
BOUNDEDNESS THEOREMS FOR THE RELAXATION METHODEDOARDO AMALDI� AND RAPHAEL HAUSERyAbstra
t. A 
lassi
al theorem by Blo
k and Levin says that 
ertain variants of the relaxationmethod for solving systems of linear inequalities produ
e bounded sequen
es of intermediate solutionseven when running on in
onsistent input data. Using a new approa
h, we prove a more general versionof this result and answer an old open problem of quantifying the bounds as a fun
tion of the inputdata.AMS subje
t 
lassi�
ations. Primary 15A39,05A20, 52B55. Se
ondary 90C05, 62M45,68T01.Key words. Relaxation method, per
eptron boundedness, 
ondition number, linear inequalities.1. Introdu
tion. The relaxation method [1, 12℄ for �nding a point in an open
onvex set K of a real inner produ
t spa
e (V; h�; �i) is a 
on
eptual algorithm basedon a separation ora
le: given xi 2 V , the ora
le either provides ai 2 V; bi 2 R su
hthat hai; xi > bi 8x 2 C; (1.1)hai; xii � bi; (1.2)or else a 
erti�
ate that xi 2 C. Given a starting point x0, the method pro
eeds byupdating xi to xi+1 = xi + �iai in the �rst 
ase and by stopping when a 
erti�
ate ofmembership is found. Sometimes K is assumed 
losed, in whi
h 
ase > is repla
ed by� in (1.1) and � by < in (1.2), but assuming that K is open is more 
onvenient forour purposes.In situations where K is impli
itly des
ribed as the interse
tion of a set of half-planes K = \(a;b)2A�x 2 V : ha; xi > b	 (1.3)the relaxation idea 
an usually be turned into a pra
ti
al algorithm by 
onstru
tingan ora
le that samples the linear inequalities in A. In parti
ular, the polyhedra thatplay a role in linear programming are usually des
ribed by linear inequalities. Inradiation therapy planning a large number of linear inequalities o

ur naturally ina mathemati
al formulation of the problem of delivering a maximum dose of X-raysinside a tumour subje
t to the 
onstraint of keeping the exposure of surrounding tissuebelow a threshold [5℄. The situation is similar in 
ertain approa
hes to neural networksbased on �nding linear 
lassi�ers that should 
orre
tly 
lassify a set of training points[14℄.Many di�erent versions of the relaxation method have been proposed, dependingon how the step size �i and the points (ai; bi) de�ning the separating plane are 
hosen.The per
eptron algorithm [14℄ is based on 
hoosing �i � 1, the 
y
li
 proje
tionalgorithm [3℄ 
he
ks all the inequalities in A in a 
y
li
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length �i = (bi�hai; xii)=hai; aii. Also related are Cimmino's method [6℄, the randomBregman proje
tion method [2℄ and various types of subgradient algorithms [15℄ su
has the bundle method [9℄.When the relaxation method is applied to a �nite feasible data set A (one thatleads to K 6= ;), then xi be
omes a member of K after a �nite number of iterations forall interesting variants. A typi
al 
onvergen
e result is that of the per
eptron methodwhi
h �nds a feasible point in a number of iterations that is proportional to the squareof GoÆn's 
ondition number, see [8℄. When the input data are rational, the worst-
ase number of iterations needed til termination is exponential in the input size. Therelaxation method 
an be greatly improved by res
aling the underlying spa
e at ea
hiteration [16℄. This insight led to the development of the ellipsoid method [17℄ whi
hbe
ame the �rst algorithm for linear programming shown to terminate in polynomialtime [10℄.A spe
ial situation o

urs when K = ; but A 6= ; (we say that A is an infeasibleproblem instan
e): in this 
ase the algorithm will never stop, as the ora
le will always�nd a violated inequality. In this paper we are going to investigate this situation forthe 
ase where A is a �nite set. Although the problem of �nding a point in the emptyset is an impossible undertaking, the appli
ation of the relaxation method to infeasibleinput data is interesting in 
ontexts where one wishes to satisfy as large a numberof inequalities as possible but where satisfying all of them is usually impossible, asis typi
ally the 
ase in radiation therapy planning, 
omputer learning and neuralnetworks. In this situation one would usually like to have information about thespatial distribution of the points xi generated by the algorithm. Our paper answers aquestion of this type by showing that for an important family of relaxation methodsthe sequen
e (xi)N0 remains bounded within a ball of quanti�able radius.We will now des
ribe the te
hni
al setup of our problem in some detail. LetA � Rn n f0g be a �nite set of nonzero ve
tors, x0 � Rn a given starting point,(�i)N0 2 R+ a sequen
e of nonnegative numbers and (ai)N0 � A an in�nite sequen
eof ve
tors from A. Suppose that the sequen
e of points de�ned iteratively by xi+1 =xi + �iai satis�es the 
ondition aTi xi � 0 (1.4)for all i 2 N0 . This situation o

urs when the relaxation method with step lengths �iis applied to an infeasible system of homogeneous linear inequalities ATx > 0. Here,as elsewhere below, we identify the set A with the matrix obtained by 
olle
ting itselements as 
olumn ve
tors in some order.Nilson and Beyer (see referen
es in [7℄) 
onje
tured that in the 
ase where �i �1 (whi
h 
orresponds to the per
eptron algorithm) the sequen
e of iterates (xi)N0remains bounded in norm. A proof of this 
onje
ture, known today as the Per
eptronBoundedness Theorem, was developed in a series of papers by E�ron [7℄, Minsky{Papert [11℄ and Blo
k{Levin [4℄. Their proof is based on the notion of stri
t F -
hainsas a basi
 analyti
 tool to enable an indu
tion over the problem dimension. Using thesame te
hnique, it 
an easily be established that the result extends to the 
ase wherethere exist 
onstants L;U su
h that0 < L < �i < U 8i 2 N0 : (1.5)How general are these assumptions? Clearly, in the absen
e of an upper bound onthe �i, (xi)N0 does not have to remain bounded. Hen
e, the upper bound is ne
essary.2



On the other hand, the requirement that the lower bound be stri
tly positive mayseem like a minor te
hni
al detail, and one is led to suspe
t that it should be possibleto repla
e (1.5) by the less restri
tive 
ondition0 � �i < U 8i 2 N0 : (1.6)Indeed, proving per
eptron boundedness under the more general 
ondition (1.6) isone of the main goals of this paper, see Theorem 6.1 below.Unfortunately, the stri
t positivity of the lower bound in (1.5) is a key requirementin arguments based on F -
hains. A F -
hain free approa
h is thus needed to establishthe result under the more general assumption (1.6). Our proof of Theorem 6.1 isbased on su
h an approa
h, whi
h is not only 
on
eptually new and less restri
tivebut also easier to understand geometri
ally than F -
hains. Moreover, while earlierproofs showed only the existen
e of a bound on (xi)N, our Theorem 6.1 expli
itlyquanti�es the bound as a fun
tion of the input data A. This solves an old openproblem whi
h was �rst mentioned by Blo
k and Levin [4℄.Both the fa
t that one 
an relax the lower bound on the step size and the avail-ability of an expli
it expression for the bound as a fun
tion of the input data provideinteresting mathemati
al tools. In a forth
oming paper we will show how both fa
tsplay a key role in the analysis of 
onvergen
e rates for randomised relaxation s
hemes.In Se
tion 7 we further generalise the boundedness theorem to in
lude inhomoge-neous inequalities, that is, we show that relaxation methods with step lengths obeying(1.6) and applied to systems ATx > b produ
e a bounded sequen
e of intermediatesolutions (x0)N, with a bound that 
an be quanti�ed as a fun
tion of (A; b).A few remarks about notation: we endow Rn with the 
anoni
al Eu
lidean prod-u
t, denoted by the � produ
t, and we write k � k for the asso
iated norm. Any othernorms used are expli
itly 
onstru
ted as the gauge fun
tions asso
iated with 
onvex,balan
ed, absorbing, bounded sets (see [13℄) and are denoted by �. If x 2 Rn is anonzero ve
tor, then x̂ = x=kxk denotes its normalisation. If A = (a[1℄; : : : ; a[k℄) is anordered set of ve
tors in Rn , then we identify A with the matrix obtained by 
olle
tingits elements as 
olumn ve
tors in the same order(a[1℄; : : : ; a[k℄) � � a[1℄ ::: a[k℄ �:Any subset B � A inherits the same order of elements and is identi�ed with the
orresponding submatrix of A. When A = fa[1℄; : : : ; a[k℄g is an unordered set thenthe same identi�
ation holds modulo ordering of the elements, that is, we think of Aas a matrix obtained by 
olle
ting its elements as 
olumn ve
tors in an arbitrary order.2. The Underlying Geometri
 Insight. Before analysing the general 
ase,it is helpful to illustrate the geometri
 ideas that drive our approa
h in R2 and R3 .From here on and until the beginning of Se
tion 7 we 
onsider homogeneous systemsATx > 0. In this and a few other se
tions we will assume that kak = 1 for alla 2 A. This implies no loss of generality, sin
e we 
an repla
e �i by �ikaik, U byU �maxa2A kak and ai by ai=kaik.We start by dis
ussing the 
ase n = 2. Let B1(0) be the 
losed unit disk andS1 = �B1(0) the unit 
ir
le around the origin. We will remove the setM := fx 2 S1 : 9a 2 A s.t. a ? xg3



from B1(0) via a �nite number of 
onvex 
uts. For a 2 A and r � 0 letCfag?(r) := fx 2 R2 : k�fag?xk � rg;where �fag?x = x�(a�x)a is the proje
tion of x into span(fag)? = fy 2 R2 : a�y = 0galong a. Cfag?(r) is thus a sandwi
h of thi
kness 2r parallel to a. We adopt thisslightly 
umbersome notation with later generalisations in mind. Sin
e M 
onsists
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Fig. 2.1. Geometri
 interpretation of Cfa1g?(r)of �nitely many isolated points on S1, it is possible to 
hoose radii rfag 2 (0; 1)suÆ
iently 
lose to 1 for all a 2 A su
h thatB1(0) \ C
fag?(rfag?) \ C
f~ag?(rf~ag?) = ; 8a; ~a 2 A with a 6= ~a; (2.1)see Figure 2.1. For example, it suÆ
es to 
hoose rfag? = 
os �=2 for all a 2 A, where
os � = maxfja � ~aj : a; ~a 2 A; a 6= ~ag:Let us now 
onsider the setC = B1(0) \ \a2ACfag?(rfag?)obtained from the 
losed unit ball by removingM via the 
onvex 
uts de�ned by thesandwi
hes Cfag?(rfag?), see Figure 2.2. Note thatrfag := �1� r2fag?) 12 > 0:Equation (2.1) implies that there exists a number Æ = minfrfag : a 2 Ag > 0 su
hthat a 2 A; x 2 C; aTx � 0; 0 � � � Æ ) x+ �a 2 C: (2.2)We will prove this 
laim in the more general setting of Lemma 5.4. For the timebeing, let us 
onvin
e that this property holds in R2 by inspe
tion of Figure 2.2.The set C is bounded, 
losed and 
onvex. It is also balan
ed, that is, x 2 C ,�x 2 C, and absorbing, that is, for every x 2 R2 there exists a � � 0 su
h thatx 2 �C. Combined together, these properties imply that the gauge fun
tion� : x 7! minf� � 0 : x 2 �Cg4
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ements CaiÆai
Fig. 2.2. Moving by Æ along ai in the unit ball of the gaugeasso
iated with C is a norm on R2 , see for example [13℄. Relation (2.2) implies thatwhenever �(xi) > U=Æ we have �(xi+1) � �(xi). Therefore, the gauge 
annot growlarger than O(U=Æ). Sin
e all norms on R2 are equivalent, and sin
e the sequen
e(xi)N is bounded in the norm �, it is also bounded in the Eu
lidean norm.Why 
ould our proof not have worked with the Eu
lidean norm in pla
e of � andthe unit disk B1(0) in lieu of C? Note that with these repla
ements, for all x =2 Mthe key identity (2.2) 
an be made to hold as long as Æ is small enough. This is 
learwhen x is an interior point of the disk, and for x 2 �B1(0), the 
ondition aTx < 0implies that the line x + ta 
uts into the interior of B1(0) for small positive t. Theproblem is that now Æ is a fun
tion of x and goes to zero near points x 2 M. Thus,the bound U=Æ is arbitrarily large and the argument breaks down.Of 
ourse, we intend to generalise the 
onstru
tion of the gauge � and its asso
i-ated 
losed unit ball C to higher dimensions, and then extra 
uts are needed be
auseM no longer 
onsists of isolated points. In R3 for example, this set is obtained as aunion of grand 
ir
les M = [a2Afx 2 S2 : x � a = 0g;We de�ne Cfag?(rfag?) as before, although fag? is now the orthogonal 
omplementof span(fag) in R3 , B1(0) is the 
losed Eu
lidean unit ball in R3 and S2 = �B1(0) isthe unit sphere, see Figure 2.3.
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ements
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Fig. 2.3. Cuts in R3If we want (2.2) to be satis�ed for two distin
t ve
tors a; ~a 2 A, problems o

urnear interse
tion points of the two grand 
ir
les asso
iated with a and ~a: as we sawabove, the purpose of the 
uts Cfag?(rfag?) is to 
atten the gauge unit ball C in thedire
tion of a, so that it is possible to move by a �nite amount in the dire
tion of5



a from any point within C where the inequality aTx > 0 is violated. However, in aneighbourhood of points x 2 span(fa; ~ag)? \ �C, the 
attening produ
ed by the 
utCfag?(rfag?) is destroyed by the 
ut Cf~ag?(rf~ag?) and vi
e versa, see the "diamond"shaped areas in Figure 2.4.

Fig. 2.4. Interferen
e of 
uts in diamond shaped regionThe problem 
an be �xed by applying further 
uts of the formCfa;~ag?(rfa;~ag?) := �x 2 R3 : k�fa;~ag?xk � rfa;~ag?	;where �fa;~ag?x is the proje
tion of x into span(a; ~a)? along span(a; ~a), whi
h impliesthat Cfa;~ag?(rfa;~ag?) is a sandwi
h parallel to the hyperplane span(a; ~a). Note that ifa and ~a are almost 
ollinear, then the diamond shaped region be
omes very elongatedand potentially large, unless rfag? and rf~ag? are 
hosen 
lose to 1. Moreover, rfa;~agmust be 
hosen small enough for Cfa;~ag?(rfa;~ag?) to 
ut o� the diamond shapedregion, but large enough so that it does not interfere with the 
attening produ
edby other 
uts of the same type. Finally, three di�erent ve
tors a; ~a; �a 2 A 
ould belinearly dependent, and then the three 
orresponding grand 
ir
les interse
t in twopoints. This situation does not 
reate the need for introdu
ing a new type of 
ut, butit does generate additional 
onstraints on the 
ut-depths.In Rn the situation is further exa
erbated by the fa
t that n � 1 di�erent typesof 
uts will be needed, one type ea
h for interse
tions of k = 1; : : : ; n� 1 of the grand
ir
les fx 2 Sn�1 : a �x = 0g, (a 2 A) 
orresponding to k linearly independent subsetsof A, where Sn�1 = �B1(0) is the (n � 1)-dimensional unit sphere and B1(0) the n-dimensional Eu
lidean 
losed unit ball. There exists a 
ompli
ated 
ombinatorial setof 
onstraints linking the depth of the di�erent 
uts, and a quantitative expression forthe radii depends on the angles between subspa
es span(P ) and span(Q) for di�erentsubsets P;Q � A. Moreover, we need an adequate generalisation of (2.1) to be ableto guarantee that (2.2) holds.Lu
kily, there exists a simple algebrai
 
ondition on the radii that involves onlyvery few of the exponentially many 
ut-depth 
onstraints and guarantees that theremaining 
onstraints are satis�ed, see (4.2). Moreover, the dependen
e of the radiion the angles between the exponentially many subspa
es spanned by the ve
tors of A
an be 
aptured in a single 
ondition number �(A) whi
h will be developed in Se
tion3. 3. A Condition Number to Quantify the Bounds. Let us now atta
k theproblem in Rn and generalise some of the 
on
epts introdu
ed above. We start withan obje
t that will allow us to quantify the bounds in our main theorems.6



Let A be a �nite ordered set of ve
tors in Rn nf0g. As mentioned earlier, we iden-tify A and any of its subsets with the matri
es obtained by 
olle
ting their elementsas 
olumn ve
tors in the spe
i�ed order. Let m := rank(A), B � A and k := #B. LetB = Q(B)R(B) be the thin QR de
omposition of B. That is, Q(B) 2 Rn�k satis�esQ(B)TQ(B) = Ik (it is a Stiefel matrix), and R(B) 2 Rk�k is an upper triangularmatrix with stri
tly positive diagonal, diag(R(B)) > 0. We writej detk (B)j := det(R(B)):Note that be
ause of the way R(B) was 
hosen, this number is always positive. Weendow all subspa
es V of Rn with the restri
tion of the 
anoni
al Eu
lidean innerprodu
t of Rn to V . With this 
onvention in pla
e it is the 
ase that j detk(B)jexpresses the standard k-dimensional volume of the parallelepipedn kXi=1 �ibi : �i 2 [0; 1℄(i = 1; : : : ; k)o � span(B);where B = (b1; : : : ; bk). We de�ne�(A)�1 := min�j detk (B)j : (k = 1; : : : ;m); B � A;#B = k; j detk (B)j 6= 0	: (3.1)Lemma 3.1 sums up a few simple properties of �(A). Part iv) and its proof areinspired by the lo
alisation lemma for the ellipsoid method [10℄. It provides an ef-�
iently 
omputable upper bound on �(A) when A 
onsists of rational input data.This is useful sin
e a dire
t 
omputation of �(A) via (3.1) is generally impra
ti
al.Let us explain how the bit-length D that appears in part iv) is de�ned: every rationalnumber r = �p=q 
an be represented as a triplet (p; q; s), where p and q are mutually
oprime natural numbers and s = �1 is the sign of r. We assume that p and q areexpressed in the shortest possible binary expansion, that is, if the string is nonemptythen the leading digit is a 1. The empty string represents the number 0. Finally, s
an be represented by a single bit of information. Sin
e q 6= 0, the shortest possiblerepresentation of a number takes two digits, 
orresponding to r = 0 represented by(;; 1; 0). The bit-length D is then de�ned as the sum of the bit-lengths of all 
ompo-nents appearing in the ve
tors of A.Lemma 3.1. Let A � Rn n f0g be a �nite ordered set of rank(A) = m � n. Thenthe following statements hold true:i) �(A) is invariant under reordering of the elements of A.ii) If B = �B1 B2 � � Â is of rank m where B1 = � â1 ::: âk�1 � and B2 =� âk ::: âm �, and if �B = � F B2 � where F = � f1 ::: fk�1 � is an orthonormalbasis of span(B1), then�� detm�k+1(B2)j � ��detm ( �B)�� � ��detm (B)��:In parti
ular, this implies that only matri
es B of rank m need to be 
onsideredin the de�nition of �(A).iii) If Â := fâ : a 2 Ag, where â = a=kak, then�(Â) � �(A) �mina2A kak�m:7



iv) if A 
onsists of rational input ve
tors of total bit length D then�(A) � 2D :Proof. i) Let B 2 Rn�k be a rank k matrix, let P 2 Sk be a k � k permutationmatrix and ~B = BP . All we need to show is that j detk Bj = j detk ~Bj. Let G =�B G2 � 2 Rn�n be su
h that G2 has 
olumn ve
tors 
onsisting of an orthonormalbasis of span(B)?. Then the QR de
omposition of G is �Q1 G2 ��R11 00 I �, where Q1R11is the thin QR de
omposition of B. Likewise, the matrix ~G := G� P 00 I � = � ~B G2 � hasQR de
omposition ~G = � ~Q1 G2 �� ~R11 00 I �, where ~Q1 ~R11 is the thin QR de
ompositionof ~B. Therefore,j detk ~Bj = det ~R11 = j det ~Gj = j detGj = detR11 = j detk Bj:ii) Let �Q1 Q2 ��R11 R120 R22 � and � �Q1 �Q2 �� �R11 �R120 �R22 � be the thin QR de
ompositionsof B and �B respe
tively, where the blo
king is 
onsistent with �B1 B2 �. Then Q2 =�Q2, R22 = �R22, and �R11 = I. Moreover, the i-th 
olumn of R11 is a ve
tor of lengthkâik = 1, whi
h implies that all diagonal elements of R11 are � 1. The se
ondinequality now follows from��detm ( �B)�� = det( �R11) det( �R22) � det(R11) det(R22) = ��detm (B)��:Now let � �Q1 �Q2 �� �R11 �R120 �R22 � be the thin QR de
omposition of �B := �B2 F �. Then�Q1 �R11 is the thin QR de
omposition of B2, and by the same argument as above, thediagonal elements of �R22 lie in (0; 1℄. Therefore,�� detm�k+1(B2)�� = det( �R11) � det( �R11) det( �R22) = ��detm ( �B)�� = ��detm ( �B)��;where the last equality follows from part i).iii) It follows from part ii) that we only need to 
onsider rank-m subsets B =(b1; : : : ; bm) � A. Let B = QR and B̂ = Q̂R̂ be the thin QR de
ompositions of Band B̂ = fb̂ : b 2 Bg, where b̂ = b=kbk denotes the normalisation of b. Then Q = Q̂and R = R̂ � diag(kbik), and therefore,j detm Bj = detR = det R̂ � mYi=1 kbik � j detm B̂j �mina2A kakm:The 
laim now follows easily.iv) Let B = (b1; : : : ; bm) be a subset of A on whi
h the minimum in (3.1) isa
hieved. Then an ordered subset F = (fm+1; : : : ; fn) of the 
anoni
al unit ve
tors inRn 
an be 
hosen to 
omplete B into a basis �B = �B F � of Rn . If �Q1 Q2 ��R11 R120 R22 �is the QR de
omposition of �B, then the thin QR de
omposition of B is Q1R11.Moreover, sin
e the i-th 
olumn ve
tor of �R11 R120 R22 � has norm kfik = 1 for (i =m+ 1; : : : ; n), the diagonal entries of R22 are all � 1. It follows thatj detm (B)j = det(R11) � det(R11) det(R22) = j det( �B)j:It suÆ
es therefore to show that j det( �B)j � 2�D . For (i = 1; : : : ;m) let D(bi) be thesum of the bit lengths of the 
omponents of bi. Let s
m(bi) be the smallest 
ommon8



multiple of the 
omponents of bi. Then s
m(bi) is smaller than the produ
t of thedenominators of the 
omponents in bi, and this is smaller than 2D(bi). Moreover,�B � � diag s
m(bi) I � is an integer matrix and hen
e has integer determinant. Therefore,j det( �B)j = ��det � �B � � diag s
m(bi) I ����Qki=1 s
m(bi) � 12Pki=1 D(bi) � 2�D ;whi
h 
ompletes the proof.Definition 3.2. For an unordered set A of nonzero ve
tors from Rn we write�(A) for the number � obtained under (3.1) for an arbitrary ordering of the elementsof A. Part i) of Lemma 3.1 shows that this notion is well-de�ned. �(A) plays the roleof a 
ondition number for the input data set A in quantifying the bounds of Se
tions6 and 7.4. Sele
ting Convex Cuts for the Constru
tion of a Gauge. In all of thisse
tion we take A to be a set of unit ve
tors. For P � Rn let �P be the orthogonalproje
tion of Rn onto span(P ) along span(P )?, and let �P? = id� �P . For r � 0 letus de�ne the sets CP (r) := fx 2 Rn : k�Pxk � rg;CP?(r) := fx 2 Rn : k�P?xk � rg:Note that sin
e any ve
tor in Rn is orthogonal to all elements of the empty set, wehave in parti
ular �;? = id, and hen
e we 
onsider �; = 0 to be the proje
tion ontof0g. This slight abuse of notation is 
onvenient, for we get C;?(1) = B1(0) andC;(r) = Rn for all r � 0. Note also that if span(P ) = Rn then CP?(r) = Rn for allr � 0.Next we will de�ne an algorithm that de�nes a set of radii frP : P � Ag � [0; 1℄whi
h is asso
iated with another set frP?g � [0; 1℄ via the relationrP? =q1� r2P 8P � A: (4.1)We write Pk(A) = fP : P � A; rank(P ) = kg, (k = 1; : : : ;m), where m = rank(A).Let nk := #Pk(A), and let Pk = fP [k℄1 ; : : : ; P [k℄nk g be an enumeration of the elementsof Pk. Also, let nki := #P [k℄i and let P [k℄i = fa[ki℄1 ; : : : ; a[ki℄nkig be an enumeration of theelements of P [k℄i .Algorithm 4.1.S0 Set r; = 0, k = m and rP = 1=2 (P 2 Pm(A)), rQ = 1 (Q 2 Sm�1l=1 Pl(A)).S1 For i = 1; : : : ; nkfor j = 1; : : : ; nkiif rank�P [k℄i n fa[ki℄j g� = k � 1rP [k℄i nfa[ki℄j g  min�rP [k℄i nfa[ki℄j g; 2�3=2rP [k℄i r1� k�P [k℄i nfa[ki℄j ga[ki℄j k2�;rfa[ki℄j g  min�rfa[ki℄j g; 2�3=2rP [k℄i r1� k�P [k℄i nfa[ki℄j ga[ki℄j k2�end 9



endend.S2 If k > 2k  k � 1elseif k = 2stopend.Lemma 4.2. Let A be a �nite set of unit ve
tors in Rn and let the set of radiifrP : P � Ag be generated by Algorithm 4.1. Then the following properties hold true:i) r; = 0,ii) rP 2 (0; 1℄ for all P � A su
h that P 6= ;,iii) for all P � A and a 2 A su
h that P 6= ; and a =2 span(P ),r2P[fag � 4�r2fag + r2P�1� k�Pak2 : (4.2)Proof. Condition i) is satis�ed be
ause r; is set to zero in step S0 and subse-quently never 
hanged. Condition ii) is satis�ed be
ause for all P � A su
h thatP 6= ;, rP is set in [1=2; 1℄ in step S0, and whenever rP is 
hanged subsequently itis repla
ed by a smaller but stri
tly positive value. Sin
e rP is 
hanged only �nitelymany times, the �nal value is in (0; 1℄. Step S1 guarantees that 
ondition iii) holdsfor (P [ fag) 2 Pk(A) at the end of iteration k, where we 
ount iterations ba
kwardfrom m down to 2. Sin
e rP[fag does not 
hange post 
ompletion of iteration k + 1and never if k = m, and sin
e rP and rfag 
an only further de
rease after their valuesare set to satisfy (4.2) in iteration k, the algorithm stops with 
ondition iii) holdingfor all (P [fag) 2 Smk=2 Pk. Moreover, if (P [fag) 2 P1 and a =2 span(P ) then P = ;,and we don't need to 
he
k (4.2).Lemma 4.3. Let A � Rn be a �nite set of unit ve
tors and let the set of radiifrP : P � Ag be generated by Algorithm 4.1 for some spe
i�
 
hoi
e of enumerationof the elements of Pk and likewise of their elements for (k = 1; : : : ;m). Then frP :P � Ag and the asso
iated set of radii frP? : P � Ag satisfy the following properties:i) minfrP? : P � Ag � 1=2,ii) minfrfag : a 2 Ag � �(A)�12� 3n+22 .Proof. i) Note that if k < m then every Q 2 Pk(A) arises as Q = P n fag forsome P 2 Pk+1(A) and a ve
tor a 2 A su
h that a =2 span(Q). Therefore, if at thebeginning of iteration k+1 we have rP � 12 for all P 2 Pk+1 then rQ will be 
hangedto a value � rP 2� 32 < 12 in iteration k + 1. This then implies that at the beginningof iteration k we have rQ � 12 for all Q 2 Pk. Sin
e at the beginning of iteration mwe have rP � 12 for all P 2 Pm, indu
tion on k shows that by the time the algorithmstops we have rP � 12 for all P � A, in
luding P = ; for whi
h we have rP = 0.Therefore, rP? =p1� r2P � p32 � 12 for all P � A.ii) Let a 2 A. The proof of part i) shows that rfag � 12 and hen
e rfag is
hanged at least on
e during the run of Algorithm 4.1. Therefore, there exists an indexk 2 f2; : : : ;mg and a subset P [k℄ 2 Pk su
h that a 2 P [k℄, rank(P [k℄ n fag) = k � 1and where P [k℄ and a play the role of P [k℄i and a[ki℄j when rfag is 
hanged for the last10



time. That is, we haverfag = rP [k℄ �q1� k�P [k℄nfa[k℄ga[k℄k2 � 2� 32 :Moreover, rP [k℄ is at its �nal value at this stage be
ause this radius does not 
hangeafter iteration k + 1 (again 
ounting ba
kwards from m down to 2). Unless k = m,rP [k℄ too 
hanged at least on
e, but only �nitely many times and only during iterationk + 1. Hen
e there was a last time when this radius was 
hanged torP [k℄ = rP [k+1℄ �q1� k�P [k+1℄nfa[k+1℄ga[k+1℄k2 � 2� 32for some P [k+1℄ 2 Pk+1 and a ve
tor a[k+1℄ 2 P [k+1℄ whi
h is linearly independentof P [k℄ and su
h that P [k+1℄ = P [k℄ [ fa[k+1℄g. Writing P [k�1℄ for P [k℄ n a[k℄ and
ontinuing this 
onstru
tion by indu
tion, we �nd that there exists a set P [m℄ 2 Pm,and ve
tors fa[k℄; : : : ; a[m℄g � A su
h thatP [m℄ = P [k�1℄ [ fa[k℄; : : : ; a[m℄g;P [s℄ := P [k�1℄ [ fa[k℄; : : : ; a[s℄g 2 Ps (s = k; : : : ;m);and rfag = rP [m℄ � mYs=kq1� k�P [s�1℄a[s℄k2 � 2� 32 (m�k+1)= 12 � ���detm �f1; : : : ; fk�1; a[k℄; : : : ; a[m℄���� � 2� 32 (m�k+1)Lem3.1 ii)� �(A)�1 � 2� 3n+22 ;where ff1; : : : ; fk�1g is an orthogonal basis of P [k�1℄.5. The Gauge Unit Ball and its Properties. In this se
tion we 
ontinue toassume that A is a set of unit ve
tors.Lemma 5.1. Let A be a �nite set of unit ve
tors in Rn , and let P � A and a 2 Abe su
h that P 6= ; and a =2 span(P ). Finally, let rfag, rP ,rfag[P 2 (0; 1℄ be su
h that(4.2) holds. Then Cfag[P �rfag[Pp2 � � Cfag(rfag) \ CP (rP ):Proof. Any x 2 Rn 
an be written asx = �a+ �~a+ x?;where x? ? span(P [ fag), and where ~a 2 span(P ) is su
h that k~ak = 1. Thenx 2 Cfag(rfag) and x 2 CP (rP ) imply�2 + �2(a � ~a)2 + 2��(a � ~a) = (a � x)2 = k�fagxk2 � r2fag;�2 + �2(a � ~a)2 + 2��(a � ~a) = (~a � x)2 = k�f~agxk2 � k�Pxk2 � r2P :11



Adding the two inequalities we getr2fag + r2P � (�2 + �2)(1 + (~a � a)2) + 4��(a � ~a): (5.1)On the other hand,k�fag[Pxk2 = k�a+ �~ak2 = �2 + �2 + 2��(a � ~a):Therefore,2k�fag[Pxk2 = (�2 + �2)(1 + (~a � a)2) + 4��(a � ~a) + (�2 + �2)(1� (~a � a)2)(5.1)� r2fag + r2P + (�2 + �2)(1� (~a � a)2): (5.2)Without loss of generality we may assume that 0 � ~a � a < 1. In fa
t, if ~a � a < 0then we 
an repla
e ~a by �~a and � by ��. Moreover, kak = k~ak = 1 and the Cau
hy{S
hwartz inequality imply that 0 � ~a � a � 1, and if ~a � a = 1 then a = ~a 2 span(P ),
ontradi
ting our assumption.Note that 2j��j � �2 + �2 by quadrati
 
ompletion. Hen
e,4j��j(a � ~a) � 2(�2 + �2)(a � ~a);and therefore, (5.1) shows thatr2fag + r2P � (�2 + �2)(1 + (~a � a)2 � 2(~a � a))= (�2 + �2)(1� ~a � a)2;that is,(�2 + �2)(1� (~a � a)2) � �r2fag + r2P� �1� (~a � a)2�(1� ~a � a)2 = �r2fag + r2P� (1 + ~a � a)(1� ~a � a) :Now (5.2) impliesk�fag[Pxk2 � r2fag + r2P2 � �1 + ~a � a1� ~a � a + 1� = r2fag + r2P1� ~a � a � r2fag + r2P1� k�Pak= �r2fag + r2P� (1 + k�Pak)(1� k�Pak) (1 + k�Pak) � 2�r2fag + r2P�1� k�Pak2(4.2)� r2P[fag2 :This shows the 
laimLemma 5.2. Let A be a �nite set of unit ve
tors in Rn , let P;Q � A be su
h thatspan(P ) � span(Q) but span(P ) 6= span(Q), and let rP < rQ=p2. ThenCQ� rQp2� \ CQ?(rQ? ) � CP?(rP?):12



Proof. Let x 2 CQ � rQp2� \ CQ?(rQ? ). Thenkxk2 = k�Qxk2 + k�Q?xk2 � r2Q2 + r2Q? = r2Q2 + (1� r2Q) = 1� r2Q2 :But then k�P?xk2 � kxk2 � 1� r2Q2 < 1� r2P = r2P? :Corollary 5.3. Let P � A and a 2 A be su
h that a =2 span(P ). If (4.2) holdsand r; = 0 thenCfag?(rfag?) \ Cfag(rfag) \ CP?(rP?)� Cfag?(rfag?) \ Cfag(rfag) \ C(fag[P )?(r(fag[P )?):(5.3)Proof. If P = ; then CP?(rP?) = C;?(1) = B1(0)and C(fag[P )?(r(fag[P )?) = Cfag?(rfag?), and sin
e Cfag?(rfag?) \ Cfag(rfag) �B1(0), (5.3) is trivially true. We may therefore assume that P 6= ;. Letx 2 Cfag?(rfag?) \ Cfag(rfag) \ C(fag[P )?(r(fag[P )?)and assume to the 
ontrary of our 
laim thatx =2 CP?(rP?): (5.4)Sin
e Cfag?(rfag?) \ Cfag(rfag) � B1(0), we have kxk � 1. Therefore, (5.4) impliesthat 1 � kxk2 = k�P?xk2 + k�Pxk2 (5.4)> r2P? + k�Pxk2;and this implies that k�Pxk2 < 1� r2P? = r2P ;that is, x 2 CP (rP ). Sin
e x is also in Cfag(rfag) and (4.2) holds, Lemma 5.1 impliesthat x 2 Cfag[P (rfag[P =p2). Sin
e we 
hose x in C(fag[P )?(r(fag[P )?) andr2fag[P2 � r2fag + r2P1� k�Pak � r2P ;Lemma 5.2 applied to P and Q = fag [ P implies that x 2 CP?(rP?), 
ontrary toassumption (5.4). 13



Lemma 5.4. Let A be a �nite set of unit ve
tors in Rn , let frP : P � Ag � [0; 1℄be a set of radii for whi
h the properties of Lemma 4.2 hold, and letC := \P�ACP?(rP?):Then the following impli
ations holds true:a 2 A; x 2 C ) x� (x � a)a 2 C;a 2 A; x 2 C; x � a � 0; 0 � � � rfag ) x+ �a 2 C:Proof. We need to show that x� (x � a)a; x+ �a 2 CP?(rP?) for all P � A. Case1: if a 2 span(P ) then the assumption x 2 CP?(rP? ) impliesk�P?(x+ �a)k = k�P?xk � rP? 8� 2 R;and hen
e, x� (x �a)a; x+ �a 2 CP?(rP? ). Case 2: a =2 span(P ). If follows from 
ase1 that x� (x � a)a 2 Cfag?(rfag?) \ Cfag(rfag) \ C(P[fag)?(r(P[fag)?):Equation (5.3) therefore implies that x � (x � a)a 2 CP?(rP?). Also, together with
ase 1, the assumptions x � a � 0 and 0 � � � rfag imply that eitherx+ �a 2 Cfag?(rfag?) \ Cfag(rfag) \ C(P[fag)?(r(P[fag)?);and then (5.3) implies that x+�a 2 CP?(rP? ), or else (x+�a) �a � �rfag. But thenwe have 0 � � � � + rfag � �x � a, whi
h shows that x+ �a is a 
onvex 
ombinationof x and x � (x � a)a, both of whi
h are in CP?(rP?). The 
onvexity of CP?(rP? )therefore implies that x+ �a 2 CP?(rP?).6. Relaxation Boundedness for Homogeneous Systems. We are �nallyready to start atta
king the main results of this paper whi
h generalise and strengthenthe 
lassi
al per
eptron boundedness theorem:Theorem 6.1. Let A be a �nite set of nonzero ve
tors in Rn , x0 2 Rn a givenstarting point, (�i)N0 2 [0; U ℄ and (ai)N0 � A su
h that the sequen
e of points de�nediteratively by xi+1 = xi + �iai satis�es the 
ondition xi � ai � 0 for all i 2 N0 . Thenfor all i, kxik is bounded byM(A) := 2max�kx0k; U maxa2A kak � �mina2A kakrank(A)�(A)23n=2 + 1��Proof. Let frP? : P � Ag, frP : P � Ag and C be 
hosen as in Lemma 5.4 whenit is applied to Â = fa=kak : a 2 Ag. The set C is a �nite interse
tion of 
onvex,balan
ed, absorbing sets, when
e C inherits these properties. Moreover, C is boundedsin
e C � C;?(r;?) = B1(0). The gauge� : x 7! minf� � 0 : x 2 �Cg14



asso
iated with C is therefore a norm on the �nite-dimensional spa
e Rn , see e.g. [13℄.Let us de�ne �s := U �maxa2A kak �maxâ2Â r�1fâg;�l := �s + U �maxa2A kak �maxP�Â r�1P? :Suppose �(xi) � �s for some i 2 N. Note that the de�nition of � implies thatxi 2 �(xi)C. Moreover, sin
e xi � a � 0 and�i � kaik�(xi) � U �maxa2A kak � ��1s � rfâig;Lemma 5.4 shows thatxi + �iai = �(xi)� xi�(xi) + �i � kaik�(xi) âi� 2 �(xi)C;and hen
e, �(xi + �iai) � �(xi). That is, as long as �(xi) � �s, the gauge value
an only de
rease in subsequent iterations. On the other hand, if �(xi) � �s thenk�P?xik � �srP? for all P � Â, and hen
e,k�P?(xi + �iai)k � k�P?xik+ �ik�P?aik � �srP? + U � kaik � �lrP? :Sin
e this is true for all P � Â, we have �(xi+1) � �l. In summary,�(xi+1) � (�l if �(xi) � �s;�(xi) if �(xi) � �s: (6.1)Iterative appli
ation of (6.1) shows that �(xi) � max(�(x0);�l) for all i. But notethat �(x) � kxk for all x 2 Rn , be
ause the unit ball of � is 
ontained in the unit ballof k � k. Therefore, (xi)N is bounded in the Eu
lidean norm by max(�(x0);�l).It remains only to quantify �l. It follows from Lemma 4.3 i) that �(x0) � 2kx0k.Part ii) of the same result shows that �s � U � maxa2A kak � �(Â)2 3n+22 . Finally,another appli
ation of part i) in 
onjun
tion with part iii) of Lemma 3.1 yields�l � 2U maxa2A kak � �mina2A kakrank(A)�(A)23n=2 + 1�:Combining the bounds on �(x0) and �l, one obtains the 
laimed bound.The expli
it formula forM(A) as a fun
tion of the input data A solves an old openproblem raised by Blo
k and Levin [4℄. Sin
e M(A) depends on A through �(A), thebound 
an be very large when A 
ontains subsets that are 
lose to rank-de�
ient, butnot. Note that to 
ompute �(A) one usually has to evaluate an exponential numberof determinants. The situation is greatly simpli�ed in the 
ase where A 
onsists ofrational input data, as the following 
orollary shows:Corollary 6.2. If A 
onsists of rational data of total bit length D thenM(A) � 2max�kx0k; U � �2(n+2)D+3n=2 + 2D�� :Proof. Arguing as in the proof of Lemma 3.1, it is easy to see that maxa2A kak �2D . Using m � n and part iv) of Lemma 3.1, the 
laim is now an immediate 
onse-quen
e of Theorem 6.1. 15



7. Extension to Inhomogeneous Systems. Theorem 6.1 provides informa-tion about the behaviour of the relaxation method applied to the system of homoge-neous linear inequalities ATx > 0. We will now extend this result so that it is validfor inhomogeneous systems ATx > b too. This 
an be a
hieved through the standardpro
ess of homogenisation and the 
areful 
onstru
tion of a new gauge.Theorem 7.1. Let A = (a[1℄; : : : ; a[k℄) be an ordered set of k nonzero ve
tors fromRn , b 2 Rk , x0 2 Rn , (�i)N0 � [0; U ℄, and (ji)N0 � f1; : : : ; kg su
h that the sequen
eof points de�ned iteratively by xi+1 = xi + �ia[ji℄ satis�es the 
ondition xi � a[ji℄ � bjifor all i 2 N0 . Let ~A := � A 0�bT 1 �. Then for all i, kxik is bounded byM(A; b) := 2max�

� x01 �

; 1 + U max~a2 ~A k~ak � �min~a2 ~A k~akrank( ~A)�( ~A)23(n+1)=2 + 1��(7.1)Moreover, if A and b 
onsist of rational data of total bit length D thenM(A; b) � 2max�

� x01 �

; 1 + U � �2(n+3)D+3(n+1)=2 + 2D�� : (7.2)Proof. Note that a[i℄ � x > bi if and only if (~a[i℄)T� x1 � > 0 where ~a[i℄ is the i-th
olumn ve
tor of ~A (i = 1; : : : ; k). Moreover, (~a[k+1℄)T� x1 � = 1 > 0 is always satis�ed,and ji 6= k + 1 for all i. There is a one-one 
orresponden
e between the points in Rnand those in the aÆne hyperplane H := �� xz � 2 Rn+1 : z = 1	 via the proje
tion	 : � x1 � 7! x. Sin
e kxk < k	�1xk, it suÆ
es to show that the sequen
e (k	�1xik)N0is bounded by M(A; b). But note that 	�1xi+1 = � ~xi+1, where ~xi+1 = � xi1 �+�i~a[ji℄and � : � xz � 7! � x1 � is the proje
tion of Rn+1 into H along the (n+ 1)-th 
oordinateaxis. Let C be the gauge unit ball 
orresponding to Â := f~a=k~ak : ~a 2 ~Ag under the
onstru
tion of Lemma 5.4, and let � be the asso
iated gauge on Rn . Let us set�s := max(U; 1) �max~a2 ~A k~ak �maxâ2Â r�1fâg;�l := �s +max(U; 1) �max~a2 ~A k~ak �maxP�Â r�1P? + 2:The same arguments as those leading to (6.1) demonstrate that�(~xi+1) � (�l if �(	�1xi) < �s;�(	�1xi) if �(	�1xi) � �s: (7.3)Lemma 5.4 shows that��� xi+10 �� = ��~xi+1 � (~xi+1 � ~a[k+1℄)~a[k+1℄� � �(~xi+1)Therefore, if ��� xi+10 �� � �s, then Lemma 5.4 implies�(	�1xi+1) = ��� xi+10 �+ 1 � ~a[k+1℄� � ��� xi+10 �� � �(~xi+1): (7.4)On the other hand, if ��� xi+10 �� < �s, then the triangular inequality of the norm �and the inequality � � 2k � k { whi
h follows from Lemma 4.3 i) { imply that�(	�1xi+1) � ��� xi+10 ��+ ��� 01 �� < �s + 2 < �l: (7.5)16



The 
ombination of (7.3), (7.4) and (7.5) now show�(	�1xi+1) � max��l; �(	�1xi)�: (7.6)Applying (7.6) iteratively, we �ndkxik < k	�1xik � �(	�1xi) � max��(	�1x0);�l�:It remains to bound �(x0) and �l, whi
h 
an be done as in the proof of Theorem6.1, leading to (7.1). Finally, progressing as in the proof of Corollary 6.2, one obtains(7.2). REFERENCES[1℄ S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathemati
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