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Abstract

We consider a social learning model where agents learn about an underlying state of the world
from individual observations as well as from exchanging information with each other. A princi-
pal (e.g. a firm or a government) interferes with the learning process in order to manipulate the
beliefs of the agents. By utilizing the same forces that give rise to the “wisdom of the crowd” phe-
nomenon, the principal can get the agents to take an action that is not necessarily optimal for them
but is in the principal’s best interest. We characterize which networks are susceptible to this kind
of manipulation and derive conditions under which a social network is impervious and cannot be
manipulated. In the process, we generalize some known centrality measures and describe how our
model offers insights into designing networks that are resistant to manipulation.

1 Introduction

In a recent emergency report, the World Health Organization lists “Vaccine Hesitancy” —defined as

“the reluctance or refusal to vaccinate despite the availability of vaccines”— as one of the top ten

global health threats in 2019.1 This hesitancy is believed to be one of the main factors behind the

resurgence of several health crises, including the recent increase in measles cases by more than 30%

worldwide. The reasons for choosing not to vaccinate are varied and complex, but one primary driver

is the belief that vaccines are unsafe and have serious adverse effects.

People hold beliefs about all kinds of different issues, e.g. whether a particular vaccine is safe

or whether burning fossil fuels contribute to global warming. In these and many other examples,

there is usually a ground truth – an underlying state of the world – that agents are trying to learn. In

the case of the measles vaccine, the state can be that the vaccine is “safe” or “risky”.2 Agents form
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1https://www.who.int/emergencies/ten-threats-to-global-health-in-2019
2Vaccines, like any medication, may have side effects, and therefore safety here is understood in the statistical sense.

The Center for Disease Control lists several groups who should not be vaccinated, like immuno-compromised individuals
or pregnant women. Setting aside these groups and focusing on healthy individuals, the MMR vaccine, for example, has a 1
in a million chance of causing a severe allergic reaction (https://www.cdc.gov/vaccines/hcp/vis/vis-statements/mmr.
html), and hence the vaccine is deemed safe enough and approved for use by the Food and Drug Administration. Agents
however, do not have to believe that this information is correct, and may have to be convinced (or not) of its accuracy.
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beliefs about this underlying state through receiving private signals (for example, by doing their own

research on the issue) as well as communicating and exchanging opinions with their neighbors, and

a large literature studies conditions under which social learning aggregates beliefs in a way that leads

agents to learning the correct state of the world.

In many instances, the beliefs of the agents directly impact their actions. In the example above,

an agent would choose to vaccinate if she believes that the state is “safe” and would choose not to

vaccinate otherwise, and an aspect that is often ignored in the social learning literature is that there

is usually an entity, for e.g. a business, a lobbying group, or a government, that can tamper with the

learning process in order to influence these beliefs and steer agents towards a particular action. For

example, Broniatowski et al. (2018) provide evidence that Russian bots spread anti-vaccination pro-

paganda online, and Newsweek magazine reports that “most of the new measles cases are in Eastern

European and Central Asian countries frequently targeted by Russian disinformation.”3 Similarly,

a recent episode of the show Planet Money reports how firms like Cambridge Analytica selectively

pushes certain stories and not others in order to “create a fake view of the world with real stories”, i.e.

the content itself does not even have to be false; it is enough for it to be biased enough in order to in-

fluence the beliefs of the receiver.4 Less malicious examples exist of course – a firm may simply try to

influence the beliefs of consumers in order to make them buy a product, or a public health campaign

may try to convince the population to adopt certain hygiene practices that can be useful in reducing

the risk of communicable diseases.

Building on the above, we consider a social learning environment where a principal tries to ma-

nipulate the learning process of the agents. Agents in our paper are heterogeneous on multiple di-

mensions. In addition to their different network locations and how well-connected they are, they can

also vary in how they interpret their own signals and how they use the information they obtained

from their friends or colleagues to update their opinions. Some agents may choose to aggregate the

opinions of their peers without conducting more thorough research or without considering how these

opinions were reached. Others may be more discerning, choosing instead to try and determine how a

peer reached a particular conclusion before blindly incorporating it into their own opinion. This het-

erogeneity allows us to study manipulation in the context of the two most common social learning

models in the literature – Bayesian and DeGroot learning. Importantly, the recent experimental and

empirical work of Chandrasekhar et al. (2015) shows that societies are indeed composed of a mixture

of Bayesian and DeGroot learning types, and that the proportion of types can be different from one

3https://www.newsweek.com/russian-trolls-promoted-anti-vaccination-propaganda-measles-outbreak-1332016
4https://www.npr.org/2019/05/24/726536757/episode-915-how-to-meddle-in-an-election
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society to the next. As shown in that work, about 10% of the sample of Indian villagers considered in

the paper behave in a way that is consistent with Bayesian updating, while the remaining agents be-

have in a DeGroot fashion. In contrast, the proportion of Bayesian to DeGroot agents is roughly equal

in the sample of college students studied in the paper. Our model thus captures a realistic aspect of

social networks by incorporating this learning diversity and —as we show later— demonstrates how

the proportions of learning types in a population, among other factors, determine whether a society

is susceptible to manipulation.

To summarize, this paper builds an opinion dynamics model with the following three compo-

nents. First, opinions are formed as a result of both individual and social learning. Second, agents

are heterogeneous in how they incorporate their peers’ opinions into their own beliefs. In particular,

they have varying levels of sophistication in how they treat these opinions. Third, there is a strategic

principal who can utilize the social aspect of opinion formation in order to manipulate the agents’

beliefs to his benefit. These three aspects combine to give a novel model that provides analytical in-

sights into how beliefs spread in these heterogeneous environments, as well as practical implications

to the design of these networks in order to make them impervious to manipulation.

Contribution and Overview of Results. The primary contribution of this paper is to examine a rich

mixed-learning environment where the learning process of the agents is manipulated by a strategic

principal. With few exceptions, previous literature has traditionally eschewed such heterogeneity and

considered information aggregation by either DeGroot agents or Bayesian agents. More importantly,

none of that literature considers the case where a principal tries to influence the learning process. Our

model combines Bayesian agents and a more general formulation of DeGroot agents to answer the

following questions: 1. Can a strategic principal consistently manipulate the beliefs of some agents

in the network in order to make them take certain actions? And 2. What are the driving factors that

make some networks amenable to such manipulation while other networks are more resistant?

We answer the above questions by providing a classification of networks that describes when such

manipulation is possible. In our model, agents try to learn the true state of the world in order to

make a one-time choice between different actions. In the example given earlier, the possible actions

are vaccinate or not vaccinate and the state can be whether the vaccine is safe or risky. Agents

receive signals about the underlying state – for example, they might read news stories or examine

research articles about vaccination– and they use these signals in addition to the information they

obtain from their neighbors to update their beliefs and eventually uncover the state. The principal

has an unknown type: he can either be truthful or strategic. A truthful principal does not interfere
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with the learning process, but a strategic principal can choose to send costly signals to the agents.

These signals do not have to be tied to the state and can be intentionally misleading. Agents do not

know the type of the principal and cannot differentiate whether a signal they are receiving is organic

or coming from a strategic principal.

Agents try to take an action that matches the state, so in the example above they would like to

choose vaccinate if the state is safe or not vaccinate if the state is risky. The principal is interested

in having the agents take a specific action, for example, the action not vaccinate, regardless of what

the state actually is. We say that an agent is manipulated if her beliefs converge to the true state and

she takes the correct action when the principal is the truthful type, but chooses the wrong action

due to incorrect beliefs when the principal is the strategic type (this corresponds, in this example, to

taking the action not vaccinate when the state is safe). These dynamic environments often admit a

multiplicity of equilibria, which complicates their analysis. We first provide a few technical results

that show that for a long-enough horizon, an equilibrium always exists and is essentially unique,

in the sense that the degree of manipulation in society does not depend on which equilibrium is

selected. We then use these results to show in Theorem 1 that Bayesian agents are never manipulated,

but that depending on parameters related to the network structure and how agents weigh their own

signals, a substantial fraction of DeGroot agents can be tricked into believing that the underlying state

is different from the actual state. Proposition 3 shows that under mild conditions, extreme societies

that are inclined towards herding (agents discount their own signals and put their faith in what other

agents think) or towards individuality and narcissism (agents discount everything except their own

signals) are basically impossible to manipulate. On the other hand, a well-tempered society whose

members use their own beliefs as well as other agents’ opinions is the society that is most prone to

this kind of manipulation.

For these well-tempered societies, the Bayesian agents can help spread the truth about the under-

lying state, but their ability to do so is limited by the network structure. We provide a characterization

of which network topologies are manipulable in terms of a centrality measure that we call DeGroot

Centrality, and we use this measure to classify networks into dense and sparse topologies. Theorem 2

shows that dense networks are highly resistant to manipulation: even as the size of the network grows,

the presence of a constant number of Bayesian agents anywhere in the network is enough to guaran-

tee imperviousness. On the other hand, sparse networks are more susceptible to manipulation, and

both the number of the Bayesian agents as well as where these agents are located are important for

the network to be impervious. In particular, the number of Bayesians required may grow with the size

of the network. If there are not enough Bayesians, or if there is a sufficient number of Bayesians but
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they are not well-located, then the principal can manipulate almost the entire population by targeting

only a fraction of the agents, i.e. it becomes cheaper and easier for the principal to manipulate.

Finally, we apply our results to the network topologies commonly studied in the literature and use

DeGroot centrality and the dense/sparse classification to determine which of these topologies are

easier to manipulate. In an effort to bring our results closer to real-world networks, we further apply

our results to data from an advice network in an Indian village, obtained from Jackson et al. (2012).

The data provides an actual network topology from the village but no information about which agents

are Bayesian. We analyze different scenarios of Bayesian placements in this network to highlight the

concepts introduced in the paper. Ultimately, we believe that the work in Chandrasekhar et al. (2015)

—which identifies which agents learn in a Bayesian vs. DeGroot fashion— and the methodological

approach introduced in this paper jointly provide a complete framework for studying manipulation

in these heterogeneous real-world networks.

Related Literature. Our model combines both DeGroot and Bayesian agents. DeGroot learning has

been extensively studied in several literatures. For example, Golub and Jackson (2010) give conditions

under which beliefs converge to the true state of the world. There is also a rich literature (e.g. Ace-

moglu et al. (2011) and Bikhchandani et al. (1992)) that looks at when agents who learn in a Bayesian

fashion can correctly aggregate information. Others, such as Jadbabaie et al. (2012), consider agents

that are somewhere between DeGroot and Bayesian agents in how they update their beliefs about

the state of the world, and their particular formulation of DeGroot agents is the one we consider in

this paper. Some recent work looks at a mixed learning environment. Mueller-Frank (see Mueller-

Frank (2014)) examines how a network of DeGroot agents and a single Bayesian agent aggregates

information, and Chandrasekhar et al. (2015) experimentally examine learning in an environment

where some agents are designated as Bayesian and others are not. One major differentiating factor

of our work compared to this literature is the presence of a principal who can intentionally confound

learning, and we examine the conditions under which this may or may not be possible.

The Bayesian Persuasion literature initiated by Kamenica and Gentzkow (2011) considers a princi-

pal who sends messages to agents in order to make them take a certain action. In the standard setup,

everyone is strategic, there is no state uncertainty or learning from the environment, there is no no-

tion of organic and strategic messages, and most importantly, there is no ambiguity over the type of

the principal. In our paper, agents do not know the type of the principal and cannot tell whether

the signals they receive originate from a strategic principal or are more organic. This uncertainty

about the principal’s type relates our work to that of Morris (2001) and more generally, to the litera-
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ture on reputation formation, which started with the work of Kreps and Wilson (1982) and Milgrom

and Roberts (1982). This literature considers short-lived Bayesian agents that interact sequentially

with a principal. In contrast, our paper examines a setup where there is a principal interacting simul-

taneously with a collection of agents who are connected on a social network and who update their

beliefs through the signals they receive as well as from the social interactions amongst themselves.

As we mentioned earlier, our first result shows that the Bayesian agents in our model eventually

figure out the true state of the world. Once this happens, they become somewhat similar to stubborn

agents, in the sense that their (correct) opinion about the state remains unchanged. Opinion dynam-

ics with stubborn agents have been studied in Acemoglu et al. (2013) and Yildiz et al. (2013) among

others. The primary differences between our work and these papers is the presence of a strategic prin-

cipal, which fundamentally changes the role that these stubborn agents play. In the cited literature,

the presence of stubborn agents leads to divergence of opinions and generally hinders learning about

the true state of the world. In contrast, the learning difficulty in our model comes from the strategic

principal who tries to manipulate the agents, and in that sense the presence of stubborn agents who

realize the principal’s type is always useful for everyone in the network, i.e unlike the work above, the

stubborn agents can only help society discover the true state of the world. Nevertheless, as we discuss,

even with the positive contribution that these agents provide to the learning process, manipulation

might still be unavoidable.

The recent proliferation of false news on social networks, while not a primary focus of our paper,

provides a current application of our work. Recent theoretical work in Candogan and Drakopoulos

(2017) and Papanastasiou (2018) examines how (Bayesian) agents exchange information on a social

network and shows how misinformation can spread in these models and what the platform (over

which the agents are communicating) can do about it. The existence of fake news in these models is

exogenous, i.e. unlike our model, there is no principal or news provider that strategically injects such

misinformation into the network, and consequently there is no notion of manipulation. In addition,

we examine a mixed learning environment with varying degrees of sophistication, which, as Penny-

cook and Rand (2018) show in recent experimental work, might be one of the primary reasons why

misinformation propagates in social networks.

2 Model

We first provide an informal description of how agents learn in our model. Agents continuously re-

ceive news about a specific topic, for example by scrolling through the stories that appear in their
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news feed. In the absence of interference from the principal, the news that agents receive is organic,

and, together with communicating with other agents, is enough for them to update their beliefs and

figure out the state of the world correctly. The principal may however interfere with the news gen-

eration process for some of the agents, so that these agents see both organic and fake stories as they

scroll through their feed. Agents cannot differentiate which stories are correct and which are not, and

so they update their beliefs using both types of stories. As mentioned in the introduction, the stories

that the principal provides do not even have to be false, but can simply be correct stories that are

curated in a way that leaves a specific impression. For simplicity however, we will refer to the stories

that the principal provides as fake news. Once enough time has elapsed and agents have learned the

state of the world, they take an action based on their belief of what the state is.

2.1 Formal Model

We consider a directed social network with n agents trying to learn a binary state of the world y ∈

{S,R} over time. Time is continuous and agents learn over a finite horizon, t ∈ [0, T ). At time t = 0,

the underlying state y ∈ {S,R} is drawn, with P(y = S) = q ∈ (0, 1).

Organic News News is generated according to a Poisson process with unknown parameter λi > 0

for each agent i; for simplicity, we assume that λi has atomless support over (λ,∞) with λ > 0. We

refer to this process as organic news. Let us denote by (t
(i)
1 , t

(i)
2 , . . .) the times at which news occurs for

agent i. For all τ ∈ {1, 2, . . .}, the organic news for agent i generates a signal s
t
(i)
τ
∈ {S,R} according

to the distribution:

P
(
s
t
(i)
τ

= S
∣∣∣y = S

)
= P

(
s
t
(i)
τ

= R
∣∣∣y = R

)
= pi ∈ [1/2, 1)

i.e., the signal is correlated with the underlying truth. The value of pi indicates the richness of agent

i’s signal, and can be interpreted as her ability to deduce the true state from the facts presented in the

organic news. We assume that pi may be equal to 1/2, in which case the organic news serves only as

noise for agent i, who cannot infer the true state simply from this news.

Principal In addition to the organic news process, there is a principal who may also generate news of

his own. At t = 0, the principal picks an influence state ŷ ∈ {R,S}. This is the state that the principal

would like agents to believe, regardless of what the true state actually is. The principal then picks

an influence strategy xi ∈ {0, 1} for each agent i in the network. The influence state ŷ corresponds

to the signal the principal sends to (some) agents, and the influence strategy indicates which agents

the principal wants to send the signal to. If the principal chooses xi = 1 for any agent i, then he
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(principal) generates news according to an independent Poisson process with intensity λ∗i which is

received by all agents where xi = 1. We assume the principal commits to sending signals at this

intensity, which may not exceed some (exogenous) threshold λ.5 We denote by t̂(i)1 , t̂
(i)
2 , . . . the arrival

times of all news, either from organic sources or from the principal, for agent i. At each time t̂(i)τ , if

the news is organic, the agent gets a signal according to the above distribution, whereas if the news is

sent from the principal, she gets a signal of ŷ. The principal incurs an upfront investment cost ε > 0

for each agent with xi = 1.

The principal can be one of two types. He can either be a strategic type S or a truthful type T . The

type of the principal, which is denoted by ω, is drawn at t = 0 with P(ω = T ) = µ0 ∈ (0, 1) and does

not change over time. If the principal’s type is ω = T , we assume he is committed to implementing

xi = 0 for all agents; that is, he does not interfere with the learning process. On the other hand,

the ω = S type of the principal may play any influence strategy x ≡ {xi}ni=1 over the network (and

may randomize over network strategies). Specifically, he may choose xi = 1 for some agent i, with

influence state ŷ 6= y, to spread misinformation. The uncertainty of the principal’s type generates

uncertainty for agent i about the true nature of her signal distribution.

Agents Agents have different degrees of sophistication. We think of these sophistication levels as

separate from whether the agent has skill in distinguishing the state y from the news alone (i.e., her pi

or λi). Specifically, sophistication in our model refers to how an agent uses the beliefs in her network

to form her own belief about the state. Each agent is either Bayesian (B) or DeGroot (D), and the

sophistication type of each agent is common knowledge and consistent across time. DeGroot agents

differ from Bayesians in that DeGroot agent i:

(a) Uses a simple learning heuristic to update beliefs about the underlying state from other agents.

(b) Believes all signals arrive according to a Poisson process and all signals are independent over time

with P
(
si,t̂τ = y

)
= pi (i.e., takes the news at face value).

Each agent perfectly observes her signals but does not observe the signals received by any other agent.

All agents have perfect recall. We letHi,t denote the set of possible private histories of signals at agent

i up until time t, and hi,t ∈ Hi,t a particular history realization. Let πi,t ∈ ∆({R,S}) represent the

belief of agent i about the underlying state at time t.

DeGroot Update: DeGroot agents form their opinions about the state both through their own

experience (i.e. the signals they receive) and by talking to their neighbors. Given history hi,t =

5One can interpret λ as the maximum capacity that the principal can send his messages. The principal may elect λ∗i < λ
if λ when is large because choosing λ∗i = λ would make the evidence of ŷ so overwhelming that the agent would realize
xi = 1 (i.e., in other words, the bias in agent i’s signals would become obvious to her).
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(
s
i,t̂

(i)
1

, s
i,t̂

(i)
2

, . . . , s
i,t̂

(i)
τi

)
up until time t with τi = max{τ : t̂

(i)
τ ≤ t}, each agent forms a personal be-

lief about the state according to Bayes’ rule. Let zSi,t and zRi,t denote the number of S and R signals,

respectively, that agent i received by time t; then the DeGroot agent has direct “personal experience”:

gi,t(S|hi,t) =
p
zSi,t
i (1− pi)z

R
i,tq

p
zSi,t
i (1− pi)z

R
i,tq + p

zRi,t
i (1− pi)z

S
i,t(1− q)

and gi,t(R|hi,t) = 1 − gi,t(S|hi,t). The experience function gi,t represents the direct contribution of

the observed signals into agent i’s belief, and is related to the personal Bayesian update in Jadbabaie

et al. (2012). It is the belief any fully Bayesian agent would hold about the state y in isolation and

without principal interference. DeGroot agents also form beliefs by talking to their neighbors every

time interval of length ∆ > 0 small.6 For all agents i, there are weights θi, αij such that agent i holds

belief πi,t for all k∆ < t ≤ (k + 1)∆ according to:

πi,t = θigi,t(hi,t) +

n∑
i=1

αijπj,k∆

for all k ∈ N, where θi +
∑n

j=1 αij = 1 (we have suppressed dependence on y). As convention, we

assume the link i→ j suggests that i listens to j. We refer to this as the DeGroot update (DU) process.

Bayesian Update: We assume it is common knowledge for Bayesian agents that there are n agents

arranged in a given social network G, with signal structures {pi}ni=1. Furthermore, agent i observes the

history of beliefs in her neighborhood Ni, given by Πi,t =×t
t′=0×j∈Ni πj,t′ . Given the private history

of signals and history of neighborhood beliefs, the belief map φt at time t of a Bayesian agent is of the

form:

φt : (hi,t,Πi,t) 7→ πi,t+dt

and pinned down by Bayes’ rule. We will say the Bayesian is truthful if she reports belief πi,t to all

agents in her out-neighborhood is the belief given by φt(hi,t,Πi,t). We will assume throughout this

paper that all Bayesian agents are truthful.7 Notice that Bayesian agents may be oblivious (i.e., re-

ceiving no signals at all about the state), in which case they have to rely on the network to learn what

the state of the world is.

At the same time, Bayesians hold (private) beliefs about the type of the principal (and whether

6In particular, we assume ∆ is arbitrarily small so the probability that any agent has two signals within an interval of
length ∆ is close to zero.

7This is contrast to previous papers (such as Rosenberg et al. (2009)) where Bayesian agents may experiment with re-
porting false beliefs to better learn about the information of other agents in the network. In light of Theorem 1, when T is
large, Bayesians learn the correct state, so even if Bayesians strategically report beliefs in the network, reporting truthfully
is a best-response to other Bayesians reporting truthfully as well.

9



Agent
R S

State y
R 1, 1 + b 0, 0

S 1, b 0, 1

Table 1. Terminal Game.

signals are corrupted by the principal’s influence). We will denote the belief (that the principal is

truthful type) of a Bayesian i about the principal’s type at time t as µi,t, which is unobservable to other

agents in the network, including i’s neighbors. Such beliefs are updated using Bayes’ rule whenever

possible, as in a perfect Bayesian equilibrium (see Fudenberg and Tirole (1991)).

Payoffs At time t = T , each agent chooses an action ai ∈ {S,R}.8 Payoffs for the principal and agent

are given in Table 1. The first entry in a cell is the principal’s payoff while the second is the agent’s

payoff (so for example, the top-left cell corresponds to the case when the state is R and the agent

chooses action R. This gives the principal a payoff of 1 and the agent a payoff of (1 + b)).

We assume that b ∈ (−1, 1) so that agent i would match its action ai with the state y if it were known

with certainty. Otherwise, the parameter b captures any asymmetry in the payoffs between the two

states.9 Note that, on the other hand, the principal always prefers agents take action R instead of

action S, and so has an incentive to convince agents of y = R even when y = S. Let ui(y, ai) denote

the payoff of agent i when the state is y and she takes action ai; u
p
i (ai) is the payoff for the principal

at agent i (and only depends on that agent’s action). The total payoff for the principal is given by

up(a) =
∑n

i=1 u
p
i (ai), which is the summation of the payoffs from period-T actions of all n agents

(where a ≡ {ai}ni=1). We denote by c(x) =
∑n

i=1 ε1xi=1 the cost of the principal for implementing the

network influence strategy (ŷ,x) at t = 0

Each agent chooses a mixed strategy σi mapping terminal beliefs, πi,T , to a distribution over ac-

tions, ∆({S,R}). Similarly, the principal chooses a mixed network influence strategy σp mapping his

type ω and the current state y to a distribution over network influence, ∆(ŷ,x), with the restriction

that the truthful principal type ω = T always plays a pure network-influence strategy of x = 0, i.e.

does not interfere with the organic signals. We assume that the principal has total payoff given by

the difference between her future utility (via the actions of the agents) and the cost of the network

influence, up(a)− c(x).

8The example given in the introduction can be modeled using this payoff table as follows: the states of nature S and R
can be mapped to whether a vaccine is safe (state S) or risky (stateR). Similarly, the actions can be thought of as analogous
to the “vaccinate” (action S) and “not vaccinate” (action R) actions. In this sense, a player wants to match her action to the
state, e.g. taking action S when the state is S indicates vaccinating when the vaccine is safe.

9For instance, it may be more costly to vaccinate your child if vaccines do have averse effects than it is to not vaccinate
even if they are safe.
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3 Equilibrium and Learning

In this section, we present a brief summary of the solution concept and the learning dynamics which

follow. These results are completely technical, and so we elected to delegate them to the appendix

in order to preserve the flow of the paper and focus on the structural results. We refer the reader to

Appendix A and Appendix B, respectively, for a more formal treatment.

Equilibrium We informally describe our equilibrium concept and provide some basic results. The

relevant details are given in Appendix A. By definition, DeGroot agents update beliefs mechanically

and simply take all news received at face value. At time t = T , each DeGroot agent chooses an action

which maximizes her payoff given her belief about the state. All of this is common knowledge to both

the Bayesian agents and the principal. In addition, Bayesian agents observe their neighbors’ beliefs

over time, know the network structure, and know the principal’s type is drawn at t = 0 such that he is

truthful (ω = T ) with probabilityµ0 and strategic (ω = S) with probability 1−µ0. The principal and the

Bayesian agents play a perfect Bayesian equilibrium, i.e. the Bayesians update beliefs about the type

of the principal and the underlying state y simultaneously, taking as given the strategy of the strategic

principal in equilibrium. Then, at t = T , each Bayesian agent chooses an action which maximizes her

payoff given her belief about the state. Similarly, the principal chooses his network influence strategy

to maximize his payoff taking as given how agents learn and ultimately select terminal actions. In all

of this, we require in equilibrium that strategies in fact be best-responses for both the principal and

the Bayesians, as standard.

We will say that an agent is manipulated if she learns the correct state (i.e., takes the correct ac-

tion) when the principal is truthful, but takes the incorrect action when he is strategic. That is, the

principal’s interference successfully tricks some agent into taking a suboptimal action she would not

have taken without the interference. Our first main result, presented in Appendix A, is that an equi-

librium always exists, which does not follow immediately from standard existence results. Second,

we show that as the learning horizon becomes long (i.e., T → ∞), for almost all10 parameters given

in the problem, the number of manipulated agents is the same under any equilibrium, almost surely.

This allows us to refer to the “number of manipulated agents” in equilibrium without ambiguity, even

if the identity of those agents may be different under different equilibria. Throughout the paper, we

will refer to this property as essential uniqueness.

Learning We provide a full characterization of limit beliefs as T → ∞ in Appendix B. Based on that

10One can interpret “almost all” as meaning that if some parameters (ε, b) generate multiple equilibria, then by perturbing
one or both of them by some small amount, the equilibrium becomes (essentially) unique.
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characterization, we prove the following result.

Theorem 1. Under standard connectivity and organic signal distribution assumptions (detailed in As-

sumptions 1 and 2(c) in the appendix), no Bayesian agent is manipulated almost surely as T →∞.

Theorem 1 states that Bayesian agents are never manipulated, so in equilibrium any attempts to

thwart learning are eventually detected. By knowing the network structure, Bayesian agents can infer

the signal distributions of others in the network, which in turn informs them of whether the principal

is attempting to manipulate anyone. This implies that for large enough T ∗, for all T > T ∗, Bayesian

agents can be treated as stubborn agents who hold strong beliefs about the true state.

Since DeGroots operate mechanically, this allows us to characterize their beliefs as T → ∞ as in

standard in the social learning literature. Let us define γ as the limiting personal experience vector

given by:

γ =

(
0B

xD

)
where we have implicitly assumed the first m agents are Bayesian, without loss of generality, and

where the subscripts denote the vector for those type of agent. In other words, if an agent is DeGroot

and receives fake signals from the principal (i.e., xi = 1), then we write γi = 1 and otherwise we write

γi = 0. We also replace all of the limit beliefs of Bayesian agents by a point-mass on the true state i.e.,

zero belief on ŷ). Then for a suitable influence matrix A, we can represent the limit-beliefs using the

familiar Leontif inverse form:

π → (I−A)−1(γ ⊗ θ) (1)

This provides a closed-form expression for the beliefs of the agents for large T . We note that this ex-

pression depends on the network structure, sophistication of the agents, personal-experience weight,

and the network action x of the principal (captured through γ).

4 Manipulation and Network Topology

In this section, we consider fixed networks of size nwithmBayesian agents. We use the term “network

structure” to collectively refer to the neighborhoods of the Bayesian agents {Ni}i∈B, and the DeGroot

influence matrix and personal-experience weight vector, (A,θ). We address the central question of

our paper: when is a population susceptible to manipulation? Towards this, we make the following

definition:

Definition 1. A network is impervious to manipulation if no agents are manipulated (in equilibrium);

otherwise it is susceptible.
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Our first step is to define the principal’s optimization problem of choosing his (mixed) network

strategy when T is large. We present these findings in Appendix C. Generally, this optimization prob-

lem is computationally intractable, but we can still provide a characterization of manipulation in

terms of a novel centrality measure that we call DeGroot Centrality. This measure captures how the

network structure propagates the principal’s injected fake signals to any specific agent. Loosely, it

corresponds to how much influence other DeGroots (who receive these signals) have on agent i’s own

belief. Under appropriate normalization, this centrality measure is exactly equal to an agent’s belief

of the incorrect state given in Equation (1). Despite the equivalence, we find that the interpretation

of beliefs in terms of centrality to be meaningful for our results, and so will reference it when appro-

priate. We refer the reader to Appendix C for a more complete discussion of the network-relevant

details.

Using the concept of DeGroot centrality, we show that dense networks (in a sense to be made

precise) are always impervious to manipulation as long as there is a constant number of Bayesian

agents located anywhere in the network. That is, the number of Bayesians needed does not scale

as n gets large and the agents need not have particular network positions. On the contrary, when

network is sparse, it can be the case that anything less than a linear number of Bayesians will lead

to manipulation, and moreover these Bayesians must be situated in specific network locations for

manipulation not to happen. Finally, we use the personal-experience weights θ as a proxy for societal

norms, and provide comparative statics on how these norms affect manipulation.

4.1 Dense Networks

For compactness, let us represent the network G as the concatenation of the Bayesian adjacency

matrix and the DeGroot influence matrix A, given by the (i, j)-elements:

Aij =

αij , if i ∈ D

1, if i ∈ B and j ∈ Ni

In other words, let G be a directed, weighted network where the weight wij of the link from i → j is

equal to 1 if either i is a Bayesian and j is in i’s neighborhood, and otherwise it is equal to αij . We can

define a walk,Wij , between agent i and agent j to be a sequence of arcs, i→ u1 → u2 → · · · → un → j,

starting with i and ending with j. We letWij be the (countable) set of all walks between agents i and

j in G of any length. Finally, define the log-diameter of the network G to be:

dG ≡ max
i,j

min
Wij∈Wij

∑
(k→`)∈Wij

− log(wk`)
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Using this, we can define the density of a network as follows:

Definition 2 (Dense Networks). We say that network G is δ-dense if has a log-diameter of at most

log(n+ δ).

Theorem 2 (Constant Bayesians). For every δ, there exists a universal constant m∗(δ) such that every

network G which is δ-dense and contains at least m∗(δ) Bayesians is impervious to manipulation.

We make a few comments about Theorem 2. First, the number of Bayesians needed to make the

network impervious is constant and does not scale as n gets large, as long as the network diameter

does not grow too quickly with n. This implies that even with a vanishingly small fraction of Bayesians

in the population, the principal will be unable to manipulate beliefs. Second, the location of the

Bayesians is irrelevant for the result to hold. Even if an adversary chooses the network position of the

Bayesians, only m are needed in any network of any size to make it impervious. Finally, we note that

just because the shortest path between an agent i and every Bayesian is less than log(n+ δ) does not

imply agent i will not be manipulated. This needs to hold uniformly across all DeGroot agents. One

can easily construct an example where a DeGroot is close to all the Bayesians, but because she talks

to other DeGroots who only talk to each other, echo chambers drive beliefs away from the truth. In

that case, the network does not satisfy the small log-diameter condition.

We also point out that Theorem 2 should be viewed as a worst-case bound for imperviousness.

First, the result should not be interpreted as the location of Bayesians in the network does not matter.

If the Bayesians are in better network positions, it may be the case that even for m � m∗(δ), a given

δ-dense network is impervious. Second, the bound does not suggest that the worst-case number of

Bayesians needed for imperviousness is monotone in log-diameter. In other words, if network G′ has

a bigger log-diameter than G (for the same n), this does not imply that G′ requires more Bayesians

than G to avoid manipulation, even if the Bayesians are chosen in a worst-case way. Rather, all it

guarantees is that if the number of Bayesians meets the threshold m∗(δ) in a δ-dense network, there

will never be manipulation. We perform a numerical study of how Bayesian placement and number

affect manipulation in Section 5 in an Indian social network.

We conclude this section by briefly mentioning a couple of examples of interest where one can

easily apply the result.

Example 1 (Complete Network). Consider the complete network on n vertices. We suppose that, for

simplicity, θi = αij = 1/(n + 1) for all DeGroot agents i and agents j (of any kind). This corresponds

to each agent weighing each source of opinion (each neighbor, plus their own news) equally. The

log-diameter of this network is no exactly log(n+ 1) for any n ≥ 2. Therefore, only a constant number

14



Figure 1. Influential Star Network. A weighted directed arrow from node i to node j indicates that i
puts that much weight on j’s belief. Shaded node represents a Bayesian agent.

of Bayesian agents are needed by Theorem 2 (applying the result for δ = 1), and in particular, one can

show that m ≥ (1 + b)/(1− b) are required for the complete network of size n.

Example 2 (Influential Star Network). Consider Figure 1 which shows one type of star network. We

suppose that, for simplicity, θi = 1/(n+1) for all agents; that is, each agent weighs its own news as if it

were in the complete network. Let agent 1 be the central agent of the star and agents {2, . . . , n} be on

the periphery. For agent i ∈ {2, . . . , n}, we have αi1 = n/(n + 1) and αij = 0 for all other j. For agent

1, we have α1j = 1/(n+ 1) for all agents j. In other words, the central agent is highly influential, as all

peripheral agents are influenced much more by this agent than their own news.

Once again, for any n ≥ 2, the log-diameter of the network is at most log(n+ 3); between any two

agents on the periphery, we have log((n+1)2/n) = log(n+2 +1/n) ≤ log(n+3). In fact, if the number

of Bayesians satisfies m ≥ 2(1 + b)/(1 − b), the network is impervious. This is true even when all of

the Bayesians are on the periphery. So, in a seemingly very asymmetric network, still only a constant

number are needed. This does not imply, however, that fewer Bayesians would make the network

susceptible. For instance, in this example, a single Bayesian in the center of the star always makes the

network impervious when n is large enough.

We briefly mention a counterexample for a network that has a log-diameter that grows faster than

log(n + δ) for any constant δ, despite having short paths between any two agents. Consider some

undirected network T, and let G be the corresponding weighted network where all DeGroots take

θ = 1/n and place equal weight on all of its neighbors (and 0 elsewhere). If T has a constant diam-

eter, does G satisfy the small log-diameter condition to be considered dense? In general, no. As an

extreme example, consider two cliques of size n/2, and a single connection between them. This net-

work has diameter 3 for all n. However, the log-diameter is log
(

n4

2(n−1)2

)
≈ log(n2). Thus, the small
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log-diameter condition is helpful for showing that some asymmetric networks are impervious, as in

the star, but not networks of extreme homophily, despite having small “undirected diameter.”

4.2 Susceptible Networks

We now consider networks that are sparse, in the sense that they have a large log-diameter. For this,

consider the directed ring network as a prototypical example with θi = θ
(n)
i (any function of popu-

lation size n) for all DeGroots i, and αij = 1 − θn for j = i − 1, and αij = 0 for all other j. Under

this assumption, each DeGroot listens to her own news and the opinion of one other agent, who in

turn listens to only one other agent, and so on. For now, let us assume that m Bayesian agents form

a continuous chain in the ring. This would arise in a setting where Bayesians only talk to each other;

for example, a subpopulation of educated students who have little interaction with students who are

less educated. For concreteness, in the section will assume θi = 1/(n + 1) for all DeGroot i and that

m � n,11 but (as we show) the results are applicable across a wide range of personal-experience

weights θ(n)
i .

The following is an illustration that shows that the principal can manipulate in the above setup.

Consider a heuristic optimization problem where the principal maximizes only along a single dimen-

sion. We make the following restriction on the heuristic problem: (i) the principal can only influence

a continuous arc in the ring, and then does not exert influence for the remaining agents, and (ii) he

wants to induce the maximal number of agents to believe the false state.12 Note that the principal’s

network strategy in equilibrium may be different from the strategy we describe here, but we use this

to show that some strategy beats x = 0, and therefore no intervention is not a best-response.

Therefore, the principal selects some τ so that for all agents on the arc before τ receive fake and

organic news (i.e., xi = 1) and all agents after τ receive only organic news (xi = 0). We can solve this

problem by directly characterizing the limit beliefs of the DeGroot agents:

(I−A)−1 =

(
IB 0B,D

XD,B XD,D

)

where

XD,B =


n/(n+ 1) 0 . . . 0

n2/(n+ 1)2 0 . . . 0

. . . . . . . . . 0

nn−m/(n+ 1)n−m 0 . . . 0


11Formally, we assume m = ω(n); that is m ≤ ηn eventually for all constants η > 0.
12That is, of all feasible network strategies σp, the principal maximizes the number of agents taking actions R when the

state is S.
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and

XD,D =


1 0 0 . . . 0

n/(n+ 1) 1 0 . . . 0

n2/(n+ 1)2 n/(n+ 1) 1 . . . 0

. . . . . . . . . . . . . . .

nn−m/(n+ 1)n−m nn−m−1/(n+ 1)n−m−1 nn−m−2/(n+ 1)n−m−2 . . . 1


and γ ⊗ θ is equal to:

(γ ⊗ θ) ∼

(
1B

1/(n+ 1) · γ

)
where γ is the influence vector defined at the end of Section 3.

Consider the DeGroot agent at location τ away from the last Bayesian agent. write her belief in

terms of her DeGroot centralityD, a function of γ:

D(γ) ∼
τ−1∑
j=0

nj

(n+ 1)j+1
γτ−j

If the principal has chosen γi = 1 for all previous agents, then the above reduces to:

Dτ (γ) ∼ 1−
(

n

n+ 1

)τ
when τ is sublinear, Dτ (γ) → 0, whereas when τ = αn, we get that Dτ (γ) → 1 − e−α. Recalling that

agents withDτ (γ) > (1−b)/2 will choose the incorrect action, we get that all but log
(

2
1+b

)
proportion

of the DeGroot agents are manipulated (when b ≥ (2− e)/e).

Now consider the principal choosing to not exert influence for all agents after some threshold τ∗.

Then we obtain:

Dτ (γ) ∼
τ−τ∗−1∑
j=0

nj

(n+ 1)j+1
γτ−j +

τ∑
j=τ−τ∗

nj

(n+ 1)j+1
γτ−j

∼
(

n

n+ 1

)τ−τ∗
·

[
1−

(
n

n+ 1

)τ∗]

As the principal wants to maximize the number of agents who believe the false state, we pick:

τ∗(n, b) = inf

{
τ :

[
1−

(
n

n+ 1

)τ]
·
(

n

n+ 1

)n−m−τ
>

1− b
2

}

When n is large, τ∗(n, b) ≈ n log
(

2+e(1−b)
2

)
. Therefore, we can write the cost curve for the principal,
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Figure 2. Cost-Benefit Curves for Principal. The shaded region indicates the profitable region for the
principal when the cost ε is equal to 0.5.

denoted C(ε, b), and the benefit curve, B(b), under this strategy:

C(ε, b) = ε log

(
2 + e(1− b)

2

)
B(b) = max

{
1− log

(
2

1 + b

)
, 0

}
These are plotted for different values of ε in Figure 2. The cost-curve denotes the per-agent cost of the

τ∗-cutoff network influence strategy, whereas the benefit-curve denotes the fraction of the population

manipulated (also the utility of the principal) for the same strategy. Whenever C(ε, b) < B(b), the

principal strictly prefers the cutoff strategy to no influence (i.e., x = 0).

For illustration, consider the case of b = 0, where the agent simply picks her action corresponding

to the state she believes is more likely. In this case, C(ε, 1) = ε(1 − log(2e/(2 + e))) ≈ 0.86ε and

B(1) = 1 − log(2) ≈ 0.307. This implies that almost 31% of the population is manipulated under this

strategy, and it is profitable for the principal whenever ε < ε∗, where ε∗ ≡ B(1)/C(1, 1). This holds for

any number of Bayesian agents at the beginning of the ring, holding constant the continuous ring of

DeGroot agents. A graphical depiction of this is seen in Figure 3.

This discussion illustrates that agents at the end of the ring might be at-risk of being manipulated.

However, the principal For instance, the principal may want to stagger the agents receiving fake news

in order to expend less cost while preventing a long string of agents who only receive organic news.

While the exact optimal strategy is only possible via computation (see Theorem 4), we do know that

18



Figure 3. Beliefs in the Ring Network. A directed arrow from node i to node j indicates that i listens to
j. Shaded nodes represent Bayesian agents.

the principal will manipulate for any b ∈ (b∗, 1) where b∗ ≡ (2− e)/e ≈ −0.246, for a long enough ring

and sufficiently small cost ε. Formally, we have the following result for any θ(n)
i :

Proposition 1. Suppose there exists β > 0 such that θ(n)
i ≥ β/(n − m) for all i. Then there exists a

non-empty regionR for (ε, b) such that the ring network with many DeGroot agents and any number of

Bayesian agents (in a chain) is susceptible; moreover, a constant fraction of DeGroots are manipulated

in equilibrium.

The main issue here is that the Bayesians form a continuous arc, and so the network is funda-

mentally equivalent to one where the arc is replaced by a single Bayesian. Moreover, the long arc of

DeGroot agents, who receive fake news drowns out the beliefs of the Bayesians who know the true

state. This holds even when DeGroot agents largely discount their own experience, thereby mak-

ing the influence of the principal less effective. On the other hand, we obtain imperviousness if the

Bayesian agents are “sprinkled” throughout the ring, which depends directly on each agent’s propen-

sity to listen entirely to her own signals:

Proposition 2. If θ(n)
i = βif(n) for some function f : N → [0, 1] and βi ∈ [β, β] for all i, then under

conditions on (ε, b):13

(a) There exists a placement of n/f(n) Bayesians (up to a constant) such that the network is impervious

for a sufficiently large population,

13A sufficient condition is that ε < 1 and either limn→∞ f(n) = 0 or b ≤ 1− 2β lim sup f(n).
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Figure 4. An illustration of Proposition 2 and Corollary 1

(b) Any placement of fewer than n/f(n) Bayesians (up to a constant) makes the network susceptible for

all sufficiently large populations.

In other words, Proposition 2 states that Θ(n/f(n)) Bayesians are both necessary and sufficient for

imperviousness in the ring network. Let N(i) denote the neighborhood of agent i in an undirected

network T; then we obtain the following corollary:

Corollary 1. Suppose that θ(n)
i = αij = 1/(1+ |N(i)|) for DeGroots i and all j ∈ N(i). If ε < 1 and b < 0,

then Θ(n) optimally-placed Bayesians are necessary and sufficient for imperviousness in the ring. On

the other hand, only Θ(1) Bayesians anywhere in the complete network are necessary and sufficient for

imperviousness for this region of (ε, b).

Corollary 1 gives a characterization of imperviousness for the ring network, which does not satisfy

the log-diameter condition in Theorem 2. However, this imperviousness comes with more stringent

requirements on resources and planning. First, as the network grows in size, the number of Bayesian

agents must also grow in proportion, so that a constant fraction of the population is still Bayesian.

This is in contrast to Theorem 2, where only a constant number are needed for large n. Second, the

location of the Bayesian agents is paramount to preventing manipulation in networks like the ring,

whereas specific placement of Bayesians do not matter in dense networks.

Finally, we conclude with an example of the balanced star network, where agents are aligned in a

star network but weigh their personal experiences according to Corollary 1. We show that despite the

seemingly added symmetry, as compared to Example 2, the network fails to satisfy the log-diameter

condition, and so introduces unique vulnerabilities not present in the complete network.
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Example 3 (Balanced Star Network). Consider the balanced star network of Figure 5. Suppose that for

agents on the periphery θi = αi1 = 1/2 whereas the core agent 1 updates as in Example 2, θ1 = α1j =

1/(n+ 1). The log-diameter condition is unsatisfied because the log-diameter grows as≈ log(2n).

When the central agent is Bayesian, then either all of the agents are manipulated (if b < 0 and

ε < 1) or none of them are (otherwise), i.e., the network is impervious. If Bayesians are only on the

periphery, then if m ≤ βn for all β > 0 as n grows large (i.e., the number of peripheral Bayesians is

sublinear), Bayesians have a vanishing fraction of influence in the network. The DeGroot centrality of

the core agent converges to D1(γ) = ||γ||1/n, whereas the DeGroot centrality of the peripheral agent

i converges toDi(γ) = 1
2γi + 1

2 ||γ||1/n. In other words, for peripheral agents, their belief is half of the

average news experience and half of their own experience, whereas the core agent’s belief is simply

an average of all experiences.

Given a sublinear number of Bayesians, the network is impervious if and only if ε < max{1/(1 −

b), 1} for large n; otherwise, a linear number of Bayesians on the periphery are required to prevent

manipulation. If b > 0, then the principal targets (1 − b) fraction of the population; if b < 0, the

principal targets all agents in the network, except the central agent. We note that the principal tar-

gets the core agent last, in contrast to the influential star network of Example 2, where the principal

should target this agent first. While the balanced star network is more symmetric in that no agent

has disproportionate influence on the population, it also prevents the central agent from acting as a

spokesperson for the knowledgable Bayesians on the periphery.

4.3 Comparative Statics on Personal Experience: Cultural Norms

We now consider the effect that θ has on manipulation. The way agents take into account their own

experience relative to the opinions of others can vary substantially. An agent might put a small weight

on her own experience relative to what she hears from her friends (because, for example, she believes

she is not well-informed about the topic at hand). Conversely, an agent might weigh her own ex-

perience much higher compared to the information she obtains from her friends, or she can simply

weigh her experience similarly to her friends’ beliefs. As we show, all of these variations lead to sub-

stantial differences when it comes to manipulation. In what follows, we study what happens for a

fixed network structure as the vector of experience weights θ changes.

Definition 3 (Network Preservation). We say (A′,θ′) is a network preservation of (A,θ) if α′ij = αij(1−

θ′i)/(1− θi) for all DeGroot agents i.

A network preservation corresponds to a shifting of weights between an agent’s own experience
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Figure 5. Balanced Star Network

and that of her neighbor’s opinions, while preserving the relative proportions of the network weights.

The balanced star network (Figure 5) is a network preservation of the influential star network ( Fig-

ure 1) and vice-versa. We call this network preservation homogenous if it is a network-preservation

with θ = θ1 and θ′ = θ′1 (i.e., all agents have the same experience weights both before and after).

The homogenous network-preservation corresponds to a unilateral shift in attitudes about the im-

portance of one’s own perceptions. Most naturally, in a homogenous network, θ can be thought of an

attitude parameter tuned to the cultural norms of the population.

For the following result, we fix b and the homogenous network A with an arbitrary self-experience

weight θ = θ1. For simplicity, we make the additional assumptions: (i) there exists at least one

Bayesian agent in the population, and (ii) there is at least one DeGroot not adjacent to a Bayesian.

Proposition 3. There exist 0 < θ < θ∗ < θ < 1 such that:

(a) If θ′ ∈ (0, θ), the network Aθ′ is impervious for any ε > 0.

(b) The network Aθ′ is impervious for θ′ ∈ (θ∗, θ) only if it is impervious for θ′ ∈ (θ∗, 1) for any ε > 0.

(c) If b > 1/2,14 there exists ε∗ such that when θ′ ∈ (θ∗, θ) the network Aθ′ is susceptible, but when

θ ∈ (θ, 1) the network Aθ′ is impervious.

Proposition 3 shows that the comparative statics on manipulation are non-monotone in θ. A so-

ciety that support an intermediate amount of weight on each agent’s own experience is the society

that is most susceptible to manipulation. On the other hand, when a society is more inclined towards

herding (i.e., very small θ), then manipulation is impossible. This is because agents ignore their own

14When b is small, the network can exhibit no manipulation for any θ′ or a “phase transition” instead: there exists θ∗∗ such
that θ′ < θ∗∗ is impervious but θ′ > θ∗∗ is susceptible.
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experience and instead rely entirely on social learning. If the community has at least one sophisti-

cated agent, then the beliefs of that agent spread throughout the network. This may come at the cost

of agents dismissing accurate information from organic news sources and thus learning more slowly.

Therefore, θ can also be thought of as the direct influence that all news (containing a possible mixture

of biases or propaganda) has on a representative agent in society.

On the other hand, a culture that supports strong individuality and narcissism (i.e., very large θ)

is more difficult to manipulate compared to when θ is intermediate, but easier compared to when θ

is small. This is because social influence plays little role with high θ, and the principal cannot exploit

social network effects to propagate his message, i.e. the principal is no longer able to reach a large

population by only targeting a small subset of agents, and instead has to reach all agents directly (e.g.,

door-to-door campaigning). When this is the case, spreading false ideas can cease to be profitable and

manipulation becomes more difficult. However, for small enough investment costs ε, manipulation

may still be possible even when θ is high.

The next result considers heterogeneous settings and stands in contrast to Proposition 3. In het-

erogeneous settings, even if agents discount all news from the principal by having a small θ, they can

still mislearn the state if other agents have high θ. To demonstrate why learning breaks down in the

presence of heterogeneity, suppose that we have a set D1 of DeGroot agents with θ1 and a set D2 of

DeGroot agents with θ2. Regardless of the network structure, heterogeneity leads to those agents dis-

counting their own experiences to be manipulated, as they listen mostly to the experiences of others

who still incorporate misinformation into their beliefs. This is formalized in the following proposi-

tion.

Proposition 4. Suppose agents in D1 are strongly connected and there exists at least one link from D2

to D1. For fixed θ2, there exists b̄ such that for all b > b̄, even as θ1 → 0, all DeGroot agents (including

those in D1) are manipulated for sufficiently small ε. On the other hand, if θ1 = θ2 = θ, for every b̄ < 1

there exists θ̄ such that for all θ < θ̄, the network is impervious if there is at least one Bayesian in the

network regardless of ε.

We briefly detour to consider how agents in a society might choose θ. Consider the problem of a

boundedly-rational agent who wants to avoid manipulation. This agent learns using DeGroot-style

heuristics, but tries to choose her network weights θi,{αij}j in a clever way. This means that θi is

agent i’s best-response to other agents’ choices of θj . In particular, agent i is incentivized to conform

to some cultural standard for θ by matching others choices of θj . To see this, note that if other agents

are herding, then the agent can avoid manipulation by also choosing her θi close to 0 (i.e., ignore
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the news). This is true regardless of how rich agent i’s signal structure is, as it can still be flooded

with (undetectable) misinformation. Instead, the agent can rely on the truth emerging from social

communication, knowing that sophisticated agents will discover the ground truth and spread it.

However, as other agents increase their θj ’s, agent i’s beliefs may start to incorporate misinforma-

tion that it receives from those agents who are not necessarily sophisticated. In particular, if agent

i believes she is more able to discern the state from accurate news compared to her peers, then she

would be better off picking a large θi herself. In a more individualistic culture, if agent i chooses

low θi, she will come to believe ideas observed by her neighbors and to some extent her neighbors’

neighbors, but not many more. If agent i senses these nearby agents might be amenable to believing

falsehoods, then it is in agent i’s best-interest to choose a higher θi as well. In other words, agents

would listen mostly to their own ideas and take friends’ opinions with a grain of salt.

In this way, θi can be seen as a cultural norm that is plausibly consistent (either high, medium,

or low) across agents in the population. When agent i does not match this cultural norm, she risks

making a naive decision while ignoring her informed peers (picking θi high when others pick low) or

risks listening to bad advice when knowing better herself (picking θi low when others pick high). On

the other hand, when the population as a whole settles on intermediate choices for θi, the principal

can leverage social externalities while minimizing the influence of informed agents to his biggest

advantage.

5 Numerical Experiments

The previous section and Examples 1, 2, and 3 show how our results can be applied to the network

topologies commonly studied in the literature. In this section, we examine these results in the context

of real-world network data coming from Jackson et al. (2012). The network we consider represents an

advice network in an Indian village, and consists of 144 nodes and 320 edges, where an edge between

nodes i and j represents undirected communication between these two agents. In the following we

look at different placement of Bayesian agents in this network in order to further demonstrate the

concepts introduced throughout the paper.

Similar to the setup we have so far, the principal tries to manipulate a subset of agents in the

population by sending messages to some agents (not necessarily the same set of agents he is trying

to manipulate) in the network. We compute the optimal strategy for the principal given the network

topology (and we assume for simplicity that all weights θ are fixed at 1
n ).15 corresponds to assigning

15A weight of θ = 1/n is used to directly compare to dense networks of Section 4, such as the complete network.
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Figure 6. Central Bayesian, b = 0. Figure 7. Peripheral Bayesian, b = 0.

roughly equal influence from personal signals and from signals of the rest of the population. We start

with Figure 6 as an illustration that shows the network with only a single Bayesian agent. Throughout

the figures in this section, green nodes represent Bayesian agents, and nodes represented with an

asterisk indicate agents directly targeted by the principal. Non-Bayesian agents are colored either

blue or red, to indicate whether under the principal’s optimal strategy the agent is manipulated (red)

or not (blue). Thus, a network of all-blue and green agents means that this particular placement of

the Bayesian agents results in a network that is impervious to manipulation.

Throughout we fix ε = 1/2 (recall ε is the cost of sending messages to a single agent). For our

first two examples, we consider the game in Table 1 and assume that b = 0, i.e. that agents’ terminal

actions reflect whichever state they believe is more likely. We focus on two particular agents, referred

to in the data as Agent 70 and Agent 59. In Figure 6, Agent 70 (with degree 7 and eigenvector central-

ity 0.0121) is a Bayesian agent whose location results in the DeGroot centralities of all agents in the

network being equal to zero in equilibrium, so the strategic principal does not interfere with learning.

In other words, the principal has no profitable strategy with which he can manipulate even a single

member of the population.

On the other hand, Agent 59 is much more peripheral in the network, with a degree of 2 and

eigenvector centrality of 0.0044. If Agent 59 is the Bayesian agent, as is the case in Figure 7, then

the average DeGroot centrality (and terminal belief in equilibrium) is π̄ = 0.529 and manipulation is

inevitable and quite severe.

These two cases are summarized in Figure 8. Each dot in this graph represents the DeGroot Cen-
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Figure 8. DeGroot Centrality for Single Bayesian, b = 0.

trality of the corresponding agent in the network under one of the two placements of the Bayesian

agent and under a particular strategy for the principal. Agents whose DeGroot Centrality are above

0.5 are manipulated. Yellow dots correspond to the DeGroot centality of the agents in Figure 6 (with

Agent 70) when the principal targets the entire population (i.e. when he sends messages to every sin-

gle DeGroot agent). Notice that all the yellow dots are below the threshold of 0.5, and hence no agent

is manipulated despite the efforts of the principal. On the other hand, if the principal applies the

same strategy (targeting everyone) to the network in Figure 7 (with Agent 59) then, as can be seen

from the red dots, every single DeGroot agent is manipulated since all DeGroot centralities lie above

the cutoff.

Most importantly in Figure 8 however are the purple dots lying just above the dotted cutoff line.

These dots represent the DeGroot centralities of the agents in Figure 7 when the principal applies the

equilibrium targeting strategy depicted in the figure. Note that despite targeting 67 agents (46% of the

population) instead of the entire population, the principal is able to obtain almost the maximum ma-

nipulation possible at a fraction of the cost (expends less than 50% of the cost), with only three agents

(e.g., Agent 60 in the figure) escaping manipulation (< 2% of the population). This is in contrast to

the complete network, where exactly one Bayesian anywhere in the network is sufficient.

The rest of the figures examine the situation for different values of b. We have seen that when b

is equal to zero, manipulation is very sensitive to the placement of the single Bayesian agent. As b
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Figure 9. Two Well-Placed Bayesians, b = 0.5. Figure 10. Five Poorly-Placed Bayesians, b =
0.5.

becomes lower and the cost of taking the risky action and mismatching the state increases, manip-

ulation becomes exceedingly difficult. Similarly, as b increases, it becomes less costly for the agents

to take the risky action, and hence it becomes easier to manipulate them. Figure 9 shows that with

b = 0.5, two Bayesian agents (instead of one) are now required to prevent manipulation, provided

they occupy network positions that again lead to low DeGroot centralities (across all γ) for the other

agents. Similar to the ring network studied earlier, both the number and location of the Bayesians

matter. Figure 10 shows that even with five Bayesian agents, large-scale manipulation is possible be-

cause these agents occupy less central positions. In the case of the complete network, three Bayesians

are both necessary and sufficient for imperviousness when b = 0.5; in other words, the best-case

placement in this network is better (requires only two Bayesians) but the worst-case placement in

this network is also worse (requires at least six Bayesians). Similar conclusions are reached when b

has a higher value (0.8), as can be seen in Figure 12 and Figure 13 in Appendix E.

6 Conclusion

In this paper, we embed the classic social learning problem in a principal-agent(s) setting and exam-

ine what conditions allow a principal to interfere with the learning process of the agents in order to

shape their beliefs. These interactions are common in marketing, public health, politics, and many

other contexts, and we provide a model that allows us to study these environments in a formal setup.

In an effort to bring our model closer to real-world networks, we employ a diverse population that
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possess different degrees of sophistication, which we model by considering a mixed-learning envi-

ronment. We find that in this more general setup, the ability of a self-interested principal to ma-

nipulate a population depends on the learning mechanisms employed by the agents, the network

structure, and the social norms in the network (as modeled by how much agents are willing to incor-

porate their friends’ opinions into their own beliefs). We show that manipulation or lack thereof can

be quite sensitive to these factors. In particular, we develop a centrality measure that we call DeGroot

Centrality, which we use to classify networks into dense and sparse topologies. DeGroot Centrality

is a measure that can be used to quickly identify which agents in the population are at risk of being

manipulated. We demonstrate the use of this measure by studying manipulation in several common

network topologies as well as an actual topology from an advice network in an Indian village. We show

how some networks can be resilient with the presence of a small number of Bayesian agents, whereas

others continue to be susceptible to manipulation unless the number and location of Bayesian agents

meet certain criteria.

Our work can be extended on several fronts. For example, the principal can choose to vary the

intensity of his messages over time, and/or can choose different intensities for different agents (as

opposed to the fixed rate we use throughout the paper). One can also consider scenarios with more

than two states, which will require further assumptions on the signal structure in our model. An-

other possibility are cases where the state that is preferred by the principal is a priori unknown to the

Bayesian agents, which complicates their inference problem. We have studied the dynamics of our

learning model in the limit, and characterizing the strategies played by the principal and the Bayesian

agents in the short-term is also a relevant but challenging problem to solve.

Finally, and as we mention at several points in the paper, experimental investigations of these

mixed learning environments is an emerging area (see the aforementioned Chandrasekhar et al. (2015)),

and our framework can be utilized to provide several testable hypotheses about how agents behave in

these principal-agents settings. Understanding how behavior departs from our theoretical findings

can be used to enrich the theoretical framework as well as provide a bedrock for a deeper understand-

ing of these networks and how they interact with social learning and manipulation in practice.
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Appendix

A Formal Solution Concept

We define our equilibrium concept and prove existence and essential uniqueness. In particular, we
first show existence of an equilibrium for any horizon T , so our solution concept is always well-
defined. Secondly, while there may be many equilibria in general, we prove our equilibrium is es-
sentially unique in the sense that, as T → ∞, all equilibria are outcome-equivalent under generic
conditions. By uniqueness of the equilibrium, we establish that learning dynamics, asymptotic be-
liefs, and realized payoffs are an inherent property of the network (and other primitives) rather than
a specific equilibrium we choose.

Recall that agents choose strategies {σi}ni=1 over terminal actions and the principal chooses a
network-influence strategy σp. Each agent i tries to maximize her expected utility given her belief
πi,T by solving:

σi ∈ arg max
σ′i

Eπi,T
ai∼σ′i

[ui(y, ai)] (*)

Additionally, each Bayesian agent i has belief µi,t at time t over the type of the principal ω ∈ {S, T }
which she updates continuously according to Bayes’ rule given (hi,t,Πi,t), taking as given the on-path
equilibrium play σp of the principal. The principal of type S solves:

σp(S) ∈ arg max
σp′

E[(ŷ,x),πi,T ]∼σp′ [u
p(a)− c(x)] (**)

where we recall the dependence of terminal beliefs πi,T on the choice of (ŷ,x). Then we define:

Definition 4 (Equilibrium). We say σ ≡ ({σi}ni=1, σ
p) is an equilibrium if DeGroot agents solve (*),

Bayesian agents solve (**) taking σp as given, and the principal solves (**) taking {σi}ni=1 as given.

To obtain existence of an equilibrium, we reduce our setup to that of a reputation game with
incomplete information, see Fudenberg and Levine (1989). There are a few important differences,
however, because information is incomplete on two dimensions: the state of the world and the type
of the principal. First, with respect to beliefs about the state, all agents operate mechanically given the
principal’s strategy of σp. This determines the state information observed by the agents, their (ran-
dom) terminal beliefs πT , and their random terminal actions a. Second, with respect to beliefs about
the type of the principal, the principal and the Bayesian agents play a perfect Bayesian equilibrium
(PBE), so the principal may be concerned about his reputation when playing some strategy σp. On
the other hand, DeGroot agents do not doubt the veracity of their signals but interpret all news at face
value. This makes the solution to the fixed-point problem slightly nuanced; nonetheless we obtain:

Theorem 3. For every learning horizon T , there exists an equilibrium σ.

A main focus of our paper will be characterizing under what conditions an agent chooses the
terminal action which maximizes his or her payoff (i.e., matches the underlying state) given her belief
at time T . To this end, we define what it means for agent i to be manipulated in equilibrium σ:

Definition 5 (Manipulation). We say that agent i is manipulated under a realization (ŷ,x,a) of equi-
librium σ if:

1. Her terminal action ai does not match the underlying state y when the principal’s type is ω = S.

2. Her terminal action ai does match the underlying state y when the principal’s type is ω = T .

29



In other words, manipulation of agent i implies that a strategic principal interferes with the learn-
ing process, and this actually causes agent i to mislearn the true state. An agent may be manipulated
under some realizations of an equilibrium but not others, and moreover since σ may not be unique,
the set of manipulated agents can differ depending on the equilibrium and realization of this equilib-
rium we analyze. This multiplicity motivates us toward a concept of outcome equivalence, where the
number of manipulated agents under any equilibrium realization is the same with high probability.
For this to hold, we need to allow agents a long time to learn; therefore, as T → ∞, if all equilibria
become outcome-equivalent, we say that the equilibrium is essentially unique.

For fixed (large) T , consider two equilibria σ(1) and σ(2) (which may be the same); we say these
equilibria are κ-outcome-equivalent if the number of manipulated agents,M(1) andM(2), is the same
with probability at least 1− κ:

P(M(1),M(2))∼(σ(1),σ(2))

[
M(1) =M(2)

]
≥ 1− κ

for any κ > 0. In other words, the equilibria are outcome equivalent (up to tolerance κ) for learn-
ing horizon T if the number of agents being manipulated is the same across any two equilibria with
probability at least 1− κ. This motivates our definition of essential uniqueness:

Definition 6. We say that the equilibria are essentially unique if for all κ > 0, there exists T ∗(κ) such
that for all T > T ∗(κ), the equilibria for horizon T are κ-outcome-equivalent.

Proposition 5. For generic parameters (ε, b), the equilibrium is essentially unique.

Essential uniqueness of the equilibrium guarantees that, with high probability, our welfare analy-
sis (i.e., the number of agents who mislearn the state) does not depend on the equilibrium we choose,
or the realization of the signals or actions from that equilibrium, as T → ∞. We do not rule out the
possibility of multiple equilibria, or different realizations of the same equilibrium, yielding substan-
tive differences when the learning horizon T is small. Likewise, even for large T , it may be possible
that different agents are manipulated under different equilibria but the total number of these manip-
ulated agents remains unchanged. For this reason, the focus of the paper will be on which network
structures lead to manipulation for a non-empty subset of agents in some equilibrium as T → ∞,
noting that the identity of these agents may be different under different equilibria, but the welfare
properties are invariant.

B Limit Beliefs and Asymptotic Learning

One can think of the principal as an adversarial designer who picks his network strategy in a way
that maximizes his own payoffs. As is typical in design problems, it is easiest to first consider the
equilibrium actions of the agents holding fixed the strategy σp(S). In particular, in this section we
aim to understand the asymptotic learning dynamics that emerge for a given network strategy of the
strategic principal. DeGroot agents have one-dimensional identification problem of learning the true
state y. In contrast, Bayesian agents have a two-dimensional identification problem. In addition to
learning the state of the world, they also learn about the type of the principal, and whether he is
interfering in the learning process.

We show that for large T and under mild conditions, the Bayesians always learn the true state of
the world regardless of any efforts the principal may exert to thwart learning. On the other hand, we
provide a closed-form expression for DeGroot terminal beliefs, as a function of the chosen strategy
σp. These terminal beliefs induce random terminal actions for each DeGroot agent i at T , which in
turn provide an expression for the probability that agent i is manipulated under σp.
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For notational purposes, assume there are {1, . . . ,m} Bayesian agents and {m+ 1, . . . , n}DeGroot
agents, as usual. Throughout this paper, we will make standard network connectedness assumptions,
reminiscent of those from Jadbabaie et al. (2012) and other social learning models:

Assumption 1. The network defined byA is strongly connected16 and the personal-experience weight,
θi, is positive if and only if pi > 1/2.

The first part of the assumption requires that the beliefs of any one agent can reach (or influence)
any other agent, albeit indirectly through others. It can be relaxed in the event there are distinct com-
ponents (entirely separated), where the analysis presented here can be applied to each component
independently. The second part requires that all agents in the network listen to the news they re-
ceive if and only if the organic signals are informative of the true state. Agents whose organic signals
provide only noise instead form their beliefs entirely from social influences. We also introduce the
following assumption about the signals received by agents in the population:

Assumption 2. Let λmax be the largest (realized) λi (i.e., maxi λi). Then:

(a) No agent receives organic news faster than λ+ λ/2; that is, λmax < λ+ λ/2.

(b) Every agent in isolation is susceptible to mislearning; that is, for all agents i:

pi <
λ+ λmax

2λmax

(c) There exists some agent i (DeGroot or Bayesian) whose signal is reasonably informative:

pi >
λ+ λ

2λ+ λ

Note that assumption (a) guarantees that both (b) and (c) are possible. Condition (b) ensures that
agents use the social network as a way to protect themselves against possible manipulation. If agents
are left in isolation, and the principal attempts to corrupt their signals, then it is impossible for agent
i to uncover the truth simply from performing Bayesian updating on her signals. This allows us to
isolate the impact of social learning on preventing a strategic principal from gaining widespread in-
fluence. Condition (c), however, ensures that some agent in the network gets a strongly informative
signal. This is necessary to ensure the principal’s influence cannot entirely corrupt the ground truth
by disguising the signal generating process as purely organic news under a different (false) state. Fi-
nally, note that while we impose (a) and (b) hold for simplicity of analysis, only (c) must be common
knowledge (for the principal and Bayesians).

B.1 Bayesian Learning

Recall that the probability that the principal is the truthful type T is given by ζ. Consider the following
properties (**) about asymptotic learning for any fixed σp:

1. If σp is a pure strategy, then if x = 0, limT→∞ µi,T = µt,0 for all Bayesians i; however, if x 6= 0 and
ŷ 6= y, then limT→∞ µi,T = 0 for some Bayesian i.

16Formally, the network is strongly connected if there exists a directed path between any two agents (i.e., ∃k such that
Akij > 0 for all i, j).
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2. If σp is a mixed strategy with support ν > 0 on any x 6= 0 and ŷ 6= y, then limT→∞ µi,T = 0, if the
principal takes action x 6= 0, for some Bayesian i.

In particular, (1) states that if in equilibrium, the principal commits to a pure strategy that mimics the
truthful type, then all Bayesians will be unable to differentiate between this type and the strategic one.
On the other hand, if the principal interferes anywhere in the network by sending false messages, the
at least one Bayesian will recognize he is interfering. If the principal plays a mixed strategy, then (2)
guarantees as T →∞, the amount of influence the principal can have without detection goes to zero.

Theorem 1. Under Assumption 1 and 2(c), (**) holds. In particular, no Bayesian agent is manipulated
almost surely as T →∞.

Informally, this implies that the Bayesian agents “figure everything out” about the play of the prin-
cipal when they are aware he may be strategic (i.e., µ0 < 1), and can therefore remove his influence
and identify the correct state. We require that there is at least an agent with rich enough signals;
otherwise, the principal can simply fool the entire community. However, this assumption is fairly
weak. We do not impose that this “expert” be a Bayesian agent, and in fact it may be possible that
all Bayesian agents are unable to decipher to the news altogether (i.e., pi = 1/2 for every Bayesian).
Bayesian agents are able to infer the presence of fake signals in the network even if the principal does
not send these signals directly to him or her.

As Bayesian agents become more convinced of the true type of the principal, they are able to
make correct inferences about the underlying state. Moreover, these agents can then communicate
their conclusions, through their communicating their beliefs, to the rest of the network. Therefore,
Bayesian agents provide a positive informational externality, which assists all agents in getting ac-
curate information about the true type (and future play) of the principal. In this way, in the limit,
Bayesian agents become stubborn agents. However, unlike much of the previous literature on stub-
born agents, their presence reduces the amount of misinformation which can persist in the popula-
tion.

When the network consists entirely of Bayesian agents, the principal is unable to manipulate.
On the other hand, when the network consists of all DeGroot agents, manipulation will always be
possible (in general) when the influence cost ε is not too large. The interesting case will come in the
mixed learning environment, where there are both DeGroot and Bayesian agents. In this setting, there
are two opposing forces: (1) the Bayesian agents who can accurately deduce the state information
and communicate this over the network, and (2) the DeGroot agents who may confound the learning
process through simple learning heuristics. We will study whether the principal can effectively use
(2) to his benefit, despite the presence of (1).

B.2 DeGroot Learning and Network Structure

To understand the role of the network structure in the principal’s problem, we need to characterize
asymptotic learning for DeGroot agents. Recall we denote by y the realized state and let us write
y′ as an arbitrary state. For large enough t, the beliefs of the DeGroot agents evolve approximately
according to the law of motion:

πi,t+1(y′|y, ω) = θigi(hi,∞|y, ω) +
n∑
i=1

αijπj,t(y
′|y, ω)
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By Theorem 1, every Bayesian agent i’s limit belief, denoted by πB∞(y′|y, ω), is approximately given by
πBi,∞(y|y, ω) = 1. In matrix notation, we can write this as

πt+1(y′|y, ω) = Aπt(y
′|y, ω) + g(h∞(y′|y, ω))⊗ θ

where the matrix A is given by

A =

(
0 0

AD,B AD,D

)
and AD,B is the DeGroot by Bayesian agent weight matrix and AD,D is the DeGroot by DeGroot agent
weight matrix, and ⊗ is the element-by-element product. The random vector g(h∞(y′|y, ω)) has dis-
tribution given by:

g∗(y′) ≡ g(h∞(y′|y, ω)) ∼


πB∞(y′|y, ω)1B

g(hm+1,∞(y′|y, ω))
g(hm+2,∞(y′|y, ω))

. . .
g(hm+n,∞(y′|y, ω))


where the hi,∞ is the random history of news (both organic and fake) induced by the principal’s strat-
egy σp(ω) . The deterministic vector θ is then given by θ = (1B, θm+1, θm+2, . . . , θn)′. Given this for-
mulation as classical DeGroot learning, we present the following asymptotic result for the beliefs of
the DeGroot agents:

Proposition 6. For principal type ω, as t → ∞, the beliefs of the DeGroot agents in the network, πD,
about the state converge almost surely to:

πDt
a.s.→ (I−A)−1(g∗ ⊗ θ) ≡ πD∞

where G depends on the true state y∗ and the play of the principal of type ω, σp(ω).

This result builds on the standard belief characterization from the social learning literature, with
a couple of caveats. First, agents receive information “externally” from idiosyncractic news which
they incorporate into their own personal belief. For this reason, the expression for asymptotic beliefs
resembles the steady-state Leontif input-output economy. The other key difference, however, is that
Bayesian agents are absorbing states in the population. In particular, they are not sensitive to the
choice of σp, although DeGroot agents are through the vector g∗.

Lastly, we comment that whenω = T , Proposition 6 guarantees that forT large, all agents (Bayesian
or DeGroot) learn the true state when the connectivity conditions of Assumption 1 and the organic
signal conditions of Assumption 2 are satisfied. This can be seen from the fact that g∗ approaches
the vector of all 1’s at y′ = y given that σp(T ) chooses x = 0 with probability 1. Therefore, with-
out a strategic principal, learning occurs despite the fact that DeGroot agents are only updating their
beliefs using the heuristic. Characterizing manipulation (when T is large) simply reduces to asking
which agents mislearn the state when the strategic principal plays some σp(S). This is the main focus
for the remainder of the paper.

C General Characterization and DeGroot Centrality

We can give a characterization of manipulation in an arbitrary network by observing that it is closely
related to a centrality measure that resembles eigenvector centrality and Katz-Bonacich centrality in
the social learning literature. Consider some vector γ, which we will call the influence parameter for
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the principal, of dimension (n − m) × 1. Toward defining our centrality measure, let us define the
characteristic-vector, parametrized by γ, to be:

ξ(γ) ≡
(

0m
θ ⊗ γ

)
We define the DeGroot centrality vector to be:

D(γ) ≡ [(I−A)−1]ξ(γ)

It measures the level of influence the other DeGroot agents have on the agent’s own belief. One way
to interpret the term [(I − A)−1]ij is the number of weighted walks between i and j that do no pass
through a Bayesian. That is, define the weight of a walk W = i→ v1 → v2 → . . .→ vn → j to be:

wW =
∏

(vi→vi+1)∈W

αvi,vi+1

IfWij is the set of walks between i and j that do not pass through a Bayesian, it can be shown that:

[(I−A)−1]ij =
∑

W∈Wij

wW <∞

Our definition of centrality is a generalization of Bonacich centrality. We can think of the θi terms as
being the discount factors that are node-dependent and reflect the level of stubbornness or influence
of that agent. Bayesian agents can be taken as stubborn agents that communicate the truth and have
an effective θi = 1. For instance, in a setting where θ = (1 − β)1 and all the agents are DeGroot, we
recover β-Bonacich centrality by setting γ = 1.

The characteristic vector for agent i is the vector of state opinions in a world where each agent i
receives an experience of deterministic value γi in every period. Each DeGroot agent employs a cutoff
strategy; if at time T her terminal belief exceeds (1 − b)/2 she chooses R, and otherwise she chooses
S. We can then write the principal’s problem as

Γ∗ = arg max
n∑

i=m+1

zi − εγi

s.t. ∀i : zi ≤ Di(γ) + (1 + b)/2

∀i : γi, zi ∈ {0, 1}

Theorem 4. Given investment cost ε > 0 and a solution Γ∗ to the principal’s problem, a network is
impervious if 0 ∈ Γ∗; otherwise it is susceptible.

The intuition for the result is as follows. The principal can choose to either send fake news (γi = 1)
or not (γi = 0) for each agent. The choice of γ impacts the principal’s payoffs in two ways: (i) a direct,
separable cost ε for each γi = 1 and (ii) a network impact captured in the DeGroot centrality (i.e.,
how the experiences of DeGroot agents impact the beliefs of others) from the aggregate vector γ. As
the principal tries to manipulate more agents, the greater the DeGroot centralities are and the more
likely he is to convince other DeGroots of the incorrect state. Importantly, these network externalities
can help or hurt the principal’s objective. On one hand, the impact of γi = 1 diffuses throughout the
network and is not sufficient on its own to convince even agent i of the wrong state. However, when
the influence vector consists of many agents, it can serve to convince both these agents and others of
the wrong state, even if these other agents are not directly influenced by the principal (i.e., γi = 0).
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The trade-off between these two effects depends on the underlying network structure.
Note that Di(γ) is linear in γ; despite this, such an optimization problem is generally intractable.

However, we can provide sufficient conditions for showing that a network is either impervious or
susceptible to manipulation. These conditions, for most networks in practice, tend to be much more
useful than direct application of this optimization problem. For notation purposes, for a subset K ⊂
D of DeGroot agents let 1K denote the vector given by:

[1K]i =

{
1, if i ∈ K
0, otherwise

Then we obtain the following corollary to Theorem 4:

Corollary 2. Fix some ε > 0; then the network is:

(a) Impervious to manipulation ifDi(1D) < (1− b)/2 for every DeGroot agent i, or

(b) Susceptible to manipulation if there exists a subsetK of DeGroot agents such that:

n∑
i=m+1

1Di(1K)>(1−b)/2 > ε|K|

Note that the condition on imperviousness is sufficient but not necessary. It simply states that
if the principal attempts to send fake signals to all of the DeGroot agents, this is still not enough to
convince them of the false state. We see this result holds regardless of the cost of investment ε; in
particular, it becomes a necessary condition as well when ε→ 0. However, a necessary and sufficient
condition for susceptibility is given by (b). While it is challenging to verify that there exists no subset
K that is profitable for the principal to manipulate, it is often easy to simply check that some subset
K does better than γ = 0.

D Proofs

D.1 Main Body

Proof of Theorem 1. Note by Assumption 2(c), there is some agent i with “effective” probability of
signal R:

p̃i ≡
λ∗i

λi + λ∗i
+ (1− pi)

λi
λi + λ∗i

≤ λ

λ+ λ
+ (1− pi)

λ

λ+ λ
< pi

Therefore, the probability that agent i gets signal R is strictly less than pi if and only if y = S, by
Lemma 1. If the agent is a Bayesian, then as T → ∞ the agent will hold belief πi,T (y) → 1. On the
other hand, if the agent is DeGroot, then gi,t(hi,t) encodes the difference zRi,t − zSi,t, and because ∆ is
small, any observer of gi,t(hi,t) for all t knows zRi,t + zSi,t by counting the number of changes to gi,t(hi,t)
for all t′ ≤ t, since pi > 1/2. Thus, an observer of gi,t(hi,t) can identify λi + λ∗i (i.e., the arrival rate
of all signals) as T → ∞ from zRi,t + zSi,t. Moreover, as T → ∞, this observer can deduce the quantity
(2p̃i−1)(λi+λ

∗
i ) from zRi,t−zSi,t, where again p̃i is the effective probability of getting signalR (from both

organic and principal signals). Since p̃i < pi when y = S, regardless of xi, an observer of gi,t(hi,t) can
deduce the correct state y when it is eitherR or S. We refer to the agent i that satisfies Assumption 2(c)
as the “special agent,” which we denote i∗ from here on.
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Now we use this fact to show every Bayesian learns the state y. There is a walk from every Bayesian
i to this special agent, which may pass through other Bayesians, because the network is strongly con-
nected. Denote the (maximal) sequence of Bayesians along such a walk as i → j1 → · · · → jk → i∗.
By Lemma 2, Bayesian j1 is not manipulated because agent j1 can effectively observe gi∗(hi∗,t′) (or
πi∗,t′ if i∗ is a Bayesian) for all t′ < t − dist(j1, i∗) ·∆, which implies that the belief of Bayesian j1, πj1 ,
converges to a point-mass on the correct state. However, by identical reasoning using Lemma 2, this
shows that agent j2 is not manipulated (who can indirectly observe the belief of agent j1), and so on,
to suggest that Bayesian j2 will not be manipulated. Straightforward induction proves that Bayesian
agent i will not be manipulated.

We know that playing x where xi = 1 for either an agent i with θi = 0 is dominated by the strategy
x′ where x′j = xj for all j 6= i and x′i = 0, so will not be played in equilibrium. If σp is a pure action of
x = 0, then in equilibrium the signals provide no information about the type of the principal (as both
types play x = 0), and so no agent updates her prior µ0. Otherwise if x∗ 6= 0 when ŷ 6= y, we know
that xi = 1 for some agent i. Some Bayesian will be connected to agent i through a chain of DeGroots,
and aware that gi,t(hi,t) is converging to the incorrect state by Lemma 2, and by the logic from the
paragraph above, will know the true state, and hence realize the principal is strategic and attempting
to manipulate.

Now suppose the principal plays some x∗ 6= 0 when ŷ 6= y only with probability ν > 0. If the
principal does play x∗, then given history hi,t we have for sufficiently large t:

µi,t ≤
Pi,t[hi,t|x = 0]µ0

Pi,t[hi,t|x = 0](µ0 + (1− η)(1− µ0)) + Pi,t[hi,t|x = x∗]η(1− µ0)

with high probability, where Pi,t[h|x = x′] is the conditional probability of observing history h given
(pure) strategy x′, at time t for Bayesian agent i. For fixed η, since Pi,t[hi,t|x = 0]/Pi,t(hi,t|x = x′) → 0
as t→∞, we see that still limt→∞ µi,t = 0 for a Bayesian connected through a chain of DeGroots to an
agent with xi = 1.

Proof of Theorem 2. It is sufficient to prove that the sum of weighted walks passing through Bayesian
agent is bounded below by a constant ρ(δ,m) which only depends on the log-diameter δ of G and
the number of Bayesian agents m, with limm→∞ ρ(δ,m) = 1 for all δ. To see this, note that Di(1D) ≤
(1− ρ(δ,m)) for all i, so we can construct m∗(δ) from:

m∗(δ) = inf {m : ρ(δ,m) ≥ (1 + b)/2}

which exists because the set above is non-empty if the limit of ρ converges to 0. By Corollary 2 (and
noting 1 − ρ(δ,m) ≤ (1 − b)/2 is an equivalent condition) this implies the network is impervious to
manipulation.

Let wBi be the sum of weighted walks that end with a Bayesian agent, which clearly a lower bound
on ρ(δ,m). Since the log-diameter of the network is less than δ, we know that between any two agents
i and j, there exists a walk W ∗ij = i→ u1 → u2 → · · · → uk → j such that:

− log(αiu1)−
k−1∑
`=1

log(αu`u`+1
)− log(αukj) = − log

(
αiu1 · αukj ·

k−1∏
`=1

αu`u`+1

)
≤ log(n+ δ)

=⇒ αiu1 · αukj
k−1∏
`=1

αu`u`+1
= W ∗ij ≥

1

n+ δ

Let us define an intermediate walk to be a walk of weight at least 1/(n + δ) between two DeGroot
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agents i, j. Additionally, let us say a k-weighted walk from DeGroot i ending at some Bayesian j is the
concatenation of k intermediate walks; in other words, the ending vertex of one intermediate walk is
the starting vertex of the next. If we let Ik denote the set of k-weighted walks starting at i, then we
observe:

wBi ≥
∞∑
k=1

∑
W∈Ik

wW

Observe there are at least (n − m − 2)k−1 k-weighted walks from i to any given Bayesian j. To see
this, note that because i has a weighted walk of weight 1/(n + δ) to every other vertex v in G (by the
above inequality), the number of k-weighted walks is the number of intermediate vertices between
i and j which do not include Bayesians (or i, j themselves). Moreover, we note that by the previous
inequality: ∑

W∈Ik

wW ≥ m · (n−m− 2)k−1 ·
(

1

n+ δ

)k
Putting the pieces together, we have that:

ρ(δ,m) ≥ wBi ≥
∞∑
k=1

m · (n−m− 2)k−1 ·
(

1

n+ δ

)k
=

m

n+ δ

∞∑
k=1

(
n−m− 2

n+ δ

)k
=

m

n+ δ

1

1− n−m−2
n+δ

=
m

m+ δ + 2

Finally, noting that limm→∞m/(m+ δ + 2) = 1 completes the proof.

Proof of Proposition 1. In Section 4.2, we computed DeGroot centrality by matrix inversion; here
we will employ the walk approach. If j > i, the weighted walk from agent i to agent j is simply the
influence multiplied over the length of the walk, (j− i), that is,

∏j
η=i+1(1−θ(n)

η ). If j < i, the influence
is zero because every walk passes through a Bayesian. Therefore, the DeGroot centrality of agent j is
given by:

Dj(γ) =

j∑
κ=m+1

θ(n)
κ

 j∏
η=κ+1

1− θ(n)
η

 γκ = 1−
j∏

η=m+1

(1− θ(n)
η )−

j∑
κ=m+1

θ(n)
κ

 j∏
η=κ+1

1− θ(n)
η

 (1− γκ)

where the equality follows from noting all weighted walks sum to 1, and subtracting the influence
from the Bayesians and the influence from those DeGroots κ with xκ = 0. If γκ = 1 for all previous
κ < j, then for some β > 0:

Dj(1D) ≥ 1−
j∏

η=m+1

(
1− β

n−m

)
= 1−

(
n−m− β
n−m

)j−m
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On the other hand, if γi = 1 for all τ ≤ τ∗, then for j ≤ τ∗:

Dj(γ) ≥ 1−
(
n−m− β
n−m

)j−m
whereas for j ≥ τ∗:

Dj(γ) = 1−
j∏

η=m+1

(1− θ(n)
η )−

j∑
κ=τ∗+1

θ(n)
κ

 j∏
η=κ+1

1− θ(n)
η


≥ 1−

(
n−m− β
n−m

)j−m
−

j∑
κ=τ∗+1

θ(n)
κ

 j∏
η=κ+1

1− θ(n)
η


Suppose that τ∗ = n (i.e., all DeGroot agents receive the principal’s signals). Then limn→∞((n −m −
β)/(n − m))n−m = e−β , so limn→∞Dn(γ) = 1 − e−β . If the principal wants to manipulate the most
people, then it is clear that we want Dj(xcutoff(τ

∗)) > (1 − b)/2 for agent j = n at the end of the ring.
Therefore, we solve for τ∗:

τ∗ = inf {τ : Dj(xcutoff(τ
∗)) > (1− b)/2}

where the infimum is well-defined for some b because 1−e−β > 0 for all β > 0. If the principal chooses
strategy x(τ∗), then he guarantees that all DeGroot agents who are manipulatable are manipulated,
as the only agents not manipulated are those at the beginning of the ring who are not manipulated
for any γ. Therefore, the cost of this strategy (and noting that the principal never exerts effort for the
Bayesians) is C̃(ε, b) = ετ∗ ≤ ε(n−m).

Next, we compute the number of agents not manipulated under this influence strategy. We note
that these agents consist of an arc of length approximately n · `, with:

1−
(
n−m− β
n−m

)`(n−m)

≥ (1− b)/2

which as n grows large is equivalent to:

1− e−β` ≥ (1− b)/2 =⇒ ` ≤ 1

β
log

(
2

1 + b

)
Therefore, for n large, the total benefit from the network influence strategy with cutoff τ∗ is given by

B̃(b) ≥ (n−m)
(

1− 1
β log

(
2

1+b

))
− εb with limn→∞ εb = 0. Consider the regionR is given by:

R ≡
{

(ε, b) ∈ R2
++ : b > 1− 2e−β ∩ ε <

(
1− 1

β
log

(
2

1 + b

))}
6= ∅

For any (ε, b) ∈ R, the network influence strategy x∗ with cutoff τ∗ does strictly better than x = 0,
which does strictly better than any x′ 6= 0 where no agents are manipulated. Therefore, the network
is susceptible for all (ε, b) ∈ R ⊃ R, withR 6= ∅.

Finally, to see that at least Ω(n) DeGroots are manipulated, we note that x∗ does better than any
network influence strategy where ω(n) DeGroots are manipulated. If x∗∗ were such a strategy, then
the cost of x∗∗ would be bounded below by 0, but the benefit of x∗∗ would be bounded above by a se-
quence {B̃∗∗n } such that limn→∞ B̃

∗∗/(n−m) = 0. Thus, x∗ outperforms x∗∗, which is a contradiction.
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Proof of Proposition 2. Fix b. We show that Θ(n/f(n)) Bayesians are both necessary and sufficient
for imperviousness:

1. Necessary: Suppose there are fewer thanA ·n/f(n) Bayesians for any constantA. By the pigeon-
hole principle, there must exist a DeGroot agent i∗with at least ρnf(n) DeGroots before him after
the previous Bayesian agent j∗, with limn→∞ ρn = ∞. Suppose the principal manipulates all of
these DeGroot agents (i.e., γi = 1 for all i < i∗ after the previous Bayesian j∗). Then,

Di∗(1D) = 1−
i∗∏

κ=j∗+1

(1− θ(n)
κ )

= 1−
i∗∏

κ=j∗+1

(1− βκf(n))

≥ 1− (1− βf(n))i
∗−j∗

≥ 1− (1− βf(n))ρnf(n)

We consider separately the cases that lim supn→∞ f(n) > 0 and lim supn→∞ f(n) = 0. In the
former case, we have an infinite subsequence of networks such that for some η > 0, Di∗(1D) ≥
1−(1−βη)ρnη → 1. In the latter case, we note that limn→∞ f(n) = 0, so limn→∞(1−βf(n))ρnf(n) ∼
1 − e−ρnβ → 1. Finally, consider the last νf(n) DeGroots along this chain for any constant ν ∈
(0, 1). For each of these DeGroots (denoted i), the fomer case becomes Di(1D) ≥ 1 − (1 −
βη)(1−ν)ρnη → 1 and the latter case becomesDi(1D) ≥ 1− e−(1−ν)ρnβ → 1 for n sufficiently large.
Thus, a vanishingly small fraction of the population (less than 1/(1 + ρn)) are not manipulated
along this chain, therefore we see the network is susceptible for all ε < 1.

2. Sufficient: Once again, we divide this into two cases. First, consider limn→∞ f(n) = 0. Suppose
we sprinkle A · n/f(n) Bayesians such that df(n)/Ae is the farthest distance between any two
“adjacent” Bayesian agents along the ring. Then for all DeGroots i, letting j∗(i) be the nearest
Bayesian:

Di(1) = 1−
i∏

κ=j∗(i)+1

(1− θ(n)
κ )

= 1−
i∏

κ=j∗(i)+1

(1− βκf(n))

= 1− (1− βf(n))i−j
∗(i)

≤ 1− (1− βf(n))df(n)/Ae

Then Di(1) → 1 − e−β/A, which is also less than (1 − b)/2 for sufficiently large A. Therefore, by
Corollary 2, the network is impervious to manipulation.

Now suppose that lim supn→∞ f(n) > 0. Then there is an infinite subsequence of networks
where f(n) is uniformly bounded away from 0, and so Θ(n/f(n)) Bayesians implies that we can
stagger the Bayesians so that each DeGroot only neighbors a Bayesian. Thus, provided that
θ

(n)
i ≤ (1 − b)/2, DeGroot agent i is not manipulated even if γi = 1, which is implied by b ≤
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1− 2β lim sup f(n) given in Proposition 2.

Proof of Corollary 1. In the ring network, we have θ(n)
i = 1/2, so f(n) is a constant with b < 1−2(1/2) =

0 with ε < 1. We can apply Proposition 2 to note that Θ(n) Bayesians are necessary and sufficient. The
second part of the statement follows from Theorem 2 and Example 1, and of course noting that beliefs
in the network of all DeGroot agents simply converges to ||γ||1/n, so is susceptible to manipulation
without at least one Bayesian.

Proof of Proposition 3. For part (a), we note that by Proposition 6, limiting DeGroot beliefs of the
true state y∗ for θ = θ′1 are given by:

πD∞ = (I−A−1
θ′ )(g∗ ⊗ θ′) ≤ (I−A−1

θ′ )(γ∗ ⊗ [1B 0D])

We first prove that the asymptotic bound for DeGroot beliefs is continuous in θ′ around θ′ = 0. Clearly
the network preservation of Aθ′ is continuous in θ′, so it is sufficient to prove that as θ′ → 0, I−Aθ′ is
non-singular. First note that λ is an eigenvalue of I −Aθ′ if and only if 1 − λ is an eigenvalue of Aθ′ .
Thus, it suffices to show that the eigenvalue of Aθ′ are uniformly bounded away from the unit circle
as θ′ → 0. We note that:

lim
θ′→0

Aθ′ =

(
0B
S

)
for some row-stochastic matrix S. Then, for any vector v such that ||v||2 = 1, note that

v′ ≡
(

0B
S

)
v =

(
0B
Sv

)
Note that ||v′||2 ≤ ||v||2, which holds with equality only if vB = 0B. However, this is a contradiction
by definition of our RHS vector. Thus, (I−Aθ′)

−1 is a continuous operation at θ′ = 0. But notice that
when we substitute θ′ = 0, applying DeGroot centrality and noting the characteristic-vector γ → 0
shows that DeGroot centrality tends to 0, so beliefs of the correct state tend toward 1. Then applying
continuity yields the claim in (a).

Because limθ′→1 Aθ′ = 0, it is obvious that beliefs are continuous at θ′ = 1. Moreover, when θ′ = 1,
an amendable DeGroot agent i is manipulated if and only if γi = 1, which is profitable if and only
if ε < 1. Call the strategy of targeting all amenable DeGroots as xamen, which has a net utility of
(1− ε)(n−m). If b < 1/2, then (c) holds vacuously; to show (b), we just note by continuity that there
exists some θ∗∗ such that the network with θ′ ∈ (θ∗∗, 1) is either impervious (if ε < 1) or susceptible (if
ε > 1) independent of θ′. Setting θ∗ = θ∗∗ and θ = (1 + θ∗∗)/2 gives us (b).

Now consider b > 1/2 and let θ∗ = 1/2. Suppose the principal chooses xamen with the only
difference being that he does not target the DeGroot agent not adjacent to any Bayesians; call this
xspec. By just considering first-order walks, we see that the DeGroot centrality of this agent is at least
(1−θ∗)θ∗ = 1/4, so this agent is still manipulated under xspec. Similarly since all other DeGroot agents
are targeted and have θ = 1/2, these agents are also manipulated. Therefore the net utility of strategy
xspec is (1 − ε)(n − m) + ε, which beats xamen. Let θ be the infimum of all θ > 1/2 where agent i is
manipulated if and only if γi = 1 for all i (call this proprty Independence); we know such an infimum
exists because independence holds at θ′ = 1. We claim that for all θ′ ∈ (θ, 1), independence holds. To
see this, it is sufficient to show that if independence holds with some θ′1, then independence holds for
any θ′2 > θ′1. By way of contradiction, consider some strategy x2 which violates independence with
θ2. This implies that for some DeGroot i∗, the sum of weighted walks to other DeGroots j with γj = 1
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exceeds (1 − b)/2 with θ2. However, the sum of weighted walks with θ1 is necessarily larger, because
αij,1 > αij,2 for all i, j. Thus, x2 violates independence under θ′1, a contradiction.

By construction, there exists some ε∗ such that θ′ ∈ (θ∗, θ) is susceptible (because xspec dominates
0) but where xamen is dominated by 0. Also by our previous observation, for θ′ ∈ (θ, 1), an agent is
manipulated if and only if γi = 1, so the network is impervious if and only if ε > 1, which holds for ε∗.
Therefore, these θ∗, θ satisfy (b) and (c).

Proof of Proposition 4. We will appeal to the first part of Corollary 2. Let j∗2 ∈ D2 be the agent in
D2 adjacent to an agent j∗1 ∈ D1. Now consider an arbirary agent j ∈ D1. Since D1 is strongly con-
nected, there exists a walk between j and j∗1 , which implies there is also a walk from j to j∗2 ; let us
denote this walk by Wjj∗2

= j → v1 → · · · → vk → j∗1 → j∗2 . Suppose θ1 ∈ [0, θ) for some θ < 1. Let us
write the weight of this walk explicitly as:

wjj∗2 = θ2

∏
(vi→vi+1)∈Wjj∗2

(1− θ1)αvi,vi+1 > Cjj∗2 > 0

where the constantCjj∗2 does not depend on θ1. If we take b̄ = 1− 2 minj∈D1 Cjj∗2 < 1, then we see that
for all b > b̄, all j ∈ D1 have DeGroot centrality Dj(1D) ≥ wjj∗2 ≥ Cjj∗2 ≥ (1 − b)/2. Thus, all agents
in D1 are manipulated when ε is sufficiently small, regardless of their θ1, and in particular as θ1 → 0.
On the other hand, all agents inD2 have θ2 ≥ minj∈D1 Cjj∗2 , so by the same argument agents inD2 are
manipulated.

The second result is just a rephrasing of Proposition 3(a).

D.2 Supplementary

Lemma 1. In every equilibrium, the principal chooses x = 0 when y = R.

Proof of Lemma 1. By the same arguments as in the reputation literature (see Fudenberg and
Levine (1989)), the principal can do no worse than mimicking the committed truthful type who im-
plements x = 0 regardless of y, as T → ∞. Of course, when y = R and x = 0, all agents j learn the
true state and take action aj = R at time T . This yields a payoff for the principal of n · 1− ε · 0, which
is maximal. Any other pure strategy cannot exceed a payoff of n− ε, and therefore x = 0 is the unique
equilibrium outcome when y = R.

Lemma 2. For generic A and all finite t, every Bayesian agent discovers:

(a) {gj,∆τ (hj,∆τ )}t/∆τ ′=1 for all DeGroots with θj > 0,

(b) The terminal belief πj,t for all agents j,

connected to her through a path of only DeGroots and with θj > 0. In particular, it can deduce πj,∞ for
all agents j connected to her through a path of only DeGroots.

Proof of Lemma 2. For simplicity of exposition, let time t be discrete and denote the increments
on length ∆ where DeGroots exchange information (i.e., consider t = 0,∆, 2∆, . . . , τ∆, . . .).

Part 1. First, we show that gj,t(hj,t) for DeGroots j and πj,t for Bayesians j can take on at most
countably many values. We note that the difference between zSj,t and zRj,t is a sufficient statistic for
gj,t(hj,t). Since this difference is an integer, there are at most countable values for gj,t(hj,t). To show
Bayesian beliefs must come from a finite set at each timestamp t, note that an equivalent learning
model is one where all Bayesians update beliefs continuously at t− dt, observe DeGroot beliefs, then
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reupdate at t+ dt (with the first and last learning “sub-periods” ending in finite time). Since only the
total number of zSj,t and zRj,t matter for any agent j in the beliefs of Bayesian agent i, we conclude as
well that there are at most countably many beliefs for πi,t for any Bayesian i at time t.

Part 2. We take an approach similar to the one in Mueller-Frank (2014), but applied to our more
complicated setting;. Fix some agent i and denote by N k(i) the be the k-order neighborhood of i
passing through DeGroots (i.e., the agents k “hops” away through a path of DeGroots). We let the
k-action neighborhood of agent i, denoted byQi,k be {gj(hj,1), gj(hj,2), . . . , gj(hj,t−k} for any DeGroot
j ∈ N k(i) and {πj,1, πj,2, . . . , πj,t−k} for any Bayesian agent j ∈ N k(i). We show that in each period t,
there exists a generic set of An−m,m network weights so that any Bayesian agent i knows with certainty
its k-action neighborhood. In other words, the Bayesian can deduce the personal-experience belief of
every DeGroot and the overall beliefs of every Bayesian in its k-order neighborhood, for all intervals
of time except the last k, for all t. We prove this by induction on t, by noting that πj,t is a polynomial
of degree t in the weights of An−m,m, and a function of j’s (t − 1)-action neighborhood. When t = 1,
the Bayesian can observe her own neighborhood, so knows πj,1 for every Bayesian j and knows that:

πj,1 = θjgj(hj,1) +

n∑
`=1

αj`q =⇒ gj(h1) =
πj,1 − (1− θj)q

θj

and of course the above is a linear function (i.e., polynomial of degree 1). Now suppose the statement
is true for t; we want to show it holds for t + 1. We can clearly know πj,t+1 for any Bayesian agents in
our first-order neighborhood. For any DeGroot j in i’s neighborhood, we write:

πj,t+1 = θjgj(hj,t+1) +
n∑
`=1

αj`π`,t

By the inductive hypothesis, we can express π`,t as a polynomial of degree t in the network weights
Am−n,n and as a function of its t-action neighborhood. Let us write this polynomial as Γtj(Am−n,n,Qj,t);
then:

πj,t+1 = θjgj(hj,t+1) +
n∑
`=1

αj`Γ
t
`(Am−n,n,Q`,t−1)

which shows the first-part of the inductive hypothesis, which is that πj,t+1 can be expressed as a t +
1-order polynomial in the network weights Am−n,n and as a function of j’s t-action neighborhood,
πj,t+1 = Γt+1

j (Am−n,n,Qj,t). Consider any two distinct t-action neighborhoods for agent j, Qj,t and
Q′j,t. Then define:

Ltj(Am−n, n) = Γt+1
j (Am−n,n,Qj,t)− Γt+1

j (Am−n,n,Q′j,t)

Note that Ltj(Am−n, n) is a polynomial (of degree t+ 1), and by the same Lemma as in Mueller-Frank
(2014), the set of weights Am−n,n which make the above expression vanish has measure zero. There-
fore, for any generic set of Am−n,n, the two t-action neighborhoods for agent j, Qj,t and Q′j,t, are
distinguishable entirely by πj,t+1. By the fact that the number of agents in the network is finite and
the set of possible k-action neighborhoods is at most countable implies the set of network weights
which allow i to distinguish between any two t-action neighborhoods for j is also generic. Because
agent i has a finite number of neighbors, this implies that at time t+1, agent i can construct hisQi,t+1

for a generic set of Am−n,n, completing the inductive step. Finally, the set of Am−n,n which allow all
agents to distinguish between t-action neighborhoods for j is generic; taking an intersection over all t
preserves genericity because it is the complement of a countable union of countable sets. Thus, each
Bayesian agent knows its t-action neighborhood at time t.

Part 3. Finally, we show that if a Bayesian knows its t-action neighborhood at time t, it can deduce
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limit beliefs πj,t eventually for all j connected through a path of DeGroots. Since the diameter of the
network is finite (because there are a finite number of agents), as T → ∞, each Bayesian observes
an unlimited sequence of {gj,t(hj,t)} for DeGroots j and an unlimited sequence of beliefs {πj,t} for
Bayesians j, given they are connected to i through other DeGroots. Clearly, the Bayesian learns the
asymptotic belief of other Bayesians because these beliefs are observed directly in Qi,t, and the be-
liefs must converge by the martingale convergence theorem. Similarly, by the MCT, it must be the
case that gj,t(hj,t) → g∗j (hj,∞) for all DeGroot agents, because gj,t is a Bayesian update on j’s own
signals obtained by time t. Finally, we note that we can partition the network G into components of
DeGroot agents who are not connected to each other if all Bayesians were removed from the network.
It is clear from Proposition 6 that taking as given the beliefs of the Bayesians who separate the com-
ponents, and the g∗j for all DeGroots j in the component, the asymptotic belief for each agent j can
be computed. Moreover, if Bayesian i has a path through DeGroots to agent j, then Bayesian i knows
all of this in its limiting t-action neighborhood, limt→∞Qi,t.

Proof of Theorem 3. We rewrite the game defined in Section 2 as an extensive form Bayesian game.
Existence thus follows from Theorem 8.5 in Fudenberg and Tirole (1991) for dynamic, finite games
of incomplete information. The game is depicted in Figure 11, consisting of three time periods and
m + 1 players (where m is the number of Bayesians). At time t = 0, nature draws the state of nature
y and the type of player 1 (the principal) which is truthful (T ) with probability µ0 and strategic (S)
with probability 1 − µ0. While player 1 observes y, none of the other m players do. At time t = 1, the
principal chooses a strategy σp over his action set of network influence strategies x; the action set of
the truthful principal is a singleton, {0}, whereas the action set of the strategic principal is {0, 1}n. At
time t = 2, Bayesian agents receive multi-dimensional signals si ∈ ([0, 1])|Ni|×[0,T ) from a joint distri-
butionGi, conditional on x. This joint distribution reflects the observation of beliefs in the Bayesians’
neighborhood. Then Bayesian agents play a strategy over their action set {R,S}.

Figure 11. Extensive-Form Representation.

Payoffs are given as follows. For the Bayesian agents, their utilities are given by Table 1. The princi-
pal receives two payoffs, one determined by nature and one determined by the play of the Bayesians,
and always pays the cost of the network influence ε||x||1. The payoff from the Bayesians is given
directly by Table 1, and is additive across Bayesians. For the other payoff, nature generates a signal
s̃ ∈ [0, 1]n−m, according to a distribution G̃ corresponding to the random beliefs of the DeGroot agents
in the learning process, which again is conditional on x and may depend on the realization of {si}i∈B.
The nature payoff is then given by

∑n−m
j=1 1s̃(i)≥(1−b)/2, where s̃(i) is the i-th component of s̃.
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Proof of Proposition 5. Suppose that agent i has belief πi(R) at time T . Agent i’s best-response is
the action ai = R if πi(R) > (1 − b)/2, ai = S if πi(R) < (1 − b)/2, or any strategy in the simplex
∆(R,S) if πi(R) = (1 − b)/2. Therefore, the equilibrium play of the agents in the terminal stage is
pinned-down as a function of terminal beliefs.

By Theorem 1 and Proposition 6, as T → ∞, the beliefs of all agents converge almost surely to
some π∞, given a network action x. We can construct a set B∗ which consists of all the values of b
where some agent i has a limit belief limt→∞ πi,t → (1 − b)/2, for some network action x. Because
there are finitely many agents and finitely many network actions, the set B∗ is finite, so has measure
zero, implying that (−1, 1)\B∗ has full measure.

Finally, consider fixing some x and any b ∈ (−1, 1)\B∗. Given fixed λ, for every κ > 0, there exists
T ∗ such that for all T > T ∗, the probability that all beliefs at time T are within λ of their limits is at
least 1− κ:

P[||πT − π∞||∞ < λ] ≥ 1− κ

by Theorem 1 and Proposition 6. Since the set of B∗ contains no b’s with an agent holding πi,∞ =
(1 − b)/2, we can pick T ∗ large enough such that λ is small enough whereby each agent i plays a
known action ai with probability at least 1 − κ at time T . Choosing action x gives the principal a
known net payoff ofM(x) − ε||x||1 with probability 1 − κ (which we deem the “likely payoff”) and
some other payoff with probability κ.

Now suppose two network strategies x1,x2 have a different number of manipulated agents. If x1

and x2 give the same likely payoff, this implies thatM1(x1)−ε||x1||1 =M(x2)−ε||x2||1, which implies
that:

ε =
M(x1)−M(x2)

||x1||1 − ||x2||1
because ||x1||1 6= ||x2||1. Noting that both the numerator and denominator are integers, we see that by
taking the generic set of irrational ε, we guarantee that whenever x1 and x2 have a different number
of manipulated agents, the principal has a strictly higher likely payoff under one. Since we took κ to
be arbitrary, we can choose κ small (by increasing T ) such that the principal prefers action x1 to x2

if he prefers the likely payoff of x1 to the likely payoff of x2 (as the payoff of any “unlikely” outcome
is bounded above by n). Thus, for the set of irrational ε and b ∈ (−1, 1)\B∗, the principal plays a
randomized strategy over network actions which induces the “likely” outcome of that network action
with probability at least 1− κ. Each of the network actions in the support of this randomized strategy
must have the same number of of manipulated agents. This holds for arbitrary κ > 0 as T grows large.

Proof of Proposition 6. By convention, let the first m agents in the network be Bayesian. Each De-
Groot agent updates its belief according to the law of motion:

πDt+1 = θ ⊗ g(ht) + ADBπ
B
t + ADDπ

D
t

By the martingale convergence theorem, we know that πBt converges almost surely to some πB∞.
Moreover we know that θ ⊗ g∗ is eventually a constant almost surely. To see this, consider the fol-
lowing four cases for each DeGroot agent i:

1. xi = 0: By Assumption 1 either pi > 1/2, so Bayesian update will converge to a point mass on
the true state y, or θi = 0 and so is identically zero for all t.

2. It is impossible that λi ≥ λ∗i /(2pi − 1) by Assumption 2(b) for any agent i.

3. If λi < λ∗i /(2pi − 1) and xi = 1, the Bayesian update will converge to a point mass on the princi-
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pal’s influence state ŷ.

Therefore, for any κ > 0, we can write for sufficiently large T :

πDt+1 − πDt = θ ⊗ (g(ht+1)− g(ht)) + ADB(πBt − πBt−1) + ADD(πDt − πDt−1)

≤ κ1 + ADD(πDt+1 − πDt )

for all t > T . As an aside, we prove that (I − ADD) is invertible. It suffices to prove that all the
eigenvalues of ADD lie strictly within the unit circle, in which case all eigenvalues of (I − ADD) are
bounded away from zero. Denote by Qi = 1 −

∑n
j=m+1 αij the amount of weight placed on one’s

experience and the Bayesian agents, combined, which by the assumption that each θi > 0, is strictly
positive. Take the matrix:

Q =


1/Qm+1 0 · · · 0

0 1/Qm+2 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1/Qn


Then we note that ADDQ is row-stochastic, so by the Perron-Frobenius theorem all eigenvalues lie
strictly within the unit circle except for the largest, which is exactly equal to 1. Consider any arbitrary
vector v ∈ Rn−m:

||ADDv||2 < ||ADDQv||2 ≤ ||v||2
where the strict inequality follows from the fact that all eigenvalues of Q are strictly greater than 1.
Back to the original claim, for any κ > 0, there exists T sufficiently large such that:

πDt+1 − πDt ≤ κ(I−ADD)−11

which implies that πDt must converge almost surely to some πD∞. This implies that π∞ must solve the
fixed-point problem:

πD∞ = θ ⊗ g∗ + ADBπ
B
∞ + ADDπ

D
∞

If not, then the difference between the left-hand side and right-hand side is always some positive
amount η for at least one ω, and so every iteration of belief updating changes the belief of type ω by
at least η, contradicting convergence. By setting gi(σp(ω)) to πBi,∞ and θi = 1 for all Bayesian agents i
(which is the correct belief of the Bayesians by Theorem 1), we can reduce this expression to:

π∞ = θ ⊗ g∗(ap) + Aπ∞

Note that ADD has all eigenvalues lying (strictly) in the unit circle if and only if A does. Therefore, we
can solve this fixed-point problem explicitly:

π∞ = (I−A)−1(g∗ ⊗ θ)

which proves the claim of Proposition 6.

Proof of Theorem 4. As we saw in Theorem 3 and Proposition 5, the equilibrium play of the DeG-
roots is pinned-down by their beliefs, which when T is large is high probability close to its limit. By
Theorem 1 and Proposition 6, the DeGroot centrality D(γ) is equivalent to the belief π∞(R) when
y = S and g∗ = γ. We let zi denote an agent i who is manipulated at the limit (and thus for large T ).
Recall that by Theorem 1, no Bayesian agent is manipulated so we can set zi = 0 for all i ∈ {1, . . . ,m}.
Similarly, we suppose the principal can “elect” to manipulate agent i only if its DeGroot centrality is
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Figure 12. Ten Well-Placed Bayesians, b = .8.

above (1− b)/2; in other words:

zi ≤ 1 +Di(γ)− (1− b)/2 = Di(γ) + (1 + b)/2

zi ∈ {0, 1}

Finally, note that the principal gains an additional payoff of 1 for each manipulated agent and pays a
cost of ε for each γi. Combining these we get the integer program in Theorem 4. Every x except those
that try to target Bayesians can be represented as (z,γ), but such x are dominated by another network
action because of Theorem 1. Similarly, each feasible (z,γ) corresponds to some network action x, as
given in Section 3.

Proof of Corollary 2. Consider any set K of amenable DeGroot agents. Because (I − A)−1 consists
of all nonnegative entries, we know that D(1K) < D(1D). Under (a), every feasible solution requires
that z = 0. Therefore, the IP objective is maximized if and only if γ = 0, which implies the network is
impervious. On the other hand, suppose (b) holds. Then γ = 1K and z = 1Di(1K)>(1−b)/2 is a feasible
solution to the IP, and the objective yields ||z||1 − ε||γ||1 > 0 by the assumption in (b). Thus, the feasi-
ble solution (γ, z) = 0 does not maximize the IP as it gives an objective of 0, so 0 6∈ Γ∗, and thus the
network is susceptible.

E Additional Figures
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Figure 13. Fifteen Poorly-Placed Bayesians, b = .8.

Figure 14. With 116 Bayesians, b = .8.
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