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Robust optimization (RO) is a common approach to tractably obtain safeguarding solutions for optimization

problems with uncertain constraints. In this paper, we study a statistical framework to integrate data into

RO, based on learning a prediction set using (combinations of) geometric shapes that are compatible with

established RO tools, and a simple data-splitting validation step that achieves finite-sample nonparametric

statistical guarantees on feasibility. We demonstrate how our required sample size to achieve feasibility at

a given confidence level is independent of the dimensions of both the decision space and the probability

space governing the stochasticity, and discuss some approaches to improve the objective performances while

maintaining these dimension-free statistical feasibility guarantees.
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1. Introduction

Many optimization problems in industrial applications contain uncertain parameters in constraints

where the enforcement of feasibility is of importance. This paper aims to build procedures to find

good-quality solutions for these problems that are tractable and statistically accurate for high-

dimensional or limited data situations.

To locate our scope of study, we consider situations where the uncertainty in the constraints is

“stochastic”, and a risk-averse modeler wants the solution to be feasible “most of the time” while

not making the decision space overly conservative. One common framework to define feasibility in

this context is via a chance-constrained program (CCP)

minimize f(x) subject to P (g(x; ξ)∈A)≥ 1− ε (1)

where f(x) ∈R is the objective function, x ∈Rd is the decision vector, ξ ∈Rm is a random vector

(i.e. the uncertainty) under a probability measure P , and g(x; ξ) : Rd ×Rm→ Ω with A ⊂ Ω for
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some space Ω. Using existing terminology, we sometimes call g(x; ξ)∈A the safety condition, and

ε the tolerance level that controls the violation probability of the safety condition. In this paper

we will consider g(x; ξ)∈A as linear inequalities, which constitute the commonest class of CCPs.

We will focus on settings where ξ is observed via a finite amount of data, driven by the fact

that in almost every application there is no exact knowledge about the uncertainty, and that data

is increasingly ubiquitous. Our problem target is to find a solution feasible for (1) with a given

statistical confidence (with respect to the data, in a frequentist sense) that has an objective value

as small as possible.

First proposed by Charnes et al. (1958), Charnes and Cooper (1959), Miller and Wagner (1965)

and Prékopa (1970), the CCP framework (1) has been studied extensively in the stochastic pro-

gramming literature (see Prékopa (2003) for a thorough introduction), with applications spanning

across reservoir system design (Prékopa and Szántai (1978), Prékopa et al. (1978)), cash matching

(Dentcheva et al. (2004)), wireless cooperative network (Shi et al. (2015)), inventory (Lejeune and

Ruszczynski (2007)) and production management (Murr and Prékopa (2000)). Though not always

proper (notably when the uncertainty is deterministic or bounded; see e.g., Ben-Tal et al. (2009)

P.28–29), in many situations it is natural to view uncertainty as “stochastic”, and (1) provides a

rigorous definition of feasibility under these situations. Moreover, (1) sets a framework to assimilate

data in a way that avoids over-conservativeness by focusing on the “majority” of the data, as we

will exploit in this paper.

Our main contribution is a framework to integrate data into robust optimization (RO) as a tool

to obtain high-quality solutions feasible in the sense defined by (1). Instead of directly solving (1),

which is known to be challenging in general, RO operates by representing the uncertainty via a

(deterministic) set, often known as the uncertainty set or the ambiguity set, and enforces the safety

condition to hold for any ξ within it. By suitably choosing the uncertainty set, RO is well-known to

be a tractable approximation to (1). We will revisit these ideas by studying a procedural framework

to construct an uncertainty set as a prediction set for the data. This consists of approximating a

high probability region via combinations of tractable geometric shapes compatible with RO. As a

key development, we propose a simple data-splitting scheme to determine the size of this region

that ensures rigorous statistical performance. This framework is nonparametric and applies under

minimal distributional requirements.

In terms of basic statistical property, our approach satisfies a finite-sample confidence guaran-

tee on the feasibility of the solution in which the minimum required sample size in achieving a

given confidence is provably independent of the dimensions of both the decision space and the

underlying probability space. While finite-sample guarantees are also found in existing sampling-

based methods, the dimension-free property of our approach makes it a suitable resort for certain

high-dimensional and limited-data situations where previous methods break down.
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The above property, which may appear very strong, needs nonetheless be complemented with

good approaches to curb over-conservativeness and maintain tractability. In particular, to reduce

conservativeness, a prediction set should accurately trace the shape of data. On the other hand,

to retain tractability, the set should be expressible in terms of basic geometric shapes compatible

with RO techniques. We will present some techniques to construct uncertainty sets that balance

these two aspects, while simultaneously achieve the basic statistical property. Nonetheless, we

caution that theses techniques tie conservativeness to the set volume, while often times the former

is more intricate and depends on the optimization setting at hand (see, e.g., Lagoa and Barmish

(2002)). Along this line, we also discuss a method to iterate the construction of uncertainty sets

that incorporate updated optimality beliefs to improve the objective performance.

Our approach is related to several existing methods for approximating (1). Scenario generation

(SG), pioneered by Calafiore and Campi (2005, 2006), Campi and Garatti (2008, 2011) and inde-

pendently suggested in the context of Markov decision processes by De Farias and Van Roy (2004),

replaces the chance constraint in (1) with a collection of sampled constraints. Related work include

also the sample average approximation (SAA) studied in Luedtke and Ahmed (2008), Luedtke

et al. (2010), Luedtke (2014), which restricts the proportion of violated constraints and resembles

the discarding approach in Campi and Garatti (2011). SG provides explicit statistical guarantees

on the feasibility of the obtained solution in terms of the confidence level, the tolerance level and

the sample size. It directly approximates the chance-constrained optimization without the need of

a set-based representation of the uncertainty, and hence allows a high geometric flexibility in the

resulting set of violation and leads to less conservative solutions. However, in general, the sample

size needed to achieve a given confidence grows linearly with the dimension of the decision space,

which can be demanding for large-scale problems (as pointed out by, e.g., Nemirovski and Shapiro

(2006), P.971). Recent work reduce dependence on the decision dimension (and its interplay with

the tolerance parameter) by, for instance, regularization (Campi and Carè (2013)), tighter com-

plexity results in terms of the support rank (Schildbach et al. (2013)), solution-dependent number

of support constraints (Campi and Garatti (2018)), one-off calibration schemes (Carè et al. (2014)),

sequential validation (Calafiore et al. (2011), Chamanbaz et al. (2016), Calafiore (2017)), and

hybrid approaches between RO and SG that translate scenario size requirements from decision to

stochasticity space dimension (Margellos et al. (2014)). Among these, our proposed step to tune

the set size is closest to the calibration approaches. However, instead of calibrating a solution

obtained from a randomized program, we calibrate the coverage of an uncertainty set, and control

conservativeness and tractability of the resulting RO through proper learning of its shape.

A classical approach to approximating (1) uses safe convex approximation (SCA), by replacing

the intractable chance constraint with an inner approximating convex constraint (such that a
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solution feasible for the latter would also be feasible for the former) (e.g., Ben-Tal and Nemirovski

(2000), Nemirovski (2003), Nemirovski and Shapiro (2006)). This approach is intimately related to

RO, as the approximating constraints are often equivalent to the robust counterparts (RC) of RO

problems with properly chosen uncertainty sets (e.g., Ben-Tal et al. (2009), Chapters 2 and 4). The

statistical guarantees provided by these approximations come from probabilistic deviation bounds,

which often rely on the stochastic assumptions and the constraint structure on a worst-case basis

(e.g., Nemirovski and Shapiro (2006), Ben-Tal et al. (2009) Chapter 10, Ben-Tal and Nemirovski

(1998, 1999), El Ghaoui et al. (1998), Bertsimas and Sim (2004, 2006), Bertsimas et al. (2004),

Chen et al. (2007), Calafiore and El Ghaoui (2006)). Thus, although the approach carries several

advantages (e.g., in handling extraordinarily small tolerance levels), the utilized bounds can be

restrictive to use in some cases. Moreover, most of the results apply to a single chance constraint;

when the safety condition involves several constraints that need to be jointly maintained (known

as a joint chance constraint), one typically needs to reduce it to individual constraints via the

Bonferroni correction, which can add pessimism (there are exceptions, however; e.g., Chen et al.

(2010)). On the other hand, these classical results in SCA and RO are capable of constructing

uncertainty sets with well-chosen shapes, without directly using prediction set properties.

We mention two other lines of work in approximating (1) that can blend with data. Distribu-

tionally robust optimization (DRO), an approach dated back to Scarf et al. (1958) and of growing

interest in recent years (e.g., Delage and Ye (2010), Wiesemann et al. (2014), Goh and Sim (2010),

Ben-Tal et al. (2013), Lim et al. (2006)), considers using a worst-case probability distribution for ξ

within an ambiguity set that represents partial distributional information. The two major classes

of sets consist of distance-based constraints (statistical distance from a nominal distribution such

as the empirical distribution; e.g., Ben-Tal et al. (2013), Wang et al. (2016)) and moment-and-

support-type constraints (including moments, dispersion, covariance and/or support, e.g., Delage

and Ye (2010), Wiesemann et al. (2014), Goh and Sim (2010), Hanasusanto et al. (2017), and shape

and unimodality, e.g., Popescu (2005), Hanasusanto et al. (2015), Van Parys et al. (2016), Li et al.

(2019), Lam and Mottet (2017)). To provide statistical feasibility guarantee, these uncertainty

sets need to be properly calibrated from data, either via direct estimation or using the statistical

implications from Bayesian (Gupta (2019)) or empirical likelihood (Lam and Zhou (2017), Duchi

et al. (2016), Blanchet and Kang (2016), Lam (2019)) methods. Another line of work takes a Monte

Carlo viewpoint and uses sequential convex approximation (Hong et al. (2011), Hu et al. (2013))

that stochastically iterates the solution to a Karush-Kuhn-Tucker (KKT) point, which guarantees

local optimality of the convergent solution. This approach can be applied to data-driven situations

by viewing the data as Monte Carlo samples.
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Finally, some recent RO-based approaches aim to utilize data more directly. For example, Gold-

farb and Iyengar (2003) calibrate uncertainty sets using linear regression under Gaussian assump-

tions. Bertsimas et al. (2018) study a tight value-at-risk bound on a single constraint and calibrate

uncertainty sets via imposing a confidence region on the distributions that govern the bound. Tula-

bandhula and Rudin (2014) study supervised prediction models to approximate uncertainty sets

and suggest using sampling or relaxation to reduce to tractable problems. Our approach follows

the general idea in these work in constructing uncertainty sets that cover the “truth” with high

confidence.

The rest of this paper is organized as follows. Section 2 presents our procedural framework and

statistical implications. Section 3 discusses some approaches to construct tight and tractable pre-

diction sets. Section 4 reports numerical results and comparisons with existing methods. Additional

proofs, numerical results and useful existing theorems are presented in the Appendix.

2. Basic Framework and Implications

This section lays out our basic procedural framework and implications. First, consider an approx-

imation of (1) via the RO:

minimize f(x) subject to g(x; ξ)∈A ∀ ξ ∈ U (2)

where U ∈Ω is an uncertainty set. Obviously, for any x feasible for (2), ξ ∈ U implies g(x; ξ) ∈A.

Therefore, by choosing U that covers a 1− ε content of ξ (i.e., U satisfies P (ξ ∈ U)≥ 1− ε), any x

feasible for (2) must satisfy P (g(x; ξ) ∈A)≥ P (ξ ∈ U)≥ 1− ε, implying that x is also feasible for

(1). In other words,

Lemma 1. Any feasible solution of (2) using a (1− ε)-content set U is feasible for (1).

Note that Ben-Tal et al. (2009), P.33 discussion point B points out that it is not necessary for

an uncertainty set to contain most values of the stochasticity to induce probabilistic guarantees.

Nonetheless, Lemma 1 provides a platform to utilize data structure easily and formulate concrete

procedures, as we will describe.

2.1. Learning Uncertainty Sets

Assume a given i.i.d. data set D = {ξ1, . . . , ξn}, where ξi ∈ Rm are sampled under a continuous

distribution P . In view of Lemma 1, our basic strategy is to construct U = U(D) that is a (1− ε)-
content prediction set for P with a prescribed confidence level 1− δ. In other words,

PD (P (ξ ∈ U(D))≥ 1− ε)≥ 1− δ (3)

where we use the notation PD(·) to denote the probability taken with respect to the data D. Using

such a U , any feasible solution of (2) is feasible for (1) with the same confidence level 1− δ, i.e.,
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Lemma 2. Any feasible solution of (2) using U that satisfies (3) is feasible for (1) with confi-

dence 1− δ.

(3) only focuses on the feasibility guarantee for (1), but does not speak much about conserva-

tiveness. To alleviate the latter issue, we judiciously choose U according to two criteria:

1. We prefer U that has a smaller volume, which leads to a larger feasible region in (2) and

hence a less conservative inner approximation to (1). Note that, with a fixed ε, a small U means a

U that contains a high probability region (HPR) of ξ.

2. We prefer U such that P (ξ ∈ U(D)) is close to, not just larger than, 1− ε with confidence

1−δ. We also want the coverage probability PD(P (ξ ∈ U(D))≥ 1− ε) to be close to, not just larger

than, 1− δ.

Moreover, U needs to be chosen to be compatible with tractable tools in RO. Though this

tractability depends on the type of safety condition at hand and is problem-specific, the general

principle is to construct U as an HPR that is expressed via a basic geometric set or a combination

of them.

The above discussion motivates us to propose a two-phase strategy in constructing U . We first

split the data D into two groups, denoted D1 and D2, with sizes n1 and n2 respectively. Say

D1 = {ξ11 , . . . , ξ1n1} and D2 = {ξ21 , . . . , ξ2n2}. These two data groups are used as follows:

Phase 1: Shape learning. We use D1 to approximate the shape of an HPR. Two common choices

of tractable basic geometric shapes are:

1. Ellipsoid: Set the shape as S = {(ξ−µ)′Σ−1(ξ−µ)≤ ρ} for some ρ > 0. The parameters can

be chosen by, for instance, setting µ as the sample mean of D1 and Σ as some covariance matrix,

e.g., the sample covariance matrix, diagonalized covariance matrix, or identity matrix.

2. Polytope: Set the shape as S = {ξ : a′iξ ≤ bi, i = 1, . . . , k} where ai ∈ Rm and bi ∈ R. For

example, for low-dimensional data, this can be obtained from a convex hull (or an approximated

version) of D1, or alternately, of the data that leaves out bn1εc of D1 that are in the “periphery”,

e.g., having the smallest Tukey depth (e.g., Serfling (2002), Hallin et al. (2010)). It can also take the

shape of the objective function when it is linear (a case of interest when using the self-improving

strategy that we will describe later).

We can also combine any of the above two types of geometric sets, such as:

1. Union of basic geometric sets: Given a collection of polytopes or ellipsoids Si, take S =
⋃
i Si.

2. Intersection of basic geometric sets: Given a collection of polytopes or ellipsoids Si, take

S =
⋂
i Si.
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The choices of ellipsoids and polytopes are motivated from the tractability in the resulting RO,

but they may not describe an HPR of ξ to sufficient accuracy. Unions or intersection of these

basic geometric sets provide more flexibility in tracking the HPR of ξ. For example, in the case of

multi-modal distribution, one can group the data into several clusters (Hastie et al. (2009)), then

form a union of ellipsoids over the clusters as S. For non-standard distributions, one can discretize

the space into boxes and take the union of boxes that contain at least some data, inspired by the

“histogram” method in the literature of minimum volume set learning (Scott and Nowak (2006)).

The intersection of basic sets is useful in handling segments of ξ where each segment appears in a

separate constraint in a joint CCP.

Phase 2: Size calibration. We use D2 to calibrate the size of the uncertainty set so that it satisfies

(3) and moreover P (ξ ∈ U(D)) ≈ 1 − ε with coverage ≈ 1 − δ. The key idea is to use quantile

estimation on a “dimension-collapsing” transformation of the data. More concretely, first express

our geometric shape obtained in Phase 1 in the form {ξ : t(ξ) ≤ s}, where t(·) : Rm → R is a

transformation map from the space of ξ to R, and s ∈ R. For the two geometric shapes we have

considered above,

1. Ellipsoid: We set t(ξ) = (ξ−µ)′Σ−1(ξ−µ). Then the S described in Phase 1 is equivalent to

{ξ : t(ξ)≤ ρ}.

2. Polytope: Find a point, say µ, in S◦, the interior of S (e.g., the Chebyshev center (Boyd and

Vandenberghe (2004)) of S or the sample mean of D1 if it lies in S◦). Let t(ξ) = maxi=1,...,k(a
′
i(ξ−

µ))/(bi − a′iµ) which is well-defined since µ ∈ S◦. Then the S defined in Phase 1 is equivalent to

{ξ : t(ξ)≤ 1}.

For the combinations of sets, we suppose each individual geometric shape Si in Phase 1 possesses

a transformation map ti(·). Then,

1. Union of the basic geometric sets: We set t(ξ) = mini ti(ξ) as the transformation map for⋃
i Si. This is because

⋃
i{ξ : ti(ξ)≤ s}= {ξ : mini ti(ξ)≤ s}.

2. Intersection of the basic geometric sets: We set t(ξ) = maxi ti(ξ) as the transformation map

for
⋂
i Si. This is because

⋂
i{ξ : ti(ξ)≤ s}= {ξ : maxi ti(ξ)≤ s}

We overwrite the value of s in the representation {ξ : t(ξ)≤ s} as t(ξ2(i∗)), where t(ξ2(1))< t(ξ
2
(2))<

· · ·< t(ξ2(n2)) are the ranked observations of {t(ξ2i )}i=1,...,n2 , and

i∗ = min

{
r :

r−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ, 1≤ r≤ n2

}
(4)

This procedure is valid if such an i∗ can be found, or equivalently 1− (1− ε)n2 ≥ 1− δ.



Hong, Huang, and Lam: Learning-based Robust Optimization
8 Article accepted in Management Science

2.2. Basic Statistical Guarantees

Phase 1 focuses on Criterion 1 in Section 2.1 by learning the shape of an HPR. Phase 2 addresses

our basic requirement (3) and Criterion 2. The choice of s in Phase 2 can be explained by the

elementary observation that, for any arbitrary i.i.d. data set of size n2 drawn from a continuous

distribution, the i∗-th ranked observation as defined by (4) is a valid 1− δ confidence upper bound

for the 1− ε quantile of the distribution:

Lemma 3. Let Y1, . . . , Yn2 be i.i.d. data in R drawn from a continuous distribution. Let Y(1) <

Y(2) < · · ·< Y(n2) be the order statistics. A 1− δ confidence upper bound for the (1− ε)-quantile of

the underlying distribution is Y(i∗), where

i∗ = min

{
r :

r−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ, 1≤ r≤ n2

}
If
∑n2−1

k=0

(
n2
k

)
(1− ε)kεn2−k < 1− δ or equivalently 1− (1− ε)n2 < 1− δ, then none of the Y(r)’s is a

valid confidence upper bound.

Similarly, a 1− δ confidence lower bound for the (1− ε)-quantile of the underlying distribution

is Y(i∗), where

i∗ = max

{
r :

n2∑
k=r

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ, 1≤ r≤ n2

}
If
∑n2

k=1

(
n2
k

)
(1− ε)kεn2−k < 1− δ or equivalently 1− εn2 < 1− δ, then none of the Y(r)’s is a valid

confidence lower bound.

Proof of Lemma 3. Let q1−ε be the (1 − ε)-quantile, and F (·) and F̄ (·) be the distribution

function and tail distribution function of Yi. Consider

P (Y(r) ≥ q1−ε) = P (≤ r− 1 of the data {Y1, . . . , Yn} are < q1−ε)

=
r−1∑
k=0

(
n2

k

)
F (q1−ε)

kF̄ (q1−ε)
n2−k

=
r−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k

by the definition of q1−ε. Hence any r such that
∑r−1

k=0

(
n2
k

)
(1− ε)kεn2−k ≥ 1− δ is a 1− δ confidence

upper bound for q1−ε, and we pick the smallest one. Note that if
∑n2−1

k=0

(
n2
k

)
(1− ε)kεn2−k < 1− δ,

then none of the Y(r) is a valid confidence upper bound.

Similarly, we have

P (Y(r) ≤ q1−ε) = P (≥ r of the data {Y1, . . . , Yn} are ≤ q1−ε)

=

n2∑
k=r

(
n2

k

)
F (q1−ε)

kF̄ (q1−ε)
n2−k

=

n2∑
k=r

(
n2

k

)
(1− ε)kεn2−k
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by the definition of q1−ε. Hence any r such that
∑n2

k=r

(
n2
k

)
(1 − ε)kεn2−k ≥ 1 − δ will be a 1 − δ

confidence lower bound for q1−ε, and we pick the largest one. Note that if
∑n2

k=1

(
n2
k

)
(1− ε)kεn2−k <

1− δ, then none of the Y(r) is a valid confidence lower bound. �

Similar results in the above simple order statistics calculation can be found in, e.g., Serfling

(2009) Section 2.6.1. A key element of our procedure is that t(·) is constructed using only Phase

1 data D1, which are independent of Phase 2. Lemma 3 implies that, conditional on D1, P (t(ξ)≤

t(ξ2(i∗)))≥ 1−ε with a (conditional) confidence 1−δ. From this, we can average over the realizations

of D1 to obtain a valid coverage for the resulting uncertainty set in the sense of satisfying (3). This

is summarized formally as:

Theorem 1 (Basic statistical guarantee). Suppose D is an i.i.d. data set drawn from a

continuous distribution P on Rm, and we partition D into two sets D1 = {ξ1i }i=1,...,n1 and D2 =

{ξ2i }i=1,...,n2. Suppose n2 ≥ log δ/ log(1 − ε). Consider the set U = U(D) = {ξ : t(ξ) ≤ s}, where

t : Rm→ R is a map constructed from D1 such that t(ξ), with ξ distributed according to P , is a

continuous random variable, and s= t(ξ2(i∗)) is calibrated from D2 with i∗ defined in (4). Then U

satisfies (3). Consequently, an optimal solution obtained from (2) using this U is feasible for (1)

with confidence 1− δ.

Proof of Theorem 1. Since t(·) depends only on D1 but not D2, we have, conditional on any

realization of D1,

PD2
(P (ξ ∈ U(D))≥ 1− ε|D1) = PD2

(P (t(ξ)≤ t(ξ2(i∗)))≥ 1− ε|D1) = PD2
(q1−ε ≤ t(ξ2(i∗))|D1)≥ 1− δ

(5)

where q1−ε is the (1− ε)-quantile of t(ξ) (which depends on D1). The first equality in (5) follows

from the representation of U = {ξ : t(ξ) ≤ t(ξ2(i∗))}, the second equality uses the definition of a

quantile, and the last inequality follows from Lemma 3 using the condition 1− (1− ε)n2 ≥ 1− δ,

or equivalently n2 ≥ log δ/ log(1− ε). Note that (5) holds given any realization of D1. Thus, taking

expectation with respect to D1 on both sides in (5), we have

ED1
[PD2

(P (ξ ∈ U(D))≥ 1− ε|D1)]≥ 1− δ

where ED1
[·] denotes the expectation with respect to D1, which gives

PD(P (ξ ∈ U(D))≥ 1− ε)≥ 1− δ

We therefore arrive at (3). Finally, Lemma 2 guarantees that an optimal solution obtained from

(2) using the constructed U is feasible for (1) with confidence 1− δ. �
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Theorem 1 implies the validity of the approach in giving a feasible solution for CCP (1) with

confidence 1−δ for any finite sample size, as long as it is large enough such that n2 ≥ log δ/ log(1−ε).

The reasoning of the latter restriction can be seen easily in the proof, or more apparently from the

following argument: In order to get an upper confidence bound for the quantile by choosing one

of the ranked statistics, we need the probability of at least one observation to upper bound the

quantile to be at least 1−δ. In other words, we need P (at least one t(ξ2i )≥ (1− ε)-quantile)≥ 1−δ

or equivalently 1− (1− ε)n2 ≥ 1− δ.

We also mention the convenient fact that, conditional on D1,

P (ξ ∈ U) = P (t(ξ)≤ t(ξ2(i∗))) = F (t(ξ2(i∗)))
d
=U(i∗) (6)

where F (·) is the distribution function of t(ξ) and U(i∗) is the i∗-th ranked variable among n2

uniform variables on [0,1], and “
d
=” denotes equality in distribution. In other words, the theoretical

tolerance level induced by our constructed uncertainty set, P (ξ ∈ U), is distributed as the i∗-th order

statistic of uniform random variables, or equivalently Beta(i∗, n2 − i∗ + 1), a Beta variable with

parameters i∗ and n2− i∗+1. Note that P (Beta(i∗, n2− i∗+1)≥ 1− ε) = P (Bin(n2,1− ε)≤ i∗−1)

where Bin(n2,1− ε) denotes a binomial variable with number of trials n2 and success probability

1− ε. This informs an equivalent expression of (4) as

min{r : P (Beta(r,n2− r+ 1)≥ 1− ε)≥ 1− δ, 1≤ r≤ n2}

= min{r : P (Bin(n2,1− ε)≤ r− 1)≥ 1− δ, 1≤ r≤ n2}

To address Criterion 2 in Section 2.1, we use the following asymptotic behavior as n2→∞:

Theorem 2 (Asymptotic tightness of tolerance and confidence levels). Under the

same assumptions as in Theorem 1, we have, conditional on D1:

1. P (ξ ∈ U)→ 1− ε in probability (with respect to D2) as n2→∞.

2. PD2
(P (ξ ∈ U)≥ 1− ε|D1)→ 1− δ as n2→∞.

Theorem 2 confirms that U is tightly chosen in the sense that the tolerance level and the confidence

level are held asymptotically exact. This can be shown by using (6) together with an invocation

of the Berry-Essen Theorem (Durrett (2010)) applied on the normal approximation to binomial

distribution. Appendix EC.1 shows the proof details, which use techniques similar to Li and Liu

(2008) and Serfling (2009) Section 2.6. In fact, one could further obtain that our choice of i∗ satisfies
√
n2 (i∗/n2− (1− ε))→

√
(1− ε)εΦ−1(1− δ) as n2→∞. As a result, the theoretical tolerance level

P (ξ ∈ U) given D1 concentrates at 1 − ε by being approximately (1 − ε) + Z/
√
n2 where Z ∼

N
(√

ε(1− ε)Φ−1(1− δ), ε(1− ε)
)

. For further details, see Appendix EC.1.
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Note that, because of the discrete nature of our quantile estimate, the theoretical confidence

level is not a monotone function of the sample size, and neither is there a guarantee on an exact

confidence level at 1− δ using a finite sample (see Appendix EC.2). On the other hand, Theorem

2 Part 2 guarantees that asymptotically our construction can achieve an exact confidence level.

The idea of using a dimension-collapsing transformation map t(·) resembles the notion of data

depth in the literature of generalized quantile (Li and Liu (2008), Serfling (2002)). In particular,

the data depth of an observation is a positive number that measures the position of the observation

from the “center” of the data set. The larger the data depth, the closer the observation is to the

center. For example, the half-space depth is the minimum number of observations on one side of

any line passing through the chosen observation (Hodges (1955), Tukey (1975)), and the simplicial

depth is the number of simplices formed by different combinations of observations surrounding an

observation (Liu (1990)). Other common data depths include the ellipsoidally defined Mahalanobis

depth (Mahalanobis (1936)) and projection-based depths (Donoho and Gasko (1992), Zuo (2003)).

Instead of measuring the position of the data relative to the center as in the data depth litera-

ture, our transformation map is constructed to create uncertainty sets with good geometric and

tractability properties.

2.3. Dimension-free Sample Size Requirement

Theorem 1 and the associated discussion above states that we need at least n2 ≥ log δ/ log(1− ε)

observations in Phase 2 to construct an uncertainty set that guarantees a feasible solution for (1)

with confidence 1− δ. From a purely feasibility viewpoint, this lower bound on n2 is the minimum

total sample size we need: Regardless of what shape we generate in Phase 1, as long as we can

express it in terms of the t(·) and have log δ/ log(1− ε) Phase 2 observations, the basic feasibility

guarantee (3) is attained. This number does not depend on the dimension of the decision space or

the probability space. It does, however, depend roughly linearly on 1/ε for small ε, a drawback that

is also common among sampling-based approaches including both SG and SAA and gives more

edge to using safe convex approximation when applicable.

We should caution, however, that if we take n1 = 0 or choose an arbitrary shape in Phase 1, the

resulting solution is likely extremely conservative in terms of objective performance. To combat

this issue, it is thus recommended to set aside some data for Phase 1 with the help of established

methods borrowed from statistical learning (Section 3 and Appendices EC.4 and EC.5 discuss

these).

2.4. Enhancing Optimality Performance via Self-improving Reconstruction

We propose a mechanism, under the framework in Section 2.2, to improve the performance of an

uncertainty set by incorporating updated optimality belief.
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2.4.1. An Elementary Explanation As indicated at the beginning of this section, the RO we

construct is a conservative approximation to the CCP. A question is whether there is an “optimal”

uncertainty set, in the sense that it is a (1− ε)-level prediction set, and at the same time gives

rise to the same solution between the RO and the CCP. As a first observation, the uncertainty set

U = {ξ : g(x∗; ξ) ∈ A}, where x∗ is an optimal solution to the CCP, satisfies both properties: By

the definition of x∗, this set contains (1− ε)-content of P . Moreover, when we use this U in (2), x∗

is trivially a feasible solution. Since this RO is an inner approximation to CCP, x∗ is optimal for

both the RO and the CCP. The catch, of course, is that in reality we do not know what is x∗. Our

suggestion is to replace x∗ with some approximate solution x̂, leading to a set {ξ : g(x̂, ξ)∈A}.
Alternately, the conservativeness of the RO can be reasoned from the fact that ξ ∈ U , indepen-

dent of what the obtained solution x̂ is in (2), implies that g(x̂; ξ) ∈A. Thus our target tolerance

probability P (g(x̂; ξ) ∈A) satisfies P (g(x̂; ξ) ∈A)≥ P (ξ ∈ U), and, in the presence of data, makes

the actual confidence level (namely PD(P (g(x̂; ξ)∈A)≥ 1− ε)) potentially over-conservative. How-

ever, this inequality becomes an equality if U is exactly {ξ : g(x̂; ξ)∈A}. This suggests again that,

on a high level, an uncertainty set that resembles the form g(x̂; ξ) ∈ A is less conservative and

preferable.

Using the above intuition, a proposed strategy is as follows. Consider finding a solution for (1).

In Phase 1, find an approximate HPR of the data (using some suggestions in Section 3) with a

reasonably chosen size (e.g., just enough to cover (1− ε) of the data points). Solve the RO problem

using this HPR to obtain an initial solution x̂0. Then reshape the uncertainty set as {ξ : g(x̂0; ξ)∈
A}. Finally, conduct Phase 2 by tuning the size of this reshaped set, say we get {ξ : g(x̂0; ξ) ∈ Ã}
where Ã is size-tuned. The final RO is:

minimize f(x) subject to g(x, ξ)∈A ∀ ξ : g(x̂0; ξ)∈ Ã (7)

Evidently, if the tuning step can be done properly, i.e., the set {ξ : g(x̂0; ξ) ∈A} can be expressed

in the form {ξ : t(ξ)≤ s} and s is calibrated using the method in Section 2.1, then the procedure

retains the overall statistical confidence guarantees presented in Theorems 1 and 2. For convenience,

we call the RO (7) created from x̂0 and the discussed procedure a “reconstructed” RO.

More explicitly, consider the safety condition g(x; ξ)∈A in the form of linear inequalities Ax≤ b
where A ∈Rl×d is stochastic and b ∈Rl is constant. After we obtain an initial solution x̂0, we set

the uncertainty set as U = {A :Ax̂0 ≤ b+ sk} where k= (ki)i=1,...,l ∈Rl is some positive vector and

s∈R. The value of s is calibrated by letting t(A) = maxi=1,...,l{(a′ix̂0− bi)/ki} where a′i is the i-th

row of A and bi is the i-th entry of b, and s is chosen as t(A2
(i∗)), the order statistic of Phase 2

data as defined in Section 2.1. Using the uncertainty set U , the constraint Ax≤ b ∀ A∈ U becomes

maxa′ix̂0≤bi+ski a
′
ix≤ bi, i= 1, . . . , l via constraint-wise projection of the uncertainty set, which can

be reformulated into linear constraints by using standard RO machinery (see, e.g., Theorem EC.2).



Hong, Huang, and Lam: Learning-based Robust Optimization
Article accepted in Management Science 13

2.4.2. Properties of Self-improving Reconstruction We formalize the discussion in Sec-

tion 2.4.1 by showing some properties of the optimization problem (7). We focus on the setting of

inequalities-based safety conditions

minimize f(x) subject to P (g(x; ξ)≤ b)≥ 1− ε (8)

where g(x; ξ) = (gj(x; ξ))j=1,...,l ∈ Rl and b = (bj)j=1,...,l ∈ Rl. Suppose x̂0 is a given solution (not

necessarily feasible). Suppose for now that there is a way to compute quantiles exactly for functions

of ξ, and consider the reconstructed RO

minimize f(x) subject to g(x, ξ)≤ b ∀ ξ : g(x̂0; ξ)≤ b+ ρk (9)

where k = (kj)j=1,...,l ∈ Rl is a positive vector, and ρ = ρ(x̂0) is the (1 − ε)-quantile of

maxj=1,...,l{(gj(x̂0; ξ)− bj)/kj}. A useful observation is:

Theorem 3 (Feasibility guarantee for reconstruction). Given any solution x̂0, if ρ is the

(1− ε)-quantile of maxj=1,...,l{(gj(x̂0; ξ)− bj)/kj}, then any feasible solution of (9) is also feasible

for (8).

Proof of Theorem 3. Since {ξ : g(x̂0; ξ)≤ b+ ρk} is by construction a (1− ε)-content set for ξ

under P , Lemma 1 concludes the theorem immediately. �

Note that Theorem 3 holds regardless of whether x̂0 is feasible for (8). That is, (9) is a way to

output a feasible solution from the input of a possibly infeasible x̂0. What is more, in the case that

x̂0 is feasible, (9) is guaranteed to give a solution at least as good:

Theorem 4 (Monotonic objective improvement). Under the same assumption as Theo-

rem 3, an optimal solution x̂ of (9) is feasible for (8). Moreover, if x̂0 is feasible for (8), then x̂

satisfies f(x̂)≤ f(x̂0).

Proof of Theorem 4. Note that if x̂0 is feasible for (8), we must have ρ≤ 0 (or else the chance

constraint does not hold) and hence x̂0 must be feasible for (9). By the optimality of x̂ for (9) we

must have f(x̂)≤ f(x̂0). The theorem concludes by invoking Theorem 3 that implies x̂ is feasible

for (8). �

Together, Theorems 3 and 4 give a mechanism to improve any input solution in terms of either

feasibility or optimality for (8): If x̂0 is infeasible, then (9) corrects the infeasibility and gives a

feasible solution; if x̂0 is feasible, then (9) gives a feasible solution that has an objective value at

least as good.

Similar statements hold if the quantile ρ is only calibrated under a given statistical confidence.

To link our discussion to the procedure in Section 2.1, suppose that a solution x̂0 is obtained from

an RO formulation (or in fact, any other procedures) using only Phase 1 data. We have:
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Corollary 1 (Feasibility guarantee for reconstruction under statistical confidence).

Given any solution x̂0 obtained using Phase 1 data, suppose ρ is the upper bound of the (1− ε)-

quantile of maxj=1,...,l{(gj(x̂0; ξ) − bj)/kj} with confidence level 1 − δ generated under Phase 2

data. Any feasible solution of (9) is also feasible for (8) with the same confidence.

Corollary 2 (Improvement from reconstruction under statistical confidence).

Under the same assumptions as Corollary 1, an optimal solution x̂ of (9) is feasible for (8) with

confidence 1− δ. Moreover, if ρ≤ 0, then x̂ satisfies f(x̂)≤ f(x̂0).

The proofs of Corollaries 1 and 2 are the same as those of Theorems 3 and 4, except that Lemma 2

is invoked instead of Lemma 1. Note that ρ≤ 0 in Corollary 2 implies that x̂0 is feasible for (8) with

confidence 1− δ. However, the case ρ> 0 in Corollary 2 does not directly translate to a conclusion

that x̂0 is infeasible under confidence 1− δ, since ρ is a confidence upper bound, instead of lower

bound, for the quantile. This implies a possibility that x̂0 is feasible and close to the boundary of

the feasible region. There is no guarantee of objective improvement under the reconstructed RO

in this case, but there is still guarantee that the output x̂ is feasible with confidence 1− δ.

Our numerical experiments in Section 4 show that, when applicable, such reconstructions fre-

quently lead to notable improvements. Nonetheless, we caution that, depending on the constraint

structure, the reconstruction step does not always lead to a significant or a strict improvement

even if ρ ≤ 0, and in these cases some transformation of the constraint is needed. For example,

in the case of single linear chance constraint in the form (8) with l= 1 and a bilinear g(x; ξ), the

reconstructed uncertainty set consists of one linear constraint. Consequently, the dualization of the

RO (see Theorem EC.2) consists of one dual variable, which optimally scales x̂0 by a scalar factor.

When b in (8) (with l= 1) is also a stochastic source, no scaling adjustment is allowed because the

“decision variable” associated with b (viewing b as a random coefficient in the linear constraint) is

constrained to be 1. Thus, the proposed reconstruction will show no strict improvement. However,

this behavior could be avoided by suitably re-expressing the constraint. When b is say positively

distributed (or very likely so), one can divide both sides of the inequality by b to obtain an equiva-

lent inequality with right hand side fixed to be 1. This equivalent constraint is now improvable by

our reconstruction (and the new stochasticity now comprises the ratios of the original variables,

which can still be observed from the data).

3. Constructing Uncertainty Sets

Our proposed strategy in Section 2 requires constructing an uncertainty set that is tractable for RO,

and recommends to trace the shape of an HPR as much as possible. Regarding tractability, linear

RO with the uncertainty set shapes mentioned in Section 2.1 can be reformulated into standard
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optimization formulations. For convenience we document some of these results in Appendix EC.3,

along with some explanation on how to identify t(·) for the size calibration in our procedure.

Since taking unions or intersections of basic sets gives more capability to trace HPR, we highlight

the following two immediate observations. First is that unions of basic sets preserve the tractability

of the robust counterpart associated with each union component, with a linear growth of the

number of constraints against the number of components.

Lemma 4 (Reformulating unions of sets). The constraint

g(x; ξ)∈A ∀ ξ ∈ U

where U =
⋃k

i=1U i is equivalent to the joint constraints

g(x; ξ)∈A ∀ ξ ∈ U i, i= 1, . . . , k

Second, in the special case of intersections of sets where each intersection component is on the

portion of the stochasticity associated with each of multiple constraints, the projective separability

property of uncertainty sets (e.g., Ben-Tal et al. (2009)) gives the following:

Lemma 5 (Reformulating intersections of sets). Let ξ ∈Rm be a vector that can be repre-

sented as ξ = (ξi)i=1,...,k, where ξi ∈ Rmi
, i = 1, . . . , k are vectors such that

∑k

i=1m
i = m. Suppose

that U =
∏k

i=1U i where each U i is a set on the domain of ξi. The set of constraints

g(x; ξi)∈Ai, i= 1, . . . , k ∀ ξ ∈ U

is equivalent to

g(x; ξi)∈Ai ∀ ξi ∈ U i, i= 1, . . . , k

Note that in approximating a joint CCP, all the U i in Lemma 5 need to be jointly calibrated

statistically to account for the simultaneous estimation error (which can be conducted by intro-

ducing a max operation for the intersection of sets). Intuitively, with weakly correlated data across

the constraints, it fares better to use a separate U i to represent the uncertainty of each constraint

rather than using a single U and projecting it. Appendix EC.4 provides a formal statement to

support this intuition, by arguing a lower level of conservativeness in using individual ellipsoids

rather than a single aggregated block-diagonal ellipsoid.

In addition, we can borrow the following statistical tools to more tightly trace an HPR, i.e., a

smaller-volume prediction set:
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1. When data appears in multi-modal form, we can use clustering. Label the data into different

clusters (using k-means, Gaussian mixture models, or any other techniques), form a simple set Ui
like a ball or an ellipsoid for each cluster, and use the union

⋃
iUi as the final shape.

2. If the high-dimensional data set has an intrinsic low-dimensional representation, we can use

dimension reduction tools like principal component analysis. Suppose ξ̃ =Mξ+N , whereM ∈Rr×m

and N ∈Rr, is a low-dimensional representation of a raw random vector ξ ∈Rm. Then we can use

uncertainty set in the form

U = {(Mξ−µ)′Σ−1(Mξ−µ)≤ s}, (10)

where µ is the sample mean of ξ̃ and Σ is a covariance estimate of ξ̃. Tractability is preserved by

a straightforward use of existing RO results (see Theorem EC.4 in Appendix EC.3).

3. In situations of unstructured data where clustering or dimension reduction techniques do not

apply, one approach is to view each data point as a “cluster” by taking the union of balls each

surrounding one data point. Intriguingly, this scheme coincides with the one studied in Erdoğan

and Iyengar (2006) to approximate ambiguous CCP where the underlying distribution is within a

neighborhood of some baseline measure.

We provide further illustrations of these tools in Appendix EC.5.

4. Numerical Examples

We present numerical examples to illustrate the performances of our RO approach. In all our

examples,

1. We set ε= 0.05 and δ= 0.05.

2. For each setting, we repeat the experimental run 1,000 times, each time generating a new

independent data set.

3. We define ε̂ to be the estimated expected violation probability of the obtained solution. In

other words, ε̂ = ÊD [Pviolation], where ÊD[·] refers to the empirical expectation taken among the

1,000 data sets, and Pviolation denotes the probability P (g(x̂(D); ξ) /∈ A). For single linear CCPs

with Gaussian distributed ξ, Pviolation can be computed analytically. In other cases, Pviolation is

estimated using 10,000 new independent realizations of ξ. For approaches that do not depend on

data, e.g., SCA, we set ε̂= Pviolation directly.

4. We define δ̂ = P̂D(Pviolation > ε), where P̂D(·) refers to the empirical probability with respect

to the 1,000 data sets and Pviolation is similarly defined as for ε̂. For approaches that do not depend

on data, the chance constraint is always satisfied and therefore we have δ̂= 0.

5. We denote “Obj. Val.” as the average optimal objective value of the 1,000 solutions generated

from the independent data sets.
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6. When the reconstruction technique described in Section 2.4 is applied, the initial guessed

solution is obtained from an uncertainty set with size calibrated to be just enough to cover (1− ε)

of the Phase 1 data.

Recall that d is the decision space dimension, n is the total sample size, and n1 and n2 are the

sample sizes for Phases 1 and 2. These numbers differ across the examples for illustration purpose.

Moreover, we compare our RO approaches with several methods:

1. Scenario approaches, including the classical SG (Campi and Garatti (2008)) described in the

introduction and its variant FAST (Carè et al. (2014)). FAST was introduced to reduce the sample

size requirement of the classical SG. It consists of two steps, each step using n1 and n2 samples

respectively (the notations are unified with our method for easy comparisons). The first step of

FAST is similar to SG, which solves a sampled program with n1 constraints and obtains a tentative

solution. The second step is a detuning step to adjust the tentative solution with the help of a

“robust feasible solution”, i.e., a solution feasible for any possible ξ. The adjusted solution is a

convex combination of the tentative solution and the robust feasible solution so that the final

solution satisfies the other n2 sampled constraints. In our comparison, we use the minimum required

sample sizes in the detuning step suggested in Carè et al. (2014) so that the total required sample

size is precisely the given overall size. We compare with FAST here since the latter elicits a small

sample size requirement with the help of a validation-type scheme that is similar to our approaches

applied to the RO setting.

2. DRO with first and second moment information, where the moments lie in an ellipsoidal joint

confidence region. First, supposing we are given exact first and second moments, we can reformulate

a distributionally robust linear chance constraint into a quadratic constraint suggested in El Ghaoui

et al. (2003). On the other hand, using the delta method suggested in Marandi et al. (2017), we can

construct ellipsoidal confidence regions for the vectorized mean and covariance matrix. Combining

the quadratic constraint in El Ghaoui et al. (2003) and the ellipsoidal set in Marandi et al. (2017),

we can use Theorem 1 (II) and Example 4 in Marandi et al. (2017) to reformulate the DRO with

ellipsoidal moment set into a semidefinite program. We provide further details of this reformulation

in Appendix EC.6.

3. DRO with uncertainty set defined by a neighborhood surrounding a reference distribution

measured by a φ-divergence. We use the reformulation in Jiang and Guan (2016) that transforms

such a distributionally robust chance constraint into an ordinary chance constraint, under the

reference distribution, with an adjusted tolerance level ε∗, which then allows us to resort to SG

or SAA using Monte Carlo samples (as we will see momentarily, whichever method to resort to

does not quite matter in our experiments). We use the Kullback-Leibler (KL) divergence, and

construct the reference distribution using kernel density estimation (with Gaussian kernel). We
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set the size of the KL-divergence ball by estimating the divergence using the k-NN estimator, a

provably consistent estimator proposed in Wang et al. (2009), Póczos et al. (2012) (other related

estimators and theoretical results are in Moon and Hero (2014), Liu et al. (2012), Pál et al. (2010),

Póczos and Schneider (2012)). We use k= 1 in our experiments, as the experimental results indicate

that the bias increases significantly as k increases. Moreover, to estimate the divergence properly,

we split the data into two portions n1 and n2, first portion used to construct the reference kernel

density, second portion used for the k-NN divergence estimation. The reason of this split is that,

otherwise, the estimation of the reference distribution and the divergence would depend on and

interfere with each others, leading to estimation accuracy so poor that the divergence estimate

becomes negative all the time. We provide further implementation details in Appendix EC.7.3.

4. SCA. We will state the underlying a priori distributional assumptions in using the considered

SCA, which differ case-by-case.

When applying moment-based DRO and SCA to joint CCPs, we use the Bonferroni correction

(more details in the relevant examples). We also make two additional remarks. First, when compar-

ing the objective values from different methods, since one can always translate or scale the problem

by adding/multiplying constants to distort the apparent magnitudes, we mostly focus our compar-

isons on the direction (bigger or smaller), which is invariant under the above distortions. Second,

even though we only report the point estimates of the mean objective values and ε, δ, our conclu-

sions in comparing the objective values and constraint violation probabilities remain unchanged

even if we consider the 95% confidence intervals of these estimates (from the 1,000 experimental

repetitions), and we do not report the confidence intervals for the sake of succinctness. Finally, our

codes are available at https://github.com/zhyhuang/Learningbased-RO.

4.1. Test Case 1: Multivariate Gaussian on a Single Chance Constraint

We consider a single linear CCP

minimize c′x subject to P (ξ′x≤ b)≥ 1− ε (11)

where x∈Rd is the decision vector, and c∈Rd, b∈R are arbitrarily chosen constants. The random

vector ξ ∈Rd is drawn from a multivariate Gaussian distribution with an arbitrary mean (here we

set it to −c) and an arbitrarily chosen positive definite covariance matrix. Since (11) is exactly

solvable when the Gaussian distribution is known, we can verify that it has a bounded optimal

solution.

We consider d= 11 and 100 as the dimension of the decision vector. Tables 1 and 2 show these

two cases with a small sample size n = 120, whereas Tables 3 and 4 show these cases with a

bigger sample size (336 and 2331 respectively) so that the classical SG provides provable feasibility
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Table 1 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with Gaussian

distribution for several methods, using sample size n= 120. The true optimal value is -1196.7.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -1189.31 -1194.87 -1196.60 -1193.53 -1187.35 0 -1195.07
ε̂ 1.34× 10−5 0.0164 0.090 0.0164 2.55× 10−8 0 0.0072

δ̂ 0 0.048 0.957 0.043 0 0 0

Table 2 Optimality and feasibility performances on a single d= 100 dimensional linear CCP with Gaussian

distribution for several methods, using sample size n= 120. The true optimal value is -1195.3. Results on

moment-based DRO are based on 30 replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -832.12 -1112.11 unbounded unbounded -1193.21 0 -1193.0
ε̂ 0 0.0158 - - 0.195 0 0.0072

δ̂ 0 0.041 - - 1 0 0

Table 3 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with Gaussian

distribution for several methods, using sample size n= 336. The true optimal value is -1196.7.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -1190.33 -1195.82 -1195.67 -1195.14 -1188.48 0 -1195.07
ε̂ 3.47× 10−6 0.0247 0.0331 0.0259 2.19× 10−8 0 0.0072

δ̂ 0 0.04 0.056 0.043 0 0 0

Table 4 Optimality and feasibility performances on a single d= 100 dimensional linear CCP with Gaussian

distribution for several methods, using sample size n= 2331. The true optimal value is -1195.3. Results on

moment-based DRO are based on 30 replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 2331 2331 2331 2331 2331 2331 -
n1 1318 1318 - 2326 - 1166 -
n2 1013 1013 - 5 - 1165 -
Obj. Val. -1168.35 -1194.76 -1194.13 -1193.85 -1175.48 0 -1193.0
ε̂ 0 0.0395 0.0428 0.0386 8.76× 10−14 0 0.0072

δ̂ 0 0.051 0.039 0.052 0 0 0

guarantees. In each table, we show the results for our RO using ellipsoidal uncertainty set (“RO”),

our reconstructed RO (“Recon”), SG (“SG”), FAST (“FAST”), DRO with ellipsoidal moment set
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(“DRO Mo”), DRO with KL-divergence set (“DRO KL”) and SCA (“SCA”). The last approach

does not need the data and instead assumes partial a priori distributional information.

For our RO approaches, we use ellipsoidal uncertainty sets with estimated covariance matrix

for the case d = 11 (Tables 1 and 3), and diagonalized ellipsoidal sets (i.e., only using variance

estimates) for d= 100 (Tables 2 and 4) to stabilize our estimates because n1 is smaller than d in

the latter case. The tables show that the solutions from our plain RO tend to be conservative, as

δ̂ = 0. Nonetheless, the reconstructed RO is less conservative across all settings, reflected by the

better average optimal values and δ̂ close to the target confidence level 0.05. In all cases, both the

plain RO and the reconstructed RO give valid (i.e., confidently feasible) solutions.

We compare our ROs with scenario approaches. When the sample size is small (Tables 1 and

2), SG cannot obtain a valid solution. In the case d = 11, it gives δ̂ much greater than 0.05.

Furthermore, in the case d= 100, SG gives unbounded solutions in all 1,000 replications, as the

number of sampled constraints is very close to the decision dimension. For FAST, since b is chosen

to be positive, we can use the origin to be the robust feasible solution. Table 1 shows that, when

d = 11, FAST gives confidently feasible solutions. The average optimal value from reconstructed

RO (-1194.87) is (slightly) better than the value from FAST (-1193.53), while RO using ellipsoidal

sets is more conservative (-1189.31). However, when d = 100 (Table 2), the first-step problem of

FAST is unbounded in all 1,000 replications.

When the sample size is adequate (Tables 3 and 4), the values of δ̂ from SG being less than

or close to 0.05 confirms the validity of the solutions. Note that in these cases FAST gives more

conservative solutions than SG (This is a general consequence from the construction of FAST that is

designed to have a smaller feasible region than SG under the same dataset). RO with ellipsoidal sets

obtains more conservative solutions than SG, as shown by the zero δ̂’s and worse average objective

values. By using reconstruction, however, the δ̂’s become very close to the desired confidence level

δ = 0.05, and the average objective values are almost identical to (and slightly better than) those

obtained from SG.

The above reveal that, when the sample size is large enough, SG can perform better than our

RO using basic uncertainty sets. On the other hand, our RO can provide feasibility guarantees in

small-sample situations where SG may fail. FAST is valid in small-sample situations, but is more

likely to have unbounded solutions in high-dimensional problems than our RO. Thus, generally,

our RO appears most useful for small sample sizes when compared with scenario approaches, a

benefit postulated in the previous sections. It also appears that using reconstruction can boost our

performance to a comparable level as SG (and hence also FAST) in situations where the latter is

applicable in the shown examples. Note that our reconstruction by design can improve the objective

performance compared to plain RO, whereas FAST is primarily used to reduce the sample size
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requirement and is necessarily more conservative than SG in terms of achieved objective value.

Finally, we note that unbounded solutions in SG can potentially be avoided by adding artificial

constraints. In this regard, we show in Appendix EC.7.1 the same example but with additional

non-negativity constraints to illustrate the comparisons further.

Next, we compare with moment-based DRO. In low-dimensional cases with d = 11, moment-

based DRO gives solutions more conservative than RO using ellipsoidal sets, as shown by the larger

objective values, i.e. -1187.35 (DRO) versus -1189.31 (RO) in the small-sample case (Table 1) and

-1184.48 (DRO) versus -1190.33 (RO) in the large-sample case (Table 3). The conservativeness of

moment-based DRO is also revealed in the small ε̂ and δ̂ = 0 in both cases. For high-dimensional

problems with d= 100, we present the performance of moment-based DRO with only 30 replications

(instead of 1000) due to the large program size and consequently the demanding computational

effort when solving the reformulated semidefinite programs (although the replication size is smaller,

conclusions can still be drawn rigorously, i.e., the confidence intervals of the estimated ε̂ and

δ̂ turn out to either lie completely under or above 0.05). In the small-sample size case (Table

2), moment-based DRO fails to provide feasible solutions (δ̂ = 1, i.e., obtained solutions violate

the chance constraint in all 30 replications). This can be attributed to a poor estimation of the

moment confidence region with small data and high dimension (Note that forming an ellipsoidal

first-and-second-moment set for moment-based DRO requires estimating a covariance matrix of

size (3d+ d2)/2× (3d+ d2)/2, as it uses the estimation variances of the first and second moments

that involve even higher-order moments, in contrast to a size of d×d in our ellipsoidal RO). When

the sample size is larger (Table 3), moment-based DRO provides valid feasible solutions (δ̂ = 0).

The average objective (-1175.48) is less conservative than our plain RO (-1168.35), but is more

conservative than our reconstructed RO (-1194.76).

The above observations show that, when the moment information is well estimated (i.e., the

sample size is sufficient relative to the dimension), moment-based DRO provides solutions with

similar conservative level as our RO using ellipsoidal sets. However, when the sample size is too

small to get reasonable estimates for the moments, moment-based DRO can fail to obtain feasible

solutions. Reconstructed RO appears to outperform moment-based DRO generally. The benefits of

our RO approaches in small sample and the boosted performance of reconstructed RO compared

to moment-based DRO are in line with our comparisons with scenario approaches.

DRO with estimated KL-divergence set suffers from general setbacks in the experiments. In all

cases we considered, the kernel density estimator cannot provide a good enough reference distribu-

tion f0, so that the size of the divergence ball is too big and subsequently results in conservative

solutions. The construction of f0 is poor due to the curse of dimensionality in kernel density esti-

mation whose accuracy deteriorates exponentially with the dimension, as we have a relatively high
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dimension compared with the data size. On the other hand, the performance of DRO, which relies

on using the adjusted tolerance level ε∗, appears sensitive to the divergence ball size and demands

a high accuracy in estimating f0. Subsequently, the big divergence ball size leads to a zero ε∗ in all

replications, which in turn forces us to choose a solution x that satisfies the safety condition ξ′x≤ b

for all ξ ∈Rd. The origin is then output as the only such feasible solution, and the objective is 0,

which are shown in Tables 1, 2, 3, and 4. This indicates that DRO with KL divergence, calibrated

using density estimator and the divergence estimation technique suggested in the literature, gives

overly conservative solutions for our considered problems.

Lastly, we compare with SCA. Consider a perturbation model for ξ given by ξ = a0 +
∑L

i=1 ζiai

where ai ∈Rd for all i= 0,1, . . . ,L and ζi ∈R are independent Gaussian variable with mean µi and

variance s2i , such that µi ∈ [µ−i , µ
+
i ] and s2i ≤ σ2

i . A safe approximation of (11) is in Ben-Tal et al.

(2009):

minimize c′x subject to (a′0x− b) +
L∑
i=1

max[a′ixµ
−
i , a

′
ixµ

+
i ] +

√
2 log(1/ε)

√√√√ L∑
i=1

σ2
i (a
′
ix)2 ≤ 0.

To apply this SCA to (11), we set ζi to be independent N(0,1) variables, a0 = µ and ai to be the

i-th column of Σ1/2, and µ−i = µ+
i = 0 and σ2

i = 1 for i= 1, ..., d. This in fact assumes knowledge on

the mean and covariance of the Gaussian vector ξ, thus giving an upper hand to SCA.

Tables 1, 3, 2 and 4 all show that the optimal objective values obtained from SCA (-1195.07

and -1193.0 respectively for d= 11,100) are close to the true optimal values (-1196.7 and -1195.3)

compared to other methods. Our ROs using ellipsoidal sets obtain more conservative solutions

generally. The relative conservativeness also shows up in reconstructed RO with small sample sizes

(Tables 1 and 2), but with more samples (Tables 3 and 4) our reconstructed RO outperforms the

considered SCA.

Note that in this example the normality, and the mean and covariance information used in the

SCA, makes the latter perform very well. Our RO using estimated ellipsoidal sets does not achieve

this level of preciseness. However, the reconstructed RO can still outperform this SCA when the

sample size is large enough. Note that the performance of SCA depends on the true distribution

(as it is related to the tightness of the SCA constraint in approximating the chance constraint). In

the next example, we consider an alternate underlying distribution where SCA does not perform

as well.

4.2. Test Case 2: Beta Models on a Single Chance Constraint

We consider the single linear CCP in (11), where each component of ξ is now bounded. We use

a perturbation model for ξ given by ξ = a0 +
∑L

i=1 ζiai where ai ∈ Rd for all i = 0,1, . . . ,L and
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ζi ∈R are independent random variables each with mean zero and bounded in [−1,1], where d= 10,

L= 10 and ai ∈R10 being known arbitrarily chosen vectors. This allows the use of an SCA stated

below. In particular, we set each ζi to be a Beta distribution with parameters α= 10 and β = 10

that is multiplied by 2 and shifted by 1. Similar to Section 4.1, we set c to be the negative of the

mean of ξ and b∈R is an arbitrarily chosen positive constant.

Regarding the comparison with SCA, this problem is supplementary to the Gaussian cases in

Section 4.1 in that it presents performances of SCA when we use less information about ξ. Suppose

that we have chosen a correct perturbation model in the SCA (i.e., knowledge of d,L,ai and

the boundedness on [−1,1]). We use the Hoeffding inequality to replace the chance constraint

with η
√∑L

i=1(a
′
ix)2 ≤ b− a′0x, where η ≥

√
2 log(1/ε). This SCA is equivalent to an RO imposing

an uncertainty set U = {ζ : ‖ζ‖2 ≤ η} where ζ = (ζi)
′
i=1,...,L is the vector of perturbation random

variables (Ben-Tal et al. (2009) Section 2.3).

Table 5 Optimality and feasibility performances on a single d= 10 dimensional linear CCP with the

Beta-perturbation model for several methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -988.78 -1087.85 -1114.57 -1071.77 -968.30 0 -815.06
ε̂ 1.02× 10−5 0.0161 0.0643 0.0171 0 0 0

δ̂ 0 0.037 0.723 0.063 0 0 0

Table 5 shows the results from different approaches with sample size n = 120. Our RO per-

forms better than SCA in terms of achieved objective values (−988.78 against −815.06), the latter

appearing more conservative than the example in Section 4.1 as shown by ε̂ = 0. Also, as in the

previous example, reconstruction boosts further our RO performance (from −988.78 to −1087.85).

Our RO here performs better than SCA because the latter, derived on a worst-case basis, does

not tightly apply to the “truth” in this example, i.e., the Hoeffding bound does not lead to tight

performance guarantees on the scaled Beta distribution (putting aside the assumed knowledge of

d,L,ai and the boundedness on [−1,1] when applying the SCA). Note that, since SCA also has an

RO interpretation, the above observations show the superiority of our geometry or size selection

of the uncertainty set. Our fully nonparametric approach shows full-fledged advantage than SCA

in this example.

We also report the outcomes of SG, which breaks down as shown by δ̂ being much bigger than

0.05, as 120 observations is not enough to achieve the needed feasibility confidence. FAST obtains

valid solutions, and outperforms our RO with ellipsoidal sets but underperforms our reconstructed
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Table 6 Optimality and feasibility performances on a joint linear CCP with Gaussian distribution for several

methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -6956.49 -7920.12 -9283.35 -8925.74 -3996.87 0 -8927.71
ε̂ 3.46× 10−5 0.0161 0.0581 0.0169 0 0 0.026

δ̂ 0 0.044 0.607 0.045 0 0 0

RO in terms of achieved objective value. Moment-based DRO also obtains valid solutions, but is

conservative as shown by δ̂ = 0 and ε̂= 0. Its objective value underperforms our RO approaches.

For divergence-based DRO, the poor construction of a reference distribution again leads to a large

divergence ball size, which renders the adjusted tolerance level ε∗ to be 0 in all but one out of 1000

replications (for the one replication where ε∗ is non-zero, it is ε∗ = 1.10× 10−11) and essentially

outputs the origin as the solution all the time. In this example, our reconstructed RO performs

the best among all considered approaches.

4.3. Test Case 3: Multivariate Gaussian on Joint Chance Constraints

We consider a joint CCP with d= 11 variables and l= 15 constraints in the form

minimize c′x subject to P (Ax≤ b)≥ 1− ε, x≥ 0 (12)

where c ∈R11 and b ∈R15 are arbitrary constants, and b is positive in each element. The random

vector ξ = vec(A) is generated from a multivariate Gaussian distribution with mean vec(Ā) and

covariance matrix Σ, where Ā ∈ R15×11 is arbitrary and Σ ∈ R165×165 is also an arbitrary positive

definite matrix.

Tables 6 and 7 present the experimental results using two different sample sizes on the same

problem. We use diagonalized ellipsoids in our RO, and conduct reconstruction with scaling param-

eters ki described in Appendix EC.4.3. To use DRO and SCA, we apply the Bonferroni correction

to decompose the joint CCP, by evenly dividing the tolerance level into ε/m to create individual

chance constraints. For each individual chance constraint, we construct DRO and SCA constraint

following the scheme in Section 4.1.

Comparing with scenario approaches, we see that, much like the examples in Sections 4.1 and

4.2, SG fails with small sample size (confirmed by δ̂ much larger than 0.05 in Table 6), but obtains

valid solutions as sample size grows (confirmed by δ̂ < 0.05 in Table 7). While reconstruction

improves the optimal values for RO in both cases, SG (and so is FAST) gives better optimal

value (−9130.95) than reconstructed RO (−8029.83) under a big sample size. Moment-based DRO

appears very conservative for both small and large sample cases, as the obtained average objective
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Table 7 Optimality and feasibility performances on a joint linear CCP with Gaussian distribution for several

methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -7146.54 -8029.83 -9130.95 -9081.81 -4209.86 0 -8927.71
ε̂ 7.32× 10−5 0.0235 0.0223 0.0185 0 0 0.026

δ̂ 0 0.038 0.005 0.002 0 0 0

Table 8 Optimality and feasibility performances on a joint linear CCP with beta distribution for several

methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -1241.05 -1796.74 -2105.77 -1732.73 -230.74 0 -361.079
ε̂ 6.96× 10−5 0.0138 0.0577 0.0170 0 0 0

δ̂ 0 0.022 0.576 0.045 0 0 0

Table 9 Optimality and feasibility performances on a joint linear CCP with beta distribution for several

methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -1304.89 -1911.36 -1881.69 -1828.98 -251.69 0 -361.079
ε̂ 1.20× 10−4 0.0199 0.0229 0.0192 0 0 0

δ̂ 0 0.023 0.004 0.003 0 0 0

values (-3996.87 and -4209.86) are much greater than other approaches, including our ROs, and

the associated ε̂ and δ̂ are 0. Like the previous experiments, divergence-based DRO outputs the

origin as the solution and gives objective value 0 due to over-sized uncertainty sets. On the other

hand, SCA obtains a better solution than our ROs, thanks to the tightness of the approximation

for Gaussian distributions.

4.4. Test Case 4: Beta Models on Joint Chance Constraints

We consider the joint CCP in (12) with a bounded random vector ξ. We use the perturbation model

described in Section 4.2, where d = 165, L = 165 and ai ∈ R165, i = 1, ...,L are arbitrarily chosen

vectors, and the same random variables for ζi’s as in Section 4.2. Again, we apply the Bonferroni

correction to invoke DRO and SCA as in Section 4.3, and the corresponding schemes for each

individualized chance constraint as in Section 4.2.



Hong, Huang, and Lam: Learning-based Robust Optimization
26 Article accepted in Management Science

Tables 8 and 9 show our experimental results. The major difference with Section 4.3 is that

now our reconstructed RO outperforms all other methods including SG and SCA: It gives smaller

objective values than FAST under both small and big sample sizes. It also gives smaller objective

values than SG under big sample size, while SG does not give valid solutions under small sam-

ple size. SCA is very conservative in this case, and DROs (both moment- and divergence-based)

continue to be very conservative, all of whom our RO significantly outperforms.

4.5. Test Case 5: t- and Log-Normal Distributions

We consider problems with two heavier-tailed distributions, namely t- and lognormal. We test both

the single CCP (11) and the joint CCP (12) with different dimensions and sample sizes. Since the

considered SCA does not apply to these distributions, we do not include it in our comparisons

here.

Tables 10, 11 and 12 show the comparisons among different approaches for the single CCP, and

Tables 13 and 14 show the counterparts for joint CCP, when ξ is generated from a multivariate

t-distribution with degree of freedom 5 and an arbitrary positive definite dispersion matrix. The

comparisons are largely consistent with the Gaussian and beta cases shown in the previous subsec-

tions. Compared with SG, our ROs output feasible solutions in the small-sample case (n= 120),

whereas SG struggles to obtain feasible solutions (δ̂ much greater than 0.05 in Tables 10 and

13). In the large-sample case (n = 336), SG gains enough feasibility and outperforms our plain

RO in average objective value (-1175.04 versus -1126.66 in the single CCP case in Table 11, and

-7387.98 versus -5778.44 in the joint CCP case in Table 14), but underperforms our reconstructed

RO (-1175.64 and -7562.60 for single and joint CCPs respectively). FAST remedies the infeasi-

bility issue of SG in the small-sample cases and outperforms our plain RO. On the other hand,

our reconstructed RO performs competitively against FAST. Among all four cases where d= 11,

reconstructed RO outperforms FAST in three cases but underperforms in the case of small-sample

joint CCP (average objective values -1166.52, -1175.64 and -7562.60 versus -1158.27, -1170.35 and

-7173.97 in Tables 10, 11 and 14 respectively, and -6499.93 versus -7220.37 in Table 13). Note that,

when the dimension is large (d= 100 in Table 12), SG and FAST output unbounded solutions in

all 1000 experimental replications, whereas plain and reconstructed RO output feasible bounded

solutions.

Like in the previous subsections, our reconstructed RO outperforms moment-based DRO in all

cases. When the dimension is large (d= 100 in Table 12), moment-based DRO fails to obtain feasible

solutions in all 30 replications, attributed to the difficulty in estimating valid moment confidence

regions. Compared to our plain RO, moment-based DRO outperforms in single CCP (-1134.38 and

-1137.19 versus -1112.75 and -1126.66 in Tables 10 and 11 respectively), but underperforms in joint
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Table 10 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with t-distribution

for several methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -1112.75 -1166.52 -1182.20 -1158.27 -1134.38 0
ε̂ 0.000252 0.0161 0.0910 0.0172 0.000461 0

δ̂ 0 0.046 0.961 0.064 0 0

Table 11 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with t-distribution

for several methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -1126.66 -1175.64 -1175.04 -1170.35 -1137.19 0
ε̂ 0.00023 0.024 0.0334 0.0259 0.000407 0

δ̂ 0 0.055 0.069 0.04 0 0

Table 12 Optimality and feasibility performances on a single d= 100 dimensional linear CCP with t-distribution

for several methods, using sample size n= 120. Results on moment-based DRO are based on 30 replications due

to high computational demand.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -1077.56 -1184.45 unbounded unbounded -1190.70 0
ε̂ 6.00× 10−7 0.0156 - - 0.22 0

δ̂ 0 0.045 - - 1 0

Table 13 Optimality and feasibility performances on a joint d= 11 dimensional linear CCP with t-distribution

for several methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -4229.6 -6499.93 -8313 -7220.37 -3888.63 0
ε̂ 0.00108 0.00847 0.0404 0.0152 4.17× 10−4 0

δ̂ 0 0.002 0.284 0.048 0 0

CCP (-3888.63 and -3891.83 versus -4229.6 and -5778.44 in Tables 13 and 14 respectively). Lastly,

divergence-based DRO is once again very conservative, resulting in zero objective values all the

time.
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Table 14 Optimality and feasibility performances on a joint d= 11 dimensional linear CCP with t-distribution

for several methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -5778.44 -7562.60 -7387.98 -7173.97 -3891.83 0
ε̂ 0.00248 0.0133 0.0144 0.0126 3.97× 10−4 0

δ̂ 0 0 0 0 0 0

Table 15 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with log-normal

distribution for several methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -294.00 -588.58 -784.27 -510.38 -418.30 0
ε̂ 1.45× 10−4 0.0164 0.0902 0.0159 5.11× 10−4 0

δ̂ 0 0.041 0.961 0.048 0 0

Table 16 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with log-normal

distribution for several methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -354.10 -685.01 -683.60 -646.83 -429.75 0
ε̂ 8.07× 10−5 0.0243 0.0333 0.0261 3.33× 10−4 0

δ̂ 0 0.057 0.052 0.033 0 0

Next we consider ξ generated from log-normal distributions with arbitrarily chosen means and

covariance matrices. Tables 15, 16 and 17 show the results for the single CCP, while Tables 18 and

19 show those for the joint CCP. The comparisons are quite similar to the t-distribution cases.

SG in small sample outputs invalid solutions (δ̂ much greater than 0.05), and in large sample

outputs solutions with average objective values (e.g. -683.60 in Table 16) better than our plain RO

(-354.10) but worse than our reconstructed RO (-685.01). FAST remedies the infeasibility issue

of SG in the small-sample cases, but underperforms our reconstructed RO in all cases. Moment-

based DRO outperforms our plain RO but underperforms our reconstructed RO in all cases, and it

continues to struggle in obtaining feasible solutions for high-dimensional problems (δ̂= 1 in Table

17). Lastly, divergence-based DRO continues to be conservative and outputs zero objective values.

In all considered settings, reconstructed RO appears the best among all compared methods in

terms of feasibility and optimality.
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Table 17 Optimality and feasibility performances on a single d= 100 dimensional linear CCP with log-normal

distribution for several methods, using sample size n= 120. Results on moment-based DRO are based on 30

replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -309.93 -784.24 unbounded unbounded -1030.52 0
ε̂ 6.00× 10−6 0.0174 - - 0.2772 0

δ̂ 0 0.063 - - 1 0

Table 18 Optimality and feasibility performances on a joint d= 11 dimensional linear CCP with log-normal

distribution for several methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -0.1284 -1.1166 -4.5359 -1.0369 -0.8360 0
ε̂ 0.00228 0.0157 0.0598 0.0165 0.0131 0

δ̂ 0 0.043 0.646 0.044 0.006 0

Table 19 Optimality and feasibility performances on a joint d= 11 dimensional linear CCP with log-normal

distribution for several methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -0.0844 -1.9373 -1.7135 -1.4058 -1.2021 0
ε̂ 0.0074 0.0239 0.0238 0.0197 0.0131 0

δ̂ 0 0.05 0.011 0.007 0.026 0

4.6. Summary on the Experiment Results

From the results in this section (and additional ones in Appendix EC.7), we highlight the following

situations where our method is the most recommended.

The competitiveness of our method compared with scenario approaches is most seen in small-

sample situations. Classical SG needs a much larger sample size than ours to achieve feasibility.

FAST is capable of obtaining feasible solutions in small-sample cases, but appears more susceptible

than RO in generating unbounded solutions. With reconstruction, our approach tends to work as

well as SG and FAST for large sample (when they are all applicable). Moreover, our reconstruction

has the capability to improve the optimality over plain RO, whereas FAST is by design always more

conservative than SG in terms of optimality. Nonetheless, we should mention that some constraint

removal approaches like sampling-and-discarding (Campi and Garatti (2011)) can improve SG

performances in large-sample situations.
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Compared to our ROs, moment-based DRO can generate infeasible solutions when the problem

dimension is high compared to data size (e.g., d= 100 and n= 120), attributed to the difficulty in

constructing valid moment confidence regions. In cases where moment-based DRO generates valid

solutions, the solution performances seem to be sometimes better, sometimes worse than our plain

RO, but in all considered instances they perform worse than our reconstructed RO. KL-divergence-

based DRO appears to perform poorly in the experiments due to the challenge in obtaining a small

enough divergence ball size (To get a further sense of this behavior, we investigate a very low-

dimensional problem (d= 3) with sufficient sample size in Section EC.7.3, where divergence-based

DRO provides nontrivial but still conservative solutions).

Lastly, compared with SCA, our performance is best seen when the data is non-normal. In this

case the approximate constraint in SCA may not tightly approximate the original chance con-

straint and tends to be significantly more conservative than our approach. Moreover, SCA generally

requires at least some partial distributional knowledge (e.g., moments, support) in deriving the

needed relaxing constraint, in contrast to our approach that is fully data-driven and nonparametric.
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Appendix

EC.1. Missing Proofs in Section 2

Proof of Theorem 2. Proof of 1. Let Bin(n,p) be a binomial variable with number of trials n

and success probability p. Then (4) can be written as

i∗ = min{r : P (Bin(n2,1− ε)≤ r− 1)≥ 1− δ, 1≤ r≤ n2} (EC.1)

Note that by the Berry-Essen Theorem,

P (Bin(n2,1− ε)≤ r− 1)−Φ

(
r− 1−n2(1− ε)√

n2(1− ε)ε

)

= P

(
Bin(n2,1− ε)−n2(1− ε)√

n2(1− ε)ε
≤ r− 1−n2(1− ε)√

n2(1− ε)ε

)
−Φ

(
r− 1−n2(1− ε)√

n2(1− ε)ε

)

= O

(
1
√
n2

)
(EC.2)

uniformly over r ∈N+, where Φ is the distribution function of standard normal. Since i∗ in (EC.1)

is chosen such that P (Bin(n2,1− ε)≤ i∗− 1)≥ 1− δ (where we define i∗ = n2 + 1 if no choice of r

is valid), we have, for any γ > 0, i∗ satisfies

Φ

(
i∗− 1−n2(1− ε)√

n2(1− ε)ε

)
+ γ ≥ 1− δ

for large enough n2, which gives

i∗ ≥ 1 +n2(1− ε) +
√
n2(1− ε)εΦ−1(1− δ− γ) (EC.3)

for large enough n2.

On the other hand, we claim that i∗ also satisfies, for any γ > 0,

Φ

(
i∗− 1−n2(1− ε)√

n2(1− ε)ε

)
≤ 1− δ+ γ (EC.4)

for large enough n2. If not, then there exists an γ > 0 such that

Φ

(
i∗− 1−n2(1− ε)√

n2(1− ε)ε

)
> 1− δ+ γ

infinitely often, which implies

P (Bin(n2,1− ε)≤ i∗− 1) +O

(
1
√
n2

)
> 1− δ+ γ
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or

P (Bin(n2,1− ε)≤ i∗− 1)> 1− δ+ γ̃

infinitely often for some 0< γ̃ < γ. By the choice of i∗, we conclude that there is no r that satisfies

1− δ≤ P (Bin(n2,1− ε)≤ r− 1)≤ 1− δ+ γ̃

infinitely often, which is impossible. Therefore, (EC.4) holds for large enough n2, and we have

i∗ ≤ 1 +n2(1− ε) +
√
n2(1− ε)εΦ−1(1− δ+ γ) (EC.5)

Combining (EC.3) and (EC.5), and noting that γ is arbitrary, we have

√
n2

(
i∗

n2

− (1− ε)
)
→
√

(1− ε)εΦ−1(1− δ) (EC.6)

almost surely. The same argument also shows that i∗ is well-defined for large enough n2 almost

surely.

It suffices to show that

PD2
(1− ε− γ ≤ P (ξ ∈ U)≤ 1− ε+ γ|D1)→ 1 (EC.7)

for any small γ > 0. Note that, conditional on D1, we have P (ξ ∈ U) = P (t(ξ)≤ t(ξ2(i∗))) = F (t(ξ2(i∗)))

where F (·) is the distribution function of t(ξ). Since F (t(ξ))∼U [0,1] by the continuity of t(ξ), we

have,

PD2
(1− ε− γ ≤ P (ξ ∈ U)≤ 1− ε+ γ|D1) (EC.8)

= P (#{Ui < 1− ε− γ} ≤ i∗− 1, #{Ui > 1− ε+ γ} ≤ n2− i∗)

where {Ui} denotes n2 realizations of i.i.d. U [0,1] variables,

#{Ui < 1− ε− γ} and #{Ui > 1− ε+ γ} count the numbers of Ui’s that are < 1− ε− γ and

> 1− ε+ γ respectively

≥ 1−P (#{Ui < 1− ε− γ}> i∗− 1)−P (#{Ui > 1− ε+ γ}>n2− i∗) (EC.9)

Consider the second term in (EC.9). We have

P (#{Ui < 1− ε− γ}> i∗− 1)

= P (Bin(n2,1− ε− γ)> i∗− 1)

= Φ̄

(
i∗− 1−n2(1− ε− γ)√
n2(1− ε− γ)(ε+ γ)

)
+O

(
1
√
n2

)
by the Berry-Essen Theorem, where Φ̄ is the tail distribution function of standard normal

= Φ̄

(
i∗− 1−n2(1− ε)√

n2(1− ε)ε

√
1− ε

1− ε− γ
ε

ε+ γ
+

√
n2γ√

(1− ε− γ)(ε+ γ)

)
+O

(
1
√
n2

)
→ 0 by (EC.6)
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Similarly, for the third term in (EC.9), we have

P (#{Ui > 1− ε+ γ}>n2− i∗)

= P (Bin(n2, ε− γ)>n2− i∗)

= Φ̄

(
n2− i∗−n2(ε− γ)√
n2(ε− γ)(1− ε+ γ)

)
+O

(
1
√
n2

)
by the Berry-Essen Theorem

= Φ̄

(
− i
∗−n2(1− ε)√
n2(1− ε)ε

√
ε

ε− γ
1− ε

1− ε+ γ
+

√
n2γ√

(ε− γ)(1− ε+ γ)

)
+O

(
1
√
n2

)
→ 0 by (EC.6)

Hence (EC.9) converges to 1.

Proof of 2. Using again the fact that, conditional on D1, F (t(ξ)) ∼ U [0,1] and P (ξ ∈ U) =

F (t(ξ2(i∗))), we have

PD2
(P (ξ ∈ U)≥ 1− ε|D1)

= P (#{Ui < 1− ε} ≤ i∗− 1)

= P (Bin(n2,1− ε)≤ i∗− 1)

= Φ

(
i∗− 1−n2(1− ε)√

n2(1− ε)ε

)
+O

(
1
√
n2

)
by using (EC.2)

→ 1− δ by (EC.6)

which concludes Part 2 of the theorem. �

Note that (EC.6) is mentioned in Serfling (2009) Section 2.6.1, and implies that, given D1,

√
n2(P (ξ ∈ U)− (1− ε)) =

√
n2(F (t(ξ2(i∗)))− (1− ε))⇒N

(√
ε(1− ε)Φ−1(1− δ), ε(1− ε)

)
(EC.10)

by using Serfling (2009) Corollary 2.5.2, which can be used to prove Part 1 of the theorem as well

(as in Serfling (2009) Section 2.6.3). From (EC.10), we see that P (ξ ∈ U) concentrates at 1− ε, as

it is approximately (1− ε) +Z/
√
n2 where Z ∼N

(√
ε(1− ε)Φ−1(1− δ), ε(1− ε)

)
.

EC.2. Illustration of Attained Theoretical Confidence Levels

The argument in Lemma 3 and the discussion after Theorem 1 implies that the theoretical confi-

dence level for a given Phase 2 sample size n2 is

1− δtheoretical = PD(P (ξ ∈ U)≥ 1− ε) =
i∗−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k

This quantity is in general not a monotone function of the sample size, but it does converge to 1−δ
as n2 increases, as shown in Theorem 2 Part 2. Figures EC.1 and EC.2 illustrate how δtheoretical

changes with n2 for two pairs of ε and δ. The changes follow a zig-zag pattern, with a general

increasing trend. In the case δ= 0.05 and ε= 0.05 for example, local maxima of δtheoretical occur at

n2 = 59,93,124,153,181, . . .
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Figure EC.1 δtheoretical against n2 when

δ= 0.05 and ε= 0.05

Figure EC.2 δtheoretical against n2 when

δ= 0.01 and ε= 0.01

EC.3. Using RO Reformulations

Results from the following discussion are adapted from Bertsimas et al. (2011). Further details can

be found therein and in, e.g., Ben-Tal et al. (2009). Along with reviewing these results, we also

describe how to cast them in our procedure in Section 2.1.

We focus on linear safety conditions in (1), i.e., g(x; ξ) ∈ A is in the form Ax ≤ b, where A ∈

Rl×d is uncertain and b ∈ Rl is constant. Here A is identified with the random vector ξ. The

following discussion also holds if x is further constrained to lie in some deterministic set, say B. For

convenience, we denote each row of A as a′i and each entry in b as bi, so that the safety condition

can also be written as a′ix≤ bi, i= 1, . . . , l.

It is well-known that in solving the robust counterpart (RC), it suffices to consider uncertainty

sets in the form U =
∏l

i=1Ui where Ui is the uncertainty set projected onto the portion associated

with the parameters in each constraint, and so typically we consider the RC of each constraint

separately.

We first consider ellipsoidal uncertainty:

Theorem EC.1 (c.f. Ben-Tal and Nemirovski (1999)). The constraint

a′ix≤ bi ∀ai ∈ Ui

where Ui = {ai = a0i + ∆iu : ‖u‖2 ≤ ρi} for some fixed a0i ∈ Rd, ∆i ∈ Rd×r, ρi ∈ R, for u ∈ Rr, is

equivalent to

a0i
′
x+ ρi‖∆′ix‖2 ≤ bi

Note that Ui in Theorem EC.1 is equivalent to {ai : ‖∆−1i (ai − a0i )‖2 ≤ ρi} if ∆i is invertible.

Thus, given an ellipsoidal set (for the uncertainty in constraint row i) calibrated from data in the
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form {ai : (ai− µ)′Σ−1(ai− µ)≤ s} where Σ is positive definite and s > 0, we can take a0i = µ, ∆i

as the square-root matrix in the Cholesky decomposition of Σ, and ρi =
√
s in using the depicted

RC.

Next we have the following result on polyhedral uncertainty:

Theorem EC.2 (c.f. Ben-Tal and Nemirovski (1999) and Bertsimas et al. (2011)).

The constraint

a′ix≤ bi ∀ai ∈ Ui

where Ui = {ai :Diai ≤ ei} for fixed Di ∈Rr×d, ei ∈Rr is equivalent to

p′iei ≤ bi
p′iDi = x′

pi ≥ 0

where pi ∈Rr are newly introduced decision variables.

The following result applies to the collection of constraints Ax ≤ b with the uncertainty on

A∈Rl×d represented via a general norm on its vectorization.

Theorem EC.3 (c.f. Bertsimas et al. (2004)). The constraint

Ax≤ b ∀A∈ U

where

U = {A : ‖Q(vec(A)− vec(Ā))‖ ≤ ρ}, (EC.11)

for fixed Ā ∈Rl×d, Q ∈Rld×ld invertible, ρ ∈R, vec(A) as the concatenation of all the rows of A,

‖ · ‖ any norm, is equivalent to

ā′ix+ ρ‖(Q′)−1xi‖∗ ≤ bi, i= 1, ..., l

where ā′i ∈ Rd is the i-th row of Ā, xi ∈ R(ld)×1 contains x ∈ Rd in entries (i− 1)d+ 1 through i d

and 0 elsewhere, and ‖ · ‖∗ is the dual norm of ‖ · ‖.

When ‖·‖ denotes the L2-norm, Theorem EC.3 can be applied in much the same way as Theorem

EC.1, with vec(Ā) denoting the center, Q taken as the square root of the Cholesky decomposition

of Σ−1 where Σ is the covariance matrix, and ρ=
√
s where s is the squared radius in an ellipsoidal

set constructed for the data of vec(A).

Next we have the following theorem to handle (10), which can be proved similarly as for Theorem

EC.1 or by standard conic duality.
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Theorem EC.4. The constraint

ξ′x≤ b ∀ξ ∈ U

where U is defined in (10), and Σ has full rank, is equivalent to

µ′Σ−1/2u+
√
sλ≤ b

M ′Σ−1/2u= x
‖u‖2 ≤ λ,

where λ∈R, u∈Rr are additional decision variables.

EC.4. Further Discussion on Choices of Uncertainty Sets

This section extends the discussions in Section 3 on choosing suitable uncertainty sets.

EC.4.1. Comparing Individualized Ellipsoids and a Single Ellipsoids for Joint
Chance Constraints

We state the following result that compares, in the case of joint chance constraints, between the

use of individual ellipsoids for the stochasticities on different constraints and a single ellipsoid for

all.

Proposition EC.1. Let ξ ∈Rm be a vector that can be represented as ξ = (ξi)i=1,...,k with ξi ∈

Rri and
∑k

i=1 r
i =m. Let Ujoint = {ξ : ‖M(ξ−µ)‖22 ≤ ρjoint} where M is a block diagonal matrix

M =

M 1

M 2

...
Mk

 , (EC.12)

and each M i ∈ Rri×ri. Let Uindividual =
∏k

i=1U i where U i = {ξi : ‖M i(ξi − µi)‖22 ≤ ρindividual} and

(µi)i=1,...,k is defined such that µ= (µi)i=1,...,k analogously as in (ξi)i=1,...,k for ξ. Suppose that Ujoint
and Uindividual are calibrated using the same Phase 2 data, with the transformation maps defined

as tjoint(ξ) = ‖M(ξ−µ)‖22 and tindividual(ξ) = maxi=1,...,k ‖M i(ξi−µi)‖22 respectively.

Consider the RO

minimize f(x) subject to gi(x; ξi)∈Ai, i= 1, . . . , l, ∀ξ ∈ U (EC.13)

Let xjoint be an optimal solution obtained by setting U = Ujoint, and xindividual be an optimal solution

obtained by setting U = Uindividual. We have f(xjoint)≥ f(xindividual). In other words, using Ujoint
is more conservative than using Uindividual.

Proof of Proposition EC.1. The ρjoint calibrated using Phase 2 data is set as tjoint(ξ
2
(i∗joint)

) =

‖M(ξ2(i∗joint)
−µ)‖22 where i∗joint is defined similarly as (4). On the other hand, the ρindividual in the

set Uindividual (equal among all U i), is set as tindividual(ξ
2
(i∗
individual

)) = maxi=1,...,k ‖M i(ξi,2(i∗
individual

) −
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µi)‖22 where (ξi,2(i∗
individual

))i=1,...,k is the corresponding partition of ξ2(i∗
individual

). Using ‖M(ξ−µ)‖22 =∑k

i=1 ‖M i(ξi−µi)‖22 and the fact that
∑k

i=1 yi ≥maxi=1,...,k yi for any yi ≥ 0, we must have ‖M(ξ−
µ)‖22 ≥ maxi=1,...,k ‖M i(ξi − µi)‖22, and so ρjoint ≥ ρindividual. Note that, when projecting to each

constraint, the considered RO is written as

minimize f(x) subject to gi(x; ξi)∈Ai,∀ξi ∈ U i, i= 1, . . . , l

where U i = {ξ : ‖M i(ξi − µi)‖22 ≤ ρjoint} and {ξ : ‖M i(ξi − µi)‖22 ≤ ρindividual} for the two cases

respectively. Since ρjoint ≥ ρindividual, we conclude that f(xjoint)≥ f(xindividual). �

Proposition EC.1 is evident in that the relation tjoint(ξ)≥ tindividual(ξ) leads to a larger Ujoint and

hence a smaller resulting feasible region for (EC.13) compared with Uindividual. It hints that, if the

data across the constraints are uncorrelated, it is always better to use constraint-wise individual

ellipsoids that are calibrated jointly. The same holds if we choose to use diagonalized ellipsoids in

our representation, as these satisfy the block-diagonal structural assumption in the proposition.

On the other hand, if the data across individual constraints are dependent and we want to capture

their correlations in our ellipsoidal construction, the comparison between the two approaches is

less clear.

EC.4.2. Complexity of Uncertainty Sets

Another consideration in choosing uncertainty set in our framework is the set complexity. For

example, we can use an ellipsoidal set with a full covariance matrix, a diagonalized matrix and

an identity matrix, the latest leading to a ball. The numbers of parameters in these sets are in

decreasing order, making the sets less and less “complex”. Generally, more data supports the use of

higher complexity representation, because they are less susceptible to over-fitting. In terms of the

average optimal value obtained by the resulting RO, we observe the following general phenomena:

1. Ellipsoidal sets with full covariance matrices are generally better than diagonalized elliposids

and balls when the Phase 1 data size is larger than the dimension of the stochasticity. However,

if the data size is close to or less than the dimension, the estimated full covariance matrix may

become singular, causing numerical instabilities.

2. In the case where ellipsoidal sets are problematic (due to the issue above), diagonalized ellip-

soids are preferable to balls unless the data size is much smaller than the stochasticity dimension.

Note that the above observations are consistent with theoretical results in covariance matrix esti-

mation. In particular, it is known that the data size required to accurately estimate the covariance

matrix of an m-dimensional random vector is of order (arbitrarily higher than) m if the vector is

sub-Gaussian (Theorem 4.7.1 in Vershynin (2018)) and m logm for more and very general vectors

(Theorem 5.6.1 in Vershynin (2018)). This suggests that using fully estimated covariance matrix

is desirable over diagonalized matrix when data size is slightly above the dimension.
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Table EC.1 Comparing the optimality and feasibility performances between single diagonalized ellipsoid and

individually constructed diagonalized ellipsoids, under sample size n= 120, and we use n1 = 60 and n2 = 60.

RO(Single Diagonalized Ellipsoid) RO(Individual Diagonalized Ellipsoids)
Obj. Val. -4529.51 -6957.26
ε̂ 0 3.55× 10−5

δ̂ 0 0

Table EC.2 Comparing the optimality and feasibility performances between two scaling strategies for

reconstructing the uncertainty set.

Reconstructed RO (Scale 1) Reconstructed RO (Scale 2)
Obj. Val. -7880.06 -7541.29
ε̂ 0.0127 0.0017

δ̂ 0.029 0

EC.4.3. Missing Details for Section 4.3

The example in Section 4.3 utilizes the observations discussed in Appendices EC.4.1 and EC.4.2,

which we detail below. Since the sample size is less than the stochasticity dimension, we use

diagonalized ellipsoids in our constructions. Next, we compare using individualized ellipsoids each

for the stochasticity in each constraint versus a single ellipsoid, as depicted in Proposition EC.1.

Table EC.1 column 2 shows the results using a single ellipsoid over vectorized A, and column 3

shows the counterparts for individually constructed ellipsoids. We observe that the latter has a

smaller average optimal value (-6957.26 versus -4529.51), which is consistent with the implication

from Proposition EC.1.

We further investigate the use of reconstruction for joint CCP. We use maxj=1,...,l{(a′jx̂0−bj)/kj}
to determine the quantile for calibrating the size of the uncertainty set, where kj is a scale parameter

assigned to constraint j. Table EC.2 compares two natural choices of kj for the same problem as

above but with a different Σ. Column 2 uses kj = bj − µ′jx̂0, where µ′j is the sample mean of the

Phase 1 data of a′j. Column 3 uses kj = std(a′jx̂0), the standard deviation of the Phase 1 data

of a′jx̂0. While the performances using these two scale parameters can be problem dependent, we

observe that the former works better in this example (with a better average optimal value) and

hence adopt it for our experiment.

EC.5. Integrating with Machine Learning Tools

We provide some numerical results to support the use of the machine learning tools described in

Section 3. Throughout this section we use the single CCP (11) as an example.

EC.5.1. Cluster Analysis

To illustrate the use of clustering, suppose ξ follows a mixture of N(µ1,Σ1) and N(µ2,Σ2) with

probabilities π1 = π2 = 0.5. Table EC.3 column 2 shows the performance of our RO using a sin-

gle ellipsoidal set. Column 3 shows the result when we first apply 2-mean clustering to Phase 1
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Table EC.3 Optimality and feasibility performances on a single linear CCP with mixture Gaussian distributions

for several methods, under sample size 300, and we use n1 = 240 and n2 = 60.

RO(Unclustered) RO(Clustered) Reconstructed RO(Unclustered) Reconstructed RO(Clustered)
Obj. Val. -940.502 -961.434 -1074.63 -1087.66
ε̂ 2.18× 10−7 3.01× 10−6 0.0162 0.0163

δ̂ 0 0 0.05 0.049

Table EC.4 Optimality and feasibility performances on a d= 1100 dimensional single linear CCP using PCA,

under sample size n= 120, and we use n1 = 60 and n2 = 60.

RO(Diagonalized Ellipsoid) RO(PCA with 11 Components)
Obj. Val. -1039 -1189.32
ε̂ 4.54× 10−16 1.43× 10−5

δ̂ 0 0

data and construct a union of ellipsoids. The average objective value (-961.434) is demonstrably

improved compared to using a single ellipsoid (-940.502). Similarly, the reconstructed RO from

using clustering performs better than RO using a single ellipsoid, and both are better than the

non-reconstructed counterparts.

EC.5.2. Dimension Reduction

To illustrate the use of dimension reduction, we specify ξ as follows. We first generate ξ̃ ∈ R11

under N(µ,Σ), where µ and Σ are arbitrary vector and positive definite matrix. We create a

higher dimensional ξ ∈R1100 by ξ = P ξ̃+ω, where ω is a “perturbation” vector with each element

distributed uniformly on [-0.0005,0.0005] and P ∈R1100×11.

Table EC.4 column 2 shows the results using RO with a diagonalized ellipsoid on the data of

ξ. Diagonalized ellipsoid is used here because the dimension d= 1100, which is much larger than

the Phase 1 data size n1 = 60, causes singularity issue when constructing a full ellipsoid. Column

3 shows the results when we apply principal component analysis (PCA) to reduce the data to the

11 components having the largest variances and use the linearly transformed ellipsoid (10). The

number of components 11 is chosen from the cutoff of leaving out 0.01% of the total variance, which

we declare as negligible. The PCA approach outperforms the use of a basic diagonalized ellipsoid

in terms of average optimal value (-1189.32 versus -1039).

As can be seen in this example, the dimension reduction brought by PCA allows to use a full

ellipsoid that captures the shape of the data better on the relevant directions than using the

original data, whose high dimension forces one to adopt a simpler geometric set such as diagonalized

ellipsoid. Our recommendation in selecting the number of components in PCA is to be conservative,

in the sense of choosing one as large as possible so long as it is small enough to support the use of

a full ellipsoid (roughly speaking, this means it is smaller than the Phase 1 data size).
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Table EC.5 Optimality and feasibility performances on a single linear CCP for basis learning and other

methods, under sample size n= 80, and we use n1 = 21 and n2 = 59.

RO(Ellipsoid) RO(Diagonalized Ellipsoid) RO(Basis)
Obj. Val. -1186.86 -946.33 -1016.95
ε̂ 0.0002 3.03× 10−4 1.22× 10−8

δ̂ 0 0 0

Table EC.6 Optimality and feasibility performances on a single linear CCP for basis learning and other

methods, using sample size n= 300. For learning-based RO, we use n1 = 240 and n2 = 60.

SG RO(Ellipsoid) RO(Clustered) RO(Basis)
Obj. Val. -1191.82 -845.973 -1090.57 -1033.84
ε̂ 0.037 2.20× 10−5 8.73× 10−12 0

δ̂ 0.125 0 0 0

EC.5.3. “Basis” Learning

We consider the last approach described in Section 3 that surrounds each observation with a ball.

For convenience, we call this approach “basis” learning (as we view each of these created balls as

a “basis”). We set ξ ∼N (µ,Σ) for some arbitrarily chosen µ and Σ and d= 11. Table EC.5 shows

that the basis learning approach (column 4) outperforms the use of a diagonalized ellipsoid (column

3), but underperforms the use of a full ellipsoid (column 2), in terms of average optimal value (-

1016.95, -946.33 and -1186.86 respectively). All three approaches are conservative however (δ̂≈ 0).

This roughly indicates that basis learning is capable of capturing some covariance information.

Next we generate ξ from a mixture of Gaussian distribution with 5 components and d= 11. Table

EC.6 shows that basis learning (column 4) outperforms ellipsoid (column 2) in terms of average

optimal value (-1033.84 versus -845.973). However, it does not perform as well compared to using

the union of 5 ellipsoids from clustering (column 3, with an average optimal value -1090.57). This

supports the guidance that, when applying to convoluted data, basis learning is better than using

over-simplified shape, but may not work as well compared to other established machine learning

tools.

EC.6. Tractable Reformulation of DRO under Ellipsoidal
Moment-Based Uncertainty Set

We review the tractable reformulation of moment-based DRO. In particular, we focus on the

extension of the DRO reformulation under first and second moment information in El Ghaoui et al.

(2003) using the ellipsoidal uncertainty set suggested in Marandi et al. (2017).

For single linear CCP with constraint P (ξ′x≤ b)≥ 1− ε, El Ghaoui et al. (2003) shows that the

worst-case constraint, among all distributions generating ξ that have exactly known mean µ and

covariance matrix Σ, can be reformulated as√
1− ε
ε
‖Σ 1

2x‖2−µ′x− b≤ 0. (EC.14)
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In the situation where µ and Σ are unknown but i.i.d. data are available, we can construct an

ellipsoidal moment set V such that P ((µ,Σ)∈ V)≥ 1− δ, using the delta method in Section 5 of

Marandi et al. (2017). We then consider the worst-case chance constraint over distributions with

mean and covariance matrix inside V, i.e.,

inf
Q:(EQ[ξ],EQ[(ξ−EQ[ξ])(ξ−EQ[ξ])′])∈V

Q(ξ′x≤ b)≥ 1− ε (EC.15)

where Q is a distribution generating ξ ∈ Rd, EQ[ξ] is the mean and EQ[(ξ −EQ[ξ])(ξ −EQ[ξ])′])

the covariance matrix under Q. Given (EC.14), the following theorem that extends the result in

Marandi et al. (2017) can be used to provide a tractable reformulation for this worst-case chance

constraint.

Theorem EC.5. Let u ∈ R, Γ̂ ∈ Rd×d, ŵ ∈ Rd, B ∈ R d2+3d
2 × d2+3d

2 , ρ ∈ R be given. We set

svec(Γ) = [Γ11,
√

2Γ12, ...,
√

2Γ1n,Γ22, ...,
√

2Γ(n−1)n,Γnn]′. The constraint

√
x′Γx+w′x+u≤ 0,∀

(
w

svec(Γ)

)
∈ U (EC.16)

with decision variable x∈Rd, where U = U1 ∩U2 and

U1 =

{(
w

svec(Γ)

)
=Bν+

(
ŵ

svec(Γ̂)

)
: ‖ν‖2 ≤ ρ, ν ∈R

d2+3d
2

}
,

U2 =

{(
w

svec(Γ)

)
:w ∈Rd, Γ∈ S+

d

}
,

is equivalent to

ŵ′x+ trace(Γ̂W ) + ρ

∥∥∥∥B′( x
svec(W )

)∥∥∥∥
2

+u+
η

4
≤ 0,

[
W x
x′ η

]
� 0(d+1)×(d+1) (EC.17)

where W ∈Rd×d and η ∈R are additional (dummy) variables, and 0(d+1)×(d+1) is a zero matrix of

size (d+ 1)× (d+ 1).

Theorem EC.5 is an application of Theorem 1 (II) in Marandi et al. (2017) on ellipsoidal uncer-

tainty sets in the form of U . Note that U consists of two intersecting sets, the ellipsoidal set U1
constructed from the delta method discussed in Marandi et al. (2017) that is designed to con-

tain the true moments of ξ with confidence 1− δ, and the set U2 that constrains the covariance

matrix to be positive semidefinite. We reformulate the worst-case chance constraint (EC.15) into

a semidefinite constraint by rewriting the former in the form (EC.16) using (EC.14) and applying

Theorem EC.5.

When ξ has dimension d, the total number of the first and second moments is (3d+ d2)/2. To

form an ellipsoidal set for all these moments using the delta method, one would need to use the

estimated covariance matrix for all these moments, which requires estimating higher-order moments

and has size (3d+d2)/2× (3d+d2)/2 (for more details, see Section 5 of Marandi et al. (2017)). The

resulting optimization problem is a semidefinite program with (5d+ 3d2)/2 + 1 decision variables.
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Table EC.7 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with

non-negativity constraints for several methods, using sample size n= 120. The true optimal value is -1106.23.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -924.05 -1070.75 -1068.17 -1060.04 -893.84 0 -1065.59
ε̂ 4.99× 10−7 0.0158 0.0155 0.0119 8.46× 10−10 0 0.0072

δ̂ 0 0.032 0.019 0.008 0 0 0

Table EC.8 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with

non-negativity constraints for several methods, using sample size n= 336. The true optimal value is -1106.23.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -956.63 -1086.28 -1050.52 -1049.82 -921.232 0 -1065.59
ε̂ 1.34× 10−6 0.0244 0.00534 0.00523 6.15× 10−9 0 0.0072

δ̂ 0 0.045 0 0 0 0 0

EC.7. Additional Numerical Results

This section shows three additional sets of numerical results. The first is the same example as

Section 4.1 but with additional non-negativity constraints. These constraints are added to make

sure that SG and FAST do not generate unbounded solutions. The second set of results contain

a random right hand side quantity in a linear chance constraint. It illustrates how one can use

our reconstruction to enhance performance by transforming the safety condition, in the case that

a direct use seems un-usable at first. Lastly, we present some further numerical investigation of

divergence-based DRO.

EC.7.1. Multivariate Gaussian on a Single Chance Constraint with Non-negativity
Conditions

We consider a modification of the example in Section 4.1

minimize c′x subject to P (ξ′x≤ b)≥ 1− ε, x≥ 0 (EC.18)

where we add a non-negativity constraint and keep all other parts unchanged. We again consider

d = 11 and 100. The main purpose of the modification is to eliminate the unbounded solutions

that occurred in the d= 100 case of (11) when we apply SG and FAST. The comparisons among

different approaches on this problem, shown in Tables EC.7, EC.8, EC.9 and EC.10, are largely

similar to those in Section 4.1, but also bear some notable differences that we highlight here.

In the d= 100 case, when sample size is small (n= 120), SG and FAST can now obtain bounded

solutions. However, SG fails to obtain feasible solutions as shown by δ̂= 1 in Table EC.9, because
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Table EC.9 Optimality and feasibility performances on a single d= 100 dimensional linear CCP with

non-negativity constraints for several methods, using sample size n= 120. The true optimal value is -1195.3.

Results on moment-based DRO are based on 30 replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -832.142 -1111.04 -1195.26 -980.64 -1120.37 0 -1152.35
ε̂ 0 0.0159 0.458 0.0170 0.0095 0 0.0072

δ̂ 0 0.046 1 0.064 0 0 0

Table EC.10 Optimality and feasibility performances on a single d= 100 dimensional linear CCP with

non-negativity constraints for several methods, using sample size n= 2331. The true optimal value is -1195.3.

Results on moment-based DRO are based on 30 replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 2331 2331 2331 2331 2331 2331 -
n1 1318 1318 - 2326 - 1166 -
n2 1013 1013 - 5 - 1165 -
Obj. Val. -1005.62 -1164.47 -1156.76 -1155.51 -1033.58 0 -1152.35
ε̂ 0 0.0397 0.0293 0.0272 5.18× 10−11 0 0.0072

δ̂ 0 0.058 0 0 0 0 0

the sample size is far smaller than the minimum requirement (2331). FAST obtains confidently

feasible solutions that perform better in objective value than our plain RO (-980.64 versus -832.142),

but worse than our reconstructed RO (-1111.04), the latter plausibly attributed to the initial

solutions of FAST that are not in good quality.

In the d= 11 case, SG now achieves feasibility with n= 120 samples, and when the minimum

required sample size n = 336 is used, the solution appears more conservative compared to the

counterpart in Section 4.1, as shown by δ̂ = 0 in Table EC.8 versus δ̂ = 0.056 in Table 3. This can

be explained by the obtained solutions in the current problem being non-fully-supported (i.e., the

number of support constraints is less than d, which gives the problem a lower “intrinsic” dimension).

Note that when the sample size increases from 120 to 336, the solutions of SG necessarily become

more conservative (regardless of the dimension in consideration), which is a consequence of the

nature of constraint addition in SG. On the other hand, the solutions in our RO improve as sample

size increases, plausibly attributed to a better estimation of HPR. Reconstructed RO provides

better solutions than SG and FAST in all four sets of experiments. Nonetheless, we should mention

that some constraint removal approaches like sampling-and-discarding in Campi and Garatti (2011)

are available to enhance the performances of SG. Finally, since the performances of DROs and

SCA follow similarly as in Section 4.1, we do not restate the comparisons with them here.
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Table EC.11 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with random

right hand side for several methods, using sample size n= 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -1143.45 -1173.62 -1182.90 -1167.61 -1138.49 infeasible -1175.05
ε̂ 7.60× 10−6 - 0.0170 0.0910 1.00× 10−7 - 0.0074

δ̂ 0 0.045 0.958 0.053 0 - 0

EC.7.2. Multivariate Gaussian on a Single Chance Constraint with Random Right
Hand Side

We continue to consider the single linear CCP in (11), but with the right hand side quantity b

being random. Specifically, we set b to be generated from a Gaussian distribution with mean 1200

and variance 100 (in this case, b is almost positive for sure). The rest of the problem follows from

Section 4.1. Note that, by the discussion at the end of Section 2.4.2, a direct use of reconstruction

would not improve the solution in this example. However, we can divide b on both sides of the

inequality in the safety condition, which now gives a right hand side value 1 and transformed

stochastiticities as the ratios of ξ and b.

Tables EC.11 and EC.12 present the experiments on a d= 11 dimensional problem with n= 120

and n= 336 sample sizes respectively. The performances of the presented approaches are consistent

with the experiments in Sections 4.1 and 4.2. Specifically, when the sample size is small (n= 120),

our RO is preferable to SG, as it obtains feasible solutions while SG fails. Reconstruction applied

on the described transformed problem continues to work and perform competitively against FAST

and SCA. In particular, when n= 120, it outperforms FAST in terms of achieved objective value,

but slightly falls short of SCA. When n= 336, reconstructed RO, SG, FAST and SCA all perform

very similarly. Note that SCA have assumed moment information and hence are given an upper

hand in this example.

DROs contine to be conservative in this experiment. Moment-based DRO is outperformed by

both plain and reconstructed ROs in both the n= 120 and n= 336 cases. Similar to the example

in Section 4.1, KL-divergence-based DRO obtains an adjusted tolerance level ε∗ = 0, which forces

the decision x to satisfy the safety condition ξ′x≤ b for all ξ ∈Rd, b ∈R, and in this case leads to

an infeasible problem.

EC.7.3. Additional Numerical Investigation on DRO with KL Divergence

We provide more details on constructing KL-divergence balls in DRO, which has been used in

our numerical comparisons. In the case of continuous distributions for generating ξ, constructing

KL balls requires estimating a reference distribution f0 (center of the ball) using kernel density
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Table EC.12 Optimality and feasibility performances on a single d= 11 dimensional linear CCP with random

right hand side for several methods, using sample size n= 336.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 - 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -1149.31 -1175.70 -1178.00 -1178.01 -1143.70 infeasible -1175.05
ε̂ 1.60× 10−6 0.0253 0.051 0.0238 1.00× 10−7 - 0.0074

δ̂ 0 0.035 0.051 0.052 0 - 0

estimation, and then a k-NN or other similar methods to estimate the set size. This selection of the

reference distribution aims to approximate the true distribution as much as possible, and the set size

is chosen such that the divergence ball contains the true distribution with high confidence. Below

we detail these procedures, followed by a very low-dimensional example where these procedures

work in calibrating DRO and allow illustrative comparisons with other approaches.

EC.7.3.1. Bandwidth Selection for Kernel Density Estimation Following Jiang and

Guan (2016), we use kernel density estimation to estimate the reference distribution f0. This

estimation procedure requires the proper selection of a bandwidth parameter, whose theoretical

optimal choice is of order N−
1

m+4 , where N is the sample size and m is the dimension of the

randomness. In the following, we consider bandwidth in the form of BN−
1

m+4 for some B ∈R.

We investigate how the divergence between the reference and the true distributions varies with

the bandwidth parameter used to estimate the reference. We consider a Gaussian distribution with

dimension m= 11, and sample sizes N = 120 and N = 336 (which are considered in Section 4.1).

Figures EC.3 and EC.4 show the KL divergence (estimated from 100,000 Monte Carlo samples

drawn from the true distribution) against the bandwidth choice. In the figures we also show results

with half of the samples sizes to give a sense of the sensitivity (and also motivated from the

necessity of data splitting to be discussed momentarily). Among all the choices, B = 3 appears

the best as it gives the smallest divergence in three out of four different sample sizes. Figures

EC.5 and EC.6 further show the divergences between reference and true distributions when the

truth follows other distributions, namely a Gaussian distribution with dimension m= 100 and a

log-normal distribution with dimension m= 11 respectively. We see that the graphs behave very

differently from each other and the optimal bandwidth choices now deviate from 3, thus showing

that the optimal bandwidth can depend heavily on the underlying distribution.

We note that the constructed f0’s using kernel density estimation seem to be quite far from the

true distribution. For example, in the problem considered in Section 4.1, the KL divergence needs

to be smaller than 1.25 in order to achieve a non-trivial solution. This is substantially smaller

than 5.5, the lowest observed divergence value among all of Figures EC.3–EC.6. In other words,
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Figure EC.3 Divergence with different

bandwidth parameter B and sample size

N = 120,60. The randomness is Gaussian

distributed with dimension m= 11.

Figure EC.4 Divergence with different

bandwidth parameter B and sample size

N = 336,168. The randomness is Gaussian

distributed with dimension m= 11.

Figure EC.5 Divergence with different

bandwidth parameter B. The randomness is

Gaussian distributed with dimension m= 100.

Figure EC.6 Divergence with different

bandwidth parameter B. The randomness is

log-normal distributed with dimension

m= 11.

kernel density estimation is not efficient enough to obtain a good enough reference distribution for

implementing DRO in this case.

EC.7.3.2. Construction of Divergence-Based Uncertainty Sets Once we obtain a ref-

erence distribution, the next task is to calibrate the size of the uncertainty set. More precisely, we

need to determine γ for the set {f :D(f‖f0)≤ γ}, where D denotes the KL divergence, to cover

the true distribution (with high confidence). This calls for the literature of divergence estimation.

Here, we discuss the k-NN estimator studied by Wang et al. (2009), Póczos et al. (2012). But before

we proceed, we note that since f0 itself is estimated from data, we need to be careful in controlling

the statistical error in simultaneously estimating f0 and γ. We consider two approaches. One is to

use all the data to construct f0 and reuse the same data to estimate γ. Another is to split the data

into two groups, one for estimating f0 and another for γ. In our experiments, the first approach

turns out to consistently give a negative γ, indicating a poor estimation error (which is expected
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Figure EC.7 Estimated divergence with

different k-NN parameter k using 336

samples.

Figure EC.8 Histogram of the divergence

estimates for γ with k= 1 and 336 samples.

as the combined statistical error from f0 and γ is hard to control). Therefore, we adopt the second

approach that splits the data.

We investigate the quality of k-NN estimation with different choices of k, using an example of

Gaussian distribution with m = 11 and sample size 336. Here we split the data into two equal

halves, and use the first half to estimate f0 with bandwidth B = 3 and the second half to estimate

the divergence to calibrate γ. Figure EC.7 shows the average point estimate of the divergence using

k-NN among 1000 experimental replications, against k. We see that k= 1 gives the closest estimate

to the true divergence (5.5, using B = 3 in Figure EC.4). This observation is consistent with the

known result in the literature that k= 1 gives the smallest bias. However, even in this case the bias

is still substantial, likely due to insufficient sample size. The performance is worse as k increases.

Figure EC.8 further shows the histogram of divergence estimates from 1000 experimental replica-

tions with k= 1. The distribution of the estimates appears very spread out. Moreover, the biggest

realized estimate (less than 3.5) is still far away from the true divergence (5.5 in Figure EC.4). As

noted in Wang et al. (2009), estimating divergence for high-dimensional distributions with small

sample typically incurs large variances and is challenging, in line with our observations here. For

problems with even higher dimension (e.g., the setting in Figure EC.5), we expect it to be even

more difficult to obtain a reasonable divergence estimate.

EC.7.3.3. A Low-Dimensional Example for Divergence-Based DRO. Since using

divergence-based DRO in the previously considered problem size (e.g., dimension 11) appears prob-

lematic, we investigate a very small problem with d= 3. We consider a single linear CCP under

a 3-dimensional Gaussian distribution. When we have only 120 samples, divergence-based DRO

gives an adjusted tolerance level ε∗ = 8.5661e− 07, which is difficult to solve with sufficient accu-

racy using SAA and also likely leads to a very conservative solution. We therefore increase the

sample size to 10,000, and finally obtain ε∗ = 0.0054, which allows us to solve via SAA with 500
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Table EC.13 Optimality and feasibility performances on a single d= 3 dimensional linear CCP with Gaussian

distribution for several methods, using different sample sizes.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 10000 -
n1 60 60 - 61 - 5000 -
n2 60 60 - 59 - 5000 -
Obj. Val. -1000.62 -1056.59 -1062.54 -1041.47 -916.33 -1036.19 -1051.08
ε̂ 0.0010 0.0166 0.0248 0.0149 3.52× 10−7 0.0055 0.0072

δ̂ 0 0.023 0.004 0.003 0 0 0

Monte Carlo samples. Table EC.13 shows its performance and compares with other approaches.

Divergence-based DRO (with sample size 10,000) is now less conservative than moment-based

DRO and our plain RO, but is outperformed by reconstructed RO, SG and FAST, all with a much

smaller sample size (120), and SCA.
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