
0

A Dynamic Lot-Sizing Model with Demand Time Windows

Chung-Yee Lee*
Sila Çetinkaya *

Department of Industrial Engineering
Texas A&M University

College Station, TX 77843-3131

Albert P.M. Wagelmans
Econometric Institute and RIBES

Erasmus University Rotterdam
P.O. Box 1738

3000 DR Rotterdam
The Netherlands

September 1998
Revised: November 1999

* This research was supported in part by NSF Grant DMI-9908221.

Key Words: lot-sizing, dynamic programming, time windows

1

Abstract:

One of the basic assumptions of the classical dynamic lot-sizing model is that the

aggregate demand of a given period must be satisfied in that period. Under this

assumption, if backlogging is not allowed then the demand of a given period cannot be

delivered earlier or later than the period. If backlogging is allowed, the demand of a

given period cannot be delivered earlier than the period, but can be delivered later at the

expense of a backordering cost. Like most mathematical models, the classical dynamic

lot-sizing model is a simplified paraphrase of what might actually happen in real life. In

most real life applications, the customer offers a grace period - we call it a demand time

window - during which a particular demand can be satisfied with no penalty. That is, in

association with each demand, the customer specifies an earliest and a latest delivery

time. The time interval characterized by the earliest and latest delivery dates of a demand

represents the corresponding time window.

This paper studies the dynamic lot-sizing problem with demand time windows

and provides polynomial time algorithms for computing its solution. If shortages are not

allowed, the complexity of the proposed algorithm is O(T2). When backlogging is

allowed, the complexity of the proposed algorithm is O(T3).

2

1. Problem Context and Definition

The classical dynamic lot-sizing problem considers a facility, possibly a

warehouse or a retailer, which faces dynamic demand for a single item over a finite

horizon (Wagner and Whitin 1958). The facility places orders for the item from a supply

agency, e.g., a manufacturer or a supplier, which is assumed to have an unlimited

quantity of the product. The model assumes a fixed ordering (setup) cost, a linear

procurement cost for each unit purchased, and a linear holding cost for each unit held in

inventory per unit time. Shortages at the warehouse/retailer may or may not be allowed,

and depending on how shortages are modeled, a linear stockout cost may accrue for every

unit backordered per unit time. Given the time varying demand and cost parameters, the

problem is to decide when and how much to order at the facility in each period so that all

demand is satisfied at minimum cost.

The basic assumption of the classical dynamic lot-sizing model is that the time

varying demand is known in advance. Let T denote the length of the planning horizon

over which the demands, denoted by di, i ∈ {1,…,T}, should be satisfied. Under the

assumptions of the classical model, di represents the aggregate demand (placed by all

customers) that must be satisfied in period i ∈ {1,…,T}. If backlogging is not allowed

then di cannot be delivered earlier or later than i ∈ {1,…,T}. If backlogging is allowed,

di cannot be delivered earlier than i, but it can be delivered later at the expense of

backordering costs.

Like most mathematical models, the classical dynamic lot-sizing model is a

simplified paraphrase of what might actually happen in real life. The assumption that the

values of di, i ∈ {1,…,T}, are known in advance is applicable if supply contracts are

signed ahead of time designating deliveries for the next few periods (Bramel and

Simchi-Levi 1997, p. 165). However, under a typical supply contract, the customer offers

a grace period - we call it a demand time window - during which a particular demand can

be satisfied with no penalty. That is, associated with each di, the customer specifies an

3

earliest and a latest delivery time, denoted by Ei and Li, respectively, where Ei ≤ Li.

Hence, the interval [Ei, Li] represents the time window corresponding to di.

As the title suggests, this paper studies the dynamic lot-sizing problem with

demand time windows and provides polynomial time algorithms for computing its

solution. The following two cases are considered:

• Shortages are not allowed so that each di must be delivered during its

corresponding time window, i.e., no earlier than Ei and no later than Li.

• Backlogging is allowed, i.e., demand di cannot be delivered earlier than Ei, but

can be delivered later than Li at the expense of backordering costs.

The dynamic lot-sizing problem with demand time windows has important

applications in third party warehousing and vendor managed inventory practices. A

detailed discussion of practical motivations and a brief review of relevant literature are

presented in Section 2. The notation is introduced and some structural properties of the

problem are proved in Section 3. Sections 4 and 5 focus on developing polynomial time

algorithms for computing the optimal solution under different backordering assumptions.

If shortages are not allowed, the complexity of the proposed algorithm is O(T2), and if

backlogging is allowed, the complexity of the proposed algorithm is O(T3). Section 5

presents an interesting application in location planning which is related to the dynamic

lot-sizing model with demand time windows. Finally, a brief summary and our

concluding remarks are furnished in Section 6.

2. Problem Motivations and Related Literature

The dynamic lot-sizing problem has received a significant amount of academic

attention since it was first introduced more than four decades ago. The solution

technique, known as the Wagner-Whitin algorithm, has long been regarded as one of the

basic methods in production planning and inventory control. For a brief summary of

results and the history of this model, see the textbooks by Bramel and Simchi-Levi

(1997), Johnson and Montgomery (1974), and Silver et al., (1996). In the early years, due

4

to the limitations of computational technology, the Wagner-Whitin algorithm seemed to

require excessive computational and storage requirements. Hence, several heuristic

procedures and efficient implementation techniques have been investigated (e.g., see

Evans 1985, and Silver and Meal 1973).

In the last decade, three important papers, Aggarwal and Park (1993), Federgruen

and Tzur (1991), and Wagelmans et al. (1992), improved the time complexity for

obtaining an optimal solution from O(T2) to O(TlogT) for general problems, and to O(T)

for problems with a special cost structure. For interesting generalizations of Wagner and

Whitin’s model, see Bitran et al. (1984), Chen et al. (1994), Chen and Lee (1995), Chung

and Lin (1988), Florian et al. (1980), Van Hoesel and Wagelmans (1996, 1997), Lee

(1989), Lee and Denardo (1986), Maes and Van Wassenhove (1985), Swoveland (1975),

and Zangwill (1966).

The classical dynamic lot-sizing model is widely applicable in certain settings.

However, the more general problem with demand time windows also has a significant

practical importance. Our observations in real life applications attest that associated with

each demand, the customer allows a grace period for timely delivery. This grace period is

called a demand time window in this paper.

In recent years, time definite delivery (TDD) agreements have become a popular

component of supply contracts in third party warehousing (Çetinkaya and Lee 1999).

Under a TDD agreement, the inventory information at the downstream supply chain

member, e.g., the customer, is accessible to the supplier, e.g., the warehouse. Reviewing

the customer's inventory levels, the supplier makes decisions regarding the quantity and

timing of re-supply, but assures timely delivery via imposing a maximum holding time

(i.e., a time window) for each delivery. In a representative practical situation, a third

party logistics company provides warehousing and transportation for a manufacturer and

guarantees TDD for outbound deliveries to the customers. Such an arrangement is

particularly advantageous for effective vendor managed inventory where the vendor

assumes responsibility for managing inventories at retailers using advanced data retrieval

5

systems (Aviv and Federgruen 1998, Çetinkaya and Lee 1998, Parker 1996), and

guarantees timely delivery via satisfying demand time window constraints specified by

the retailers.

The concept of a demand time window has received attention in vehicle routing

research. Solomon and Desrosiers (1988) provide a detailed survey of the literature in this

area. For other recent papers in vehicle routing under delivery due date constraints, see

Bramel and Simchi-Levi (1997, Chapter 7), Desrochers et al. (1992), Kohl and Madsen

(1997), Fisher et al. (1997), and Kohl et al. (1998).

The concept of a demand time window has also been analyzed in the context of

job shop scheduling. Anger et al. (1986) study a single machine problem where the

objective is to maximize the number of jobs finished within a production due date

window. Other recent studies in scheduling of production due date constraints include

Cheng (1988), Kramer and Lee (1993, 1994), Liman and Ranaswamy (1994), Liman et

al. (1996), Weng and Venture (1994), and Venture and Weng (1996).

Although the concept of a demand time window has been analyzed in relation to

delivery due dates in vehicle routing and production due dates in scheduling, the problem

of interest in this paper has not been addressed in the previous literature. This paper

focuses on a generalization of the dynamic lot-sizing model where each demand is

characterized by a time window. That is, given the time varying demands characterized

by the earliest and latest due dates, the problem is about when and how much to order in

each period so that demands can be satisfied during their corresponding time windows

with a minimal cost.

In the next section we present our notation, and provide a mathematical

programming formulation of the dynamic lot-sizing problem with demand time windows.

This formulation is helpful in understanding the difference between the classical problem

and the more general problem with demand time windows. In the following section, we

also present some important structural properties of the problem with demand time

6

windows. These structural properties are useful for developing polynomial time

algorithms as we discuss later in the paper.

3. Notation and an Integer Programming Formulation of the Problem

In the classical dynamic lot-sizing model, demands that are due in a given period

can be aggregated and these aggregated demands can be indexed according to the time

period in which they are due. Consequently, the number of demands (aggregated

according to their due dates) during the planning horizon cannot exceed T. For the more

general problem with demand time windows, two demands with different latest due dates

cannot be aggregated, even if their earliest due dates are the same, and vice versa. In this

case, we can only aggregate those demands with the same earliest and latest due dates.

After aggregation, the number of demands, denoted by n, is restricted by the maximum

number of distinct demand time windows, i.e., the number of distinct [Ei, Li] intervals.

Therefore, for the more general case with time windows n ≤ T(T-1), whereas for the

classical problem n ≤ T. Considering this basic difference between the classical problem

and the more general problem with demand time windows, let us summarize the notation

that has been in use and introduce some additional notation.

Let t and T denote the period index and the length of planning horizon,

respectively. It follows that t ∈ {1,…,T}. Recall that n is the number of demands

throughout T. For each i ∈ {1,…,n}, di represents the quantity of demand i; Ei denotes

the earliest due date of demand i; and Li denotes the latest due date of demand i. For each

t ∈ {1,…,T}, let us also define the following:

• I t
+ denotes the on-hand inventory at the end of period t.

• I t
− denotes the amount backordered at the end of period t.

• Kt denotes the fixed cost of ordering/procurement (setup cost) in period t.

• pt denotes the unit ordering/procurement cost in t.

• ht denotes the unit holding cost in t.

• bt denotes the unit backlogging cost in t.

7

Under the cost assumptions of the problem under consideration, we have the

following:

• A holding cost is accrued if inventory is replenished earlier than Ei for satisfying

di.

• A backlogging cost is accrued if inventory is replenished later than Li for

satisfying di.

• No additional cost (other than ordering/procurement costs) is incurred, if di is

ordered and satisfied during [Ei, Li].

In order to model the effects of the above observations in a mathematical

programming formulation, we define the following variables:

• xt denotes the amount produced in period t.

• yt = 1 if xt > 0, and 0 otherwise.

• If t ∈ { Ei,…,Li }then dit is the amount of di that is scheduled to be satisfied in

period t; otherwise dit = 0.

• M is a very large number.

Using this notation, the dynamic lot-sizing problem with demand time windows can be

formulated as an integer programming (IP) problem as follows:

∑ +++
=

−+
T

t
tttttttt IbIhyKxpMin

1
)((1)

Subject to

)()(
1

11 IIdIIx tt

n

i
itttt

−+

=

−
−

+
− −=∑−−+ t =1,…,T, (2)

yMx tt ≤ t =1,…,T, (3)

dd i

Li

Eit
it =∑

=
i =1,…,n, (4)

0≥dit i =1,…,n; t = Ei,…,Li (5)

0=dit i =1,…,n; t = 1i,…,Ei-1 (6)

0=dit i =1,…,n; t = Li+1,…,Ti (7)

8

 }1,0{,0,0,0 ∈≥≥≥ −+ yIIx tttt t =1,…,T, (8)

000 == −+ II (9)

 It is worth noting that, in the above IP model, dit is a decision variable while di is

a given parameter. Naturally, the above formulation is an extension of the classical

dynamic lot-sizing model. Observe that equations (4)-(7) are additional constraints

representing the demand time window considerations. If Ei = Li for all i, then our IP

model reduces to the classical dynamic lot-sizing model.

The above IP formulation is useful in comparing the computational challenges of

the more general problem with demand time windows with the classical dynamic lot-

sizing problem. However, before we provide a discussion of this issue, let us analyze the

optimality properties of our problem and present a polynomial algorithm for the case

where backordering is not allowed. We will revisit the IP formulation shortly before we

conclude our discussion about the time complexity of the proposed algorithm for the case

where backordering is not allowed.

4. Optimality Properties

For the sake of simplicity, we momentarily assume that the unit

ordering/procurement cost is stationary, i.e., pt = p for all t. Later, in Section 7, we will

generalize our results to the case where there are no speculative motives to hold inventory

or to backorder. Under the assumption that the unit ordering/procurement cost is

stationary, the total ordering/procurement cost (not including the fixed cost of ordering,

i.e., the setup cost) can be ignored for the purpose of cost minimization. In this case, the

following optimality properties are satisfied.

Property 1: Regardless that backordering is allowed or not, there exists an optimal

solution in which demand is not split. That is, there exists an optimal policy such that,

for each demand the entire quantity is covered by the same replenishment order.

9

Proof: This property is true since there is no limit on the size of the replenishment quantity, i.e.,

there are no capacity constraints. Using this observation, it is easy to show that any optimal

solution (in which demand is split) can be transformed into an equivalent solution in which

demand is not split.

Property 2: Suppose that t1 < t2 < … < tr are the successive replenishment periods in an

optimal solution. Then the following observations are true.

i) If a replenishment period lies within the time window of a demand, then no

holding or backlogging costs are incurred for satisfying that demand.

ii) If tk-1 < Ei ≤ Li < tk, for some k = 1,2,…,r-1, then di is satisfied by using the

replenishment received in either tk-1 or tk depending on which of the following is

cheaper:

• to replenish in tk-1 and carry di units of inventory until period Ei, or

• to replenish in tk and backlog di units of demand until period Li.

iii) If Ei > tr, then di is satisfied using the replenishment order received in tr (in this

case a holding cost is incurred).

iv) If Li < t1, then di is satisfied using the replenishment order received in t1 (in this

case a backordering cost is incurred).

Proof: The proof is straightforward, and thus it is omitted.

Suppose that s and t are two periods such that 1 ≤ s ≤ t ≤ T, and let us define more

notation:

• D(s,t) denotes the demand with earliest due dates at s and latest due dates at t. We

assume that D(s,t) is given.

• Dt denotes the sum of all demands with latest due dates at t.

• A(s,t) denotes the sum of all demands with latest due dates within [s, t].

• B(s,t) denotes the sum of all demands with time windows located within [s, t],

and

• E(s,t) denotes the sum of all demands with earliest due dates at s and latest due

dates during [s ,t].

10

By definition, A(s,t) ≥ B(s,t) ≥ E(s,t). Observe that Dt and A(s,t) can indeed be calculated

in a straightforward way in O(T2) time. Also, note that B(s,t) = B(s+1,t) + E(s,t). Hence,

B(s,t), 1 ≤ s ≤ t ≤ T, can be computed in (overall) O(T2) time if all the E(s,t) values are

known. To compute the the E(s,t) values, we first have to sort the demands according to

the values Ei and Li. Using a bucket sort procedure, this can again be done in O(T2).

Next, we can compute E(s,t) using E(s,t) = E(s,t-1) + D(s,t). That is, we can find all

E(s,t) in O(T2) time. In turn, we can find Dt, A(s,t), B(s,t), and E(s,t) for all possible s and

t in O(T2) time.

Now, we develop dynamic programming algorithms for the two different cases of

the problem, i.e., Case 1: Shortages are not Allowed, and Case 2: Backordering is

Allowed. As we will see shortly, Properties 1 and 2 are useful in simplifying the

computational difficulty and decreasing the time complexity of our algorithms for both

cases.

5. Case 1: Shortages are not Allowed

If shortages are not allowed then the following property is a direct result of

Property 2.

Property 3: Suppose that t1 < t2 < … < tr are the consecutive replenishment periods in an

optimal solution. Then the replenishment order received in period tj is used to satisfy

those di with tj ≤ Li < tj+1.

Knowing that Property 3 holds, let C(s,t) denote the minimum cost of

buying/producing in period s to satisfy those di with s ≤ Li ≤ t. Also, let F(t) denote the

minimum cost of satisfying those di with Li ≤ t. It follows that

F(0) = 0,

F(t) = min{F(s-1) + C(s,t): 1 ≤ s ≤ t}, t =1,…,T, (10)

and the optimal value is given by F(T).

11

Observe that if the C(s,t) values have already been computed, then the

computational complexity of computing F(T) is O(T2). In this case, the remaining

question is how to compute C(s,t) efficiently. This can be achieved by using the

following recursive iterations. For t = T, T-1,…,1, let q ≤ t be the latest period with Li = q

for some di. Then, C(s,t) = 0 for q < s ≤ t and

C(q,t) = Kq . (11)

For 1 ≤ s < q, we have

C(s,t) = C(s+1,t) + Ks – Ks+1 + hsB(s+1,t). (12)

Here is the justification of (12). Given that we already calculated C(s+1,t), the

minimum cost of replenishing stock in period s+1 to satisfy those di with s+1 ≤ Li ≤ t,

C(s,t) should be the sum of

• C(s+1,t),

• the incremental fixed cost of replenishing stock in period s, i.e., Ks – Ks+1, and

• the cost of holding those di with time windows located within [s+1, t] , i.e.,

hsB(s+1,t).

Observe that regardless whether s or s+1 is the period of replenishment for satisfying

those di with s+1 ≤ Li ≤ t, we have I r
+ = B(r+1,t) for r = s+1,…,t. Furthermore, if s is the

period of replenishment for satisfying di with s ≤ Li ≤ t thenI s
+ = B(s+1,t) Thus, C(s,t)

should include the cost of holding B(s+1,t) during s.

Recall that the computational complexity of calculating B(s,t) for 1 ≤ s ≤ t ≤ T is

given by O(T2). Once the B(s,t) values have been calculated, for a given t (1 ≤ t ≤ T) we

can compute C(s,t) for 1 ≤ s ≤ t in O(T) time. Thus, the computational complexity of

calculating C(s,t) for 1 ≤ s ≤ t ≤ T is again given by O(T2). It now follows that the

computational complexity of our proposed algorithm is O(T2).

Remark 1: Recently, Federgruen and Tzur (1991), Wagelmans et al. (1992), and

Aggarwal and Park (1993) have developed O(T) algorithms to solve the classical

dynamic lot-sizing problems for which n ≤ T. One of the key ideas in those papers is to

12

transform the mathematical formulation of the classical dynamic lot-sizing model to an

equivalent formulation without holding costs. Unfortunately, for the more general

problem with demand time window considerations, equation (4) seems to make such a

transformation difficult. Hence, development of an O(T) algorithm also seems to be

difficult. However, this is not a real difficulty because, for the more general problem

with demand time window considerations, n may be of order T2. It follows that even

reading the data takes up to O(T2) time. Therefore, an optimal algorithm with complexity

O(T2) is in fact satisfactory.

6. Case 2: Backordering is Allowed

Now, we analyze the case where backordering is allowed. We note that, in the

following, the definition of C(s,t) is slightly different from Case 1. We also define

additional notation.

• For 1 ≤ s < t≤ T, C(s,t) denotes the minimum cost of replenishing in periods s

and t to satisfy those di with s < Li ≤ t. Here, we intentionally do not include the

cost of satisfying those di with s = Li in the definition since it will be considered in

the calculation of C(r,s) for some r < s.

• For 1 ≤ t ≤ T,),0(tC denotes the minimum cost of satisfying di with 0 < Li ≤ t

where t is the first replenishment period. Note that, by definition),0(tC includes a

fixed replenishment cost even if there is no actual demand to satisfy.

• For 1 ≤ s ≤ T,),(TsC denotes the minimum cost of satisfying di with s < Li ≤ T

where s is the last replenishment period.

• By definition, F(0) = 0. For 1 ≤ t ≤ T-1, we define F(t) as the minimum cost of

satisfying those di with Li ≤ t if t is the last period of replenishment.

• Also, we define F*(T) as the minimum cost of satisfying those di with Li ≤ T.

Hence, F*(T) denotes the optimal cost.

It follows that, for t =1,…,T-1

13





<−+
=

}:),()({

),0(
)(

tsKtsCsFMin

tC
MintF

s

Observe that, by definition, both F(s) and C(s,t) include the fixed cost of replenishing in

period s. Thus, in order to obtain an expression of F(t), we subtract Ks from F(s) + C(s,t).

Knowing F(t) for t =1,…,T-1, the optimal solution is obtained through the following

recursive equations:







<−+
<−+=

}:),()({

}:),()({)(*

TsKTsCsFMin

TsKTsCsFMinMinTF
s

s (13)

Also, note that T may or may not be a replenishment period. Therefore, either one of the

following two can happen: if F*(T) = }:),()({ TsKTsCsFMin s <−+ , then T is not a

replenishment period in an optimal solution, and otherwise T is a replenishment period.

If),0(tC ,),(TsC and C(s,t), 1 ≤ s ≤ t ≤ T have already been calculated then the

computational complexity of obtaining F*(T) is O(T2). Thus, the important question is

how to compute),0(tC ,),(TsC and C(s,t) for 1 ≤ s ≤ t ≤ T effectively. In order to answer

this question, in the remainder of this section we focus on providing efficient procedures

for computing all possible),0(tC ,),(TsC and C(s,t) values. We show that those

computations can be completed in O(T3) time, and hence the complexity of the proposed

algorithm is O(T3).

Computing),0(tC

 By definition, we simply have
)1,0(C = K1, (14)

and

)1,0(+tC =),0(tC + Kt+1 – Kt + btA(1,t), t =1,2,…,T-1. (15)

We also have I r
− = A(1,r-1) for r = 1,…,t-1 regardless whether t or t+1 is the first period

of replenishment for satisfying those di with 1 ≤ Li ≤ t. Furthermore, I t
− = A(1,t) if t+1 is

the first period of replenishment for satisfying those di with s ≤ Li ≤ t+1. Thus, the

14

difference between),0(tC and)1,0(+tC is given by the incremental fixed cost Kt+1 – Kt,

and the backordering cost btA(1,t). Hence, equation (15) is true.

If A(1,t), t =1,…,T, values have already been calculated then - given),0(tC -

)1,0(+tC can be computed in constant time. Thus, it takes O(T) time to calculate all

),0(tC .

Computing),(TsC

Observe that

),1(TTC − = KT-1 + hT-1B(T,T), (16)

and

),(TsC =),1(TsC + + Ks - Ks+1 + hsB(s+1,T), u = T-2,T-3,…,1. (17)

The justification of (17) is similar to that of (15). If B(s,T), s =1,…,T, values have already

been calculated then, given),1(TsC + ,),(TsC can be computed in constant time, and

thus, the computational complexity of obtaining all),(TsC is O(T).

Computing C(s,t)

Given two consecutive replenishment periods s and t, if s < Ei ≤ Li < t then we

need to know whether it is cheaper to satisfy di using the replenishment quantity received

in s or in t. If Ei = u, and Li = v, then the answer depends only on whether or not

hs + hs+1 +…+ hu-1 > bv + bv+1 + …+ bt-1. (18)

For each triple (u,v,t) with 1 < u ≤ v ≤ t, let us define q(u,v,t) as the latest period s

< u for which inequality (18) is satisfied. Suppose that j and t are two consecutive

replenishment periods such that j < u ≤ v ≤ t. If j ≤ q(u,v,t), then it is cheaper to satisfy di

by using the replenishment received in period t. Otherwise, it is cheaper to satisfy di by

15

using the replenishment received in period j. Because of monotonicity properties, we

can compute all possible q(u,v,t) in O(T3) time.

In order to find an efficient way for calculating C(s,t), we need to derive a

recursive relation between C(s,t) and C(s+1,t). In deriving a relationship between C(s,t)

and C(s+1,t), we need to analyze the changes in three cost items: setup cost, holding cost,

and backordering cost. That is, in deriving a recursive relation between C(s,t) and

C(s+1,t), we need to know the quantities of the demands that were previously ordered in

period s+1 (when s+1 and t are two consecutive replenishment periods) but now should

be ordered in period s (when s and t become two consecutive replenishment periods). In

order to keep track of this amount, we define the following:

• For u such that s < u < t, let S(s,u,t) be the set of all v with q(u,v,t) = s where u ≤ v

< t. Also let ∆1(s,u,t) = ∑
∈),,(

),(
tusSv

vuD . It follows that among B(s+2, t –1) (i.e.,

those di with s+2 ≤ Ei ≤ Li ≤ t –1), ∑ ∆
−

+=

1

2
1),,(

t

su
tus units ordered in s+1 (when s+1

and t are two consecutive replenishment periods) are ordered in t when s and t

become two consecutive replenishment periods.

• For v such that s < v < t, let T(s,v,t) be the set of all u with q(u,v,t) = s where s <u

≤ v. Also, let ∆2(s,v,t) = ∑
∈),,(

),(
tvsTu

vuD . It follows that among B(s+2, t –1),

∑ ∆
−

+=

1

2
2),,(

t

su
tvs units ordered in s+1 (when s+1 and t are two consecutive

replenishment periods) are ordered in t when s and t become two consecutive

replenishment periods. Thus, we have

∑ ∆
−

+=

1

2
1),,(

t

su
tus = ∑ ∆

−

+=

1

2
2),,(

t

sv
tvs .

It is worth noting that ∆1(s,u,t) and ∆2(s,v,t) are useful in deriving a recursive relationship

between C(s,t) and C(s+1,t). That is, ∆1(s,u,t) is used for calculating the holding cost

decrease when s and t become two consecutive replenishment periods instead of s+1 and

t. Similarly, ∆2(s,v,t) is used for calculating the backordering cost increase .

16

Given q(u,v,t) values, we can calculate ∆1(s,u,t) values as follows: Initialize with

all ∆1(s,u,t) set to zero. Consider the values q(u,v,t) one by one and add D(u,v) to

∆1(s,u,t) if q(u,v,t) = s. Using this method, it takes O(T3) time to calculate all ∆1(s,u,t).

Adopting a similar method, the computational complexity of obtaining the ∆2(s,v,t)

values is also O(T3).

Let I(s,t) denote the optimal level of on-hand inventory at the end of period s (i.e.

I(s,t) = I s
+), given that s and t are two consecutive replenishment periods for satisfying

those di with s+1 ≤ Li ≤ t. The I(s,t) values can be computed using the following

backward iterations:

I(s,t) = I(s+1,t) - ∑ ∆
−

+=

1

2
1),,(

t

su
tus + E(s+1,t-1) - ∆1(s,s+1,t)

 = I(s+1,t) - ∑ ∆
−

+=

1

1
1),,(

t

su
tus + E(s+1,t)

Regardless that “s and t” or “s+1 and t” are consecutive replenishment periods, it is

always cheaper to satisfy those di with Li = t by the replenishment in period t (i.e.,

without incurring any holding or backordering costs). The above recursion formula

reflects the fact that, if s and t are two consecutive replenishment periods then it is

cheaper to order for the∑ ∆
−

+=

1

2
1),,(

t

su
tus units in t. Furthermore, when s and t become two

consecutive replenishment periods then E(s+1,t-1) (i.e., all demands with earliest due

dates in s+1 and latest due date before t) should be carried in inventory at the end of

period s, except for the amount ∆1(s,s+1,t) (i.e., the part that can be replenished at a lower

cost in t instead of s).

Now, for 1≤ s ≤ t < T, let

h(s,t) = hs + hs+1 + … + ht,

and

b(s,t) = bs + bs+1 + … + bt.

Thus, for t = 2,…,T, we have

17

C(t-1, t) = Kt-1 + Kt , (19)

and for s = t-1,t-2,…,1, we have

C(s,t) = C(s+1, t) + Ks – Ks+1

- ∑ ∆−+
−

+=

1

2
1),,()1,1(

t

su
tusush + ∑ ∆−

−

+=

1

2
2),,()1,(

t

sv
tustvb

+ hsI(s,t)

+ b(s+1,t-1)∆2(s,s+1,t) (20)

The correctness of the above formula follows from the following observations:

i) As we have mentioned earlier, among B(s+2,t-1), ∑ ∆
−

+=

1

2
1),,(

t

su
tus units that are

replenished in s+1 when s+1 and t are two consecutive replenishment periods,

should be replenished in period t when s and t becomes two consecutive

replenishment periods. Therefore, in computing C(s,t) we subtract the

corresponding holding cost of ∑ ∆−+
−

+=

1

2
1),,()1,1(

t

su
tusush from C(s+1, t), but we do

add a backordering cost of∑ ∆−
−

+=

1

2
2),,()1,(

t

sv
tustvb . Recall that ∑ ∆

−

+=

1

2
1),,(

t

su
tus =

∑ ∆
−

+=

1

2
2),,(

t

su
tvs .

ii) I(s,t) is the on hand inventory at the end of period s when s and t are two

consecutive replenishment periods, and hence we include a holding cost of hsI(s,t)

in calculating C(s,t).

iii) If s+1 and t are two consecutive replenishment periods, then it is cheaper to

satisfy E(s+1, t-1) (i.e., those di with Ei = s+1, and s+1 ≤ Li ≤ t –1) using the

replenishment received in s+1 (without incurring any holding or backordering

costs). However, among E(s+1, t-1), ∆2(s,s+1,t) is the amount to be produced in

period t when s and t become two consecutive replenishment periods. Therefore,

in computing C(s,t), we consider a backordering cost of b(s+1,t-1)∆2(s,s+1,v).

18

Since it takes O(T3) to find all ∆1(s,u,t) and ∆2(s,v,t) values, it also takes O(T3) to

compute C(s,t) for 1 ≤ s ≤ t ≤ T. Hence, the complexity of the algorithm for computing

F(T) is O(T3).

7. Extension to General Case

In this section, we generalize our results to the case pt ≥ pt+1 and pt+ bt ≥ pt-1 for all

t. Observe that pt ≥ pt+1 implies pt+ ht ≥ pt+1, and thus our analysis concentrates on a case

where there are no speculative motives to hold inventory or to backorder. Under these

assumptions, the algorithms developed in Section 5 and 6 can be generalized as

illustrated below. Since the unit ordering/procurement costs are no longer stationary, we

now consider a time dependent ordering/procurement cost function in our recursive

calculations. Thus, we replace equations (11) – (12) and (14) - (20) by the following

equations.

C(q,t) = Kq + pqDq (11)′

C(s,t) = C(s+1,t) + Ks – Ks+1 + (ps - ps+1)A(s+1, t) + psDs + hsB(s+1,t). (12)′

=)1,0(C K1 + p1D1 (14)′

)1,0(+tC =),0(tC + Kt+1 – Kt + (pt+1 - pt)A(1,t) + pt+1Dt+1+ btA(1,t) (15)′

),1(TTC − = KT-1 + pT-1A(T,T) + hT-1B(T,T) (16)′

),(TsC =),1(TsC + + Ks - Ks+1 + (ps - ps+1)A(s+2, T) + psDs+1 + hsB(s+1,T) (17)′

ps + hs + hs+1 +…+ hu-1 > bv + bv+1 + …+ bt-1 + pt (18)′

C(t-1, t) = Kt-1 + Kt + ptA(t,t) (19)′

C(s,t) = C(s+1, t) + Ks – Ks+1

- ∑ ∆−+
−

+=

1

2
1),,()1,1(

t

su
tusush + ∑ ∆−

−

+=

1

2
2),,()1,(

t

sv
tvstvb + (pt - ps+1) ∑ ∆

−

+=

1

2
1),,(

t

su
tus

+ hsI(s,t)

+ ps (A(s+1,t)-B(s+1,t-1)) – ps+1(A(s+2,t)-B(s+2,t-1)).

+ b(s+1,t-1)∆2(s,s+1,t) + pt∆2(s,s+1,t) (20)′

19

Based on the cost assumptions of the problem of interest, equations (11)′-(12)′

and (14)′-(19)′ are straightforward to justify. The following observations provide a

justification for equation (20)′:

i) As we have mentioned earlier, if s and t are two consecutive replenishment

periods, ∑ ∆
−

+=

1

2
1),,(

t

su
tus units ordered in s+1 previously (when s+1 and t are two

consecutive replenishment periods) are ordered in t. Therefore, in computing

C(s,t), we consider the incremental cost of ordering/buying ∑ ∆
−

+=

1

2
1),,(

t

su
tus in period

t. This cost is given by (pt - ps+1) ∑ ∆
−

+=

1

2
1),,(

t

su
tus .

ii) A(s+2,t-1) - B(s+2,t-1) is the sum of those di with Ei ≤ s +1 and s+2 ≤ Li ≤ t –1.

Clearly, if s+1 and t are two consecutive replenishment periods, then it is cheaper

to satisfy A(s+2,t-1) - B(s+2,t-1) by using the replenishment quantity in received

in s+1. In this case, ps+1[A(s+2,t)-B(s+2,t-1)] represents the corresponding

ordering/procurement cost (excluding the fixed cost). Similarly, A(s+1,t-1)-

B(s+1,t-1) is the sum of those di with Ei ≤ s and s+1 ≤ Li ≤ t –1. If s and t are two

consecutive replenishment periods, it is cheaper to satisfy this quantity through a

replenishment decision in s, and the corresponding ordering/procurement cost is

ps[A(s+1,t)-B(s+1,t-1)] (excluding the fixed cost).

iii) Recall that, if s+1 and t are two consecutive replenishment periods then it is

cheaper to satisfy E(s+1,t-1) (i.e., those di with Ei = s+1, and s+1 ≤ Li ≤ t-1) using

the replenishment quantity received in s+1 (without incurring any hold or

backlogging costs). However, among E(s+1,t-1), ∆2(s,s+1,t) is the amount to be

replenished in period t when s and t become two consecutive replenishment

periods. The cost of replenishing ∆2(s,s+1,t) units (excluding the fixed cost) in

s+1 and t are ps+1∆2(s,s+1,t) and pt∆2(s,s+1,t), respectively. Note that

ps+1∆2(s,s+1,t) is already included in ps+1[A(s+2,t)-B(s+2,t-1)]. Hence, we need

to include pt∆2(s,s+1,t) in Equation (20)′.

20

It is left to the reader to verify that the running time of the algorithm is still O(T3)

in the backlogging case and O(T2) if backlogging is not allowed. Finally, we note that for

the backlogging case, the time bound can also be achieved when pt+ht ≥ pt+1 ≥ pt for all t,

because reversing the time axis this case can be transformed into the case discussed

above.

8. Another Application Area and Future Research

If the unit holding and backordering cost is very high, or equivalently, ordering

before the earliest due date or after the latest due date is not allowed, then each demand

needs to be ordered within its demand time window. It is also interesting to observe that

this specific case of our problem is equivalent to the following location problem. “What

will be the minimum cost of installing facilities that can serve all one-dimensional

customers where customer i is located at (Ei + Li)/2 and can only be served by a facility

within a distance (Li - Ei)/2?” (Francis et al., 1992) Therefore, the dynamic programming

algorithm described above is also applicable in the context of location planning.

Some important research directions in dynamic lot-sizing with demand time

windows include consideration of capacity constraints and the incorporation of inbound

and outbound transportation costs.

References

Aggarwal, A. and J. K. Park, “Improved Algorithms for Economic Lot-Size Problems,”
Operations Research, 41, (1993), pp. 549-571.

Anger, F. D., C.-Y. Lee, and L. A. Martin-Vega, “Single Machine Scheduling with Tight
Windows,” Research Report No. 86-16, Industrial and Systems Engineering
Department, University of Florida, 1986.

Aviv, Y. and A. Federgruen, “The Operational Benefits of Information Sharing and
Vendor Managed Inventory Programs,” Technical Report, Industrial Engineering
and Operations Research Department, Columbia University, 1998.

Bramel, J. and D. Simchi-Levi, The Logic of Logistics, (1997), Springer, New York, N.Y.
Bitran, G. R., T. L. Magnanti, and H. H. Yanasse, “Approximation Methods for the

Uncapacitated Dynamic Lot-Size Problem,” Management Science, 30, (1984), pp.
1121-1140.

Çetinkaya, S. and C.-Y. Lee, “Stock Replenishment and Shipment Scheduling for Vendor
Managed Inventory Systems,” Technical Report, Industrial Engineering

21

Department, Texas A&M University, 1998 (to appear in Management Science,
accepted July 1999).

Çetinkaya, S. and C.-Y. Lee, “Static Demand Models for Coordinating Inventory and
Outbound Transportation Decisions at a Third Party Warehouse,” Technical
Report, Industrial Engineering Department, Texas A&M University, 1999.

Chen, H.-D. and C.-Y. Lee, “A Simple Algorithm for the Error Bound of the Dynamic
Lot-Size Model Allowing Speculative Motive,” IIE Transactions, 27, (1995), pp.
683-388.

Chen, H.-D., D. W. Hearn, and C.-Y. Lee, “A New Dynamic Programming Algorithm for
the Single Item Capacitated Dynamic Lot-Size Model,” Journal of Global
Optimization, 4, (1994), pp. 285-300.

Cheng, T. C. E., “Optimal Common Due Date with Limited Completion Time
Deviation,” Computers and Operations Research, 15 (1988), pp. 91-96.

Chung, C. S. and C. H. M. Lin, “An O(T2) Algorithm for the NI/G/NI/ND Capaciated
Lot-Size Problem,” Management Science, 34, (1988), pp. 420-426.

Desrochers, M., J. Desrosiers, and M. Solomon, “A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows,” Operations Research, 40,
(1992), pp. 342-254.

Evans, J.R., "An Efficient Implementation of the Wagner-Whitin Algorithm for Dynamic
Lot-Sizing," Journal of Operations Management, 5, (1985), pp. 229-235.

Federgruen, A. and M. Tzur, “A Simple Forward Algorithm to Solve General Dynamic
Lot-Sizing Models with n Periods in O(n log n) or O(n) Time,” Management
Science, 37, (1991), pp. 909-925.

Fisher, M. L., K. O. Jornsten, and O. B. G. Madsen, “Vehicle Routing with Time
Windows: Two Optimization Algorithms,” Operations Research, 45, (1997), pp.
488-492.

Florian, M., J. K. Lenstra, and A. H. G. Rinnooy Kan, “Deterministic Production
Planning Algorithm and Complexity,” Management Science, 26, (1980), pp. 669-
679.

Francis, R.L., L. F. McGinnis and J.A. White, Facility Layout and Location: An
analytical Approach, second edition, Prentice-Hall, Inc., Englewood Cliffs, N.J.
1992.

Gaither, N., “An Improved Lot-Sizing Model for MRP Systems,” Production and
Inventory Management, 24-3, (1983), pp. 10-19.

Johnson, L. A. and D. C. Montgomery, Operations Research in Production Planning,
Scheduling, and Inventory Control, (1974), John Wiley and Sons, New York,
N.Y.

Kohl, N. and O. B. G. Madsen, “An Optimization Algorithm for the Vehicle Routing
Problem with Time Windows Based on Largangian Relaxation,” Operations
Research, 45, (1997), pp. 395-406.

Kohl, N., J. Desrosiers, O. B. J. Madsen, M. M. Solomon, and F. Soumis, “k-Path Cuts
for the Vehicle Routing Problem with Time Windows,” (1998), to appear in
Transportation Science.

Kraemer, F. and C.-Y. Lee, “Common Due Window Scheduling,” Production and
Operations Management, 2, (1993), pp. 262-275.

22

Kraemer, F. and C.-Y. Lee, “Due Window Scheduling for Parallel Machines,”
Mathematical and Computer Modelling, Special Issue on Scheduling: Theory and
Applications, 20, (1994), pp. 69-89.

Lee, C.-Y. and E. V. Denardo, “Rolling Planning Horizon: Error Bounds for the
Dynamic Lot-Size Model,” Mathematics of Operations Research, 11, (1986), pp.
423-432.

Lee, C.-Y., “A Solution to the Multiple Set-Up Problem with Dynamic Demand,” IIE
Transactions, 21, (1989), pp. 266-270.

Liman, S. D. and S. Ranaswamy, “Earliness-Tardiness Scheduling Problem with a
Common Delivery Window,” Operations Research Letters, 15, (1994), pp. 195-
203.

Liman, S. D., S. S. Panwalkar, and S. Thongmee, “Determination of Common Due
Window Location in a Single Machine Scheduling Problem,” European Journal
of Operational Research, 93, (1996), pp. 68-74.

Maes, J. and L. N. Van Wassenhove, “A Simple Heurisitc for the Multi-Item Single
Level Capacitated Lot-Sizing Problem,” Operations Research Letters, 4, (1985),
pp. 265-273.

Parker, K., “Demand Management and Beyond,” Manufacturing Systems, June, (1996),
pp. 2A-14A.

Shaw, D. X. and A. P. M. Wagelmans, “An Algorithm for Single-Item Capacitated
Economic Lot-Sizing with Piecewise Linear Production Costs and General
Holding Costs,” Management Science, 44, (1998), pp. 831-838.

Silver, E. A. and H. E. Meal, “A Heuristic for Selecting Lot-Size Quantities for the Case
of a Deterministic Time Varying Demand Rate and Discrete Opportunities for
Replenishment,” Production and Inventory Management, 26, (1980), pp. 669-679.

Silver, E. A., D. F. Pyke, and R. Peterson, Inventory Management and Production
Planning and Scheduling, 3rd Edition, (1998), John Wiley & Sons, New York,
N.Y.

Solomon, M. M. and J. Desrosiers, “Time Window Constrained Routing and Scheduling
Problems: A Survey,” Transportation Science, 22, (1988), pp. 1-13.

Swoveland, C. “A Deterministic Multi-Period Production Planning Model with Piece-
wise Concave Production and Holding-Backlogging Costs,” Management
Science, 21, (1975), pp. 1007-1013.

Van Hoesel, C. P. M. and A. P. M. Wagelmans, “An O(T3) Algorithm for the Economic
Lot-Sizing Problem with Constant Capacities,” Management Science, 42, (1996),
pp. 142-150.

Van Hoesel, C. P. M. and A. P. M. Wagelmans, “Fully Polynomial Approximation
Schemes for Single-Item Capacitated Economic Lot-Sizing Problems,” Report
No. 9735/A, Erasmus University Rotterdam, 1997.

M. X. Ventura and J. A. Weng, “Scheduling about a large Common Due Date with
Tolerance to Minimize Mean Absolute Deviation of Completion Times,” Naval
Research Logistics, 41, (1994), pp. 843-851.

M. X. Weng and J. A. Ventura, “A Note on Common Due Window Scheduling”
Production and Operations Management, 5, (1996), pp. 194-200.

23

Wagelmans, A. P. M., S. Van Hoesel, and A. Kolen, “Economic Lot-Sizing: an O(nlogn)-
Algorithm that Runs in Linear Time in the Wagner-Whitin Case,” Operations
Research, 40, (1992), pp. S145-S156.

Wagner, H. M. and T. M. Whitin, “Dynamic Version of the Economic Lot-Size Model,”
Mangement Science, 5-1, (1958), pp. 89-96.

Zangwill, W. I., “A Deterministic Multi-Period Production Scheduling Model with
Backlogging,” Management Science, 13, (1966), pp. 105-119.

