
BOUNDEDNESS THEOREMS FOR THE RELAXATION METHODEDOARDO AMALDI� AND RAPHAEL HAUSERyAbstrat. A lassial theorem by Blok and Levin says that ertain variants of the relaxationmethod for solving systems of linear inequalities produe bounded sequenes of intermediate solutionseven when running on inonsistent input data. Using a new approah, we prove a more general versionof this result and answer an old open problem of quantifying the bounds as a funtion of the inputdata.AMS subjet lassi�ations. Primary 15A39,05A20, 52B55. Seondary 90C05, 62M45,68T01.Key words. Relaxation method, pereptron boundedness, ondition number, linear inequalities.1. Introdution. The relaxation method [1, 12℄ for �nding a point in an openonvex set K of a real inner produt spae (V; h�; �i) is a oneptual algorithm basedon a separation orale: given xi 2 V , the orale either provides ai 2 V; bi 2 R suhthat hai; xi > bi 8x 2 C; (1.1)hai; xii � bi; (1.2)or else a erti�ate that xi 2 C. Given a starting point x0, the method proeeds byupdating xi to xi+1 = xi + �iai in the �rst ase and by stopping when a erti�ate ofmembership is found. Sometimes K is assumed losed, in whih ase > is replaed by� in (1.1) and � by < in (1.2), but assuming that K is open is more onvenient forour purposes.In situations where K is impliitly desribed as the intersetion of a set of half-planes K = \(a;b)2A�x 2 V : ha; xi > b	 (1.3)the relaxation idea an usually be turned into a pratial algorithm by onstrutingan orale that samples the linear inequalities in A. In partiular, the polyhedra thatplay a role in linear programming are usually desribed by linear inequalities. Inradiation therapy planning a large number of linear inequalities our naturally ina mathematial formulation of the problem of delivering a maximum dose of X-raysinside a tumour subjet to the onstraint of keeping the exposure of surrounding tissuebelow a threshold [5℄. The situation is similar in ertain approahes to neural networksbased on �nding linear lassi�ers that should orretly lassify a set of training points[14℄.Many di�erent versions of the relaxation method have been proposed, dependingon how the step size �i and the points (ai; bi) de�ning the separating plane are hosen.The pereptron algorithm [14℄ is based on hoosing �i � 1, the yli projetionalgorithm [3℄ heks all the inequalities in A in a yli manner and takes a step�Dipartimento di Elettronia e Informazione, Politenio di Milano, Piazza Leonardo da Vini32, 20133 Milano, Italy, (amaldi�elet.polimi.it).yOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX13QD, United Kingdom, (hauser�omlab.ox.a.uk). This author was supported through grantNAL/00720/G from the NuÆeld Foundation and through grant GR/M30975 from the Engineer-ing and Physial Sienes Researh Counil of the UK.1



length �i = (bi�hai; xii)=hai; aii. Also related are Cimmino's method [6℄, the randomBregman projetion method [2℄ and various types of subgradient algorithms [15℄ suhas the bundle method [9℄.When the relaxation method is applied to a �nite feasible data set A (one thatleads to K 6= ;), then xi beomes a member of K after a �nite number of iterations forall interesting variants. A typial onvergene result is that of the pereptron methodwhih �nds a feasible point in a number of iterations that is proportional to the squareof GoÆn's ondition number, see [8℄. When the input data are rational, the worst-ase number of iterations needed til termination is exponential in the input size. Therelaxation method an be greatly improved by resaling the underlying spae at eahiteration [16℄. This insight led to the development of the ellipsoid method [17℄ whihbeame the �rst algorithm for linear programming shown to terminate in polynomialtime [10℄.A speial situation ours when K = ; but A 6= ; (we say that A is an infeasibleproblem instane): in this ase the algorithm will never stop, as the orale will always�nd a violated inequality. In this paper we are going to investigate this situation forthe ase where A is a �nite set. Although the problem of �nding a point in the emptyset is an impossible undertaking, the appliation of the relaxation method to infeasibleinput data is interesting in ontexts where one wishes to satisfy as large a numberof inequalities as possible but where satisfying all of them is usually impossible, asis typially the ase in radiation therapy planning, omputer learning and neuralnetworks. In this situation one would usually like to have information about thespatial distribution of the points xi generated by the algorithm. Our paper answers aquestion of this type by showing that for an important family of relaxation methodsthe sequene (xi)N0 remains bounded within a ball of quanti�able radius.We will now desribe the tehnial setup of our problem in some detail. LetA � Rn n f0g be a �nite set of nonzero vetors, x0 � Rn a given starting point,(�i)N0 2 R+ a sequene of nonnegative numbers and (ai)N0 � A an in�nite sequeneof vetors from A. Suppose that the sequene of points de�ned iteratively by xi+1 =xi + �iai satis�es the ondition aTi xi � 0 (1.4)for all i 2 N0 . This situation ours when the relaxation method with step lengths �iis applied to an infeasible system of homogeneous linear inequalities ATx > 0. Here,as elsewhere below, we identify the set A with the matrix obtained by olleting itselements as olumn vetors in some order.Nilson and Beyer (see referenes in [7℄) onjetured that in the ase where �i �1 (whih orresponds to the pereptron algorithm) the sequene of iterates (xi)N0remains bounded in norm. A proof of this onjeture, known today as the PereptronBoundedness Theorem, was developed in a series of papers by E�ron [7℄, Minsky{Papert [11℄ and Blok{Levin [4℄. Their proof is based on the notion of strit F -hainsas a basi analyti tool to enable an indution over the problem dimension. Using thesame tehnique, it an easily be established that the result extends to the ase wherethere exist onstants L;U suh that0 < L < �i < U 8i 2 N0 : (1.5)How general are these assumptions? Clearly, in the absene of an upper bound onthe �i, (xi)N0 does not have to remain bounded. Hene, the upper bound is neessary.2



On the other hand, the requirement that the lower bound be stritly positive mayseem like a minor tehnial detail, and one is led to suspet that it should be possibleto replae (1.5) by the less restritive ondition0 � �i < U 8i 2 N0 : (1.6)Indeed, proving pereptron boundedness under the more general ondition (1.6) isone of the main goals of this paper, see Theorem 6.1 below.Unfortunately, the strit positivity of the lower bound in (1.5) is a key requirementin arguments based on F -hains. A F -hain free approah is thus needed to establishthe result under the more general assumption (1.6). Our proof of Theorem 6.1 isbased on suh an approah, whih is not only oneptually new and less restritivebut also easier to understand geometrially than F -hains. Moreover, while earlierproofs showed only the existene of a bound on (xi)N, our Theorem 6.1 expliitlyquanti�es the bound as a funtion of the input data A. This solves an old openproblem whih was �rst mentioned by Blok and Levin [4℄.Both the fat that one an relax the lower bound on the step size and the avail-ability of an expliit expression for the bound as a funtion of the input data provideinteresting mathematial tools. In a forthoming paper we will show how both fatsplay a key role in the analysis of onvergene rates for randomised relaxation shemes.In Setion 7 we further generalise the boundedness theorem to inlude inhomoge-neous inequalities, that is, we show that relaxation methods with step lengths obeying(1.6) and applied to systems ATx > b produe a bounded sequene of intermediatesolutions (x0)N, with a bound that an be quanti�ed as a funtion of (A; b).A few remarks about notation: we endow Rn with the anonial Eulidean prod-ut, denoted by the � produt, and we write k � k for the assoiated norm. Any othernorms used are expliitly onstruted as the gauge funtions assoiated with onvex,balaned, absorbing, bounded sets (see [13℄) and are denoted by �. If x 2 Rn is anonzero vetor, then x̂ = x=kxk denotes its normalisation. If A = (a[1℄; : : : ; a[k℄) is anordered set of vetors in Rn , then we identify A with the matrix obtained by olletingits elements as olumn vetors in the same order(a[1℄; : : : ; a[k℄) � � a[1℄ ::: a[k℄ �:Any subset B � A inherits the same order of elements and is identi�ed with theorresponding submatrix of A. When A = fa[1℄; : : : ; a[k℄g is an unordered set thenthe same identi�ation holds modulo ordering of the elements, that is, we think of Aas a matrix obtained by olleting its elements as olumn vetors in an arbitrary order.2. The Underlying Geometri Insight. Before analysing the general ase,it is helpful to illustrate the geometri ideas that drive our approah in R2 and R3 .From here on and until the beginning of Setion 7 we onsider homogeneous systemsATx > 0. In this and a few other setions we will assume that kak = 1 for alla 2 A. This implies no loss of generality, sine we an replae �i by �ikaik, U byU �maxa2A kak and ai by ai=kaik.We start by disussing the ase n = 2. Let B1(0) be the losed unit disk andS1 = �B1(0) the unit irle around the origin. We will remove the setM := fx 2 S1 : 9a 2 A s.t. a ? xg3



from B1(0) via a �nite number of onvex uts. For a 2 A and r � 0 letCfag?(r) := fx 2 R2 : k�fag?xk � rg;where �fag?x = x�(a�x)a is the projetion of x into span(fag)? = fy 2 R2 : a�y = 0galong a. Cfag?(r) is thus a sandwih of thikness 2r parallel to a. We adopt thisslightly umbersome notation with later generalisations in mind. Sine M onsists
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Fig. 2.1. Geometri interpretation of Cfa1g?(r)of �nitely many isolated points on S1, it is possible to hoose radii rfag 2 (0; 1)suÆiently lose to 1 for all a 2 A suh thatB1(0) \ Cfag?(rfag?) \ Cf~ag?(rf~ag?) = ; 8a; ~a 2 A with a 6= ~a; (2.1)see Figure 2.1. For example, it suÆes to hoose rfag? = os �=2 for all a 2 A, whereos � = maxfja � ~aj : a; ~a 2 A; a 6= ~ag:Let us now onsider the setC = B1(0) \ \a2ACfag?(rfag?)obtained from the losed unit ball by removingM via the onvex uts de�ned by thesandwihes Cfag?(rfag?), see Figure 2.2. Note thatrfag := �1� r2fag?) 12 > 0:Equation (2.1) implies that there exists a number Æ = minfrfag : a 2 Ag > 0 suhthat a 2 A; x 2 C; aTx � 0; 0 � � � Æ ) x+ �a 2 C: (2.2)We will prove this laim in the more general setting of Lemma 5.4. For the timebeing, let us onvine that this property holds in R2 by inspetion of Figure 2.2.The set C is bounded, losed and onvex. It is also balaned, that is, x 2 C ,�x 2 C, and absorbing, that is, for every x 2 R2 there exists a � � 0 suh thatx 2 �C. Combined together, these properties imply that the gauge funtion� : x 7! minf� � 0 : x 2 �Cg4
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Fig. 2.2. Moving by Æ along ai in the unit ball of the gaugeassoiated with C is a norm on R2 , see for example [13℄. Relation (2.2) implies thatwhenever �(xi) > U=Æ we have �(xi+1) � �(xi). Therefore, the gauge annot growlarger than O(U=Æ). Sine all norms on R2 are equivalent, and sine the sequene(xi)N is bounded in the norm �, it is also bounded in the Eulidean norm.Why ould our proof not have worked with the Eulidean norm in plae of � andthe unit disk B1(0) in lieu of C? Note that with these replaements, for all x =2 Mthe key identity (2.2) an be made to hold as long as Æ is small enough. This is learwhen x is an interior point of the disk, and for x 2 �B1(0), the ondition aTx < 0implies that the line x + ta uts into the interior of B1(0) for small positive t. Theproblem is that now Æ is a funtion of x and goes to zero near points x 2 M. Thus,the bound U=Æ is arbitrarily large and the argument breaks down.Of ourse, we intend to generalise the onstrution of the gauge � and its assoi-ated losed unit ball C to higher dimensions, and then extra uts are needed beauseM no longer onsists of isolated points. In R3 for example, this set is obtained as aunion of grand irles M = [a2Afx 2 S2 : x � a = 0g;We de�ne Cfag?(rfag?) as before, although fag? is now the orthogonal omplementof span(fag) in R3 , B1(0) is the losed Eulidean unit ball in R3 and S2 = �B1(0) isthe unit sphere, see Figure 2.3.
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Fig. 2.3. Cuts in R3If we want (2.2) to be satis�ed for two distint vetors a; ~a 2 A, problems ournear intersetion points of the two grand irles assoiated with a and ~a: as we sawabove, the purpose of the uts Cfag?(rfag?) is to atten the gauge unit ball C in thediretion of a, so that it is possible to move by a �nite amount in the diretion of5



a from any point within C where the inequality aTx > 0 is violated. However, in aneighbourhood of points x 2 span(fa; ~ag)? \ �C, the attening produed by the utCfag?(rfag?) is destroyed by the ut Cf~ag?(rf~ag?) and vie versa, see the "diamond"shaped areas in Figure 2.4.

Fig. 2.4. Interferene of uts in diamond shaped regionThe problem an be �xed by applying further uts of the formCfa;~ag?(rfa;~ag?) := �x 2 R3 : k�fa;~ag?xk � rfa;~ag?	;where �fa;~ag?x is the projetion of x into span(a; ~a)? along span(a; ~a), whih impliesthat Cfa;~ag?(rfa;~ag?) is a sandwih parallel to the hyperplane span(a; ~a). Note that ifa and ~a are almost ollinear, then the diamond shaped region beomes very elongatedand potentially large, unless rfag? and rf~ag? are hosen lose to 1. Moreover, rfa;~agmust be hosen small enough for Cfa;~ag?(rfa;~ag?) to ut o� the diamond shapedregion, but large enough so that it does not interfere with the attening produedby other uts of the same type. Finally, three di�erent vetors a; ~a; �a 2 A ould belinearly dependent, and then the three orresponding grand irles interset in twopoints. This situation does not reate the need for introduing a new type of ut, butit does generate additional onstraints on the ut-depths.In Rn the situation is further exaerbated by the fat that n � 1 di�erent typesof uts will be needed, one type eah for intersetions of k = 1; : : : ; n� 1 of the grandirles fx 2 Sn�1 : a �x = 0g, (a 2 A) orresponding to k linearly independent subsetsof A, where Sn�1 = �B1(0) is the (n � 1)-dimensional unit sphere and B1(0) the n-dimensional Eulidean losed unit ball. There exists a ompliated ombinatorial setof onstraints linking the depth of the di�erent uts, and a quantitative expression forthe radii depends on the angles between subspaes span(P ) and span(Q) for di�erentsubsets P;Q � A. Moreover, we need an adequate generalisation of (2.1) to be ableto guarantee that (2.2) holds.Lukily, there exists a simple algebrai ondition on the radii that involves onlyvery few of the exponentially many ut-depth onstraints and guarantees that theremaining onstraints are satis�ed, see (4.2). Moreover, the dependene of the radiion the angles between the exponentially many subspaes spanned by the vetors of Aan be aptured in a single ondition number �(A) whih will be developed in Setion3. 3. A Condition Number to Quantify the Bounds. Let us now attak theproblem in Rn and generalise some of the onepts introdued above. We start withan objet that will allow us to quantify the bounds in our main theorems.6



Let A be a �nite ordered set of vetors in Rn nf0g. As mentioned earlier, we iden-tify A and any of its subsets with the matries obtained by olleting their elementsas olumn vetors in the spei�ed order. Let m := rank(A), B � A and k := #B. LetB = Q(B)R(B) be the thin QR deomposition of B. That is, Q(B) 2 Rn�k satis�esQ(B)TQ(B) = Ik (it is a Stiefel matrix), and R(B) 2 Rk�k is an upper triangularmatrix with stritly positive diagonal, diag(R(B)) > 0. We writej detk (B)j := det(R(B)):Note that beause of the way R(B) was hosen, this number is always positive. Weendow all subspaes V of Rn with the restrition of the anonial Eulidean innerprodut of Rn to V . With this onvention in plae it is the ase that j detk(B)jexpresses the standard k-dimensional volume of the parallelepipedn kXi=1 �ibi : �i 2 [0; 1℄(i = 1; : : : ; k)o � span(B);where B = (b1; : : : ; bk). We de�ne�(A)�1 := min�j detk (B)j : (k = 1; : : : ;m); B � A;#B = k; j detk (B)j 6= 0	: (3.1)Lemma 3.1 sums up a few simple properties of �(A). Part iv) and its proof areinspired by the loalisation lemma for the ellipsoid method [10℄. It provides an ef-�iently omputable upper bound on �(A) when A onsists of rational input data.This is useful sine a diret omputation of �(A) via (3.1) is generally impratial.Let us explain how the bit-length D that appears in part iv) is de�ned: every rationalnumber r = �p=q an be represented as a triplet (p; q; s), where p and q are mutuallyoprime natural numbers and s = �1 is the sign of r. We assume that p and q areexpressed in the shortest possible binary expansion, that is, if the string is nonemptythen the leading digit is a 1. The empty string represents the number 0. Finally, san be represented by a single bit of information. Sine q 6= 0, the shortest possiblerepresentation of a number takes two digits, orresponding to r = 0 represented by(;; 1; 0). The bit-length D is then de�ned as the sum of the bit-lengths of all ompo-nents appearing in the vetors of A.Lemma 3.1. Let A � Rn n f0g be a �nite ordered set of rank(A) = m � n. Thenthe following statements hold true:i) �(A) is invariant under reordering of the elements of A.ii) If B = �B1 B2 � � Â is of rank m where B1 = � â1 ::: âk�1 � and B2 =� âk ::: âm �, and if �B = � F B2 � where F = � f1 ::: fk�1 � is an orthonormalbasis of span(B1), then�� detm�k+1(B2)j � ��detm ( �B)�� � ��detm (B)��:In partiular, this implies that only matries B of rank m need to be onsideredin the de�nition of �(A).iii) If Â := fâ : a 2 Ag, where â = a=kak, then�(Â) � �(A) �mina2A kak�m:7



iv) if A onsists of rational input vetors of total bit length D then�(A) � 2D :Proof. i) Let B 2 Rn�k be a rank k matrix, let P 2 Sk be a k � k permutationmatrix and ~B = BP . All we need to show is that j detk Bj = j detk ~Bj. Let G =�B G2 � 2 Rn�n be suh that G2 has olumn vetors onsisting of an orthonormalbasis of span(B)?. Then the QR deomposition of G is �Q1 G2 ��R11 00 I �, where Q1R11is the thin QR deomposition of B. Likewise, the matrix ~G := G� P 00 I � = � ~B G2 � hasQR deomposition ~G = � ~Q1 G2 �� ~R11 00 I �, where ~Q1 ~R11 is the thin QR deompositionof ~B. Therefore,j detk ~Bj = det ~R11 = j det ~Gj = j detGj = detR11 = j detk Bj:ii) Let �Q1 Q2 ��R11 R120 R22 � and � �Q1 �Q2 �� �R11 �R120 �R22 � be the thin QR deompositionsof B and �B respetively, where the bloking is onsistent with �B1 B2 �. Then Q2 =�Q2, R22 = �R22, and �R11 = I. Moreover, the i-th olumn of R11 is a vetor of lengthkâik = 1, whih implies that all diagonal elements of R11 are � 1. The seondinequality now follows from��detm ( �B)�� = det( �R11) det( �R22) � det(R11) det(R22) = ��detm (B)��:Now let � �Q1 �Q2 �� �R11 �R120 �R22 � be the thin QR deomposition of �B := �B2 F �. Then�Q1 �R11 is the thin QR deomposition of B2, and by the same argument as above, thediagonal elements of �R22 lie in (0; 1℄. Therefore,�� detm�k+1(B2)�� = det( �R11) � det( �R11) det( �R22) = ��detm ( �B)�� = ��detm ( �B)��;where the last equality follows from part i).iii) It follows from part ii) that we only need to onsider rank-m subsets B =(b1; : : : ; bm) � A. Let B = QR and B̂ = Q̂R̂ be the thin QR deompositions of Band B̂ = fb̂ : b 2 Bg, where b̂ = b=kbk denotes the normalisation of b. Then Q = Q̂and R = R̂ � diag(kbik), and therefore,j detm Bj = detR = det R̂ � mYi=1 kbik � j detm B̂j �mina2A kakm:The laim now follows easily.iv) Let B = (b1; : : : ; bm) be a subset of A on whih the minimum in (3.1) isahieved. Then an ordered subset F = (fm+1; : : : ; fn) of the anonial unit vetors inRn an be hosen to omplete B into a basis �B = �B F � of Rn . If �Q1 Q2 ��R11 R120 R22 �is the QR deomposition of �B, then the thin QR deomposition of B is Q1R11.Moreover, sine the i-th olumn vetor of �R11 R120 R22 � has norm kfik = 1 for (i =m+ 1; : : : ; n), the diagonal entries of R22 are all � 1. It follows thatj detm (B)j = det(R11) � det(R11) det(R22) = j det( �B)j:It suÆes therefore to show that j det( �B)j � 2�D . For (i = 1; : : : ;m) let D(bi) be thesum of the bit lengths of the omponents of bi. Let sm(bi) be the smallest ommon8



multiple of the omponents of bi. Then sm(bi) is smaller than the produt of thedenominators of the omponents in bi, and this is smaller than 2D(bi). Moreover,�B � � diag sm(bi) I � is an integer matrix and hene has integer determinant. Therefore,j det( �B)j = ��det � �B � � diag sm(bi) I ����Qki=1 sm(bi) � 12Pki=1 D(bi) � 2�D ;whih ompletes the proof.Definition 3.2. For an unordered set A of nonzero vetors from Rn we write�(A) for the number � obtained under (3.1) for an arbitrary ordering of the elementsof A. Part i) of Lemma 3.1 shows that this notion is well-de�ned. �(A) plays the roleof a ondition number for the input data set A in quantifying the bounds of Setions6 and 7.4. Seleting Convex Cuts for the Constrution of a Gauge. In all of thissetion we take A to be a set of unit vetors. For P � Rn let �P be the orthogonalprojetion of Rn onto span(P ) along span(P )?, and let �P? = id� �P . For r � 0 letus de�ne the sets CP (r) := fx 2 Rn : k�Pxk � rg;CP?(r) := fx 2 Rn : k�P?xk � rg:Note that sine any vetor in Rn is orthogonal to all elements of the empty set, wehave in partiular �;? = id, and hene we onsider �; = 0 to be the projetion ontof0g. This slight abuse of notation is onvenient, for we get C;?(1) = B1(0) andC;(r) = Rn for all r � 0. Note also that if span(P ) = Rn then CP?(r) = Rn for allr � 0.Next we will de�ne an algorithm that de�nes a set of radii frP : P � Ag � [0; 1℄whih is assoiated with another set frP?g � [0; 1℄ via the relationrP? =q1� r2P 8P � A: (4.1)We write Pk(A) = fP : P � A; rank(P ) = kg, (k = 1; : : : ;m), where m = rank(A).Let nk := #Pk(A), and let Pk = fP [k℄1 ; : : : ; P [k℄nk g be an enumeration of the elementsof Pk. Also, let nki := #P [k℄i and let P [k℄i = fa[ki℄1 ; : : : ; a[ki℄nkig be an enumeration of theelements of P [k℄i .Algorithm 4.1.S0 Set r; = 0, k = m and rP = 1=2 (P 2 Pm(A)), rQ = 1 (Q 2 Sm�1l=1 Pl(A)).S1 For i = 1; : : : ; nkfor j = 1; : : : ; nkiif rank�P [k℄i n fa[ki℄j g� = k � 1rP [k℄i nfa[ki℄j g  min�rP [k℄i nfa[ki℄j g; 2�3=2rP [k℄i r1� k�P [k℄i nfa[ki℄j ga[ki℄j k2�;rfa[ki℄j g  min�rfa[ki℄j g; 2�3=2rP [k℄i r1� k�P [k℄i nfa[ki℄j ga[ki℄j k2�end 9



endend.S2 If k > 2k  k � 1elseif k = 2stopend.Lemma 4.2. Let A be a �nite set of unit vetors in Rn and let the set of radiifrP : P � Ag be generated by Algorithm 4.1. Then the following properties hold true:i) r; = 0,ii) rP 2 (0; 1℄ for all P � A suh that P 6= ;,iii) for all P � A and a 2 A suh that P 6= ; and a =2 span(P ),r2P[fag � 4�r2fag + r2P�1� k�Pak2 : (4.2)Proof. Condition i) is satis�ed beause r; is set to zero in step S0 and subse-quently never hanged. Condition ii) is satis�ed beause for all P � A suh thatP 6= ;, rP is set in [1=2; 1℄ in step S0, and whenever rP is hanged subsequently itis replaed by a smaller but stritly positive value. Sine rP is hanged only �nitelymany times, the �nal value is in (0; 1℄. Step S1 guarantees that ondition iii) holdsfor (P [ fag) 2 Pk(A) at the end of iteration k, where we ount iterations bakwardfrom m down to 2. Sine rP[fag does not hange post ompletion of iteration k + 1and never if k = m, and sine rP and rfag an only further derease after their valuesare set to satisfy (4.2) in iteration k, the algorithm stops with ondition iii) holdingfor all (P [fag) 2 Smk=2 Pk. Moreover, if (P [fag) 2 P1 and a =2 span(P ) then P = ;,and we don't need to hek (4.2).Lemma 4.3. Let A � Rn be a �nite set of unit vetors and let the set of radiifrP : P � Ag be generated by Algorithm 4.1 for some spei� hoie of enumerationof the elements of Pk and likewise of their elements for (k = 1; : : : ;m). Then frP :P � Ag and the assoiated set of radii frP? : P � Ag satisfy the following properties:i) minfrP? : P � Ag � 1=2,ii) minfrfag : a 2 Ag � �(A)�12� 3n+22 .Proof. i) Note that if k < m then every Q 2 Pk(A) arises as Q = P n fag forsome P 2 Pk+1(A) and a vetor a 2 A suh that a =2 span(Q). Therefore, if at thebeginning of iteration k+1 we have rP � 12 for all P 2 Pk+1 then rQ will be hangedto a value � rP 2� 32 < 12 in iteration k + 1. This then implies that at the beginningof iteration k we have rQ � 12 for all Q 2 Pk. Sine at the beginning of iteration mwe have rP � 12 for all P 2 Pm, indution on k shows that by the time the algorithmstops we have rP � 12 for all P � A, inluding P = ; for whih we have rP = 0.Therefore, rP? =p1� r2P � p32 � 12 for all P � A.ii) Let a 2 A. The proof of part i) shows that rfag � 12 and hene rfag ishanged at least one during the run of Algorithm 4.1. Therefore, there exists an indexk 2 f2; : : : ;mg and a subset P [k℄ 2 Pk suh that a 2 P [k℄, rank(P [k℄ n fag) = k � 1and where P [k℄ and a play the role of P [k℄i and a[ki℄j when rfag is hanged for the last10



time. That is, we haverfag = rP [k℄ �q1� k�P [k℄nfa[k℄ga[k℄k2 � 2� 32 :Moreover, rP [k℄ is at its �nal value at this stage beause this radius does not hangeafter iteration k + 1 (again ounting bakwards from m down to 2). Unless k = m,rP [k℄ too hanged at least one, but only �nitely many times and only during iterationk + 1. Hene there was a last time when this radius was hanged torP [k℄ = rP [k+1℄ �q1� k�P [k+1℄nfa[k+1℄ga[k+1℄k2 � 2� 32for some P [k+1℄ 2 Pk+1 and a vetor a[k+1℄ 2 P [k+1℄ whih is linearly independentof P [k℄ and suh that P [k+1℄ = P [k℄ [ fa[k+1℄g. Writing P [k�1℄ for P [k℄ n a[k℄ andontinuing this onstrution by indution, we �nd that there exists a set P [m℄ 2 Pm,and vetors fa[k℄; : : : ; a[m℄g � A suh thatP [m℄ = P [k�1℄ [ fa[k℄; : : : ; a[m℄g;P [s℄ := P [k�1℄ [ fa[k℄; : : : ; a[s℄g 2 Ps (s = k; : : : ;m);and rfag = rP [m℄ � mYs=kq1� k�P [s�1℄a[s℄k2 � 2� 32 (m�k+1)= 12 � ���detm �f1; : : : ; fk�1; a[k℄; : : : ; a[m℄���� � 2� 32 (m�k+1)Lem3.1 ii)� �(A)�1 � 2� 3n+22 ;where ff1; : : : ; fk�1g is an orthogonal basis of P [k�1℄.5. The Gauge Unit Ball and its Properties. In this setion we ontinue toassume that A is a set of unit vetors.Lemma 5.1. Let A be a �nite set of unit vetors in Rn , and let P � A and a 2 Abe suh that P 6= ; and a =2 span(P ). Finally, let rfag, rP ,rfag[P 2 (0; 1℄ be suh that(4.2) holds. Then Cfag[P �rfag[Pp2 � � Cfag(rfag) \ CP (rP ):Proof. Any x 2 Rn an be written asx = �a+ �~a+ x?;where x? ? span(P [ fag), and where ~a 2 span(P ) is suh that k~ak = 1. Thenx 2 Cfag(rfag) and x 2 CP (rP ) imply�2 + �2(a � ~a)2 + 2��(a � ~a) = (a � x)2 = k�fagxk2 � r2fag;�2 + �2(a � ~a)2 + 2��(a � ~a) = (~a � x)2 = k�f~agxk2 � k�Pxk2 � r2P :11



Adding the two inequalities we getr2fag + r2P � (�2 + �2)(1 + (~a � a)2) + 4��(a � ~a): (5.1)On the other hand,k�fag[Pxk2 = k�a+ �~ak2 = �2 + �2 + 2��(a � ~a):Therefore,2k�fag[Pxk2 = (�2 + �2)(1 + (~a � a)2) + 4��(a � ~a) + (�2 + �2)(1� (~a � a)2)(5.1)� r2fag + r2P + (�2 + �2)(1� (~a � a)2): (5.2)Without loss of generality we may assume that 0 � ~a � a < 1. In fat, if ~a � a < 0then we an replae ~a by �~a and � by ��. Moreover, kak = k~ak = 1 and the Cauhy{Shwartz inequality imply that 0 � ~a � a � 1, and if ~a � a = 1 then a = ~a 2 span(P ),ontraditing our assumption.Note that 2j��j � �2 + �2 by quadrati ompletion. Hene,4j��j(a � ~a) � 2(�2 + �2)(a � ~a);and therefore, (5.1) shows thatr2fag + r2P � (�2 + �2)(1 + (~a � a)2 � 2(~a � a))= (�2 + �2)(1� ~a � a)2;that is,(�2 + �2)(1� (~a � a)2) � �r2fag + r2P� �1� (~a � a)2�(1� ~a � a)2 = �r2fag + r2P� (1 + ~a � a)(1� ~a � a) :Now (5.2) impliesk�fag[Pxk2 � r2fag + r2P2 � �1 + ~a � a1� ~a � a + 1� = r2fag + r2P1� ~a � a � r2fag + r2P1� k�Pak= �r2fag + r2P� (1 + k�Pak)(1� k�Pak) (1 + k�Pak) � 2�r2fag + r2P�1� k�Pak2(4.2)� r2P[fag2 :This shows the laimLemma 5.2. Let A be a �nite set of unit vetors in Rn , let P;Q � A be suh thatspan(P ) � span(Q) but span(P ) 6= span(Q), and let rP < rQ=p2. ThenCQ� rQp2� \ CQ?(rQ? ) � CP?(rP?):12



Proof. Let x 2 CQ � rQp2� \ CQ?(rQ? ). Thenkxk2 = k�Qxk2 + k�Q?xk2 � r2Q2 + r2Q? = r2Q2 + (1� r2Q) = 1� r2Q2 :But then k�P?xk2 � kxk2 � 1� r2Q2 < 1� r2P = r2P? :Corollary 5.3. Let P � A and a 2 A be suh that a =2 span(P ). If (4.2) holdsand r; = 0 thenCfag?(rfag?) \ Cfag(rfag) \ CP?(rP?)� Cfag?(rfag?) \ Cfag(rfag) \ C(fag[P )?(r(fag[P )?):(5.3)Proof. If P = ; then CP?(rP?) = C;?(1) = B1(0)and C(fag[P )?(r(fag[P )?) = Cfag?(rfag?), and sine Cfag?(rfag?) \ Cfag(rfag) �B1(0), (5.3) is trivially true. We may therefore assume that P 6= ;. Letx 2 Cfag?(rfag?) \ Cfag(rfag) \ C(fag[P )?(r(fag[P )?)and assume to the ontrary of our laim thatx =2 CP?(rP?): (5.4)Sine Cfag?(rfag?) \ Cfag(rfag) � B1(0), we have kxk � 1. Therefore, (5.4) impliesthat 1 � kxk2 = k�P?xk2 + k�Pxk2 (5.4)> r2P? + k�Pxk2;and this implies that k�Pxk2 < 1� r2P? = r2P ;that is, x 2 CP (rP ). Sine x is also in Cfag(rfag) and (4.2) holds, Lemma 5.1 impliesthat x 2 Cfag[P (rfag[P =p2). Sine we hose x in C(fag[P )?(r(fag[P )?) andr2fag[P2 � r2fag + r2P1� k�Pak � r2P ;Lemma 5.2 applied to P and Q = fag [ P implies that x 2 CP?(rP?), ontrary toassumption (5.4). 13



Lemma 5.4. Let A be a �nite set of unit vetors in Rn , let frP : P � Ag � [0; 1℄be a set of radii for whih the properties of Lemma 4.2 hold, and letC := \P�ACP?(rP?):Then the following impliations holds true:a 2 A; x 2 C ) x� (x � a)a 2 C;a 2 A; x 2 C; x � a � 0; 0 � � � rfag ) x+ �a 2 C:Proof. We need to show that x� (x � a)a; x+ �a 2 CP?(rP?) for all P � A. Case1: if a 2 span(P ) then the assumption x 2 CP?(rP? ) impliesk�P?(x+ �a)k = k�P?xk � rP? 8� 2 R;and hene, x� (x �a)a; x+ �a 2 CP?(rP? ). Case 2: a =2 span(P ). If follows from ase1 that x� (x � a)a 2 Cfag?(rfag?) \ Cfag(rfag) \ C(P[fag)?(r(P[fag)?):Equation (5.3) therefore implies that x � (x � a)a 2 CP?(rP?). Also, together withase 1, the assumptions x � a � 0 and 0 � � � rfag imply that eitherx+ �a 2 Cfag?(rfag?) \ Cfag(rfag) \ C(P[fag)?(r(P[fag)?);and then (5.3) implies that x+�a 2 CP?(rP? ), or else (x+�a) �a � �rfag. But thenwe have 0 � � � � + rfag � �x � a, whih shows that x+ �a is a onvex ombinationof x and x � (x � a)a, both of whih are in CP?(rP?). The onvexity of CP?(rP? )therefore implies that x+ �a 2 CP?(rP?).6. Relaxation Boundedness for Homogeneous Systems. We are �nallyready to start attaking the main results of this paper whih generalise and strengthenthe lassial pereptron boundedness theorem:Theorem 6.1. Let A be a �nite set of nonzero vetors in Rn , x0 2 Rn a givenstarting point, (�i)N0 2 [0; U ℄ and (ai)N0 � A suh that the sequene of points de�nediteratively by xi+1 = xi + �iai satis�es the ondition xi � ai � 0 for all i 2 N0 . Thenfor all i, kxik is bounded byM(A) := 2max�kx0k; U maxa2A kak � �mina2A kakrank(A)�(A)23n=2 + 1��Proof. Let frP? : P � Ag, frP : P � Ag and C be hosen as in Lemma 5.4 whenit is applied to Â = fa=kak : a 2 Ag. The set C is a �nite intersetion of onvex,balaned, absorbing sets, whene C inherits these properties. Moreover, C is boundedsine C � C;?(r;?) = B1(0). The gauge� : x 7! minf� � 0 : x 2 �Cg14



assoiated with C is therefore a norm on the �nite-dimensional spae Rn , see e.g. [13℄.Let us de�ne �s := U �maxa2A kak �maxâ2Â r�1fâg;�l := �s + U �maxa2A kak �maxP�Â r�1P? :Suppose �(xi) � �s for some i 2 N. Note that the de�nition of � implies thatxi 2 �(xi)C. Moreover, sine xi � a � 0 and�i � kaik�(xi) � U �maxa2A kak � ��1s � rfâig;Lemma 5.4 shows thatxi + �iai = �(xi)� xi�(xi) + �i � kaik�(xi) âi� 2 �(xi)C;and hene, �(xi + �iai) � �(xi). That is, as long as �(xi) � �s, the gauge valuean only derease in subsequent iterations. On the other hand, if �(xi) � �s thenk�P?xik � �srP? for all P � Â, and hene,k�P?(xi + �iai)k � k�P?xik+ �ik�P?aik � �srP? + U � kaik � �lrP? :Sine this is true for all P � Â, we have �(xi+1) � �l. In summary,�(xi+1) � (�l if �(xi) � �s;�(xi) if �(xi) � �s: (6.1)Iterative appliation of (6.1) shows that �(xi) � max(�(x0);�l) for all i. But notethat �(x) � kxk for all x 2 Rn , beause the unit ball of � is ontained in the unit ballof k � k. Therefore, (xi)N is bounded in the Eulidean norm by max(�(x0);�l).It remains only to quantify �l. It follows from Lemma 4.3 i) that �(x0) � 2kx0k.Part ii) of the same result shows that �s � U � maxa2A kak � �(Â)2 3n+22 . Finally,another appliation of part i) in onjuntion with part iii) of Lemma 3.1 yields�l � 2U maxa2A kak � �mina2A kakrank(A)�(A)23n=2 + 1�:Combining the bounds on �(x0) and �l, one obtains the laimed bound.The expliit formula forM(A) as a funtion of the input data A solves an old openproblem raised by Blok and Levin [4℄. Sine M(A) depends on A through �(A), thebound an be very large when A ontains subsets that are lose to rank-de�ient, butnot. Note that to ompute �(A) one usually has to evaluate an exponential numberof determinants. The situation is greatly simpli�ed in the ase where A onsists ofrational input data, as the following orollary shows:Corollary 6.2. If A onsists of rational data of total bit length D thenM(A) � 2max�kx0k; U � �2(n+2)D+3n=2 + 2D�� :Proof. Arguing as in the proof of Lemma 3.1, it is easy to see that maxa2A kak �2D . Using m � n and part iv) of Lemma 3.1, the laim is now an immediate onse-quene of Theorem 6.1. 15



7. Extension to Inhomogeneous Systems. Theorem 6.1 provides informa-tion about the behaviour of the relaxation method applied to the system of homoge-neous linear inequalities ATx > 0. We will now extend this result so that it is validfor inhomogeneous systems ATx > b too. This an be ahieved through the standardproess of homogenisation and the areful onstrution of a new gauge.Theorem 7.1. Let A = (a[1℄; : : : ; a[k℄) be an ordered set of k nonzero vetors fromRn , b 2 Rk , x0 2 Rn , (�i)N0 � [0; U ℄, and (ji)N0 � f1; : : : ; kg suh that the sequeneof points de�ned iteratively by xi+1 = xi + �ia[ji℄ satis�es the ondition xi � a[ji℄ � bjifor all i 2 N0 . Let ~A := � A 0�bT 1 �. Then for all i, kxik is bounded byM(A; b) := 2max�� x01 �; 1 + U max~a2 ~A k~ak � �min~a2 ~A k~akrank( ~A)�( ~A)23(n+1)=2 + 1��(7.1)Moreover, if A and b onsist of rational data of total bit length D thenM(A; b) � 2max�� x01 �; 1 + U � �2(n+3)D+3(n+1)=2 + 2D�� : (7.2)Proof. Note that a[i℄ � x > bi if and only if (~a[i℄)T� x1 � > 0 where ~a[i℄ is the i-tholumn vetor of ~A (i = 1; : : : ; k). Moreover, (~a[k+1℄)T� x1 � = 1 > 0 is always satis�ed,and ji 6= k + 1 for all i. There is a one-one orrespondene between the points in Rnand those in the aÆne hyperplane H := �� xz � 2 Rn+1 : z = 1	 via the projetion	 : � x1 � 7! x. Sine kxk < k	�1xk, it suÆes to show that the sequene (k	�1xik)N0is bounded by M(A; b). But note that 	�1xi+1 = � ~xi+1, where ~xi+1 = � xi1 �+�i~a[ji℄and � : � xz � 7! � x1 � is the projetion of Rn+1 into H along the (n+ 1)-th oordinateaxis. Let C be the gauge unit ball orresponding to Â := f~a=k~ak : ~a 2 ~Ag under theonstrution of Lemma 5.4, and let � be the assoiated gauge on Rn . Let us set�s := max(U; 1) �max~a2 ~A k~ak �maxâ2Â r�1fâg;�l := �s +max(U; 1) �max~a2 ~A k~ak �maxP�Â r�1P? + 2:The same arguments as those leading to (6.1) demonstrate that�(~xi+1) � (�l if �(	�1xi) < �s;�(	�1xi) if �(	�1xi) � �s: (7.3)Lemma 5.4 shows that��� xi+10 �� = ��~xi+1 � (~xi+1 � ~a[k+1℄)~a[k+1℄� � �(~xi+1)Therefore, if ��� xi+10 �� � �s, then Lemma 5.4 implies�(	�1xi+1) = ��� xi+10 �+ 1 � ~a[k+1℄� � ��� xi+10 �� � �(~xi+1): (7.4)On the other hand, if ��� xi+10 �� < �s, then the triangular inequality of the norm �and the inequality � � 2k � k { whih follows from Lemma 4.3 i) { imply that�(	�1xi+1) � ��� xi+10 ��+ ��� 01 �� < �s + 2 < �l: (7.5)16
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