
ar
X

iv
:1

00
9.

41
53

v4
 [

cs
.D

M
]

 1
4

M
ar

 2
01

9

Maximizing Sequence-Submodular Functions and its Application to

Online Advertising

Saeed Alaei ∗ Ali Makhdoumi † Azarakhsh Malekian ‡

Abstract

Motivated by applications in online advertising, we consider a class of maximization prob-
lems where the objective is a function of the sequence of actions as well as the running duration
of each action. For these problems, we introduce the concepts of sequence-submodularity and
sequence-monotonicity which extend the notions of submodularity and monotonicity from func-
tions defined over sets to functions defined over sequences. We establish that if the objective
function is sequence-submodular and sequence-non-decreasing, then there exists a greedy algo-
rithm that achieves 1− 1/e of the optimal solution.

We apply our algorithm and analysis to two applications in online advertising: online ad
allocation and query rewriting. We first show that both problems can be formulated as maxi-
mizing non-decreasing sequence-submodular functions. We then apply our framework to these
two problems, leading to simple greedy approaches with guaranteed performances. In particular,
for online ad allocation problem the performance of our algorithm is 1 − 1/e, which matches
the best known existing performance, and for query rewriting problem the performance of our
algorithm is 1 − 1/e1−1/e which improves upon the best known existing performance in the
literature.

1 Introduction

Search advertising continues to power the growth of online advertising. For instance, Google
AdWord’s revenue accounts for most of its revenue, amounting to over twenty billion dollars in
the first quarter of 2018.1 At the core of advertising for such search engines, there is a demand to
allocate relevant ads to user queries. Advertisers bid on queries that are most likely to generate
clicks and conversions for them, and ad allocators want relevant ads for their users to maximize
revenue on their platforms. This problem can be cast as an online allocation problem where the
search engine decides on the order of the ads to show for a sequence of arriving queries. The goal
of the ad allocator is to maximize its revenue which is a function of the sequence of allocations.

This online allocation problem demands to develop computationally efficient solutions with
guaranteed performances. In this regard, the greedy approach is a natural choice leading to simple
implementations. In particular, the greedy algorithm has the advantage that it can be applied in
a variety of settings where complete knowledge of the problem is not available or in online settings
where the input is revealed gradually. For maximizing set-submodular functions Nemhauser et al.
(1978), Nemhauser and Wolsey (1978), and Wolsey (1982) show that a greedy algorithm achieves
1 − 1/e of the optimal solution (subject to some constraints). However, the online ad allocation

∗Google Research, saeed.a@gmail.com
†Fuqua School of Business, Duke University, ali.makhdoumi@duke.edu
‡Rotman School of Management, University of Toronto, azarakhsh.malekian@rotman.utoronto.ca
1https://www.cnbc.com/2018/06/27/googles-adwords-and-doubleclick-have-been-rebranded-and-reorganized.html

1

http://arxiv.org/abs/1009.4153v4
https://www.cnbc.com/2018/06/27/googles-adwords-and-doubleclick-have-been-rebranded-and-reorganized.html

objective function is defined over sequences rather than sets for which the order of allocations
matter. This raises the question of whether there exists natural extensions of set-submodular
functions to functions defined over sequences. In this paper, we develop such a framework which
enables us to obtain performance guarantees for greedy algorithms that are the same as non-
decreasing submodular functions over sets. We apply our algorithm and analysis to two applications
in online advertising, namely, online ad allocation and query rewriting and provide computationally
efficient algorithms with guaranteed performances.

1.1 Contribution

The contribution of our work is twofold. First, we introduce a framework for solving a broad class
of maximization problems where the objective function is defined over sequences. In particular, we
introduce the notion of sequence-submodular functions which extends the notion of submodularity
over sets to submodularity over sequences. We define sequence submodularity over both continuous
and discrete sequences and carry out the analysis of these two cases separately. Our main results
show that if the objective function is sequence-submodular, sequence-non-decreasing, and in the
case of continuous sequences differentiable, then a greedy approach achieves 1− 1/e of the optimal
solution subject to a constraint on the maximum length of the sequence. In our algorithm, we solve
a collection of local optimization problems and then form a global solution based on the solution
of these local problems. Furthermore, we show that even if the local problems cannot be solved
optimally (e.g., because of limited computational or time resources), our algorithm and analysis still
provide a performance guarantee. In particular, if the solutions of the local optimization problems
are at least α times the optimal local solutions, then our algorithm achieves 1− 1/eα of the overall
optimal solution.

Second, we present two applications of our framework to search advertising. In our first appli-
cation, we show that online ad allocation problem can be formulated as maximizing a sequence-
submodular function. We then apply our algorithm and analysis and obtain a greedy algorithm
that achieves

(

1− 1/e
)

− (bid to budget ratio) of the optimal revenue, where the bid to budget
ratio is defined as the ratio of the maximum payment to minimum budget.2 In particular, if the
bid to budget ratio is very small, then our algorithm achieves 1 − 1/e of the optimal revenue.
This is the same as the one obtained in Goel and Mehta (2008), using a more involved analysis
based on the techniques developed in Karp et al. (1990). In our second application, we consider
query rewriting for online ad allocation which is a technique to improve the relevance of ad allo-
cation. Again, we show that ad allocation with query rewriting can be formulated as maximizing
a sequence-submodular function. We then apply our algorithm and analysis and obtain a greedy

algorithm that achieves
(

1− 1/e1−
1

e

)

−(bid to budget ratio) of the optimal solution. In particular,

if the bid to budget ratio is very small, then our algorithm achieves 1−1/e1−
1

e ≈ 0.47 of the optimal
revenue, improving upon the 1/4 approximation of Malekian et al. (2008).

1.2 Related Work

Submodularity has been studied in more depth in recent years because of its applications to
combinatorial auctions and the fact that many important problems in computer science, eco-
nomics, and operations can be formulated as submodular function maximization. Instances include
submodular welfare maximization problems such as Lehmann et al. (2006), Khot et al. (2005),

2We consider a general ad allocation problem in which the query distribution is unknown. Therefore, we cannot
use LP rounding to solve this problem.

2

Dobzinski and Schapira (2006), Vondrák (2008), Feige (2009); viral marketing and influence max-
imization over a network such as Kempe et al. (2003), Mossel and Roch (2010); and generalized
assignment problems such as Fleischer et al. (2006). Another prominent application is machine
learning and in particular data summarization Mirzasoleiman et al. (2016), Lin and Bilmes (2011),
recommender systems Gabillon et al. (2013), and crowd teaching Singla et al. (2014).

The greedy approach is a natural tool to solve maximization problems with a submodular
objective function. Nemhauser and Wolsey (1978) show that the greedy approach gives a 1− 1/e-
approximation for maximizing a non-decreasing submodular function over a uniform matroid.
Nemhauser et al. (1978) consider this problem over the independence system. They show that if
the independence system is the intersection of M matroids, the greedy algorithm gives a 1/(M +1)
approximation. Goundan and Schulz (2007) generalize both of these results and show that if an α-
approximate incremental oracle is available, then the greedy solution is a 1−1/e1/α approximation
for maximizing a non-decreasing submodular function over a uniform matroid and an 1/(αM + 1)
approximation for the intersection of M matroids. Feige et al. (2011) provide a general framework
for solving the non-monotone submodular problems. More recently, Asadpour and Nazerzadeh
(2015) and Adamczyk et al. (2016) study maximizing stochastic submodular functions. In partic-
ular, Asadpour and Nazerzadeh (2015) show that a greedy algorithm obtains 1/2 of the optimal
value subject to a matroid constraint. Furthermore, they prove that the greedy algorithm obtains
1−1/e of the optimal value for uniform matroid constraints. Relatedly, Golovin and Krause (2011)
extend submodularity to adaptive policies for solving stochastic optimization problems under par-
tial observability.

Our paper generalizes the concept of submodularity to functions defined over sequences in-
stead of sets. Since the circulation of an early version of our paper, extensions of submodularity
to other interesting settings have been studied in Li and Milenkovic (2017), Tschiatschek et al.
(2017), and Mitrovic et al. (2018). In particular, Li and Milenkovic (2017) consider a combination
of submodularity and hypergraphs within the context of hypergraph clustering. More recently,
Tschiatschek et al. (2017) and Mitrovic et al. (2018) use a directed graph connecting the items to-
gether with a submodular function on its edges to define functions over sequences. In their setting,
the edges of the directed graph encode the additional value of selecting elements in a particular
order. Their setting and results are different from ours. In particular, the sequence functions that
are defined with directed graphs do not have diminishing return property and are not equivalent to
our class of sequence-submodular functions. Moreover, the guarantee of their proposed algorithm
depends on the maximum degree in the underlying graph and the length of the sequence and is
worse than 1− 1/e.

Our first application is online ad allocation problem. There is a considerable amount of work on
AdWords auctions and in particular online ad allocation problem (see Mehta (2013) for a survey).
In the online ad allocation problem, the goal is to match incoming queries to advertisers with the
goal of maximizing the revenue. Several papers such as Mehta et al. (2007), Lahaie et al. (2007)
have studied this problem. In particular, assuming that the maximum bid is very small compared to
budgets, Mehta et al. (2007) provide a deterministic algorithm with the competitive ratio of 1−1/e
in the worst case model. It can be shown that the competitive ratio for the greedy algorithm is 1/2
in the worst case model. Subsequently, Goel and Mehta (2008) showed that the competitive ratio
of the greedy approach in the i.i.d model is 1− 1/e and the analysis is tight. Their proof is partly
based on the techniques used in Karp et al. (1990) for the online bipartite matching problem. Our
framework, however, provides a simple greedy algorithm that achieves the same 1−1/e competitive
ratio (under the same common assumption that the maximum bid is very small compared to
budgets). The offline variant of ad allocation has been studied in Andelman and Mansour (2004)
and Fleischer et al. (2006), where they show that the problem is NP-complete with the best known

3

approximation factor of 1− 1/e.
Our second application is query rewriting in online ad allocation. There is a large literature

on clustering and mining of search logs to generate query suggestions for improving web and paid
search results. The goal of query rewriting is to define a succinct set of rewrites and assign each
query to a subset of rewrites. With query rewriting, for each arriving query, the ad allocator
finds the most relevant ad by searching over the ads associated with the rewrites assigned to that
query (see Jones et al. (2006), Zhang and Jones (2007), and Singh et al. (2012)). In particular,
Malekian et al. (2008), consider the problem of query rewriting in the context of search advertising
and provide an algorithm that achieves 1/4 of the optimal revenue. Again, our framework provides

a simple greedy algorithm that achieves the improved 1− 1/e1−
1

e ≈ 0.47 approximation.

1.3 Organization

In Section 2, we formulate the online ad allocation problem as maximizing a function defined over
continuous sequences. In Section 3, we introduce non-decreasing sequence-submodular functions
over continuous sequences and establish that in maximizing such a function, a greedy algorithm
achieves 1− 1/e of its optimal solution. We then show that the objective function formulating the
online ad allocation problem is non-decreasing and sequence-submodular, showing that a greedy
algorithm achieves 1 − 1/e of its optimal solution. In Section 4, we introduce query rewriting
problem in the context of search advertising and formulate it as maximizing a function defined
over discrete sequences. In Section 5, we describe our framework for maximizing non-decreasing
sequence-submodular functions defined over discrete sequences. We then show that the objective
function formulating the query rewriting problem is non-decreasing and sequence-submodular, and
establish that our greedy algorithm achieves 1− 1/e1−1/e of its optimal solution. We conclude the
paper in Section 6. All the omitted proofs are included in the appendix.

2 Online Ad Allocation

Search advertising constitutes one of the largest resource allocation problems, both in terms of
the capital and the number of items. In online advertising mechanisms used by search engines,
advertisers submit their bid to the search engine for each keyword (also referred to as query type)
and their total budget. Whenever a user searches for a service or product, the search engine (also
referred to as ad allocator) decides on a set of relevant ads to display. At the core of this service,
there is an allocation algorithm that allocates ads to an arriving query, based on the relevance of
the query to ads and the budget of advertisers. This problem is inherently online since the ad
allocator needs to show ads whenever a query arrives, and it does not have complete information
about the arriving queries in advance. The objective of this online ad allocation problem is to
find a way to perform this allocation to achieve maximum revenue. We next formally define this
problem.

2.1 Problem Formulation

We let A denote the set of m ads (also referred to as advertisers), and Q denote the set of n query
types. When a query arrives, the ad allocator assigns this query to a set of ads to be displayed
along-side organic results. To capture the limit on the number of slots for sponsored ads, we assume
each query is assigned to at most d ads. Each assignment of a query to an advertiser generates
revenue for the ad allocator which is equal to the payment of the advertiser. In particular, we let
pij be the payment of advertiser i ∈ A to the ad allocator for showing ad i to a query of type

4

11

nn

22

11

22

mm

QueriesQueries AdsAds

jj

d adsd ads

d adsd ads

d adsd ads

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1: A configuration s assigns each query j ∈ Q = {1, . . . , n} to at most d ads in A =
{1, . . . ,m}.

11

22

11

22

Queries Ads

11

22

11

22

Queries Ads

11

22

11

22

Queries Ads

11

22

11

22

Queries Ads

s1s1

s3s3

s2s2

s4s4

Figure 2: The four configurations in the setting of Example 1.

j ∈ Q. This payment is a function of the click-through rate of the ad, the relevance of the ad to the
query, the bid of the advertiser for that query, and possibly other parameters. Each advertiser has
a limited budget and showing the ad of an advertiser that has consumed her entire budget cannot
provide revenue. For each advertiser i ∈ A, we let Bi ∈ R

+ denote its budget which represents
the total payment the advertiser is willing to pay for a given period of time. Therefore, at each
time (based on the remaining budgets of the advertisers and the payments) the ad allocator should
decide on the mapping from queries to ads, defined next.

Definition 1 (Configuration). A configuration s is a mapping from query types to ads such that
each query type is mapped to at most d ads. Formally, a configuration s is a collection of sets
s(j) ⊆ A for all j ∈ Q such that |s(j)| ≤ d. We let S be the set of all possible configurations.
Figure 1 illustrates the definition of configuration.

The revenue of the ad allocator is the sum of the revenues generated for each query given the
configuration that is used by the ad allocator, as described next.

5

2.2 Ad allocator’s Decision and Revenue

We let T denote the end of time horizon and assume a sequence of queries are arriving over [0, T]
according to a Poisson point process with rate 1 (the rate one assumption has no bearing on our
results, but simplifies the exposition). The type of each query is an i.i.d. random variable drawn
from a fixed but possibly unknown distribution q = (q1, · · · , qn) where qj is the probability of a
query being of type j. Therefore, for any interval of length ∆t ∈ R

+, the expected number of type
j queries arriving in a period of length ∆t is (∆t)qj .

The next definition captures the decision of ad allocator regarding the sequence of configurations
used during the period [0, T].

Definition 2 (Allocation Strategy). We call any sequence of configurations over time [0, T] an
allocation strategy which is represented by

H =
(

(s1,∆t1) , · · · , (sk,∆tk)
)

,

where si ∈ S, ∆ti ∈ R
+,
∑k

i=1 ∆tk = T , and k ∈ N. This sequence indicates that the ad allocator
uses each configuration si (in order) for a duration of ∆ti for all i ∈ {1, · · · , k}. We let H(S)
denote the set of all possible allocation strategies.

For any given allocation strategy H we let u(H) be the expected revenue of the ad allocator
for using allocation strategy H, where the expectation is taken with respect to the Poisson random
process governing the arrival of queries and distribution q for the type of queries. Therefore, the
problem of the ad allocator can be written as

max
H∈H(S)

u(H).

Note that the sequence H can be chosen adaptively. That is, for any t ∈ [0, T], the configuration
used at time t depends on the query types that have arrived before time t as well as the configu-
rations used to serve those queries.3 In the next example, we illustrate the definition of allocation
strategy and revenue of the ad allocator.

Example 1. Suppose d = 1 and there are two advertisers and two query types, i.e., A = {1, 2}
and Q = {1, 2}. We let T = 1 and the payments be

p11 = 2, p12 = 1, p21 = 1, p22 = 3,

and the budgets be B1 and B2. We also let q1 and q2 be the probability of query types 1 and 2,
respectively. In this setting, there exist four possible configurations as follows (see Figure 2)

s1 =
(

s1(1) = {1}, s1(2) = {1}
)

, s2 =
(

s2(1) = {1}, s2(2) = {2}
)

,

s3 =
(

s3(1) = {2}, s3(2) = {1}
)

, s4 =
(

s4(1) = {2}, s4(2) = {2}
)

.

For instance, configuration s1 maps both queries to ad 1 and configuration s2 maps queries of
type 1 to ad 1 and queries of type 2 to ad 2. We next find the revenue of the allocation strategy
A = ((s1, 1)), i.e., running configuration 1 for duration [0, 1]. Since s1(1) = s1(2) = {1}, for both
types of queries the ad allocator shows ad 1 until ad 1 runs out of budget. We let N1 be the number
of type one queries in period [0, 1] and N2 be the number of type two queries. For a given N1 and
N2, to find the revenue we need to consider the following cases:

3More precisely, if for any s ∈ [0, T] we let Fs be the σ-algebra of the events happened in the interval [0, s), then
the configuration used at time t must be Ft-measurable.

6

• The budget constraint is not binding, i.e., N1p11 + N2p12 ≤ B1: in this case, we can show
ad 1 for both types of queries for the entire time interval. The generated revenue in this case
becomes N1p11 +N2p12.

• The budget constraint is binding, i.e., N1p11 +N2p12 > B1: in this case we can only show ad
1 so long as its remaining budget is above the payment for the query type. In this case, the
revenue belong to the interval (B1 −maxj∈Q p1j, B1].

3 Continuous Sequence-Submodular Functions and their Maxi-

mization

In this section, we define our framework for sequence submodular function maximization and then
apply it to online ad-allocation problem. To this end, we first introduce continuous sequences to-
gether with the notion of sequence functions, their monotonicity, and their submodularity. We then
find a greedy algorithm to maximize sequence submodular functions and establish its performance.
Finally, we apply our algorithm and analysis to online ad allocation problem.

3.1 Continuous Sequences: Definition and Operations

For any finite set of elements S, the sequence A =
(

(s1,∆t1), · · · , (sk,∆tk)
)

where k ∈ N ∪ {0}
and si ∈ S and ∆ti ∈ R

+ is called a continuous sequence. The length of a continuous sequence
A = ((s1,∆t1), · · · , (sk,∆tk)) denoted by |A| is equal to

∑k
i=1∆ti. We denote the set of all finite

continuous sequences of S by HC(S), formally defined as

H
C(S) =

{

A =
(

(s1,∆t1), · · · , (sk,∆tk)
)

| k ∈ N ∪ {0}, si ∈ S,∆ti ∈ R
+
}

.

Throughout, we use ∅ to denote the empty sequence. For instance, each allocation strategy in
online ad allocation problem is a continuous sequence where each configuration (see Definition 1)
is an element and each allocation strategy (see Definition 2) is a continuous sequence.

We say two continuous sequences A and B are equivalent and denote it by A ≡ B if they
have the same length and their corresponding elements are the same. We next define three key
operations on continuous sequences which we use throughout our analysis.

Definition 3 (Concatenation). For two continuous sequences A and B, their concatenation de-
noted by A⊥B is a new sequence that is the result of attaching the beginning of sequence B to the
end of sequence A.

For instance, in the context of online ad allocation the concatenation of two allocation strategies
A and B, i.e., A⊥B is an allocation strategy that uses the configurations specified by A (in order)
followed by configurations specified by B.

Definition 4 (Refinement). The refinement of a continuous sequence A =
(

(s1,∆t1), · · · , (sk,∆tk)
)

in the interval [x, y) denoted by A[x,y) is a subsequence of A that contains all the elements of A
starting from time x to time y. Formally, we have

A[x,y) =
(

(sf ,∆tf − δ), (sf+1,∆tf+1), · · · , (sl−1,∆tl−1), (sl,∆tl − δ′)
)

,

where f, l ∈ N and δ, δ′ ∈ R
+ ∪ {0} are uniquely defined from the following relations:

f−1
∑

i=1

∆ti ≤ x <

f
∑

i=1

∆ti, δ = x−

f−1
∑

i=1

∆ti,

l−1
∑

i=1

∆ti < y ≤
l
∑

i=1

∆ti, δ′ =

l
∑

i=1

∆ti − y.

7

For instance, in the context of online ad allocation, the refinement of allocation strategy A in
the interval [x, y) is an allocation strategy which contains all the configurations specified by A (in
the same order) from time x to time y.

Definition 5 (Domination). A continuous sequence A is dominated by another continuous se-
quence B, denoted by A ≺ B, if we can remove some elements of B to obtain A. Formally,
for two continuous sequences A and B, we have A ≺ B if and only if there exists m ∈ N and
0 ≤ x1 < x2 < · · · < x2m ≤ |B| such that

A ≡ B[x1,x2)⊥ · · · ⊥B[x2m−1,x2m).

For instance, in the context of online ad allocation for two allocation strategies A and B we
have A ≺ B, if we can obtain A be removing some of the configurations in B (by either decreasing
their running time or eliminating the configuration entirely) and keeping the order of the remaining
configurations.

In the next section, we use these three operations to define the class of submodular non-
decreasing continuous sequence functions.

3.2 Submodular Non-decreasing Continuous Sequence Functions

Continuous sequence functions are functions whose domain are continuous sequences. Formally,
given a finite set S, any function u : HC(S)→ R is a continuous sequence function. We next define
the key attributes of continuous sequence functions, namely sequence-non-decreasing, sequence-
submodularity, and differentiability. These attributes are the analogy of non-decreasing submodular
functions defined over sets and enable us to provide performance guarantees for greedy algorithms
in maximizing continuous sequence functions.

Definition 6. A continuous sequence function u is sequence-non-decreasing if

u(A) ≤ u(B), ∀A,B ∈ HC(S) such that A ≺ B,

u(∅) = 0. (1)

A continuous sequence function u is sequence-submodular if

u(C|A) ≥ u(C|B), ∀A,B,C ∈ HC(S) such that A ≺ B, (2)

where u(B|A) is the marginal value of the sequence function defined as

u(B|A) = u(A⊥B)− u(A), ∀A,B ∈ HC(S).

A continuous sequence function u : HC(S)→ R is differentiable if for any A ∈ HC(S), u(A[0,t)) is
continuous and differentiable with a continuous derivative with respect to t for all t ∈ [0,∞) except
at a finite number of points for which it may have different left and right derivatives and hence a
non-continuous derivative.

In the next section, we provide a greedy algorithm to maximize any continuous sequence function
satisfying the following assumption.

Assumption 1. The continuous sequence function u is sequence-non-decreasing, sequence-submodular,
and differentiable.

8

3.3 Greedy Algorithm for Maximizing Continuous Sequence Functions

In this section, we consider the problem of maximizing a continuous sequence function subject to
a given length constraint. In particular, we develop a greedy algorithm for such maximization
problem and establish its performance guarantee for sequence functions satisfying Assumption 1.

For a given S and continuous sequence function u : HC(S) → R, and time horizon T ∈ R
+,

the objective is to find a sequence H ∈ HC(S) that maximizes u subject to the length constraint
|H| ≤ T , i.e.,

max
H∈HC(S)

u(H)

s.t. |H| ≤ T. (3)

We next introduce a notation that we use in stating our algorithm and results for the continuous
setting. For an element s ∈ S, time duration δ ∈ R

+, and continuous sequence A ∈ HC(S), we
define u̇s(δ|A) as

u̇s(δ|A) =
d

dx
u((s, x)|A)

∣

∣

∣

x=δ
(4)

which represents the rate of increasing u(A) if we continue using element s after using it for duration
δ. We also define

u̇s(0|A) = lim
δ→0+

u̇s(δ|A), (5)

which represents the rate of increasing u(A) if we start using element s after using sequence A. Note
that u̇s(δ|A) is always defined (except for finite number of points) because (4) can be rewritten as
follows

d

dx
u((s, x)|A)

∣

∣

∣

x=δ
=

d

dx

(

u(A⊥(s, x)) − u(A)
)

∣

∣

∣

x=δ
=

d

dx
u(A⊥(s, x))

∣

∣

∣

x=δ
=

d

dx
u((A⊥(s,∞))[0,|A|+x))

∣

∣

∣

x=δ
,

and by Assumption 1 (in particular, differentiability) d
dxu((A⊥(s,∞))[0,|A|+x))

∣

∣

∣

x=δ
exists except for

a finite number of points. Also note that with Assumption 1, u̇s(δ|A) is a continuous function over
R
+ except at a finite number of points.
Our key result presented next establishes the performance of a greedy algorithm for maximizing

continuous sequence functions.

Theorem 1. Suppose Assumption 1 holds for a continuous sequence function u. For any α ∈ [0, 1]
and a sequence H =

(

(s1,∆t1) , · · · , (sk,∆tk)
)

in HC(S) with |H| = T , if for all t ∈ [0, T) we have

d

dt
u
(

H[0,t)

)

≥ αmax
s∈S

u̇s

(

0|H[0,t)

)

, (6)

then

u (H)

u (O)
≥ 1−

1

eα
,

where O ∈ HC(S) denotes the optimal solution of problem (3).4

4Note that an optimal solution O exists. This follows from Weierstrass extreme value theorem.

9

t← 0 ;
i← 1 ;
H ← ∅ ;
while t < T do

find (si,∆ti) such that ∀δ ∈ [0,∆t) : u̇si
(

0|H⊥(si, δ)
)

≥ αmaxs∈S u̇s
(

0|H⊥(s, δ)
)

;
H ← H⊥(si,∆ti) ;
t← t+∆ti ;
i← i+ 1 ;

end

Algorithm 1: Greedy algorithm for continuous setting

Theorem 1 states that if the elements of the sequence H are chosen such that at each point
t ∈ [0, T), the derivative of u is at least α times its optimal local maximum, then the resulting
sequence yields 1− 1/eα of the optimal solution (global maximum).

We next outline the key idea of this result for α = 1 (the complete proof is given in the
Appendix). First, using sequence-submodularity and differentiability, we show that the rate of
increase in the function value with the greedy choice is as large as the time average marginal
increase by concatenating any other sequence. Formally, for all B ∈ HC(S) and t ∈ [0, T] we show

max
s∈S

u̇s

(

0|H[0,t)

)

≥
1

|B|
u(B|H[0,t)).

Substituting the optimal sequence, i.e., O, for B and then using non-decreasing property, we show
that this rate of increase is as large as the time average difference between the function value of
the optimal solution and the function value of the current sequence. Formally, we have

max
s∈S

u̇s

(

0|H[0,t)

)

≥
1

T

(

u(O)− u(H[0,t))
)

.

This provides a recursive relation between the utility of the greedy choice and the optimal choice.
Using this recursive relation we then establish that the function value of sequence H is at least
1− 1/e times the function value of the optimal solution O.

Motivated by Theorem 1, Algorithm 1 presents our greedy algorithm for maximizing non-
decreasing, submodular, and differentiable sequence functions.

Algorithm 1 starts with an empty sequence H (the initialization is H = ∅) and at each time t
finds an element si together with an interval of running it (i.e., [t, t+∆ti)) such that at any time
in this interval, the rate of increasing function u is at least α times the maximum rate of increase
among all elements of S. The following which is an immediate corollary of Theorem 1 formally
states the performance of Algorithm 1.

Corollary 1. Suppose Assumption 1 holds for a continuous sequence function u. Algorithm 1
generates a continuous sequence with value at least 1− 1/eα of the optimal solution.

We point out a few remarks regarding Algorithm 1. First, note that the algorithm, in general,
may not terminate, however, if it terminates with the resulting H, then u(H) is at least 1− 1

eα times
the optimal solution. Second, in Algorithm 1, each time that we switch the element in use, we need
an incremental oracle to find the next element and the duration of using it which is α-optimal.
This incremental oracle is specific to each problem. We next show that for online ad allocation
problem, the algorithm terminates in finite time and the incremental oracle can be found exactly,
i.e., with α = 1.

10

3.4 Application to Online Ad Allocation

We first introduce a slight variation of the online ad allocation problem and then show the revenue
function for that variation satisfies Assumption 1. We then use Theorem 1 to establish the per-
formance of our greedy algorithm for the variation. Finally, using these results, we establish the
performance of the greedy algorithm for the original online ad allocation problem.

Recall that pij is the payment of advertiser i ∈ A to the ad allocator for showing ad i to a query
of type j ∈ Q. Also, the type of each query is an i.i.d. random variable drawn from a fixed but
possibly unknown distribution q = (q1, · · · , qn) where qj is the probability of a query being of type
j. Also, recall that S is the set of configurations for online ad allocation problem, H(S) is the set
of all allocation strategies, and u : H(S)→ R is a function that maps an allocation strategy to its
expected utility.

We consider a variation of online ad allocation problem in which whenever an advertiser runs
out of budget (i.e., its budget is less than the payment of the ad specified by the configuration in
use) the ad allocator shows the ad for a fraction of time and charges the advertiser for that fraction.
We let ũ : H(S) → R be the function that maps an allocation strategy to its expected utility in
this variation of online ad allocation problem.

In the next lemma we show that the utility function of the variation of online ad allocation
problem satisfies Assumption 1.

Lemma 1. The expected revenue of the variation of online ad allocation problem , i.e., ũ : H(S)→
R is sequence-non-decreasing, sequence-submodular, and differentiable.

We next outline the idea to prove sequence-submodularity of the variation of online ad allocation
problem (the complete proof of all properties is given in the appendix). We next consider the
allocation strategies A,B,C ∈ H(S) with A ≺ B and show ũ(C|A) ≥ ũ(C|B). The idea is to
compare the contribution of each ad to ũ(C|A) and ũ(C|B). We first show that the remaining
budget of each advertiser after A is greater than (or equal to) its budget after running B. We then
divide ads into two categories:

• Ads that have exhausted all of their budget after running A⊥C. The contribution of these ads
to ũ(C|A) is all their remaining budgets after running A. On the other hand, the contribution
of these ads to ũ(C|B) is at most their remaining budget after running B, which is smaller
than their contribution to ũ(C|A).

• Ads that still have budget after running A⊥C. Since these ads do not run out of budget, the
allocation strategy C (when running after A) has extracted revenue from these ads at the full
rate.

Lemma 1 together with Theorem 1 establish the performance guarantee of an allocation strategy
obtained by using greedy algorithm for the variation of the online ad allocation problem. Using
this result, we next show the performance guarantee of an allocation strategy obtained by using
greedy algorithm for the original online ad allocation problem.

Lemma 2. Let H be the allocation strategy obtained by running greedy algorithm for the original
online ad allocation problem. We have

u(H) ≥

(

(

1−
1

e

)

−

(

maxi∈A,j∈Q pij
mini∈ABi

)

)

u(O),

where O is the optimal allocation strategy.

11

~B ← (B1, · · · , Bm) ;
while t < T and A 6= ∅ do

// find the best configuration

for j ∈ Q do

s(j)← argmaxA⊆A, |A|≤d

∑

i∈A pij ;

end

Use configuration s and keep updating ~B and t, until either t ≥ T or at least one ad runs
out of budget;
A ← A \ {i : i is out of budget}

end

Algorithm 2: Ad Allocation Algorithm

This lemma establishes the performance guarantee of an allocation strategy obtained by running
Algorithm 1, i.e., by greedily choosing the configuration with the highest rate of revenue increase
(equivalently, finding s such that Eq. (6) holds with α = 1). To find such a configuration, we need
to compute u̇s(0|H[0,t)), which we find in the next lemma.

Lemma 3. Let S be the set of configurations for online ad-allocation problem and let H =
((s1,∆t1), . . . , (sk,∆tk)) be an allocation strategy. For any t and s ∈ S, we have

u̇s(0|H[0,t)) =
∑

j∈Q

qj
∑

i∈s(j)

pij,

assuming that all ads specified by s have budget.

This lemma holds because for a Poisson point process with rate 1 as δ → 0 the probability
of having more than one query in an interval of length δ is O(δ2) and the probability of having
one query is δ. Therefore, as δ → 0, u̇s(δ|H[0,t)) becomes the expected revenue generated by one
arriving query. Since the arriving query is of type j with probability qj, the expected increase in
the revenue becomes

∑

j∈Q qj
∑

i∈s(j) pij.
Using Lemma 3, if at time t the ad allocator uses configuration s such that for all j ∈ Q

s(j) ∈ argmax
A⊆A, |A|≤d

∑

i∈A

pij , (7)

where A is the set of ads which still have budget, then we have

d

dt
u
(

H[0,t)

)

≥ max
s∈S

u̇s

(

0|H[0,t)

)

.

Also note that we can keep using a configuration until at least one of the ads runs out of budget.
We then update the set A to become the set of ads which still have budget and recompute the best
configuration as given in Eq. (7). The complete specification of Algorithm 1 to online ad allocation
problem is given in Algorithm 2.

Note that this algorithm does not require the knowledge of the distribution q. This is because as
shown in Eq. (7), we can find the best configuration without knowing q. The following proposition
formally states the performance of Algorithm 2 for solving online ad allocation problem.

Theorem 2. Greedy Algorithm 2 finds an allocation strategy whose expected revenue is at least
(

1−
1

e

)

−

(

maxi∈A,j∈Q pij
mini∈ABi

)

of the optimal expected revenue.

12

Theorem 2 directly follows from Lemmas 1, 2, and 3 and establishes the performance guarantee
of our algorithm which holds for any bid to budget ratio. As a corollary of this proposition, if the
bid to budget ratio is very small, then our algorithm achieves 1− 1/e of the optimal solution. This
approximation factor is also shown by Goel and Mehta (2008) using an involved analysis based on
the techniques of Karp et al. (1990), under the same assumption that the bid to budget ratio is
very small.

4 Query Rewriting

In search advertising, advertisers bid on queries that are most likely to generate clicks and con-
versions for them. Ad allocators then match advertisers to user queries that are relevant to the
advertisers. However, one issue is that a relevant ad for a given query may not necessarily exist
among the set of ads that have bid for that query. Indeed, that set may be empty even though a
relevant ad exists. For instance, an ad bidding on the keyword “wedding band” may be appropriate
for the query “engagement ring”. Another issue is that the advertiser bidding strategy for queries
is ever-changing. Indeed, advertisers manage their budget throughout a given period by turning on
and off their ads (either automatically or manually). This demands a system that can swiftly adapt
to these changes by recomputing the keyword-ad relevance (e.g., with a machine-learned relevance
ranking model), incorporating the changes in the availability of advertisers. Therefore, it is more
practical to associate queries to a few keywords and then add (or remove) the list of advertisers of
those keywords (the ones they are bidding on) rather than hundreds or even thousands of queries.

To address these issues, a common mechanism for search engines is query rewriting. At the
high level, query rewriting outputs a list of keywords, referred to as rewrites, that are relevant for
queries in the original list.

4.1 Problem Formulation

In query rewriting, the search engine associates each query with a set of rewrites. When a query
arrives, the ad allocator assigns this query to a set of ads that have bid for at least one of the
rewrites associated with that query. Therefore, the query rewriting problem becomes an online ad
allocation problem with the constraint that only ads that have bid on the relevant rewrites to an
incoming query can be displayed.

Formally, we denote the set of rewrites with R. Each rewrite r ∈ R is relevant for a subset
of advertisers, i.e., only the subset of advertisers bidding on rewrite r, denoted by Wr ⊆ A. The
search engine associates each query type j ∈ Q with a subset of rewrites denoted by Yj ⊆ R. For an
incoming query of type j ∈ Q, the ad allocator decides on d ads from the set

⋃

r∈Yj
Wr to display.

For instance, the query “engagement ring” can be associated with rewrite “wedding band”. Now if
the advertisers in “wedding industry” have bid on “wedding band”, their ad can be shown for the
query “engagement ring”. Note that too many rewrites for a given query will slow down the time
needed to serve an ad. To address this issue, we restrict the set of associated rewrites with each
query type to have at most k rewrites, i.e., |Yj | ≤ k for all j ∈ Q. Therefore, the query rewriting
problem is how to find a set Yj for all j ∈ Q such that |Yj| ≤ k together with the corresponding
allocation strategy to maximize the revenue of the ad allocator.

We suppose that in the time interval [0, T] there are Tqj incoming queries of type j, where
q = (q1, · · · , qn) is known. The order of the incoming queries, however, is unknown and random.
This is a common assumption in practice because search engines have access to historical data and
can estimate the distribution of the queries. It is also the same assumption as the one used in
Malekian et al. (2008) and Mehta (2013).

13

Similar to the online ad allocation problem, given the set of rewrites, at each time the ad
allocator should decide on the mapping from queries to ads, defined next.

Definition 7 (Query Rewriting Configuration). For a given Y1, . . . , Yn, denoting the set of rewrites
associated with each query, a query rewriting configuration, denoted by sq, maps a given query j
to at most d ads among those included in the set of rewrites associated with query j. Formally,
sq is a collection of sets sq(j) ⊆

⋃

r∈Yj
Wr such that |sq(j)| ≤ d for all j ∈ Q (see Figure 3 for

an illustration of a query rewriting configuration). We let Sq be the set of all such configurations.
For a given sequence of queries and configurations the revenue of the ad allocator is the sum of
the revenues generated for each query. We can represent the allocation of ads to queries over time
[0, T] by a sequence

Hq =
(

sq1, · · · , s
q
T

)

, sqi ∈ S
q, i = 1, . . . , T.

This sequence indicates that the ad allocator uses configuration sqi for the ith query. We call Hq a
query rewriting allocation strategy and let H(Sq) denote the set of all such strategies.

We also let u(Hq) denote the expected revenue of the ad allocator for using strategy Hq where
the expectation is taken over all possible permutations of Tqj queries of type j for all j ∈ Q.
The query rewriting problem is to choose the set of rewrites Y1, . . . , Yn (before the queries arrive)
together with a query rewriting allocation strategy Hq to maximize u(Hq), i.e.,

max
Y1,...,Yn,Hq∈H(Sq)

u(Hq) (8)

s.t. |Yj| ≤ k, ∀j ∈ Q.

Note that the sequence Hq can be chosen in an adaptive way. In particular, the ith configuration
(i.e., sqi) can depend on the query types that have arrived before time i as well as the configurations
used to serve those queries (i.e., sq1, . . . , s

q
i−1). However, the set of rewrites Y1, . . . , Yn are chosen in

an offline fashion before the allocation of ads to queries start.
To specify a query rewriting allocation strategy Hq, we need to specify the configuration used

at any time. We next define a discrete sequence which provides a compact representation of the
query rewriting allocation strategy. Any query rewriting allocation strategy to serve a sequence
of arriving queries determines the consumed budget that each advertiser allocates to each query
type. We let Bij be the expected consumed budget of advertiser i in serving query type j. We

also let ~Bj =
(

B1j , · · · , Bmj

)

be the vector of budgets the ad allocator extracts in displaying ad i
for query type j during [0, T]. Therefore, each query rewriting allocation strategy determines the

tuples
(

j, Yj , ~B
j
)

where j ∈ Q is a query type and Yj ⊆ R is the set of rewrites for query type j.

We next provide an alternative formulation of query rewriting problem. To simplify the expo-
sition, we introduce this alternative formulation for d = 1. All the results continue to hold for any
general d > 1 as we show in Appendix 7.2.

Definition 8 (Partial Configuration and Compact Allocation Strategy). We call the tuple
(

j, Yj , ~B
j
)

a partial configuration, where j ∈ Q is a query type, Yj ⊆ R such that |Yj | ≤ k is the set of rewrites

for query type j, and ~Bj =
(

B1j , · · · , Bmj

)

is a vector of budgets in which Bij is the maximum
budget that we allow the ad allocator to extract in displaying ad i for query type j. We let Sp

be the set of all partial configurations. We call a discrete sequence H̃ from the elements of Sp a

14

compact allocation strategy, which is of the form

H̃ =

(

(

j1, Yj1 ,
~Bj1
)

, · · · ,
(

jn, Yjn , ~B
jn
)

)

,

where j1, . . . , jn is a permutation of 1, . . . , n. HD(Sp) denotes the set of all compact allocation
strategies.

For any compact allocation strategy H̃, its revenue function denoted by ũ(H̃) is the revenue
collected by sequentially running the partial configurations specified by sequence H̃ and extract
the optimal revenue given the budget constraints. The budget constraints are imposed by both the
remaining budget of the advertisers and the budget vector of the current partial configuration. We
next formally define the revenue function of a compact allocation strategy.

Definition 9. [Revenue Function of Compact Allocation Strategy] For a given compact allocation
strategy H̃ we recursively define its revenue function. We let ũ(∅) be zero and initialize the cur-
rent budget of advertiser i denoted by B̃i as the original budget of advertiser i, i.e., Bi. Suppose
(j, Yj , ~B

j) is the current element of H̃ (with the order specified by H̃). The budget limit of adver-
tiser i is the minimum of the current budget B̃i and Bij. For Tqj queries of type j, considering the
remaining budget limits and the given rewrite set Yj, we greedily select the optimal query rewriting
configuration. That is for the first query of type j we use configuration s such that

s(j) ∈ argmax
i∈

⋃

r∈Yj
Wr

pij,

where the advertisers without budget are deleted from the set
⋃

r∈Yj
Wr. We then use this configu-

ration until we meet the budget constraint of advertiser s(j). We then update the configuration and
switch to the ad with the second highest payment. We continue this approach for all Tqj queries of
type j. We also assume whenever an advertiser runs out of budget (i.e., its budget is less than the
payment of the ad specified by the configuration in use) the ad allocator shows the ad for a fraction
of time and charges the advertiser for that fraction. We add the collected payments to the current
ũ(H̃) and update B̃i by subtracting the consumed budget of advertiser i in serving query type j. We
then proceed to the partial configuration in the sequence H̃ and the revenue function ũ(H̃) is the
revenue obtained at the end of this procedure.

Note that any compact allocation strategy defines a query rewriting allocation strategy in which
for any arriving query the ad allocator uses the configuration specified in computing revenue func-
tion of compact allocation strategy ũ (Definition 9). Moreover, for any query rewriting allocation
strategy, the revenue obtained from its corresponding compact allocation strategy (where the query
types are ordered in an arbitrary order in the sequence) is exactly the same as the revenue from
the query rewriting allocation strategy itself. This is because for all query types the ad allocator
shows each ad with the same frequency in both allocation strategies (potentially in a different order
though).5

Using this alternative formulation, the query rewriting problem (8) is equivalent to find Y1, . . . , Yn

together with a compact allocation strategy that maximizes ũ, i.e.,

max
Y1,...,Yn,H̃∈H(Sp)

ũ(H̃) (9)

s.t. |Yj | ≤ k, ∀j ∈ Q.

5Note that since the budget consumed by all query types in the query rewriting allocation strategy is at most
the advertiser’s budget, in the compact allocation strategy any order of query types obtains the same revenue as the
original query allocation strategy. However, for a general compact allocation strategy, different orders of the query
types in the discrete sequence generates different amount of revenue (when the advertiser budgets become binding).

15

11

nn

22

11

22

mm

QueriesQueries AdsAds

jj

Y1Y1

YnYn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

RewritesRewrites

11

pp

rr

.

.

.

.

.

.

.

.

.

.

.

.

W1W1

WrWr

WpWp

YjYj

Figure 3: Given the sets Y1, . . . , Yn, a query rewriting configuration sq assigns each query j ∈ Q to
at most d ads in the set

⋃

r∈Yj
Wr.

In the next section, we provide an algorithm for maximizing discrete sequence functions and then
use it to find the optimal compact allocation strategy (i.e., to solve (9)).

5 Discrete Sequence-Submodular Functions and their Maximiza-

tion

In this section, we define our framework for maximizing discrete sequence submodular functions
and then apply it to query rewriting problem.

5.1 Discrete Sequences: Definition and Operations

We let S be a finite set of actions. Any sequence A = (s1, · · · , sk) where k ∈ N ∪ {0} and si ∈ S is
called a discrete sequence of elements of S (with convention, for k = 0 we have an empty sequence).
The length of a discrete sequence A = (s1, · · · , sk) denoted by |A| is equal to k. We again denote
the set of all finite discrete sequences of S by HD(S), formally defined as

H
D(S) =

{

A = (s1, · · · , sk) | k ∈ N ∪ {0}, si ∈ S
}

.

Equivalency, concatenation and domination are similar to the continuous setting described in
Section 3. The refinement of a discrete sequence A = (s1, · · · , sk) in the set {x, x + 1, . . . , y}
denoted by A[x,y] is A[x,y] = (smax{x,1}, · · · , smin{y,k}). To be consistent with the continuous setting,
we represent the set {x, x+ 1, . . . , y} by [x, y].

5.2 Submodular Non-decreasing Discrete Sequence Functions

In this subsection, we define the class of submodular non-decreasing discrete sequence functions.
Given a finite set S, any function u : HD(S)→ R is a discrete sequence function.

Similar to the continuous setting, a discrete sequence function u is sequence-non-decreasing if

u(A) ≤ u(B), ∀A,B ∈ HD(S) such that A ≺ B,

u(∅) = 0. (10)

16

Also, a discrete sequence function u is sequence-submodular if

u(C|A) ≥ u(C|B), ∀A,B,C ∈ HD(S) such that A ≺ B, (11)

where u(B|A) is the marginal value of the sequence function defined as

u(B|A) = u(A⊥B)− u(A), ∀A,B ∈ HD(S).

In the next section, we provide a greedy algorithm to maximize any discrete sequence function
satisfying the following assumption.

Assumption 2. The discrete sequence function u is sequence-non-decreasing and sequence-submodular.

5.3 Greedy Algorithm for Maximizing Discrete Sequence Functions

For a given S, a discrete sequence function u : HD(S) → R, and a length constraint T ∈ N, the
objective is to find a sequence H ∈ HD(S) that maximizes u subject to |H| ≤ T , i.e.,

max
H∈HD(S)

u(H)

s.t. |H| ≤ T. (12)

Our key result presented next establishes the performance guarantee of a greedy algorithm for
maximizing discrete sequence functions.

Theorem 3. Suppose Assumption 2 holds for a discrete sequence function u. For any α ∈ [0, 1]
and a sequence H = (s1, · · · , sT) in H

D(S), if for all i ∈ {1, · · · , T} we have

u
(

si|H[1,i−1]

)

≥ αmax
s∈S

u(s|H[1,i−1]), (13)

then
u (H)

u (O)
≥ 1−

1

eα
, (14)

where O ∈ HD(S) denotes the optimal solution of problem (12).6

Theorem 3 shows that if the elements of the sequence H = (s1, · · · , sT) are chosen sequentially

such that for each i, u
(

si|H[1,i−1]

)

is at least α times its optimal local maximum, then the resulting

sequence yields 1− 1/eα of the optimal sequence.
We next outline the key idea of this result for α = 1 (the complete proof is given in the

Appendix). First, using sequence-submodularity, we show that the marginal increase in function
value with the greedy choice is as large as the time average marginal increase by concatenating any
other sequence. Formally, for all B ∈ HD(S) and t ∈ [0, T] we show

max
s∈S

u
(

s|H[0,t]

)

≥
1

|B|
u(B|H[0,t]).

Substituting the optimal sequence, i.e., O, for B and then using non-decreasing property, we show
that this marginal increase is as large as the time average difference between function value of the
optimal solution and function value of the current sequence. Formally, we have

max
s∈S

u
(

s|H[0,t]

)

≥
1

T

(

u(O)− u(H[0,t])
)

.

6The optimal solution exists because there are finitely many sequences of length at most T . In particular, there
are no more than (|S|+ 1)T many sequences H ∈ HD(S) with |H | ≤ T , where |S| denotes the cardinality of set S .

17

This provides a recursive relation between the function value of the greedy choice and the optimal
choice. Using this recursive relation we then establish that the utility of sequence H is at least
1− 1/e fraction of the function value of the optimal solution O.

Motivated by Theorem 3, Algorithm 3 presents our greedy algorithm for maximizing discrete
sequence functions satisfying Assumption 2.

H ← ∅ ;
for i = 1 to T do

find si such that u(si|H) ≥ αmaxs∈S u(s|H) ;
H ← H⊥si ;

end

Algorithm 3: Greedy algorithm for discrete setting

Algorithm 3 starts with an empty sequence H (the initialization is H = ∅) and at each step adds
one element to the sequence. For instance with α = 1, at step i the algorithm finds si that generates
the highest increase in the value of u when concatenated to the end of the current sequence (i.e.,
finds si that maximizes u(si|H)). Also note that in Algorithm 3, at step i the problem of finding si
that maximizes u(si|H) may be computationally hard. Theorem 3 states that even if u(si|H) is α
times the local maximum, Algorithm 3 still provides a good approximation of the optimal solution,
namely 1− 1/eα approximation. For instance, in Subsection 5.4, we show that for query rewriting,
the local problem at each step can efficiently be solved with α = 1− 1/e.

The following is an immediate corollary of Theorem 3 and formally states the performance of
Algorithm 3.

Corollary 2. Suppose Assumption 2 holds for a discrete sequence function u. Algorithm 3 generates
a discrete sequence with value at least 1− 1/eα of the optimal solution.

We next show how to apply Theorem 3 and Algorithm 3 to query rewriting problem.

5.4 Application to Query Rewriting

We first show that the revenue function of compact allocation strategy is non-decreasing and
sequence-submodular. We then show that the local optimization problems of the greedy algo-
rithm can be solved with α = 1− 1/e. Finally, we use our analysis of Subsection 5.3, which finds a
greedy algorithm for the compact allocation strategy (and equivalently, query rewriting problem)

that achieves 1− 1/e1−
1

e of the optimal revenue.
We start by showing the function ũ : HD(Sp)→ R satisfies Assumption 2.

Lemma 4. The revenue function of compact allocation strategies, i.e., ũ : HD(Sp)→ R is sequence-
non-decreasing and sequence-submodular.

The proof of this lemma is similar to that of Lemma 1 and is given in the appendix.
We next describe a greedy algorithm for maximizing ũ(·) and then use Theorem 3 to establish its

performance. The greedy algorithm works as follows. At each step of the algorithm with the current
allocation H̃ and current budget vector ~B, for any remaining query type such as j we greedily find
the optimal set of rewrites Yj with cardinality constraint |Yj | ≤ k. We then greedily select the

tuple (j, Yj , ~B
j) whose addition to the current strategy increases the revenue the most. Finally, we

update the advertisers’ budgets by subtracting ~Bj and update H by appending (j, Yj , ~B
j) to it.

The complete algorithm is described in Algorithm 4.
Our next lemma establishes the performance of Algorithm 4.

18

H̃ ← ∅ ;
~B ← (B1, · · · , Bm) ;
while Q 6= ∅ do

for j ∈ Q do

Yj ← ∅ ;
// find the best k rewrites greedily

for w = 1, · · · , k do

r ← argmaxr′∈R\Yj
ũ

(

(

j, Yj ∪ {r
′}, ~B

)

|H̃

)

;

Yj ← Yj ∪ {r} ;

end

end

// find the best partial configuration to append

j ← argmaxj′∈Q ũ

(

(

j′, Yj′ , ~B
)

|H̃

)

Define ~Bj as the amount of budget used by (j, Yj , ~B) when appended to H̃ ;

H̃ ← H̃⊥(j, Yj , ~B
j) ;

Q ← Q \ {j} ;
~B ← ~B − ~Bj ;

end

Algorithm 4: Query Rewriting Algorithm

Lemma 5. Algorithm 4 finds a compact allocation strategy whose revenue function is at least
1− 1/e1−

1

e of the optimal compact allocation strategy.

This lemma follows from applying Algorithm 3 to maximize ũ(·) and then using Theorem 3
with α = 1 − 1/e. In particular, in the local optimization step of Algorithm 3, we greedily find a
set of rewrites subject to a cardinality constraint. We show that the greedy approach solves the
local optimization problem with α = 1 − 1/e. The result then follows from using Lemma 4 and
Theorem 3. The complete proof is given in the appendix.

The output of Algorithm 4 naturally defines a query rewriting allocation strategy as follows.
For all j ∈ Q, we let Yj be the set of rewrites found by Algorithm 4. For arriving queries of type
j, we use the query configurations specified in computing ũ of the output of Algorithm 4. We next
find the performance guarantee of this query rewriting allocation strategy.

Theorem 4. The query rewriting allocation strategy defined based on the output of Algorithm 4
achieves

(

1−
1

e1−
1

e

)

−

(

minj∈Q,i∈A pij
mini∈ABi

)

of the optimal query rewriting allocation strategy.

Theorem 4 follows from Lemmas 4 and 5 and establishes the performance guarantee of our
algorithm which holds for any bid to budget ratio. We next make a few remarks regarding Algorithm
4 and its corresponding query rewriting allocation strategy. First, note that this algorithm requires
the knowledge of the distribution q (same as the algorithm of Malekian et al. (2008)). This is
because in defining the function ũ(·) we need to know the number of queries of type j in the time

19

interval [0, T]. The order of incoming queries, however, is unknown and random. Second, using
Theorem 4 for small bid to budget ratio, the query rewriting allocation strategy defined based on
the output of Algorithm 4 achieves 1− 1

e1−
1
e
≈ 0.47. This outperforms the existing algorithm with

approximation factor 1/4 given in Malekian et al. (2008).

6 Conclusion

Motivated by applications in online advertising, we develop a framework to maximize functions
defined over sequences. In particular, we extend the notion of submodularity and monotonicity for
functions that are defined over sets to functions that are defined over sequences (both continuous
and discrete). We then show that if a sequence function is sequence-submodular and non-decreasing
(and differentiable in the case of continuous sequences), then a greedy algorithm that solves the
local optimization problems with factor α achieves 1 − 1/eα of the maximum subject to a length
constraint.

Our framework provides a simple and yet powerful method for solving a broad class of maxi-
mization problems where the objective is defined over sequences. We demonstrated the applicability
of our framework by considering two applications in online advertising problems. In particular, we
showed that online ad allocation problem can be formulated as maximizing a sequence submodular
function. We then used our results and algorithms to establish that assuming the bid to budget
ratio is very small, an online greedy approach achieves 1 − 1/e of the optimal revenue. We then
considered query rewriting problem in search advertising. For this problem, we defined an offline
problem whose objective function is the same as online query rewriting problem. We then showed
that a greedy algorithm achieves 1 − 1/e1−

1

e of the optimal solution of this offline problem. Fi-
nally, we used this offline solution to find an online algorithm for query rewriting problem which
outperforms the existing algorithm in the literature. Avenues for future research include the study
of other problems that can be formulated as maximizing a sequence-submodular function and then
using our algorithm to establish performance guarantee of greedy algorithms for solving them.

7 Appendix

7.1 Proofs of Section 3

Proof of Theorem 1

We first present some lemmas that we use in proving this theorem.

Lemma 6. For any A =
(

(s1,∆t1), · · · , (sk,∆tk)
)

in HC(S), we have

u
(

(s, δ)|A
)

=

∫ δ

0
u̇s(x|A)dx (15)

u
(

(s, δ2)|A⊥(s, δ1)
)

=

∫ δ2

δ1

u̇s(x|A)dx (16)

u(A) =

k
∑

i=1

∫ ∆ti

0
u̇si(x|A

i−1)dx, (17)

where Ai =
(

(s1,∆t1), · · · , (si,∆ti)
)

.

20

Proof. Eqs. (15) and (16) directly follow from Eq. (4), and Eq. (17) directly follows from the
definition of marginal values.

The next two lemmas show diminishing return property, i.e., u̇s
(

δ|A
)

is decreasing in both
δ and A. More specifically, using Assumption 1 we show for any A, u̇s

(

δ|A
)

is decreasing as a
function of δ. Moreover, if A ≺ B, then u̇s

(

δ|A
)

≥ u̇s
(

δ|B
)

(except at finitely many points).

Lemma 7. Suppose Assumption 1 holds for continuous sequence function u. For any A,B ∈ HC(S)
such that A ≺ B and any s ∈ S, we have u̇s(δ|A) ≥ u̇s(δ|B) for all δ ∈ R

+ ∪ {0} except at a finite
number of points.

Proof. We prove this lemma by contradiction. Suppose there are A,B ∈ HC(S) such that A ≺ B
and s ∈ S and δ ∈ R

+ for which u̇s(δ|A) < u̇s(δ|B). If either u̇s(δ|A) or u̇s(δ|B) is non-continuous
at δ then this is one of the finite number of points that are exceptions in the statement of Lemma
7. Otherwise, since they are both continuous at δ there should be a small neighborhood around
δ in which u̇s(δ|B) is greater than u̇s(δ|A). More formally, there exists ǫ ∈ R

+ such that for all
x ∈ [δ − ǫ, δ + ǫ], we have

u̇s(x|A) < u̇s(x|B). (18)

We next show that Eq. (18) can never happen. Using Lemma 6 and in particular (16), we have

u((s, ǫ)|A⊥(s, δ − ǫ)) =

∫ δ

δ−ǫ
u̇s(x|A),

u((s, ǫ)|B⊥(s, δ − ǫ)) =

∫ δ

δ−ǫ
u̇s(x|B).

These equalities together with Eq. (18), leads to

u
(

(s, ǫ)|A⊥(s, δ − ǫ)
)

< u
(

(s, ǫ)|B⊥(s, δ − ǫ)
)

. (19)

Since A⊥(s, δ − ǫ) ≺ B⊥(s, δ − ǫ), Assumption 1 and in particular sequence submodularity of
u results in

u
(

(s, ǫ)|A⊥(s, δ − ǫ)
)

≥ u
(

(s, ǫ)|B⊥(s, δ − ǫ)
)

. (20)

Eqs. (19) and (20) contradict each other, showing that our assumption of u̇s(δ|A) < u̇s(δ|B) does
not hold. This completes the proof.

Lemma 8. Suppose Assumption 1 holds for continuous sequence function u. For any A ∈ HC(S),
and any δ ∈ [0,∞), u̇s(δ|A) is a monotonically non-increasing function in δ. That is for δ1 < δ2,
we have u̇s(δ1|A) ≥ u̇s(δ2|A).

Proof. Using Eq. (4) we have

u̇s(δ2|A) =
d

dx
u((s, x)|A)

∣

∣

∣

x=δ2
=

d

dx
u((s, x)|A⊥(s, δ2 − δ1)

∣

∣

∣

x=δ1
= u̇s(δ1|A⊥(s, δ2 − δ1)). (21)

Since A ≺ A⊥(s, δ2 − δ1), combining Lemma 7 and Eq. (21) implies that u̇s(δ2|A) < u̇s(δ1|A),
completing the proof.

21

Lemma 9. Suppose Assumption 1 holds for continuous sequence function u. For any A,B ∈ HC(S)
there exists s ∈ S such that u̇s(0|A) ≥

1
|B|u(B|A)

Proof. Letting B = ((s1,∆t1), · · · , (sk,∆tk)) and Bi = ((s1,∆t1), · · · , (si,∆ti)), and using the
definition of u and Lemma 6 we obtain

u(B|A) =
k
∑

i=1

∫ ∆ti

0
u̇si

(

x|A⊥Bi−1
)

dx. (22)

We argue that there should be some 1 ≤ i ≤ k for which there exists some δ ∈ [0,∆ti) such that
u̇si
(

δ|A⊥Bi−1
)

≥ 1
|B|u(B|A). Otherwise, the term inside the integral on the right hand side of Eq.

(22) is always less than 1
|B|u(B|A) which means that the sum of the integrals is less than u(B|A),

which contradicts Eq. (22). Suppose for i′ and δ′ we have

u̇si′

(

δ′|A⊥Bi′−1
)

≥
1

|B|
u(B|A). (23)

Using Lemma 7 in Eq. (23) leads to

u̇si′ (δ
′|A) ≥

1

|B|
u(B|A). (24)

Finally, invoking Lemma 8 in Eq. (24), yields

u̇si′ (0|A) ≥
1

|B|
u(B|A),

which completes the proof.

We next proceed with the proof of theorem. Consider a sequence H and α for which Eq. (6)
holds. Using Lemma 9, for all t ∈ [0, T), there exists s ∈ S such that

u̇s

(

0|H[0,t)

)

≥
1

|O|
u
(

O|H[0,t)

)

. (25)

Using Eq. (6) in Eq. (25), leads to

d

dt
u
(

H[0,t)

)

≥
α

T
u
(

O|H[0,t)

)

, ∀t ∈ [0, T). (26)

Using the definition of marginal values, we can rewrite Eq. (26) as the following differential equa-
tion.

d

dt
u(H[0,t)) ≥

α

T

(

u(O⊥H[0,t))− u(H[0,t))
)

, ∀t ∈ [0, T). (27)

Using Assumption 1 in Eq. (27) results in

d

dt
u(H[0,t)) ≥

α

T

(

u(O)− u(H[0,t))
)

, ∀t ∈ [0, T),

or equivalently

u(H[0,t)) +
T

α

d

dt
u(H[0,t)) ≥ u(O), ∀t ∈ [0, T). (28)

22

We can rewrite Eq. (28) as

d

dt

(

T

α
e

α
T
tu(H[0,t))

)

≥
T

α
e

α
T
tu(O), ∀t ∈ [0, T).

Therefore, for any x ∈ (0, T], we have

∫ x

0

d

dt

(

T

α
e

α
T
tu(H[0,t))

)

dt ≥

∫ x

0
e

α
T
tu(O)dt.

Computing the integral of both sides, leads to

T

α
e

α
T
xu
(

H[0,x)

)

≥
T

α

(

e
α
T
x − 1

)

u(O), ∀x ∈ (0, T],

which in equivalent to

u(H[0,x)) ≥

(

1−
1

e
α
T
x

)

u(O), ∀x ∈ (0, T]. (29)

Finally, letting x = T in Eq. (29) yields

u(H) ≥

(

1−
1

eα

)

u(O),

which completes the proof.

Proof of Lemma 1

We prove this lemma in three steps.
Step 1: In this step, we show that the revenue function of online ad allocation problem satisfies
monotonicity. In particular, consider the allocation strategies A,B ∈ H(S) and assume that A ≺ B.
We argue that the revenue extracted from each ad after running sequence B is at least as much
as the revenue extracted from each ad after running sequence A. We partition the ads into two
categories:

1. Ads that have no budget left after running sequence B. Note that in this variation of online
ad allocation problem, when an advertiser such as i runs out of budget its total budget Bi is
used.

2. Ads that still have budget after running sequence B.

For the ads in the first category, sequence B has extracted the maximum possible budget from the
ad. Therefore, for this set of ads our claim holds. For the ads that belong to the second category,
we know that they still have budget available. We consider an ad i that belongs to this category
and show that the revenue extracted by B from this ad is at least as much as the revenue extracted
by A. Consider the configuration s ∈ S that is being used in B for a total time of ∆t. For all
queries of type j that arrive during this time and any ad i that is allocated to them by configuration
s, we know that the revenue extracted from budget of ad i by those queries is ∆t pij because ad
i never ran out of budget. Since A ≺ B, configuration s is either not present in A or was used in
A for a duration of no more than B. Thus, the total revenue extracted from ad i in A is no more
than the revenue extracted from ad i in B. Since for both categories of ads, the expected revenue
extracted by B from the ads are higher than or equal to the revenue extracted by A from the ads,

23

we conclude that the sequence-non-decreasing property holds.
Step 2: In this step, we show that the revenue of the online ad allocation problem satisfies sequence-
submodularity. Consider the allocation strategies A,B,C ∈ H(S) and assume that A ≺ B. First of
all, based on Step 1, we know that the remaining budget of each ad after A is greater than or equal
to its remaining budget after B. Moreover, the contribution of each ad to ũ(C|B) or ũ(C|A) is
equal to the difference in its budget before and after using the sequence C. Now, consider using the
allocation strategy A first, followed by strategy C. Again, we partition the ads into two categories:

1. Ads that have exhausted all of their budget after running A⊥C.

2. Ads that still have budget after running A⊥C.

The contribution of the ads in the first category to ũ(C|B) is no more than their contribution to
ũ(C|A) because as was shown in Step 1, they had equal or more remaining budget after using A
than after using B and they have contributed all of their remaining budget to ũ(C|A). Now consider
the ads that belong to the second category. Using the same reasoning as we did for the proof of
Step 1, we conclude that C has extracted revenue from those ads at full rate since they did not run
out of budget. Thus, their contribution to ũ(C|A) is larger than (or equal to) its contribution to
ũ(C|B).
Step 3: In this step, we show that the revenue of the online ad allocation problem satisfies
differentiability. Note that the derivative of the revenue function is a step function that only
changes its value when there is change of a configuration in the sequence or when some ad runs out
of the budget. We next show that, without loss of generality, we can only consider sequences with
k ≤ |S|m where the number of configurations is bounded by |S| ≤ mdn (note that the number of
configurations that our greedy algorithm finds is much smaller than this and is in fact bounded by
the number of ads m). Let O be the optimal sequence and let t and t′ be two consecutive times
at which an ad runs out of budget. We next show that the number of configurations used in this
interval is bounded by |S|, showing the overall number of configurations is bounded by |S|m. In
the time interval (t, t′), if a configuration s is used multiple times, then we can move all those times
together to form an interval during which configuration s is used. This does not change the revenue
function because no ad has run out of budget in the interval (t, t′). Thus, the revenue function is
differentiable and its derivative is continuous except at a finite number of points.

Proof of Lemma 2

We let Õ and H̃ denote the optimal allocation and the allocation strategy obtained by running
greedy algorithm for the variation of online ad allocation problem. We also let O and H denote
the optimal allocation and the allocation strategy obtained by running greedy algorithm for the
original online ad allocation problem.

Using Proposition 2 and Theorem 1, we have

ũ(H̃) ≥

(

1−
1

e

)

ũ(Õ). (30)

The sequence H̃ (obtained from using the greedy algorithm for the relaxed variation) is identical
to the sequence H except when one of the ads runs out of the budget. Therefore, we have

u(H) ≥ ũ(H̃)−
∑

i∈A, i’s budget in H̃ is exhausted

pij . (31)

24

Using Eqs. (30) and (31) leads to

u(H) ≥

(

1−
1

e

)

ũ(Õ)−
∑

i∈A, i’s budget in H̃ is exhausted

pij. (32)

We also have

∑

i∈A, i’s budget in H̃ is exhausted

pij ≤

(

maxi∈A,j∈Q pij
mini∈ABi

)

∑

i∈A, i’s budget in H̃ is exhausted

Bi

≤

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(H̃) ≤

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(Õ). (33)

Invoking (33) in (32), leads to

u(H) ≥

(

1−
1

e

)

ũ(Õ)−

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(Õ)

≥

(

1−
1

e

)

ũ(O)−

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(O).

This completes the proof.

Proof of Lemma 3

Using Eqs. (4) and (5) we obtain

u̇s(0|H[0,t)) = lim
δ→0+

u̇s(δ|H[0,t)) = lim
δ→0+

d

dx
u((s, x)|H[0,t))

∣

∣

∣

x=δ
= lim

δ→0+

d

dx
u(H[0,t)⊥(s, x))

∣

∣

∣

x=δ

(a)
= lim

δ→0+

d

dx

∞
∑

k=1

e−xx
k

k!
E
[

revenue with s | k queries
]

∣

∣

∣

x=δ

= lim
δ→0+

(

e−δ − δe−δ
)

E
[

revenue with s | 1 query
]

+ lim
δ→0+

∞
∑

k=2

(

e−δδk−1

(k − 1)!

−e−δδk

k!

)

E
[

revenue with s | k queries
]

= E
[

revenue with s | 1 query
] (b)
=
∑

j∈Q

qj
∑

i∈s(j)

pij ,

where (a) follows from the fact that queries are arriving according to a Poisson point process with
rate 1 and therefore the number of queries in the interval [t, t+ x] has a Poisson distribution with
rate x; and (b) holds because the (one arriving) query is of type j ∈ Q with probability pj in which
case the revenue becomes

∑

i∈s(j) pij.

Proof of Proposition 2

Using Theorem 1, the expected utility of the online ad allocation satisfies Assumption 1. For online
ad allocation problem, using Lemma 9, we can solve the local optimization problem of Algorithm 1
with α = 1. Therefore, using Theorem 1 establishes Algorithm 1 which is equivalent to Algorithm
2 for online ad allocation problem achieves 1− 1

e of the optimal solution. This completes the proof.

25

7.2 Proofs of Section 5

Proof of Theorem 3

We first show a lemma that we use in this proof. This lemma is the analogy of Lemma 9 for the
discrete setting.

Lemma 10. Suppose the sequence function u is sequence-submodular. For any A,B ∈ HD(S)
there exists s ∈ S such that u(s|A) ≥ 1

|B|u(B|A)

Proof. Letting B = (s1, · · · , sk) and using the definition of sequence function u we obtain

u(B|A) = u (A⊥B)− u (A)

=
k
∑

j=1

u
(

A⊥B[1,j]

)

−
k−1
∑

j=0

u
(

A⊥B[1,j]

)

=

k
∑

j=1

(

u
(

A⊥B[1,j]

)

− u
(

A⊥B[1,j−1]

)

)

=

k
∑

j=1

u
(

B[j,j]|A⊥B[1,j−1]

)

=

k
∑

j=1

u
(

sj |A⊥B[1,j−1]

)

(34)

The sum on the right hand side of Eq. (34) consist of k terms, so there should be at least
one term which is above or equal to the average of the terms. Therefore, there exists an index
1 ≤ j′ ≤ k such that

u(sj′ |A⊥B[1,j′−1]) ≥
1

k
u(B|A). (35)

Using sequence-submodularity of u in Eq. (35) and because A ≺ A⊥B[1,j′−1] we obtain

u(sj′ |A) ≥
1

|B|
u(B|A). (36)

This completes the proof of lemma.

We now proceed with the proof of theorem. Consider a sequence H = (s1, · · · , sk) and α for
which Eq. (13) holds. Using Lemma 10 we have

u(si|H[1,i−1]) ≥
α

k
u(O|H[1,i−1]) =

α

k
(u(O⊥H[1,i−1])− u(H[1,i−1])). (37)

Now using Assumption 2, we have u
(

O⊥H[1,i−1]

)

≥ u (O). This inequality together with Eq. (37)

leads to

u(si|H[1,i−1]) ≥
α

k
(u(O)− u(H[1,i−1])). (38)

26

Rewriting this inequality yields

u(H[1,i])− u(H[1,i−1]) ≥
α

k
(u(O)− u(H[1,i−1])), (39)

or equivalently

u(H[1,i]) ≥
α

k
u(O) + (1−

α

k
)u(H[1,i−1]). (40)

Using Eq. (40) recursively for i = 1, . . . , k, we can bound u
(

H[1,k]

)

as follows

u
(

H[1,k]

)

≥

(

1−

(

1−
α

k

)k
)

u(O) =

1−

(

1−
α

k

) k
α

α

u(O). (41)

Finally, invoking the inequality
(

1− 1
x

)x
≤ 1

e (which holds for all x ≥ 0) for x = k
α in Eq. (41)

leads to

u
(

H[1,k]

)

≥

(

1−
1

eα

)

u(O).

This completes the proof of theorem.

Proof of Lemma 4

We prove this lemma in two steps.
Step 1: In this step, we show that ũ satisfies monotonicity. In particular, consider the compact
allocation strategies A,B ∈ HD(S̃) and assume that A ≺ B. We show that the revenue extracted
from each ad in B is at least as much as the revenue extracted from each ad in sequence A. We
partition the ads into two categories:

1. Ads that have no budget left after running sequence B.

2. Ads that still have budget after running sequence B.

For the ads in the first category, sequence B extracts the maximum possible budget from the ad.
Therefore, for this set of ads our claim holds. For the ads that belong to the second category, we
know that they still have budget available. We consider an ad i that belongs to this category and
show that the revenue extracted by B from this ad is at least as much as the revenue extracted by A.
Consider the partial configuration (j, Yj , ~B

j) that is being used in B and not in A. Since advertiser

i never runs out of budget, not having (j, Yj , ~B
j) in A does not change the revenue extracted from

ad i in serving other query types. Therefore, using sequence B extracts at least as much revenue
from advertiser i as using sequence A. Since for both categories the expected revenue extracted by
B from each ad is higher than or equal to the revenue extracted by A from that ad, we conclude
that the sequence-non-decreasing property holds. We first prove sequence-submodularity assuming
C comprises of only one partial configuration, i.e., C = (j, Yj , ~B

j). As was shown in Step 1, since
A ≺ B the remaining budget of each ad after A is greater than or equal to its remaining budget
after B. This implies that the feasible region in finding the optimal query rewriting configuration
(given in Definition 9) after running B is a subset of the feasible region after running A, Therefore,
when we run partial configuration (j, Yj , ~B

j) after running B, we can extract less revenue compared

27

to running it after A, completing the proof for C = (j, Yj , ~B
j).

For a general C =
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjk ,

~Bjk)
)

we then have

ũ(A⊥C)− ũ(A)

(a)
=

k
∑

l=1

ũ

(

A⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl)
)

)

− ũ

(

A⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl−1)
)

)

(b)

≥
k
∑

l=1

ũ

(

(B⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl)
)

)

− ũ

(

B⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl−1)
)

)

(c)
= ũ(B⊥C)− ũ(B),

where (a) and (c) follow from telescopic summation (with convention for l = 0, we let A⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl)
)

=

A) and (b) follows from the preceding proof for C comprising of only one configuration and the
fact that

A⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl−1)
)

≺ B⊥
(

(j1, Yj1 ,
~Bj1), . . . , (jk, Yjl ,

~Bjl−1)
)

,∀l = 1, . . . , k,

completing the proof.

Proof of Lemma 5

In order to be able to use Algorithm 3, at each step we need an incremental oracle to find the

best partial configuration
(

j, Yj , ~B
j
)

to be appended to the current sequence. We claim that

the marginal utility of adding a partial configuration
(

j, Yj , ~B
j
)

is a non-decreasing submodular

function in terms of Yj.

Claim: ũ

(

(

j, Y, ~Bj
)

|H̃

)

as a function of the set Y ⊆ R is a non-decreasing (set) submodular

function.

Proof. We first show the monotonicity. ũ

(

(

j, Y, ~B
)

|H̃

)

is equal to the optimal revenue collected

from serving query types j by using rewrite set Y when the budgets are updated after collecting
the optimal revenue associated with sequence H̃. By expanding the set of rewrites Y , we have
more flexibility in terms of choosing the optimal configurations and therefore the optimal collected
revenue from serving queries of type j increases.

We next show the submodularity of ũ

(

(

j, Y, ~Bj
)

|H̃

)

. Suppose X ⊆ Y ⊆ R and Z ⊆ R. We next

show that

ũ

(

(

j,X ∪ Z, ~Bj
)

|H̃

)

− ũ

(

(

j,X, ~Bj
)

|H̃

)

≥ ũ

(

(

j, Y ∪ Z, ~Bj
)

|H̃

)

− ũ

(

(

j, Y, ~Bj
)

|H̃

)

.

Using the definition of the marginal utility, this inequality is equivalent to

ũ

(

(

j,X ∪ Z, ~Bj
)

)

− ũ

(

(

j,X, ~Bj
)

)

≥ ũ

(

(

j, Y ∪ Z, ~Bj
)

)

− ũ

(

(

j, Y, ~Bj
)

)

, (42)

noting that the budget of advertisers are updated to the one after running sequence H̃. Given a

partial configuration
(

j, Y, ~Bj
)

, we can use the ads in the set ∪r∈YWr to serve queries of type j.

28

Using Definition 9, we can compute ũ

(

(

j, Y, ~Bj
)

)

by using a sequence of ads obtained as follows.

We sort the payments of the ads in ∪r∈YWr and then include the ad with the top payment until we
exhaust its entire budget, we then include the ad with the second top payment and continue this

process. We denote this sequence of ads by seq(∪r∈Y Wr, ~B
j). The revenue function ũ

(

(

j, Y, ~Bj
)

)

is given by

ũ

(

(

j, Y, ~Bj
)

)

=

Tqj
∑

l=1

pseql(∪r∈Y Wr, ~Bj),j

where seql(∪r∈YWr, ~B
j) denotes the l-th element of the sequence seq(∪r∈YWr, ~B

j). Using this
notation we obtain

ũ

(

(

j, Y ∪ Z, ~Bj
)

)

− ũ

(

(

j, Y, ~Bj
)

)

(a)
=

Tqj
∑

l=1

pseql(∪r∈Y ∪ZWr , ~Bj),j −

Tqj
∑

l=1

pseql(∪r∈Y Wr , ~Bj),j (43)

(b)
=

Tqj
∑

l=1

pseql(∪r∈Y∪ZWr, ~Bj),j1{seql(∪r∈Y ∪ZWr, ~B
j) ∈ ∪r∈YWr}

+

Tqj
∑

l=1

pseql(∪r∈Y ∪ZWr, ~Bj),j1{seql(∪r∈Y ∪ZWr, ~B
j) 6∈ ∪r∈YWr} −

Tqj
∑

l=1

pseql(∪r∈Y Wr, ~Bj),j

(c)
=

Tqj−K
∑

l=1

p
seql(∪r∈Y Wr , ~Bj),j

+
K
∑

l=1

p
seql

(

(∪r∈Y ∪ZWr)\(∪r∈Y Wr), ~Bj
)

,j
−

Tqj
∑

l=1

p
seql(∪r∈Y Wr , ~Bj),j

=

K
∑

l=1

p
seql

(

(∪r∈Y∪ZWr)\(∪r∈Y Wr), ~Bj
)

,j
−

Tqj
∑

l=Tqj−K

pseql(∪r∈Y Wr, ~Bj),j . (44)

where K =
∑Tqj

l=1 1{seql(∪r∈Y ∪ZWr, ~B
j) 6∈ ∪r∈YWr}. Note that (a) follows from the definition of

seq(·, ·), (b) simply follows because seql(∪r∈Y ∪ZWr, ~B
j) either belongs to ∪r∈Y Wr or not, and (c)

follows because the top Tqj −K ads have appeared in the top Tqj ads of seql(∪r∈YWr, ~B
j).

We next show inequality (42). We can write

ũ

(

(

j,X ∪ Z, ~Bj
)

)

− ũ

(

(

j,X, ~Bj
)

)

(a)

≥
K
∑

l=1

p
seql

(

(∪r∈Y∪ZWr)\(∪r∈Y Wr), ~Bj
)

,j
−

Tqj
∑

l=Tqj−K

pseql(∪r∈XWr, ~Bj),j

(b)

≥
K
∑

l=1

p
seql

(

(∪r∈Y∪ZWr)\(∪r∈Y Wr), ~Bj
)

,j
−

Tqj
∑

l=Tqj−K

pseql(∪r∈Y Wr, ~Bj),j

(c)
= ũ

(

(

j, Y ∪ Z, ~Bj
)

)

− ũ

(

(

j, Y, ~Bj
)

)

,

where (a) follows from the fact that any ad l that belongs (∪r∈Y ∪ZWr) \ (∪r∈YWr) belongs to the
set (∪r∈X∪ZWr) \ (∪r∈XWr) as well, (b) follows from the fact that there are more ads in the set

29

∪r∈YWr compared to the set ∪r∈XWr and therefore the bottom K ads (among the top Tqj ads)
have larger payments when we use Y , and (c) directly follows from Eq. (43). This completes the
proof of the claim.

Using the claim, for each j the greedy algorithm finds Yj that obtains 1−1/e of the optimal set
of rewrites subject to cardinality constraint |Yj| ≤ k. The greedy algorithm starts from an empty
Yj and adds the rewrite that increases the marginal utility the most, until k rewrites have been
added.

The algorithm then selects among all possible query types j, the one for which
(

j, Yj , ~B
j
)

has

the highest marginal utility and appends it to the current sequence of configurations. Now we can
use Theorem 3 and Corollary 2 with α = 1− 1/e which guarantees that the approximation ratio of

the overall algorithm is 1− 1/e1−
1

e . Therefore, letting H∗ be the output of Algorithm 4, we obtain

ũ(H∗) ≥

(

1−
1

e1−
1

e

)

max
H̃∈HD(Sp)

ũ(H̃).

This completes the proof.

Proof of Theorem 4

Before proving this theorem, we introduce a few notations. We let Õ be the optimal compact
allocation strategy in HD(S̃) together with sets Yj for all j ∈ Q. We also let H∗ be the output of
Algorithm 4 and H∗q be its corresponding query rewriting allocation strategy. Finally, we let Oq

denote the optimal query rewriting allocation strategy of the original query rewriting problem.
We now proceed with proving this theorem in three steps.

Step 1: In the first step, we establish the relation between ũ(Õ) and u(H∗q). In particular, we
show

u(H∗q) ≥

(

1−
1

e1−
1

e

)

ũ(Õ)−

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(Õ).

Proof of Step 1: If we could have fractional allocation of ads to queries, then the allocation strategy
H∗q would have the same revenue as that of H∗. Here, we use a similar argument to that of Lemma
2 to show the relation between ũ(H∗) and u(H∗q). In particular, we have

u(H∗q) ≥ ũ(H∗)−
∑

i∈A, i’s budget in H∗ is exhausted

pij, (45)

We also have

∑

i∈A, i’s budget in H∗ is exhausted

pij ≤

(

maxi∈A,j∈Q pij
mini∈ABi

)

∑

i∈A, i’s budget in H∗ is exhausted

Bi

≤

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(H∗) ≤

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(Õ). (46)

Invoking (46) in (45), leads to

u(H∗q) ≥ ũ(H∗)−

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(Õ). (47)

30

On the other hand, using Lemma 5 we obtain

ũ(H∗) ≥

(

1−
1

e1−
1

e

)

ũ(Õ). (48)

Using (48) in (47), leads to

u(H∗q) ≥

(

1−
1

e1−
1

e

)

ũ(Õ)−

(

maxi∈A,j∈Q pij
mini∈ABi

)

ũ(Õ). (49)

This completes the proof of the first step.
Step 2: In this step, we show the connection between ũ(Õ) and u(Oq). In particular, we show
that ũ(Õ) ≥ u(Oq).

We let Ô be the optimal offline allocation over all possible ordering of incoming queries. That is
is finding Ô we assume all the queries have arrived with a particular order and then find the optimal
query rewriting allocation strategy for this ordering of queries. Clearly, we have u(Ô) ≥ u(Oq). We
next show that Ô defines a corresponding compact allocation strategy whose revenue function is
equal to u(Ô). In particular, we let Bij be the budget that ad i has consumed in serving query j
using Ô. We also let Yj be the set of rewrites used in Ô. For the compact allocation strategy

Ō = ((1, Y1, ~B
1), · · · , (n, Yn, ~B

n)),

we have ũ(Ō) = u(Ô). Therefore, we obtain

ũ(Õ) ≥ ũ(Ō) = u(Ô) ≥ u(Oq).

Combining the first and the second steps, we obtain

u(H∗q) ≥

(

1−
1

e1−
1

e

)

u(Oq)−

(

maxi∈A,j∈Q pij
mini∈ABi

)

u(Oq),

which completes the proof.

Generalization of Query Rewriting Analysis to d > 1

In order to generalize the analysis to a setting with d > 1, we first introduce the generalization of
revenue function given in Definition 9. We then show that given any compact allocation strategy
H̃, there exists a corresponding query rewriting allocation strategy whose expected revenue is equal
ũ(H̃) (similar to the argument used in the proof of Theorem 4, this is assuming for the ads that
run out of budget, the ad allocator can show a fraction of the ad and extract its remaining budget).
Definition of revenue function ũ: For any compact allocation strategy H̃, its revenue function
denoted by ũ(H̃) is the revenue collected by sequentially running the partial configurations specified
by sequence H̃ and extract the optimal revenue given the budget constraints. Formally, we let ũ(∅)
be zero and B̃i be the current budget of advertiser i initialized to Bi. Suppose (j, Yj , ~B

j) is the
current element of H̃ (with the order specified by H̃). The current budget limit of advertiser i is
the minimum of B̃i and Bij.

We first solve the following linear programming and add its optimal value to the current value

31

of ũ(H̃).

max
x1,...,xn

m
∑

i=1

xipij (50)

xipij ≤ min{B̃i, Bij}, ∀i ∈
⋃

r∈Yj

Wr, (51)

xi ≤ Tqj, ∀i ∈
⋃

r∈Yj

Wr, (52)

m
∑

i=1

xi ≤ dTqj. (53)

In this linear programming, xi denotes the number of ads from advertiser i shown to queries of
type j (note that xi may be non-integer in which case, the ad allocator shows the ad for a fraction
of time). The constraints given in inequality (51) is to capture the fact that the allowed budget of
advertiser i for query types j is Bi. The constraint given in inequality (52) captures that we do
not have more than Tqj queries of type j and for any query we cannot an ad in more than one slot
(among the available d slots). Finally, the constraint given in Eq. (53) captures the fact that there
are Tqj queries of type j and for each one of them the ad allocator can show at most d ads.

We then update the budgets Bi by subtracting the optimal xi. Finally, we proceed to the next
partial configuration in the sequence H̃. The revenue function ũ(H̃) is the revenue obtained at the
end of this procedure.

We next show that the solution of the linear programming given in Eq. (50) is implementable.
That is we show how the solution of problem (50) specifies a query rewriting allocation strategy
whose collected revenue is the same as the objective of the optimal solution of problem (50). Note
that the main challenge is that for any query type j, we can only show d ads which need to be
distinct from each other and it is not clear whether a solution of problem (50) is implementable in
view of these constraints. We first show an example illustrating the aforementioned challenge.

Example 2. Suppose we have one query type, denoted by 1, which arrive 10 times and we have
3 ads, denoted by {1, 2, 3}, each of them with budget 10. Also suppose we have two ad slots per
query (i.e., d = 2) and the payments are p11 = 1 and p21 = p31 = 2. For this example, the solution
of problem (50) becomes x1 = 10, x2 = x3 = 5 with optimal revenue 30. Now if we greedily allocate
ads to the slots, then we need to serve the first 5 queries with ads {2, 3} which have the maximum
payment, then for the remaining 5 queries we can only show one ad of type 1 (this is because we
cannot show ad 1 in more than one of slots available for each query). Therefore, the overall revenue
of a greedy implementation becomes 25 which is not the same as the optimal solution of problem
(50). However, we serve the first 5 queries with ads {1, 2} and last 5 queries with ads {1, 3}, then
the resulting revenue becomes 30. This example illustrates that a greedy allocation of ads to queries
does not necessarily lead to the optimal revenue.

We next show how we can implement the optimal solution of problem (50). Suppose x1, . . . , xm
denote the optimal solution. Without loss of generality assume x1 ≥ . . . ,≥ xm. The implemen-
tation is as follows. We allocate ad 1 to the first ad slot of the first x1 queries. We then allocate
ad 2 to the remaining first ad slots until we reach the last query (i.e., the Tqj-th query). We then
allocate the remaining ads of type 2 to the second ad slots of the initial queries. We continue
this procedure until all ads are allocated. First note that all ads will be allocated because of the
constraint

∑m
i=1 xi ≤ dTqj. Moreover, the ads shown for each query are distinct. This is because

32

11x1x111 22

.

x2x2 11

. 11

11

22

11 22 TqjTqj

dd

.

.

xmxm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xm−1xm−1

Figure 4: Implementation of a solution of problem (50). We start from the first row and serve ad
1 for x1 queries and then serve the next add until we serve all the ads.

of the way we fill out the slots and the fact that xi ≤ Tqj for all i = 1, . . . ,m. Figure 4 illustrates
this procedure.

The rest of the analysis is identical to that of Lemma 5 and Theorem 4.

References

Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular stochastic probing on matroids. Math-
ematics of Operations Research, 41(3):1022–1038, 2016.

Nir Andelman and Yishay Mansour. Auctions with budget constraints. In Scandinavian Workshop on
Algorithm Theory, pages 26–38. Springer, 2004.

Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone submodular functions. Manage-
ment Science, 62(8):2374–2391, 2015.

Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for combinatorial auctions
with submodular bidders. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 1064–1073, 2006.

Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on Computing,
39(1):122–142, 2009.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions. SIAM
Journal on Computing, 40(4):1133–1153, 2011.

Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approximation algo-
rithms for maximum general assignment problems. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 611–620, 2006.

Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, and S Muthukrishnan. Adaptive submodular
maximization in bandit setting. In Advances in Neural Information Processing Systems, pages 2697–
2705, 2013.

Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with applications
to adwords. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 982–991, 2008.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning
and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular set function
maximization. Optimization online, pages 1–25, 2007.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. Generating query substitutions. In Proceed-
ings of the 15th international conference on World Wide Web, pages 387–396. ACM, 2006.

33

Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
352–358. ACM, 1990.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network.
In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 137–146. ACM, 2003.

Subhash Khot, Richard J Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximability results for
combinatorial auctions with submodular utility functions. In International Workshop on Internet and
Network Economics, pages 92–101. Springer, 2005.

S Lahaie, D Pennock, A Saberi, and R Vohra. Algorithmic game theory, chapter sponsored search, 2007.

Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing marginal
utilities. Games and Economic Behavior, 55(2):270–296, 2006.

Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In Advances in
Neural Information Processing Systems, pages 2305–2315, 2017.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-
Volume 1, pages 510–520, 2011.

Azarakhsh Malekian, Chi-Chao Chang, Ravi Kumar, and Grant Wang. Optimizing query rewrites for
keyword-based advertising. In Proceedings of the 9th ACM conference on Electronic commerce, pages
10–19. ACM, 2008.

Aranyak Mehta. Online matching and ad allocation. Foundations and Trends R© in Theoretical Computer
Science, 8(4):265–368, 2013.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized online match-
ing. Journal of the ACM (JACM), 54(5):22, 2007.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular maxi-
mization. Journal of Machine Learning Research, 17(238):1–44, 2016.

Marko Mitrovic, Moran Feldman, Andreas Krause, and Amin Karbasi. Submodularity on hypergraphs:
From sets to sequences. arXiv preprint arXiv:1802.09110, 2018.

Elchanan Mossel and Sebastien Roch. Submodularity of influence in social networks: From local to global.
SIAM Journal on Computing, 39(6):2176–2188, 2010.

George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum of a sub-
modular set function. Mathematics of operations research, 3(3):177–188, 1978.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maxi-
mizing submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

Gyanit Singh, Nish Parikh, and Neel Sundaresan. Rewriting null e-commerce queries to recommend products.
In Proceedings of the 21st International Conference on World Wide Web, pages 73–82. ACM, 2012.

Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, and Andreas Krause. Near-optimally teaching
the crowd to classify. In ICML, pages 154–162, 2014.

Sebastian Tschiatschek, Adish Singla, and Andreas Krause. Selecting sequences of items via submodular
maximization. In AAAI, pages 2667–2673, 2017.

Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 67–74. ACM, 2008.

Laurence A Wolsey. Maximising real-valued submodular functions: Primal and dual heuristics for location
problems. Mathematics of Operations Research, 7(3):410–425, 1982.

Wei Vivian Zhang and Rosie Jones. Comparing click logs and editorial labels for training query rewriting.
In WWW 2007 Workshop on Query Log Analysis: Social And Technological Challenges, 2007.

34

	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Organization

	2 Online Ad Allocation
	2.1 Problem Formulation
	2.2 Ad allocator's Decision and Revenue

	3 Continuous Sequence-Submodular Functions and their Maximization
	3.1 Continuous Sequences: Definition and Operations
	3.2 Submodular Non-decreasing Continuous Sequence Functions
	3.3 Greedy Algorithm for Maximizing Continuous Sequence Functions
	3.4 Application to Online Ad Allocation

	4 Query Rewriting
	4.1 Problem Formulation

	5 Discrete Sequence-Submodular Functions and their Maximization
	5.1 Discrete Sequences: Definition and Operations
	5.2 Submodular Non-decreasing Discrete Sequence Functions
	5.3 Greedy Algorithm for Maximizing Discrete Sequence Functions
	5.4 Application to Query Rewriting

	6 Conclusion
	7 Appendix
	7.1 Proofs of Section ??
	7.2 Proofs of Section ??

