

Solving Project Scheduling Problems by Minimum Cut
Computations
Citation for published version (APA):

Möhring, R., Schulz, A. S., & Uetz, M. J. (2003). Solving Project Scheduling Problems by Minimum Cut
Computations. Management Science, 49(3), 330-350. https://doi.org/10.1287/mnsc.49.3.330.12737

Document status and date:
Published: 01/01/2003

DOI:
10.1287/mnsc.49.3.330.12737

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 28 Mar. 2024

https://doi.org/10.1287/mnsc.49.3.330.12737
https://doi.org/10.1287/mnsc.49.3.330.12737
https://cris.maastrichtuniversity.nl/en/publications/2820b45f-c31b-42ac-b544-828ce8f15ac3

Solving Project Scheduling Problems by
Minimum Cut Computations

Rolf H. Möhring • Andreas S. Schulz • Frederik Stork • Marc Uetz
Fakultät II, Institut für Mathematik, Technische Universität Berlin, Sekr. MA 6-1,

Straße des 17. Juni 136, D-10623 Berlin, Germany
Sloan School of Management, E53-361, Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, Massachusetts 02139
ILOG Deutschland GmbH, Ober-Eschbacher Straße 109, D-61352 Bad Homburg, Germany

Faculty of Economics and Business Administration, Quantitative Economics, Universiteit Maastricht,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

moehring@math.tu-berlin.de • schulz@mit.edu • fstork@ilog.de • m.uetz@ke.unimaas.nl

In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to
minimize a given objective. In resource-constrained project scheduling, the jobs addition-

ally compete for scarce resources. Due to its universality, the latter problem has a variety of
applications in manufacturing, production planning, project management, and elsewhere. It
is one of the most intractable problems in operations research, and has therefore become a
popular playground for the latest optimization techniques, including virtually all local search
paradigms. We show that a somewhat more classical mathematical programming approach
leads to both competitive feasible solutions and strong lower bounds, within reasonable
computation times. The basic ingredients of our approach are the Lagrangian relaxation
of a time-indexed integer programming formulation and relaxation-based list scheduling,
enriched with a useful idea from recent approximation algorithms for machine scheduling
problems. The efficiency of the algorithm results from the insight that the relaxed problem
can be solved by computing a minimum cut in an appropriately defined directed graph.
Our computational study covers different types of resource-constrained project scheduling
problems, based on several notoriously hard test sets, including practical problem instances
from chemical production planning.
(Project Scheduling; Resource Constraints; Linear Programming Relaxation; Lagrangian Relaxation;
Minimum Cut)

1. Introduction
We consider the following resource-constrained
project scheduling problem. The objective is to min-
imize the project duration (the makespan) subject
to both temporal and resource constraints. Temporal
constraints usually consist of precedence constraints,
that is, certain jobs must be completed before others
can be started. Resource constraints specify that every
job requires capacity of different, renewable resource

types while being processed, and the resource avail-
ability is limited. In extension of this basic model, we
consider problems where the jobs are subject to min-
imal and maximal time lags, or so-called time win-
dows, and may have resource requirements that vary
over time. Not only is the resource-constrained project
scheduling problem strongly NP-hard, but it is also
hard to approximate. For instance, it contains graph
coloring as a special case.

Management Science © 2003 INFORMS
Vol. 49, No. 3, March 2003 pp. 330–350

0025-1909/03/4903/0330$5.00
1526-5501 electronic ISSN

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Following Christofides et al. (1987), we use
Lagrangian relaxation to compute lower bounds on
the minimal project makespan. The relaxation is based
on a well-known time-indexed integer linear pro-
gramming formulation of the problem due to Pritsker
et al. (1969). Relaxing the resource constraints results
in a Lagrangian subproblem that is equivalent to
project scheduling with start-time dependent costs.
The latter problem can be efficiently solved as a min-
imum cut problem in a directed graph. This insight is
the key to the practical efficiency of our algorithms,
which will be demonstrated in our computational
study. In addition, we compute feasible solutions
for resource-constrained project scheduling by using
relaxation-based list-scheduling heuristics. The prior-
ity lists are derived from so-called �-completion times
of the jobs in the solutions of the Lagrangian sub-
problems. Computational experiments show that this
approach is promising in terms of both computa-
tion time and solution quality. Although the paper
focuses on the minimization of the project makespan,
the proposed algorithmic scheme can handle many
other regular, and even nonregular objective func-
tions as well. We evaluate our algorithms on var-
ious benchmark test sets for resource-constrained
project scheduling. On the one hand, these are differ-
ent instance sets from the project scheduling library
PSPLIB (2000), systematically generated by Kolisch
and Sprecher (1996) and Schwindt (1996). On the
other hand, we use 25 labor-constrained instances in
which the jobs have time-varying resource require-
ments; these instances are discussed in Heipcke et al.
(2000). They have been designed so as to resemble
a real-world chemical production process at BASF
AG, Ludwigshafen, Germany; see also Kallrath and
Wilson (1997, Ch. 10.5).
The paper is subdivided into four parts, each of

which starts with a brief summary of relevant related
work. Section 2 presents the reduction of the project
scheduling problem with start-time dependent costs
to a minimum cut problem in a directed graph. The
connection to resource-constrained project scheduling
problems is established in §3, where we discuss the
Lagrangian relaxation approach for computing lower
bounds. The Lagrangian-based list-scheduling heuris-
tics are described in §4. Section 5 presents our com-
putational results, and §6 gives conclusions.

2. Project Scheduling with
Start-Time Dependent Costs

First, we consider the problem to minimize the total
cost of a schedule when the jobs are subject to tem-
poral constraints only (i.e., there are no resource con-
straints), but cause arbitrary, start-time dependent
costs. The generality of this objective function encom-
passes many other, well-known objective functions
like the makespan, the weighted sum of completion
times, the net present value, or earliness-tardiness
costs. In this section, we show that the general project
scheduling problem with start-time dependent costs
and arbitrary precedence constraints, and even min-
imal and maximal time lags, can be solved as a
minimum-cut problem in a directed graph.
Gröflin et al. (1982) as well as Roundy et al.

(1991) discuss project scheduling problems with start-
time dependent costs and special cases of precedence
constraints (out-trees and chains, respectively). They
solve these problems as minimum cost flow problems.
For the special case of unit processing times and ordi-
nary precedence constraints, Chang and Edmonds
(1985) present a reduction to the minimum weight
closure problem in a directed graph, which is well
known to be equivalent to the minimum cut prob-
lem. Chaudhuri et al. (1994) interpret the problem
with unit processing times and arbitrary minimal and
maximal time lags as a stable set problem in a com-
parability graph. Sankaran et al. (1999) show that a
linear programming formulation of the problem with
ordinary precedence constraints has integral basic fea-
sible solutions. One can essentially deduce from all
these papers that project scheduling problems with
start-time dependent costs can be solved in polyno-
mial time. For more details, we refer to Möhring et al.
(2001).
Let us formulate the problem and introduce some

notation. Throughout this paper, we let J = �0� � � � �n�
be a set of jobs with integral, nonnegative processing
times pj , j ∈ J . Jobs 0 and n are assumed to be artificial
jobs indicating the project start and the project com-
pletion, respectively. Their processing time is zero. All
jobs must be scheduled nonpreemptively, and we rep-
resent a schedule by the vector S = �S0� S1� � � � � Sn� of
its start times. We assume that the start times Sj of jobs
are integral, and every job j incurs a cost of wjt if it is

Management Science/Vol. 49, No. 3, March 2003 331

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

started at time t. Here, t= 0�1�2� � � � � T , and T is some
upper bound on the minimal project makespan. Let
dij be the integral length of a time lag �i� j� between
two jobs i� j ∈ J , and let L ⊆ J × J be the set of all
given time lags. We denote the number of time lags
by m �= �L�, and we assume that the temporal con-
straints always refer to the start times of jobs. In other
words, every time-feasible schedule S has to satisfy
Sj ≥ Si +dij , for all �i� j� ∈ L. The objective is to find a
time-feasible schedule of minimal total cost. Because
time lags may be of negative length, time windows
of the form Si + dij ≤ Sj ≤ Si − dji between any two
jobs i and j can be modelled. With this interpretation
in mind, a time lag of negative length is also called
a maximal time lag. Ordinary precedence constraints
can be represented by letting dij = pi if job i must pre-
cede job j . With Bellman’s algorithm (1958), one can
check in O�mn� time whether a system of temporal
constraints has a feasible solution. We shall assume
throughout this paper that a time-feasible schedule
exists.

2.1. Integer Programming Formulation
Before we discuss the transformation of the project
scheduling problem with start-time dependent costs
to a minimum cut problem, we formulate it as an
integer programming problem. This formulation will
be extended and reused later when we study the
Lagrangian relaxation of resource-constrained project
scheduling.
A common way to model scheduling problems as

integer linear programs is to use time-indexed vari-
ables. Pritsker et al. (1969) were presumably the first
to give an integer programming formulation in time-
indexed 0/1-variables of the type

xjt =
{
1 if job j starts at time t�

0 otherwise�

where j ∈ J and t ∈ �0� � � � � T �. This leads to the fol-
lowing integer linear program:

minimize
w�x�=∑

j

∑
t

wjt xjt (1)

subject to ∑
t

xjt = 1� j ∈ J � (2)

T∑
s=t

xis +
t+dij−1∑

s=0

xjs ≤ 1� �i� j� ∈ L� t = 0� � � � � T � (3)

xjt ≥ 0� j ∈ J � t = 0� � � � � T � (4)

xjt integer� j ∈ J � t = 0� � � � � T � (5)

Constraints (2) enforce that each job is started exactly
once. Inequalities (3) represent the temporal con-
straints imposed by the time lags L. Given the tem-
poral constraints and the time horizon T , it is easy
to compute earliest and latest start times for each job
j ∈ J . For convenience of notation, in the above formu-
lation, we assume (without stating it explicitly) that
all variables with time indices outside these bound-
aries are 0 so that no job is started before its earliest
or after its latest start time. Because of Equations (2),
any uniform additive transformation of the weights
wjt only affects the solution value but not the solution
itself. We, therefore, assume without loss of generality
that wjt ≥ 0 for all j ∈ J . Instead of (3), another formu-
lation of the temporal constraints is quite common in
the literature, namely∑

t

t �xjt −xit�≥ dij� �i� j� ∈ L� (6)

This formulation of the temporal constraints is
weaker in the sense that inequalities (2) and (3) imply
(6), even if the variables xjt are allowed to take on
fractional values (see, e.g., Sankaran et al. 1999). While
the original formulation of Pritsker et al. (1969) uses
the weak formulation (6), the strong formulation (3)
was proposed by Christofides et al. (1987).

2.2. Transformation to a Minimum Cut Problem
We now present our main theoretical result, a trans-
formation of the scheduling problem with start-time
dependent costs (1)–(5) to a minimum cut problem
in a directed graph. For the special case of ordi-
nary precedence constraints and unit processing times
(that is, dij = 1 for all �i� j� ∈ L), Chang and Edmonds
(1985) have previously suggested such a transforma-
tion. They show that this problem can be reduced
to the minimum weight closure problem, which is
equivalent to the minimum cut problem (Rhys 1970,
Balinski 1970, Chang and Edmonds 1985). The reduc-
tion we propose is direct, and it typically results in a
sparser minimum cut digraph.

332 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

For each job j , we denote by e�j�≥ 0 its earliest fea-
sible start time, and by l�j� ≤ T − pj its latest feasible
start time. The minimum cut digraph D = �V �A� is
defined as follows.

Nodes. There is one node vjt for every job j and
for all its potential start times t plus the succeed-
ing period. In other words, V �= �vjt � j ∈ J � t =
e�j�� � � � � l�j�+ 1� ∪ �a� b�, where the two additional
nodes a and b represent source and sink of D,
respectively.

Arcs. The arc set A consists of assignment, tempo-
ral, and auxiliary arcs. Assignment arcs �vjt� vj�t+1� are
defined for all j and t, resulting in directed chains
�vj�e�j�� vj�e�j�+1�� �vj�e�j�+1�vj�e�j�+2�� � � � � �vj�l�j�� vj�l�j�+1�

for all j ∈ J . Temporal arcs �vit� vj�t+dij
� are defined for

all time lags �i� j� ∈ L, and for all t, which fulfill both
e�i�+ 1 ≤ t ≤ l�i� and e�j�+ 1 ≤ t+dij ≤ l�j�. Finally, a
set of auxiliary arcs connects the source and the sink
nodes a and b with the remaining network. The auxil-
iary arcs are given by �a�vj�e�j�� and �vj�l�j�+1� b� for all
j ∈ J .

Arc Capacities. The capacity of each assignment
arc �vjt� vj�t+1� is given by c�vjt� vj�t+1� �= wjt , and
the capacities of all temporal and auxiliary arcs are
infinite.
Figure 1 shows an example of the construction of D.

The digraph on the left-hand side represents the rel-
evant data of the underlying example: each node

Figure 1 Example for the Transformation to a Minimum-Cut Problem

0 1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

5

5

-2
a b

p1 = 1

��31� �32�

represents a job, and each arc represents a tempo-
ral constraint. The values for the time lags are d12 =
1�d23 = −2�d34 = 2� and d54 = 3. The job processing
times are p1 = p4 = 1, p2 = p5 = 2, and p3 = 3. The time
horizon is T = 6. Thus, the earliest start times are 0, 1,
0, 3, and 0, and the latest start times are 3, 4, 3, 5, and
2, respectively. (Note that we omit the artificial jobs 0
and n in this example.) The digraph on the right-hand
side of Figure 1 is obtained by the above described
transformation. Arcs marked by a white arrowhead
have infinite capacity.
To formulate our main result, we use the following

notation. Given D = �V �A�, an a-b-cut is an ordered
pair �X�X� of disjoint sets X�X ⊂ V with X ∪X = V ,
and a∈X, b ∈X. We say that an arc �u�v�∈A is in the
cut if u ∈ X and v ∈ X. The capacity c�X�X� of a cut
�X�X� is the sum of the capacities of the arcs in the
cut, c�X�X� �=∑

�u�u�∈�X�X� c�u�u�. A minimum a-b-cut
is an a-b-cut with minimal capacity. Moreover, let us
introduce the following notion.
Definition 1. An a-b-cut of the above defined

digraph D = �V �A� is called an n-cut if for every
job j ∈ J exactly one assignment arc �vjt� vj�t+1� is in
the cut.
The following observation is crucial.

Lemma 1. Let �X�X� be a minimum a-b-cut of D.
Then, there exists an n-cut �X∗�X∗� of D with the same

Management Science/Vol. 49, No. 3, March 2003 333

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

capacity. Moreover, given �X�X�, the n-cut �X∗�X∗� can
be computed in time O�nT �.

Proof. The proof relies on the fact that all arc
capacities of D are nonnegative. Let the minimum cut
�X�X� of D be given, and assume that its capacity
is finite; otherwise, the claim is trivial. Because the
auxiliary arcs have infinite capacity, it follows that for
each job j ∈ J , at least one assignment arc �vjt� vj�t+1�

is in the cut �X�X�. Now assume that �X�X� contains
more than one assignment arc for certain jobs j ∈ J . We
construct an n-cut �X∗�X∗� with the same capacity as
follows. For j ∈ J , let tj be the smallest time index such
that �vj�tj

� vj�tj+1� ∈ �X�X�. Let X∗ �= ⋃
j∈J �vjt � t ≤ tj �

∪ �a� and X∗ �= V \X∗. Clearly, X∗ ⊂ X and the set
of assignment arcs in �X∗�X∗� is a proper subset of
the corresponding set of assignment arcs of �X�X�.
All weights wjt are nonnegative. Hence, it suffices to
prove that �X∗�X∗� does not contain any of the tem-
poral arcs to show that �X∗�X∗� has the same capacity
as �X�X�. Suppose that there exists such a temporal
arc �vis� vjt�∈ �X∗�X∗�, s≤ ti, t > tj . Let k �= t−�tj+1�≥
0. Then, e�j�+ 1 ≤ t− k ≤ l�j�, because t− k = tj + 1,
and all times tj� tj +1� � � � � t are feasible start times for
job j . Moreover, s− k ≤ l�i�, because s− k ≤ s ≤ ti ≤
l�i�. Now, suppose that s− k < e�i�+ 1. This implies
that t− k = s− k+ �t− s� < e�i�+ 1+ �t− s�. But there
is a time lag between i and j of length t− s, hence
e�i�+ �t− s� ≤ e�j�. This yields t− k < e�j�+ 1, a con-
tradiction. Thus, s− k ≥ e�i�+ 1. In other words, we
have vi�s−k ∈ X∗ ⊂ X and vj�t−k = vj�tj+1 ∈ X, and there
exists a temporal arc �vi�s−k� vj�t−k� ∈ �X�X�. Because
temporal arcs have infinite capacity, this is a contra-
diction to the assumption that �X�X� is a minimum
cut of finite capacity. It follows from the definition of
�X∗�X∗� that it can be computed from �X�X� in time
O�nT �. �

The following theorem establishes the connection
between the scheduling problem and the minimum
cut problem.

Theorem 1. There is a one-to-one correspondence
between n-cuts �X�X� of D with finite capacity and fea-
sible solutions x of the project scheduling problem with
start-time dependent costs (1)–(5), namely

xjt =
{
1 if �vjt� vj�t+1� is in the cut �X�X��

0 otherwise.
(7)

The capacity c�X�X� of �X�X� is equal to the value
w�x� of the corresponding scheduling solution x. Moreover,
the capacity c�X�X� of a minimum a-b-cut �X�X� of D

equals the value w�x� of an optimal solution x of (1)–(5).

Theorem 1 is proved with the help of Lemmas 2, 3,
and 4 below. Using Lemma 1, any minimum cut of D
can be turned into a minimum n-cut in O�nT � time.
By Theorem 1, this yields an optimal solution for the
project scheduling problem with start-time dependent
costs. Because the digraph D has O�nT � nodes and
O�mT � arcs, the analysis of the push-relabel-algorithm
for maximum flows by Goldberg and Tarjan (1988)
implies the following result.

Corollary 1. The project scheduling problem with
start-time dependent costs (1)–(5) can be solved in time
O�nmT 2 log�n2 T /m��.

If all weights wjt are integer and W is their
largest absolute value, Goldberg and Rao’s algorithm
(1998) leads to a time complexity of O�min�n2/3mT 5/3�

m3/2T 3/2� log�n2 T /m� logW�. Next, we prove Theo-
rem 1. We start with surjectivity.

Lemma 2. For each feasible solution x of integer pro-
gram (1)–(5), there exists an n-cut �X�X� of D such that
x is the image of �X�X� under the mapping (7). Moreover,
w�x�= c�X�X�.

Proof. Let x be a feasible solution of integer pro-
gram (1)–(5), and let w�x� be its cost. Due to (2), for
each job j ∈ J there exists exactly one xj�tj

= 1, for some
tj . Define a cut in D by setting X �=⋃

j∈J �vjt � t≤tj �∪
�a� and X �= V \X. By construction of D, all arcs
�vj�tj

� vj�tj+1�, j ∈ J , are arcs of the cut �X�X�, and x is
the image of �X�X� under the mapping (7). Moreover,
the sum of the capacities of the assignment arcs in the
cut is w�x�. Now, suppose that there exists another
arc in the cut. This must be a temporal arc �vis� vjt�,
s ≤ ti, t > tj . Thus, there is a time lag �i� j� with length
dij = t− s between jobs i and j . Because tj − ti < t− s,
we obtain a contradiction to the assumption that x

was feasible. Hence, w�x�= c�X�X�. �

The injectivity of the mapping defined by (7) fol-
lows by definition. We have to show, though, that its
images are, in fact, feasible solutions of the integer
program (1)–(5).

334 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Lemma 3. For each finite capacity n-cut �X�X� in D,
the mapping (7) defines a feasible solution x of integer pro-
gram (1)–(5) with w�x�= c�X�X�.

Proof. Because an n-cut contains exactly one
assignment arc for each job j ∈ J , the solution x

defined by (7) fulfills Equations (2). Given that the n-
cut �X�X� has finite capacity, it can easily be shown
that x satisfies the temporal constraints (3) as well.
Finally, it is obvious that w�x�= c�X�X�. �

Lemma 4. The capacity c�X�X� of a minimum a-b-cut
�X�X� of D equals the value w�x� of an optimal solution
x of (1)–(5).

Proof. The claim immediately follows with the
help of Lemmas 1, 2, and 3. �

This concludes the proof of Theorem 1. Note that if
all weights wjt are strictly positive, there is a one-to-
one correspondence between minimum a-b-cuts of D

and optimal solutions of (1)–(5). This can be inferred
from the proof of Lemma 1 because, in this case, any
minimum a-b-cut is already an n-cut. In our com-
putational experiments, arc weights are nonnegative.
Changing them to strictly positive arc weights is not
beneficial.

2.3. Additional Remarks
The project scheduling problem with start-time
dependent costs can be solved in time O�nm� by
longest path calculations (Bellman 1958) if the costs
wjt are either monotonically nondecreasing or mono-
tonically nonincreasing in t for all jobs j ∈ J . Other
special cases can also be solved more efficiently
than the general problem; for instance, the problem
with out-tree precedence constraints can be solved
in O�nT � time (Gröflin et al. 1982). Notice, how-
ever, that with respect to polynomiality results, one
has to distinguish between problems that require an
encoding length of (�nT �, which is the case for the
problem with general costs wjt discussed here, and
problems that allow a more succinct encoding like,
e.g., the net present value problem, or problems with
piecewise linear, convex cost functions. We refer to
Möhring et al. (2001) for a detailed discussion of these
issues.

3. Lower Bounds for
Resource-Constrained
Project Scheduling

We now consider resource-constrained project
scheduling problems: In addition to observing
temporal constraints, jobs need resources when they
are in process. In the model with constant resource
requirements, we are given a finite set R of differ-
ent, renewable resource types, and the capacity of
resource k ∈ R is denoted by Rk. This means that an
amount of Rk units of resource k is available through-
out the project. During its processing, job j requires an
amount of rjk units of resource k (for j ∈ J and k ∈ R).
The jobs have to be scheduled in such a way that the
resource consumption does not exceed the resource
capacity at any time. The objective considered now is
different from the one studied in the previous section.
It is the project makespan, which is the completion
time of the last job. Resource-constrained project
scheduling problems are among the most intractable
combinatorial optimization problems. Their hardness
is perhaps best underlined by the observation that
the node coloring problem in graphs can be formu-
lated as a resource-constrained project scheduling
problem with makespan objective (see Schäffter 1997
and Blazewicz et al. 1983). Thus, as for node coloring,
there is no polynomial-time approximation algorithm
with a performance guarantee of n1−+ for any + > 0
unless NP = ZPP (Feige and Kilian 1998). This also
implies limits on the computation of lower bounds.
Yet, real-world instances still call for good and fast
computable solutions and lower bounds. For surveys
on resource-constrained project scheduling, we refer
to Węglarz (1999) and Brucker et al. (1999).
In fact, there are numerous publications on the com-

putation of lower bounds on the minimal makespan
for resource-constrained project scheduling problems;
let us briefly review those that are most relevant to our
work. For problems with ordinary precedence con-
straints, lower bounds from time-indexed linear pro-
gramming relaxations were analyzed by Christofides
et al. (1987) as well as Cavalcante et al. (2001b). Several
other linear programming-based lower bounds were
proposed by Mingozzi et al. (1998). For problems that
also involve maximal time lags between jobs, lower

Management Science/Vol. 49, No. 3, March 2003 335

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

bounds were computed by Heilmann and Schwindt
(1997), using a destructive approach. The idea is to
reject fictitious upper bounds by proving infeasibil-
ity; this concept was also used for problems with
ordinary precedence constraints by Klein and Scholl
(1999). Based on one of the relaxations by Mingozzi
et al. (1998) and using a destructive approach com-
bined with constraint propagation techniques, Brucker
and Knust (2000) obtain the strongest lower bounds
currently known on one of the benchmark test sets.
Recently, Demassey et al. (2001a, 2001b) have started
further experiments to combine constraint program-
ming and linear programming techniques; while their
initial results do not show a clear trend, they remain
interesting.
In this section, we revert to the Lagrangian relaxa-

tion suggested by Christofides et al. (1987), which
is based on the previously mentioned time-indexed
integer programming formulation of Pritsker et al.
(1969). Appropriate Lagrangian multipliers are calcu-
lated with the help of standard subgradient optimiza-
tion techniques. Because every Lagrangian subprob-
lem can be interpreted as a project scheduling prob-
lem with start-time dependent costs, we solve it by
using the preflow-push algorithm of Goldberg and
Tarjan (1988) in its implementation by Cherkassky
and Goldberg (1997). In our computational study, we
compare the Lagrangian lower bounds as well as
the required computation times to the hitherto best
lower bounds on all benchmark instances. In addi-
tion, we report on our experience with two differ-
ent linear programming relaxations that emerge from
the time-indexed problem formulation. It turns out
that the Lagrangian approach offers a favorable trade-
off between the quality of the lower bounds and the
necessary computational effort. Computational results
on Lagrangian lower bounds are presented in §§5.2
and 5.4.

3.1. Integer Programming Formulation
To model the resource-constrained project scheduling
problem as an integer program, recall that the project
makespan is given by the start time Sn of the artificial
job n. Hence, we obtain

minimize ∑
t

txnt (8)

subject to (2), (3), (4), (5), and

∑
j

rjk

(t∑
s=t−pj+1

xjs

)
≤ Rk� k ∈ R� t = 0� � � � � T � (9)

Inequalities (9) ensure that the jobs simultaneously
processed at time t do not consume more resources
than available. This formulation can easily be gener-
alized to time-dependent, piecewise constant resource
profiles, i.e., Rk = Rk�t� and rjk = rjk�t�, t = 0� � � � � T .
In fact, although we discuss in the following the case
of time-independent resource profiles only, the pre-
sented results carry over to the general case. Compu-
tational results for both models are discussed in §5.

3.2. Lagrangian Relaxation
To compute lower bounds on the optimal objective
value, Christofides et al. (1987) propose to dualize the
resource constraints (9), and introduce nonnegative
Lagrangian multipliers ,= �,tk�, t ∈ �0� � � � � T �, k ∈ R.
One obtains the following Lagrangian subproblem:

minimize

∑
t

txnt+
∑
j

∑
t

(∑
k∈R

rjk

t+pj−1∑
s=t

,sk

)
xjt−

∑
t

∑
k∈R

,tkRk (10)

subject to (2), (3), (4), and (5).

If one introduces weights

wjt �=

∑
k∈R

rjk

t+pj−1∑
s=t

,sk if j �= n�

wjt �= t if j = n�

(11)

the Lagrangian subproblem (10) can be rewritten as

minimize ∑
j

∑
t

wjt xjt −
∑
t

∑
k∈R

,tk Rk (12)

subject to (2), (3), (4), and (5).

Evidently, once the constant term
∑

t

∑
k∈R ,tk Rk

is neglected, (12) is a project scheduling problem
with start-time dependent costs as discussed in §2.
The weights wjt defined in (11) depend on the

336 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

vector of Lagrangian multipliers ,; because these
multipliers are nonnegative, the weights wjt are
nonnegative as well. Note that the above Lagrangian
relaxation of (2), (3), (4), (5), (8), and (9) is not
restricted to makespan minimization, but can as
well be applied to any objective function that can
be expressed linearly in the x-variables. Hence, the
procedure proposed below is applicable to a vari-
ety of scheduling problems, including the minimiza-
tion of the weighted sum of completion times, prob-
lems with earliness-tardiness costs, resource invest-
ment problems (Möhring 1984), and net-present-value
objectives (Grinold 1972). Inspired by a preliminary
version of our paper (Möhring et al. 1999), Drexl and
Kimms (2001), Kimms (2001), and Selle (1999) have
exploited the transformation of Lagrangian subprob-
lems to minimum cut problems for some of the objec-
tive functions mentioned above.

3.3. Lagrangian and Linear
Programming Relaxations

For any vector of nonnegative Lagrangian multipli-
ers , = �,tk�, t = 0� � � � � T , k ∈ R, the optimal solution
value of the Lagrangian subproblem (12) is a lower
bound on the value of an optimal solution of the
resource-constrained project scheduling problem (2),
(3), (4), (5), (8), and (9). If w, denotes the value of
an optimal solution for the Lagrangian subproblem
for a fixed vector of multipliers ,, the Lagrangian dual
is the maximization problem max,≥0 w,. Because the
polytope described by inequalities (2), (3), and (4) is
integral (see Möhring et al. 2001 for references), the
optimal solution for the Lagrangian dual equals the
value of an optimal solution for the linear program-
ming relaxation (2), (3), (4), (8), and (9) (Everett, III
1963). Hence, the optimal solution value for the linear
programming relaxation (2), (3), (4), (8), and (9) is an
upper bound for the solution of the Lagrangian sub-
problem, for any vector of nonnegative multipliers ,.
Our computational evaluation of the two alternative
approaches shows that the Lagrangian dual can typi-
cally be solved more efficiently in practice; we refer to
§5.2 for details. If inequalities (3) are replaced by the
weaker inequalities (6), however, it turns out that the
corresponding linear programming relaxation is gen-
erally much easier to solve. This was also observed

by Cavalcante et al. (2001b). The weaker linear pro-
gramming relaxation may yield worse lower bounds,
though, as is demonstrated in the following example.

Observation 1. For the makespan objective, there exist
instances for which the optimal objective function value
of the strong LP relaxation (2), (3), (4), (8), and (9) is
arbitrarily close to being 3/2 times the optimal objective
function value of the weak LP relaxation (2), (4), (6), (8),
and (9).

Proof. We consider a family of instances with five
jobs with unit processing times, and one resource of
capacity N ∈ �. There are two jobs that consume N

units of the resource; they are forced to start at times 0
and 2, respectively, using corresponding minimal and
maximal time lags. There is one job that requires one
unit of the resource, which is the predecessor of two
more jobs that require N − 1 units each. The optimal
makespan for the weak LP relaxation is 3, whereas
the optimal makespan for the strong LP relaxation is
arbitrarily close to 4�5 for large N . �

Consequently, the Lagrangian relaxation may also
yield stronger bounds than the weak linear program-
ming relaxation. This is, indeed, confirmed by our
computational results presented in §5. Finally, it is
worth mentioning that simple examples show that the
integrality gap, that is, the ratio of the value of an
optimal integral solution to the value of an optimal
fractional solution, is in general unbounded for both
linear programming formulations.

3.4. Strengthening Lower Bounds by
Valid Cuts

In our computations, we have actually used a
strengthened version of the resource constraints, that
replaces (9). The stronger inequalities were proposed
by Christofides et al. (1987) and reinforce that no job
should be scheduled at the same time or after the arti-
ficial job n.

∑
j �=n

rjk

(t∑
s=t−pj+1

xjs

)
≤ Rk

(
1−

t∑
s=0

xns

)
�

k ∈ R� t = 0� � � � � T � (13)

The use of (13) has a nice interpretation in terms
of the Lagrangian relaxation (12), because, instead

Management Science/Vol. 49, No. 3, March 2003 337

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

of wnt = t, it leads to the weights wnt = t +∑T
s=t

∑
k∈R ,sk Rk for the artificial job n. Hence, an early

start of job n is penalized stronger by using inequali-
ties (13) instead of (9).
The Lagrangian approach is capable of incorporat-

ing other families of valid inequalities as well. Once
these valid cuts are dualized, the structure of the
minimum cut digraph D remains the same, only the
corresponding arc capacities wjt change. Hence, for
some of our experiments, we have considered addi-
tional inequalities. Let F ⊆ J be a subset of jobs no
two of which can be simultaneously scheduled, either
because of resource consumption or temporal con-
straints. This leads to the following family of inequal-
ities, which has also been used by Christofides et al.
(1987):

∑
j∈F

(t∑
s=t−pj+1

xjs

)
≤ 1� t = 0� � � � � T � (14)

To compute a collection of such inclusion-maximal
sets F , we use a simple greedy heuristic: Consider the
jobs in some given order, start with F being the first
job in this order, and add job j to F if j cannot be
simultaneously processed with any job that has been
previously added to F . We have used 10 folklore pri-
ority lists of jobs to obtain a collection of inequalities
of this type. The improvements obtained by addition-
ally using inequalities (14) are documented in Tables 1
and 2 in §5.2.

3.5. Lagrangian Multiplier Computation
We use a standard subgradient method to compute
near-optimal vectors of Lagrangian multipliers ,tk, t=
0� � � � � T , k ∈ R, as described, e.g., in Bertsekas (1999,
Ch. 6.3). Given the vector of Lagrangian multipliers
,i of the ith iteration, we define ,i+1 �= /,i + 0i gi2+,
where, as usual, /·2+ denotes the nonnegative part of a
vector. Moreover, gi is a subgradient at ,i of the func-
tion that maps , to the optimal objective value of (12).
If xi is an optimal solution of (12) for the vector ,i of
Lagrangian multipliers, then gi

k�t =
∑

j rjk�
∑t

s=t−pj+1 x
i
js�

−Rk�1−
∑t

s=0 xns�. Eventually, the step size 0i is given
by 0i �= 0 �w∗ −w,i �xi��/��gi��2, where w∗ is an upper
bound for the optimal value of the Lagrangian dual.
The scalar parameter 0 is adjusted as a function of

the lower bound improvement: If the lower bound
does not substantially improve within three iterations,
then 0 is reduced by a factor of 0�8. If no substan-
tial improvement can be achieved within 10 iterations,
we stop the algorithm. The corresponding parameter
adjustments result from our empirical experiments. In
fact, the following refinement proposed by Camerini
et al. (1975) leads to improved convergence. Instead
of moving into the direction of the subgradient gi, we
use ,i+1 �= /,i+0i di2+, where di �= gi if i= 0, and di �=
gi +3gi−1, otherwise. Here, 0 ≤ 3 ≤ 1 is a scalar that
depends on the angle between two successive subgra-
dients.

4. From Minimum Cuts to
Feasible Solutions

Relaxation-based list scheduling algorithms have
recently led to several approximation results for
NP-hard machine scheduling problems. The general
idea is to solve some relaxation of the problem at
hand, e.g., a linear programming relaxation, and then
extract information from this solution to construct
provably good schedules. Scheduling jobs in order
of their so-called �-completion times in the respec-
tive relaxation is one way of doing this. The papers
by Phillips et al. (1998), Hall et al. (1997), Chekuri
et al. (2001), Goemans et al. (2002), and Queyranne
and Schultz (2003) are just some of the references in
this direction. Cavalcante et al. (2001b) and Savels-
bergh et al. (1998) show that such approaches can also
be successfully applied to real-world instances. Like-
wise, our empirical studies in §§5.3 and 5.4 show that
Lagrangian relaxation is not only useful to compute
lower bounds on the project makespan, but is also
suited to compute feasible solutions with relatively
small computational effort. The basic idea is moti-
vated by the intuition that in the course of the sub-
gradient optimization, violations of the resource con-
straints tend to be reduced. Hence, a solution of the
Lagrangian relaxation contains valuable information
on how resource conflicts can be resolved. We take
advantage of this information by using simple list
scheduling algorithms that are based on �-completion
times of the jobs in the solutions of the Lagrangian
subproblems.

338 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

To relate the results obtained to other algorithms
from the literature, we utilize a survey on heuristic
approaches by Kolisch and Hartmann (1999). Therein,
some of the recent local search and list scheduling
heuristics are evaluated with respect to their perfor-
mance on the instances from Kolisch and Sprecher
(1996). This includes a genetic algorithm by Hartmann
(1998, 2002), a simulated annealing algorithm by
Bouleimen and Lecocq (2002), as well as sampling-
based list-scheduling heuristics by Kolisch (1996).
Additionally, we compare our algorithm to an ant
colony optimization algorithm by Merkle et al. (2000),
a tabu search algorithm by Nonobe and Ibaraki (2001)
as well as a constraint propagation-based branch-
and-bound algorithm by Dorndorf et al. (2000a). Our
computational results suggest that the Lagrangian-
based approach is capable of providing solutions
that are comparable to those produced by state-of-
the-art algorithms. Moreover, in contrast to purely
primal heuristics, the Lagrangian approach simulta-
neously provides strong lower bounds. We also eval-
uate our algorithm on the labor-constrained instances
described by Heipcke et al. (2000) and compare it to
previous approaches, including linear programming-
based list-scheduling algorithms by Cavalcante et al.
(2001b), a tabu search algorithm by Cavalcante and de
Souza (1997), recently improved by Cavalcante et al.
(2001a), as well as a constraint propagation-based
branch-and-bound algorithm by Heipcke (1999).

4.1. List Scheduling
The literature typically distinguishes two list-
scheduling rules, which are referred to as the parallel
and the serial scheme, respectively. The parallel
scheme goes back to Graham (1966); it is therefore
also called Graham’s list scheduling, whereas the
serial scheme is sometimes also called job-based list
scheduling. In both cases, a priority list is given that
determines the order in which the jobs are considered.
Parallel list scheduling proceeds over time, starting at
time t = 0. At any time t, as many available jobs as
possible are scheduled, picked in the order given by
the list. If no further job can feasibly be scheduled at
time t, t is augmented to the time of the next event.
(Here, an event is either a completion time Si +pi or a
date Si +dij , �i� j� ∈ L.) Serial list scheduling proceeds

job by job. In the order given by the priority list,
each job is scheduled as early as possible with respect
to the jobs already scheduled. Both list-scheduling
algorithms can be implemented to run in O��R�n2�

time when the resource availability and the resource
consumption of every job is constant (see, e.g., Kolisch
and Hartmann 1999). List-scheduling algorithms can
easily be adapted to handle the case when resource
consumption varies over time, which results in a
higher running time that also accounts for the break-
points in the resource profiles. It is well known that
both list-scheduling rules are incomparable with
respect to the quality of the schedules they produce.
To combine the respective advantages of the parallel
and serial scheme, we have additionally implemented
a serial list-scheduling algorithm with limited look
ahead: Given a natural number l, we compute the
earliest start times of the first l available jobs from the
list, and schedule the job with the smallest earliest
start time. The time complexity of this algorithm is
O�l �R�n2�. Within our computations, we have used
values of 1, 2, 4, and 8 for l.

4.2. List Scheduling by �-Completion Times
Recall that, for any vector of Lagrangian multipliers,
the solution of the Lagrangian relaxation (12) is a time-
feasible schedule that, in general, violates some of the
resource constraints (9). We generate schedules that
are time feasible and resource feasible by applying the
previously described list-scheduling algorithms fed
with priority lists derived from the order of the jobs
in the solution of the Lagrangian relaxation. Given a
time-feasible schedule S and some 0 ≤ � ≤ 1, the �-
completion time of job j in S is Cj��� �= Sj +�pj . If the
temporal constraints are acyclic and if dij ≥max�0� pi−
pj� for all �i� j� ∈ L, which is, e.g., the case for ordi-
nary precedence constraints, then the ordering of the
jobs according to nondecreasing �-completion times
is compatible with the given temporal constraints. It
can therefore be used as a priority list for both list-
scheduling schemes. Furthermore, the number of dif-
ferent priority lists emerging from different values of
� is polynomially bounded.

Observation 2. Let S be a time-feasible schedule, and
let q be the maximal number of parallel jobs in S. The num-

Management Science/Vol. 49, No. 3, March 2003 339

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

ber of different orderings of the jobs according to their �-
completion times for � ∈ /0�12 is, at most, nq+1.

4.3. The Lagrangian Heuristic
Let us now sketch the combined algorithm that com-
putes both lower bounds and feasible solutions. First,
to obtain an initial valid upper bound T on the
makespan, we use the parallel list-scheduling algo-
rithm described in §4.1, on the basis of 10 folklore
priority lists, such as shortest/longest processing time
first, minimum slack first, etc. Then, in each itera-
tion of the subgradient optimization algorithm, a time-
feasible, but likely resource-infeasible schedule is com-
puted by solving the Lagrangian subproblem (12) as
described in §2. The cost of this time-feasible schedule,
in terms of the wjt defined in (11), minus the constant
term in (12), is a valid lower bound for the makespan
of the resource-constrained project scheduling prob-
lem (2), (3), (4), (5), (8), and (9). Using orderings
according to �-completion times of jobs, we then com-
pute feasible solutions by means of the list-scheduling
algorithms described above. In fact, we observed that
the number of combinatorially different values of �
was roughly n/4 for the considered instances. For our
computations, however, we did not evaluate the pri-
ority lists for all relevant values of �, but we only
considered 10 different values for �. According to our
experiments, this gives a reasonable trade-off between
the required computation times and the solution qual-
ity for the instances considered. The stopping criterion
of the algorithm depends on the rate of convergence of
the subgradient optimization procedure as described
in §3. Of course, the algorithm is also aborted as soon
as lower and upper bounds match.

5. Computational Study
The computational study is divided into four parts.
We start by describing the setup as well as the bench-
mark instances. In §5.2, we analyze the Lagrangian
lower bounds, and compare them with the corre-
sponding linear programming relaxations and the cur-
rently best-known lower bounds. Section 5.3 discusses
the computation of feasible solutions. Finally, in §5.4,
we report on our experiments with instances that
mimic a typical chemical production process at BASF
AG, in Ludwigshafen, Germany.

5.1. Setup and Benchmark Instances
Our experiments were conducted on a Sun Ultra 2
with 200 MHz clock pulse and 512 MB of memory,
operating under Solaris 2.7. The code was written
in C++ and compiled with the GNU g++ compiler
version 2.91.66. For solving minimum cut problems,
we used the highest label maximum flow code by
Cherkassky and Goldberg (1997). It was written in
C and compiled with the GNU gcc compiler version
2.91.66. Both compilers used the −O3 optimization
option. To solve the linear programming relaxations,
we used ILOG CPLEX version 6.5.3.
We tested our algorithm using three different types

of benchmark instances. First, we considered Pro-
Gen instances with 60, 90, and 120 jobs. These are
project scheduling problems with ordinary precedence
constraints. They are part of the project scheduling
problem library PSPLIB (2000). These instances have
been generated by Kolisch and Sprecher (1996), sys-
tematically modifying three parameters. The network
complexity reflects the average number of direct suc-
cessors of a job, the resource factor describes the aver-
age number of resource types required by a job, and
the resource strength is a scaling factor that measures
the scarcity of the resources. The resource strength
varies between 0 and 1. If it is equal to 1, the ear-
liest start schedule with respect to the precedence
constraints is already feasible. If it is equal to 0, the
resource availability is minimal in the sense that for
each resource type there exist jobs that require the
full capacity. The library contains 480 instances with
60 and 90 jobs, respectively, and 600 instances with
120 jobs. Each of the instance sets with 60 and 90
jobs contains 120 instances with a resource strength
parameter 1. Hence, we only considered the remain-
ing 360 nontrivial instances for our computations. The
job processing times for all instances are uniformly
distributed between 1 and 10, and the number �R�
of different resource types is four. The library also
contains best-known upper and lower bounds on the
optimal makespan for all instances. The makespan of
the currently best-known solutions for the instances
with 60 jobs varies between 44 and 157, for the
instances with 90 jobs, it is between 60 and 182,
and for the instances with 120 jobs, it is between 66
and 301.

340 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

The ProGen/max instances generated by Schwindt
(1996) additionally feature maximal time lags between
the jobs. We considered 1,059 instances that consist of
100 jobs each. The number �R� of different resource
types is five. The control parameters are similar to
those of the ProGen instances described above, except
that an additional parameter controls the number of
cycles in the digraph of temporal constraints. They are
also part of the library PSPLIB (2000) and benchmark
solutions and lower bounds are maintained at the
library PSPLIB/max (2000). The makespan of the best-
known solutions for these instances varies between
185 and 905. For further details on the test sets, we
refer to Kolisch and Sprecher (1996), Schwindt (1996),
and Kolisch et al. (1999).
We also considered a set of 25 instances that mimic

a labor-constrained scheduling problem at BASF AG.
Two of these instances stem directly from a chemical
production process at BASF AG, and the remaining 23
instances have been generated accordingly (Heipcke
et al. 2000). In these instances, each job consists of
several consecutive production steps, so-called tasks,
which must be executed consecutively without inter-
ruption. Each task requires a certain amount of per-
sonnel, hence jobs have time-varying resource require-
ments. The resource constraints are imposed by a lim-
ited number of available personnel that is constant
over time. More details can be found in Kallrath and
Wilson (1997, Ch. 10.5), Heipcke (1999), and Heipcke
et al. (2000). For these instances, the number of jobs
varies between 21 and 109, and the number of tasks
(that is, the number of breakpoints in the resource pro-
files) varies between 49 and 2,014.

5.2. Lower Bounds by Lagrangian Relaxation
First, we will relate the lower bounds obtained by
Lagrangian relaxation to the currently best-known
lower bounds, based on the ProGen instances from the
PSPLIB (2000). For all results in this section, the upper
bound T for the minimal project makespan is the
currently best-known solution value, taken from the
PSPLIB (2000). These currently best-known bounds
are due to Brucker and Knust (2000); they have been
obtained by a composition of two different algo-
rithms, constraint propagation and a linear program-
ming relaxation of Mingozzi et al. (1998).

The rows in Table 1 refer to the ProGen instances
with 60, 90, and 120 jobs, respectively. The columns
show, respectively, the number of instances considered
(# inst.), the average improvement over the critical
path lower bound in percent (Dev. CP), the average
computation time (CPU), as well as the average num-
ber of iterations of the subgradient optimization algo-
rithm (# it). Unless differently stated, all computation
times are in seconds. The last two columns show the
bounds of Brucker and Knust (2000) in terms of the
deviation from the critical path lower bound and com-
putation times. These bounds are also available from
the PSPLIB (2000), and the computation times have
been taken from Brucker and Knust (2000). All figures
are averaged over the respective number of instances,
and all figures in parentheses denote the correspond-
ing maxima. Notice that we included additional cuts
of the type (14) for these experiments. Obviously, the
bounds by Brucker and Knust (2000) are stronger than
the ones computed by the Lagrangian approach pro-
posed here. However, although their computations
have not been conducted in exactly the same set-
ting, one can infer that the corresponding computa-
tion times are significantly higher, especially for the
large instances with 120 jobs. For these instances, the
Lagrangian approach requires a maximal computation
time of less than 9 minutes (537 seconds), which is in
sharp contrast to the 72 hours needed by Brucker and
Knust (2000).
Table 2 compares the Lagrangian approach to the

corresponding linear programming relaxation (2), (3),
(4), (8), and (9), again based on the ProGen instances

Table 1 Comparison of Quality and Computation Times for Lower
Bounds

Lagrangian LB+ (14) Brucker and Knust

jobs # inst. Dev. CP % CPU # it Dev. CP % CPU∗

60 360 7.46 2.4 49 10.56 6.7
(79) (32) (172) (86) (62)

90 360 7.73 7.2 45 9.6 96
(85) (77) (175) (90) (165)

120 600 19.96 41 86 23.48 355∗∗

(146) (537) (218) (168) (72h)

∗On a Sun Ultra 2 with 167 MHz (Brucker and Knust 2000).
∗∗Refers to 481 inst.; CPU time for all remaining 119 inst.: 72 h.

Management Science/Vol. 49, No. 3, March 2003 341

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Table 2 Lagrangian and Linear Programming Relaxations

Lagrangian LB Strong LP

jobs # inst. Dev. CP % CPU # it Dev. CP % CPU(ps) CPU(ba)

60 360 6.91 2.1 49 7.28 124 203
(79) (30) (168) (82) (1 h) (1.5 h)

90 360 7.52 6.8 44 7.96 245 920
(85) (77) (174) (88) (1.5 h) (8.5 h)

120 600 19.63 39 85 20.51 2,241 —
(146) (475) (220) (155) (23 h) —

with 60, 90, and 120 jobs. The computation times for
the LP relaxation are given for both primal simplex
(ps) and barrier solver (ba). We excluded the addi-
tional inequalities (14) for this experiment, because we
could not solve the strong LP relaxation within days
of computation time for some of the instances. Hence,
the quality of the Lagrangian lower bounds in Table 2
is slightly inferior in comparison to Table 1. Again,
all figures are averaged over the respective number of
instances, and figures in parentheses denote the corre-
sponding maxima. Unless differently stated, all com-
putation times are in seconds.
It turns out that the primal simplex method solves

this linear programming relaxation much faster than
the barrier method does. With the barrier method, the
instances with 120 jobs could not be solved in reason-
able time, hence the data is missing in Table 2. More
importantly, these computation times are, in fact, dras-
tically higher than the computation times required to
(approximately) solve the Lagrangian dual. The gap
between the respective average improvements over
the critical path lower bound is caused by slow con-
vergence of the subgradient optimization algorithm
in some of the cases. We additionally experimented

Table 3 Weak LP Relaxation and Impact of Additional Inequalities (14)

Weak LP Weak LP+ �14�

jobs # inst. Dev. CP % CPU(ps) CPU(ba) Dev. CP % CPU(ps) CPU(ba)

60 360 6.93 4.0 3.2 7.38 8.5 3.7
(82) (279) (27) (82) (490) (28)

90 360 7.67 6.2 6.1 7.82 14 6.8
(88) (80) (36) (88) (362) (37)

120 600 20.10 30 17 20.50 79 19
(155) (448) (134) (155) (2,817) (147)

with linear programming relaxations that use time-
indexed variables zjt =

∑t
s=0 xjt instead. These formula-

tions have also been used by Cavalcante et al. (2001b),
and in some cases, they can be solved faster. How-
ever, on average, the computation times are of the
same order of magnitude as the computation times
required to solve the linear programming relaxations
in x-variables.
Moreover, a comparison of the figures in Tables 1

and 2 shows that the additional inequalities (14) do not
have a substantial effect on the computation times for
the Lagrangian approach. This is due to the fact that
the addition of these inequalities affects the capacities
of the maximum flow networks but not their topol-
ogy. Although the capacities clearly have an impact
on the performance of the preflow-push algorithm, it
turned out that the overall impact on the computation
times was marginal. Using the additional feasible cuts
(14), the quality of the lower bounds can be improved,
though.
Table 3 suggests that almost the same lower bounds

are obtained when using the weak instead of the
strong linear programming relaxation. While the com-
putation times for the instances with 60 and 90 jobs

342 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Table 4 Lagrangian, Weak LP, and Best-Known Lower Bounds for ProGen/Max Instances

Lagrangian LB+ (14) Lagrangian LB Weak LP Best-known LB

jobs # inst. Dev. CP % CPU Dev. CP % CPU Dev. CP % CPU(ps) CPU(ba) Dev. CP %

100 403 6.70 45 6.07 29 5.68 1,923 184 8.64
(57) (538) (57) (424) (62) (61 h) (2.5 h) (65)

are comparable to those of the Lagrangian approach,
the barrier method (ba) requires less computation time
than the Lagrangian approach for the instances with
120 jobs. The averages shown in Table 3, however, do
not tell the full truth about the quality of the lower
bounds. For example, the strong linear program pro-
vides better bounds than the weak linear program for
208 out of the 600 instances with 120 jobs. For 117 of
these 208 instances, the Lagrangian approach achieves
a stronger lower bound than the weak linear program
as well, with a maximum deviation of 3%. For 187
instances, however, the Lagrangian bound is weaker
than the one obtained with the weak linear program.
The results for the ProGen/max instances of the

PSPLIB (2000) are shown in Table 4, again in terms
of deviation from the critical path lower bound
(Dev. CP). We compare the Lagrangian approach
with and without additional inequalities (14) to the
weak LP relaxation. The strong LP relaxation could
not be solved for several of these instances. Again,
the table shows the average and the maximal CPU
time required by the primal simplex method (ps)
and the barrier method (ba). The table also contains
the currently best-known lower bounds, which can
be obtained from PSPLIB/max (2000). These lower
bounds have been computed by means of different
preprocessing algorithms (Heilmann and Schwindt
1997), and as a by-product from branch-and-bound
algorithms (Dorndorf et al. 2000b, Schwindt 1998, Fest
et al. 1998). Computation times are not available. All
figures are averaged over only 403 instances of the test
set, because the optimal solution matches the critical
path lower bound for the remaining 656 instances. Fig-
ures in parentheses denote the corresponding maxima,
and unless differently stated, all computation times
are in seconds.
Using the primal or dual simplex algorithm, we

could not solve the weak LP relaxation with the addi-
tional inequalities (14) due to excessive computation

times. The ILOG CPLEX barrier code, however, was
able to solve the weak LP relaxation with the addi-
tional inequalities (14). The average (maximal) compu-
tation time for the 403 instances, was 411 seconds (2.1
hours), and the average (maximal) improvement over
the critical path lower bound was 6.08% (62%). For 204
out of these 403 instances, the Lagrangian approach
provides stronger lower bounds than the weak lin-
ear program, with a maximum deviation of 6�5%.
Moreover, in comparison to the running times of the
Lagrangian approach, the computation times to solve
the weak LP relaxation are large, even with the barrier
code. Finally, note that for 91 out of the 403 nontrivial
instances, we could improve upon the previously best-
known lower bounds with the Lagrangian approach.
Let us next analyze the dependence of the run-

ning times on the input parameters, based on the Pro-
Gen instance set of the PSPLIB (2000). Because our
approach is based on a time-indexed formulation, it is
not surprising that the time horizon T turns out to be
the dominating parameter. A large time horizon T can
be due to scarce resources, a high resource factor, and
a high network complexity. Figure 2 shows (a) how the
computation time per iteration of the subgradient opti-
mization depends on T , and (b) how the convergence
rate of the subgradient optimization varies with T . The
data is based on the 600 ProGen instances with 120
jobs. The regression curve in Figure 2(a) corresponds
to the theoretical bound of T 2

√
T (we use the highest

label implementation of the preflow-push algorithm).
The fact that the number of iterations increases with
the time horizon, as suggested by Figure 2(b), is not
because a large time horizon necessarily leads to slow
convergence. This is mainly due to the fact that a large
time horizon is correlated with scarce resources. For
such instances, the deviation between the critical path
lower bound and the Lagrangian lower bound is high
(see Figure 3). In this case, the subgradient optimiza-
tion tends to converge slower. In fact, we observed

Management Science/Vol. 49, No. 3, March 2003 343

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Figure 2 CPU Per Iteration and Rate of Convergence Depending on T

C
PU

/it
er
at
io
n
(s
ec
.)

time horizon T

(a)

0.5

1.0

1.5

2.0

2.5

50 100 150 200 250 300

time horizon T

(b)

#
it
er
at
io
ns

50

50

100

100

150

150

200

200 250 300

a correlation of all three parameters (network com-
plexity, resource factor, and resource strength) with
both the computation time per iteration and the con-
vergence rate. However, while the time horizon is
the dominating parameter for the computation time
per iteration, it is the resource strength that is mainly
responsible for the number of required iterations in
the subgradient optimization. (Both parameters are
strongly correlated.)
Figure 3 relates the quality of the Lagrangian lower

bounds to the strong LP bounds, the currently best-
known lower bounds by Brucker and Knust (2000),
and the currently best-known feasible solutions for the
600 ProGen instances with 120 jobs. The figure depicts
the average deviation from the critical path lower
bound (in %), depending on the resource strength

Figure 3 Quality of Lower Bounds and Solutions

de
vi
at
io
n
fr
om

cr
it
.p
at
h
(%

)

0.50.40.30.20.1
0

20

40

60

80

100

resource strength

Lagrangian lower bound

LP lower bound (strong)

Lower bound Brucker & Knust (2000)
Best-known solution (PSPLIB 2000)

Lagrangian solution (Sect. 4)

parameter, and it also contains a plot for the feasible
solutions we computed with the Lagrangian approach
(see §§4 and 5.3).

5.3. Lagrangian-Based Feasible Solutions
In this section, we discuss the performance of the com-
bined algorithm that computes both lower bounds and
feasible solutions as proposed in §4, in comparison to
other algorithms from the literature, based on the Pro-
Gen instances (Kolisch and Sprecher 1996). For results
on the labor-constrained instances from BASF AG, we
refer to §5.4.
The first two columns of Table 5 display the num-

ber of jobs per instance and the number of instances
considered. The table further shows the deviation
of the time horizon T from the critical path lower
bound (Dev. CP). Here, T has been computed using
the parallel list scheduling algorithm with 10 differ-
ent standard priority rules. The next columns display
the average computation times per instance in sec-
onds (CPU), and the corresponding average number
of iterations in the subgradient optimization (# it).
Next, we list the deviations of the solutions from
two different lower bounds: The critical path lower
bound (Dev. CP) and the Lagrangian lower bound
(Dev. LBLR). In addition, the deviation from the cur-
rently best-known solutions (Dev. UBbest) is shown.
The latter are maintained at the library PSPLIB (2000),
and have been obtained by various authors during
the years, using different, partly time-intensive algo-
rithms, including branch-and-bound and several local

344 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Table 5 Quality and Computation Times for Lagrangian-Based Solutions

Time horizon T Lagrangian UB

jobs # inst. Dev. CP % CPU # it Dev. CP % Dev. LBLR % Dev. UBbest % opt. best

60 360 20.8 6.9 53 16.3 7.3 1.0 193 228
(130) (57) (195) (116) (36) (9.0)

90 360 19.6 16.2 49 15.6 6.4 1.0 215 234
(120) (119) (189) (110) (36) (8.1)

120 600 42.1 72.9 95 36.0 11.6 2.4 156 182
(226) (654) (222) (217) (42) (9.5)

search algorithms. Finally, we display the number of
instances that have been optimally solved with our
procedure by computing matching lower and upper
bounds (opt.), as well as the number of instances
where a solution was found that matches the cur-
rently best-known solution (best). We did not improve
upon the currently best-known solutions. Numbers in
parentheses denote the corresponding maxima.
To relate these figures to other algorithms, Table 6

shows the average deviations from the critical path
lower bound for a collection of recent algorithms from
the literature. The figures are based on 600 ProGen
instances with 120 jobs, and have been taken from
the survey paper by Kolisch and Hartmann (1999) as
well as from the papers of Merkle et al. (2000), Dorn-
dorf et al. (2000a) , Hartmann (2002), and Nonobe and
Ibaraki (2001). The local search algorithms by Hart-
mann (1998, 2002), Merkle et al. (2000), Bouleimen and
Lecocq (2002), and the sampling heuristic by Kolisch
(1996) ran for 5,000 iterations each. Computation times
are available for the algorithm of Hartmann (2002),
which requires 14.1 seconds on average (coded in
ANSI C, tested on a Pentium PC at 133 MHz under

Table 6 Comparison of a Collection of Different Algorithms from the
Literature

Av. dev. from
Algorithm type Reference crit. path (in %)

Genetic algorithm Hartmann (2002) 35.4
Tabu search Nonobe and Ibaraki (2001) 35.9
Lagrangian heuristic this paper 36.0
Ant colony optimization Merkle et al. (2000) 36.6
Genetic algorithm Hartmann (1998) 36.7
Constraint propagation Dorndorf et al. (2000a) 37.1
Simulated annealing Bouleimen and Lecocq (2002) 37.7
Sampling Kolisch (1996) 38.7

Linux), and for the algorithm of Merkle et al. (2000)
which requires 25 seconds on average (tested on a Pen-
tium III with 500 MHz). The tabu search algorithm by
Nonobe and Ibaraki (2001) ran for 5,000 iterations as
well, resulting in an average (maximal) computation
time of 110 (576) seconds (coded in C, tested on a Sun
Ultra 2 with 300 MHz). The constraint propagation-
based branch-and-bound algorithm of Dorndorf et al.
(2000a) had an average (maximal) computation time of
205 (300) seconds (coded in C++ using ILOG Solver,
tested on a Pentium Pro/200 under Windows NT 4.0).
The average number of schedules generated within
the Lagrangian approach was 4,750, at an average
(maximal) computation time of 72.9 (654) seconds per
instance. Of course, these figures are not directly com-
parable. Yet, they show that the computational invest-
ment is at least roughly of the same order of magni-
tude for the algorithms mentioned above.
The comparison shows that the Lagrangian-based

approach is competitive with state-of-the-art algo-
rithms. In particular, the solutions of the Lagrangian
relaxation seem to contain valuable information to
construct good feasible schedules. We note that the
respective local search algorithms shown in Table 6
are capable of computing better solutions if more iter-
ations are allowed (see, e.g., Merkle et al. 2000 and
Valls et al. 2001 for benchmark results). However,
the results obtained with the Lagrangian approach
can be improved by straightforward local improve-
ment heuristics. A rudimentary test of such a local
improvement heuristic resulted in an average devia-
tion of 35.3% from the critical path lower bound, at an
average (maximal) computation time of 88 (678) sec-
onds. More importantly, we like to point out that the
Lagrangian approach—in contrast to the local search

Management Science/Vol. 49, No. 3, March 2003 345

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Table 7 Comparison of Linear Programming and Lagrangian Lower Bounds

Weak LP Lagrangian LB

Instance # jobs # tasks CP LB CPU(ps) CPU(ba) LB CPU # it. T

4o_21j_A 21 126 78 80 <1 <1 80 <1 100 82
6o_41j_A 41 295 90 103 5 4 102 4 121 141
8o_63j_A 63 504 174 186 42 18 184 20 148 261
10o_84j_A 84 953 270 379 353 103 378 482 233 636
10o_102j_A 102 1�679 550 622 5�067 557 616 1�447 212 1�166
10o_106j_A 106 1�653 383 600 4�526 709 599 1�714 245 1�094

algorithms—provides both lower and upper bounds
simultaneously, which leads to improved performance
bounds. This can be seen by comparing the devia-
tions from the Lagrangian lower bound (Dev. LBLR)
to the deviations from the critical path lower bound
(Dev. CP) in Table 5.

5.4. Results for Labor-Constrained Instances
Let us finally report on the experiments with the
BASF-type instances described in Heipcke et al.
(2000). For these instances, previous work includes
linear programming relaxations and corresponding
ordering-based heuristics by Cavalcante et al. (2001b),
a tabu search algorithm by Cavalcante and de Souza
(1997), an extended implementation of which has been
recently studied by Cavalcante et al. (2001a), and a
constraint propagation-based branch-and-bound algo-
rithm by Heipcke (1999). Heipcke et al. (2000) give a
brief overview and comparison of results up to the
year 2000. Due to space limitations, we only report
on a sample of 6 of the 25 instances of Heipcke et al.
(2000). Our results on the remaining instances are
reported in Uetz (2001).
Table 7 compares the weak linear programming

relaxation (2), (4), (6), (8), and (9) to results ob-
tained with the Lagrangian approach. Note that the
computation times for solving the strong linear pro-
gramming relaxation (2), (3), (4), (8), and (9) are pro-
hibitively high for the larger of these benchmark
instances, for both primal and dual simplex and the
barrier code of ILOG CPLEX. Hence, we only consid-
ered the weak formulation. Moreover, we did not con-
sider the additional valid inequalities (14), since they
did not lead to better results. The number of itera-
tions of the subgradient optimization procedure was

limited to values between 100 and 300. In Table 7,
the columns # jobs and # tasks show the number of
jobs and tasks of an instance, respectively. (Remember
that each job consists of consecutive tasks, resulting
in a piecewise constant requirement of resources.) CP
is the length of a longest (critical) path in the project
network, and the next columns show the respective
lower bound values obtained with the weak linear
program (2), (4), (6), (8), and (9), and the Lagrangian
relaxation. The corresponding computation times are
again in seconds. We display the computation times
with the primal simplex (ps) as well as the barrier
solver (ba); for the Lagrangian approach, the table also
shows the number of iterations. The last column (col-
umn T) contains the time horizons that have been
used for these experiments, which have been taken
from Cavalcante et al. (2001b). The results suggest that
by using Lagrangian relaxation, one can obtain essen-
tially the same lower bounds as with the weak lin-
ear programming relaxation. In comparison to the pri-
mal simplex algorithm, the computation times with
the Lagrangian approach are significantly smaller. Yet,
the barrier solver of ILOG CPLEX performs even bet-
ter on these instances.
In Table 8, we compare the quality of the feasi-

ble solutions that we obtained with the Lagrangian-
based heuristic to the results with the tabu search
algorithm (Tabu s.) of Cavalcante et al. (2001a), the lin-
ear programming-based heuristics (LP-heur.) of Cav-
alcante et al. (2001b), and the constraint propaga-
tion approach (Const. pr.) by Heipcke (1999). For
the algorithms from the literature, the table shows
the makespan of the best solutions found after sev-
eral computational experiments. For the Lagrangian
approach, we display both first and best solutions

346 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Table 8 Comparison of the Lagrangian-Based Heuristic to Algorithms from the Literature

Lagrangian heuristic
Tabu s. LP-heur. Const. pr.

Instance UBbest UBbest UBbest UBfirst CPU UBbest CPU T

4o_21j_A 82 82 82 82 <1 82 <1 82
6o_41j_A 140 145 152 151 <1 145 5 150
8o_63j_A 259 273 281 283 1 276 34 287
10o_84j_A 634 — 730 731 3 699 668 715
10o_102j_A 1�155 — 1�239 1�228∗ 13 1�206∗ 2�124 1�233
10o_106j_A 1�087 — 1�166 1�143∗ 11 1�122∗ 2�203 1�146

∗ The solution has been obtained using an equivalent “reversed instance.”

found for the better of two experiments (with fixed
parameter setting): One with the original instance and
one with an equivalent instance where all temporal
restrictions have been reversed. This sometimes leads
to better results and has also been exploited in the
computational experiments of all papers mentioned
above. The last column (column T) again shows the
time horizon that has been used. Notice that in this
case, the time horizon has been obtained by parallel
list scheduling using 10 standard priority rules, hence
the time horizons are larger in comparison to those
given in Table 7.
The computation times for the algorithms from the

literature are not directly comparable, and thus not
shown in Table 8. The computation times are moder-
ate for all of the algorithms for small instance sizes
(less than 40 jobs). The tabu search algorithm by Cav-
alcante et al. (2001a) requires up to 2,000 seconds for
the medium-sized instances (40–80 jobs), and between
2,000 and 14,000 seconds for large-sized instances
(more than 80 jobs) on a Sun SPARC 1000. The LP-
based ordering heuristics by Cavalcante et al. (2001b)
require between 43 and 3,575 seconds for the medium-
sized instances on a Pentium II with 200 MHz. Results
for the large-sized instances are not given by Cav-
alcante et al. (2001b) due to excessive computation
times to solve the corresponding LP relaxations. The
computations by Heipcke (1999) have been conducted
on a Sun Ultra 2 with 248 MHz. Her branch-and-
bound algorithm has been aborted on reaching 200,000
nodes in the enumeration tree, resulting in computa-
tion times between 118 and 985 seconds for medium-
sized instances, and between 325 and 1,350 seconds
for the larger-sized instances.

Table 8 suggests that the Lagrangian-based heuristic
is also capable of finding reasonably good solutions
for these notoriously hard instances in reasonable
time. The solutions obtained by list scheduling with
standard priority rules (shown in column T) can be
substantially improved in most cases. For 16 out of the
25 instances from the test set described by Heipcke et
al. (2000), our solutions improve upon those obtained
with constraint propagation by Heipcke (1999). The
tabu search algorithms by Cavalcante et al. (2001a)
obviously yield the currently best-known solutions for
these instances. However, these results are obtained at
the expense of relatively large computation times.

6. Conclusions
We have presented a Lagrangian-based approach to
compute both lower bounds and feasible solutions
for resource-constrained project scheduling problems.
Although the ingredients of our approach are clas-
sic, they are spiced with some ideas which—we
believe—make it attractive. First, there is the insight
that scheduling problems with start-time dependent
costs can be solved fast by minimum cut computa-
tions, which eventually allows one to attack large-scale
problem instances of practical relevance. Second, we
have demonstrated that the solution of the Lagrangian
relaxation, combined with the concept of �-completion
times, gives rise to good schedules. The computa-
tional results show that our approach offers a fair
trade-off between the quality of the lower bounds
and feasible solutions on the one hand and the nec-
essary computational effort on the other hand. The
approach could further benefit from a faster method to
solve the sequence of minimum cut problems. (We cur-
rently solve each minimum cut problem from scratch.)

Management Science/Vol. 49, No. 3, March 2003 347

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

This method should allow an efficient “warm start”
to recompute a minimum cut after the arc capacities
have changed.

Acknowledgments
The authors are grateful to Carola Schaad and Lars Stolletz for
their help in implementing and testing various parts of the algo-
rithms, and to Matthias Müller-Hannemann for helpful discus-
sions on maximum flow codes. This work was done while the
last two authors were with the Technische Universität Berlin;
they received support from the Deutsche Forschungsgemeinschaft
(DFG), Grant Mo 446/3-3, the Bundesministerium für Bildung und
Forschung (bmb+f), Grant 03-MO7TU1-3, and the German-Israeli
Foundation for Scientific Research and Development (GIF), Grant
I 246-304.02/97, respectively. An extended abstract of this work
appeared in the Proceedings of the 7th Annual European Symposium
on Algorithms (Möhring et al. 1999).

References
Balinski, M. 1970. On a selection problem. Management Sci. 17

230–231.
Bellman, R. 1958. On a routing problem. Quart. Appl. Math. 16

87–90.
Bertsekas, D. P. 1999. Nonlinear Programming, 2nd ed. Athena

Scientific, Belmont, MA.
Blazewicz, J., J. K. Lenstra, A. H. G. Rinnooy Kan. 1983. Scheduling

subject to resource constraints: Classification and complexity.
Discrete Appl. Math. 5 11–24.

Bouleimen, K., H. Lecocq. 2002. A new efficient simulated anneal-
ing algorithm for the resource-constrained project scheduling
problem and its multiple modes version. Eur. J. Oper. Res.
Forthcoming.

Brucker, P., A. Drexl, R. H. Möhring, K. Neumann, E. Pesch. 1999.
Resource-constrained project scheduling: Notation, classifica-
tion, models, and methods. Eur. J. Oper. Res. 112 3–41.
, S. Knust. 2000. A linear programming and constraint
propagation-based lower bound for the RCPSP. Eur. J. Oper.
Res. 127 355–362.

Camerini, P. M., L. Fratta, F. Maffioli. 1975. On improving relax-
ation methods by modified gradient techniques. Math. Pro-
gramming Stud. 3 26–34.

Cavalcante, C. C. B., C. C. de Souza. 1997. A tabu search approach
for scheduling problems under labour constraints. Techni-
cal report IC-97-13, Instituto de Computação, UNICAMP,
Campinas, Brazil.
, V. C. Cavalcante, C. C. Ribeiro, C. C. de Souza. 2001a. Parallel
cooperative approaches for the labor constrained scheduling
problem. C. C. Ribeiro, P. Hansen, eds. Essays and Surveys in
Metaheuristics. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 201–226.
, C. C. de Souza, M. W. P. Savelsbergh, Y. Wang, L. A.
Wolsey. 2001b. Scheduling projects with labor constraints. Dis-
crete Appl. Math. 112 27–52.

Chang, G., J. Edmonds. 1985. The poset scheduling problem. Order

2 113–118.

Chaudhuri, S., R. A. Walker, J. E. Mitchell. 1994. Analyzing and

exploiting the structure of the constraints in the ILP approach

to the scheduling problem. IEEE Trans. Very Large Scale Inte-

gration (VLSI) Systems 2 456–471.

Chekuri, C., R. Motwani, B. Natarajan, C. Stein. 2001. Approxima-

tion techniques for average completion time scheduling. SIAM

J. Comput. 31 146–166.

Cherkassky, B. V., A. V. Goldberg. 1997. On implementing the push-

relabel method for the maximum flow problem. Algorithmica

19 390–410.

Christofides, N., R. Alvarez-Valdés, J. M. Tamarit. 1987. Project

scheduling with resource constraints: A branch and bound

approach. Eur. J. Oper. Res. 29 262–273.

Demassey, S., C. Artigues, P. Michelon. 2001a. Comparing lower

bounds for the RCPSP under a hybrid constraint-linear pro-

gramming approach. Proc. Workshop Cooperative Solvers Con-

straint Programming. Paphos, Cyprus, 109–123.

, , . 2001b. Constraint propagation based cut-

ting planes: An application to the resource-constrained

project scheduling problem. Technical report 237, Laboratoire

d’Informatique d’Avignon, Avignon, France.

Dorndorf, U., E. Pesch, T. Phan Huy. 2000a. A branch-and-

bound algorithm for the resource-constrained project schedul-

ing problem. Math. Methods Oper. Res. 52 413–439.

, , . 2000b. A time-oriented branch-and-bound algo-

rithm for resource-constrained project scheduling with gener-

alized precedence constraints. Management Sci. 46 1365–1384.

Drexl, A., A. Kimms. 2001. Optimization guided lower and upper

bounds for the resource investment problem. J. Oper. Res. Soc.

52 340–351.

Everett, H., III. 1963. Generalized Lagrange multiplier method for

solving problems of optimum allocation of resources. Oper.

Res. 11 399–417.

Feige, U., J. Kilian. 1998. Zero-knowledge and the chromatic num-

ber. J. Comput. System Sci. 57 187–199.

Fest, A., R. H. Möhring, F. Stork, M. Uetz. 1998. Resource con-

strained project scheduling with time windows: A branch-

ing scheme based on dynamic release dates. Technical report

596/1998 (revised 1999), Institut für Mathematik, Technische

Universität Berlin, Berlin, Germany.

Goemans, M. X., M. Queyranne, A. S. Schulz, M. Skutella, Y. Wang.

2002. Single machine scheduling with release dates. SIAM

J. Discrete Math. 15 165–192.

Goldberg, A. V., S. Rao. 1998. Beyond the flow decomposition

barrier. J. Assoc. Comput. Mach. 45 783–797.

, R. E. Tarjan. 1988. A new approach to the maximum-flow

problem. J. Assoc. Comput. Mach. 35 921–940.

348 Management Science/Vol. 49, No. 3, March 2003

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

Graham, R. L. 1966. Bounds for certain multiprocessing anomalies.
Bell System Tech. J. 45 1563–1581.

Grinold, R. C. 1972. The payment scheduling problem. Naval Res.
Logist. Quart. 19 123–136.

Gröflin, H., T. M. Liebling, A. Prodon. 1982. Optimal subtrees and
extensions. Ann. Discrete Math. 16 121–127.

Hall, L. A., A. S. Schulz, D. B. Shmoys, J. Wein. 1997. Scheduling
to minimize average completion time: Off-line and on-line
approximation algorithms. Math. Oper. Res. 22 513–544.

Hartmann, S. 1998. A competitive genetic algorithm for resource-
constrained project scheduling. Naval Res. Logist. 45 733–750.
. 2002. A self-adapting genetic algorithm for project scheduling
under resource constraints. Naval Res. Logist. 49 433–448.

Heilmann, R., C. Schwindt. 1997. Lower bounds for RCPSP/max.
Technical report 511, WIOR, Universität Karlsruhe, Karlsruhe,
Germany.

Heipcke, S. 1999. Combined modelling and problem solving
in mathematical programming and constraint programming.
Ph.D. thesis, University of Buckingham, Buckingham, U.K.
, Y. Colombani, C. C. B. Cavalcante, C. C. de Souza. 2000.
Scheduling under labour resource constraints. Constraints 5
415–422.

Kallrath, J., J. M. Wilson. 1997. Business Optimisation Using Mathe-
matical Programming. Macmillan Business, London, U.K.

Kimms, A. 2001. Maximizing the net present value of a project
under resource constraints using a Lagrangian relaxation
based heuristic with tight upper bounds. Ann. Oper. Res. 102
221–236.

Klein, R., A. Scholl. 1999. Computing lower bounds by destructive
improvement: An application to resource-constrained project
scheduling. Eur. J. Oper. Res. 112 322–346.

Kolisch, R. 1996. Serial and parallel resource-constrained project
scheduling methods revisited: Theory and computation. Eur.
J. Oper. Res. 90 320–333.
, S. Hartmann. 1999. Heuristic algorithms for the resource-
constrained project scheduling problem: Classification and
computational analysis. J. Węglarz, ed. Project Scheduling:
Recent Models, Algorithms and Applications. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 147–178.
, A. Sprecher. 1996. PSPLIB—A project scheduling problem
library. Eur. J. Oper. Res. 96 205–216.
, C. Schwindt, A. Sprecher. 1999. Benchmark instances for
project scheduling problems. J. Węglarz, ed. Project Scheduling:
Recent Models, Algorithms and Applications. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 197–212.

Merkle, D., M. Middendorf, H. Schmeck. 2000. Ant colony opti-
mization for resource-constrained project scheduling. Proc.
Genetic Evolutionary Comput. Conf., Las Vegas, NV, 893–900.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, L. Bianco. 1998. An
exact algorithm for the multiple resource constained project
scheduling problem based on a new mathematical formula-
tion. Management Sci. 44 714–729.

Möhring, R. H. 1984. Minimizing costs of resource requirements
subject to a fixed completion time in project networks. Oper.
Res. 32 89–120.

, A. S. Schulz, F. Stork, M. Uetz. 1999. Resource-constrained
project scheduling: Computing lower bounds by solving min-
imum cut problems. J. Nešetřil, ed. Proc. 7th Ann. Eur. Sympos.
Algorithms. Prague, Czech Republic, Lecture Notes in Comput.
Sci. Vol. 1643. Springer-Verlag, Berlin, Germany, 139–150.
, , , . 2001. On project scheduling with irregular
starting time costs. Oper. Res. Lett. 28 149–154.

Nonobe, K., T. Ibaraki. 2001. Formulation and tabu search algo-
rithm for the resource constrained project scheduling prob-
lem. C. C. Ribeiro, P. Hansen, eds. Essays and Surveys in
Metaheuristics. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 557–588.

Phillips, C. A., C. Stein, J. Wein. 1998. Minimizing average comple-
tion time in the presence of release dates. Math. Programming
82 199–223.

Pritsker, A. A. B., L. J. Watters, P. M. Wolfe. 1969. Multi-project
scheduling with limited resources: A zero-one programming
approach. Management Sci. 16 93–108.

PSPLIB. 2000. ftp://ftp.bwl.uni-kiel.de/pub/operations-research/
psplib/HTML/index.html.

PSPLIB/max. 2000. http://www.wior.uni-karlsruhe.de/LS_Neumann/

Forschung/ProGenMax/.

Queyranne, M., A. S. Schulz. 2003. Approximation bounds for
a general class of precedence constrained parallel machine
scheduling problems. SIAM J. Comput. Forthcoming.

Rhys, J. M. W. 1970. A selection problem of shared fixed costs and
network flows. Management Sci. 17 200–207.

Roundy, R. O., W. L. Maxwell, Y. T. Herer, S. R. Tayur, A. W.
Getzler. 1991. A price-directed approach to real-time schedul-
ing of product operations. IIE Trans. 23 149–160.

Sankaran, J. K., D. L. Bricker, S.-H. Juang. 1999. A strong frac-
tional cutting-plane algorithm for resource-constrained project
scheduling. Internat. J. Indust. Engrg. 6 99–111.

Savelsbergh, M. W. P., R. N. Uma, J. Wein. 1998. An experimental
study of LP-based approximation algorithms for scheduling
problems. Proc. Ninth Ann. ACM-SIAM Sympos. Discrete Algo-
rithms. San Francisco, CA, 453–462.

Schafter. M. 1997. Scheduling with respect to forbidden sets.
Discrete Appl. Math. 72 141–154.

Schwindt, C. 1996. Generation of resource constrained project
scheduling problems with minimal and maximal time lags.
Technical report 489, WIOR, Universität Karlsruhe, Karlsruhe,
Germany.
. 1998. A branch-and-bound algorithm for the resource-
constrained project duration problem subject to temporal con-
straints. Technical report 544, WIOR, Universität Karlsruhe,
Karlsruhe, Germany.

Selle, T. 1999. Lower bounds for project scheduling problems with
renewable and cumulative resources. Technical report 573,
WIOR, Universität Karlsruhe, Karlsruhe, Germany.

Uetz, M. 2001. Algorithms for deterministic and stochastic schedul-
ing. Ph.D. thesis, Institut für Mathematik, Technische Univer-

Management Science/Vol. 49, No. 3, March 2003 349

MÖHRING, SCHULZ, STORK, AND UETZ
Project Scheduling by Minimum Cut Computations

sität Berlin, Berlin, Germany. Published by Cuvillier Verlag,
Göttingen, Germany.

Valls, V., F. Ballestín, S. Quintanilla. 2001. A population-based
approach to the resource-constrained project scheduling prob-
lem. Technical report 10-2001, Departamento de Estadís-

tica e Investigación Operativa, Universitat de València,
Spain.

Węglarz, J., ed. 1999. Project Scheduling: Recent Models, Algorithms,
and Applications. Kluwer Academic Publishers, Dordrecht, The
Netherlands.

Accepted by Th. M. Liebling; received July 2000. This paper was with the authors 18 months for 2 revisions.

350 Management Science/Vol. 49, No. 3, March 2003

