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Abstract

The Bass di®usion model is a well-known parametric approach to estimating

new product demand trajectory over time. This paper generalizes the Bass model

by allowing for a supply constraint. In the presence of a supply constraint, poten-

tial customers who are not able to obtain the new product join the waiting queue,

generating backorders, and potentially reversing their adoption decision, resulting

in lost sales. Consequently, they do not generate the positive \word-of-mouth" that

is typically assumed in the Bass model, leading to signi¯cant changes in the new

product di®usion dynamics.

We study how a ¯rm should manage its supply processes in a new product dif-

fusion environment with backorders and lost sales. We consider a make-to-stock

production environment and use optimal control theory to establish that it is never

optimal to delay demand ful¯llment. This result is interesting because immediate

ful¯llment may accelerate the di®usion process and thereby result in a greater loss of

customers in the future. Using this result, we derive closed-form expressions for the

resulting demand and sales dynamics over the product life cycle. We then use these

expressions to investigate how the ¯rm should determine the size of its capacity and

the time to market its new product. We show that delaying a product launch to

build up an initial inventory may be optimal and can be used as a substitute for ca-

pacity. Also, the optimal time to market and capacity increase with the coe±cients

of innovation and imitation in the adoption population. We compare our optimal

capacity and time to market policies with those resulting from exogeneous demand

forecasts in order to quantify the value of endogenizing demand.

FORTHCOMING in Management Science
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1 Introduction

When introducing a new product, a ¯rm must trade o® the cost of supply, including the

cost of capacity and inventories, with the revenues from the product's demand over its
lifecycle. An important operations decision when launching a new product is the sizing

of capacity. Typically, capacity is determined by ¯rst specifying an exogenously de¯ned
demand trajectory for the new product over time. The question of how this demand

trajectory comes about is often left unanswered (e.g., Fine and Li 1988). Since the demand
process is exogenous rather than endogenous to the model, the chosen level of capacity

does not a®ect the demand dynamics.

In contrast to operations literature, marketing research has focused on developing ac-

curate characterizations of the demand process. Speci¯cally, it has long been argued that
the demand and sales of new products in the marketplace follow the patterns of social dif-

fusion processes, similar to those in epidemiology and the natural sciences (see Mahajan
et al. 1990 and Mahajan et al. 2000 for recent overviews). These models enable a ¯rm

to characterize the new product's demand process as a function of various internal and
external factors (e.g., price, advertising, population characteristics, nature of innovation).

They provide the empirical foundation for forecasting demand of a new product over its
lifecycle. These models, however, assume that the supply of new products is unlimited

and never constrained.

Therefore, there is an apparent gap between the two streams of literature. On the one

hand, the operations literature has taken the demand process as given, searching for the
optimal amount of capacity to install. On the other hand, the marketing literature has

looked at the demand process assuming that the di®usion process is never capacity con-

strained. This leaves an important question at the interface between the two unanswered:

How does a new product di®use in the presence of a supply constraint?

In the presence of a (binding) supply constraint, potential customers who are unable
to obtain the new product immediately may either patiently wait for the product, a phe-

nomenon referred to as backordering, or may impatiently abandon the adoption decision,
leading to customer losses. In order to generalize the existing di®usion models to include

these phenomena, we must distinguish between the demand process and the actual sales
process, the latter being bounded by the minimum of the demand and the available supply.

A joint analysis of supply-related decisions and the corresponding demand dynamics
also allows us to plan better operationally. For instance, current models of capacity sizing

treat the lifecycle demand as given, and independent of the actual sales. If, however, as
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postulated in the marketing literature, past sales do have an impact on future demand,
the determination of the optimal capacity sizing requires an endogenous characterization

of the demand process. Therefore, in addition to providing descriptive characterizations
of the constrained demand and sales dynamics, we derive prescriptive results on how to

manage the new product's supply process. Speci¯cally, we analyze how much the ¯rm
should invest in capacity and when it should launch the new product.

To determine how much capacity to install, the ¯rm must trade o® the cost of back-
ordering and lost customers with the cost of over-capacity. In the presence of a short

lifecycle, the capacity decision is irreversible (the lead-time for adding / reducing capacity
is too long to allow for capacity adjustments to occur during the product lifecycle.) The

phenomenon of short lifecycle with capacity shortages resulting from long capacity lead-
time prevails in high-tech industries, such as semiconductors, video game consoles, and

pharmaceutical compounds. In these industries, supply shortages have been repeatedly
reported and industry observers have speculated about the magnitude of their impact on

lifecycle demand (e.g., Thomke 1999, Pisano 1997). In the absence of a joint analysis of
supply-related decisions and demand dynamics, neither a quanti¯cation of sales losses nor

an appropriate capacity recommendation is possible.

The ¯rm does not have to launch the new product right after the plant is ready for
production. In a make-to-stock (MTS) environment, it is possible to delay product launch

in order to preproduce (to build inventory prior to starting the sales). Many high-tech
companies preproduce in order to ensure a su±cient level of volume at launch. For exam-

ple, Nintendo recently delayed the launch of GameCube to guarantee enough volume at
launch (Financial Times, August 23, 2001). Similarly, Microsoft postponed the launch of

XBox when they failed to meet the target of 700,000 boxes in initial inventory (Financial
Times, August 21, 2001).

As we will show, preproduction provides a substitute for installing capacity and thereby
serves as a less costly mechanism for achieving the same lifecycle sales as with a higher

capacity. However, pre-production delays revenue collection and leads to higher inventory
costs. In this paper, we determine the optimal time to launch the new product and start

the new product di®usion process in order to maximize the lifecycle pro¯ts.

Finally, one might argue that it may be optimal to sell less than what is currently

demanded, even if there is ample supply available. In the presence of a non-linear di®usion
dynamics with a positive feedback loop, such as the Bass di®usion model (Bass, 1969),

initially not selling a unit (even at the risk of losing this speci¯c customer) has a desirable
e®ect of slowing down the di®usion process. This leads to a reduced demand peak and
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thereby avoids a greater customer loss in the future. By characterizing the optimal sales
plan, we show that delayed demand ful¯llment does not maximize lifecycle pro¯ts in a Bass-

like di®usion environment. The operations decisions discussed above form a hierarchy as
illustrated in Figure 1:

Insert Figure 1 Here

This paper makes three contributions to the operations and marketing literature. First,

we derive closed-form expressions of demand and sales dynamics in a Bass-like di®usion
environment with a supply constraint. To the authors' knowledge, this work is the ¯rst to

do so. Second, we integrate capacity, time to market, and sales plan into a uni¯ed decision
hierarchy. These inter-related decisions were treated separately in prior research. Third,

we endogenize demand dynamics in determining the optimal capacity in a constrained
di®usion environment. Prior research has treated demand exogeneously to the capacity

sizing decision.

The rest of this paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 presents the model formulation. We determine the optimal sales plan in Section

4 and characterize the resulting demand and sales dynamics in Section 5. In Section 6, we
determine the optimal time to market and capacity and quantify the e®ect of endogenizing

demand on lifecycle pro¯ts. Section 7 concludes and suggests future research directions.

2 Related Literature

Our analysis builds on the traditional Bass model of new product di®usion (Bass 1969).
The Bass model is recognized for its descriptive and predictive power, and indeed is used

widely in marketing to forecast demand of new durable products. It predicts that new
product demand is likely to follow speci¯c patterns of social di®usion processes, similar to

those in epidemiology and the natural sciences. The Bass model laid the foundation for
many articles in marketing (see Mahajan et al. 1990, Mahajan et al. 2000 for comprehen-

sive overviews) and, more recently, in research that cuts across marketing and operations
(see Fine and Li, 1988; Kurawarwala and Matsuo 1998).

The Bass di®usion model posits that the population of potential adopters for a new
product is subject to two means of communication: mass media communication (external

in°uence) and word-of-mouth communication (internal in°uence). The external in°uence
a®ects potential adopters directly, while the internal in°uence relies on the interaction

between customers who have already adopted the product and potential adopters. The
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Bass model is a mathematical model to capture these e®ects based on ideas from contagion
models in epidemiology.

Although the congruency between the di®usion of a new product and the di®usion of an
infectious disease is appealing, it is important to note one fundamental di®erence between

the two. The reproductive capacity of a virus, de¯ned as the number of o®-springs that
can be generated within one time period, grows proportionally with the di®usion of the

disease. Obviously, this is not true for the availability of a new product in a supply chain.
In a supply chain, there often exists a maximal production rate de¯ned by the capacity of

the plant.

This shortcoming of the Bass model was ¯rst addressed by Jain et al. (1991), who
studied the di®usion of new telephones in Israel from 1949 to 1987. Waiting times for a

new telephone were in excess of three years, and, in the absence of competition, customer
losses did not occur. In the Jain et al. formulation, the level of capacity grows with

the number of backorders, which may be suitable for a service environment where the
lead time to expand capacity is short. Also, their supply constraint is always binding

over the entire life-cycle of the new product, and hence the sales trajectory is identical to
the capacity level. These assumptions do not hold for most manufacturing environments,

where customer losses are common, the lead time for changing capacity is long, and the
supply constraint is not always binding. Our paper addresses these shortcomings by

developing a general model of new product di®usion under supply constraint.

When making supply side decisions, operations managers often assume that the under-

lying life-cycle demand dynamics of a new product are independent of the product avail-
ability (see Luss 1982 for an overview of capacity sizing models). A classical approach to

determining capacity under demand uncertainty is to use the newsvendor model, which
converts a demand forecast into a supply plan by balancing the costs of excessive capacity

with those of capacity shortages. However, this approach often ignores the non-stationarity
in demand inherent in new product di®usion. Addressing this problem, Kurawarwala and

Matsuo (1998) present a model of procurement where the demand process follows a Bass-
type di®usion with known parameters of external and internal in°uence, but with unknown

market size. Their model corresponds to an extension of a conventional newsvendor model
and provides an example of how procurement policy can be in°uenced by new product

di®usion dynamics. Finally, Fine and Li (1988) provide conditions under which a ¯rm
would switch from one supply process to another during the product life cycle. They

assume demand dynamics with symmetrical growth and decline stages. The authors show
that there are ¯ve possible process switching strategies, depending on the relative cost
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parameters of the processes. Their analysis relies on the assumption that process switch-
ing decisions will not in°uence the underlying demand dynamics; thus, they assume that

demand is exogenous to the model.

We extend the existing literature by presenting a formal model of a new product's

di®usion in the presence of a supply constraint. We thereby introduce important supply
chain phenomena, such as backordering and customer losses, into the ¯eld of new product

di®usion. This represents the ¯rst joint analysis of supply and demand dynamics in a new
product's supply chain. Building on this analysis, we address the managerial decisions of

capacity sizing, time to market, and demand ful¯llment policy.

3 Model Formulation

Consider a ¯rm which plans an introduction of a new product. The ¯rm faces a hierarchy
of decisions. At the top of this hierarchy lies the capacity sizing decision, which is based

on the trade-o® between the cost of supply shortages and the cost of over-capacity. In
the presence of short lifecycles and long lead-times for changing production capacity, the

selected level of production capacity c remains the same throughout the life-cycle of the
product. Our analysis can be extended to include a general capacity \trajectory" c(t);

however, closed-form solutions would no longer be possible.

We assume the plant will be ready to start production at a known date, which we de¯ne
as t = 0. Given a level of capacity, the ¯rm must decide on the time to market tl ¸ 0.

Delaying the product introduction may help the company to build inventory and thereby
minimize the loss of sales due to insu±cient product supply. At the same time, a delayed

launch will move revenues further into the future as well as lead to an increase in inventory
costs.

Finally, once the di®usion process has started, the ¯rm can decide on how much to sell at
each moment in time, which we denote as s(t). In the presence of a non-linear interaction

between the potential adopters and those who already have bought the product, it is
unclear whether selling as much as supply would permit is an optimal policy.

After de¯ning the three decisions, namely, how much capacity to install, when to launch
the product, and how much to sell at time t, we now describe the demand dynamics of

our model. Let m denote the size of the target population of potential adopters.1 In
1The variable m can be time dependent if the target population grows or declines over time. It can

also vary with a ¯rm's market mix variables such as price and level of advertising expenditure (e.g.,
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what follows, we use D(t) and S(t) to denote the cumulative demand and sales of the new
product at time t, respectively. Table 1 summarizes our key notations.

Insert Table 1 here

At time t, a customer who was previously not ready to adopt may place an order. If

the new product is available, the customer receives the product immediately. If not, she
can either wait for the new product by joining the waiting list (backordering) or abandon

the adoption decision by canceling the order. Consequently, the customer population can
be divided into four groups. The ¯rst group consists of potential adopters who are not

ready to adopt the product yet. The second group are adopters who have placed an order
and already have received the new product. The third group are potential adopters on

the waiting list and the fourth group are potential adopters who refuse to wait and hence
cancel their orders (the so-called \lost" customers). We denote the size of the third and

fourth group at time t by W (t) and L(t) respectively. Figure 2 shows the interaction
between the four customer groups.

Insert Figure 2 here

At any moment in time, a consumer who is ready to adopt the new product can either
join the adopters, the waiting list or the group of lost customers. Thus, we have:

D(t) = S(t) +W (t) + L(t): (1)

If the product supply is unlimited (the ¯rm is never capacity constrained) the waiting
list will always be empty and there will be no lost customers. Thus, demand D(t) and

sales S(t) are identical. In the presence of a supply constraint, potential adopters who are
not able to obtain the product immediately join the waiting list W (t). We assume waiting

customers abandon their adoption decisions after, on average, 1
l units of time:

dL(t)
dt

= lW (t) (2)

This formulation allows us to capture the demand assumptions made by the existing
operations models, namely backordering (l = 0) and customer loss (l = +1), as well as

any intermediate case.

The demand process itself, which de¯nes the arrival of customer orders, follows a Bass-
like dynamics. Thus, the consumer's adoption decision is in°uenced by two factors: the

Dodson and Muller 1978, Kalish 1985, Bass and Krishnan 1999). For simplicity, we assume a ¯xed target
population.
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independent innovation dynamics and the interaction dynamics between adopters S(t) and
potential adopters who are still not ready to adopt the new product (m ¡ D(t)). This

interaction e®ect is also referred to as `internal in°uence' or \word of mouth":

dD(t)
dt

= p[m¡D(t)] +
q
m
S(t)[m¡D(t)]: (3)

Here, p and q are the coe±cients of innovation and imitation, respectively.

By using the Bass model as the demand model, we assume a certain uniqueness of the

product to be launched, either in the form of a new brand or a new product category (e.g.,
movies, video game console, Pentium III). In both cases, one can argue that customer

loss can occur because consumers are impatient or engage in cross-brand or cross-category
substitution. Note also that our model is su±ciently general to include the case of no

customer loss by setting l = 0:2

In order to connect (1), (2), and (3) to the supply process, we consider the cumulative

production, R(t), and the inventory of available products, I(t). Note that since we allow
the possibility for the ¯rm to select the rate at which it sells, we cannot impose a standard

restriction of I(t)W (t) = 0. The total production up to time t is either sold or put into
inventory:

R(t) = I(t) + S(t) (4)

The production rate can be expressed as:

r(t) =
dR(t)
dt

=

8
<
:
c; t < t¤;
dD(t)
dt ; t ¸ t¤:

(5)

The company produces at maximum capacity c until the time when demand drops below
capacity (t¤ = min

³
tjdD(t)

dt < c; d
2D(t)
dt2 < 0

´
): During the ¯nal phase of the di®usion (t ¸

t¤) the ¯rm produces according to the demand rate dD(t)
dt in order to avoid unnecessary

inventory. As the population of potential adopters, m, is ¯nite, so is t¤ for any positive

production capacity c3.

For ¯xed values of production capacity c and launch time tl; we choose sales rate s(t)
2While Bass's original study estimated the model on data from new product categories (e.g., air

conditioners, power lawn mowers), the model has been successfully applied at the level of brands within a
category (e.g., Kurawarwala and Matsuo 1998, Sawhney and Eliashberg 1996, Parker and Gatignon 1994,
Mahajan et al. 1993).

3In the next Section we derive explicit expressions for t¤ for any combination of p; q;m; and c:
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to maximize life-cycle discounted pro¯ts:

P (c; tl) = max
s(t)¸0

0
B@

+1Z

tl

(a(t)s(t)¡ hI(t)) e¡µtdtjfI(tl) = ctlg

1
CA ; (6)

where a(t) > 0 is the pro¯t margin of the new product at time t and h is the inventory
holding cost (per unit of inventory, per unit of time). The two terms in the objective

function correspond to discounted life-cycle revenues and inventory costs, respectively.
We observe that the expression for P (c; tl) can be simpli¯ed by shifting the time origin to

tl: P (c; tl) = e¡µtlP (c; tl), where

P (c; tl) = max
s(t)¸0

0
@

+1Z

0

³
a(t)s(t)¡ hI(t)

´
e¡µtdtjfI(0) = ctlg

1
A ; (7)

and a(t) = a(t + tl); s(t) = s(t + tl); I(t) = I(t + tl): In our analysis below we will drop

the overbars from all these functions, thus, we will write a(t) instead of a(t):

Once the optimal selling plan s¤ (t) is found, the company has to decide on the launch

time tl ¸ 0: For a given launch time tl, the discounted pre-launch inventory costs can be
expressed as

h
tlZ

0

cte¡µtdt =
hc
µ

µ1
µ

³
1¡ e¡µtl

´
¡ tle¡µtl

¶
: (8)

Thus, the best launch time tl, for given capacity c, can be found from

P ¤ (c) = max
tl¸0

Ã
P (c; tl)¡

hc
µ

µ1
µ

³
1¡ e¡µtl

´
¡ tle¡µtl

¶!
; (9)

Finally, the overall production capacity c has to be selected:

max
c

(P ¤(c)¡Hc) ; (10)

where H denotes the variable cost of acquiring and maintaining a unit of production
capacity. The sequence of expressions (6), (9) and (10) re°ects the implied hierarchical

structure of company's decisions, re°ected by Figure 1. We start by investigating the
\tactical" problem (6).

4 Optimal Sales Plan

The tactical decision chooses the sales rate s(t) to maximize pro¯ts for ¯xed values of

capacity c and launch time tl: This problem can be formulated within the optimal control
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framework as follows:

P (c; tl) = max
s(t)¸0

0
@

+1Z

0

(a(t)s(t)¡ hI(t)) e¡µtdt

1
A

s.t.
dD
dt

= d(t); (11)

dS
dt

= s(t); (12)

d2D
dt2

=
q
m
s(t) (m¡D(t))¡ d

µ
p+

q
m
S(t)

¶
;

dL
dt

= lW (t);

dW
dt

= d(t)¡ s(t)¡ lW (t); (13)

dI
dt

= r(t)¡ s(t); (14)

I(t);W (t) ¸ 0; (15)

D(0) = S(0) = L(0) = W (0) = 0;

I(0) = ctl; d(0) = pm: (16)

The ¯rst two equations are self-explanatory. The third one is the time derivative of (3),
the fourth one is (2), and the last two are time derivatives of (1) and (4), respectively. We

note that non-negativity constraints on I(t) and W (t) imply that r(t) ¸ s(t) whenever
I(t) = 0; and d(t) ¸ s(t) whenever W (t) = 0: The following result states the optimality

of maximum possible sales rate at any given t:

Proposition 1

For any pro¯t margin a(t) > 0, holding cost h > 0 and launch time tl ¸ 0 in (16), the
optimal sales rate is given by

s¤(t) =

8
>>><
>>>:

r(t); W ¤(t) > 0;
min (r(t); d¤(t)) ; I¤(t) = 0;W ¤(t) = 0;

d¤(t); I¤(t) > 0:

(17)

where d¤(t); I¤(t) and W ¤(t) are the optimal values of demand rate, inventory, and waiting
pool size, respectively. Also, I¤(t)W ¤(t) = 0 for all t ¸ 0:

All proofs are presented in Ho, Savin, and Terwiesch (2001). Proposition 1 suggests
that, when faced with the choice between selling an available unit immediately versus

delaying the sale in order to reduce the degree of future shortages, the ¯rm should always
favor the immediate sale. This result is interesting because an immediate demand ful¯ll-

ment policy will accelerate the new product di®usion process and lead to a higher demand
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peak, resulting in a greater loss of customers. Proposition 1 shows that this negative
e®ect of customer loss due to demand acceleration is outweighed by the time bene¯t of

immediate cash °ow.

This result runs counter to a recent result by Kumar and Swaminathan (2000), who

suggest delayed demand ful¯llment may be optimal in constrained new product di®usion.
They have independently proposed an extension to the Bass di®usion model to include

a supply constraint. Their model minimizes lost sales and assumes that limited supply
always results in an immediate loss of unsatis¯ed demand. We introduce a more general

model of new product di®usion, which, in addition to the lost sales, allows for backlogging
of demand. In addition, the tactical sales planning in our modeling framework is driven

by pro¯t maximization, rather than minimization of lost sales. The use of lifecycle pro¯ts
as the objective results in the optimality of an immediate demand ful¯llment policy.

5 Supply-Constrained New Product Di®usion

In this section, we analyze the di®usion dynamics under the optimal sales plan established

above. Our goal is two-fold. First, we are interested in specifying the demand and sales
dynamics D(t) and S(t) and comparing them to the unconstrained Bass demand dynamics.

Second, we would like to obtain the expression for discounted pro¯ts (6), which we use in
determining the optimal capacity and time to market. Below we provide separate analysis

of the cases of patient (l = 0) and impatient (l > 0) customers. We therefore search
for the solution to the system of di®erential equations (1), (2), (3), (4), (5), and (17)

for particular values of production capacity c and launch time tl subject to the following
initial conditions:

W (0) = S(0) = L(0) = 0; I(0) = ctl (18)

5.1 Patient Customers

In the case of patient customers, all unsatis¯ed orders are backlogged, L(t) = 0. The
product di®usion is described by:

D(t) = S(t) +W (t);

R(t) + ctl = S(t) + I(t);
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dD(t)
dt

= p[m¡D(t)] +
q
m
S(t)[m¡D(t)];

dR(t)
dt

=

8
<
:
c; t < t¤;
dD(t)
dt ; t ¸ t¤:

dS(t)
dt

=

8
>>><
>>>:

c; W (t) > 0;
min

³
c; dD(t)

dt

´
; I(t) = 0;W (t) = 0;

dD(t)
dt ; I(t) > 0:

(19)

with t¤ = min(tjdD(t)
dt < c; d

2D(t)
dt2 < 0): This set of equations is to be solved with the initial

conditions D(0) = S(0) = R(0) = 0.

Below we analyze the new product di®usion process for any chosen capacity c and launch
time tl. In particular, we show that, depending on these two decisions, the di®usion can

exhibit three di®erent regimes. The ¯rst regime is observed when capacity and preproduc-
tion inventory are su±ciently high, and the presence of the limited production capacity is
never felt by the di®usion process. This regime exhibits the classical Bass dynamics. The

second regime is observed when the di®usion process begins with an unconstrained phase,
then enters a constrained phase for a duration, and ¯nishes with a second unconstrained

phase. The third regime is observed when the product is launched immediately (tl = 0)
and the capacity c is lower than the initial demand rate. Consequently, the di®usion

process starts with a constrained phase and switches to an unconstrained phase at a later
point in time.

Regime 1: Unconstrained Di®usion (UD) In this regime, c and tl are high enough

to ensure that W (t) = 0 for every t. Our model then reduces to the classical Bass

dynamics (3) with D(t) = S(t) and D(0) = S(0) = 0: We note that even without
preproduction (tl = 0), the presence of limited supply will not constrain the di®usion

process, provided that the production capacity is su±ciently high. The smallest capacity
level ensuring that the Bass di®usion pattern is preserved is determined as follows. Let us

de¯ne ¿+ = max (¿ jc = dBass(¿)) as the last time when the Bass demand rate equals to c:

c =
pm(q + p)2 exp ((p+ q) ¿+)

(q + p exp ((p + q) ¿+))2 ; (20)

so that

¿+ =
1

p+ q
ln
Ã
q
p

!
+

1
p+ q

ln

0
@

1 +
q

1¡ c
c¤o

1¡
q

1¡ c
c¤o

1
A : (21)
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where c¤o = m(p+q)2

4q is the maximum demand rate under Bass di®usion. We note that

DBass(¿+) = m(q¡p)
2q + m(p+q)

2q

q
1¡ c

c¤o
: Then, Bass di®usion is preserved as long as c¿+ ¸

DBass(¿+), so that the combination of production and inventory is enough to satisfy the

demand at all times. Thus, for tl = 0, the smallest production rate necessary to sustain
unconstrained Bass di®usion, c¤s (p; q;m); is determined as the capacity c satisfying the

equation c¿+ = DBass(¿+) :

c

0
@ 1
p+ q

ln
Ã
q
p

!
+

1
p+ q

ln

0
@

1 +
q

1¡ c
c¤o

1¡
q

1¡ c
c¤o

1
A
1
A =

m(q ¡ p)
2q

+
m(p+ q)

2q

s
1¡ c

c¤o
(22)

It follows that c¤s (p; q;m) < c¤o(p; q;m): since the inventory can be used to satisfy cus-

tomer orders, the unconstrained di®usion can be preserved even if the production capacity
c is smaller than the maximum demand rate in Bass regime. This observation is illustrated

by Figure 3.4

Insert Figure 3

For c < c¤s (p; q;m), the Bass regime can be sustained only if tl > 0; so that there

is additional inventory present. The following statement de¯nes the smallest value of tl
preserving the Bass di®usion regime for each c.

Lemma 1

For a given level of production capacity c, the new product di®usion dynamics follow

the Bass regime if and only if the launch time tl exceeds the critical level t¤l (c), given by

t¤l (c) =

8
>>><
>>>:

0; c ¸ c¤s ;

m(q¡p)
2qc + m(p+q)

2qc

q
1¡ c

c¤o
¡ 1

p+q ln
³
q
p

´
¡ 1

p+q ln

0
@

1+
q

1¡ c
c¤o

1¡
q

1¡ c
c¤o

1
A ; c < c¤s :

(23)

The critical launch time is a non-increasing function of c: @t¤l (c)
@c · 0:

The relation t¤l (c) de¯nes a critical curve in (c; tl) space which separates the regions

of constrained di®usion and Bass di®usion. Managerially, Lemma 1 provides the level of
pre-production that avoids any supply shortages over the entire lifecycle.

Regime 2: Initially Unconstrained Di®usion (IUD) According to Lemma 1, for

any given level of production capacity c, if the launch delay is long enough the di®usion

4To illustrate the shape of this curve, we use the average values of p, q, and m from Bass (1969).
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process will never sense the presence of limited supply of products. Below, we will look
at the case when, for given c, 0 < tl < t¤l (c): In this case, the pre-launch inventory is

insu±cient to support Bass di®usion regime over the entire life-cycle of the product and
therefore a constrained di®usion will be observed.

Because the ¯nite amount of inventory is available at t = 0; it will be possible to sustain

an unconstrained Bass di®usion for a ¯nite duration. Consequently, the di®usion process
goes through three distinct phases: 1) an initial unconstrained Bass di®usion (UP1), 2) a

period of constrained di®usion (CP), and 3) a second unconstrained Bass di®usion (UP2).
Below we provide a detailed analysis of each phase. Our main goal is to characterize the

switching times between these di®usion phases and to derive demand and sales trajectories.

During UP1, the di®usion dynamics are described by

D(t) = S(t) = pm
"

exp ((p+ q) t)¡ 1
q + p exp ((p+ q) t)

#
;

W (t) = 0 (24)

Demand and sales rates are identical, and both are increasing with time: s(t) = d(t);
ds(t)
dt > 0: The UP1 lasts until the combination of production and inventory can no longer

sustain an unconstrained Bass di®usion. Thus, the ending time of this phase, which we
denote as ¿1; is determined as

¿1 = min
Ã
¿ jc (¿ + tl) = m

Ã
1¡ q + p

q + p exp ((p+ q) ¿)

!!
(25)

At t = ¿1, the constrained phase (CP) begins. During the constrained phase, there are

customers waiting (W (t) > 0) and the sales rate dS
dt is equal to capacity c. In this phase,

the solution to (19) subject to initial conditions

D(¿1) = D1 = pm
"

exp ((p+ q) ¿1)¡ 1
q + p exp ((p+ q) ¿1)

#
= c¿1 + ctl;

S(¿1) = D1 (26)

is given by

D(t) = m¡ (m¡D1) exp
"
¡
Ãµ
p+ q

D1

m

¶
(t¡ ¿1) +

qc
m

(t¡ ¿1)2

2

!#
;

S(t) = D1 + c (t¡ ¿1) ;

W (t) = ¡c (t¡ ¿1) + (m¡D1)
Ã

1¡ exp
Ã
¡
µ
p + q

D1

m

¶
(t¡ ¿1)¡ qc (t¡ ¿1)2

2m

!!
(27)
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The constrained phase ends at time ¿2 when, for the ¯rst time after ¿1; there are no
customers waiting:

¿2 = min (tjt > ¿1;W (t) = 0) : (28)

From (27) we see that ¿2 is ¯nite, since lim
t!1

W (t) < 0. We observe that in the constrained

phase, the sales rate s(t) = c is constant and, in general, is not equal to the demand rate
d(t). For t > ¿2, the di®usion continues as the unconstrained Bass process (UP2):

D(t) = S(t) = m¡ (m¡D2) (p+ q)
q ¡ q

mD2 +
³
p+ q

mD2

´
exp ((p+ q) (t¡ ¿2))

;

W (t) = 0; (29)

where D2 = D(¿2): In UP2, demand and sales rates are equal again, and are decreasing

functions of time: s(t) = d(t); ds(t)
dt < 0: We observe that, once Bass dynamics replaces

the \constrained" di®usion, it never `switches' back. Thus, for all t ¸ ¿2; and d(t) remains

less than c.5

Denote by ¿B = 1
p+q ln

³
q
p

´
the time of maximum demand rate for Bass di®usion and

by ¿1 the switching time between the unconstrained (UP1) and constrained (CP) phases

in IUD regime, given by (25). Also, de¯ne d1 =
³
p+ qc(¿1+tl)

m

´
(m¡ c (¿1 + tl)), v =

qc
m(p+qc(¿1+tl)=m)2 : Now we can use (25) and (27) to describe the demand and the sales

processes in this regime:

Lemma 2 (Peak Demand and Sales Rates):

The maximum demand rate in IUD regime occurs at

¿D
max =

8
>>><
>>>:

m
qc

³q
qc
m ¡ p¡ qc

m (¿1 + tl)
´
; ¿1 < m

qc

³q
qc
m ¡ p

´
¡ tl;

¿1; m
qc

³q
qc
m ¡ p

´
¡ tl · ¿1 < ¿B;

¿B; ¿1 ¸ ¿B:

(30)

and is equal to

d(¿D
max) =

8
>>><
>>>:

p
v exp

³
¡1

2

³
1¡ 1

v

´´
d1; ¿1 < m

qc

³q
qc
m ¡ p

´
¡ tl;

d1; m
qc

³q
qc
m ¡ p

´
¡ tl · ¿1 < ¿B;

c¤o; ¿1 ¸ ¿B:

(31)

The maximum sales rate in IUD regime occurs at

5Indeed, from the de¯nition of ¿2, for small ²; it follows that d2D
dt2 (t = ¿2 ¡ ²) < 0, and d2D

dt2 (¿2 + ²) =
d2D
dt2 (¿2 ¡ ²) + q

m (m¡D2)
¡dD
dt (¿2 ¡ ²)¡ c

¢
< d2D

dt2 (¿2 ¡ ²) < 0: However, the Bass curve for d(t) has a
unique maximum, and d2D

dt2 may switch sign only once. Then, from d2D
dt2 (¿2+²) < 0; it follows that d2D

dt2 < 0
for all t ¸ ¿2; and d(t) remains less than c:
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¿S
max =

8
<
:
¿1; ¿1 < ¿B;
¿B; ¿1 ¸ ¿B:

(32)

and is equal to

s(¿S
max) =

8
<
:
d1; ¿1 < ¿B;
c¤o; ¿1 ¸ ¿B:

(33)

Several observations can be made with respect to results of Lemma 2. First of all, for
all values of production capacity ¿S

max · ¿D
max;in particular, for ¿1 < m

qc

³q
qc
m ¡ p

´
¡ tl; ¿S

max

is strictly less then ¿D
max; while for m

qc

³q
qc
m ¡ p

´
¡ tl · ¿1 < ¿B; demand and sales rates

peak at the same time. More so, not only the peak times, but also the peak values for

demand and sales rates coincide under these conditions. Finally, for ¿1 ¸ ¿B; peak times
and peak values for demand and sales rates coincide with those for unconstrained Bass

di®usion. The properties of di®usion as described in the Lemma above are illustrated for
the case of tl = 0 in Figures 4a, 4b, and 4c.

Insert Figure 4a-4c

Regime 3: Initially Constrained Di®usion (ICD). When tl = 0 and the production

capacity c is smaller than the initial rate of the in°ow of potential adopters pm, the
di®usion initially proceeds in a constrained mode (W (t) > 0 for 0 < t < ¿2), later (at

t = ¿2) replaced by unconstrained Bass process (W (t) = 0 for t ¸ ¿2). These two phases
are similar to the last two phases of the di®usion process for pm < c < c¤s(p; q;m): In

particular, during the initial constrained period, the di®usion dynamics is described by
(27) with ¿1 = 0, D1 = 0:

D(t) = m
Ã

1¡ exp
"
¡
Ã
pt+

qc
m
t2

2

!#!
;

S(t) = ct;

W (t) = ¡ct+m
Ã

1¡ exp
Ã
¡
Ã
pt+

qct2

2m

!!!
; (34)

The \switching" time ¿2 is de¯ned, as before, by

¿2 = min (tjt > 0;W (t) = 0) ; (35)

Note that, as in the constrained phase for the IUD regime, the rate of sales s(t) is, in
general, di®erent from the demand rate d(t): Similar to Lemma 1, the demand and the

sales dynamics in ICD regime can be described as follows:
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Lemma 3 (Demand and Sales Dynamics in ICD Regime): De¯ne cS
0 = p2m

q ,

u = c
cS0

. Then the maximum demand rate in ICD regime occurs at

¿D
max =

8
<
:

0; 0 · c < cS
0

1
p

p
u¡1
u ; cS

0 · c < pm
(36)

and is equal to

d(¿D
max) =

8
<
:
pm; 0 · c < cS

0p
u exp

³
¡1

2

³
1¡ 1

u

´´
pm; cS

0 · c < pm
(37)

The maximum sales rate is equal to c.

We note that, unlike the IUD regime, ICD demand and sales rates are very di®erent
from the Bass di®usion rates. This result is the re°ection of the strongly constraining

production capacity in this regime and is illustrated in Figures 3a, 3b, and 3c. In Figure
3a, the demand peak is identical to the Bass demand peak. In Figures 3b-3c, the demand

peak is di®erent from the Bass demand peak. While the demand and sales peaks coincide
in Figure 3b, they do not in Figure 3c. Comparing these di®usion processes, we note that

as the production capacity is decreased, so is the observed peak demand rate.

The properties of the three regimes described above are summarized in Table 2. As
these results indicate, the presence of supply constraints in product di®usion may have
a signi¯cant impact on the position and the heights of the observed peaks in sales and

demand. This in turn has substantial implications for the estimation of the di®usion
parameters from observed sales and demand.

Insert Table 2

5.2 Impatient Customers

In the general case, when waiting for the new product makes some customers revise their
adoption decision (l > 0), sales revenue is not only delayed, but also partially lost. Below

we derive sales and demand trajectories and compute the number of lost customers. The
solution to the di®usion equations (1), (2), (3), (4), (5) and (17) subject to initial conditions

(18) can be described as follows:

Proposition 2: New product di®usion dynamics subject to customer loss exhibits the
same di®usion regimes outlined in Lemmata 1-3. Di®usion dynamics in the unconstrained
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phases remains unchanged, while constrained phases are now described by

D(t; l) = m¡ (m¡D1) exp
"
¡
Ãµ
p+ q

D1

m

¶
(t¡ ¿1) +

qc
m

(t¡ ¿1)2

2

!#
;

S(t; l) = D1 + c (t¡ ¿1) ;

W (t; l) = ¡c
l

(1¡ exp (¡l (t¡ ¿1)))

+ (m¡D1) exp (¡l (t¡ ¿1))
Ã

1¡ exp
Ã
¡
Ã
ep (t¡ ¿1) +

qc (t¡ ¿1)2

2m

!!!

+ (m¡D1) exp (¡l (t¡ ¿1))

£
Ã
l
s

2¼m
qc

exp
Ã
mep2

2qc

!Ã
©
Ãrqc

m
(t¡ ¿1) +

s
m
qc
ep
!
¡ ©

Ãs
m
qc
ep
!!!

L(t; l) = D(t; l)¡ S(t; l)¡W (t; l); (38)

where ©(x) = 1p
2¼

xR
¡1

exp
³
¡s2

2

´
ds is the standard normal CDF, ep = p + qD1

m ¡ l, and

D1=c (¿1 + tl) with ¿1 from (25). The constrained phase ends at

¿2(l) = min (tjt > ¿1;W (t; l) = 0) ; (39)

Proposition 2 provides a complete characterization of the di®usion dynamics under supply
constraint. Figures 3 and 4a-c show that the demand and sales dynamics generally do not

coincide. Note that sales dynamics follow demand dynamics in certain parts of the life
cycle and mirror capacity in the remaining parts.

A nice by-product of the above characterizations is that they enable the ¯rm to track the

fraction of lost customers at any time. This metric can be used by the ¯rm to quantify the
lost market opportunities and to improve capacity planning for future product launches.

In the presence of customer loss, the duration of the constrained phase depends on the

loss parameter l:

Proposition 3: The length of the constrained phase Tc(l) = ¿2(l)¡ ¿1 is the smallest

positive solution to

c
exp(lTc)¡ 1

l
= (m¡D1)

Ã
1¡ exp

Ã
¡
Ã
epTc +

qcT 2
c

2m

!!!

+l (m¡D1)
s

2¼m
qc

exp
Ã
mep2

2qc

!

£
Ã

©
Ãrqc

m
Tc +

s
m
qc
ep
!
¡ ©

Ãs
m
qc
ep
!!

(40)

with D1and ep de¯ned in Proposition 2. Tc(l) is a decreasing function of l:
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@Tc(l)
@l

< 0: (41)

Proposition 3 suggests that the duration of the constrained phase decreases as customer

impatience increases. If customer impatience re°ects the degree of competition in the
industry, the length of the constrained phase decreases with the intensity of competition.

For example, in Jain et al. (1991), customers wait for three years for the installation of
their telephone supplied by a monopolist. Consequently, the length of the constrained

phase is almost the length of the product life cycle. In general, this result indicates
that a higher level of capacity and preproduction may be necessary in more competitive

industries.

In the case of in¯nitely impatient customers, any unsatis¯ed demand is lost, and ¿2 is
the earliest time after ¿1 when the demand rate d(t) becomes equal to sales rate s(t) = c:

Tc(1) = min
Ã
T jT > 0; c = (m¡D1)

µ
p+ q

D1

m
+
qc
m
T
¶

exp
"
¡
Ãµ
p+ q

D1

m

¶
T +

qc
m
T 2

2

!#!
:

(42)

This result implies that the timings and amplitudes of the demand and sales peaks
remain the same as in the case of l = 0, and the results presented in Table 2 are fully

applicable to the case of impatient customers.

The total fraction of customers lost due to waiting may serve as an important measure

of customer service:

Proposition 4: The fraction of customers lost is given by

f(l) =
(m¡D1)

³
1¡ exp

h
¡
³
pTc(l) + qc

m
T 2
c (l)
2

´i´
¡ cTc(l)

m
: (43)

where D1 is de¯ned in the Proposition 2. f(l) is an increasing function of l:

@f
@l

> 0: (44)

For the case of in¯nitely impatient customers, we have

Corollary: The fraction of customers lost for l!1 can be expressed as

f(1) = 1¡ D1

m
¡ cTc(1)

m
¡ c
pm+ qD1 + qcTc(1)

: (45)

Given that in most managerial situations the loss parameter l is not readily available,
the expression provided by this Corollary may be used as an upper bound estimate on the

fraction of customers lost.
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6 Optimal Supply Decisions

The above characterizations of demand and sales dynamics allow us to determine the

optimal capacity and time to market. We ¯rst use these characterizations to develop
expressions for the life-cycle pro¯ts for given values of capacity and time to market. We

then use these expressions for computing the optimal capacity and time to market.

6.1 Life-Cycle Pro¯ts

We ¯rst turn to expression (6) for the life-cycle pro¯ts. For analytical tractability, we
consider the case of constant pro¯t margin: a(t) = a. For given values of production

capacity c and launch time tl; let

¿1 = min
Ã
¿ jc (¿ + tl) = m

Ã
1¡ q + p

q + p exp ((p+ q)¿)

!!
; (46)

D1 = c (¿1 + tl) ; (47)

and
¿2 = ¿1 + Tc (48)

where Tc is the duration of the constrained phase, given by the smallest positive solution
to (40 ): De¯ne

D¤2 = (m¡D1) exp
µ
¡
µµ
p+

q
m
D1

¶
Tc +

qc
2m

T 2
c

¶¶
(49)

and

I (x; y; µ; p; q;m) =
yZ

x

dt exp (¡µt)
Ã
m
Ã

1¡ q + p
q + p exp ((p+ q)t)

!!
: (50)

The following result characterizes the life-cycle pro¯ts in terms of c and tl .

Proposition 5: The life-cycle pro¯ts P (c; tl) can be expressed as

P (c; tl) =
+1Z

0

(as(t)¡ hI(t)) e¡µtdt

= (aµ + h) I (0; ¿1; µ; p; q;m) + ac(¿1 + tl) exp(¡µ¿1)

+
ac
µ

(exp(¡µ¿1)¡ exp(¡µ¿2))¡
hc
³
tl + 1

µ

´

µ
(1¡ exp (¡µ¿1)) +

hc¿1

µ
exp (¡µ¿1)

+aµ exp(¡µ¿2)£ I
µ

0;+1; µ; p+
q
m
c (¿2 + tl) ;

q
m
D¤2;D

¤
2

¶
: (51)
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We observe that in spite of complex appearance, the computation of life-cycle pro¯ts
reduces to evaluating several expressions (including two easily computable one-dimensional

integrals) containing switching times ¿1 and ¿2. Both of these switching times are expressed
through the solutions to simple transcendental equations. Their values are easily computed

numerically. Below we present the results of a numerical study focused on computing the
optimal values of capacity c and time to market tl.

6.2 A Numerical Study

We conduct a numerical study to compute the optimal time to market for a given value of

capacity c. This analysis is particularly relevant for situations where capacity can only be
increased in big chunks (e.g., building an additional production facility). We substitute

equation (51) into equation (9) and use the resulting expression to ¯nd the optimal time
to market tl.

Optimal Time to Market

We de¯ne the relative innovation factor of a di®usion as the ratio of its coe±cient of
innovation (p) and the average coe±cient of innovation reported in Bass (1969) (pave =

0:01632). Similarly, we de¯ne the relative imitation factor of a di®usion as the ratio of
its coe±cient of imitation with respect to its average value (qave = 0:3250). Figures 5a-5b

show how the optimal time to market, tl; varies with the innovation and imitation factors
for three di®erent levels of capacity c = 25%; 50%; 75% of c¤s(p; q;m). The discounting

factor µ and the loss parameter l were set at 0:01 and 0:1 respectively. We observe that for
a ¯xed value of capacity, the optimal time to market increases with both the innovation

and imitation factors. This increase is more dramatic for lower levels of capacity.

Insert Figures 5a-5b here

A comparison of Figures 5a and 5b reveals that the optimal time to market is more
sensitive to imitation than innovation factors. We believe this is due to the nonlinear e®ect

of imitation on the sales process. This result implies that it is more important to obtain
a precise estimate for q than for p. Since prior research suggests that q is more seriously

biased by ill-conditioned data than p (Van den Bulte and Lilian, 1997; Van den Bulte,
2000), the importance of obtaining a precise estimate for q cannot be over-emphasized.

Figure 6 plots topt
l (c) for three di®erent values of inventory holding cost: h = 0:001,

0:01, 0:1. The discounting factor µ and the loss parameter l were set at 0:001 and 0:001;
respectively. We observe that for a ¯xed value of inventory holding cost, the optimal time

to market shortens as the production capacity is increased. Thus, pre-launch inventory
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and production capacity play the roles of substitutes in constrained new product di®usion.
A comparison of the topt

l (c) curves for di®erent values of h shows that, as the value of the

inventory holding cost increases, the optimal time to market decreases for the same level
of production capacity, resulting in lower inventory.

Insert Figure 6 here

Our results suggest that ¯rms may want to substitute capacity with preproduction by
delaying product launch. This is particularly relevant if the capacity is costly to acquire

and if the word-of-mouth e®ect is dominant, leading to a high demand peak. Industry
examples where word-of-mouth e®ect is dominant include high-technology products with

network externalities as well as products with high fashion contents (Van den Bulte, 2000).
The impact of insu±cient preproduction can be dramatic, as illustrated by the recent

introduction of the Sega Dreamcast video game console (Thomke, 1999). Due to failure
to use preproduction to meet initial demand (which led to a slow di®usion of the new

product), Sega was forced to withdraw the product prematurely.

Optimal Capacity Size

If the ¯rm does not want to incur any supply shortage, the minimal level of capacity
without preproduction is c¤s(p; q;m). This value can be used as the upper bound for the

capacity investment under constrained new product di®usion. Once the optimal time to
market is established, (10) can be used to determine the optimal production capacity level

copt: In this numerical study, the values of copt were computed through a one-dimensional
search on a capacity interval [0; c¤s(p; q;m)].

Figure 7 shows how copt varies with the innovation and imitation factors. As shown, the

optimal capacity increases with both the innovation and imitation factors. Interestingly,
the optimal capacity exhibits a clear saturation e®ect as the speed of di®usion increases.

Insert Figures 7a-7b here

Figure 8 plots copt as a function of capacity cost H for three di®erent values of inventory

holding cost: h = 0:001; 0:05; 0:5: As expected, copt is a decreasing function of H. In
particular, high cost of capacity forces the system to operate in the low production capacity

regime, resulting in low pro¯t values. Also, higher inventory costs push the optimal
inventory levels down and result in lower optimal production capacities for the same level

of capacity cost. When H is negligibly small, high inventory cost will result in an optimal
production level that is much lower than c¤s (p; q;m):

Insert Figure 8 here
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Value of Endogenizing Demand

We can determine the value of endogenizing demand by comparing the optimal pro¯ts
with the pro¯ts obtained under the assumption that the demand dynamics follows the

original Bass dynamics. This latter assumption we will label as \Bass heuristic." Under
the Bass heuristic, the life-cycle pro¯ts will still be expressed by (51), however, the values

of ¿2 and D¤2 should be computed di®erently.

Lemma 4: Let DBass(t) = m
³
1¡ q+p

q+p exp((p+q)t)

´
: Then, under the Bass heuristic, the

value of the \switching" time ¿2 is the smallest solution to

DBass(¿2) = exp (¡l (¿2 ¡ ¿1))DBass(¿1) +
µ
m+

c
l

¶
(1¡ exp (¡l (¿2 ¡ ¿1)))

¡lm (p + q)
¿2Z

¿1

exp (l (u¡ ¿2)) du
q + p exp((p+ q)u)

; (52)

such that ¿2 > ¿1, where ¿1 is given by (46). Also, D¤2 = DBass(¿2):

Using (52) and (51), we can compute the overall pro¯ts under the Bass heuristic for any
value of production capacity and establish the value of production capacity copt

Bass which

maximizes (10) computed under Bass heuristic.

We can study the value of endogeneity as a function of the di®usion characteristics.
Figures 9a-9b show the corresponding results. First, the value gained by endogenizing

demand can be signi¯cant. In our numerical example, the saving is 6% if the innovation and
imitation factors are both equal to 1. Second, the ¯gures reveal an interesting qualitative

result. The value of endogeneity ¯rst increases and reaches a peak and then decreases for
both the innovation and imitation factors. For a slow rate of di®usion (small innovation

and imitation factor), the optimal demand dynamics are less likely to be constrained
(they are more like original Bass dynamics), so the value of endogeneity is small. When

the rate of di®usion is large, the product life cycle is compressed and the optimal demand
dynamics are heavily constrained. In such cases, a large fraction of customers will be lost.

Put di®erently, there is no useful information to be gained in the slow di®usion rate and
it is too expensive to act on the useful information when the di®usion rate is high.

Insert Figures 9a-9b here

Figure 10 graphs the relative di®erence in pro¯ts (10) computed at copt and copt
Bass as a

function of capacity maintenance cost H for µ = l = 0:1; h = 0:001 (pro¯t values ¼Bass

under the Bass heuristic were computed by using life-cycle pro¯t expression (51) with
c = copt

Bass and ¿2 and D¤2 given by (48) and (49), respectively).

Insert Figure 10 here

22



We observe that the fraction of pro¯t lost due to the use of exogenous model of demand
dynamics can be rather high for intermediate and high values of capacity costs. In these

high cost scenarios, the di®usion occurs in the regime where the capacity is severely con-
strained. As cost of capacity decreases, the optimal capacity increases so that the degree

of capacity constraint diminishes. As a result, both exogenous and endogenous models of
demand dynamics result in similar optimal capacity levels.

7 Discussion

In this paper we provide a joint analysis of demand and sales dynamics in a constrained
new product di®usion. Our analysis generalizes the Bass model to include backordering

and customer losses. In addition, we determine the di®usion dynamics when the ¯rm
actively chooses supply-related decisions in order to in°uence the di®usion process. We

derive closed-form expressions for the optimal di®usion dynamics (both sales and demand)
and show how the timing and the amplitude of the peak demand rate di®er from that of

the Bass model.

Our results suggest that it is important to include supply constraints in the estimation
of di®usion parameters such as the coe±cients of innovation (p) and imitation (q). An

estimation which assumes the Bass model, despite the occurrence of supply shortages
during life-cycle, is likely to lead to biased estimates of parameters. Consequently, demand

forecasts based on these estimated parameters could be systematically biased as well.

In addition to characterizing the resulting di®usion dynamics in the presence of supply

constraint, we investigate how supply-related decisions such as capacity sizing and time
to market may interact. We show that an increase in the amount of preproduction (by

delaying the product launch) can act as a substitute for capacity. This substitution strat-
egy can be particularly relevant when incremental changes in capacity are prohibitively

expensive.

We also analyze how optimal time to market and capacity vary with the di®usion para-

meters. We show that both the timing and capacity are more sensitive to the coe±cient of
imitation q than to the coe±cient of innovation p, suggesting a need for a precise estimate

for the former. In addition, the optimal capacity exhibits a saturation e®ect as the speed
of the di®usion increases.

Finally, we show that the value of endogenizing demand in determining supply related

decisions can be substantial. This is so because the di®usion process depends on the
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amount of capacity in place. The link between capacity and di®usion dynamics is particu-
larly important when word-of-mouth e®ects create a causal link between the past and the

future sales. Thus, using an exogenous characterization of demand to determine capacity
can be suboptimal in such situations.

Our model allows managers to improve their operations decision making in three ways.
First, our characterizations of the constrained new product di®usion dynamics can be

used to develop more accurate forecasts of demand. This improved accuracy will lead
to more informed decisions, resulting in higher pro¯ts. Second, this paper highlights

the importance and bene¯ts of endogenizing demand. This observation challenges the
standard assumption that demand forecasts merely serve as inputs to operations planning

processes and are not a®ected by supply decisions. Third, our results suggest it is optimal
to preproduce and have an initial inventory serve as a substitute for capacity, if new

product di®usion does not begin before product launch. This may explain why many
high-tech ¯rms choose to preproduce before product launch.

Our model of supply-constrained di®usion opens up several avenues for future research:

² Estimation of di®usion parameters: Our model suggests that estimation of di®usion

parameters p, q and m may be signi¯cantly biased if the supply to the di®usion
process is constrained. The extent to which these di®usion parameters are biased can

be easily studied by simulating sales and demand data from a constrained process and
using usual estimation procedures to estimate them as if the process is unconstrained.

Moreover, the expression for the fraction of customers lost over the life-cycle, f(l),
can be used to estimate the total number of lost customers. We believe this will

make product di®usion models more realistic and hence more applicable.

² Using marketing mix variables to in°uence di®usion: The ¯rm can also use marketing
mix variables such as price and advertising to in°uence the di®usion process. Prior

studies have investigated these e®ects but without considering supply constraint
(e.g., Kalish, 1985). It will be interesting to investigate how the presence of supply

constraint a®ects the determination of these marketing mix variables.

² Waiting time dynamics: Our results can be used in future research related to cus-
tomer service metrics, such as the average lead-time a customer must wait before

she receives the new product.

In conclusion, this paper enables a deeper understanding of the interaction between

supply and demand in the adoption of new products and services. We hope our work will
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be a beginning of a larger stream of work that endogenizes new product demand in order
to enhance operations management decisions.6
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9 Appendix

Proof of Proposition 1.

We will use a Pontryagin's Maximum Principle (Sethi and Thompson, 2000) to prove

the optimality of selling at a maximum possible rate at any given t. The Hamiltonian for
the optimal control problem is given by

H (D;S; d; L;W; I; s; ¸1; ¸2; ¸3; ¸4; ¸5; ¸6;t)

= a(t)e¡µts¡ hI(t)e¡µt + ¸1d+ ¸2s+ ¸3

µ q
m
s (m¡D)¡ d

µ
p+

q
m
S
¶¶

+¸4lW + ¸5 (d¡ s¡ lW ) + ¸6 (r ¡ s) ; (53)

and the system of equations for adjoint variables ¸1(t); :::; ¸6(t) is given by

d¸1

dt
=

q
m
s¤(t)¸3(t);

d¸2

dt
=

q
m
d¤(t)¸3(t);

d¸3

dt
= ¡¸1(t)¡ ¸5(t) +

µ
p+

q
m
S¤(t)

¶
¸3(t);

d¸4

dt
= 0;

d¸5

dt
= ¡¸4(t)l ¡ ¸5(t)l;

d¸6

dt
= he¡µt;

¸1 (+1) = ::: = ¸6 (+1) = 0: (54)

where s¤(t); d¤(t) and S¤(t) are optimal trajectories for sales rate, demand rate, and cumu-

lative sales, respectively. From the last three equations in (54) we immediately get that
¸4(t) = ¸5(t) = 0: On the other hand, ¸6(t) = ¡h

µ e
¡µt: Then, di®erentiating the third

equation with respect to t, and using the ¯rst equation, we get d2¸3
dt2 =

³
p+ q

mS
¤(t)

´
d¸3(t)
dt ;

which, combined with the ¯nal condition d¸3
dt (+1) = 0; gives us d¸3(t)

dt = 0; 8t: This, in a

view of a ¯nal condition ¸3(+1) = 0, means that ¸3(t) = 0; 8t: Finally, using the ¯rst two
equations we obtain that ¸1(t) = ¸2(t) = 0: Thus, all of our adjoint variables but ¸6(t)

are equal to 0, so that the Hamiltonian is simply given by H = a(t)e¡µts¡ h
µ e
¡µt (r ¡ s) :

The optimal control s¤(t) is obtained by maximizing H:

s¤(t) = max
s

ÃÃ
a(t) +

h
µ

!
e¡µts

!
= (maximum possible value at time t) : (55)

At t = 0; both W (t) and I(t) are equal to 0, so s¤(0) = min (r(0) = c; d¤(0) = pm) :

Note that if c > pm; s¤(0) = d¤(0) and W (t) remains 0. On the other hand, I(t) becomes
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positive, i.e., 9t1 > 0 : W (t) = 0 and I(t) > 0; t 2 [0; t1): For this period of time, the
maximum possible sales rate s¤(t); is equal to demand rate d¤(t) = dBass(t): Following

the arguments in Section 3, if c ¸ c¤s(p; q;m); then s¤(t) remains equal to d¤(t) for all
t > 0: If, on the other hand, pm < c < c¤s(p; q;m); there will be a time ¿1 ¸ t1 such that

W (¿1) = I(¿1) = 0 and d¤(¿1) > c: At this moment, again, s¤(¿1) = min (c; d¤(¿1)) = c:
Then, immediately after ¿1; I(t) = 0;W (t) > 0: Under these conditions, the maximum

possible sales rate, s¤(t); remains equal to c; so that I(t) remains 0, and W (t) remains
positive. As was shown in Section 3, there exists ¿2 > ¿1 such that W (¿2) = I(¿2) = 0 and

d¤(¿2) < c; so that s¤(¿2) = d¤(¿2). The optimal sales rate remains equal to the demand
rate for all t > ¿2: Finally, if c < pm; then ¿1 = 0; and the arguments above can be

repeated for this case. Summarizing,

s¤(t) =

8
>>><
>>>:

r(t); W ¤(t) > 0;

min (r(t); d¤(t)) ; I¤(t) = 0;W ¤(t) = 0;
d¤(t); I¤(t) > 0:

It follows from the above analysis that, when s¤(t) is applied, W ¤(t)I¤(t) remains 0 at all
times.

Proof of Lemma 1

First, we observe that for c ¸ c¤s ; the production capacity is high enough to satisfy

the demand for product at any time during the life-cycle. Thus, even in the absence of
pre-production, the limited supply is never felt by the di®usion which proceeds in the Bass

regime. For c < c¤s , in the absence of pre-production, the demand rate will exceed the
supply rate, at which point the Bass di®usion can no longer be sustained. For c < c¤s ; the

Bass regime is preserved as long as c¿+ + ctl ¸ DBass(¿+); so that tl(c) = 1
cDBass(¿+)¡ ¿+,

or

tl(c) =
m(q ¡ p)

2qc
+
m(p+ q)

2qc

s
1¡ c

c¤o
¡ 1
p+ q

ln
Ã
q
p

!
¡ 1
p+ q

ln

0
@

1 +
q

1¡ c
c¤o

1¡
q

1¡ c
c¤o

1
A (56)

In order to establish monotonicity of tl with respect to c, we ¯rst look at the second

and fourth terms in (56). De¯ning the sum of these terms as t; we get

p+ q
2

t = 2
c¤o
c

s
1¡ c

c¤o
¡ ln

0
@

1 +
q

1¡ c
c¤o

1¡
q

1¡ c
c¤o

1
A : (57)

Now, introducing x =
q

1¡ c
c¤o
; we obtain
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@t
@x
» @
@x

µ 2x
1¡ x2 ¡ ln

µ1 + x
1¡ x

¶¶
=

4x2

(1¡ x2)2 > 0;

so that @t
@c < 0 for c < c¤s : Final result is established when we notice that the only di®erence

between the expressions for tl and t relevant for their dependence on c is a term m(q¡p)
2qc

which is the decreasing function of c. The proof is complete after we check that tl is a con-

tinuous function of c: tl(c¤s) = 0:

Proof of Lemma 2

If the capacity and launch delay are high enough to ensure that ¿1 > ¿B, the position

of the demand rate peak coincides with the Bass peak position, since the Bass peak is
preserved in this case. For ¿1 > ¿B; two cases are possible. Formally di®erentiating the

expression for the demand rate for t > ¿1, we obtain that this derivative is equal to 0 at
tmax =

p
qc
m¡p¡

qc
m tl

qc
m

: Then, if ¿1 < tmax, this peak is realized, while for ¿1 > tmax; the demand

rate is a decreasing function of time for t > ¿1: Substituting these values of peak positions
into the expression for the demand rate, we obtain the peak demand rates. Finally, the

positions and the values of peak sales rates are obtained from the same arguments: for
¿1 > ¿B, the production capacity and the initial inventory are high enough to keep these

values unchanged compared to the Bass model. For ¿1 < ¿B; the sales rate drops to c after
¿1, and never grows again. Thus, in this case, the maximum sales rate is achieved at ¿1.

Proof of Lemma 3

In the ICD regime, the demand rate

d(t) = m
µ
p+

qc
m
t
¶

exp
"
¡
Ã
pt+

qc
m
t2

2

!#
; (58)

is a monotonically decreasing function of t for c < p2m=q. On the other hand, for p2m=q ·
c < pm, the demand rate reaches maximum at

p
qc
m¡p
qc
m

. Using these results along with (34),
we obtain (36) and (37).

Proof of Proposition 2

We note that the value of l in°uences only the length of the constrained phase in IUD

and ICD regimes and, consequently, the values of cumulative sales and demand in the
beginning of the last unconstrained phase. In particular, in the constrained phase the

sales and the demand dynamics are described by

S(t; l) = D1 + c(t¡ ¿1); (59)
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and

D(t; l) = m¡ (m¡D1) exp
"
¡
Ãµ
p+ q

D1

m

¶
(t¡ ¿1) +

qc
m

(t¡ ¿1)2

2

!#
; (60)

respectively, where D(¿1) = D1: The equation for the number of waiting customers W (t; l)
becomes

dW
dt

+ lW =
dD
dt
¡ dS
dt

(61)

Solving (61) subject to the initial condition W (¿1; l) = 0, we get

W (t; l) =
tZ

¿1

Ã
dD
du
¡ dS
du

!
exp (¡l(t¡ u)) du: (62)

Substituting (59) and (60) into (62) and performing the integration, we obtain the

expression for W (t; l) presented in (38).

Proof of Proposition 3

(40) is obtained by combining the expression for W (t; l) from (38) with the de¯nition
of ¿2(l). In order to show that Tc(l) is a decreasing function of l, we consider (62) used

in the proof of Proposition 2. We note that Tc(l) can be de¯ned as the smallest positive
solution to

TcZ

0

Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv = 0 (63)

where

D(v) = m¡ (m¡D1) exp
"
¡
Ãµ
p+ q

D1

m

¶
v +

qc
m
v2

2

!#
;

S(v) = D1 + cv: (64)

Di®erentiating (63) with respect to l and using (63), we obtain

@Tc

@l
= ¡

TcR
0
v
³
dS
dv ¡ dD

dv

´
exp (¡l(Tc ¡ v)) dv

³
dS
dv ¡ dD

dv

´
v=Tc

: (65)

As it follows from the de¯nition of Tc, the expression in the denominator of (65) is

positive: at the end of the constrained period the production capacity exceeds the demand
rate. It is easy to show that the numerator of (65) is also positive. From (64) it follows
that

³
dS
dv ¡ dD

dv

´
may change sign only once for v 2 [0;+1]. Then, since

³
dS
dv ¡ dD

dv

´
v=0

< 0,

and
³
dS
dv ¡ dD

dv

´
v=Tc

> 0, there exists 0 < eT < Tc such that dS
dv ¡ dD

dv · 0 for 0 · v · eT ,
dS
dv ¡ dD

dv > 0 for eT · v · Tc, and

eTZ

0

Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv = ¡

TcZ

eT

Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv < 0: (66)
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Thus,

TcZ

0

v
Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv

= T1

eTZ

0

Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv + T2

TcZ

eT

Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv

= (T2 ¡ T1)
TcZ

eT

Ã
dS
dv
¡ dD
dv

!
exp (¡l(Tc ¡ v)) dv > 0; (67)

where 0 < T1 < eT < T2 < Tc. Combining (67) and (65), we get @Tc
@l < 0.

Proof of Proposition 4

In the unconstrained Bass phases of new product di®usion, customers are not lost, and

the cumulative customer loss L¤ is equal to the value of the loss function L(t) at t = ¿2:

Since L(¿2) = D(¿2)¡ S(¿2), then, using (38), we get

L¤ = D(¿2)¡ S(¿2)

= m¡ (m¡D1) exp
"
¡
Ãµ
p+ q

D1

m

¶
(¿2 ¡ ¿1) +

qc
m

(¿2 ¡ ¿1)2

2

!#
¡ (D1 + c(¿2 ¡ ¿1))

= (m¡D1)
Ã

1¡ exp
"
¡
Ãµ
p + q

D1

m

¶
Tc +

qc
m
T 2

c

2

!#!
¡ cTc: (68)

Dividing (68) by the number of potential adopters m, we obtain (43).

Now, since D1 does not depend on l,

@L¤

@l
=
@L¤

@Tc

@Tc

@l
; (69)

where

@L¤

@Tc
= ¡c+ (m¡D1)

µµ
p+ q

D1

m

¶
+
qc
m
Tc

¶
exp

"
¡
Ãµ
p+ q

D1

m

¶
Tc +

qc
m
T 2

c

2

!#

= d(Tc)¡ s(Tc) < 0 (70)

because of the de¯nition of Tc. Combining (70) with @Tc
@l < 0, we get @L¤

@l > 0, and,
therefore,@f@l > 0:

Proof of Proposition 5.

The life-cycle pro¯ts (6) can be expressed as

+1Z

0

(as(t)¡ hI(t)) e¡µtdt = a
+1Z

0

e¡µtdS ¡ h
¿1Z

0

I(t)e¡µtdt
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= aµ
+1Z

0

e¡µtS(t)dt¡ h
¿1Z

0

(c (t+ tl)¡ S(t)) e¡µtdt

= (aµ + h)
¿1Z

0

e¡µtS(t)dt+ aµ
¿2Z

¿1

e¡µtS(t)dt

+aµ
+1Z

¿2

e¡µtS(t)dt¡
hc
³
tl + 1

µ

´

µ
(1¡ exp (¡µ¿1))

+
hc¿1

µ
exp (¡µ¿1)

= (aµ + h) I (0; ¿1; µ; p; q;m) + aµ
¿2Z

¿1

e¡µt (D1 + c(t¡ ¿1)) dt

¡
hc
³
tl + 1

µ

´

µ
(1¡ exp (¡µ¿1)) +

hc¿1

µ
exp (¡µ¿1)

+aµ
+1Z

¿2

e¡µtS(t)dt:

Now,
¿2Z

¿1

e¡µt (D1 + c(t¡ ¿1)) dt =
ctl
µ

(exp(¡µ¿1)¡ exp(¡µ¿2))

+c
exp(¡µ¿1)¡ exp(¡µ¿2)

µ2 + c
¿1 exp(¡µ¿1)¡ ¿2 exp(¡µ¿2)

µ
;

where we have used D1 = c (tl + ¿1) : Also,

+1Z

¿2

e¡µtS(t)dt

= exp(¡µ¿2)

£I(0;+1; µ; p+
q
m

(D1 + c (¿2 ¡ ¿1)) ;
q
m

(m¡D1 ¡ c (¿2 ¡ ¿1)) ;m¡D1 ¡ c (¿2 ¡ ¿1))

+ exp(¡µ¿2)c(¿2 + tl)=µ

= exp(¡µ¿2)

£
µ
c(¿2 + tl)=µ + I(0;+1; µ; p+

q
m
c (¿2 + tl) ;

q
m

(m¡ c (¿2 + tl)) ;m¡ c (¿2 + tl))
¶
;

so that
+1Z

0

(as(t)¡ hI(t)) e¡µtdt

= (aµ + h) I (0; ¿1; µ; p; q;m) + aµ
µctl
µ

(exp(¡µ¿1)¡ exp(¡µ¿2))
¶

+aµ
Ã
c
Ã

exp(¡µ¿1)¡ exp(¡µ¿2)
µ2 +

¿1 exp(¡µ¿1)¡ ¿2 exp(¡µ¿2)
µ

!!
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¡
hc
³
tl + 1

µ

´

µ
(1¡ exp (¡µ¿1)) +

hc¿1

µ
exp (¡µ¿1) + aµ exp(¡µ¿2)

£
µ
c(¿2 + tl)=µ + I(0;+1; µ; p+

q
m
c (¿2 + tl) ;

q
m

(m¡ c (¿2 + tl)) ;m¡ c (¿2 + tl))
¶
:

Proof of Lemma 4

Using (62) from the proof of Proposition 2, we observe that, under the Bass heuristic,

¿2 is the solution to

¿2Z

¿1

dDBass

du
exp (lu) du =

c
l

(exp (l¿2)¡ exp (l¿1)) : (71)

Integrating the left-hand side of (71) by parts, we get

exp (l¿2)DBass(¿2)¡exp (l¿1)DBass(¿1)¡l
¿2Z

¿1

DBass(u) exp (lu) du =
c
l

(exp (l¿2)¡ exp (l¿1)) :

(72)

From this result, using DBass(t) = m
³
1¡ q+p

q+p exp((p+q)t)

´
, we obtain (52).

33



c: production capacity 
tl: launch time 
s(t), S(t): sales rate and cumulative sales at time t 
m: initial size of potential adopter population 
d(t), D(t): demand rate and cumulative demand at time t 
W(t): waiting customer population at time t 
L(t): cumulative number of lost customers at time t 
l: rate of loss of waiting customers 
p, q: coefficients of innovation and imitation 
I(t): inventory at time t 
r(t), R(t): production rate and cumulative production at time t 
a(t): profit margin at time t 
H: variable cost of acquiring and maintaining a unit of capacity 
h: unit inventory holding cost (per unit time) 

Table 1: Summary of model notation 
 
 

Regime Initially Constrained Diffusion 
(ICD) 

Initially Unconstrained Diffusion 
 (IUD) 

Unconstrained 
Diffusion (UD) 

Behavior Capacity is 
constrained 
from the 
beginning; 
sales fall 
with no 
peak 

Capacity is 
constrained right 
from the beginning; 
however, there is 
still a demand peak 

Demand peak is different from the Bass demand 
peak. Demand and sales peak do not coincide 

Demand peak is different from the 
Bass demand peak. Demand and sales 
peak coincide 

Demand peak 
coincides with 
the Bass 
demand peak 

Because of the 
inventory, the 
traditional Bass 
diffusion is 
possible, even if 
c is below the 
demand peak 
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   Define τ1 as given by (20)  Define τ1 as given by (20)  Define cS
* as in 

(17) 
 

 
Table 2: Demand and sales dynamics for the three diffusion regimes  



Demand rate, d(t)

Sales rate, s(t)

Figure 1: The hierarchy of decisions in a constrained new product diffusion
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Figure 2: The four customer groups under constrained
new product diffusion



Figure 3: Unconstrained diffusion (UD) under Make-to-Stock production
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Figure 4a: Initially unconstrained diffusion (IUD), Regime 1
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Figure 4b: Initially unconstrained diffusion (IUD), Regime 2
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Figure 4c: Initially unconstrained diffusion (IUD), Regime 3
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Figure 6: Optimal values of the production delay t as a function of the production 
capacity c for different values of the inventory holding cost h (p = 0.0163221, q = 
0.325044, m = 4.12984x107, θ = 0.001, l = 0.001).
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Fig. 5a. The optimal production delay tl for fixed production capacity as a 
function of innovation parameter p (pave = 0.0163221, q = 0.325044, m = 
4.12984x107, θ = 0.01, l =  0.1, h = 0.001).
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Fig. 5b. The optimal production delay tl for fixed production capacity as a function 
of imitation parameter q (p = 0.0163221, qave = 0.325044, m = 4.12984x107, θ = 
0.01, l =  0.1, h = 0.001).
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Figure 8: Optimal production capacity values copt as a function of the capacity 
holding cost H for different values of the inventory holding cost h (p = 
0.0163221, q = 0.325044, m = 4.12984x107, θ = 0.1, l = 0.1).
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Fig. 7a. Optimal production capacity as a function of innovation parameter p
(pave = 0.0163221, q = 0.325044, m = 4.12984x107 , θ = 0.05, l =  0.1, h = 
0.001, H = 4).
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Fig. 7b. Optimal production capacity as a function of imitation parameter q (p = 
0.0163221, qave = 0.325044, m = 4.12984x107 , θ= 0.05, l =  0.1, h = 0.001, H = 
4).
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Figure 10:  The relative performance gap between the optimal profits and 
profits from the Bass heuristic as a function of the capacity holding cost H (p = 
0.0163221, q = 0.325044, m = 4.12984x107, θ = 0.1, l =  0.1, h = 0.001).
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Fig. 9a. The relative performance gap between the optimal profits and 
profits from the Bass heuristic as a function of innovation parameter p (pave
= 0.0163221, q = 0.325044, m = 4.12984x107, θ = 0.05, l =  0.1, h = 0.001, 
H = 8).
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Fig. 9b. The relative performance gap between the optimal profits and profits 
from the Bass heuristic as a function of imitation parameter q (p = 0.0163221, 
qave = 0.325044, m = 4.12984x107, θ = 0.05, l =  0.1, h = 0.001, H = 8).
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