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Modern service design practices conceptualize services as multi-step processes. At each step, customers

derive an uncertain value, which depends on a functional benefit and a subjective experience. The latter

may depend on experiences realized at previous steps. Service designs determine the provider effort at each

step given that customers prefer less variable experiences, and enable a holistic perspective of the overall

experience. We quantify two factors that shape service designs. The type of steps: i) routine steps, where

effort increases the functional benefit and decreases the experience variability, and ii) non-routine steps,

where effort increases the functional benefit at the expense of higher variability. A holistic coupling factor:

at each step, the design is determined not only by experience realizations at predecessor steps, but also

by how it can shape subsequent experiences. The optimal efforts depend on the combination of these two

factors, giving rise to actionable design rules. For a positive coupling factor, step type homogeneity leads

to “spread the effort” designs (complementary efforts), whereas a negative coupling factor suggests focusing

the effort on a few key steps at the expense of the rest of the service (substitutable efforts). Step type

heterogeneity reverses these recommendations. Moreover, when the customer experience unfolds according

to a non-stationary process with serial correlation, the effort at each step is determined by an impact zone

defined by the steps surrounding the focal service step. Stronger correlation always induces higher effort,

whereas weaker correlation may induce less effort in services with heterogeneous step types.

Key words : customer experience, customer journey, design thinking, service design, service process, service

provider, touchpoints

1. Introduction

Design has traditionally been associated with facets of product development, such as architecture

(Ulrich 1995), function (Ulrich 2011) and style (Chan et al. 2017). Recently, firms have started

broadening their perspective on design beyond the individual product attributes, and towards a

holistic and human-centered focus on the needs and actions of the end user of a product. This

approach, known as design thinking (Brown 2008), has enabled designers to expand beyond tangible

goods. In fact, a fast-growing field of industrial design builds on the premises of design thinking,

and it is concerned with the design of services.

The field of service design has established practices that define a structured approach to creating

new or improving existing services. These practices draw on knowledge and tools from a variety of
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disciplines (Stickdorn and Schneider 2010). Yet, it has been established that two of the principal

values that define the work ethos of service designers are: i) their emphasis on a holistic approach,

and ii) their focus on empathy towards the end user (Fayard et al. 2017).1 The following examples

provide insights on how service designers enact these values in practice.

Service design for a better passenger experience: In 1996, Amtrak approached IDEO, a

California-based design firm, to identify opportunities to improve the passenger experience in their

high-speed rail service between Washington D.C, New York and Boston. At first, IDEO was tasked

with solely redesigning the seats of the trains. Soon, the team recognized that for a successful project

the customer experience would have to be addressed holistically. During a lengthy observation

phase, which included riding trains with customers, IDEO discovered that the actual train ride

was a small determinant of the overall customer experience. In fact, the initial focus on the seating

comfort during the train ride ignored, and potentially jeopardized, the totality of the customer

experience. This realization led to the conception of a customer journey map (Figure 1), which

captured all the service steps that customers undertake when they use Amtrak’s service, and which

determined their overall experience. This visualization tool allowed IDEO to identify the steps of

the customer journey where Amtrak needed to improve their efforts and then to propose design

changes. This project, known as the Acela project (Brown 2009), is recognized by the broader

service design community as the first systematic service design project (Fayard et al. 2017).

Figure 1 Service design for a better passenger experience; the Acela project.
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Note. Adapted from Bhavnani and Sosa (2006).

Service design for a better patient experience: Almost a decade later, in 2007, a team

from the Carnegie Mellon’s School of Design was asked to improve the patient experience in the

neurosurgery clinic of the University of Pittsburgh Medical Center. Similar to the Acela project,

the design team identified the major steps that patients undertake before and after they receive

the surgical services of the clinic (Figure 2a) by shadowing both patients and medical staff. They

also developed a more granular outline of the steps that patients go through during their first visit

to the clinic (Figure 2b). Based on these journeys, the designers analyzed the service holistically

and provided recommendations to improve the patient experience at the different stages of the

service process (Cliver et al. 2007). Soon after, Kaiser Permanente implemented a similar approach

to redesign its health care delivery (Arieff 2009).

1 Fayard et al. (2017) recognize co-creation, namely, actively involving the service provider and the relevant stakehol-
ders in the design process, as the third principal value that defines the service design work ethos. In this paper, we
treat the service designer and provider as a single entity (i.e., a design team) and refer to them interchangeably.
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Figure 2 Service design for a better patient experience; the University of Pittsburgh Medical Center project.
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(b) The patient journey during the diagnosis/first visit

Note. Adapted from Stickdorn and Schneider (2010) and Cliver et al. (2007).

These examples (for additional cases see Bitner et al. 2008, Stickdorn and Schneider 2010,

Kalbach 2016) reveal that service designers employ similar methodologies across different service

contexts. They engage in a user-centric observation to comprehend and analyze existing offerings

from the customers’ point of view. Then, they identify the corresponding customer journey, which

they use to build better designs.

The customer journey mapping2 is a powerful visualization technique. It delineates the different

steps that customers undertake throughout the service and presents a structured and holistic view

of the customer experience. Oftentimes, designers refer to the different service steps as touchpoints

because they represent instances when customers interact with the provider. These instances of

interaction, are the main means and interfaces through which a provider affects the value that

customers derive.

The identification of the service steps and the delineation of the customer journey constitutes

an insightful starting point. Yet, it remains unclear how this visualization can be used to derive

actionable guidelines that the service designer can follow to establish a successful service offering.

In practice, the inception of the customer journey map marks the beginning of a rather fuzzy

ideation process during which designers and providers seek tangible interventions on the steps of

the service process (Fayard et al. 2017). However, given the absence of actionable guidelines, the

outcome of this ideation process relies primarily on the experiences, interpretations and perhaps

creativity of the designers. As such, the resulting recommendations become ad hoc interventions to

the corresponding customer journey. In this paper, we complement the existing qualitative design

2 The historical roots of the customer journey mapping trace back to the service blueprints first introduced by Shostack
(1984, 1987). Customer journey maps typically focus on the customer’s view, whereas service blueprints expand the
scope to provide additional details regarding support and backstage processes. Other visualization techniques such as
value stream mapping (Rother and Shook 2003, Martin and Osterling 2014) and lean consumption maps (Womack and
Jones 2005) encourage “going to the gemba” as a means of adopting a “customer-centric thinking.” They emphasize
waste reduction and work flow improvement in internal operational processes. For a comprehensive overview of the
different diagrams used in practice we refer the reader to Kalbach (2016).
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methods with an analytical approach that builds upon the customer journey concept and guides

palpable service design choices.

Our approach capitalizes on the two pillars that underpin the value of the customer journey: i)

holism and ii) empathy. We recognize that customers are serviced through a multi-step process.

Each step of the service process contributes to the overall value delivered by the service. The value

that customers perceive at each step comprises two parts: i) a functional part, which describes

the tangible customer benefit that the service step is designed to deliver, and ii) an experiential

part, which is uncertain and may to add or subtract from the functional part. The experiential

uncertainty shapes how customers perceive the functional benefit they are inrended to receive,

and stems from the inherent variability that uniquely characterizes service environments (Zeithaml

et al. 1985, Murray and Schlacter 1990). Naturally, we consider that, all else being equal, customers

prefer less variable experiences.

The service provider shapes the design of the service through the determination of effort at each

step of the process. Consistent with previous research on services, we account for the interaction

between average service value and variability (Sriram et al. 2015). This intuitively reflects our

functional and experiential value contributions. More effort at a service step should always increase

the functional benefit that customers derive. However, it may inadvertently increase or decrease the

variable experiential value of the customers. This consideration lends itself to a natural typology

of service steps: i) steps where the provider’s effort leads to lower experience variability (hereaf-

ter, routine steps) and ii) steps where the provider’s effort leads to higher experience variability

(hereafter, non-routine steps). Furthermore, the step-specific experiences may not be independent

of each other; they may be positively or negatively correlated.

Our analysis captures interaction effects that extend beyond individual service steps. This echoes

service design imperatives that have found application in practice (McKinsey&Company 2016).

Fundamentally, the design is driven by the holistic coupling of the experiences at the different

service steps. We explicitly quantify this coupling and analyze its properties. Our results reveal

how the optimal effort at a step is dependent on the characteristics of the rest of the steps. This

represents the holistic consideration necessary for designing services. In fact, the characteristics of

one part of the process may affect the customer experience, and as an extension the provider’s

effort, at steps that bear no obvious connection. The level of this coupling identifies within the

context of each service, along with the types of steps, define whether the efforts at any two steps

should be complementary or substitutable. Ignoring, or mischaracterizing this effect, can result in

significantly different designs, leading the provider to erroneous effort investments.

To build additional insights at the level of the complete service process, we focus on a general

class of processes where the experiences at the different steps are serially correlated, and their
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correlation decreases in the number of steps between two experiences. This allows us to address

generalizable structures while retaining analytical tractability. We find that the optimal effort

invested at a service step is determined by an “impact zone” of steps defined around it. In other

words, designers can approach the service process as modules of such zones. Such a design guideline

is particularly helpful to providers of services that comprise a large number of steps. Furthermore,

we find that the provider exerts more effort in cohesive services, that is, services where customers

perceive their experiences at the different steps as highly correlated. Finally, we characterize the

conditions under which the provider exerts more effort at the first or last step of the service process;

the efforts at these steps can differ significantly even if both of them serve similar functions.

2. Literature

Since early on, researchers subscribed to the process-based view of services, which suggests that

customer experiences occur over multiple stages. Notably, Karmarkar and Pitbladdo (1995) were

among the first to delineate research opportunities on the design of multi-stage service processes.

This multi-stage perspective enabled several key dimensions of analysis in service design: i) the

allocation of provider effort across the service stages, ii) the sequencing of the stages, and iii) the

level of interaction (known as co-production) between the provider and the customer at each stage.

We review the literature around these dimensions. Our work is closely related to the first stream

of research, and it complements the other two streams.

With respect to the provider’s effort allocation, Soteriou and Hadjinicola (1999) are the first

to determine the optimal budget allocation across different service stages. Their objective is to

minimize the difference between the maximum possible level of service quality perception, and the

customers’ mean service quality perception. In contrast to our paper, they assume a deterministic

setting with independent service stages. Soteriou and Chase (2000) extend this line of work to

account for uncertainty, but they do not consider the effect of interdependencies across the custo-

mer experiences. Bellos and Kavadias (2019) introduce such an effect, but assume discrete effort

allocation. Specifically, they consider a binary decision of whether a service task is offered by the

provider or not. Their model seeks to answer a different design question, i.e., the delegation of

service tasks to customers. Moreover, they analyze a specific interdependency structure. In this

work, we treat service design as a continuous variable of resources allocated across different service

steps and we consider broader interdependency structures. Our focus on such structures allows

us to derive novel design insights regarding how the optimal effort allocation is defined through

the interdependencies of the experiences and their interactions with the different types of service

steps. These insights are not offered and cannot be deduced by previous research on service design.

In a different context, Arora et al. (2019) focus on the effort that non-profit organizations exert
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at the advisory or delivery stage of their service process in order to maximize social impact. Our

analysis provides a more granular and generalized treatment of the interdependencies present in

a multi-step service process. To our knowledge, our paper is the first to provide structural results

regarding the effect of such interdependencies on the optimal service design.

A few studies have focused on multi-stage services whereby the provider’s effort allocation affects

specifically system congestion and an important dimension of customer experience, namely the

waiting time. For instance, Carmon et al. (1995) model customers’ dissatisfaction in a two-stage

service system and its implications on the timing of the service provision. Xue and Harker (2003)

also consider a two-stage service where at the first stage customers are self-served, and once they

proceed to the second stage, they join a single-server queue. In this context, the service provider

determines the optimal level of self-service as approximated by the optimal workload division

between the provider and the customer. Tong et al. (2016) study the effect of innovations that

reduce the service time at the first stage of a two-step service on the overall service quality and

congestion. In similar spirit, Lee et al. (2012) examine the optimal contract parameters (i.e., staffing

levels and referral rates) that a provider of a two-stage service uses when outsourcing part of the

process to an external provider. These studies focus on specific types of service design interventions

i.e., staffing, which aim at mitigating service congestion. In our model, we do not explicitly examine

system effects such as congestion. However, we focus on one-to-one customer-provider interactions,

and we also allow for service steps where investing effort to improve the functional value at a service

step may lead to an increase in the variability of the experience; we term such steps as non-routine.

The second stream examines how the sequencing of different service encounters affects the cus-

tomer experience. Bitran et al. (2008) call for more attention to the temporal aspects of the service

delivery process. To that end, Dixon and Verma (2013) empirically find that the sequencing of

different musical events plays an important role in determining customers’ decisions to repurchase

season subscriptions of performing arts. In a similar context, Dixon and Thompson (2016) develop

a computational approach to characterize the optimal sequence of such service encounters. Bau-

cells and Sarin (2007, 2010) determine the optimal sequence of intertemporal consumption in the

presence of satiation and acclimation (habit formation). In addition to acclimation, Das Gupta

et al. (2016) consider memory decay and develop a model for experiential services that determines

the optimal sequence and duration of service encounters. Ely et al. (2015) characterize the opti-

mal way to reveal information in order to maximize expected suspense or surprise. Accounting

for surprise and anticipation, Dixon et al. (2017) use scenario-based experiments to identify the

optimal design of a sightseeing tour. More recently, Mart́ınez-de Albéniz and Valdivia (2019) study,

both empirically and via the use of an optimization framework, the impact of content decisions

such as duration and synchronization of exhibitions on museum attendance. For excellent reviews
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and summaries of insights of this literature we refer the reader to Roels (2019) and Dixon and

Victorino (2019). This research primarily focuses on services that comprise homogeneous stages

(e.g., music concerts, professional education, sightseeing tours) and continuous experiences. We

consider services that comprise heterogeneous types of steps serving different and distinct purpo-

ses. Building upon Ariely and Zauberman (2003), we posit that such services are less influenced

by sequence effects. Thus, we focus on service settings where the sequence of events cannot be

altered; for instance, in health care the stage of diagnosis always precedes the stage of treatment.

In that respect, our paper addresses the stage of the service design process where the sequence of

activities has been determined. At this design stage, the optimal sequence patterns identified by

the aforementioned research serve as input to our model; hence, we view our work as an important

complement to that research stream.

Finally, the high degree of customer presence and interaction in many service environments (Sas-

ser 1976, Chase 1978, 1981) has motivated research into the optimal allocation of effort between

a service provider and a customer. Xue and Field (2008) focus on knowledge-intensive services,

such as consulting and determine the optimal pricing and workload division between a consulting

firm and their client under different (incomplete) service contracts. Roels et al. (2010) also study

pricing and effort division decisions in collaborative services; in contrast to Xue and Field (2008),

they assume substitutability of effort levels and determine the optimal contract selection based on

the service output sensitivity to each party’s effort. White and Badinelli (2012) and Roels (2014)

analyze single-stage co-productive service systems and determine the optimal effort division that

guarantees total surplus maximization. White and Badinelli (2012) assume a deterministic setting,

whereas Roels (2014) accommodates uncertainty and endogenizes the degree of effort substitu-

tability. We consider service settings where explicit contracts that elicit certain customer effort

are difficult to enforce, or even define. In contrast to this stream of literature, our focus is on

the provider’s effort allocation across the entire service process, as defined by the different steps

that the customers go through to receive the service. At the individual service step level, we lie

complementary to this stream as the provider’s effort at each step determines the division between

functional and experiential value, which affects the overall value that a customer derives.

3. The Model

In this section, we detail the context of the service, the determinants of the customer value, the

provider’s decisions, and our model assumptions. Our objective is to characterize how a service

provider should allocate her effort across the different steps of a multi-step service process (i.e.,

customer journey), given the structural properties of the process.
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3.1. Contextual Assumptions

Consider a service process J comprising a set of n well-defined steps {1, . . . , n} that customers have

to undertake (i.e., customers do not make process/step choices). The service steps are identified

and delineated by service designers via methodologies such as shadowing and contextual interviews

(Fayard et al. 2017). Then, designers aim to determine how much effort δi ∈ [0,1] should be invested

at each step i ∈J = {1, . . . , n} of the service process; different effort allocations across the service

steps describe different designs. We assume away any strategic interactions of a competitive market

and we adopt the perspective of a monopolist provider who offers a single service. The value ν̃i that

a customer derives from each service step i is uncertain. Customers do not factor in explicitly how

their participation in the service process may affect the value of other customers. As customers go

through a series of steps, their experience realization at one service step may affect the experience

realization at another step (e.g., unsatisfying experiences early in the service process may set the

stage for unsatisfying experiences in later stages). All else being equal, customers prefer less variable

experiences, and they exhibit the same sensitivity to the presence of variability. Our emphasis is on

the design as opposed to the real-time management of a service process. The provider’s efforts are

non-discretionary, and we do not analyze how the provider’s or customers’ decisions may possibly

be adjusted during the execution of the service.

3.2. Customer Value and Service Process Characteristics

Consider a customer who in order to satisfy a need, goes through a number of steps that form a

service process J . At each step i of the process, the customer realizes a value ν̃i; we refer to ν̃i as

the perceived value. The realization of ν̃i is uncertain and given by ν̃i
.
= Vi + ẽi, where Vi denotes

the functional value that step i is designed to deliver (e.g., average effectiveness of a medical

treatment) and ẽi ∼N (0, σi) the realized experiential value. For an overview of practical metrics

of the functional and experiential values please see Forbes (2019).

The functional value Vi is partly determined by the provider’s effort at service step i. In particu-

lar, the provider invests effort δi ∈ [0,1], which contributes to Vi the value Vi
.
= δiV

H
i + (1− δi)V L

i ,

where V H
i >V L

i ≥ 0. The value V L
i represents the minimum customer value that step i should be

designed to contribute so that it is considered an integral part of the service; V H
i captures the

maximum feasible functional value that the provider can generate at step i by investing maximum

effort (e.g., a state-of-the art lab equipment).

The remaining part of Vi is determined by the rest of the steps. The service steps may be

subject to technical dependencies; the functional value at step i may be enhanced by the effort

invested at other steps of the process. For example, a state-of-the art lab equipment can allow a

doctor to reduce the amount of time spent on differential diagnostic procedures during the medical
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examination. To capture such dependencies, we assume that the provider’s efforts at the rest of the

steps contribute to the functional value at step i, according to
∑

j 6=i βj,iVj, where
∑

i6=j βj,i ∈ [0,1);

βj,i ∈ [0,1) for all j 6= i captures the extent to which the functional value at step j enhances the

functional value at step i. Overall, we posit that Vi
.
=
∑n

j=1 βj,iVj (for j = i, βj,i = 1).

The experiential value ẽi may add or subtract from the functional value. Different sources of

uncertainty originating from the provider or the customer may contribute to the fact that the

experience at any service step cannot be predicted exactly. For instance, overlooking information on

a patient’s medical history may challenge the diagnosis and result in negative customer experience.

However, even if the functional value delivered at a step is always consistent (as evaluated based on

objective measures; e.g., diagnostic accuracy) the eventual customer experience may not be always

the same. For instance, the same patient may derive a different experience at a specific health care

practice even if every time that he visits he has his information and vitals taken by the same nurse,

waits in the same exam room, and is seen by the same doctor to treat the same health condition

(see Bowen and Ford 2002 for a thorough discussion).

We formally capture this uncertainty by assuming ẽi to be normally distributed with a mean

zero and a standard deviation σi for all i ∈ J . Then, the provider’s effort invested at a step i,

affects the extent of the uncertainty as follows: σi
.
= δiσ

H
i + (1− δi)σLi . The value of σLi captures

the inherent variability of the experience at step i when the provider invests the minimum possible

effort, whereas σHi captures the variability when the provider invests the maximum possible effort.

We entertain the two possible scenarios for the effect of effort (δi) on the variability (σi). More

effort at a step may lead to higher or lower σi, i.e., ∂σi/∂δi = σHi −σLi ≷ 0: i) σHi <σ
L
i implies that

larger values of δi result in smaller σi and ii) σHi > σLi implies that larger values of δi result in

larger σi. These scenarios map naturally onto a classification of service steps as either routine or

non-routine, as also noted in recent literature; see (Bellos and Kavadias 2019).

In routine steps, service outcomes are evaluated along objective specifications and metrics (e.g.,

waiting time until called to the exam room). In such steps, the provider’s improvement of the

functional value Vi (e.g., check-in in an expeditious manner) also reduces the variability of the

experience (i.e., σHi <σ
L
i ).

On the contrary, in non-routine steps, the service outcome is evaluated along more intangible

dimensions (e.g., personal taste, sense of privacy, empathy, peace of mind). In such steps, improving

the functional value Vi may lead to a more variable experience (i.e., σHi >σ
L
i ). Consider the example

of the gradual introduction of sophisticated diagnostic methods into the detection of small lumps

during a medical examination. An upfront approach can be the simple manual examination that

doctors perform by trying to “feel” the possibility of a lump. One could credibly argue that the

approach bears some diagnostic accuracy but up to a point (e.g., small lumps that are not superficial
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might not be detected). At the same time a trained physician would carefully approach the process

ensuring no major experiential drawbacks. For instance, should the patient feel uncomfortable they

would stop, discuss, or perhaps if the patient would be accommodating they could try to go faster

and explore more.

Moving to a technology-based approach like ultrasound screenings, one could ensure a better

diagnostic accuracy as the ultrasounds can detect further abnormalities. The use of the technology

can lead to further patient appreciation due to increased confidence in the diagnostic outcome.

However, the increased accuracy (in medical screening terminology, sensitivity; i.e., low rate of

false negatives) may also introduce specificity issues (i.e., a higher rate of false positives) leading to

unnecessary “health scares.” Furthermore, the use of a device and material of some liquid form on

top of the skin might create more variable experiences with the “average” patient as certain people

may dislike the use of the material or the feeling of the device on them. Therefore, one could claim

that the introduction of the technology might have increased the variability of experiences.

Finally, moving to costlier and more sophisticated methods such as MRI systems, one can argue

the confidence in the diagnostic outcome is even higher (due to increased accuracy/sensitivity and

specificity). Yet, this may be associated with even more negative experience realizations due to

the discomfort that many patients experience during the use of the equipment; see OpenIDEO

(2013) on how design thinking has been used to account for such negative experience realizations

of paediatric MRI patients.

Our distinction between routine and non-routine steps is meant to capture the fact that costly

design choices in the functional value may have unintended effects on the customer experience. As

our examples indicate, the classification of a step as a routine or non-routine ultimately depends

on the step properties and in particular on the dimensions along which customers evaluate its

outcome. Our typology is similar in spirit to other categorizations found in the literature. For

instance, Teboul (2006) differentiates services that are unique and varied in nature from ordi-

nary/commoditized services, which are more limited and standardized. Similarly, Roels (2014)

distinguishes between standard and non-standard service tasks, where standard tasks are comple-

ted more consistently. In our context, a service may comprise a mixture of ordinary/standard (i.e.,

routine) and varied/nonstandard (i.e., non-routine) steps.

Regardless of the type, we also posit that the different service steps may admit interdependent

experiences. The experience that a customer derives at one step may be influenced by the experience

derived at another step. We use ρi,j to denote the correlation between the realizations of the

experiences at any two steps i and j, and P to denote the resulting correlation matrix. We consider

two structures for P. The first is a general structure where for each i, j element of P we have[
P
]
i,j

= ρi,j ∈ (−1,1) for i 6= j and
[
P
]
i,j

= 1 for i = j. Positive values of ρi,j capture the cases
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in which a satisfying (or unsatisfying) experience at step i sets the stage for a satisfying (or

unsatisfying) experience at step j. Negative values of ρi,j describe the opposite; a satisfying (or

unsatisfying) experience at step i renders a customer more (or less) difficult to gratify at step j.

This generic structure allows us to account for cases where customers move through the service

process in a non-linear fashion (e.g., possibly revisiting previous steps), or when certain steps run

in parallel with other service steps. For instance, when visiting a pediatric dentist, anxious children

(and parents) derive value from an appropriately-themed decor and equipment (e.g., jungle, space

station, construction site) that may extend from the check-in to the waiting and exam areas. That

is, in this case, the choice of decor/ambiance can be thought of as a service step (i.e., an interface

through which the provider can affect the value customers derive) running in parallel with the

steps of check-in, waiting, and exam, and therefore, may induce correlated experiences.

The second structure of P we consider, emerges when the customer experience unfolds according

to a non-stationary process exhibiting serial correlation, i.e., correlation that decays as the elapsed

time (in our case, different sequential service steps) between experiences increases. We consider

a generalized autoregressive model known as first-order antedependent (AD (1)) transition model

(see Gabriel 1962). In an AD (1) process, ẽi ⊥ {ẽi−2, . . . , ẽ1} | ẽi−1, that is, each experience, given

exactly one immediately preceding experience, is independent of all further preceding experiences.3

The P that characterizes an AD (1) transition model is described by the matrix elements
[
P
]
i,j

=∏i−1

m=j ρm+1,m ∈ (−1,1) for i 6= j and
[
P
]
i,j

= 1 for i= j. The correlation between two non-adjacent

service steps i and j with j > i+ 1, is the product of the correlations of all the adjacent steps that

lie between i and j (see Gabriel 1962, Zimmerman and Núñez-Antón 2009).4

The total value that a customer derives from the entire service process is ν̃ =
∑n

i=1 ν̃i. Ariely and

Zauberman (2003) provide evidence in support of the cumulative experience assumption in settings

where the experiences are partitioned in multiple discrete components (i.e., our service steps can be

viewed as different experience partitions). We posit that in their valuation of the service, customers

account not only for the mean but also for the overall variability of their experience. Rust et al.

(1999) provide support for our assumption as they show that, in addition to the expected quality

3 An AD (1) is a generalization of a stationary first-order autoregressive AR (1) model (e.g., one where the experience
evolves according to ẽi = ρẽi−1 + ε̃i, with ρ ∈ (0,1) and ε̃i ∼ N (0, σ)) because it relaxes the assumptions of equal
variances σ2 and correlations ρ across the different i periods. A higher p-order AD (p) model can also be considered
where ẽi ⊥ {ẽi−p−1, . . . , ẽ1} | {ẽi−1, . . . , ẽi−p}, that is, each experience, given exactly p immediately preceding expe-
riences, is independent of all further preceding experiences. This is equivalent to ẽi having a Markovian dependence
of order p≥ 1 (Pourahmadi 1999, Diggle et al. 2002). We discuss the design implications of the experience unfolding
according to an AD (p) in §4.

4 The estimation of the structure of P can be derived from the application of likelihood-based estimation testing
typically used to estimate heterogeneous covariance structures for repeated measures (e.g., the restricted/residual
maximum likelihood (REML) method; see Wolfinger 1996 for such an application and Gabriel 1962, Zimmerman and
Núñez-Antón 2009 for additional references).
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(i.e., functional value), customers are also sensitive to the perceived variance of the service, and

that larger variability may outweigh the benefit of higher expected quality (see also Kannan and

Proença 2010 for a review of the related literature). Furthermore, empirical findings that associate

high experiential variability with low customer satisfaction have also been reported by practitioners

(McKinsey&Company 2014).

We capture customers’ aversion to variability through a mean-variance formulation (i.e., custo-

mers are risk averse). In particular, we approximate the customers’ expected net utility5 E [U (ν̃, π)]

from the service as U .
=E [ν̃]− r

2
Var [ν̃]−π=

∑n

i=1 Vi−
r
2

(∑n

i=1 σ
2
i + 2

∑∑
i<j ρi,jσiσj

)
−π,6 where

r≥ 0 is the measure of customers’ risk aversion and π the price of the service; see Karmarkar and

Pitbladdo (1997) and Kim et al. (2007) for additional applications of the mean-variance approxi-

mation in manufacturing and service contexts.

3.3. The Provider’s Design Problem: Effort Allocation

The monopolist service provider determines the effort δi at each step i and the price π that

maximizes U (δ1, . . . , δn, π). Investing δi to improve the functional value Vi at each step i imposes

a cost ciVi, where ci ∈
(∑

j 6=i βj,i,1
)

. The provider solves:

maximize
δ1,...,δn,π

U (δ1, . . . , δn, π) =
n∑
i=1

n∑
j=1

βj,i

(
δjV

H
j + (1− δj)V L

j

)
−r

2

(
n∑
i=1

(
δiσ

H
i + (1− δi)σLi

)2

+ 2
∑∑
i<j

ρi,j

(
δiσ

H
i + (1− δi)σLi

)(
δjσ

H
j + (1− δj)σLj

))
−π

s.t π−
n∑
i=1

(
δiV

H
i + (1− δi)V L

i

)
ci ≥ π0

0≤ δi ≤ 1, for all i∈J .

The first constraint ensures that the chosen design results in profit, which at least satisfies a

reservation value π0 ≥ 0. The value of π0 may subsume fixed costs that the provider incurs at

different service steps regardless of the invested effort. We acknowledge that in practice more

involved cost structures like economies of scale, convex increasing costs, or fixed costs increasing

as a step function with respect to the provider’s effort are possible. We believe that analyzing

the effect of such structures on the design of service processes is a promising avenue for future

5 From a technical viewpoint, the mean-variance approximation is exact for a negative exponential utility U (x) and
normally distributed x. Levy and Markowitz (1979) and Kroll et al. (1984) have demonstrated the applicability and
practical accuracy of the mean-variance formulation for various utility forms and probability distributions.

6 The current formulations of Vi and σi could be modified to explicitly account for the fact that customers may be
more sensitive to the variability or they may assign more weight to the functional value they derive at certain steps
over others. For notational parsimony, we consider such effects to be subsumed in the values of V Hi , V Li and σHi , σLi .
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research. The constraints on δi ∈ [0,1] for any i∈J ensure that Vi ∈ [V L
i , V

H
i ] and σi ∈ [σLi , σ

H
i ] (or

σi ∈ [σHi , σ
L
i ]).7

The formulations of Vi and σi aim to capture the interplay (through δi) between average service

value and variability in an analytically tractable manner. Such an interplay has been extensively

documented in previous literature (see Sriram et al. 2015 and references therein). Hence, we do

not assume Vi and σi as separate decision levers. This might be the case if Vi is proxied through

performance quality, and σi through conformance quality; this distinction is prevalent in manufac-

turing contexts (Karmarkar and Pitbladdo 1997). In such contexts, the firm can affect Vi through

changes in the product attributes and σi through changes in the production process. In contrast to

a typical service process, customers are not present in those settings. On the contrary, pinpointing

the source of variability in a service setting is often more challenging as it may stem from the cus-

tomer and/or the provider. To obtain first-order insights, we focus on capturing how improving the

performance quality (i.e., the functional value Vi) affects the variability (i.e., lack of conformance

due to σi) of the customer experience. We leave the treatment of Vi and σi as separate decision

levers for future research.

4. Analysis

In this section, we solve the problem of determining the optimal effort δ∗i for each step i ∈ J and

optimal price π∗ that maximize customers’ net utility. In our setting, the provider does not trade

off effort investment with price (i.e., the optimal effort allocation is not affected by π∗). For that

reason, the presentation of our results focuses on the optimal effort δ∗i invested at each step i of

the service process. From a technical standpoint, for the rest of the analysis we focus on the cases

where ∂Vi/∂δi = V H
i − V L

i ∈
(
∆V i,∆V i

)
; analytical expressions for the ∆V i and ∆V i thresholds

are provided in the Appendix. This describes the maximum improvement of the functional value

at each step and ensures that δ∗i ∈ (0,1) for any i ∈J , which allows us to present the richer cases

capturing the interaction effects among all the service steps.

Proposition 1. For each service step i ∈ J , the optimal effort investment is given by δ∗i =∑n

j=1

(
1−(cj−

∑
m 6=j βj,m)

)(
VHj −V

L
j

)
r(σHi −σLi )(σHj −σLj )

[
P−1

]
i,j
− σLi

σHi −σ
L
i

where V H
i −V L

i ∈
(
∆V i,∆V i

)
for all i∈J .

7 The maximization problem stated above is equivalent to determining the δi efforts and the price π that maximize
the profit π −

∑n
i=1 ciVi subject to a customer participation constraint E [ν̃]− r

2
Var [ν̃]− π ≥ π0, where π0 ≥ 0 is a

threshold value for the customers’ reservation utility. In either formulation, the price π ensures a necessary condition
i.e., the provider derives a non-negative profit and the customer derives a non-negative utility. Similar to Karmarkar
and Pitbladdo (1997), the optimal design (i.e., effort allocation) is not affected by π (i.e., the provider does not
trade-off effort investment with price). An earlier version of the manuscript presented the π−

∑n
i=1 ciVi formulation.

We are thankful to the Associate Editor for recommending the current formulation.
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Proposition 1 carries theoretical importance. It establishes an analytical result on a managerial

problem that to this date has been treated descriptively by design practitioners. The offered solution

captures how all different properties of each individual step influence the provider’s design at

a specific step. More importantly, though, it quantifies the effects of the interplay between the

different steps and how this determines the optimal effort allocation across all steps of the service

process. This interplay is described by three distinct factors: i) the technical coupling of a step

i with the rest of the steps, captured by the factor
∑

m6=j βj,m, ii) the holistic coupling of a step

i with the rest of the steps, captured by the terms
[
P−1

]
i,j

for all j 6= i, and iii) the step types

captured by the pairs of individual steps via the
(
σHi −σLi

)(
σHj −σLj

)
terms.

Among the factors mentioned above, the technical coupling has a relative straightforward effect

and is subsumed in the service provision cost. Specifically, it reduces the cost of each step from ci

to
(
ci−

∑
j 6=i βi,j

)
. Given the straightforward role of

∑
j 6=i βi,j in determining δ∗i and in order to

maintain notational parsimony, in the rest of the analysis we consider
∑

j 6=i βi,j→ 0 for all i∈J .

The rest of the factors exhibit more involved effects. For instance, the step types may have a

positive or a negative effect on the provider’s effort at step i because (σHi −σLi )
(
σHj −σLj

)
≶ 0

depending on the types of the individual steps. Of particular interest is the quantity
[
P−1

]
i,j

. It

denotes the element in row i and column j of the inverse of the correlation matrix. To understand

the role of
[
P−1

]
i,j

, it is important to highlight the theoretical differences between P−1 and P. The

correlation matrix P, captures the interdependencies of the experiences at the different steps in a

multibivariate fashion (Raveh 1985); the inverse P−1 captures such dependencies in a multivariate

fashion. For instance, the addition of a service step (e.g., step n+ 1) in the process does not affect

the value of any of the
[
P
]
i,j

elements with i, j ∈ {1, . . . , n}, but it typically affects the values

of most
[
P−1

]
i,j

elements. Therefore, the P−1 matrix, captures an endogenously arising coupling

effect where each of the
[
P−1

]
i,j

elements summarizes the complete interactions of the experiences

between steps i and j, after having accounted for all their indirect interactions with all the other

service steps in J \{i, j}. For a detailed discussion on the interpretation of P−1 see Raveh (1985).8

We continue with the general P structure that comprises the elements
[
P
]
i,j

= ρi,j ∈ (−1,1)

for i 6= j and
[
P
]
i,j

= 1 for i= j and we further expound on the role of P−1 in summarizing the

independencies of the experiences at the service process level.

8 To further illustrate the role of
[
P−1

]
i,j

in multivariate analyses, consider the multiple regression model ẽi =∑
j 6=i bj ẽj . The bj factors of the regression equation can be estimated as bj =−

[
P−1

]
i,j

/[
P−1

]
i,i

. Furthermore, the

partial correlation ρi,j·J\{i,j}, between steps i and j (i.e., the coupling between steps i and j after accounting for the

effect of the remaining steps) is given by ρi,j·J\{i,j} =−
[
P−1

]
i,j√[

P−1
]
i,i

[
P−1

]
j,j

(Raveh 1985); note that
[
P−1

]
i,j
> 0(<

0)⇔ ρi,j·J\{i,j} < 0(> 0).
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Proposition 2. The provider’s effort δ∗i (δ∗j ) may depend on the characteristics of step j (i)

even if the experiences at steps i and j are not directly related as ρi,j = 0;
[
P−1

]
i,j

= 0. Similarly,

although the experiences at steps i and j may be positively (negatively) related, δ∗i and δ∗j may be

negatively (positively) related or not related at all as ρi,j > 0(< 0);
[
P−1

]
i,j
> 0(< 0).

Proposition 2 sheds more light on the role of the service process in coupling the customer

experiences and, as a consequence, the efforts allocated at two different steps. The significance

of Proposition 2 stems from the delineation of the importance of P−1 as a key service process

metric. Based on that, we find that the provider’s effort at a service step may be determined by

the characteristics of other steps of the service process even if the experiences at these steps do not

directly depend on each other (i.e., ρi,j = 0). Figure 3 offers an illustration of this. It shows that δ∗1

may change considerably with respect to the different characteristics of step 3 despite ρ1,3 = 0.

Figure 3 Holistic coupling of steps 1 and 3.
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Note. ρ1,2 = 0.15, ρ1,3 = 0, ρ1,4 = 0, ρ2,3 = 0.40, ρ2,4 = 0, ρ3,4 = 0.20, r = 0.45, c = {0.50,0.50, c3,0.50}, V H
i ={

6,5.50, V H3 ,3.70
}

, V L
i = {1,1,1,1}, σH

i =
{

4,4, σH3 ,3.50
}

, and σL
i = {2.50,2,4,4.50}. Panel (a): c3 = 0.50 and σH3 =

1.50. Panel (b): V H3 = 2 and σH3 = 1.50. Panel (c): V H3 = 2 and c3 = 0.50.

For the practical implications of Proposition 2, consider the service process shown in Figure 2b.

It is reasonable to assume that a patient’s experience when inquiring about an upcoming operation

(e.g., see the eighth step in Figure 2b) is not directly affected by his experience during check-in at

the front desk (e.g., see the third step in Figure 2b), or by waiting to be called in the exam room

(e.g., see the fourth step in Figure 2b). However, a patient who experiences a long waiting time, or

feels uncomfortable when waiting in a crowded waiting area, may be further frustrated by questions

regarding his medical history (e.g., see the sixth step in Figure 2b); he may perceive them to be

time consuming and unnecessary. Subsequently, this may affect his ability to ask questions about

the operation and receive answers that could alleviate his concerns. From a design point of view,

this implies that the efforts determined at the different steps need to account for how the holistic

customer experience unfolds through the service process. For instance, the effort invested at the
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check-in can potentially limit the extent to which a prolonged wait creates a negative experience,

and subsequently affect the patient’s ability to ask questions about the procedure. In that sense,

the provider’s effort at check-in ought to be determined by the characteristics of the waiting and

information inquiry service steps. The reverse influence might also be true; the effort invested at

information inquiry and waiting service steps ought to be determined by the effort at check-in. This

is the case because, during the design stage, the provider determines the overall effort allocation

simultaneously for all steps. In our solution, this process-based (i.e., holistic) coupling of δ∗i and δ∗j

is captured by the
[
P−1

]
i,j

=
[
P−1

]
j,i

elements of P−1.

In Proposition 2, we also find the opposite effect: although the experiences between two steps

i and j may be stochastically related, the corresponding efforts may be independent of the steps’

characteristics, implying that the interaction with the rest of the process steps may have a stronger

effect in determining δ∗i and δ∗j dominating their pairwise interaction. Proposition 1, however,

indicates that the pairing of the different step types may have a positive or negative effect on the

provider’s effort. These findings imply that the effort relationship between δ∗i and δ∗j (i.e., whether

these efforts are substitutable or complementary) is not straightforward due to the combination

of their pairwise interactions and their interactions with the rest of the service steps. Proposition

3 fully characterizes this relationship between δ∗i and δ∗j by disentangling these effects. We use

sgn [(·)] to denote the sign of the quantity (·).

Proposition 3. The characteristics of an individual step i affect δ∗i according to ∂δ∗i /∂ci < 0,

∂δ∗i /∂V
H
i > 0, and ∂δ∗i /∂σ

H
i > 0 when σHi −σLi < 0 and ∂δ∗i /∂σ

H
i < 0 when σHi −σLi > 0. They also

affect δ∗j according to ∂δ∗j /∂ci < 0, ∂δ∗j /∂V
H
i > 0, ∂δ∗j /∂σ

H
i > 0 when σHi − σLi < 0 and ∂δ∗j /∂σ

H
i <

0 when σHi − σLi > 0, iff sgn [σHi −σLi ] = sgn
[
σHj −σLj

]
and

[
P−1

]
i,j
> 0 or sgn [σHi −σLi ] 6=

sgn
[
σHj −σLj

]
and

[
P−1

]
i,j
< 0. Otherwise, ∂δ∗j /∂ci > 0, ∂δ∗j /∂V

H
i < 0, and ∂δ∗j /∂σ

H
i < 0 when

σHi −σLi < 0 and ∂δ∗j /∂σ
H
i > 0 when σHi −σLi > 0.

As expected, the provider decreases her step effort investment in the cost of the step in order to

ensure the profitability of the service. This result holds for any type of step, routine or non-routine.

Similarly, larger maximum functional values (V H
i ) regardless of a step’s type, allow for larger value

contribution to the customer utility, and therefore, push the provider to invest more effort.

The effect of the variability, captured via σHi , depends on the type of the step. For non-routine

steps (i.e., σHi − σLi > 0), larger values of σHi imply that more effort can further increase the

variability in the customer experience. For that reason, the provider decreases her effort investment.

The opposite is true for routine steps (i.e., σHi −σLi < 0) where larger values of σHi imply that more

effort can lead to even lower variability in the experience and further increase customer utility.
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Most importantly, Proposition 3 indicates when the different service step and process characte-

ristics, induce efforts that are complementary or substitutable. This is a valuable design insight as

it identifies a key directional implication for designers to consider as they determine the emphasis

put, from an effort standpoint, on the different steps: it is imperative to recognize whether these

efforts work synergistically towards the overall customer experience. If not, effort should be alloca-

ted so that it mitigates the antagonistic effects across the steps. In practical terms, Proposition 3

delineates specific conditions under which providers benefit from designs that spread out the effort

across steps (i.e., when efforts are complementary) versus placing emphasis on certain steps at the

expense of others (i.e., when efforts are substitutable).

The directional relationship between δ∗i and δ∗j is determined by the combined effect of

(σHi −σLi )
(
σHj −σLj

)
and

[
P−1

]
i,j
> 0; in particular, by how this effect influences the variability

of the overall customer experience. The quantity
[
P−1

]
i,j

captures the way that the experiences

at two steps relate to each other after controlling for the effect of the remaining steps of the

service process; we remind the reader that
[
P−1

]
i,j
> 0(< 0)⇔ ρi,j·J \{i,j} < 0(> 0). For instance,[

P−1
]
i,j
> 0 indicates that, after controlling for the remaining steps, the experiences at steps i and

j have an inverse relationship in that a positive experience at one step is more likely to be accom-

panied by a negative experience at the other step. Hence,
[
P−1

]
i,j
> 0 brings a “balancing” effect

that lowers the overall variability. In order for the provider to fully benefit from this balancing, the

effort investments should ensure that the ranges of the possible experience realizations across the

different steps are similar. Hence, any changes in δ∗i that affect the variability at step i towards

a specific direction (e.g., they increase σi) should be accompanied by changes in δ∗j so that the

variability at step j changes towards the same direction (e.g., they also increase σj). Along similar

lines,
[
P−1

]
i,j
< 0 gives rise to an amplification of the experiences realized during the service; posi-

tive experiences drive more positive realizations, whereas negative ones cause a cascading negative

effect. The provider mitigates such an amplification by investing effort at one step that offsets the

change in variability at other steps. If both steps are of the same type, the provider accompanies

a high effort at step i with a low effort at step j, and if they have different types she accompanies

a high effort at step i with a high effort at step j too. Figure 4 summarizes these findings.

To further illustrate, in Figure 5a we consider a four-step process and we focus on the efforts

invested at steps 2 and 4, which are both non-routine. When
[
P−1

]
2,4
> 0, larger values of V H

2

not only incentivize the provider to allocate more effort δ∗2 at step 2, but they also increase the

relative marginal value of effort at step 4 and therefore, the provider increases δ∗4 too. By doing

so, she increases the functional value V4 that customers derive at step 4 and at the same time

contains the overall variability of the experience. On the contrary, when
[
P−1

]
2,4
< 0, larger values
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Figure 4 Complementary versus substitutable efforts at steps i, j ∈J .
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Substitutable efforts Complementary efforts

[P
-1
]i, j>0 [P

-1
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sgn[σi
H-σi

L ]
=

sgn[σ j
H-σ j

L ]

sgn[σi
H-σi

L ]
≠

sgn[σ j
H-σ j

L ]

Note. sgn
[
σHi −σLi

]
= sgn

[
σHj −σLj

]
implies same step types, whereas sgn

[
σHi −σLi

]
6= sgn

[
σHj −σLj

]
implies dif-

ferent types. We remind the reader that
[
P−1

]
i,j
> 0(< 0)⇔ ρi,j·J\{i,j} < 0(> 0).

Figure 5 Optimal effort δ∗i with respect to different holistic and step type couplings.
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Note. ρ1,2 = 0.10, ρ1,3 = 0.50, ρ1,4 = 0.10, ρ2,3 = 0.40, ρ3,4 = 0.20; selected ρi,j values ensure positive definite P,

r = 0.45, c = {0.20,0.70,0.80,0.62}, V H
i =

{
3, V H2 ,3,3

}
, V L

i = {1,1,1,1}, σH
i =

{
4.50, σH2 ,1.45,2.90

}
, and σL

i =

{2.50,2.80,2.70,2.20}. Panel (a): ρ2,4 = 0.04 resulting in
[
P−1

]
2,4

= 0.05 (ρ2,4 = 0.16 implies
[
P−1

]
2,4

=−0.102), and

σH2 = 4. Panel (b): ρ2,4 = 0.04, and σH2 = 1.

of V H
2 decrease the relative marginal value of effort at step 4 as higher δ∗4 results in higher overall

variability. Hence, the provider decreases δ∗4 . Similar observations can be made in Figure 5b.

It is evident from Figure 5 that the types of the steps, and/or their holistic coupling can lead the

designers to propose significantly different designs. For instance, in Figure 5b we see that for large

values of V H
2 the provider exerts high effort when both steps are routine or non-routine. However,

if the steps have different types, the optimal efforts are diametrically different. This finding exposes

the intricate subtleties of service design. Often in service systems, providers strive to achieve
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operational performance (e.g., waiting time), implicitly assuming that most steps are routine.

However, even the presence of one non-routine step might be enough to warrant a fundamentally

different design.

The previous results were derived by considering a generic structure of P. Hereafter, we charac-

terize the optimal design considering more detailed structural properties of the service process. We

consider service settings where the customer experience unfolds according to a generalized first-

order autoregressive model known as first-order antedependent (AD (1)) transition model. Under

this model, the customer experience unfolds in a serial manner and each experience, given exactly

one immediately preceding experience, is independent of all further preceding experiences. Such

structures tend to capture most typical serial service settings like the ones depicted in Figure 1

and 2. The corresponding P comprises the elements
[
P
]
i,j

=
∏i−1

m=j ρm+1,m ∈ (−1,1) for i 6= j and[
P
]
i,j

= 1 for i= j (see Gabriel 1962, Zimmerman and Núñez-Antón 2009).

Proposition 4. When the customer experience unfolds according to an AD (1) process, the

optimal effort at step i is determined by its own characteristics and the characteristics of only the

immediately adjacent steps.

When the customer experience unfolds according to an AD (1) process, the provider’s effort

at a service step is determined by its own characteristics and the characteristics of the steps

immediately before and after it. Although Proposition 4 points to the sufficiency of the local input

to determine the optimal effort at a service step, this result is the global optimal outcome from a

holistic treatment of the customer experience. From a technical point of view, this happens because

P−1, which summarizes a service process effect, is banded with
[
P−1

]
i,j

= 0 if j < i−1 or j > i+ 1.

From a managerial point of view, service designers can tackle the complexity of the multi-

dimensional design challenge through more manageable three-dimensional challenges at a time.

This is particularly useful in service processes with a large number of steps. Proposition 4 also

implies that deficiencies or limitations at a step are best to be addressed through the effort exerted

at the immediately adjacent steps. For instance, in the context of the patient service shown in

Figure 2b, issues affecting the customer experience during waiting (e.g., limited waiting space in

the fourth step of Figure 2b) can be compensated through more effort in ensuring a streamlined

check-in process (e.g., see the third step in Figure 2b) or in the design of the exam room (e.g., see

the fifth step in Figure 2b); Arieff (2009) provides details on how Kaiser Permanente implemented

such design changes in order to improve patients’ “Total Health Journey.”

The AD (1) process implies that, given all the experiences that a customer may realize at steps

1 through i − 1 of a service, the experience at step i depends only on the experience at step

i− 1. Nonetheless, when determining δ∗i , the service provider factors in the characteristics of both
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steps i− 1 and i+ 1. As we have noted before, at the design stage the provider determines her

effort allocation holistically. That is, when determining δ∗i the provider accounts for the way the

experience may unfold both before and after step i. This impact zone around step i is bounded

by the immediately adjacent steps. For higher-order AD (p) models with p > 1, this zone expands

accordingly; we elaborate in the following corollary.

Corollary 1. When the customer experience unfolds according to an AD (p) process, the opti-

mal effort at step i is determined by its own characteristics and the characteristics of the p steps

immediately before and after it.

The AD (p) process implies that, given the experiences that a customer may have realized at

steps 1 through i− 1 of a service, the experience at step i depends only on the experiences at

steps i− p through i− 1. Although, a generic closed-form expression is not available for P−1 when

p > 1, Zimmerman and Núñez-Antón (2009) establish that the covariance matrix maintains the

distinct banded structure for all j < i−p and j > i+p. Based on our discussion under Proposition

4, this banded structure implies that when determining δ∗i , the provider should factor in how the

experience may unfold from step i− p through step i+ p.

In the rest of the paper, we maintain our focus on first-order transition models as a means of

capturing how the customer experience unfolds throughout the service process. To facilitate the

analysis at the service process level, however, we consider the case where
[
P
]
i,j

=
∏i−1

m=j ρm+1,m

with ρm+1,m = ρ ∈ (0,1) for any m ∈ J , which simplifies to
[
P
]
i,j

= ρ|i−j| ∈ (0,1). In this case,

ρi,j decreases geometrically in the number of steps between i and j and P takes the structure

of a Kac-Murdock-Szergö matrix; see Kac et al. (1953). This structure of P is characteristic of a

special case of an AD (1), known as heterogeneous first-order autoregressive model (ARH (1); see

Wolfinger 1996, Zimmerman and Núñez-Antón 2009, IBM Knowledge Center 2019).

We adopt this simplification to analyze how the provider’s efforts depend on the perceived

cohesiveness of the customer experiences (Ariely and Zauberman 2003) across the different service

steps. We define cohesiveness as the extent to which customers perceive the different steps of the

service as independent of (or dependent on) each other in forming their overall experience. We

capture cohesiveness through the magnitude of ρ. Cohesiveness may arise by the nature of the

service. For example, customers dining at a family-style restaurant likely view the different steps

of the process as serving fairly distinct roles (e.g., providing parking availability, waiting space, or

food options that meet different dietary restrictions, payment options, etc.). Such a view translates

to smaller values of ρ compared to the view that customers may have when dining at a theme

restaurant. In this case, it is more likely that the different steps are considered to be jointly serving

the goal of immersing customers to the specific theme. For instance, use of modern equipment
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(e.g., tablet computers) for order placement at a Wild West-themed restaurant may be perceived

negatively and prompt customers to judge the whole service as “lacking authenticity.” Dixon and

Verma (2013) also link cohesiveness to the thematic similarity of different service encounters.

In the following, we define ∆i
.
=

(1−ci)(VHi −V Li )
r(σHi −σLi )

. The sign of the quantity ∆i−1 + ∆i+1 can be

thought of as capturing the effective type of the steps immediately adjacent to step i.

Proposition 5. When the customer experience unfolds according to an ARH (1) process, the

optimal effort at step i depends on the service cohesiveness (ρ) as follows: for service steps with

sgn [∆i] 6= sgn [∆i−1 + ∆i+1], ∂δ∗/∂ρ > 0 for any ρ ∈ (0,1), whereas for steps with sgn [∆i] =

sgn [∆i−1 + ∆i+1], ∂δ∗/∂ρ≤ 0 for any ρ∈ (0, ρ̄] and ∂δ∗/∂ρ> 0 for any ρ∈ (ρ̄,1).

In an ARH (1) process, the service steps tend to generate similar (e.g., satisfying or dissatisfying)

experiential outcomes; this is due to
[
P−1

]
i,j
< 0, which implies that ρi,j·J \{i,j} > 0 for all i, j ∈J .

This property is more pronounced in services with more cohesive experiences (i.e., in services with

large ρ). Said differently, the strong dependence between experiences turns the overall experience

to be either very satisfying or very dissatisfying. Such uniform pattern of customer experience

negatively affects customers’ valuation of the service due to their risk aversion. In designing the

service, the provider accounts for this effect and decides on an effort allocation, which serves

as a means of containing the overall variability, and/or providing more functional value to the

customers. When sgn [∆i] 6= sgn [∆i−1 + ∆i+1], the effective relationship of step i with steps i− 1

and i+ 1 is complementary. Based on Proposition 3, by exerting more effort at step i, the provider

contributes more functional value without increasing the overall experiential variability. This is not

the case when sgn [∆i] = sgn [∆i−1 + ∆i+1], as then, the efforts at step i, and steps i− 1 and i are

substitutable. Hence, as per Proposition 3, the provider limits the increase in variability stemming

from the stronger cohesiveness through less effort investment. However, beyond a certain threshold

of cohesiveness ρ̄ (analytical expressions provided in the Appendix; see also Figure 6), the decrease

of the functional value as a mitigation design strategy to contain the variability in the customer

experience no longer pays off; instead the provider should increase the customer utility by increasing

the offered functional value despite the loss from the more variable experience. Said differently, the

provider’s design approach switches from variability mitigation to core value delivery.

From a managerial viewpoint, Proposition 5 prescribes that the design of services with highly

interdependent experiences does not imply autopilot approaches where the provider invests effort

only at certain steps assuming that the experiences at the rest of them will follow accordingly. On

the contrary, we find that for such services the provider might need to invest more effort across all

service steps. For services with less interdependent experiences, the provider’s effort at each step
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Figure 6 Optimal effort with respect to the cohesiveness (i.e., correlation ρ) of the experiences.
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depends on its type, which, once again, points to the importance of identifying and accounting for

the different types of steps that the service process comprises.

Our next finding identifies a mechanism that can help the service provider determine whether she

should exert more effort at the initial or final moments of the service. In particular, we characterize

the conditions under which the provider exerts more effort at the first than the last step, and vice

versa.9 We consider service processes where the first and last steps are of the same type and serve

similar functions (i.e., ∆1 = ∆n), and processes where the first and last steps are of different type

and/or serve different functions (i.e., ∆1 6= ∆n); ∆i
.
=

(1−ci)(VHi −V Li )
r(σHi −σLi )

, all analytical expressions are

provided in the Appendix.

Proposition 6. When the customer experience unfolds according to an ARH (1) process and

∆1 = ∆n, the provider allocates δ∗n > δ
∗
1 iff: i) both steps are non-routine and ∆n−1 <∆2, or ii) both

steps are routine and ∆n−1 > ∆2. Otherwise, δ∗n > δ∗1 . For services with ∆1 = −∆n, the provider

allocates δ∗n > δ
∗
1 iff: i) σHn −σLn > 0 and ∆n > ∆̄n, or ii) σHn −σLn < 0 and ∆n < ∆̄n. Otherwise, she

allocates δ∗n > δ
∗
1 .

We find that lack of differentiation (in terms of the ∆1 and ∆n values) between the first and last

step does not imply that the provider exerts the same effort at both service steps. The optimal

9 We should note that previous research has found that for highly cohesive services, where the experience may even be
perceived as continuous (e.g., during a specific medical procedure; Kahneman et al. 1993, Ariely and Carmon 2000),
additional considerations such as the overall trend of the experience, sequence effects or behavioral traits, may affect
the customers’ valuation of the service. For instance, Crano (1977) focuses on the primacy effect, which advocates
that greater weight should be placed on the experiences that take place early on, whereas Kahneman et al. (1993)
identify the “peak-end” rule, which advocates for the importance of the final moments. Ariely and Zauberman (2003)
find that settings with partitioned experiences (e.g., experiences generated at discrete service steps), which are the
main focus of our paper, are less influenced by such effects.
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efforts at the two steps are driven by the characteristics of the immediately adjacent steps (i.e.,

by the values of ∆2 and ∆n−1). The first and last step of the service may have the same values

of ∆1 and ∆n when they both serve very similar functions (e.g., check-in/out) and there are no

behavioral biases accentuating the importance of one over the other. This may also be the case

when the steps have similar characteristics but different types (i.e., similar ci, V
H
i , V L

i , |σHi −σLi |,

but sgn [σH1 −σL1 ] 6= sgn [σHn −σLn ]). For instance, although when arriving at a medical facility for

an outpatient procedure a customer may evaluate the check-in process along intangible dimensions

(e.g., perceived friendliness/professionalism of the front desk personnel), when leaving, he may view

the similar (check-out) process on a more transactional basis (e.g., accuracy of the charges on the

insurance, speed of the process). In this case, |∆1|= |∆n|, but ∆1 6= ∆n due to the different step

types σH1 − σL1 > 0, and σHn − σLn < 0. It is straightforward to show that if ∆2 > 0 and ∆n−1 < 0,

the provider optimally exerts more effort at the last step despite it being viewed by the customer

as more transactional in nature. Our insights in Proposition 6 apply to service contexts with

partitioned experiences and as such, they can be viewed as complementary to the insights offered

by previous research on sequence effects during continuous experiences.

5. Discussion

Starting in 1996, with IDEO’s engagement by Amtrak to conduct what is known as the first service

design project, to 2001, when Livework became in London the first design firm to focus exclusively

on service design (Fayard et al. 2017), and beyond, there has been a marked increase in the number

of firms specializing in the design of services. Consulting companies like Accenture and Deloitte

have also expanded their activities in this domain through the acquisition of service design firms

(Fjord 2019, Doblin 2019). They have allowed these units to operate independently, recognizing

their unique approach to the design of services. In the academic space, a growing number of schools

have incorporated the discipline of service design in their curricula as stand-alone degree offerings

or as part of graduate programs on design thinking. As of 2019 examples of such schools were

Savannah College of Art and Design, Royal College of Art, Carnegie Mellon, MIT Sloan, Insead,

and Köln International School of Design.

The nascent practice of service design has been recognized as being multidisciplinary in nature,

drawing on knowledge developed in fields as diverse as marketing, human-computer interaction,

and anthropology to mention a few. Despite this multidisciplinarity, Fayard et al. (2017) find two

important values that define the service design work ethos and differentiate its practice from other

professional practices: i) the emphasis on a holistic approach, and ii) the focus on empathy. Practi-

tioners of service design enact these values through a variety methodologies such as shadowing, and

contextual interviews (see Fayard et al. 2017 for an overview), which for the most part culminate
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to the creation of customer journey maps that visualize customers’ interactions with the service

provider and delineate the service delivery process.

This customer journey mapping recognizes the multi-stage nature of services and treats the

customer experience holistically. It also offers a solid conceptual basis to develop an analytical

approach for service design. We consider that to receive a service, customers go through a process

with several distinct service steps. At each step, they derive: i) a functional value, which is, the

tangible benefit that the step is designed to deliver, and ii) a customer experience, which is uncertain

and may have positive or negative realizations. Given this context, we account for the adverse

effect of variability on the overall customer experience. Our analysis outlines the optimal design

in terms of the provider’s effort allocation across the steps of the process. We distinguish between

two types of steps: i) routine and ii) non-routine. In non-routine service steps, more provider

effort increases the functional value but may also lead to a more variable customer experience. In

routine steps, more effort increases the functional value and leads to lower experiential variability.

More importantly, though, we explicitly account for the structural interdependencies of the service

experiences across the different steps. To our knowledge, this is the first such formal treatment.

We generate insights that address the design of single service steps based on the influences

of the entire service process. In other words, we analyze the effects of the characteristics of the

service process on the optimal design, i.e., how the customer experiences, and as an extension,

the provider’s efforts interact across the entire service process. Our analysis quantifies the holistic

coupling of the experiences across the different steps as a subtle but also critical design factor.

This coupling is process-based in the sense that it captures the interplay of the experiences at two

different steps after accounting for the effect of the rest of the process. We find that the experiences

at two steps may depend on each other even if this is not expected a priori. The relationship

between this coupling and the types of the different steps determines whether the provider’s efforts

across the service steps are complementary or substitutable. Depending on this relationship, the

service design may be characterized by a “spread-out of the effort” approach, versus an approach

that places emphasis on certain steps at the expense of others. In that light, misidentifying the

type of the steps or their coupling can result in significantly different designs, characterized by

over- or under-invested efforts.

To offer more structural insights about the effect of the entire process, we consider the broad

class of services where the customer experience unfolds according to a stochastic process exhibiting

serial correlation that decays as the number of steps between experiences increases. Interestingly,

we show that the design of each step is determined by its type and the types of the steps within

a certain impact zone around it. This is of great value to the designers as it reduces the design

complexity, and allows them to treat the service process as modules of such zones. We also find
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that services with highly interdependent experiences do not imply an autopilot design approach,

where the provider invests effort only at certain steps and assumes that the experiences at the rest

of them will follow accordingly. Instead, we find that in such services the provider invests more

effort at all service steps. Finally, we characterize the conditions under which the provider prefers

to invest more effort at the initial than the final moments of the service and vice versa. Our findings

complement previous literature, which has focused primarily on the effect of behavioral phenomena

in the design of services with highly continuous experiences.

Our proposed approach is by no means exhaustive or all-encompassing of the challenges pertinent

to the design of services. It offers a starting point, which is based on the application of newfound

approaches to the practice of service design. Best practices in service design take the iterative

form of “observation-visualization-prototyping” (Fayard et al. 2017). Our paper is motivated by

the visualization practices; therefore, further analytical or empirical research on the practices of

observation and prototyping (Thomke 2003) can offer valuable insights.

As we have noted before, our model relies on a number of assumptions. Relaxing these assump-

tions presents promising opportunities for future research into the area of service design. For

instance, our focus has been on the design of the service process and for that reason, we have tre-

ated the provider’s efforts as non-discretionary. During the execution of the service, however, and

depending on the service context, an unsatisfying experience at a service step may trigger custo-

mer abandonment. This may create the need for the provider to strategically place “check-points”

where she solicits feedback from the customer and possibly exerts additional effort to ensure that

the customer remains in the process. Our model does not account for the role of employees (Tan

and Netessine 2019) or employee engagement/satisfaction (Heskett et al. 1994) on the customer

evaluation of the service. Determining the extent of latitude that a provider allows her employees

to exercise in dealing with unforeseen situations is equivalent to determining the reactive capacity

of the service process and directly affects the provider’s ability to turn customer disappointment

into delight (Thomke 2019). Furthermore, given the multi-stage nature of services, the design of

incentive mechanisms is particularly important as the efforts of an employee at one stage may affect

the performance of an employee at a different service stage. We also do not consider externalities

across customers and how the provider can design a service that enhances the positive externali-

ties and mitigates the negative externalities. Finally, we perform our analysis without any explicit

consideration of the strategic interactions under competitive pressure. Accounting for the effects

of competition on the design decisions is another promising direction of future research.

We hope that the approach proposed in this paper will spark interest for future research on the

holistic design of services; after all, “Everybody is in service” (Levitt 1972).
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Appendix

Proof of Proposition 1. We start by deriving the optimal price for a given δ =

{δ1, . . . , δn} and then we determine the optimal effort allocation. Customers’ net utility is

linear decreasing in π. Hence, for a given δ, the optimal price π̃ is based on the lower

bound we obtain after rewriting the profitability constraint as π ≥ π0 +
∑n

i=1

(
δiV

H
i +

(1− δi)V L
i

)
ci, that is, π̃ (δ)

.
= π0 +

∑n

i=1

(
δiV

H
i + (1− δi)V L

i

)
ci. The provider determines

the optimal effort allocation by maximizing Ũ (δ)
.
=
∑n

i=1

∑n

j=1 βj,i

(
δjV

H
j + (1− δj)V L

j

)
−

r
2

(∑n

i=1

(
δiσ

H
i + (1− δi)σLi

)2

+ 2
∑∑

i<j ρi,j

(
δiσ

H
i + (1− δi)σLi

)(
δjσ

H
j + (1− δj)σLj

))
− π̃ (δ)

subject to δi ∈ (0,1) for all i∈J . We state the Hessian matrix, Hn, of Ũ (δ) and the ith principal

minor of |Hn| ∀i∈J as

Hn =


∂2Ũ
∂2δ1

∂2Ũ
∂δ1∂δ2

. . . ∂2Ũ
∂δ1δn

∂2Ũ
∂δ2∂δ1

∂2Ũ
∂2δ2

. . . ∂2Ũ
∂δ2δn

...
...

. . .
...

∂2Ũ
∂δn∂δ1

∂2Ũ
∂δnδ2

. . . ∂2Ũ
∂2δn

 and |Hi|=

∣∣∣∣∣∣∣∣∣∣

∂2Ũ
∂2δ1

∂2Ũ
∂δ1∂δ2

. . . ∂2Ũ
∂δ1δi

∂2Ũ
∂δ2∂δ1

∂2Ũ
∂2δ2

. . . ∂2Ũ
∂δ2δi

...
...

. . .
...

∂2Ũ
∂δi∂δ1

∂2Ũ
∂δiδ2

. . . ∂2Ũ
∂2δi

∣∣∣∣∣∣∣∣∣∣
,

respectively. We use i) P [1 : i; 1 : i] to indicate the principal sub-matrix that comprises rows 1 to

i and columns 1 to i of the matrix P and ii) P [−i;−j] to indicate the matrix that results after

removing row i and column j from P, ∀i, j ∈ {1, . . . , n}. The covariance matrix is always positive

definite, therefore, P is also positive definite. The latter implies that the determinant
∣∣P∣∣ and every

principal minor,
∣∣P [1 : i; 1 : i]

∣∣, of P is positive. Hence, we can now show that:

|H1| =−r
(
σH1 −σL1

)2
< 0

|H2| = r2
(
σH1 −σL1

)2 (
σH2 −σL2

)2 ∣∣P [1 : 2; 1 : 2]
∣∣> 0

...

|Hi| = (−1)
i
ri

i∏
j=1

(
σHj −σLj

)2 ∣∣P [1 : i; 1 : i]
∣∣

︸ ︷︷ ︸
>0, since P [1 : i; 1 : i] is positive definite

,

which establishes that Ũ (δ) is strictly concave in δ.

Given that Ũ (δ) is strictly concave in δ and the constraints are linear in δ, the provider’s maximi-

zation problem forms a convex program. This formulation gives rise to a total of 3n different effort

allocations. Since all of our constraints are symmetric and each of them involves only one decision

variable, δi, we can facilitate our analysis by focusing on the case where the optimal solutions lie in

the interior that is, δ∗i ∈ (0,1) for all i∈J . To do so, we solve the system of the first-order conditi-
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ons ∂Ũ (δ)/∂δ1 = 0, . . . , ∂Ũ (δ)/∂δn = 0, where ∂Ũ (δ)/∂δi =
(

1−
(
ci−

∑
m6=i βi,m

))
(V H

i −V L
i )−

r (σHi −σLi )
∑n

j=1

(
δj
(
σHj −σLj

)
+σLj

)
ρi,j for any i∈J , with respect to δ, which returns the efforts

δ̂i
.
=

n∑
j=1

(
1−

(
cj −

∑
m 6=j βj,m

))(
V H
j −V L

j

)
r (σHi −σLi )

(
σHj −σLj

) [
P−1

]
i,j
− σLi
σHi −σLi

for all i∈J .

By differentiating the δ̂i efforts, we obtain ∂δ̂i
∂(VHi −V Li )

=

(
1−(ci−

∑
m 6=i βi,m)

)∣∣∣P [−i;−i]
∣∣∣

r(σHi −σLi )
2
∣∣∣P∣∣∣ > 0,

which implies that for each step i, δ̂i ≤ 0 iff V H
i − V L

i ≤ ∆V i

.
=
{
V H
i −V L

i : δ̂i = 0
}

=

r(σHi −σLi )
∣∣∣P∣∣∣(

1−
(
ci−

∑
m 6=i βi,m

))∣∣∣P [−i;−i]
∣∣∣
(
σLi −

∑n

j∈J\i

(
1−(cj−

∑
m 6=j βj,m)

)
(VHj −V Lj )(−1)i+j

∣∣∣P [−j;−i]
∣∣∣

r(σHj −σLj )
∣∣∣P∣∣∣

)
.

Similarly, for each step i, δ̂i ≥ 1 iff V H
i − V L

i ≥ ∆V i
.
=
{
V H
i −V L

i : δ̂i− 1 = 0
}

=

r(σHi −σLi )
∣∣∣P∣∣∣(

1−
(
ci−

∑
m 6=i βi,m

))∣∣∣P [−i;−i]
∣∣∣
(
σHi −

∑n

j∈J\i

(
1−(cj−

∑
m 6=j βj,m)

)
(VHj −V Lj )(−1)i+j

∣∣∣P [−j;−i]
∣∣∣

r(σHj −σLj )
∣∣∣P∣∣∣

)
, where

∆V i−∆V i =
r(σHi −σLi )

2
P(

1−(ci−
∑
m 6=i βi,m)

)
P[−i;−i]

> 0. Hence, V H
i −V L

i ∈
(
∆V i,∆V i

)
, ensures that δ̂i ∈ (0,1)

and therefore, the optimal effort allocation is given by δ∗i = δ̂i for all i∈J .�

Proof of Proposition 2. To show that ρi,j = 0 ;
[
P−1

]
i,j

= 0 consider P =

 1 ρ1,2 0
ρ1,2 1 ρ2,3

0 ρ2,3 1

,

where ρ1,3 = 0 and ρ1,2, ρ1,3 ∈ (−1,1). In this case, P is positive definite, and as such a valid

correlation matrix, iff |P| = 1 − ρ2
1,2 − ρ2

2,3 > 0 (Rousseeuw and Molenberghs 1994). The inverse

of P is given by P−1 =


1−ρ22,3

1−ρ21,2−ρ
2
2,3
− ρ1,2

1−ρ21,2−ρ
2
2,3

ρ1,2ρ2,3

1−ρ21,2−ρ
2
2,3

− ρ1,2

1−ρ21,2−ρ
2
2,3

1
1−ρ21,2−ρ

2
2,3
− ρ2,3

1−ρ21,2−ρ
2
2,3

ρ1,2ρ2,3

1−ρ21,2−ρ
2
2,3
− ρ2,3

1−ρ21,2−ρ
2
2,3

1−ρ21,2
1−ρ21,2−ρ

2
2,3

 from which we can see that: i)

[
P−1

]
1,3

=
ρ1,2ρ2,3

1−ρ21,2−ρ
2
2,3
> 0 if ρ1,2, ρ2,3 ∈ (−1,0), or ρ1,2, ρ2,3 ∈ (0,1), and ii)

[
P−1

]
1,3

=
ρ1,2ρ2,3

1−ρ21,2−ρ
2
2,3
< 0

if ρ1,2 ∈ (0,1) and ρ2,3 ∈ (−1,0), or ρ1,2 ∈ (−1,0) and ρ2,3 ∈ (0,1). To ensure that |P|> 0 (i.e., P

is positive definite) these conditions are modified as follows: i)
[
P−1

]
1,3

=
ρ1,2ρ2,3

1−ρ21,2−ρ
2
2,3
> 0 if ρ1,2 ∈

(−1,0) and ρ2,3 ∈
(
−
√

1− ρ2
1,2,0

)
, or ρ1,2 and ρ2,3 ∈

(
0,
√

1− ρ2
1,2

)
, and ii)

[
P−1

]
1,3

=
ρ1,2ρ2,3

1−ρ21,2−ρ
2
2,3
< 0

if ρ1,2 ∈ (0,1) and ρ2,3 ∈
(
−
√

1− ρ2
1,2,0

)
, or ρ1,2 ∈ (−1,0) and ρ2,3 ∈

(
0,
√

1− ρ2
1,2

)
. Along similar

lines, in the following cases with ρ1,3 6= 0: i) 0<ρ1,3 <ρ2,3 < 1 and ρ2,1 = ρ1,3/ρ2,3 imply
[
P−1

]
1,3

= 0,

ii) −1 < ρ2,3 < ρ1,3 < 0 and ρ2,1 = ρ1,3/ρ2,3 imply
[
P−1

]
1,3

= 0, iii) 0 < ρ1,2 < ρ1,3 < 1 and ρ2,3 ∈(
ρ1,2ρ1,3−

√(
1− ρ2

1,2

) (
1− ρ2

1,3

)
, ρ1,2ρ1,3 +

√(
1− ρ2

1,2

) (
1− ρ2

1,3

))
imply

[
P−1

]
1,3
< 0, and iv) −1<

ρ1,3 <−ρ1,2 < 0 and ρ2,3 ∈
(
ρ1,2ρ1,3−

√(
1− ρ2

1,2

) (
1− ρ2

1,3

)
, ρ1,2ρ1,3 +

√(
1− ρ2

1,2

) (
1− ρ2

1,3

))
imply[

P−1
]

1,3
> 0. Cases i)-iv) also imply |P|> 0.�

Proof of Proposition 3. By differentiating δ∗i we obtain ∂δ∗i /∂ci =− (VHi −V Li )
r(σHi −σLi )

2

[
P−1

]
i,i
< 0, and

∂δ∗i /∂V
H
i = (1−ci)

r(σHi −σLi )
2

[
P−1

]
i,i
> 0. For ease of exposition, define A

.
=

(1−ci)(VHi −V Li )
r(σHi −σLi )

2

[
P−1

]
i,i
> 0

and B
.
=
∑

j∈J\i
(1−cj)(VHj −V Lj )

r

[
P−1

]
j,i
≶ 0. Then, δ∗i = 1

σHi −σ
L
i

(
A

σHi −σ
L
i

+B−σLi
)

and ∂δ∗i /∂σ
H
i =
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− 2A+(B−σLi )(σHi −σLi )
(σHi −σLi )

3 . Given that δ∗i > 0, σHi −σLi < 0 implies A
σHi −σ

L
i

+B−σLi < 0 and as an exten-

sion 2A+ (B−σLi ) (σHi −σLi )> 0, results in ∂δ∗i /∂σ
H
i > 0. Similarly, given that δ∗i > 0, σHi − σLi >

0 implies A
σHi −σ

L
i

+ B − σLi > 0 and as an extension 2A + (B−σLi ) (σHi −σLi ) > 0, resulting in

∂δ∗i /∂σ
H
i < 0. To characterize the relationship between the optimal efforts at step i and j it suf-

fices to differentiate δ∗i with respect to V H
j . Doing so returns

∂δ∗i
∂VHj

=
(1−cj)

r(σHi −σLi )(σHj −σLj )

[
P−1

]
i,j
≶

0. The sign of
∂δ∗i
∂VHj

is determined by the sign of: i) (σHi −σLi )
(
σHj −σLj

)
, which is positive if

both steps are routine or non-routine (i.e., sgn [σHi −σLi ] = sgn
[
σHj −σLj

]
) and negative other-

wise and ii)
[
P−1

]
i,j

. For instance,
∂δ∗i
∂VHj

< 0 when σHi − σLi > 0, σHj − σLj < 0, and
[
P−1

]
i,j
> 0,

which implies that the efforts are substitutable. A similar approach, resulting in the same insights

applies in order to determine the signs of ∂δ∗i /∂cj = − (VHj −V Lj )
r(σHi −σLi )(σHj −σLj )

[
P−1

]
j,i

and ∂δ∗i /∂σ
H
j =

− (1−cj)(VHj −V Lj )
r(σHi −σLi )(σHj −σLj )

2

[
P−1

]
j,i

, and compare them with ∂δ∗i /∂ci, and ∂δ∗i /∂σ
H
i , respectively.�

Proof of Proposition 4 and Corollary 1. For the purposes of this proof, we draw directly from

Gabriel (1962) and Zimmerman and Núñez-Antón (2009). Specifically, Zimmerman and Núñez-

Antón (2009) (Theorem 2.2, p.p. 37-38) establish that normally distributed random variables

ẽ1, . . . , ẽn with positive definite covariance matrix Σ follow an AD (p) process iff
[
Σ−1

]
i,j

= 0 for all

i, j ∈ Inp , where Inp = {i, j : i∈ {1 : n,} , j ∈ {1 : n} , |i− j|> p}. This is equivalent to ρi,j·J \{i,j} = 0 for

|i− j|> p (see also Theorem 1 in Gabriel 1962) and therefore,
[
P−1

]
i,j

= 0 for |i− j|> p. To derive

P for the case of p= 1, we replicate the proof in p. 48 of Zimmerman and Núñez-Antón (2009):

Consider the partial covariance σi,j·m. Under an AD (1), σi,j·m = 0 for any m∈ (i, j). Hence,

0 = σi,j·m = σi,j −
σi,mσj,m
σm,m

= ρi,j (σi,iσj,j)
1/2− ρi,m (σi,iσm,m)

1/2
ρj,m (σj,jσm,m)

1/2

σm,m
,

which implies ρi,j = ρi,mρm,j for i > m > j, where m is an arbitrary step between steps i and j.

After repeatedly substituting ρi,m and ρm,j with products of correlations of adjacent steps, we

obtain
[
P
]
i,j

=
∏i−1

m=j ρm+1,m. To illustrate, consider P =

 1 ρ1 ρ1ρ2

ρ1 1 ρ2

ρ1ρ2 ρ1 1

, with ρi
.
= ρi+1,i ∈ (−1,1).

P is always positive definite and results in
[
P−1

]
=


1

1−ρ21
− ρ1

1−ρ21
0

− ρ1
1−ρ21

1−ρ21ρ
2
2

(1−ρ21)(1−ρ22)
− ρ2

1−ρ22
0 − ρ2

1−ρ22
1

1−ρ22

.�

Proof of Proposition 5. For notational brevity we define ∆i
.
=

(1−ci)(VHi −V Li )
r(σHi −σLi )

. In an ARH (1),[
P
]
i,j

= ρ|i−j| ∈ (0,1) for all i, j ∈J , implying

P =


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

...
. . .

. . .
. . .

...
ρn−2 . . . ρ 1 ρ
ρn−1 . . . ρ2 ρ 1

 and P−1 =
1

1− ρ2


1 −ρ 0 . . . 0
−ρ 1 −ρ . . . 0
...

. . .
. . .

. . .
...

0 . . . −ρ 1 −ρ
0 . . . 0 −ρ 1

 .
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Hence, we can rewrite the provider’s optimal effort at step i as δ∗i =
−ρ∆i−1+(1+ρ2)∆i−ρ∆i+1

(σHi −σLi )(1−ρ2)
. After

differentiating δ∗i with respect to ρ we obtain ∂δ∗i /∂ρ=−(∆i−1+∆i+1)(1+ρ2)−4∆iρ

(σHi −σLi )(1−ρ2)
2 . It is easy to show

that when: i) σHi − σLi > 0 (i.e., ∆i > 0) and ∆i−1 + ∆i+1 < 0 or ii) σHi − σLi < 0 (i.e., ∆i < 0) and

∆i−1 + ∆i+1 > 0, ∂δ∗i /∂ρ > 0 for any ρ ∈ (0,1). For the rest of the cases with σHi − σLi > 0 (i.e.,

∆i > 0) and ∆i−1 +∆i+1 > 0 or σHi −σLi < 0 (i.e., ∆i < 0) and ∆i−1 +∆i+1 < 0, we solve ∂δ∗i /∂ρ= 0

with respect to ρ and we obtain ∂δ∗i /∂ρ≤ 0 for all ρ∈ (0, ρ̄] and ∂δ∗i /∂ρ> 0 for all ρ∈ (ρ̄,1), where

ρ̄
.
= 2∆i

∆i−1+∆i+1
−
√
−1 +

4∆2
i

(∆i−1+∆i+1)
2 .�

Proof of Proposition 6. Given that steps 1 and n have the same characteristics we can

define ∆1 = ∆n
.
= ∆, where ∆i =

(1−ci)(VHi −V Li )
r(σHi −σLi )

, and ∆ =
(1−c)(VH−V L)
r(σH−σL)

. Hence, δ∗1 and δ∗n can

be expressed as δ∗1 =
(1+ρ2)∆−ρ∆2

(σH−σL)(1−ρ2)
, and δ∗n =

(1+ρ2)∆−ρ∆n−1

(σH−σL)(1−ρ2)
based on which we obtain δ∗1 − δ∗n =

− (∆2−∆n−1)ρ
(σH−σL)(1−ρ2)

> 0 iff: i) σH −σL > 0 and ∆2 <∆n−1, or ii) σH −σL < 0 and ∆2 >∆n−1. For ser-

vices where ∆1 6= ∆n, we obtain δ∗1− δ∗n =
∆1(σHn −σLn)−∆n(σH1 −σL1 )

(σH1 −σL1 )(σHn −σLn)
− ∆2(σHn −σLn)−∆n−1(σH1 −σL1 )

(σH1 −σL1 )(σHn −σLn)
ρ

1−ρ2 > 0

iff: i) σHn − σLn > 0 and ∆n < ∆̄n, or ii) σHn − σLn < 0 and ∆n > ∆̄n, where ∆̄n
.
= ∆1

σHn −σ
L
n

σH1 −σ
L
1

+

∆n−1(σH1 −σL1 )−∆2(σHn −σLn)
σH1 −σ

L
1

ρ

(1+ρ2)
.�
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