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Abstract

This paper explores the performance of coupled development tasks subject to a deadline constraint

by proposing a performance generation model (PGM). The goal of the PGM is to develop insights

about optimal strategies (i.e. sequential, concurrent, or overlapped) to manage coupled design tasks

that share fixed amount of engineering resources subject to performance and deadline constraints.

Model analysis characterizes the solution space for the coupled development problem. The solution

space is used to explore the generation of product performance and the associated dynamic forces

affecting concurrent development practices. We use these forces to explain conditions under which

concurrency is a desirable strategy.

(Product Development, Performance Generation, Design Process Modeling, Concurrent

Engineering, Sequential Engineering, Overlapping, Component / System Performance)

1. Introduction

Product development (PD) is the process of transforming customer needs into an

economically viable product that satisfies those needs. PD research spans many different disciplines

ranging from organizational science (Brown and Eisenhardt, 1995), marketing (Wind and Mahajan,

1997), engineering (Finger and Dixon, 1989) to operations management (Smith and Morrow, 1999;

Krishnan and Ulrich, 1999). Recent management science PD research has focused on approaches to

reduce lead time, cut costs, and improve product quality. Concurrent engineering (CE) is one such

approach (Wheelwright and Clark, 1992; Griffin, 1996, Terwiesch and Loch, 1999). However, the

risks associated with CE such as increased communication overhead (Ha and Porteus, 1995; Loch

and Terwiesch, 1998) or excessive iterations (Krishnan et al., 1997; Smith and Eppinger, 1997a,b)
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can result in increased development lead time and cost (AitSahlia et al., 1995). Consequently, a

growing body of CE management models is built to provide insights into the management of

information, communication, and dependencies among development activities.

CE can be used to either (a) reduce the development time, without explicit consideration of

product quality/performance issues, or (b) increase the product quality/performance for fixed

development time. In this paper, we propose a model for improving the understanding of the latter;

namely, concurrent product development with fixed development times. The goal of this paper is to

provide insights about optimal strategies to manage coupled tasks that share a fixed amount of

engineering resources subject to performance and deadline constraints. Tasks are defined as coupled

when they depend on each other for input information.

The model developed in this paper is called the performance generation model (PGM) and is

shown in Figure 1. It represents a hypothetical PD project consisting of two, and possibly

overlapped, design tasks. These tasks (A and B) involve upstream and downstream development in

the design cycle respectively. The model tracks the degree to which each task adds to the overall

system performance in response to the effort devoted to it. Within the context of our model,

performance is defined as a measure of the product's fidelity with respect to its requirements. Two

examples of fidelity can be the clockspeed of a microprocessor and the number of bugs eliminated

from a new software release. We assume a simple production function for creating performance: the

more time spent working on a task, the higher the level of performance that can be achieved;

however, a deadline for the project has to be met. We assume that each task contributes to the

overall performance at a different rate and at the same time deteriorates the performance of the

other coupled task. Then, the core tradeoff is to improve the overall performance by ensuring that

neither task creates an unacceptable level of performance penalty for the other task.

Thus, the PGM extends prior concurrent engineering models in general, and overlapping

models in particular, in two ways. First, we address the problem of improving PD performance

subject to an imposed deadline. By explicitly accounting for deadlines, the model facilitates a better

representation of many real development processes where the team is not only challenged with the
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task of developing a new product, but also with meeting the deadline. The deadline can be the

launch date of a new automobile model (2001 Ford Explorer), the announced software release (MS

Office 2000) or an intermediate milestone before production / release (a stage-gate review as

described by Cooper (1993)). A second contribution of the PGM is explicit segregation of PD

performance into component and system generation in a manner similar to Hoedemaker et al.

(1999). Component performance refers to the contribution of individual tasks, without regard to the

coupling effects. System performance measurements allude to the overall performance including the

coupling effects. The model yields two main results:

1. We determine the optimal execution strategy for the coupled development tasks that will

maximize the overall product performance.

2. We characterize the solution space for coupled development projects. The coupling is

manifested by differing rates of component and system performance accrual. These rates are

used to explore the solution space in terms of dynamic forces affecting concurrent engineering

practices, and to derive conditions when concurrency is a desirable strategy.

The rest of the paper proceeds as follows. In the next section, we provide a taxonomy for CE

decision problems. Then, we discuss major management science CE models and contrast them

against our proposed model. In sections 3 and 4, we introduce the PGM assumptions and

formulation, and derive theorems governing the model behavior. In section 5, we characterize the

optimal policies for product development management in a deadline environment. In section 6, we

provide an example from a software development program to illustrate how the performance

generation parameters are assessed. Managerial insights gained by studying this model are

presented in section 7. Finally, section 8 presents our conclusion and sets the stage for future

extensions to the base PGM.

2. Related Literature

In this section, we propose taxonomy for CE product development decisions based on

information dependencies and development strategies as shown in Table 1. The information
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dependencies between development tasks constitute the information structure view of the

development process. Development activities are classified into three types (Eppinger et al., 1994):

dependent, interdependent, and coupled. Two tasks are said to be dependent if one task depends on

the other for input information. On the other hand, if both tasks depend on each other for input

information, then the two tasks are coupled. Finally, if there is no information dependency between

both tasks, then they are independent. The execution strategy view of the development process

determines the development process schedule. Regardless of the information structure, two

development tasks can be executed sequentially, overlapped, or concurrently (Yassine et al., 1999).

The sequential execution of two development tasks requires the upstream task to be completely

finished before the downstream task can be started. In the overlapped execution strategy, the

upstream task is scheduled to start first and the downstream task starts before the completion of the

upstream task. Finally, the simultaneous start and finish of both tasks characterize the concurrent

execution strategy. Each box within this taxonomy can accommodate models that either aim to

minimize the overall development time or maximize the performance subject to a fixed dead line. In

the rest of this section, we discuss some of the models in this taxonomy that are relevant to our

approach.

Smith and Eppinger (1 997a, 1997b) present two analytical extensions to the design structure

matrix method (Eppinger et al., 1994). In the first model, they use linear systems theory to analyze

and identify controlling features of iteration in a coupled development process. The ordering of

tasks is manipulated and an expected duration for each task sequence is calculated. While both of

these models are useful in characterizing the two extreme cases of product development (i.e.

parallel and sequential iteration) for any number of tasks, they do not model intermediate scenarios

where overlapping might be more appropriate. The PGM, on the other hand, considers the whole

range of execution strategies for the development process (parallel, sequential, and overlapping) and

provides the optimal execution configuration.

Krishnan et al. (1997) construct a model for overlapping nominally sequential activities in

order to reduce development lead time. In their model, the downstream activity begins with
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preliminary upstream information and incorporates subsequent upstream design changes in future

iterations, They present a framework to determine how to disaggregate design information and

overlap consecutive stages based on the evolution and sensitivity properties of the information

exchanged. In contrast, our model assumes a continuous (i.e. without interruption) execution of

each task, while Krishnan et al. allow for interruptions of the downstream task. In addition, while

we seek to maximize product performance, Krishnan et al. Utilize an objective function to minimize

lead time.

Carrascosa et al. (1998) build a Markovian model that explores varying degrees of overlap

between development tasks while attempting to minimize the development time. PGM differs from

their formulation in two ways: it models performance maximization under a deadline constraint and

it segregates component and system performance generation.

Ha and Porteus (1995) determine the optimal number of design reviews within a coupled

development process that minimizes the total lead time. Following this line of work, Loch and

Terwiesch (1998) argue that the gain from overlapping activities must be weighed against the delay

from downstream rework. This. tradeoff is formulated as an optimization problem to determine the

optimal overlapping magnitude and communication policy. In addition to the issue of deadline

constraint, both of these models differ from ours in another important respect. They are concerned

with the frequency of information transfer within a coupled development process that will minimize

lead time, while our model assumes perfect communication and is concerned with the choice of the

execution strategy which maximizes product performance.

Ahmadi and Wang (1999) develop a model that optimally places design reviews along the

development process in order to minimize development risk. In addition, the model provides

optimal resource allocation policies for each design stage. The PGM is similar to Ahmadi et al. in

the way they set the development speed in each stage in order to minimize stage risk. Also, they

address the question of allocating resources for each of the development stages. However, they

neither allow for overlapping nor consider deadlines in their formulation, both of which are

included in our model.
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Cohen et al. (1996) examine the tradeoff between product performance and profit as a

function of a fixed sales window. More time spent on improving product development performance

results in lost sales due to fixed sales window. On the other hand, if the product is released

immaturely, then profit is lost due to unsatisfied customers. The model analysis yields an optimal

development time that maximizes profit. The Cohen et al. model is similar to the PGM in two

respects. First, they include the concept of deadlines; however, their focus is on a deadline imposed

by a marketing window and not a fixed launch date. Second, they utilize a similar production

function for performance generation. However, their model ignores coupling and overlapping

between development tasks.

There are very few analytical models that explore sequencing strategies for tasks that have

an independent information structure. Overlapping leads to interesting problems, if one assumes

that resources are fungible and shared between independent tasks. Repenning (1999) has developed

a System Dynamics simulation model to address resource allocation between two separate projects,

while assuming a concurrent execution strategy.

3. Performance Generation Model (PGM) Formulation

Consider a hypothetical PD project comprising two coupled tasksI as shown in Figure 1.

There are two decision variables: SA and SB, the amount of time spent by task A and task B working

independently, respectively. The development project deadline is assumed to be time T. Thus, the

amount of time spent while both tasks work concurrently is (T - SA - SB). The goal of the model is

to maximize the sum of the performance accumulated by both tasks at time T.

The performance contribution per activity is analogous to a Cobb-Douglas production

function (Varian, 1992). The formulation assumes that the performance of each task improves only

by conducting work on it. The coupling or interdependency is modeled by performance

deterioration in one task due to the rework generated by the other task. For instance, as task A

conducts some work to improve its own performance, it will generate a fraction (RA) of that work as

rework for task B, deteriorating B's performance. Similarly, work on task B degrades task A's
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performance by a fraction RB. We assume that working on a task improves its own performance and

it cannot produce more damage to other tasks (by deteriorating their performance) than the amount

gained in its own performance. Then, the performance deterioration is a fraction less than unity (O <

RA, RB < 1). This assumption is analogous to the rework fractions described in the WTM model

(Smith and Eppinger, 1997a).

The relationship between work and its contribution to performance, assuming linear return

on labor, is described in Equations 1 and 2:

XA = L ac - R XB, j .......... (, ................... (1)

Bj = L(1 - )aBj - R, xjj ................................. (2)
Where:

A and B denote the tasks
j denotes the region number/index, j = 1,2,3. Regions are described as follows:

j = 1 means that task A is working only
j = 2 means that both tasks (A and B) are working concurrently
j = 3 means that task B is working only

RA (O < RA < 1) is the penalty of task A on task B.
RB (0 < RB < 1) is the penalty of task B on task A.
L is the maximum amount of available labor resources for the development project2 . The
unit for L is dollars ($)/time.

XAj (t) and XiB (t) are the performance achieved by tasks A and B in region j at time t.

XAi and XBj represent the rate of performance improvement for tasks A and B respectively.

That is, XAi = and - dB
dt B dt

4 is the fraction of L used for working on task A3.
forj =1, Q = 1
forj = 2, 0< <1
for j =3, = 0

aAj and aBj are defined as performance generation coefficients. Unit for a is performance/$. In
other words, a is a measure of the productivity for the labor resources devoted to the task.

Notice that since = 1 in region 1 and = in region 3, then the performance contribution

from aBI and aA3 is irrelevant to the solution of the problem. Hence, there are only 7 input
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parameters; namely, aA1, CaA2, aB2, (lB3, 4, RA, and RB. The following table summarizes the

performance generation contribution of upstream and downstream tasks at system level.

Region (j) 1 2 3
Bounds on time tOt <SA SA t < (T-SB) (T-SB) t < T
Performance of A CCAI t [OCA2-(1 -)CaB2RB]t -aB3RB t

Performance of B -aA1 RA t [(1-)caB2-pcaRA]t (aB3 t

Overall (XAI(1-RA) t [aA2(1-RA)+ aB2(1-) )(1-RB)]t aB3 (1-RB) t
Performance

Table 2: Summary of performance generation functions by region

Support for such performance production models is available in the literature. The following

quotation taken from Clark and Fujimoto (1991, pg. 124) best describes the model of work versus

performance improvement for a product designer:

"The stereotypical product engineer is a perfectionist in product functions who changes

designs for better performance as long as the schedule permits, ... "

Furthermore, Cohen et al. (1996) used a similar function to describe performance as a function of

development time spent. They have analyzed data from two different industries and confirmed the

validity of a production-like performance function. Ahmadi and Wang (1999) have also used a

similar function relating stage confidence to the number of engineering hours spent.

The state equations of the system (Equations 1 and 2) are rewritten as follows:

*AL~[ ° Aj~v~l 02 [R 0 5X, Vi j .......... (3a)
0 eBj 0 ajl XRA o XBj

[~Ai ] = LA a 0 RqS]-JRO RB]L a VA..........j
Rearranging yields, XAil L aA - Ral j ........... (3b)

XBj 1-RAR B -RAaA aijI -]

where, [ R - RBaB] is called the performance generation matrix.
RAaAj aBj

Finally, the overall product performance for a given region j is:

I X4 J (t) + XBj (t) dt, Vj ................................(4)
(. q)iati _ L
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Where (tj)initial and (tj)final are the start and finish times for region j.

Rewriting Equation (4) over the whole development process (i.e. from time 0 to T) results in:

XAj (t) = L[OaAj - (1 - )RBtj + CAj ..................... (5)

XBj (t) = L[(l - -)B R - CRArA ]t + CBj ......... ...... (6)

The constants c are determined by the boundary conditions of the three different regions 0(=1,2,3) 4.

This yields the following expressions for XA3(T) and XB3(T), the performance of tasks A and B by

time T:

XA3(T) = L{aAlSA + [aA2 - (1-)RBaB2]1 (T-SA-SB) + (-RBCB3)SB} ............ (7)

XB3(T) = L{-RAaAISA + [(1-)a(XB2 - 4RACtA2](T-SA-SB) + aB3 SB} .............. (8)

The objective function Max. {XA3(T) + XB3(T)} becomes:

MaxL{CaA(1(-RA) SA + [aA2(1-RA)+(1-)a2(1-RB)] (T-SA-SB) + aB3(1-RB) SB} ....(9)

s.t. XAI,(O) 0 ........................................... (9a)

XB (O) = .......................................... (9b)
XA3(T) 0 . ........................................... (9c)

XB3(T) > 0 . ......................................... (9d)
SA+SB T . ........................................... (9e)

The objective function (9) maximizes the overall project performance. Constraints (9a) and

(9b) are the initial starting conditions of the development process where no performance has been

accumulated by either task. The non-negativity constraints (9c) and (9d) guarantee that an optimal

solution by the deadline (T) will only include situations where both tasks complete all required

rework. If either constraint is binding at the optimal solution, then the task has performed just

enough work to raise its performance to the minimum acceptable level of zero5 . As an example,

consider a weight or cost reduction project, then we will be minimizing the performance instead

where zero performance means that we cannot have a feasible solution where the cost or weight is

negative. Finally, constraint (9e) reflects the project deadline.
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4. Analysis of the Optimal Policies

Instead of exploring the gradients of the objective function, we choose to present a sequence

of arguments that exploit the properties of the 7-tuple input parameters (Al, A2, aB2, 2, aB3, , RA,

and RB). In doing so, we derive the expressions for the optimal values of the decision variables, SA,

and SB., in terms of the 7-tuple input parameters. The proof proceeds in the following sequence. We

first derive the optimal values for SA and SB for all possible execution strategies. Then we derive

conditions under which each of these strategies is optimal. We complete our proof by showing that

these conditions cover an exhaustive map of all the values that the input parameters can assume.

These optimal choices map into a solution space representing the selection of sequential,

overlapping, or concurrent development strategies, as shown in the legend of Figure 3.

In the rest of this section, we will state all the lemmas, theorems, and corollaries. All proofs

are provided in the Appendix.

Lemma 1: If RA,RB <1, then overall project performance is a non-decreasing function in time.

Theorem 1: When one schedules two coupled tasks with respect to a non-decreasing performance

measure; it is not necessary to consider schedules which involve idle time.

Lemma 26: (the See-Saw rule): Given a pair of adjusted performance generation coefficients

[CaAj(l-RA)] and [(l-b)aBj(-RB)], it is always optimal to perform work on the task with the largest

adjusted performance generation coefficient, if constraint (9c and 9d) are not violated.

Theorem 2: If the sequential strategy is optimal, the corresponding solution for S*A is bounded by:

°aB3 T < S*A < B3 T ........................ ( 10)
aA1 + aB3 aARA + B3
RB

Corollary 2.1: If aA1 < aB3, then S*A takes the lower bound in (10).

Corollary 2.2: If aAl > aB3, then S*A takes the upper bound in (10).

Corollary 2.3: If aAI = aB3, then S*A takes any value between the bounds in (10).

Theorem 3: If the overlap strategy is optimal and S*A = 0, then the corresponding solution for S*B is

RAaA2 - (1 - ) 2 T <S'B <
2 -(1- )RBaB2 ... (11)

aB 3 + RAOaCA2 - (1 - q)aB2 RBaB3 + rbaA2 - (1 - )RBaB2
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Theorem 4: If the overlap strategy is optimal and S*B =0, then the corresponding solution for S*A is

bounded by: (l-A)RBaB2 -a(aA 2 T SA - (l-V))aB - RAeraA 2 T......(12)
aAI + (- )RBaB 2 -OaA 2 aA R + (1- )aBr2 - RA0ecA 2

In order to explore the optimality conditions, we rewrite Equations (7) and (8) combined

with constraints (9c) and (9d) while collecting terms for the decision variables SA and SB, we arrive

at the following form:
Fl SA - F 2 SB > XA3(T)/L - B1 ....................................... (13)
F 3 SA - F 4 SB > XB3(T)/L - B2 ...................................... (14)

Where: F = (XaA - CA2 + (1-)RBsB2
F2 = OaA2 - (1-)RBaB2 + RBaB3

F3 = aB3 - (1-+)CXB2 + 4RAaA2
F4 = RAA1 + (1-)CCB2 - 4RAcaA2
B 1 = T[atA2 - (1-4)RBss2]
B 2 = T[(1-)Bs2 - RAa(A2]

In effect, we transform the 7-tuple input parameters into another set of four composite

parameters (F 1, F 2, F 3, and F4) which account for interactions between the original input

parameters 7. In the rest of the paper we will exclusively deal with these transformed parameters in

order to characterize the optimal solution space. The transformed parameters are called generation

coefficients and are interpreted in Section 5.4.

Lemma 3a: While maximizing the performance of task A, with Fl > 0 and F 3 < 0, a comparison of

the generation coefficients Fl and F 4 determines whether task A should overlap with task B.

Lemma 3b: While maximizing the performance of task B, with F 1 > 0 and F 3 < 0, a comparison of

the generation coefficients F2 and F3 determines whether task A should overlap with task B.

Theorem 5: Trees shown in Figures 2 provide an exhaustive mapping of conditions for optimal

solution based on all possible values of the transformed input parameters: F1, F 2, F3, and F4.
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Corollary 5.1: Policies outside the region ABCODA (in Figure 4) are either infeasible or result in

sub-optimal performance.

5. Discussion

The discussion is structured in four parts. First, we provide a characterization of the optimal

decision space as it appears in Figure 3. Next, we discuss the sensitivity of the optimal solution to

resource allocation policy. Then, we discuss the dynamics of concurrency in the context of our

model. Finally, we provide an intuitive interpretation for the generation coefficients and the role

they play in determining the optimal solution.

5.1 Characterization of the Optimal Decision Space

We start by mapping the solutions for every possible value of the 7-tuple inputs into a

decision space for optimal SA and SB as shown in Figure 3. The perimeter of polygon ABCODA

provides a graphical representation for the set of all optimal solutions as a function of the decision

variables SA and SB. The area above line AB represents a space where the schedules involve idle

time. Theorem 1 shows that the optimal solution need not consider schedules with idle time.

Consequently, optimal solutions lie below line AB. Furthermore, line AB represents the locus of

points where the choice of SA and SB result in a sequential strategy according to Theorem 5.

Coordinates for points A and B are derived in Theorem 2 and its corollaries. Theorem 3 and its

corollaries provide the coordinates for Point C. The existence of a concurrent strategy, as

represented by point O, is also provided by Theorem 5. The condition for existence of optimal

overlapping policy, as shown along line CO is given by Theorem 5. Similarly, Theorem 5 together

with Theorem 4, show the existence of point D as another optimal overlapping strategy. Finally, the

tree analysis given in Figure 2 confirms that no optimal solution exists in the interior of the region

ABCODA. Using the See-Saw Lemma, the optimal solution will lie at one of the corner points of

the polygon ABCODA as long as the adjusted performance generation coefficients [aAj(1-RA) and

(1- 4) caBj(l-RB)] are not equal. If these coefficients are equal, and the sequential strategy is optimal,
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then any policy that lies along the edge AB will lead to maximum performance. Similarly, if they

are equal and partial overlapping is optimal, then any policy that lies along the edge COD will lead

to maximum performance.

Starting at point A and moving around ABCODA clockwise, the reader may follow the duration of

task A (represented by the shaded rectangle in the icon next to each point). Notice that task A's

duration increases as the solution moves towards point B along line AB, and consequently the

duration of task B is reduced by an equal amount. If the solution moves beyond point B (i.e.

towards point C') to increase task A's duration further, then this violate the non-negativity

constraint (Equation 9d). Therefore, no feasible solutions fall on line BC'. In order to increase the

duration of task A further beyond point B, we need to compensate for that by simultaneously

increasing the duration of task B. Thus, the solution moves from point B to point C along line BC.

Point C represents the "Late Overlapping" strategy. The solutions along line CO are characterized

by working on task A all the time (i.e. from time 0 until the deadline). However, the duration of task

B increases as the solution moves from point C towards point O. When point O is reached, both

tasks work concurrently. The reverse explanation holds when the solution moves from point O to

point A along line ODA.

5.2 Sensitivity of the Optimal Solution Space to Resource Allocation Policy

Assuming that labor resources are fungible in region 2, we can look at the impact of

changing the resource allocation () during overlap of tasks A and B by further exploring the delta

wing shaped polygon (ABCODA), as shown in Figure 3. Note that { is irrelevant on line AB.

Furthermore, edge AD of the delta wing represents the locus of all optimal interior solutions when

XA3(T) =0. Similarly, edge BC represents the locus of all optimal interior solutions when XB3(T) =0.

Reducing collapses the delta wing by shifting the location of lines BC and AD towards the origin

O while changing their original slopes as they move inward8 '9. Finally, the leading edge of the delta

wing (DOC) represents the line of constant product performance derived by changing , such that

the optimal solution moves from XA3(T) = 0 (at point D) to XB3(T) = 0 (at point C).
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5.3 Dynamics of Concurrency

The generation coefficients, Fi, may also be used to describe composite forcesl° that drive

the solution within the optimal decision space as shown in Figure 4. We define a coordinate system

with origin O' and two orthogonal unit vectors u and v in order to depict these forces. Vector u is

oriented in the direction A to B, implying that a positive force in this direction moves the optimal

solution towards a larger SA and smaller SB. Similarly, v is oriented in the direction O to O'

implying that, for a fixed ratio (SA/SB), a positive force in this direction moves the optimal point

towards sequential strategy, and a negative force moves the optimal solution towards concurrency.

Examining the tree logic given in Figure 2, we observe that the interaction between four

composite forces determines the location of the optimal solution. These forces are: Flu, F3u, (Fl -

F4) v and (F3 - F 2)v. For instance, the bold arrows in Figure 4 depict the resultant force leading

towards a concurrent scenario when (F 1> 0, F 3> 0, (Fl - F4) < 0 and (F 3 - F 2) < 0). It is sufficient

to know the direction in which the resultant points, because based on the discussion in the previous

section we have established that the optimal solution will lie on the corner point of the polygon

ABCODA. These forces can be used to visualize the dynamics of concurrency in the following

sense: if one or more of the 7-tupple input parameters are changed from a base setting, then one can

compute the new generation coefficients, Fi, and use the new composite forces to establish the

direction in which the optimal solution will shift.

5.4 Component and System Performance Generation

In this section, we discuss performance generation in terms of the generation coefficients.

Recall that we have defined performance generation as the rate at which performance is improved

by conducting work. Our performance generation construct is analogous to the definition of

evolution in the literature (Krishnan et al. 1997). However, we distinguish between two different

types of performance generations: component and system.

Component performance generation: For the upstream task, component performance generation is

labeled as fast if a higher rate of performance accumulation is attained in region 1 as compared to
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region 2. Alternatively, if the upstream task has a higher rate in region 2, then we refer to it as slow.

According to this definition, F 1 > 0 represents fast upstream component performance generation l

Similarly, F1 < 0 represents slow upstream component performance generation.

For the downstream task, slow generation is characterized by a slower performance

accumulation rate in region 2 (compared to region 3) and fast generation occurs when the

performance accumulation rate in region 2 is bigger than that of region 3. The performance

generation of the downstream task is also determined by inspecting F 3. If F 3> 0, then the

downstream component has a slow rate of performance generation 2. Conversely, a downstream

component has a fast rate of performance generation when F 3 < 0.

System performance generation: At the system level, the upstream performance generation is

labeled as slow if the overall (i.e. project or system) performance accumulation rate in region 1 is

smaller than that of region 2. The overall performance is measured not only by how much the

upstream task gains through conducting work (i.e. component performance generation), but also by

how much the downstream task loses in this process. Slow system performance generation for the

upstream task is characterized by (F1 -F 4) < 0. Alternatively, the upstream task exhibits fast system

performance generation when (F1 -F 4) > 0.

Downstream system performance generation is labeled as slow when the overall

performance gain in region 2 is smaller than that of region 3. It is labeled as fast when the reverse is

true. The condition for a slow downstream system performance generation is (F3 -F 2) > 0 and for

fast system performance generation is (F3 -F 2) < 0.

6. Assessment of Component and System Performance Generation

The following section describes a subjective assessment of the component and system

performance generation. Component generation coefficients are assessed by interviewing domain

experts. Generally, component expertise resides locally within an engineering team. System

generation coefficients are assessed by interviewing system experts. Generally, system expertise

resides with system architects, managers overlooking the overall development, and /or system
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integration and test teams. Recent literature on subjective interviews of product development

projects suggests that different generation rates have been ascribed to tasks by different experts,

based on their vantage point within the development process (Ford and Sterman, 1998).

We illustrate the assessment process using an example from a software development project.

Relevant data are gathered by circulating a survey instrument to individuals responsible for coding,

system architecture, and program management.

Our subject Softex (a fictitious company name) is in the business of developing e-commerce

solutions that integrate legacy systems and processes across multiple companies into a unified

digital marketplace. Their development process involves the integration of off-the-shelf e-

commerce system with custom-developed software components. The example does not reflect the

specific details of the project, but represents a 'typical and plausible' representation of the actual

performance generation rates.

The product specification involves about 10,000 function points, representing a moderate to

high degree of development complexity, and requires task coordination among more than 25

developers. Some of these developers have joined the project through an outsourcing arrangement

with an organization that has high degree of experience with system engineering methodology.

Developers are quite sophisticated in process management (Softex holds a level V rating based on

the System Engineering-Capability Maturity Model). It is a standard practice at Softex to build a

system level behavioral model of the product at the very beginning of the project using the Unified

Modeling Language. This modeling exercise yields preferred data models, use models, and

interaction diagrams. These artifacts provide a clear sense of the level of coupling, and performance

penalties among various local team tasks and their contribution to system performance. These data

are the basis for the subject's response to the assessment questionnaire.

For instance, in a segment of the project that deals with the integration of the web front-end

with the legacy back end, teams establish relative shapes for the generation functions as depicted by

Figure 5. Code developers within individual teams, in this case team A (Web Front-End) and team

B (Legacy Back-End), are asked: what is the rate of performance generation when they work by
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themselves, and what is the relative gain (or penalty), if any, that they experience when they work

with the other team? Teams do not know how much rework they create for each other. Slow or fast

shapes for component performance generation is captured by asking team A to pick either shape Al

or shape A2 as shown in Figure 5(a). Team B is asked to select either B 1 or B2 in Figure 5(b).

If these teams pick the combinations Al-B 1 or A2-B2, then there is no ambiguity in terms of

the preferred execution strategy i.e. they both wish to either work together or work separately.

However, if the component teams select combinations A1-B2 or A2-B 1, then there exists a conflict

between team A and B's desired development sequence. In these situations, the system architect

answers the question: what is the rate of system performance accrual for the upstream and the

downstream component respectively, while accounting for the coupling effects. Figure 5 (c and d)

captures the choices available to system architect: SU1 (Upstream is fast) or SU2 (Upstream is

slow) and SD1 (Downstream is fast) or SD2 (Downstream is slow). In the case of project X, data

suggested that A1-B 1 scenario governed the development process.

The example shows that an assessment of the performance generation rates is possible for

the purpose of applying the PGM at a fairly abstract level. A framework for informing managerial

decisions based on the rates of performance generation is presented in the next section. We will

utilize the assessments described here to illustrate the use of the framework.

7. Managerial Implications

In order to facilitate managerial utility of the PGM, we have transformed the optimal

decision trees into a conceptual framework as shown in Figure 6. This framework is built around the

concept of performance generation, both at the component and at the system level. Managers can

utilize the generation coefficients within the framework to structure the development process (i.e.

choice of a sequential, concurrent, or overlapped process).

The subjective assessment of the generation coefficients described in the previous section is

needed for utilizing this framework. Comparison of component and system performance

generations yields the following four cases:
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Case 1: When the component performance generation for task A is slow (F 1 < 0), and

component performance generation for task B is fast (F 3 < 0), a concurrent strategy is optimal. The

rationale underlying this strategy can be explained as follows: the upstream task contributes less in

region 1 than it does in region 2, and the downstream task contributes more in region 2 than in

region 3, therefore it is optimal to conduct all the work in region 2.

Case 2: When the component performance generation for task A is fast (F 1> 0), and

component performance generation for task B is slow (F 3> 0), a sequential strategy is optimal. The

rationale underlying this strategy is exactly the reverse of case 1. Both activities accumulate more

performance independently than when they are concurrent; therefore, it is optimal not to conduct

any work in region 2.

Case 3: When the component performance generation for task A is fast (F1 > 0) and

component performance generation for task B is also fast (F 3 < O0), then we need to check the system

performance generations for these tasks. If the system performance generation for the upstream task

(A) is slow (i.e. F1 - F4 < 0) and the system performance generation for the downstream task (B) is

fast (i.e. F 3 - F 2 < 0), then the concurrent strategy is optimal. In this case, the feedback during

overlapping increases the performance of both tasks relative to the situation where they work

independently. If the situation is reversed (i.e. upstream system performance generation is fast and

downstream system performance generation is slow), then conducting work in parallel decreases the

rate of performance generation for both tasks, compared to working independently, and the

sequential strategy becomes optimal. Finally, if only one task benefits from the feedback during

overlapping (i.e. does better by conducting work in parallel with the other task as compared to when

working independently), then either early or late overlapping results in the optimal strategy. Late

overlapping is optimal when both system performance generations are fast, while early overlapping

is optimal when both system performance generations are slow.

Case 4: Follows precisely the same rationale described in case 3.

Drawing on the stylistic assessments from the previous section to illustrate the use of the

framework, recall that the two teams from Softex picked scenario Al and B 1. This implies that the
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upstream component generation is fast, and the downstream component generation is slow. Thus, it

is best that the teams work in a sequential manner. This development structure is possible because

the product architecture (i.e. work flow and data structure) for the web interface and the legacy

system has minimized the impact of the coupling effect.

We asked the project architect at Softex about the use of the framework in more general

settings. In the architect's view, the process of ex-ante performance generation assessments allows

developers to compare and contrast assumptions about the relative rates of performance accrual and

coupling penalties. In some instances when the developers pick either A1-B2 or B2-A1 as their

scenario, there is a conflict between the upstream and downstream team preferences. The architect

is then called upon to review the interaction diagrams and decide on the overall sequence based on

the system performance requirements.

8. Conclusion

The tradeoff captured in this model allows for the optimization of development resources (as

represented by the choice of SA and SB), with the goal of maximizing project performance. The

PGM enriches PD literature by a new model that does not limit itself with time minimization

concerns. It models resource constraints more realistically than the literature that postulates that

more concurrency is better without considering resources. Moreover, our observation in an

industrial setting shows the model provides insights that help managers structure the PD process

even with imprecise inputs, especially early in the development process.

We have kept the model sparse to gain clear managerial insights using a small number of

parameters and assumptions. Our core assumptions, namely fixed dead lines, interactions through a

two-way information exchange, rework, and minimal performance thresholds for individual

components, are valid in a vast majority of product development projects. It is also instructive to

point out that some of the managerial insights of the models (e.g. the need for concurrency under

certain settings) duplicate results generated by fundamentally different models that are aimed at
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minimizing development time (Loch and Terwich, 1998; Carrascosa et al., 1998; Ahmadi and

Wang, 1999; and Hoedemaker et al. 1999).

Discussions with the architect at Softex exposed some limitations of the PGM model.

Product development teams have multiple tasks within a single project and have to run multiple

projects simultaneously. While the generic results shown by the PGM framework are viewed to be

logical, management is concerned with applying these insights in settings where resource levels

might not be fixed. Management at Softex has expressed interest in further exploration of the

resource allocation issue in such settings.

The PGM can be extended in several ways. One might view task A as the amount of product

performance that is being provided by a supplier and task B as the amount of work being done by a

principal. Thus, the PGM model provides a platform for optimal information exchange between the

principal and the supplier such that the product performance is maximized. In the principal-supplier

setting of the PGM, one might introduce learning effects. It is also possible to extend the results

through the lens of game theory with respect to two divisions of a firms that are responsible for

components A and B (Lewis and Mistree, 1998). In another extension, A and B can be viewed as

two consecutive product development processes whose completions are subject to a periodic

deadline (Repenning, 1999), as shown in the taxonomy of Table 1. In this scenario , the resource

allocation fraction, will be an explicit decision variable. Then, resource constraints in the PGM can

be re-interpreted while associating different costs to tasks and the problem can be examined as a

margin maximization exercise.

In summary, the key managerial insight from this model is that concurrent engineering need

not be the optimal work strategy in many settings. Managers must consider the information

exchanges, rework issues, performance thresholds, and resource restrictions while structuring their

development projects. This result is contrary to the conventional wisdom that recommends use of

task concurrency (Lawson and Karandikar, 1994). The genesis of this counter-intuitive result lies in

the tradeoff between the gain in project performance (due to working on a task) weighed against

performance deterioration caused by the other coupled task. Further, we have developed a decision
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space for executing two coupled development tasks and established the dynamics of the sequential /

concurrent / overlapping strategies. On one hand, our decision space allows an explanation of the

forces that play a leading role in driving the optimal strategy towards full concurrent engineering.

On the other hand, we show what forces prevent the system to drift towards that point of full

concurrency. In doing so, we provide managers with a tool to control the degree of concurrency in

the process by examining the rates of performance generation.

Appendix - Proofs

Lemma 1: If RA ,RB <1, then overall project performance is a non-decreasing function in time.

Proof: The overall performance of the project in the 3 regions is given in table 2. Looking at the

overall performance, it is evident that if RA and RB <1, then all the terms are positive. Therefore the

overall performance of the project is non-decreasing. El

Theorem 1: When one schedules two coupled tasks with respect to a non-decreasing performance

measure, it is not necessary to consider schedules which involve idle time.

Proof: Consider a schedule S. Assume that we have inserted an idle time within the interval [0,T] of

S; namely, from time t to t2 (0 < t < t2 < T). Call this schedule S'. S' can take 3 different forms

based on the values of tl and t2.

Case 1 (tl = 0): If we transform the time axis from 0 to t2, then the performance level achieved at

time t (in S) is the same as the performance level achieved at time t < T in (S'). This is similar to

case 2.

Case 2 (t2 = T): Assume we have an optimal schedule for 0 < t < t. This schedule can be stretched

by multiplying each segment of S' by factor (T-tl)/t1 . This new schedule will result in greater

performance level using Lemma 1.

Case 3 (Otherwise, 0 < t < t2 < T): Assume there is a corresponding schedule (S') which differs

from S only in that the designers (upstream and downstream) are not idle from t to t2. Under any of

the three strategies, it is clear that the performance of S' is more than or equal to the performance of

S due to Lemma 1. Therefore, it is sufficient to only consider schedules similar to S' in that they do

not contain any period of inserted idle time. O
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Lemma 2: (the See-Saw rule). Given a pair of adjusted performance generation coefficients

[qxAj(l-RA)] and [(1-)aBj(-RB)], it is always optimal to perform work on the task with the largest

adjusted performance generation coefficient, if constraint (9c and 9d) are not violated.

Proof: Since 4aAj(l-RA) > 0 and (l-4)aBj(l-RB) > 0 and the objective function (Equation 9) is a

linear combination of aij(l-Ri), it is always better to work on the task associated with the largest

adjusted performance generation efficient for every j (j = 1, 2, 3). []

Theorem 2: If the sequential strategy is optimal, the corresponding solution for S*A is bounded by:

aB3 T < S*A < B3 T ......... ...............(10)
aAl + aB3 aA1RA + aB3

RB

Proof: Lower bound: XA3(T) 2 0 =: aA1 SA RB caB3 (T- SA)

Upper bound: XB3(T) > 0 = RA aA1 SA < XaB3 (T- SA) 

Corollary 2.1: If aA1 < aB3, then S*A takes the lower bound in (10)

Corollary 2.2: If aAI > aB3, then S*A takes the upper bound in (10)

Corollary 2.3: If aA1 = CaB3, then S*A takes any value between the bounds in.(l0)

Proof: All above corollaries are true using Lemma 2. 0

Theorem 3: If the overlap strategy is optimal. and S*A = 0, then the corresponding solution for S*B is

bounded by: RATcA 2 - (1- )aB2 T < S < A - (1T ... (11)
CB3 + RAaA2 -(1 - )aB2 RBaB3 + -aA2- (1 - q)Ra1B2

Proof: Lower bound: XA3(T) 2 0 =>{caA2 SA-(1-) RB CB2}(T-SB) > RB B3 SB

Upper bound: XB3(T) > 0. 

Theorem 4: If the overlap strategy is optimal and S B =0, then the corresponding solution for S*A is

arl + (1- )RB B2 - SA2 AR+ (1- )aB - RAcA 2

Proof: Similar to the proof for Theorem 3.

Lemma 3a: While maximizing the performance of task A, with F > O0 and F3 < 0, a comparison of

the generation coefficients Fl and F4 determines whether task A should overlap with task B.

Proof: Assume that (F 1 > 0) and (F 3 < 0). This means that task A prefers to work independently

and task B prefers to work concurrently. Therefore, in order to decide the choice of region for

accumulating the Performance of A, a comparison between the performance gain while working
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independently and the performance gain while working concurrently is necessary. Table 3 describes

the performance contribution of Tasks A & B in regions 1 and 2.

Region (j) 1 2
Perf. (task A) aAl [4CLA2-'(1 -)B2RB]

Perf. (task B) -aA RA [(1-)CB2-+cA2RA]

Table 3: Performance Contribution of Tasks A and B in Regions 1 and 2

F 1= [aAI - aA2 + (-~)RBaB2] and F 4= [RAaA1 + ( -)cO2 - RAaA2] describe the performance gain

of task A (working independently) and task B (working concurrently) respectively. Therefore, if

(F 1-F4 > 0), then task A in the independent mode contributes more to the overall project

performance than task B in the concurrent mode. l

Lemma 3b: While maximizing the performance of task B, With Fl > 0 and F 3 < 0, a comparison of

the generation coefficients F 2 and F 3 determines whether task A should overlap with task B.

Proof: Follows a symmetrical argument to Lemma 3a.

Theorem 5: Trees shown in Figures 2 provide an exhaustive mapping of conditions for optimal

solution based on all possible values of the transformed input parameters: F1, F2, F3, and F 4.

Proof: If F1 > 0, then task A when working independently creates more performance than when it is

working concurrently with task B. In addition, if F 3 > 0, then task B also produces more

performance when working independently as to when it is working concurrently with task A.

Thus, when F1 > 0 and F 3 > 0, a "Sequential" strategy depicted by the extreme left branches of the

trees, in Figure 2a or 2b, is optimal.

The scenario F1 > 0 and F 3
< 0, refers to instances where task A produces more performance when

working independently, task B produces more performance when working concurrently with A. We

invoke Lemma 3 to point out that:

(i) When F2 < F3, regions 1, 2, and 3 are all required to maximize performance. Hence an

overlapping strategy is optimal.

(ii) When Fl > F4 and F2 > F3, region 2 will generate more performance than either region 1 or

region 2, and hence a concurrent strategy is optimal.

(iii) When F1 < F4 and F2 > F3, region 2 will generate less performance than either region 1 or

region 2, a sequential strategy is optimal.

Existence of optimal choices in Figure 2b, with F3 > 0, follows similar arguments.]
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Corollary 5.1: Policies outside the region ABCODA (in Figure 3) are either infeasible or sub-

optimal performance.

Proof: The trees shown in figures 2a and 2b provide an exhaustive mapping of the solutions

bounded by the space ABCODA in figure 3. According to theorem 1, the regions above line AB

will lead to sub-optimal performance. The Triangular regions CBC' and DAD' lead to infeasible

solutions, because the non-negativity constraints (9C) and (9D) are violated in those regions. C
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Table 1: Taxonomy of PD execution related decision problems
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(a) Upstream (Team A) View of Component Performance Accrual (Select One):
[-1 Joint work slows our progress [-7Joint worK speeds our progress

Fast

(Al) A Works Alone

Slow

(A2) A Works Alon

(b) Downstream (Team B) View of Component Performance Accrual (Select One):
n Joint work slows our progress F-7 Joint work speeds up progress

(B 1) Both A&B Work B Works Alone (B2) Both A&B Work B Works Alone

(c) Architect's View of Upstream System Performance accrual* (Select one):
[ Joint work slows progress ' -EJoint work speeds progress

Fast
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Slow

(SU2) A Works Al

(d) Architect's View of Downstream System Performance Accrual* (Select one):
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Figure 5: Assessment of performance generation

(In each box, the x-axis depicts elapsed time and y-axis is performance)
*Architect's View required only if the teams have picked either A1-B 1 or A2-B2

Figure 6: Optimal strategies based on the generation coefficients
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End Notes

1 We define the upstream task to be task A and the downstream task to be task B, without loss of
generality.

2 Since Xj is strictly increasing in L, we will always use all of the available resources at any time

during the development process.

3 We will assume that is constant. This implies that the labor resource allocation during
overlapping (i.e. region 2) is not fungible between tasks A and B. Later, we will explore the
sensitivity of the optimal solution to alternate resource allocation policies.
4 XA1(0)=0, XB1(0)=O

XAI (SA) = XA2 (0), XB1 (SA) = XB 2 (0)

XA2(T-SB) = XA3(0), XB2 (T -SB) = XB3(0)

5 The model will work for any threshold. Zero was selected as an arbitrary value.

6 Lemma 2 is equivalent to taking the partial derivative of Equation (9) with respect to SA and SB.

7 B1 and B 2 are not relevant in the discussion because the final results are expressed as non-
dimensional variables SA/T and SB/T respectively.

8 It is worth noting that a similar shift would also happen if constraints (9c) and (9d) require a non-
zero threshold value.

9 In a limiting case, line BC will eventually coincide with line 00', the bisector of the orthogonal
axes, and line AD will coincide with 00'. In this limiting scenario, it is obvious that both SA = SB.
However, the performance contribution of each task is not necessarily equal unless the problem
parameters for task A and task B are symmetrical.

10 The evolution coefficients can be thought as forces for studying the dynamics of concurrency.
Caveat: these coefficients are not analogous to any physical force.

11 Note that Fl is always positive when aAI > CaAI and regardless of RA and RB. The reverse
statement is also true.

Note that F 3 is always positive when (aB3 > aB2 and regardless of RA and RB. The reverse
statement is also true.
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