
Hard equality constrained integer knapsacks

Karen Aardal∗ Arjen K. Lenstra†

February 17, 2005

Abstract

We consider the following integer feasibility problem: “Given pos-
itive integer numbers a0, a1, . . . , an, with gcd(a1, . . . , an) = 1 and
a = (a1, . . . , an), does there exist a vector x ∈ Z

n

≥0
satisfying

ax = a0?” We prove that if the coefficients a1, . . . , an have a cer-
tain decomposable structure, then the Frobenius number associated
with a1, . . . , an, i.e., the largest value of a0 for which ax = a0 does
not have a nonnegative integer solution, is close to a known upper
bound. In the instances we consider, we take a0 to be the Frobenius
number. Furthermore, we show that the decomposable structure of
a1, . . . , an makes the solution of a lattice reformulation of our problem
almost trivial, since the number of lattice hyperplanes that intersect
the polytope resulting from the reformulation in the direction of the
last coordinate is going to be very small. For branch-and-bound such
instances are difficult to solve, since they are infeasible and have large
values of a0/ai, 1 ≤ i ≤ n. We illustrate our results by some compu-
tational examples.

AMS 2000 Subject classification: Primary: 90C10. Secondary: 45A05,
11Y50.
OR/MS subject classification: Programming, Integer, Theory.
Key words: Lattice basis reduction, Branching on hyperplanes, Frobe-
nius number.

∗Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The

Netherlands.
†Lucent Technologies, Bell Laboratories, 1 North Gate Road, Mendham, NJ 07945-

3104, USA, and Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven,

Postbus 513, 5600 MB Eindhoven, The Netherlands.

1

1 Introduction

1.1 Problem Statement and Summary of Results

Let a0, a1, . . . , an be positive integer numbers with a = (a1, . . . , an),
gcd(a1, . . . , an) = 1 and ai ≤ a0, 1 ≤ i ≤ n, and let

P = {x ∈ R
n : ax = a0,x ≥ 0}. (1)

Consider the following integer programming feasibility problem:

Does P contain an integer vector? (2)

If the components of x may take any integer value, then the problem is easy.
There exists a vector x ∈ Z

n satisfying ax = a0 if and only if a0 is an integer
multiple of gcd(a1, . . . , an). The non-negativity requirement on x makes the
problem NP-complete. Examples of problems related to (2) that are very
hard to solve by standard methods such as branch-and-bound, include some
feasibility problems reported on by Aardal et al. (2000b), certain portfolio
planning problems, Louveaux and Wolsey (2002), and the so-called market
share problems originally described by Williams (1978) and later stated in
a simplified form by Cornuéjols and Dawande (1999). For computational
experiments on the Cornuéjols-Dawande instances see also Aardal et al.
(2000a).

In this study we focus on infeasible instances to rule out that a search
algorithm terminates quickly because it finds a feasible solution by luck.
Infeasible instances with large ratios a0/ai, 1 ≤ i ≤ n, are particularly hard
for branch-and-bound. The largest value of a0 such that the instance of (2)
given by the input a1, . . . , an is infeasible is called the Frobenius number of
a1, . . . , an, denoted by F (a1, . . . , an). In this context we address two topics.
The first one is to provide a sufficient explanation why certain coefficients
a1, . . . , an will yield larger Frobenius numbers than other coefficients of com-
parable sizes. In Theorem 2 we demonstrate that the Frobenius number is
close to a known upper bound if it is possible to decompose the a-coefficients
as ai = Mpi + ri with M,pi ∈ Z>0, ri ∈ Z, and with M large relative to pi

and |ri|.
This leads to the second topic: we give a sufficient condition under which

the lattice reformulation using the projection suggested by Aardal, Hurkens,
and Lenstra (2000b) will work significantly better than branch-and-bound
on instances of type (2). We show that with a0, a1, . . . , an as above, the
reformulation by Aardal, Hurkens, and Lenstra is computationally very easy
to solve in a way similar to Lenstra’s algorithm (H.W. Lenstra, Jr. (1983)),

2

since the number of lattice hyperplanes intersecting the projected polytope
in the direction of the last coordinate is provably small. This is demonstrated
in Section 3.2. In the few existing implementations of integer programming
algorithm based on Lenstra’s idea, typical behavior is that the number of
search nodes is smaller than the number of nodes needed by branch-and-
bound, but every node is more time consuming than a branch-and-bound
node due to the computation of a search direction in which the polytope
is thin. Here, however, evaluating a node can be done quickly since a thin
search direction comes directly from the reformulation. The reformulation,
based on lattice basis reduction, is briefly described in Section 2. We also see
that instances with a-coefficients that decompose in the more general way:
ai = Mpi + Nri with M,N, pi ∈ Z>0, ri ∈ Z, and with |aT | large compared
to |p| and |r|, will be easy to solve after applying the reformulation. Our
results are proved using techniques from algebra and number theory.

To illustrate our observations we report on a small computational study
on infeasible instances. For all the instances we use the Frobenius number
as the right-hand side coefficient a0. About half of the instances have a-
coefficients that decompose as discussed above and in Section 3, and the
others have random coefficients of comparable sizes. All instances have
5 ≤ n ≤ 10. The computational results, presented in Section 4, clearly con-
firm our theoretical observations. The decomposable instances are very hard
to solve by branch-and-bound since the Frobenius number is large, whereas
they become trivial to solve once reformulated since we have a provably thin
search direction. The instances with randomly generated a-coefficients have
much smaller Frobenius numbers, and can be solved reasonably quickly by
branch-and-bound. The number of lattice hyperplanes intersecting the re-
formulated polytope in this case is approximately the same in all coordinate
directions, and larger than in the decomposable case. So, for these instances
the coordinate directions are not the obvious search directions.

Before presenting our results we will, in the following subsection, give a
short description of some known results on integer programming.

1.2 Integer Programming and Branching on Hyperplanes

The polytope P ⊆ R
n as defined by (1) has dimension n − 1, i.e., it is not

full-dimensional. In the full-dimensional case the following is known. Let
S be a full-dimensional polytope in R

n given by integer input. The width
of S along the nonzero vector d is defined as W (S,d) = max{dT x : x ∈
S} − min{dT x : x ∈ S}. Notice that this is different from the definition of
the geometric width of a polytope, see e.g. Grötschel, Lovász, and Schrijver

3

(1988), p 6.
Consider the problem: “Does the polytope S contain a vector x in the

integer lattice Z
n?” Khinchine (1948) proved that if S does not contain a

lattice point, then there exists a nonzero integer vector d such that W (S,d)
is bounded from above by a constant depending only on the dimension.
H. W. Lenstra, Jr., (1983) developed an algorithm, exploiting this fact, for
determining whether a given polytope S contains an integer vector or not.
The algorithm either finds an integer vector in S, or a lattice hyperplane H
such that at most c(n) lattice hyperplanes parallel to H intersect S, where
c(n) is a constant depending only on the dimension n. The intersection of
each lattice hyperplane with S gives rise to a problem of dimension at most
n− 1, and each of these lower-dimensional problems is solved recursively to
determine whether or not S contains an integer vector. One can illustrate
the algorithm by a search tree having at most n levels. The number of nodes
created at each level is bounded from above by a constant depending only
on the dimension at that level. Hence, the algorithm is polynomial for fixed
dimension. A search node is pruned if, in the given direction, no lattice
hyperplane is intersecting the polytope corresponding to the search node.

There are few implementations of algorithms using the idea of branching
on hyperplanes. Gao and Zhang (2002) have implemented Lenstra’s algo-
rithm, and Cook et al. (1993) have implemented a heuristic version of the in-
teger programming algorithm by Lovász and Scarf (1992). The Lovász-Scarf
algorithm is similar in structure to Lenstra’s algorithm. In both implemen-
tations one could observe that the number of search nodes created by the
algorithms was much less than the number of nodes of a branch-and-bound
tree. To compute a good search direction in each node was, however, more
time consuming than computing an LP-relaxation. This raises the question
of understanding if there are situations in which good search directions can
be determined quickly. This is related to one of the results presented in this
paper, as we demonstrate that for a class of very difficult infeasible instances,
i.e., the instances that have decomposable a-coefficients as outlined above,
the projection proposed by Aardal, Hurkens, and Lenstra by itself yields an
integer direction in which the projected polytope is provably thin. In our
case this direction is the last coordinate direction. So, if we apply a tree
search algorithm, such as Lenstra’s, to the projected polytope, but branch
only in coordinate directions in the order of decreasing variable indices, then
the instances become very easy.

4

1.3 Notation

We conclude this section by introducing some definitions and notation. The
Euclidean length of a vector x ∈ R

n is denoted by |x|, the n × n identity
matrix by I(n), the zero p × q matrix by 0(p×q), where the dimensions are
omitted if they are clear from the context.

A set of the form L = L(b1, . . . , bl) = {∑l
i=1 λibi, λi ∈ Z, 1 ≤ i ≤ l},

where b1, . . . , bl are linear independent vectors in R
n, l ≤ n, is called a

lattice. The set of vectors {b1, . . . , bl} is called a lattice basis. A lattice has
two different bases if l = 1, and infinitely many if l > 1.

The determinant d(L) of the lattice L is defined as d(L) =
√

det (BT B),

where B is a basis for L, and where BT denotes the transpose of matrix B.
If the lattice L is full-dimensional we have d(L) = |detB|. The rank of the
lattice L, rk L, is the dimension of the Euclidean vector space spanned by
L. If rkL = 0, then d(L) is defined to be equal to one.

The integer width of a polytope S ⊂ R
n in the non-zero integer direction

d ∈ Z
n is defined as:

WI(S,d) = bmax{dT x : x ∈ S}c − dmin{dT x : x ∈ S}e + 1 .

The number of lattice hyperplanes in the direction d that intersect S is equal
to WI(S,d), so if WI(S,d) = 0, then S does not contain an integer vector.

2 The Reformulation and the Search Algorithm

The starting point of the reformulation of (2) suggested by Aardal, Hurkens,
and Lenstra (2000b) is the sign relaxation XI = {x ∈ Z

n : ax = a0} of
X = {x ∈ Z

n
≥0 : ax = a0}. The relaxation XI can be rewritten as XI =

{x ∈ Z
n : x = xf +B0y, y ∈ Z

n−1}, where xf is an integer vector satisfying
axf = a0, and where B0 is a basis for the lattice L0 = {x ∈ Z

n : ax = 0}.
That is, there is an integer vector xf such that any vector x ∈ XI can be
written as the sum of xf and a vector x0 ∈ L0. Since gcd(a1, . . . , an) = 1
and a0 is integer, we know that a vector xf exists. In the paper by Aardal et
al. it is shown that xf and B0 can conveniently be determined in polynomial
time using lattice basis reduction.

Let
Q = {y ∈ R

n−1 : B0y ≥ −xf} . (3)

Problem (2) can now be restated as:

Does Q contain an integer vector?

5

The polytope Q is a full-dimensional formulation, i.e., the dimension of
Q is n− 1, and as mentioned in the previous section we can apply Lenstra’s
(Lenstra (1983)) algorithm, or any other integer programming algorithm,
to Q. Here we will consider a tree search algorithm inspired by Lenstra’s
algorithm, but using only unit directions in the search.

Let ei, 0 ≤ i ≤ n − 1, be the ith unit vector, let J = {1, 2, . . . , n − 1},
(assume n > 1) and recursively define a feasibility search process Search(S)
on a set S ⊆ J as follows:

Search(S) :

if S is empty, output the point {kj}j∈J , print ‘feasible’ and quit
otherwise:

pick an i ∈ S
compute li = dmin{eT

i y : y ∈ Q, and yj = kj for all j ∈ J \ S}e
compute ui = bmax{eT

i y : y ∈ Q, and yj = kj for all j ∈ J \ S}c
for all integers ki in the interval [li, ui] do Search(S \ {i})

print ‘infeasible’ and quit

The feasibility search is then defined as Search(J). For an example of a
search tree, see Figure 1. Notice that the search tree created in this way is
similar to the search tree of Lenstra’s algorithm in that the number of levels
of the tree is no more than the number of variables in the problem instance,
and that the number of nodes created at a certain level corresponds to the
integer width of the polytope in the chosen search direction.

Here we will investigate a class of instances that are exceptionally hard
to solve by branch-and-bound when using the original formulation in x-
variables, but that become easy to solve when applying the branching scheme
described above to the reformulated problem in y-variables (3). In our
implementation of the algorithm Search(S), we always choose the index i
as the highest index in the set S when we are at the step “pick an index
i ∈ S”, i.e., we branch in the order n − 1, . . . , 1. This is done because the
width in the unit direction en−1 is small for our class of instances as will
be demonstrated in following section. Below we give an example of such an
instance.

Example 1 Let

P = {x ∈ R
3 : 12223x1 + 12224x2 + 36671x3 = 149389505,x ≥ 0} .

6

y7 = 0y7 = −1

y6 = 63
y6 = 64 y6 = 65

y5 = 222

l = −1, u = 0

l > ul = 63, u = 65

l > u l > u

l > u

l = u =
222

Figure 1: The search tree for instance prob2 (cf. Section 4)

A vector xf and a basis B0 for this instance is:

xf =





−4075
4074
4074



 B0 =





−1 14261
−2 −8149

1 −2037



 .

The polytope Q is:

Q = {y ∈ R
2 : −y1+14261y2 ≥ 4075, −2y1−8149y2 ≥ −4074, y1−2037y2 ≥ −4074} .

Moreover, we have WI(Q,e1) = 4752 and WI(Q,e2) = 0, so if we consider
the search direction e2 first, we can immediately conclude that Q ∩ Z

2 = ∅.
If we solve the formulation in x-variables by branch-and-bound with ob-

jective function 0 using the default settings of CPLEX 6.5, it takes 1,262,532
search nodes to verify infeasibility. 2

An instance such as the one given in Example 1 may seem quite artificial.
However, some of the instances reported on by Cornuéjols and Dawande
(1999), Aardal et al. (2000a,b), and by Louveaux and Wolsey (2000) stem
from applications and show a similar behavior. From a practical point of
view it is therefore relevant to try to explain this behavior.

3 The Class of Instances

In the results presented in this section we will make some, or all, of the
assumptions on the input vector a = (a1, . . . , an) that are presented below.

7

1. ai ∈ Z, 1 ≤ i ≤ n.

2. 1 < a1 < a2 < · · · < an .

3. gcd(a1, . . . , an) = 1 .

4. a = Mp + r with M, pi ∈ Z>0, ri ∈ Z, |ri| < M, 1 ≤ i ≤ n, and
pi = 1 for at least one i.

5. The Hermite normal form of

P =

(

p1 p2 · · · pn

r1 r2 · · · rn

)

(4)

is equal to
(

I(2) 02×(n−2)
)

.

In Assumption 4 we include pi = 1 for at least one i, as otherwise we
could multiply the current M by mini{pi} to obtain a shorter vector p.
Assumption 5 implies that gcd(r1, . . . , rn) = 1, so even if we could find a
representation of the vector a as a = M ′p′ + Nr′, with a shorter vector r′

than in the case of the representation a = Mp+r satisfying Assumptions 1–
5, Theorem 2 does not apply to that case. Assumption 5 also implies that
the system of equations

px = b1

rx = b2

has an integer solution x for any integers b1 and b2. This will be used in the
proof of Theorem 2.

3.1 The Coefficient a0

The polytope P as given in (1) is an n-simplex. An instance of problem (2)
is particularly hard to solve by branch-and-bound if it is infeasible and if
the intersection points of the n-simplex with the coordinate axes have large
values. Branch-and-bound will then be forced to enumerate many of the
possible combinations of x1, . . . , xn with 0 ≤ xi ≤ a0/ai. Since the instance
is infeasible we cannot “get lucky” in our search, which may happen if the
instance is feasible, and if we by chance have chosen an objective function
that takes us to a feasible solution quickly. Example 1 of the previous section
illustrates such a hard infeasible instance. Similar, but larger, instances

8

are virtually impossible to solve using a state-of-the-art branch-and-bound
algorithm such as implemented in CPLEX.

To create infeasible instances with maximum values of a0/ai we choose
a0 as the Frobenius number F (a1, . . . , an). Computing the Frobenius num-
ber for given natural numbers a1, . . . , an with gcd(a1, . . . , an) = 1 is NP-
hard (Ramı́rez Alfonśın (1996)). In Appendix 1 we discuss the algorithm
that we used in our computational study. For n = 2 it is known that
F (a1, a2) = a1a2 − a1 − a2. (In “Mathematics from the Educational Times,
with Additional Papers and Solutions”, Sylvester published the problem of
proving that if a1 and a2 are relatively prime integers, then there are ex-
actly (a1 − 1)(a2 − 1)/2 non-negative integers α less than a1a2 − a1 − a2

for which a1x1 + a2x2 = α does not have a non-negative integer solution.
The solution to this problem was provided by Curran Sharp in volume 41
(1884) of the journal. The precise reference is Sylvester and Curran Sharp
(1884). See also Schrijver (1986) p. 376.) For n = 3 the Frobenius number
can be computed in polynomial time, see Selmer and Beyer (1978), Rödseth
(1978), and Greenberg (1988). Kannan (1992) developed a polynomial time
algorithm for computing the Frobenius number for every fixed n. His al-
gorithm is based on the relation between the Frobenius number and the
covering radius of a certain polytope. Assume a1 ≤ a2 ≤ · · · ≤ an. For
n > 3, the value a1a2 − a1 − a2 is an upper bound on F (a1, . . . , an) since it
is a valid upper bound for the case n = 2, and since the Frobenius number
can only drop if another term ajxj is added to the Diophantine equation.
Other upper bounds on F (a1, . . . , an), and the related case of determining
the largest number a0 such that ax = a0 does not have a solution in positive
integers, can be found in the papers by Brauer (1942), Erdős and Graham
(1972) and Selmer (1977).

Below we determine a lower bound on F (a1, . . . , an). We express the
lower bound as a function of p, r and M . The highest order term in M
is quadratic in M , so for large values of M , and relatively small values of
pi and |ri|, this term will be dominant. Before presenting the result on the
lower bound, we state a lemma.

Lemma 1 Assume a = Mp + r satisfies Assumptions 1–5. Let C denote
the orthogonal complement of the hyperplane spanned by p and r. We denote
the lattice C ∩ Z

n by LC . Then, LC = L0 ∩ C, and rk LC = n − 2.

Proof: C = {x ∈ R
n : px = 0, rx = 0} is a subspace of B = {x ∈ R

n :
ax = 0}.

The fact that x ∈ LC implies that x ∈ C and x ∈ Z
n by the definition

of LC . Then, in turn, x ∈ C implies that x ∈ B since C is a subspace of

9

B. Hence, x ∈ B and x ∈ Z
n, which implies that x ∈ L0. Since x ∈ C and

x ∈ L0, we have x ∈ L0 ∩ C.
If the vector x ∈ L0 ∩ C, then x ∈ Z

n as x ∈ L0. From x ∈ C and
x ∈ Z

n it follows that x ∈ LC .
The rank of LC is equal to n − 2 due to Assumption 5. 2

Theorem 2 Write ai = Mpi + ri, 1 ≤ i ≤ n, with a, p, r, and M
satisfying Assumptions 1–5 above. Let (rj/pj) = maxi=1,...,n{ri/pi}, and let
(rk/pk) = mini=1,...,n{ri/pi}. We also assume that:

1. M > 2 − (rj/pj),

2. M > (rj/pj) − 2(rk/pk) .

Then, we obtain f(p, r,M) ≤ F (a1, . . . , an) ≤ g(p, r,M), where

f(p, r,M) =
(M2pjpk + M(pjrk + pkrj) + rjrk)(1 − 2

M+(rj/pj)
)

pkrj − pjrk
−(M+

rj

pj
) ,

and

g(p, r,M) = M2p1p2 + M(p1r2 + p2r1 − p1 − p2) + r1r2 − r1 − r2 .

Proof: The upper bound g(p, r,M) is derived from the expression

a1a2 − a1 − a2 .

In our proof of the lower bound we use the following notation:

B = {x ∈ R
n : ax = 0}

∆t = {x ∈ R
n : ax = t, x ≥ 0}

C = {x ∈ R
n : px = 0, rx = 0}

LC = C ∩ Z
n

L0 = B ∩ Z
n .

Notice that the definitions of B, C and LC are as in Lemma 1, and the
definition of L0 is as in Section 2. From Lemma 1 we know that LC = L0∩C
and that rk LC = n − 2.

Before going into the details of the proof we point out that the denom-
inator in the first term of the lower bound f(p, r,M), pkrj − pjrk, is not
equal to zero. Suppose that the term is equal to zero. This implies that
for all l, 1 ≤ l ≤ n, l 6= i we have rl/pl = ri/pi = ri = c, where i is an

10

B

0

C

b

C + b C + 2bC − b

Figure 2: B is the subspace orthogonal to a = Mp+r, and C is the subspace
orthogonal to the plane generated by p and r. The lattice L0 is contained
in parallel hyperplanes generated by C and the lattice basis vector b.

index such that pi = 1. According to Assumption 4, pi = 1 for at least
one i. So, al = Mpl + rl = Mpl + plc = (M + c)pl. If (M + c) 6= 1,
then gcd(a1, . . . , an) 6= 1, contradicting Assumption 3. If (M + c) = 1, then
ai = Mpi+c = M +c = 1, contradicting Assumption 2. So, we can conclude
that pkrj − pjrk 6= 0.

The idea behind the proof is as follows. We define a composition of
maps from ∆t to R/Z such that x ∈ Z

n ∩ ∆t maps to 0, if such a vector x

exists. An integer number t for which 0 is not contained in the image of ∆t

under this map then provides a lower bound on the Frobenius number. We
define such a composition of maps by first defining a projection πt, along
a certain vector zt, of ∆t onto B, where zt is an integer vector satisfying
azt = t, i.e., zt is in the same plane as ∆t. We choose zt integer so that
all integer points in the plane ax = t are mapped in L0. Then we consider
a homomorphism f : B → R/Z and show that its kernel is L0 + C. Due
to the First Isomorphism Theorem (see e.g. Hungerford (1996), p. 44) we
know that B divided out by (ker f), i.e., B/(L0 +C), is isomorphic to R/Z.
Next, we apply the map π1 to ∆1 and observe that the image of π1(∆1)
under the isomorphism B/(L0 + C) → R/Z is an interval [l, u] in R/Z. Any
point in ∆t ∩ Z

n will be in L0, and thus under the composition of maps be
mapped to zero. Finally, we determine an integer number t such that [tl, tu]
does not contain an integer point. The integer t then yields a lower bound
on the Frobenius number under the conditions given in the theorem.

We first define a linear map πt : R
n → B given by πt(x) = tx − (ax)zt,

11

where t ∈ Z>0, and where zt ∈ Z
n satisfies pzt = 0 and rzt = t, and hence

azt = t. Such a vector zt exists due to Assumption 5. Notice that for any
x ∈ R

n, the image of x under πt is in B, i.e., a ·πt(x) = t(ax)−(ax)(azt) =
t(ax)−(ax)t = 0. We also observe that if x ∈ Z

n, then πt(x) = tx−(ax)zt

is integer and thus in L0, since the number t and the vectors a and zt are
all integer.

Next we define the homomorphism f : B → R/Z given by

x 7→ (px mod 1).

Claim 1: The kernel of f is L0 + C.

First we show that (L0+C) ⊆ (ker f). If x ∈ L0 then x ∈ Z
n,

which implies px ∈ Z, and hence (px mod 1) = 0. If x ∈ C,
then px = 0.

Next, we show that (ker f) ⊆ (L0 + C). Notice that

(px mod 1) = 0 ⇔ px is integer .

Consider solutions to the equations

px = 1 (5)

ax = 0 (6)

All solutions x to system (5)–(6) can be written as x = xp + x,
where xp satisfies (5)–(6), and where x is a vector in the null-
space px = 0,ax = 0, which is exactly the subspace C.

Due to Assumption 5 there exists an integer vector xp satis-
fying

pxp = 1, rxp = −M

and hence axp = Mpxp + rxp = M − M = 0. Therefore, the
vector xp satisfies equations (5)–(6), and moreover, xp belongs
to the lattice L0.

To complete the proof of the claim we notice that the vector
y = txp ∈ L0 satisfies

py = t (7)

ay = 0, (8)

so for any integer t, all solutions to system (7)–(8) can be written
as the sum of a vector txp ∈ L0 plus a vector in C.

12

Due to the First Isomorphism Theorem, the homomorphism f induces
an isomorphism f ′ : B/(L0 + C) → R/Z. Below we determine the image
of ∆1 under the composition of the mappings π1 : R

n → B and f : B →
B/(L0 + C) → R/Z.

We use vi to denote vertex i of ∆1. Vertex vi, is the vector (0, . . . , 0, 1/ai,
0, . . . , 0)T , where 1/ai = 1/(piM + ri) is the ith component of vi. Applying
the linear mapping π1 to vi yields π1(vi) = vi −z1. Next, by the homomor-
phism x 7→ (px mod 1), π1(vi) becomes

pi

Mpi + ri
=

1

M + ri/pi
,

because 1/(M + ri/pi) < 1 and pz1 = 0. Let di denote 1/(M + ri/pi), and
recall that (rj/pj) = maxi=1,...,n{ri/pi}, and (rk/pk) = mini=1,...,n{ri/pi}.
Then, since ∆1 is the convex hull of the vertices vi, 1 ≤ i ≤ n, and since
π1 is a linear map and f a homomorphism, the image of π1(∆1) under the
isomorphism f ′ is an interval [dj, dk] of length

L =
pkrj − pjrk

M2pjpk + M(pjrk + pkrj) + rjrk
.

Now we will demonstrate that there exists an integer t ≥ 1−2dj

L − 1
dj

such

that the interval [tdj, tdk] does not contain an integer point. This implies

that
1−2dj

L − 1
dj

is a lower bound on the Frobenius number. Notice that

1 − 2dj > 0 due to Assumption 1 of the theorem.

Let k =
1−2dj

L . The interval [I1, I2] = [kdj, kdk] has length equal to
1−2dj . Let ` = bkdjc. Notice that ` ≤ I1. Now define k′ = `/dj . The num-
ber k′ satisfies k − 1

dj
≤ k′ ≤ k, and yields an interval [I ′1, I ′2] = [k′dj , k′dk]

such that I ′1 is integral. The length of [I ′1, I ′2] is at most equal to the length
1−2dj of the interval [I1, I2]. Therefore, [I ′1, I ′2 +2dj] has length at most 1.
Since I ′1 is integral, it follows that (I ′1, I ′2 +2dj) does not contain an integer.
Now define k∗ = bk′c + 1.

Claim 2: The interval [I∗1 , I∗2] = [k∗dj, k∗dk] does not contain an integer
point.

First, note that the second assumption of the theorem implies
that dk < 2dj. Next, if k′ is integer, then k∗dj = I ′1 + dj and
k∗dk = k′dk + dk = I ′2 + dk so that k∗dk < I ′2 + 2dj . The claim
now follows from the fact that (I ′1, I ′2 +2dj) does not contain an
integer.

13

Finally, if k′ is not integer, then we have that k′dj < bk′cdj +
dj = k∗dj so that I ′1 = k′dj < k∗dj. The remainder of the
argument follows the same reasoning as for k′ integer.

We finally notice that k∗ = bk′c+1 ≥ bk− 1
dj
c+1 ≥ k− 1

dj
−1+1 = k− 1

dj
,

so we can conclude that
1−2dj

L − 1
dj

yields a lower bound on the Frobenius

number. We obtain

1 − 2dj

L
− 1

dj
=

(M2pjpk + M(pjrk + pkrj) + rjrk)(1 − 2
M+(rj/pj)

)

pkrj − pjrk
−(M+

rj

pj
) .

2

Example 2 The a-coefficients in Example 1 decompose as follows. Let
M = 12224.

a1 = M − 1
a2 = M + 0
a3 = 3M − 1.

Theorem 2 yields a lower bound on the Frobenius number equal to 149, 377, 282
and an upper bound equal to the Frobenius number 149, 389, 505. The lower
bound is very close to the upper bound. 2

For all our instances that decompose with vectors p and r that are short
compared to M , the Frobenius number is large, see the computational study
in Section 4. We have computed the lower bound on the Frobenius number
for these instances and in all cases it was close to the actual value.

In the following subsection we demonstrate that instances with a-coeffi-
cients that decompose with large M and relatively short p and r are trivial to
solve using the reformulation outlined in Section 2. These are the instances
that are extremely hard to solve by branch-and-bound due to the large
Frobenius numbers.

3.2 The Coefficients a1, . . . , an

For the further analysis of our class of instances we wish to express the de-
terminant of the lattice L0, and that of the sublattice LC , in terms of the
input. Before presenting our results, we introduce more notation, two defi-
nitions, and present some known results. For more details, see for instance
Cassels (1997) and Lenstra (2000).

Definition 1 Let L be a lattice in a Euclidean vector space E, and let K
be a subgroup of L. If there exists a subspace D of E such that K = L ∩D,
then K is called a pure sublattice.

14

Definition 2 Let L be a lattice in a Euclidean vector space E with dim E =rk L.
Then the dual lattice L† of L is defined as follows:

L† = {x ∈ E : xT y ∈ Z for all y ∈ L}.

The dual lattice of a lattice in E is again a lattice in E. For a lattice L and
its dual L† we have

d(L) =
1

d(L†)
. (9)

Suppose that K is a pure sublattice of the lattice L. Then the following
holds:

d(L) = d(K) · d(L/K) . (10)

Let L be a lattice with dual L†, and let K be a pure sublattice of L. Then
K⊥ = {x ∈ L† : xT y = 0 for all y ∈ K}, and we can write

K⊥ = (L/K)† . (11)

Theorem 3 Assume that a = (a1, . . . , an) satisfies Assumptions 1–3. Then,

d(L0) = d(L(aT)) = |aT | .

Proof: Take L to be the lattice Z
n, and K to be the lattice L0. By

equation (10) we have 1 = d(Zn) = d(L0) · d(Zn/L0), or equivalently, by
equation (9):

d(L0) =
1

d(Zn/L0)
= d((Zn/L0)

†) .

From (11) we obtain (Zn/L0)
† = L⊥

0 , and since the dual lattice of Z
n is

again Z
n we have L⊥

0 = {x ∈ Z
n : xT y = 0 for all y ∈ L0}. Since

gcd(a1, . . . , an) = 1 this is exactly the lattice L(aT) with basis aT . So,
L⊥

0 = d(L(aT)) =
√

aaT = |aT |. We have obtained

d(L0) = d(L(aT)) .

2

This result is also mentioned in Section 3.2 of the survey by Nguyen and
Stern (2000).

Remark 1 Notice that d(L0) can also be computed as d(L0) =
√

det(BT
0 B0),

where B0 is a basis for L0.

15

We again write ai = Mpi + ri, 1 ≤ i ≤ n with a, p, r, and M satisfying
Assumptions 1–5. Below we will make use of the matrix P as introduced in
expression (4).

Theorem 4 Assume that a = Mp + r satisfies Assumptions 1–5. Then,

d(LC) = d(L(P T)) =

√

det(PP T) =
√

|p|2 · |r|2 − (prT)2 .

Proof: This proof follows the same lines as the proof of Theorem 3. Here
we choose the lattice L from Definitions 1 and 2 to be the lattice Z

n, and
the sublattice K to be the lattice LC . We have

d(LC) = d((Zn/LC)†) = d(L⊥
C) , (12)

and since (Zn)† = Z
n, we obtain L⊥

C = {x ∈ Z
n : xT y = 0 for all y ∈ LC}.

Due to Assumption 5, P T forms a basis for L⊥
C . Hence, we have

d(LC) = d((Zn/LC)†) = d(L⊥
C) = d(L(P T)) .

The determinant of the lattice L(P T) is equal to
√

det(PP T) =
√

|p|2 · |r|2 − (prT)2. 2

Let b1
0, b

2
0, . . . , b

n−1
0 be a basis for L0, and assume without loss of general-

ity that these basis vectors are ordered such that b1
0, b

2
0, . . . , b

n−2
0 form a basis

for the lattice LC . Hence, bn−1
0 does not belong to LC . Let H =

∑n−2
i=1 Rbi

0

and let h be the distance of bn−1
0 to H. Notice that h ≤ |bn−1

0 |.

Corollary 5 If a = Mp + r satisfies Assumptions 1–5, then

|bn−1
0 | ≥ |aT |

√

|p|2 · |r|2 − (prT)2
.

Proof: The following holds:

d(L0) = d(LC) · h ≤ d(LC) · |bn−1
0 | .

So,

|bn−1
0 | ≥ d(L0)

d(LC)
=

d(L0)

d(L(P T))
=

|aT |
√

|p|2 · |r|2 − (prT)2
.

2

Suppose p and r are short relative to M , and hence to |aT |. Lovász’ basis
reduction algorithm (Lenstra et al. (1982)) yields a basis in which the basis

16

vectors are ordered according to increasing length, up to a certain factor.
In a basis B0 for L0, such as we generate it, the first n − 2 vectors form a
basis for the lattice LC . These vectors are short, since the basis is reduced
and since the determinant of the lattice LC is equal to

√

|p|2 · |r|2 − (prT)2.
The length of the last vector of B0 will be bounded from below according
to Corollary 5.

Example 3 Recall the decomposition of the a-coefficients from Examples
1 and 2. Let M = 12224.

a1 = M − 1
a2 = M + 0
a3 = 3M − 1,

so p = (1, 1, 3)T and r = (−1, 0,−1)T . The first column of B0, (−1,−2, 1)T ,
is short. This vector is orthogonal to a, p, and r. The second, and last,
column of B0, (14261,−8149,−2037)T , is long. 2

To summarize, if the determinant of the lattice L0 is large due to a
large value of M , then this large value basically has to be contributed by
the last vector bn−1

0 of B0. The long vector bn−1
0 implies a small value of

the integral width of Q in the unit direction en−1, so only a few, in fact
often zero or one, lattice hyperplanes intersect Q in this direction for the
instances we consider. In Example 1 we observed that WI(Q,e2) = 0, which
immediately gave us a certificate for infeasibility.

It is interesting to notice that if we write

ai = Mpi + Nri, for i = 1, . . . , n ,

where a, p, r, M , and N satisfy Assumptions 1–3,5, and pi, M, N ∈
Z>0, and ri ∈ Z, 1 ≤ i ≤ n, then Theorem 4 and Corollary 5 still hold.

4 Computational Results

To illustrate our results we have solved various instances of type (2). The
instances are given in Table 1. In the first column the instance name is given.
Next, in column “a”, the a-coefficients are given, and in the last column
the Frobenius number can be found. For all the instances we computed the
Frobenius number using the algorithm described in Appendix 1.

The instances can be divided into two groups. The first group contains
instances cuww1-cuww5 and prob1-prob10, and the second group consists

17

Table 1: The instances

Instance a Frobenius
number

cuww1 12223 12224 36674 61119 85569 89643481
cuww2 12228 36679 36682 48908 61139 73365 89716838
cuww3 12137 24269 36405 36407 48545 60683 58925134
cuww4 13211 13212 39638 52844 66060 79268 92482 104723595
cuww5 13429 26850 26855 40280 40281 53711 53714 67141 45094583
prob1 25067 49300 49717 62124 87608 88025 113673 119169 33367335
prob2 11948 23330 30635 44197 92754 123389 136951 140745 14215206
prob3 39559 61679 79625 99658 133404 137071 159757 173977 58424799
prob4 48709 55893 62177 65919 86271 87692 102881 109765 60575665
prob5 28637 48198 80330 91980 102221 135518 165564 176049 62442884
prob6 20601 40429 42207 45415 53725 61919 64470 69340 78539 95043 22382774
prob7 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267751
prob8 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733990
prob9 13719 20289 29067 60517 64354 65633 76969 102024 106036 119930 13385099
prob10 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 106925261
prob11 11615 27638 32124 48384 53542 56230 73104 73884 112951 130204 577134
prob12 14770 32480 75923 86053 85747 91772 101240 115403 137390 147371 944183
prob13 15167 28569 36170 55419 70945 74926 95821 109046 121581 137695 765260
prob14 11828 14253 46209 52042 55987 72649 119704 129334 135589 138360 680230
prob15 13128 37469 39391 41928 53433 59283 81669 95339 110593 131989 663281
prob16 35113 36869 46647 53560 81518 85287 102780 115459 146791 147097 1109710
prob17 14054 22184 29952 64696 92752 97364 118723 119355 122370 140050 752109
prob18 20303 26239 33733 47223 55486 93776 119372 136158 136989 148851 783879
prob19 20212 30662 31420 49259 49701 62688 74254 77244 139477 142101 677347
prob20 32663 41286 44549 45674 95772 111887 117611 117763 141840 149740 1037608

18

Table 2: A value of M for instances cuww1–5 yielding short p and r

cuww1 cuww2 cuww3 cuww4 cuww5

M 12223 12228 12137 13211 13429

of instances prob11-prob20. Instances cuww1-cuww5 were generated by
Cornuéjols, Urbaniak, Weismantel, and Wolsey (1997), and the remain-
ing instances were generated for this study. For each of the instances
cuww1-cuww5 there is a decomposition ai = Mpi + ri with short vectors
p and r. In Table 2 we give values of M that yield short vectors p and
r for these instances. Instances prob1-prob10 were generated such that
the a-coefficients have a decomposition ai = Mpi + Nri with short p and
r and long aT . We randomly generate M from the uniform distribution
U [10000, 20000], N from U [1000, 2000], pi from U [1, 10], and ri from
U [−10, 10].

In contrast, the second group of instances prob11-prob20 were ran-
domly generated such that the a-coefficients are of the same size as in
prob1-prob10, but they do not necessarily decompose with short vectors
p and r. We chose the same size of the a-coefficients since this yields values
of d(L0) of approximately the same size as for the instances prob1-prob10.
For instances prob11-prob20 coefficient ai is randomly generated from
U [10000, 150000].

We present the computations purely to illustrate how our theoretical
results translate into computations. The instances are therefore quite ar-
tificial. But, as mentioned in Section 1, other instances stemming from
applications show similar, but less extreme, behavior in comparison with
the instances reported on here, and our results partly explain this behavior.

The computational results of verifying infeasibility for the instances is
reported on in Table 3. For each instance a we used the Frobenius number
F (a1, . . . , an) as the right-hand side coefficient a0. For each of the instances
we computed d(L0), the length of each of the basis vectors of the basis
B0, and the number of lattice hyperplanes intersecting Q in the coordinate
directions e1 and en−1. We then applied the integer branching algorithm
described in Section 2 to Q. The number of nodes that were generated,
and the computing time in seconds are given in the columns “# Search tree
nodes” and “Time”. Finally, we attempted to solve the instances, using
the original formulation P , by standard linear programming based branch-
and-bound using CPLEX version 6.5.3 . The number of nodes needed by

19

branch-and-bound, and the computing time in seconds are reported on in
the columns “# B&B nodes” and “B&B time”. For the branch-and-bound
algorithm we set the node limit to 50 million nodes. If an instance was not
solved within this node limit, this is indicated by “> 50 × 106” in the col-
umn “# B&B nodes”. The time t needed to evaluate the 50 million nodes
is then indicated as “> t” in the column “B&B time”. All the computa-
tions were carried out on a Sun Ultra 60 Model 2360 workstation with two
UltraSPARC-II 359 MHz processors (our implementation is sequential) and
512 MB of memory.

We make the following observations. First, the Frobenius number of the
instances cuww1-cuww5 and prob1-prob10 is about two orders of magnitude
larger than the Frobenius number of instances prob11-prob20 (see Table
1).

Infeasible instances having large values of the intersection points a0/ai

between the n-simplex P and the coordinate axes are hard for branch-and-
bound to solve, and the larger these values are, the harder an instance
becomes computationally. So, as a class, the first group of instances is
harder for branch-and-bound than the second one. In Table 3 we can see
that instances cuww1-cuww5 and prob1-prob10 are considerably harder to
solve by branch-and-bound than instances prob11-prob20. The presolver
of CPLEX claimed infeasibility for instances cuww2 and prob10, but none of
the other instances in the first group was solved within the node limit of 50
million nodes. All of the instances prob11-prob20 were solved by branch-
and-bound within half a million search nodes and one minute of computing
time.

We also observe that the shape of the polytope Q is very much influenced
by the decomposition of the a-coefficients. If the coefficients decompose with
short vectors p and r relative to M , then the width of the corresponding
polytope Q in the unit direction en−1 is very small. This made the instances
trivial for our tree search algorithm applied to Q. All instances were solved
using less than twenty search nodes and a fraction of a second computing
time. For instances prob11-prob20 where the a-coefficients are generated
randomly from a certain interval we observe that the width of Q is of the
same magnitude in all unit directions, and in general greater than two. Our
tree search algorithm applied to Q therefore needed more nodes and longer
computing times than for the first group of instances. For such instances
more effort needs to be spent in order to compute good search directions.

20

Table 3: Verification of infeasibility
Instance d(L0) |bi| WI(Q, e1) WI(Q, en−1) # Search Time # B&B B&B

tree nodes nodes time
cuww1 112700.5 2.0 3.5 3.5 4823.1 1862 0 1 .001 > 50 × 106 > 8139.3
cuww2 119803.3 2.0 2.2 2.6 3.9 2922.9 1291 1 3 .001 0∗ 0.0
cuww3 97088.2 2.0 2.4 2.8 4.0 2218.0 1155 2 3 .001 > 50 × 106 > 8079.9
cuww4 154638.3 1.7 2.4 2.4 4.0 3.0 2726.8 2429 1 2 .001 > 50 × 106 > 7797.5
cuww5 123066.9 2.0 2.2 2.0 2.2 2.6 2.8 1711.4 1279 1 3 .001 > 50 × 106 > 6080.6
prob1 227895.5 2.0 2.2 2.6 2.6 2.8 4.7 678.4 347 2 7 .001 > 50 × 106 > 7912.6
prob2 256849.8 1.7 1.7 2.6 3.0 3.2 4.4 1016.0 274 2 7 .001 > 50 × 106 > 6529.2
prob3 337663.2 2.2 2.4 3.0 3.0 3.3 3.6 988.4 466 2 11 .002 > 50 × 106 > 6872.1
prob4 226877.3 2.6 2.4 2.6 2.4 3.6 3.5 1058.4 468 2 8 .001 > 50 × 106 > 8432.2
prob5 324461.5 2.0 2.4 2.8 3.2 3.0 3.7 937.6 964 2 10 .002 > 50 × 106 > 8368.4
prob6 191805.0 2.0 2.0 2.2 2.2 2.4 2.2 2.8 2.6 646.6 502 2 8 .001 > 50 × 106 > 5550.1
prob7 207240.4 1.7 1.7 1.7 2.2 2.4 2.4 2.4 2.8 888.6 588 2 9 .002 > 50 × 106 > 5411.5
prob8 288168.2 2.2 2.2 2.2 2.6 2.6 2.2 2.4 2.4 773.4 455 2 7 .001 > 50 × 106 > 5565.4
prob9 235618.6 1.7 2.8 2.8 2.6 2.4 2.4 2.4 2.8 788.6 430 2 18 .003 > 50 × 106 > 6944.7
prob10 363052.5 2.0 2.2 2.2 2.4 2.2 2.6 2.4 2.4 1165.2 880 2 10 .002 0∗ 0.0
prob11 225420.4 3.6 4.0 4.5 4.4 4.6 4.2 4.7 5.2 6.1 4 5 37 .005 88858 9.3
prob12 307211.3 4.4 4.5 4.6 4.4 4.4 4.5 4.4 6.0 5.4 2 4 86 .012 445282 51.0
prob13 266246.9 4.6 4.2 4.6 4.0 4.8 4.6 5.3 5.1 5.8 6 6 41 .006 580565 62.6
prob14 286676.3 4.4 4.1 4.0 4.4 4.7 4.8 5.1 5.1 5.6 9 7 112 .012 371424 43.4
prob15 238047.7 3.6 4.5 4.1 3.9 3.9 5.1 4.8 5.5 6.0 3 3 66 .080 426692 49.4
prob16 297717.2 4.0 3.7 3.7 4.2 4.2 4.2 4.6 4.7 9.7 3 2 67 .080 549483 61.4
prob17 294591.6 4.6 4.4 4.2 4.6 4.6 5.1 4.0 4.2 5.7 2 4 126 .150 218374 24.1
prob18 300087.6 3.5 4.6 4.6 4.5 5.1 5.2 5.5 5.0 5.8 4 5 90 .120 425727 46.9
prob19 249577.9 3.9 3.7 4.1 5.1 5.2 5.6 4.8 5.5 4.6 11 6 78 .100 255112 27.7
prob20 314283.7 3.7 4.7 4.5 3.9 4.6 4.7 5.1 5.5 6.2 5 3 39 .005 423608 46.1

∗) CPLEX Presolve determines problem is infeasible or unbounded.

21

Acknowledgments

We want to thank Hendrik Lenstra for his valuable suggestions and in partic-
ular for the outline of the proof of Theorem 2. We also wish to thank Bram
Verweij for providing a framework code, based on his general enumeration
library, for our integer branching algorithm.

The research of the first author was partially financed by the project
TMR-DONET nr. ERB FMRX-CT98-0202 of the European Community.

References

Aardal K., R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, J. W. Smeltink.
2000a. Market split and basis reduction: Towards a solution of the Cornuéjols-
Dawande instances. INFORMS J. Comput. 12 192–202.

Aardal K., C. A. J. Hurkens, A. K. Lenstra. 2000b. Solving a system of
diophantine equations with lower and upper bounds on the variables. Math.
Oper. Res. 25 427–442.

Brauer A. 1942. On a problem of partitions. Amer. J. Math. 64 299–312.

Brauer A., J. E. Shockley 1962. On a problem of Frobenius. J. Reine Angew.
Math. 211 399–408.

Cassels, J. W. S. 1997. An Introduction to the Geometry of Numbers. Sec-
ond Printing, Corrected. Reprint of the 1971 ed. Springer-Verlag, Berlin,
Heidelberg.

Cook, W., T. Rutherford, H. E. Scarf, D. Shallcross. 1993. An implementa-
tion of the generalized basis reduction algorithm for integer programming.
ORSA J. Comput. 5 206–212.

Cornuéjols G., M. Dawande. 1999. A class of hard small 0-1 programs.
INFORMS J. Comput. 11 205–210.

Cornuéjols, G., R. Urbaniak, R. Weismantel, L. A. Wolsey. 1997. Decom-
position of integer programs and of generating sets. R. E. Burkard, G. J.
Woeginger, eds., Algorithms – ESA ’97. Lecture Notes in Computer Science
1284, Springer-Verlag, Berlin, Heidelberg, Germany, 92–103.

Erdős P., R. L. Graham. 1972. On a linear diophantine problem of Frobe-
nius. Acta Arithm. 21 399–408.

22

Gao L., Y. Zhang. 2002. Computational experience with Lenstra’s algo-
rithm. Technical Report TR02-12, Department of Computational and Ap-
plied Mathematics, Rice University, Houston, TX, USA.

Greenberg H. 1988. Solution to a linear Diophantine equation for nonnega-
tive integers. J. Algorithms 9 343–353.

Grötschel M., L. Lovász, A. Schrijver. 1988. Geometric Algorithms and
Combinatorial Optimization, Springer-Verlag, Berlin, Germany.

Hungerford T. W. 1996. Algebra; corrected eighth printing. Springer-Verlag,
New York, USA.

Kannan R. 1992. Lattice translates of a polytope and the Frobenius Prob-
lem. Combinatorica 12 161–177.

Khinchine A. 1948. A quantitative formulation of Kronecker’s theory of ap-
proximation (In Russian). Izvestiya Akademii Nauk SSR Seriya Matematika
12 113–122.

Lenstra, A. K., H. W. Lenstra, Jr., L. Lovász. 1982. Factoring polynomials
with rational coefficients. Math. Ann. 261 515–534.

Lenstra, H. W., Jr. 1983. Integer programming with a fixed number of
variables. Math. Oper. Res. 8 538–548.

Lenstra, H. W., Jr. 2000. Flags and lattice basis reduction. C. Casacuberta,
R. M. Miró-Roig, J. Verdera, S. Xambó-Descamps, eds., Proceedings of the
third European Congress of Mathematics Volume I, Birkhäuser Verlag, Basel,
37–51.

Lovász, L., H. E. Scarf. 1992. The generalized basis reduction algorithm.
Math. Oper. Res. 17 751–764.

Louveaux Q., L. A. Wolsey. 2002. Combining problem structure with basis
reduction to solve a class of hard integer programs. Math. Oper. Res. 27
470–484.

Nguyen, P. Q., J. Stern. 2000. Lattice reduction in cryptology. W. Bosma,
ed., Algorithmic Number Theory: 4th International Symposium, ANTS-IV
Leiden, The Netherlands, July 2-7, 2000, Proceedings. Lecture Notes in
Computer Science 1838, Springer-Verlag, Berlin, Heidelberg, 85–112. An
updated version can be found at URL:
http://www.di.ens.fr/∼pnguyen/pub.html

23

Ramı́rez Alfonśın J. L. 1996. Complexity of the Frobenius problem. Com-
binatorica 16 143–147.

Rödseth Ö. J. 1978. On a linear diophantine problem of Frobenius. J. Reine
Angew. Math. 301 171–178.

Schrijver A. 1986. Theory of Linear and Integer Programming, Wiley, Chich-
ester, UK.

Selmer E. S. 1977. On the linear diophantine problem of Frobenius. J. Reine
Angew. Math. 293/294 1–17.

Selmer E. S., Ö. Beyer. 1978. On the linear diophantine problem of Frobe-
nius in three variables. J. Reine Angew. Math. 301 161–170.

Sylvester J. J., W.J. Curran Sharp. 1884. [Problem] 7382. Mathematics
from the Educational Times, with Additional Papers and Solutions 41 21.

Williams, H. P. 1978. Model Building in Mathematical Programming. John
Wiley & Sons Ltd., Chichester.

Appendix 1: Computing the Frobenius Number

Since the main aim of this paper is not to compute the Frobenius number —
we use the Frobenius number to create infeasible instances — our approach
is quite simple and based on a theorem by Brauer and Shockley (1962).
Assume that ai is integer for 1 ≤ i ≤ n, that 0 < a1 ≤ a2 ≤ · · · ≤ an, and
that gcd(a1, . . . , an) = 1. Let rl be the smallest positive integer congruent to
(l mod a1) that can be expressed as a non-negative integer combination of
a2, . . . , an. Each residue class modulo a1 does contain numbers representable
as a2x2+· · ·+anxn with xi ∈ Z≥0 for 1 ≤ i ≤ n. Let r = maxl∈{1,2,...,a1−1} rl.

Theorem 6 (Brauer and Shockley (1962).)

F (a1, . . . , an) = r − a1 .

Proof: Suppose we can express r − a1 as

r − a1 = a1x1 + a2x2 + · · · + anxn with xi ∈ Z≥0, 1 ≤ i ≤ n .

Then,

r − a1(1 + x1) = a2x2 + · · · + anxn with xi ∈ Z≥0, 1 ≤ i ≤ n ,

24

which contradicts that r is the smallest number in its residue class.
Next, take any integer number N > r − a1 and assume that N is not

an integer multiple of a1, in which case we are done. Assume that N =
(` mod a1) with ` ∈ {1, . . . , a1 − 1}, so we can write N = pa1 + ` for some
p ∈ Z≥0. We know that N is greater than or equal to the smallest number in
its residue class that can be represented as a2x2 + · · ·+ anxn with xi ∈ Z≥0

for 1 ≤ i ≤ n, i.e., N ≥ r` = qa1 + ` for some q ∈ Z≥0. The following
holds: N − r` = pa1 + `− qa1 − ` = a1(p− q), and since N − r` ≥ 0 we have
(p − q) ≥ 0. So, N can be written as

N = a1(p − q) + r` = a1(p − q) + a2x2 + · · · + anxn .

with (p − q) ≥ 0 and xi ∈ Z≥0 for 2 ≤ i ≤ n. 2

For each l = 1, . . . , a1 − 1 we compute the value of rl as:

rl = min{
n

∑

i=2

aixi :
n

∑

i=2

aixi = l + a1x1, x ∈ Z
n
≥0} . (13)

Since the instances of type (13) that we tackled are hard to solve by branch-
and-bound we again applied the reformulation described in Section 2 to each
subproblem and solved the reformulated subproblems by branch-and-bound.
Notice that the reformulation only has to be determined for l = 1. The basis
for L = {x ∈ Z

n : −a1x1+
∑n

i=2 aixi = 0} is independent of l, and if we have
computed xf for l = 1, then lxf can be used in the subsequent computations
of subproblems l = 2, . . . , a1−1. Cornuéjols et al. (1997) used a formulation
similar to (13) for computing the Frobenius number, but instead of using
the reformulation described in Section 2 combined with branch-and-bound,
they used test sets after having decomposed the a-coefficients.

In Table 4 we give the computational results for the Frobenius number
computations. In the two first columns the instance name and number of
variables are given. Then, the computing time and the total number of
branch-and-bound nodes needed for all a1 − 1 subproblems are given. Since
a1 can vary quite a lot, we report on the average number of branch-and-
bound nodes per subproblem in the last column.

25

Table 4: Results for the Frobenius number computations

Instance # Vars Time Total # Ave. # nodes
B&B nodes per subprob.

cuww1 5 50.0 11652 1.0
cuww2 6 62.3 25739 2.1
cuww3 6 64.6 39208 3.2
cuww4 7 76.3 28980 2.2
cuww5 8 130.2 210987 15.7
prob1 8 891.3 3782264 150.9
prob2 8 90.2 53910 4.5
prob3 8 396.2 571199 14.4
prob4 8 371.1 204191 4.2
prob5 8 257.6 349320 12.2
prob6 10 9057.3 39164012 1901.1
prob7 10 200.7 93987 5.0
prob8 10 304.8 577948 33.9
prob9 10 162.6 91223 24.5
prob10 10 586.8 445777 9.8
prob11 10 241.3 577134 49.7
prob12 10 515.8 1518531 102.8
prob13 10 391.8 998415 65.8
prob14 10 476.7 1551241 848.6
prob15 10 418.0 1178543 89.8
prob16 10 821.7 2063690 58.8
prob17 10 385.4 1027115 73.1
prob18 10 567.3 1494456 73.6
prob19 10 499.0 1289971 63.8
prob20 10 799.2 2070667 63.4

26

