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Abstract

We consider a social learning model where agents learn about an underlying state of the world
from individual observations as well as from exchanging information with each other. A princi-
pal (e.g. a firm or a government) interferes with the learning process in order to manipulate the
beliefs of the agents. By utilizing the same forces that give rise to the “wisdom of the crowd” phe-
nomenon, the principal can get the agents to take an action that is not necessarily optimal for them
but is in the principal’s best interest. We characterize which networks are susceptible to this kind
of manipulation and derive conditions under which a social network is impervious and cannot be
manipulated. In the process, we generalize some known centrality measures and describe how our
model offers insights into designing networks that are resistant to manipulation.

1 Introduction

In a recent emergency report, the World Health Organization lists “Vaccine Hesitancy” —defined as
“the reluctance or refusal to vaccinate despite the availability of vaccines”— as one of the top ten
global health threats in 2019." This hesitancy is believed to be one of the main factors behind the
resurgence of several health crises, including the recent increase in measles cases by more than 30%
worldwide. The reasons for choosing not to vaccinate are varied and complex, but one primary driver
is the belief that vaccines are unsafe and have serious adverse effects.

People hold beliefs about all kinds of different issues, e.g. whether a particular vaccine is safe
or whether burning fossil fuels contribute to global warming. In these and many other examples,
there is usually a ground truth — an underlying state of the world — that agents are trying to learn. In

the case of the measles vaccine, the state can be that the vaccine is “safe” or “risky”.? Agents form
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2Vaccines, like any medication, may have side effects, and therefore safety here is understood in the statistical sense.
The Center for Disease Control lists several groups who should not be vaccinated, like immuno-compromised individuals
or pregnant women. Setting aside these groups and focusing on healthy individuals, the MMR vaccine, for example, has a 1
in a million chance of causing a severe allergic reaction (https://www.cdc.gov/vaccines/hcp/vis/vis-statements/mmr.
html), and hence the vaccine is deemed safe enough and approved for use by the Food and Drug Administration. Agents
however, do not have to believe that this information is correct, and may have to be convinced (or not) of its accuracy.
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beliefs about this underlying state through receiving private signals (for example, by doing their own
research on the issue) as well as communicating and exchanging opinions with their neighbors, and
a large literature studies conditions under which social learning aggregates beliefs in a way that leads
agents to learning the correct state of the world.

In many instances, the beliefs of the agents directly impact their actions. In the example above,
an agent would choose to vaccinate if she believes that the state is “safe” and would choose not to
vaccinate otherwise, and an aspect that is often ignored in the social learning literature is that there
is usually an entity, for e.g. a business, a lobbying group, or a government, that can tamper with the
learning process in order to influence these beliefs and steer agents towards a particular action. For
example, Broniatowski et al. (2018) provide evidence that Russian bots spread anti-vaccination pro-
paganda online, and Newsweek magazine reports that “most of the new measles cases are in Eastern
European and Central Asian countries frequently targeted by Russian disinformation.”® Similarly,
a recent episode of the show Planet Money reports how firms like Cambridge Analytica selectively
pushes certain stories and not others in order to “create a fake view of the world with real stories”, i.e.
the content itself does not even have to be false; it is enough for it to be biased enough in order to in-
fluence the beliefs of the receiver.* Less malicious examples exist of course — a firm may simply try to
influence the beliefs of consumers in order to make them buy a product, or a public health campaign
may try to convince the population to adopt certain hygiene practices that can be useful in reducing
the risk of communicable diseases.

Building on the above, we consider a social learning environment where a principal tries to ma-
nipulate the learning process of the agents. Agents in our paper are heterogeneous on multiple di-
mensions. In addition to their different network locations and how well-connected they are, they can
also vary in how they interpret their own signals and how they use the information they obtained
from their friends or colleagues to update their opinions. Some agents may choose to aggregate the
opinions of their peers without conducting more thorough research or without considering how these
opinions were reached. Others may be more discerning, choosing instead to try and determine how a
peer reached a particular conclusion before blindly incorporating it into their own opinion. This het-
erogeneity allows us to study manipulation in the context of the two most common social learning
models in the literature — Bayesian and DeGroot learning. Importantly, the recent experimental and
empirical work of Chandrasekhar et al. (2015) shows that societies are indeed composed of a mixture

of Bayesian and DeGroot learning types, and that the proportion of types can be different from one
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society to the next. As shown in that work, about 10% of the sample of Indian villagers considered in
the paper behave in a way that is consistent with Bayesian updating, while the remaining agents be-
have in a DeGroot fashion. In contrast, the proportion of Bayesian to DeGroot agents is roughly equal
in the sample of college students studied in the paper. Our model thus captures a realistic aspect of
social networks by incorporating this learning diversity and —as we show later— demonstrates how
the proportions of learning types in a population, among other factors, determine whether a society
is susceptible to manipulation.

To summarize, this paper builds an opinion dynamics model with the following three compo-
nents. First, opinions are formed as a result of both individual and social learning. Second, agents
are heterogeneous in how they incorporate their peers’ opinions into their own beliefs. In particular,
they have varying levels of sophistication in how they treat these opinions. Third, there is a strategic
principal who can utilize the social aspect of opinion formation in order to manipulate the agents’
beliefs to his benefit. These three aspects combine to give a novel model that provides analytical in-
sights into how beliefs spread in these heterogeneous environments, as well as practical implications

to the design of these networks in order to make them impervious to manipulation.

Contribution and Overview of Results. The primary contribution of this paper is to examine a rich
mixed-learning environment where the learning process of the agents is manipulated by a strategic
principal. With few exceptions, previous literature has traditionally eschewed such heterogeneity and
considered information aggregation by either DeGroot agents or Bayesian agents. More importantly,
none of that literature considers the case where a principal tries to influence the learning process. Our
model combines Bayesian agents and a more general formulation of DeGroot agents to answer the
following questions: 1. Can a strategic principal consistently manipulate the beliefs of some agents
in the network in order to make them take certain actions? And 2. What are the driving factors that
make some networks amenable to such manipulation while other networks are more resistant?

We answer the above questions by providing a classification of networks that describes when such
manipulation is possible. In our model, agents try to learn the true state of the world in order to
make a one-time choice between different actions. In the example given earlier, the possible actions
are vaccinate or not vaccinate and the state can be whether the vaccine is safe or risky. Agents
receive signals about the underlying state — for example, they might read news stories or examine
research articles about vaccination— and they use these signals in addition to the information they
obtain from their neighbors to update their beliefs and eventually uncover the state. The principal

has an unknown type: he can either be truthful or strategic. A truthful principal does not interfere



with the learning process, but a strategic principal can choose to send costly signals to the agents.
These signals do not have to be tied to the state and can be intentionally misleading. Agents do not
know the type of the principal and cannot differentiate whether a signal they are receiving is organic
or coming from a strategic principal.

Agents try to take an action that matches the state, so in the example above they would like to
choose vaccinate if the state is safe or not vaccinate if the state is risky. The principal is interested
in having the agents take a specific action, for example, the action not vaccinate, regardless of what
the state actually is. We say that an agent is manipulated if her beliefs converge to the true state and
she takes the correct action when the principal is the truthful type, but chooses the wrong action
due to incorrect beliefs when the principal is the strategic type (this corresponds, in this example, to
taking the action not vaccinate when the state is safe). These dynamic environments often admit a
multiplicity of equilibria, which complicates their analysis. We first provide a few technical results
that show that for a long-enough horizon, an equilibrium always exists and is essentially unique,
in the sense that the degree of manipulation in society does not depend on which equilibrium is
selected. We then use these results to show in Theorem 1 that Bayesian agents are never manipulated,
but that depending on parameters related to the network structure and how agents weigh their own
signals, a substantial fraction of DeGroot agents can be tricked into believing that the underlying state
is different from the actual state. Proposition 3 shows that under mild conditions, extreme societies
that are inclined towards herding (agents discount their own signals and put their faith in what other
agents think) or towards individuality and narcissism (agents discount everything except their own
signals) are basically impossible to manipulate. On the other hand, a well-tempered society whose
members use their own beliefs as well as other agents’ opinions is the society that is most prone to
this kind of manipulation.

For these well-tempered societies, the Bayesian agents can help spread the truth about the under-
lying state, but their ability to do so is limited by the network structure. We provide a characterization
of which network topologies are manipulable in terms of a centrality measure that we call DeGroot
Centrality, and we use this measure to classify networks into dense and sparse topologies. Theorem 2
shows that dense networks are highly resistant to manipulation: even as the size of the network grows,
the presence of a constant number of Bayesian agents anywhere in the network is enough to guaran-
tee imperviousness. On the other hand, sparse networks are more susceptible to manipulation, and
both the number of the Bayesian agents as well as where these agents are located are important for
the network to be impervious. In particular, the number of Bayesians required may grow with the size

of the network. If there are not enough Bayesians, or if there is a sufficient number of Bayesians but



they are not well-located, then the principal can manipulate almost the entire population by targeting
only a fraction of the agents, i.e. it becomes cheaper and easier for the principal to manipulate.
Finally, we apply our results to the network topologies commonly studied in the literature and use
DeGroot centrality and the dense/sparse classification to determine which of these topologies are
easier to manipulate. In an effort to bring our results closer to real-world networks, we further apply
our results to data from an advice network in an Indian village, obtained from Jackson et al. (2012).
The data provides an actual network topology from the village but no information about which agents
are Bayesian. We analyze different scenarios of Bayesian placements in this network to highlight the
concepts introduced in the paper. Ultimately, we believe that the work in Chandrasekhar et al. (2015)
—which identifies which agents learn in a Bayesian vs. DeGroot fashion— and the methodological
approach introduced in this paper jointly provide a complete framework for studying manipulation

in these heterogeneous real-world networks.

Related Literature. Our model combines both DeGroot and Bayesian agents. DeGroot learning has
been extensively studied in several literatures. For example, Golub and Jackson (2010) give conditions
under which beliefs converge to the true state of the world. There is also a rich literature (e.g. Ace-
moglu et al. (2011) and Bikhchandani et al. (1992)) that looks at when agents who learn in a Bayesian
fashion can correctly aggregate information. Others, such as Jadbabaie et al. (2012), consider agents
that are somewhere between DeGroot and Bayesian agents in how they update their beliefs about
the state of the world, and their particular formulation of DeGroot agents is the one we consider in
this paper. Some recent work looks at a mixed learning environment. Mueller-Frank (see Mueller-
Frank (2014)) examines how a network of DeGroot agents and a single Bayesian agent aggregates
information, and Chandrasekhar et al. (2015) experimentally examine learning in an environment
where some agents are designated as Bayesian and others are not. One major differentiating factor
of our work compared to this literature is the presence of a principal who can intentionally confound
learning, and we examine the conditions under which this may or may not be possible.

The Bayesian Persuasion literature initiated by Kamenica and Gentzkow (2011) considers a princi-
pal who sends messages to agents in order to make them take a certain action. In the standard setup,
everyone is strategic, there is no state uncertainty or learning from the environment, there is no no-
tion of organic and strategic messages, and most importantly, there is no ambiguity over the type of
the principal. In our paper, agents do not know the type of the principal and cannot tell whether
the signals they receive originate from a strategic principal or are more organic. This uncertainty

about the principal’s type relates our work to that of Morris (2001) and more generally, to the litera-



ture on reputation formation, which started with the work of Kreps and Wilson (1982) and Milgrom
and Roberts (1982). This literature considers short-lived Bayesian agents that interact sequentially
with a principal. In contrast, our paper examines a setup where there is a principal interacting simul-
taneously with a collection of agents who are connected on a social network and who update their
beliefs through the signals they receive as well as from the social interactions amongst themselves.

As we mentioned earlier, our first result shows that the Bayesian agents in our model eventually
figure out the true state of the world. Once this happens, they become somewhat similar to stubborn
agents, in the sense that their (correct) opinion about the state remains unchanged. Opinion dynam-
ics with stubborn agents have been studied in Acemoglu et al. (2013) and Yildiz et al. (2013) among
others. The primary differences between our work and these papers is the presence of a strategic prin-
cipal, which fundamentally changes the role that these stubborn agents play. In the cited literature,
the presence of stubborn agents leads to divergence of opinions and generally hinders learning about
the true state of the world. In contrast, the learning difficulty in our model comes from the strategic
principal who tries to manipulate the agents, and in that sense the presence of stubborn agents who
realize the principal’s type is always useful for everyone in the network, i.e unlike the work above, the
stubborn agents can only help society discover the true state of the world. Nevertheless, as we discuss,
even with the positive contribution that these agents provide to the learning process, manipulation
might still be unavoidable.

The recent proliferation of false news on social networks, while not a primary focus of our paper,
provides a current application of our work. Recent theoretical work in Candogan and Drakopoulos
(2017) and Papanastasiou (2018) examines how (Bayesian) agents exchange information on a social
network and shows how misinformation can spread in these models and what the platform (over
which the agents are communicating) can do about it. The existence of fake news in these models is
exogenous, i.e. unlike our model, there is no principal or news provider that strategically injects such
misinformation into the network, and consequently there is no notion of manipulation. In addition,
we examine a mixed learning environment with varying degrees of sophistication, which, as Penny-
cook and Rand (2018) show in recent experimental work, might be one of the primary reasons why

misinformation propagates in social networks.

2 Model

We first provide an informal description of how agents learn in our model. Agents continuously re-

ceive news about a specific topic, for example by scrolling through the stories that appear in their



news feed. In the absence of interference from the principal, the news that agents receive is organic,
and, together with communicating with other agents, is enough for them to update their beliefs and
figure out the state of the world correctly. The principal may however interfere with the news gen-
eration process for some of the agents, so that these agents see both organic and fake stories as they
scroll through their feed. Agents cannot differentiate which stories are correct and which are not, and
so they update their beliefs using both types of stories. As mentioned in the introduction, the stories
that the principal provides do not even have to be false, but can simply be correct stories that are
curated in a way that leaves a specific impression. For simplicity however, we will refer to the stories
that the principal provides as fake news. Once enough time has elapsed and agents have learned the

state of the world, they take an action based on their belief of what the state is.

2.1 Formal Model

We consider a directed social network with n agents trying to learn a binary state of the world y €
{S, R} over time. Time is continuous and agents learn over a finite horizon, ¢t € [0,7). At time ¢ = 0,
the underlying state y € {5, R} is drawn, with P(y = S) = ¢ € (0, 1).

Organic News News is generated according to a Poisson process with unknown parameter \; > 0
for each agent i; for simplicity, we assume that \; has atomless support over (), o) with A > 0. We
refer to this process as organic news. Let us denote by (tgi), tg), ...) the times at which news occurs for

agent i. Forall 7 € {1,2,.. .}, the organic news for agent i generates a signal s, € {5, I’} according

to the distribution:
P (St(qu) = S‘y = S) =P <8t_(ri) = R‘y = R) =p; € [1/2, 1)

i.e., the signal is correlated with the underlying truth. The value of p; indicates the richness of agent
i's signal, and can be interpreted as her ability to deduce the true state from the facts presented in the
organic news. We assume that p; may be equal to 1/2, in which case the organic news serves only as

noise for agent i, who cannot infer the true state simply from this news.

Principal In addition to the organic news process, there is a principal who may also generate news of
his own. At ¢ = 0, the principal picks an influence state § € { R, S}. This is the state that the principal
would like agents to believe, regardless of what the true state actually is. The principal then picks
an influence strategy z; € {0,1} for each agent i in the network. The influence state § corresponds
to the signal the principal sends to (some) agents, and the influence strategy indicates which agents

the principal wants to send the signal to. If the principal chooses z; = 1 for any agent 4, then he



(principal) generates news according to an independent Poisson process with intensity A7 which is
received by all agents where x; = 1. We assume the principal commits to sending signals at this

intensity, which may not exceed some (exogenous) threshold \.> We denote by fgi), fg), ... the arrival

times of all news, either from organic sources or from the principal, for agent ;. At each time i if
the news is organic, the agent gets a signal according to the above distribution, whereas if the news is
sent from the principal, she gets a signal of §. The principal incurs an upfront investment cost ¢ > 0
for each agent with z; = 1.

The principal can be one of two types. He can either be a strategic type S or a truthful type 7. The
type of the principal, which is denoted by w, is drawn at ¢t = 0 with P(w = 7)) = po € (0,1) and does
not change over time. If the principal’s type is w = 7, we assume he is committed to implementing
x; = 0 for all agents; that is, he does not interfere with the learning process. On the other hand,
the w = S type of the principal may play any influence strategy x = {z;}?_, over the network (and
may randomize over network strategies). Specifically, he may choose x; = 1 for some agent i, with
influence state y # y, to spread misinformation. The uncertainty of the principal’s type generates

uncertainty for agent i about the true nature of her signal distribution.

Agents Agents have different degrees of sophistication. We think of these sophistication levels as
separate from whether the agent has skill in distinguishing the state y from the news alone (i.e., her p;
or )\;). Specifically, sophistication in our model refers to how an agent uses the beliefs in her network
to form her own belief about the state. Each agent is either Bayesian (B) or DeGroot (D), and the
sophistication type of each agent is common knowledge and consistent across time. DeGroot agents

differ from Bayesians in that DeGroot agent i:
(a) Uses a simple learning heuristic to update beliefs about the underlying state from other agents.

(b) Believes all signals arrive according to a Poisson process and all signals are independent over time

with P <3i,t; = y) = p; (i.e., takes the news at face value).

Each agent perfectly observes her signals but does not observe the signals received by any other agent.
All agents have perfect recall. We let #; ; denote the set of possible private histories of signals at agent
i up until time ¢, and h;; € H;; a particular history realization. Let m;; € A({R,S}) represent the
belief of agent i about the underlying state at time ¢.

DeGroot Update: DeGroot agents form their opinions about the state both through their own

experience (i.e. the signals they receive) and by talking to their neighbors. Given history h;; =

jOne can interpret A as the maximum capacity that the principal can send his messages. The principal may elect A} < A
if A when is large because choosing A\; = X would make the evidence of § so overwhelming that the agent would realize
z; = 1 (i.e., in other words, the bias in agent i’s signals would become obvious to her).



<si FOFEIFOPRRRE i“)) up until time ¢ with 7, = max{r : A(Ti) < t}, each agent forms a personal be-
"1 " WTy
lief about the state according to Bayes’ rule. Let zft and zﬁt denote the number of S and R signals,

respectively, that agent i received by time ¢; then the DeGroot agent has direct “personal experience”:

2 R

it (Slhie) = = ZZZ, (1 —Zﬁzz) g -

P (1= pi)*tq+p;" (1 = pi) 7t (1 — q)

and g;;(R|hit) = 1 — ¢i+(S|hit). The experience function g;, represents the direct contribution of
the observed signals into agent i’s belief, and is related to the personal Bayesian update in Jadbabaie
et al. (2012). It is the belief any fully Bayesian agent would hold about the state y in isolation and
without principal interference. DeGroot agents also form beliefs by talking to their neighbors every
time interval of length A > 0 small.® For all agents 4, there are weights 6;, a;; such that agent i holds

belief m; ; for all kA < ¢t < (k4 1)A according to:

n
mip = Oigia(hit) + D QijTjka
i=1
for all £ € N, where 0; + 27:1 a;; = 1 (we have suppressed dependence on y). As convention, we
assume the link : — j suggests that i listens to j. We refer to this as the DeGroot update (DU) process.
Bayesian Update: We assume it is common knowledge for Bayesian agents that there are n agents
arranged in a given social network G, with signal structures {p;}?_,. Furthermore, agenti observes the
history of beliefs in her neighborhood V;, given by I, ; = Xi,zo X;en; Tjv- Given the private history
of signals and history of neighborhood beliefs, the belief map ¢, at time ¢ of a Bayesian agent is of the

form:

bt x (i i) = igtar

and pinned down by Bayes’ rule. We will say the Bayesian is truthful if she reports belief 7;; to all
agents in her out-neighborhood is the belief given by ¢.(h; +,II;+). We will assume throughout this
paper that all Bayesian agents are truthful.” Notice that Bayesian agents may be oblivious (i.e., re-
ceiving no signals at all about the state), in which case they have to rely on the network to learn what
the state of the world is.

At the same time, Bayesians hold (private) beliefs about the type of the principal (and whether

®In particular, we assume A is arbitrarily small so the probability that any agent has two signals within an interval of
length A is close to zero.

"This is contrast to previous papers (such as Rosenberg et al. (2009)) where Bayesian agents may experiment with re-
porting false beliefs to better learn about the information of other agents in the network. In light of Theorem 1, when 7' is
large, Bayesians learn the correct state, so even if Bayesians strategically report beliefs in the network, reporting truthfully
is a best-response to other Bayesians reporting truthfully as well.



Agent

R S
State y 1’11—£b 8’(1]

Table 1. Terminal Game.

signals are corrupted by the principal’s influence). We will denote the belief (that the principal is
truthful type) of a Bayesian i about the principal’s type at time ¢ as ; ;, which is unobservable to other
agents in the network, including i’s neighbors. Such beliefs are updated using Bayes’ rule whenever

possible, as in a perfect Bayesian equilibrium (see Fudenberg and Tirole (1991)).

Payoffs Attimet = T, each agent chooses an action a; € {S, R}.8 Payoffs for the principal and agent
are given in Table 1. The first entry in a cell is the principal’s payoff while the second is the agent’s
payoff (so for example, the top-left cell corresponds to the case when the state is R and the agent
chooses action R. This gives the principal a payoff of 1 and the agent a payoff of (1 + b)).
We assume that b € (—1,1) so that agent : would match its action a; with the state y if it were known
with certainty. Otherwise, the parameter b captures any asymmetry in the payoffs between the two
states.” Note that, on the other hand, the principal always prefers agents take action R instead of
action S, and so has an incentive to convince agents of y = R even when y = S. Let u;(y, a;) denote
the payoff of agent : when the state is y and she takes action a;; u}(a;) is the payoff for the principal
at agent ¢ (and only depends on that agent’s action). The total payoff for the principal is given by
uP(a) = > u¥(a;), which is the summation of the payoffs from period-T" actions of all n agents
(where a = {a;}!" ;). We denote by ¢(x) = " , €1,,—1 the cost of the principal for implementing the
network influence strategy (9, x) att =0

Each agent chooses a mixed strategy o; mapping terminal beliefs, ; 7, to a distribution over ac-
tions, A({S, R}). Similarly, the principal chooses a mixed network influence strategy ¢” mapping his
type w and the current state y to a distribution over network influence, A(y,x), with the restriction
that the truthful principal type w = 7 always plays a pure network-influence strategy of x = 0, i.e.
does not interfere with the organic signals. We assume that the principal has total payoff given by
the difference between her future utility (via the actions of the agents) and the cost of the network

influence, v?(a) — c¢(x).

8The example given in the introduction can be modeled using this payoff table as follows: the states of nature S and R
can be mapped to whether a vaccine is safe (state S) or risky (state R). Similarly, the actions can be thought of as analogous
to the “vaccinate” (action S) and “not vaccinate” (action R) actions. In this sense, a player wants to match her action to the
state, e.g. taking action S when the state is S indicates vaccinating when the vaccine is safe.

9For instance, it may be more costly to vaccinate your child if vaccines do have averse effects than it is to not vaccinate
even if they are safe.
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3 Equilibrium and Learning

In this section, we present a brief summary of the solution concept and the learning dynamics which
follow. These results are completely technical, and so we elected to delegate them to the appendix
in order to preserve the flow of the paper and focus on the structural results. We refer the reader to

Appendix A and Appendix B, respectively, for a more formal treatment.

Equilibrium We informally describe our equilibrium concept and provide some basic results. The
relevant details are given in Appendix A. By definition, DeGroot agents update beliefs mechanically
and simply take all news received at face value. At time ¢t = T, each DeGroot agent chooses an action
which maximizes her payoff given her belief about the state. All of this is common knowledge to both
the Bayesian agents and the principal. In addition, Bayesian agents observe their neighbors’ beliefs
over time, know the network structure, and know the principal’s type is drawn at ¢ = 0 such that he is
truthful (w = 7) with probability 1y and strategic (w = S) with probability 1—xg. The principal and the
Bayesian agents play a perfect Bayesian equilibrium, i.e. the Bayesians update beliefs about the type
of the principal and the underlying state y simultaneously, taking as given the strategy of the strategic
principal in equilibrium. Then, at ¢ = T', each Bayesian agent chooses an action which maximizes her
payoff given her belief about the state. Similarly, the principal chooses his network influence strategy
to maximize his payoff taking as given how agents learn and ultimately select terminal actions. In all
of this, we require in equilibrium that strategies in fact be best-responses for both the principal and
the Bayesians, as standard.

We will say that an agent is manipulated if she learns the correct state (i.e., takes the correct ac-
tion) when the principal is truthful, but takes the incorrect action when he is strategic. That is, the
principal’s interference successfully tricks some agent into taking a suboptimal action she would not
have taken without the interference. Our first main result, presented in Appendix A, is that a