding to Solution U.3.H.2(b).

(b) When l ≥ lh, we should have δ = r− T
1−β2

, and ΠU
3 = Π3 −

(
θ3(β3−β2)T

1−β2
− c
)
. This corresponds to

Solution U.3.H.2(c). �


