BOUNDEDNESS THEOREMS FOR THE RELAXATION METHOD

EDOARDO AMALDI* AND RAPHAEL HAUSER'

Abstract. A classical theorem by Block and Levin says that certain variants of the relaxation
method for solving systems of linear inequalities produce bounded sequences of intermediate solutions
even when running on inconsistent input data. Using a new approach, we prove a more general version
of this result and answer an old open problem of quantifying the bounds as a function of the input
data.
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1. Introduction. The relaxation method [1, 12] for finding a point in an open
convex set K of a real inner product space (V,(-,-}) is a conceptual algorithm based
on a separation oracle: given x; € V, the oracle either provides a; € V,b; € R such
that

(ai,a:> > b; Vx € C, (].].)
(ai, ;) < bi, (1.2)

or else a certificate that z; € C'. Given a starting point xo, the method proceeds by
updating x; to ;11 = x; + 1m;a; in the first case and by stopping when a certificate of
membership is found. Sometimes K is assumed closed, in which case > is replaced by
> in (1.1) and < by < in (1.2), but assuming that X is open is more convenient for
our purposes.

In situations where K is implicitly described as the intersection of a set of half-
planes

K= () {zeV: (az) >b} (1.3)

(a,b)eA

the relaxation idea can usually be turned into a practical algorithm by constructing
an oracle that samples the linear inequalities in A. In particular, the polyhedra that
play a role in linear programming are usually described by linear inequalities. In
radiation therapy planning a large number of linear inequalities occur naturally in
a mathematical formulation of the problem of delivering a maximum dose of X-rays
inside a tumour subject to the constraint of keeping the exposure of surrounding tissue
below a threshold [5]. The situation is similar in certain approaches to neural networks
based on finding linear classifiers that should correctly classify a set of training points
[14].

Many different versions of the relaxation method have been proposed, depending
on how the step size n; and the points (a;, b;) defining the separating plane are chosen.
The perceptron algorithm [14] is based on choosing 7; = 1, the cyclic projection
algorithm [3] checks all the inequalities in A in a cyclic manner and takes a step
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length n; = (b; — (a;, z;))/{ai, a;). Also related are Cimmino’s method [6], the random
Bregman projection method [2] and various types of subgradient algorithms [15] such
as the bundle method [9].

When the relaxation method is applied to a finite feasible data set A (one that
leads to K # (), then z; becomes a member of K after a finite number of iterations for
all interesting variants. A typical convergence result is that of the perceptron method
which finds a feasible point in a number of iterations that is proportional to the square
of Goffin’s condition number, see [8]. When the input data are rational, the worst-
case number of iterations needed til termination is exponential in the input size. The
relaxation method can be greatly improved by rescaling the underlying space at each
iteration [16]. This insight led to the development of the ellipsoid method [17] which
became the first algorithm for linear programming shown to terminate in polynomial
time [10].

A special situation occurs when K = () but A # 0 (we say that A is an infeasible
problem instance): in this case the algorithm will never stop, as the oracle will always
find a violated inequality. In this paper we are going to investigate this situation for
the case where A is a finite set. Although the problem of finding a point in the empty
set is an impossible undertaking, the application of the relaxation method to infeasible
input data is interesting in contexts where one wishes to satisfy as large a number
of inequalities as possible but where satisfying all of them is usually impossible, as
is typically the case in radiation therapy planning, computer learning and neural
networks. In this situation one would usually like to have information about the
spatial distribution of the points z; generated by the algorithm. Our paper answers a
question of this type by showing that for an important family of relaxation methods
the sequence (z;)n, remains bounded within a ball of quantifiable radius.

We will now describe the technical setup of our problem in some detail. Let
A C R* \ {0} be a finite set of nonzero vectors, zo C R"™ a given starting point,
()N, € Ry a sequence of nonnegative numbers and (a;)n, € A an infinite sequence
of vectors from A. Suppose that the sequence of points defined iteratively by z; 11 =
x; + m;a; satisfies the condition

ajz; <0 (1.4)

for all i € Ny. This situation occurs when the relaxation method with step lengths n;
is applied to an infeasible system of homogeneous linear inequalities AT2 > 0. Here,
as elsewhere below, we identify the set A with the matrix obtained by collecting its
elements as column vectors in some order.

Nilson and Beyer (see references in [7]) conjectured that in the case where n; =
1 (which corresponds to the perceptron algorithm) the sequence of iterates (x;)n,
remains bounded in norm. A proof of this conjecture, known today as the Perceptron
Boundedness Theorem, was developed in a series of papers by Effron [7], Minsky—
Papert [11] and Block—Levin [4]. Their proof is based on the notion of strict F'-chains
as a basic analytic tool to enable an induction over the problem dimension. Using the
same technique, it can easily be established that the result extends to the case where
there exist constants L, U such that

O0<L<n<U Vi e Ny. (1.5)

How general are these assumptions? Clearly, in the absence of an upper bound on
the n;, (z;)n, does not have to remain bounded. Hence, the upper bound is necessary.
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On the other hand, the requirement that the lower bound be strictly positive may
seem like a minor technical detail, and one is led to suspect that it should be possible
to replace (1.5) by the less restrictive condition

0<n<U Vi eNy. (16)

Indeed, proving perceptron boundedness under the more general condition (1.6) is
one of the main goals of this paper, see Theorem 6.1 below.

Unfortunately, the strict positivity of the lower bound in (1.5) is a key requirement
in arguments based on F-chains. A F-chain free approach is thus needed to establish
the result under the more general assumption (1.6). Our proof of Theorem 6.1 is
based on such an approach, which is not only conceptually new and less restrictive
but also easier to understand geometrically than F-chains. Moreover, while earlier
proofs showed only the existence of a bound on (z;)y, our Theorem 6.1 explicitly
quantifies the bound as a function of the input data A. This solves an old open
problem which was first mentioned by Block and Levin [4].

Both the fact that one can relax the lower bound on the step size and the avail-
ability of an explicit expression for the bound as a function of the input data provide
interesting mathematical tools. In a forthcoming paper we will show how both facts
play a key role in the analysis of convergence rates for randomised relaxation schemes.

In Section 7 we further generalise the boundedness theorem to include inhomoge-
neous inequalities, that is, we show that relaxation methods with step lengths obeying
(1.6) and applied to systems ATz > b produce a bounded sequence of intermediate
solutions (zg)n, with a bound that can be quantified as a function of (A, b).

A few remarks about notation: we endow R with the canonical Euclidean prod-
uct, denoted by the - product, and we write || - || for the associated norm. Any other
norms used are explicitly constructed as the gauge functions associated with convex,
balanced, absorbing, bounded sets (see [13]) and are denoted by £. If x € R” is a
nonzero vector, then Z = z/||z|| denotes its normalisation. If A = (al*, ... al*l) is an
ordered set of vectors in R™, then we identify A with the matrix obtained by collecting
its elements as column vectors in the same order

(a[l], .. ,a{k]) = (alll L alE] )

Any subset B C A inherits the same order of elements and is identified with the
corresponding submatrix of A. When A = {al!l,...,al*} is an unordered set then
the same identification holds modulo ordering of the elements, that is, we think of A
as a matrix obtained by collecting its elements as column vectors in an arbitrary order.

2. The Underlying Geometric Insight. Before analysing the general case,
it is helpful to illustrate the geometric ideas that drive our approach in R? and R3.
From here on and until the beginning of Section 7 we consider homogeneous systems
ATz > 0. In this and a few other sections we will assume that [|a|| = 1 for all
a € A. This implies no loss of generality, since we can replace n; by n;||a;||, U by
U - maxye 4 ||a|| and a; by a;/||a;l|- o

We start by discussing the case n = 2. Let B;(0) be the closed unit disk and
S' = 9B, (0) the unit circle around the origin. We will remove the set

M:={reS':JacAst. alx}
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from B;(0) via a finite number of convex cuts. For a € A and r > 0 let
Clayr(r) :={z € R : ||m(gyrz|| < 1},

where 4,12 = 2—(a-z)a is the projection of z into span({a})* = {y € R* : a-y = 0}
along a. Cy,y1(r) is thus a sandwich of thickness 2r parallel to a. We adopt this
slightly cumbersome notation with later generalisations in mind. Since M consists

/{/7//%

F16. 2.1. Geometric interpretation of Cp, 1.1 (r)
of finitely many isolated points on S', it is possible to choose radii riay € (0,1)
sufficiently close to 1 for all a € A such that
B_l(o) n C{CG}J_ (T{a}J_) n C{Ca}J_ (T'{a}J.) = @ Va, Zl S A Wlth a 7é Zl, (21)
see Figure 2.1. For example, it suffices to choose ry,;1 = cosf/2 for all a € A, where

cosf@ =max{|a-a|:a,a € Aa#a}.

Let us now consider the set
C= B_l(O) N ﬂ C{a}J_ (T{a}J_)
a€A
obtained from the closed unit ball by removing M via the convex cuts defined by the
sandwiches Cy,y1 (rg,y1), see Figure 2.2. Note that
T} = (1 — T%E}L)% > 0.

Equation (2.1) implies that there exists a number § = min{rg,; : a € A} > 0 such
that

acAdzeCa’s<00<n<éd=z+nacC. (2.2)

We will prove this claim in the more general setting of Lemma 5.4. For the time
being, let us convince that this property holds in R? by inspection of Figure 2.2.

The set C' is bounded, closed and convex. It is also balanced, that is, z € C' &
—z € C, and absorbing, that is, for every & € R? there exists a A > 0 such that
x € AC. Combined together, these properties imply that the gauge function

E:xmmin{A>0:2 € A}
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F1G. 2.2. Moving by § along a; in the unit ball of the gauge

associated with C' is a norm on R?, see for example [13]. Relation (2.2) implies that
whenever £(x;) > U/d we have {(x;41) < &(z;). Therefore, the gauge cannot grow
larger than O(U/6). Since all norms on R? are equivalent, and since the sequence
(z;)n is bounded in the norm ¢, it is also bounded in the Euclidean norm.

Why could our proof not have worked with the Euclidean norm in place of £ and
the unit disk B;(0) in lieu of C? Note that with these replacements, for all x ¢ M
the key identity (2.2) can be made to hold as long as § is small enough. This is clear
when z is an interior point of the disk, and for z € 8B;(0), the condition a™z < 0
implies that the line x + ta cuts into the interior of B;(0) for small positive . The
problem is that now 4 is a function of z and goes to zero near points x € M. Thus,
the bound U/§ is arbitrarily large and the argument breaks down.

Of course, we intend to generalise the construction of the gauge £ and its associ-
ated closed unit ball C' to higher dimensions, and then extra cuts are needed because
M no longer consists of isolated points. In R? for example, this set is obtained as a
union of grand circles

M = U{z€S2:z-a:0},

acA

We define C,y1 (ryq31) as before, although {a}* is now the orthogonal complement
of span({a}) in R?, B;(0) is the closed Euclidean unit ball in R* and S? = dB;(0) is
the unit sphere, see Figure 2.3.

F1c. 2.3. Cuts in R3

If we want (2.2) to be satisfied for two distinct vectors a,a € A, problems occur
near intersection points of the two grand circles associated with a and a: as we saw
above, the purpose of the cuts Cyqy1 (rg,31) is to flatten the gauge unit ball C'in the
direction of a, so that it is possible to move by a finite amount in the direction of

5



a from any point within C' where the inequality T2 > 0 is violated. However, in a
neighbourhood of points = € span({a,a})* N AC, the flattening produced by the cut
Ciayr (Tiqyr) is destroyed by the cut Crzyo(rgzye) and vice versa, see the ”diamond”
shaped areas in Figure 2.4.

F1a. 2.4. Interference of cuts in diamond shaped region

The problem can be fixed by applying further cuts of the form
Claare (rfams) ={z € R : |lmpayezll <rpaape b

where 7y, 3312 is the projection of z into span(a, a)* along span(a, @), which implies
that C, 331 (r{a,a}+) is a sandwich parallel to the hyperplane span(a,a). Note that if
a and a are almost collinear, then the diamond shaped region becomes very elongated
and potentially large, unless r¢,y1 and rgzyo are chosen close to 1. Moreover, 7, 3}
must be chosen small enough for Cy, zy1(rfs53+) to cut off the diamond shaped
region, but large enough so that it does not interfere with the flattening produced
by other cuts of the same type. Finally, three different vectors a,a,a € A could be
linearly dependent, and then the three corresponding grand circles intersect in two
points. This situation does not create the need for introducing a new type of cut, but
it does generate additional constraints on the cut-depths.

In R™ the situation is further exacerbated by the fact that n — 1 different types
of cuts will be needed, one type each for intersections of k = 1,...,n — 1 of the grand
circles {z € S ! : a-z = 0}, (a € A) corresponding to k linearly independent subsets
of A, where S"~! = §B;(0) is the (n — 1)-dimensional unit sphere and By (0) the n-
dimensional Euclidean closed unit ball. There exists a complicated combinatorial set
of constraints linking the depth of the different cuts, and a quantitative expression for
the radii depends on the angles between subspaces span(P) and span(Q) for different
subsets P,Q C A. Moreover, we need an adequate generalisation of (2.1) to be able
to guarantee that (2.2) holds.

Luckily, there exists a simple algebraic condition on the radii that involves only
very few of the exponentially many cut-depth constraints and guarantees that the
remaining constraints are satisfied, see (4.2). Moreover, the dependence of the radii
on the angles between the exponentially many subspaces spanned by the vectors of A
can be captured in a single condition number x(A) which will be developed in Section
3.

3. A Condition Number to Quantify the Bounds. Let us now attack the
problem in R™ and generalise some of the concepts introduced above. We start with
an object that will allow us to quantify the bounds in our main theorems.
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Let A be a finite ordered set of vectors in R™ \ {0}. As mentioned earlier, we iden-
tify A and any of its subsets with the matrices obtained by collecting their elements
as column vectors in the specified order. Let m :=rank(A4), B C A and k := #B. Let
B = Q(B)R(B) be the thin QR decomposition of B. That is, Q(B) € R*** satisfies
Q(B)TQ(B) = I (it is a Stiefel matrix), and R(B) € RF** is an upper triangular
matrix with strictly positive diagonal, diag(R(B)) > 0. We write

|d1?t(B)| := det(R(B)).

Note that because of the way R(B) was chosen, this number is always positive. We
endow all subspaces V' of R" with the restriction of the canonical Euclidean inner
product of R" to V. With this convention in place it is the case that |dety(B)|
expresses the standard k-dimensional volume of the parallelepiped

k
{Znibi 2, €10,1)(i = 1,...,k)} C span(B),

where B = (by,...,b). We define

k(A)™! = min{| dst(B)| :(k=1,...,m),BC A, #B=k,| dst(B)| # 0}. (3.1)

Lemma 3.1 sums up a few simple properties of x(A). Part iv) and its proof are
inspired by the localisation lemma for the ellipsoid method [10]. It provides an ef-
ficiently computable upper bound on x(A) when A consists of rational input data.
This is useful since a direct computation of x(A) via (3.1) is generally impractical.
Let us explain how the bit-length 2 that appears in part iv) is defined: every rational
number 7 = +p/q can be represented as a triplet (p, g, s), where p and ¢ are mutually
coprime natural numbers and s = £1 is the sign of r. We assume that p and ¢ are
expressed in the shortest possible binary expansion, that is, if the string is nonempty
then the leading digit is a 1. The empty string represents the number 0. Finally, s
can be represented by a single bit of information. Since g # 0, the shortest possible
representation of a number takes two digits, corresponding to r = 0 represented by
(#,1,0). The bit-length 2 is then defined as the sum of the bit-lengths of all compo-
nents appearing in the vectors of A.

LEMMA 3.1. Let A C R™ \ {0} be a finite ordered set of rank(A) =m < n. Then
the following statements hold true:

i) k(A) is invariant under reordering of the elements of A.

i) If B = (31 Bg) C A is of rank m where B, = (&1 dk_l) and By =
(dzc am), and if B = (F Bg) where F' = (f1 fk—l) s an orthonormal
basis of span(By), then

| det (B)] > |det(B)] > |det(B)].

In particular, this implies that only matrices B of rank m need to be considered
in the definition of r(A).
ii) If A:={a: a € A}, where a = a/||al|, then
1) < - mi -m,
k(4) < £(A4) - min [la]
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iv) if A consists of rational input vectors of total bit length 2 then
k(A) < 27.

Proof. i) Let B € R™** be a rank k matrix, let P € Sy be a k x k permutation
matrix and B = BP. All we need to show is that |dety B| = |det, B|. Let G =
(B G2) € R*™™" be such that G2 has column vectors consisting of an orthonormal
basis of span(B)*. Then the QR decomposition of G is (Q1 Gs ) (Rél (I)), where Q1 R11
is the thin QR decomposition of B. Likewise, the matrix G := G( 2 (I)) = (B G ) has
QR decomposition G = (4, G2 ) ( ROH 9), where Q1R11 is the thin QR decomposition

of B. Therefore,

|dst§| =det Ry, = |det G| = |det G| = det Ry = | det B].

ii) Let (@ @) (M fi2y and (@i @.) (M1 g;z) be the thin QR decompositions
of B and B respectively, where the blocking is consistent with (31 Bs ) Then @2 =
@2, R2s = Rys, and Ry; = I. Moreover, the i-th column of Ry, is a vector of length
lla;]l = 1, which implies that all diagonal elements of R;; are < 1. The second

inequality now follows from

|dgt(B)| = det(Ry;) det(Ra2) > det(Ry1) det(Raz) = |drgt(B)|.

Now let (Q1 QQ)(Rgl 1}:; ) be the thin QR decomposition of B = (32 F). Then

Q1R11 is the thin QRudecomposition of By, and by the same argument as above, the
diagonal elements of Ry lie in (0, 1]. Therefore,

12
22

|m(i%t+1(B2)| = det(Ry1) > det(Ry1) det(Ryy) = |d7§t(§)| = |det(B)],

where the last equality follows from part i).

iii) It follows from part ii) that we only need to consider rank-m subsets B =
(bi,...,bm) C A. Let B = QR and B = QR be the thin QR decompositions of B
and B = {j) : b € B}, where b = b/||b|| denotes the normalisation of b. Then Q = Q
and R = R - diag(||b;]|), and therefore,

m
— — D . . R . i m
|det B| = det R = det R H||bl||z|d7§tB| min fla™.

i=1

The claim now follows easily.

iv) Let B = (b1,...,bm) be a subset of A on which the minimum in (3.1) is
achieved. Then an ordered subset F' = (f,+1, ..., fn) of the canonical unit vectors in
R" can be chosen to complete B into a basis B = (B r) of R". If (@i @> ) (" IIEZ)
is the QR decomposition of B, then the thin QR decomposition of B is Q1 Ri;.
Moreover, since the i-th column vector of ("4 712) has norm [|f;|| = 1 for (i =

m+1,...,n), the diagonal entries of Rss are all < 1. It follows that
|det(B)| = det(Rn) 2 det(Rn) det(R22) = |det(B)|

It suffices therefore to show that |det(B)| > 2=7. For (i = 1,...,m) let 2(b;) be the
sum of the bit lengths of the components of b;. Let scm(b;) be the smallest common
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multiple of the components of b;. Then scm(b;) is smaller than the product of the
denominators of the components in b;, and this is smaller than 27(b:)  Moreover,
B- (d‘ag sem(bi) I) is an integer matrix and hence has integer determinant. Therefore,

_ |det (B (diagscm(bi)[))| 1 >2_@

det(B S |
) Hle scm(b;) = oXk 26

which completes the proof. O

DEFINITION 3.2. For an unordered set A of nonzero vectors from R™ we write
k(A) for the number k obtained under (3.1) for an arbitrary ordering of the elements
of A. Part i) of Lemma 3.1 shows that this notion is well-defined. k(A) plays the role
of a condition number for the input data set A in quantifying the bounds of Sections
6 and 7.

4. Selecting Convex Cuts for the Construction of a Gauge. In all of this
section we take A to be a set of unit vectors. For P C R™ let mp be the orthogonal
projection of R? onto span(P) along span(P)*, and let mp. = id — wp. For r > 0 let
us define the sets

Cp(r) :={z € R : ||mpa|| < r},
Cpo(r) :={z € R" : |mpra| <r}.

Note that since any vector in R" is orthogonal to all elements of the empty set, we
have in particular 7y = id, and hence we consider 7y = 0 to be the projection onto
{0}. This slight abuse of notation is convenient, for we get Cy. (1) = B;(0) and
Cyp(r) = R" for all r > 0. Note also that if span(P) = R™ then Cp. (r) = R” for all
r>0.

Next we will define an algorithm that defines a set of radii {rp : P C A} C [0,1]
which is associated with another set {rp.} C [0, 1] via the relation

rpr =4/1—1% VP C A. (4.1)

We write Pr(A) = {P: P C A,rank(P) = k}, (k = 1,...,m), where m = rank(A).

Let ny := #Pr(A), and let P, = {Pl[k], e ,Pyi]} be an enumeration of the elements
of Py. Also, let ng; := #Pi[k] and let Pi[k] = {a[lkl], e ,agf,ﬂ} be an enumeration of the

elements of Pi{k] .

ALGORITHM 4.1.

SO Setrg =0, k=m and rp = 1/2 (P € Pn(A4)), ro =1 (Q € U, Pi(A)).
S1 Fori=1,...,ng
forj=1,... nk
if rank(Pi[k] \ {ag.kz]}) =k-1

: —3/2 (k2 ) .
T Sk kil, < MIN | T Sk kily, 2 T Sk 1— |7 kil @
PIMI\{al""} PIM\{al"Tp Pl 1\/ 7 pa oty 117 )

T{agki]} < min (T{agki]}, 2*3/27-Pi[k] \/1 - ||7TPi[k]\{a£‘ki]}a£'ki] ||2)
end




end
end.
S2 Ifk > 2
k+—k—-1
elseif k = 2
stop
end.

LEMMA 4.2. Let A be a finite set of unit vectors in R™ and let the set of radii
{rp: P C A} be generated by Algorithm J.1. Then the following properties hold true:
i) g =0,
i) rp € (0,1] for all P C A such that P # 0,
i) for all P C A and a € A such that P # 0 and a ¢ span(P),

4 (r%a} + r%)

. 4.2
- (42)

2
TPula} 2

Proof. Condition i) is satisfied because rp is set to zero in step SO and subse-
quently never changed. Condition ii) is satisfied because for all P C A such that
P # (), rp is set in [1/2,1] in step SO, and whenever rp is changed subsequently it
is replaced by a smaller but strictly positive value. Since rp is changed only finitely
many times, the final value is in (0,1]. Step S1 guarantees that condition iii) holds
for (P U {a}) € Pr(A) at the end of iteration k, where we count iterations backward
from m down to 2. Since rpy(,) does not change post completion of iteration k + 1
and never if k = m, and since rp and ry,) can only further decrease after their values
are set to satisfy (4.2) in iteration k, the algorithm stops with condition iii) holding
for all (PU{a}) € U;—, Pk. Moreover, if (PU{a}) € P; and a ¢ span(P) then P = 0,
and we don’t need to check (4.2). O

LEMMA 4.3. Let A C R™ be a finite set of unit vectors and let the set of radii
{rp : P C A} be generated by Algorithm 4.1 for some specific choice of enumeration
of the elements of Py, and likewise of their elements for (k =1,...,m). Then {rp :
P C A} and the associated set of radii {rp. : P C A} satisfy the following properties:

i) min{rp. : P C A} > 1/2,
i) min{re,y :a € A} > k(A) 1277,

Proof. i) Note that if & < m then every Q € Py(A) arises as @ = P\ {a} for
some P € Pr11(A) and a vector a € A such that a ¢ span(Q). Therefore, if at the
beginning of iteration k + 1 we have rp < % for all P € P41 then rg will be changed
to a value < rp273% < % in iteration k + 1. This then implies that at the beginning
of iteration k we have rg < % for all @ € Pj. Since at the beginning of iteration m
we have rp < % for all P € P,,, induction on k shows that by the time the algorithm
stops we have rp < % for all P C A, including P = () for which we have rp = 0.
Therefore, rp. = /1 —1% > @ > 1 for all P C A.

ii) Let @ € A. The proof of part i) shows that rg,; < i and hence ry,; is
changed at least once during the run of Algorithm 4.1. Therefore, there exists an index
k€ {2,...,m} and a subset P¥] € Py such that a € P, rank(P¥ \ {a}) = k — 1

and where P* and a play the role of Pi{k] and ag.ki]
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time. That is, we have

T{q} = Tplkl * \/1 - ||7TP[k]\{a[k]}a[k]||2 . 27%.

Moreover, rpix is at its final value at this stage because this radius does not change
after iteration k + 1 (again counting backwards from m down to 2). Unless k = m,
rp too changed at least once, but only finitely many times and only during iteration
k + 1. Hence there was a last time when this radius was changed to

_3
Tplkl = Tpll+1] © \/1 — ||7rp[k+1]\{a[k+1]}a'[k+1]||2 1272

for some P*+1 € Py and a vector al*+1 € P11l which is linearly independent
of P* and such that P+ = Py {alk+1]}. Writing P*=1 for P\ al* and
continuing this construction by induction, we find that there exists a set P™ € P,,,
and vectors {a/*!,... al™} C A such that

plml = plk=tly {ql#l . qlml}
Pll.= pl=Uy{a® oy eP, (s=k,...,m),

and

m
T{a} =Tpiml " H \/1 — |Impre-naldl]2 - 27 2(mk+D)
s=k

1
=3 ‘dgt (fl,...,fk,l,a[k],...,a[m])‘ .98 (m—k+1)

Lem3.1 ii) n
> g(A)7 27

where {f1,..., fr_1} is an orthogonal basis of P¥=11, [

5. The Gauge Unit Ball and its Properties. In this section we continue to
assume that A is a set of unit vectors.

LEMMA 5.1. Let A be a finite set of unit vectors in R™, and let P C A anda € A
be such that P # 0 and a ¢ span(P). Finally, let r¢.y, rp,rayup € (0,1] be such that
(4.2) holds. Then

a}UP

r
Crayup < {\}i ) D Ciay(riay) NCp(rp).

Proof. Any x € R" can be written as
T =\a+ pi+zt,

where z+ 1 span(P U {a}), and where @ € span(P) is such that ||a@|| = 1. Then
x € Cpq)(rgqy) and z € Cp(rp) imply

N+ pP(a-a)® + 22 p(a - @) = (a-2)° = ||[rgyal® < rfay,

W+ N )2+ 2\ @) = (@ 2)° = [mgayall? < llmpall? < r.

11



Adding the two inequalities we get

Ml 75 > (N + )1+ (@-a)®) + 4hp(a - @). (5.1)
On the other hand,

||7r{a}upa:||2 = ||Xa + pal]> = N2 + p® + 2 p(a - @).
Therefore,

2lmiayopell® = (\ +4?) (1 + (@ a)?) + 4hula - @) + (W + p*)(1 = (@~ a)*)

(5.1)
< gy e+ (VP + 2 (1= (@ a)?). (5.2)

Without loss of generality we may assume that 0 < a@-a < 1. In fact, if a-a < 0
then we can replace @ by —a and p by —u. Moreover, ||a|| = ||@|| = 1 and the Cauchy—
Schwartz inequality imply that 0 < @-a < 1, and if @+ a = 1 then a = a € span(P),
contradicting our assumption.

Note that 2|A\u| < A% + p? by quadratic completion. Hence,

Apl(a - a) <200 + p?)(a - a),
and therefore, (5.1) shows that
P2y 5> 02+ 421+ @) - 2(a-a))
= (N +p)1-a-a),
that is,

(r%a} + r%) (1-(a-a)?) B (r%a} + T?D) 1+a- a)-

N +p*)(1-(a-a)?) < 1-a )y - (1—a-a)

Now (5.2) implies

17 {ayupal|?

—a-a

2 l—a-a — 1—|7pal
2 (r%a} —I—r%g)
1 — [|wpall?

B (r%a} + r%) (1+ [|mpall)
(L= lmpal)) (1 + lI7pal))
2
(43) "Pua}
- 2

IN

This shows the claim O

LEMMA 5.2. Let A be a finite set of unit vectors in R™, let P, C A be such that
span(P) C span(Q) but span(P) # span(Q), and let rp < rg/v/2. Then

Co (%) NCos(rgr) C Cpr(rpL).

12



Proof. Let z € Cg (r—\/%) NCgi(rge). Then

7..2 ,’.2 2
Q Q
||.’17||2 = ||7I'Q.’17||2 + ||7TQL.’L'||2 < 7 +rc22J_ = 7 + (1 — 7"(2?) =1- =

But then

2
r
Irpeall® < el < 1- "2 <1-r} =13,

COROLLARY 5.3. Let P C A and a € A be such that a ¢ span(P). If (4.2) holds
and rg = 0 then

C{a}L (T{a}L) N C{a}(r{a}) NCpy (TPL)

D Crayr (T1ay) N Cray(riay) N Cigarupyt (Pgarup)t)-
(5.3)

Proof. If P = () then
Cpi (rps) = Cps (1) = B1(0)

Ed C({a}UP)L(T({a}UP)L) = C{a}L (T{Q}L), and since C{a}L (T{G}L) N C{a}(r{a}) -
B;(0), (5.3) is trivially true. We may therefore assume that P # (. Let

2 € Ctays (r{ay+) N Cla}(ria}) N Cgarupy+ (rgarur) L)
and assume to the contrary of our claim that
x ¢ CPL (TPL). (54)

Since Cyayx (ra11) N Ciay(riay) € Bi(0), we have [|z|| < 1. Therefore, (5.4) implies
that

(5-4)
1> |lg|? = lmprall® + lmpall® > rpo +|lmpzl?,
and this implies that
Impall’ < 1— 130 =13,

that is, z € Cp(rp). Since x is also in Cf,y(r(,}) and (4.2) holds, Lemma 5.1 implies
that x € C{a}up(r{a}up/ﬂ). Since we chose z in C((,yup)t (({a}up)r) and

2 2 2
"ayurp _ "l TP o
TP)

2 = 1—[lmpal] =

Lemma 5.2 applied to P and @ = {a} U P implies that € Cp. (rp.), contrary to
assumption (5.4). O
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LEMMA 5.4. Let A be a finite set of unit vectors in R™, let {rp : P C A} C [0,1]
be a set of radii for which the properties of Lemma 4.2 hold, and let

C .= ﬂ CPL(’I"PL).
PCA
Then the following implications holds true:

a€AzeC=z—(x-a)a€C,
acAzeCz-a<l0,0<n<r =>r+nael.

Proof. We need to show that © — (z-a)a,z+na € Cp.(rp.) for all P C A. Case
1: if @ € span(P) then the assumption x € Cp (rps) implies

|lmpe(z 4+ Aa)|| = |rprz|| <rpr VAER,

and hence, z — (z-a)a,z+na € Cp.(rps). Case 2: a ¢ span(P). If follows from case
1 that

xr — (a: . a)a € C{a}J_ (T‘{a}J_) N C{a} (T{a}) N C(Pu{a})J_ (T‘(Pu{a})J_).

Equation (5.3) therefore implies that z — (z - a)a € Cpr(rpr). Also, together with
case 1, the assumptions z-a < 0 and 0 < < g,y imply that either

z+na € Cray(riarr) N Cray(riay) N Cipugan (T(PULa}) L )s

and then (5.3) implies that x +na € Cp(rps), or else (x+na)-a < —7r(4). But then
we have 0 <7 <n+rg) < —z-a, which shows that x + na is a convex combination
of z and x — (x - a)a, both of which are in Cpi(rpr). The convexity of Cpi(rps)
therefore implies that z + na € Cpi(rpy). O

6. Relaxation Boundedness for Homogeneous Systems. We are finally
ready to start attacking the main results of this paper which generalise and strengthen
the classical perceptron boundedness theorem:

THEOREM 6.1. Let A be a finite set of nonzero vectors in R*, zo € R” a given
starting point, (n;)n, € [0,U] and (a;)n, C A such that the sequence of points defined
iteratively by x;11 = x; + n;a; satisfies the condition x; - a; < 0 for all i € Ny. Then
for all i, ||z;|| is bounded by

M(4) := 2 max (nxon,Ur;lea;nan [y [k e (4)257/2 4 1])

Proof. Let {rps : P C A}, {rp: P C A} and C be chosen as in Lemma 5.4 when
it is applied to A = {a/||a|| : a € A}. The set C is a finite intersection of convex,
balanced, absorbing sets, whence C' inherits these properties. Moreover, C' is bounded
since C' C Cy1 (rgr) = B1(0). The gauge

E:xmmin{A>0:2 € A}
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associated with C' is therefore a norm on the finite-dimensional space R”, see e.g. [13].
Let us define

A;  =U -m -m -l
. mae |al] - max iy,
A=A, +U- . -
= A max o] max .

Suppose £(z;) > A, for some i € N. Note that the definition of £ implies that

x; € &(z;)C. Moreover, since z; - a < 0 and

ni - J|al] 1

2 W2 gy : <res

g(wz) > U r;leachaH As S Tlasds
Lemma 5.4 shows that
T n; - |lai| . )
a:i-l-niai:fa:i ( + a; | € &(x; C,
O\ e * e )

and hence, &(x; + mia;) < &(x;). That is, as long as &(z;) > A, the gauge value
can only decrease in subsequent iterations. On the other hand, if {(z;) < As then
|lmpra;|] < Agrpo for all P C A, and hence,

Impo (z; +miai)|| < llmpraill +nillmprail]l < Asrpr + U - [lasl] < Arpe.
Since this is true for all P C A, we have &(zir1) < Ay In summary,

Ay ?f E(z) < As, 6.1)
E(zi)  if &(@i) > As.

Tterative application of (6.1) shows that &(z;) < max(&(xo), ;) for all i. But note
that £(z) > ||z|| for all z € R™, because the unit ball of £ is contained in the unit ball

of || - ||. Therefore, (z;)y is bounded in the Euclidean norm by max(&(xo), A;).

It remains only to quantify A;. It follows from Lemma 4.3 i) that &(xo) < 2||zo]|
Part ii) of the same result shows that A; < U - maxgea ||a|| - H(A)2%. Finally,
another application of part i) in conjunction with part iii) of Lemma 3.1 yields

Ay < 2U max ||a]| - [min ||a|["*(D g (A)237/2 + 1],
a€A a€A

§(rip1) < {

Combining the bounds on &(zo) and A;, one obtains the claimed bound. O

The explicit formula for M (A) as a function of the input data A solves an old open
problem raised by Block and Levin [4]. Since M (A) depends on A through x(A), the
bound can be very large when A contains subsets that are close to rank-deficient, but
not. Note that to compute x(A) one usually has to evaluate an exponential number
of determinants. The situation is greatly simplified in the case where A consists of
rational input data, as the following corollary shows:

COROLLARY 6.2. If A consists of rational data of total bit length 9 then

M(A) < 2max (||$0||’U. [2(n+2)2+8n/2 4 29]) _

Proof. Arguing as in the proof of Lemma 3.1, it is easy to see that max,c 4 ||a|| <
27 Using m < n and part iv) of Lemma, 3.1, the claim is now an immediate conse-
quence of Theorem 6.1. O
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7. Extension to Inhomogeneous Systems. Theorem 6.1 provides informa-
tion about the behaviour of the relaxation method applied to the system of homoge-
neous linear inequalities ATz > 0. We will now extend this result so that it is valid
for inhomogeneous systems AT2 > b too. This can be achieved through the standard
process of homogenisation and the careful construction of a new gauge.

THEOREM 7.1. Let A = (al', ..., a!*!) be an ordered set of k nonzero vectors from
R, be R, 29 € R, (mi)n, C [0,U], and (ji)n, € {1,...,k} such that the sequence
of points defined iteratively by x;y, = x; + n;al¥! satisfies the condition x; - aliil < bj;
for alli € Ny. Let A := (712T (1)) Then for all i, ||x;|| is bounded by

M(4,b) := 2max (||(ﬁ° [+ 1+ U max lal| - [min lal|">"<D w(4)2* D72 4 1])
acA A

ac
(7.1)
Moreover, if A and b consist of rational data of total bit length 2 then
M(A,b) < 2max (|| ()], 1+ U 2D 7H800/2 4 57] ) (7.2)

Proof. Note that al!l -z > b; if and only if (@1)T(7) > 0 where !/ is the i-th
column vector of A (i = 1,..., k). Moreover, (a**)T(7) =1 > 0 is always satisfied,
and j; # k + 1 for all i. There is a one-one correspondence between the points in R"
and those in the affine hyperplane H := {(ﬁ) e R 2= 1} via the projection
¥ ({) ~ 2. Since ||z|| < ||® 'z, it suffices to show that the sequence (||~ a;||)y,
is bounded by M (A, b). But note that ¥~ z; 11 = ® #;41, where &;41 = (%) +m;aliil
and @ : (%) — (1) is the projection of R**! into H along the (n + 1)-th coordinate

axis. Let C' be the gauge unit ball corresponding to A := {a/||@|| : @ € A} under the
construction of Lemma 5.4, and let & be the associated gauge on R™. Let us set

As := max(U, 1) - max||a|| -ma;(r{_&l},
acA aEA
A; = A 4+ max(U, 1) - max ||a]| - max r;}_ +2.
acA PCA

The same arguments as those leading to (6.1) demonstrate that

A if f(\I’_lxi) < Ay,

£(@iy1) < {g(ql—lxi) if £(0~"z) > A,

Lemma 5.4 shows that
E((75")) = &(Far — (@i - al ") < g(aig)
Therefore, if £(( "' )) > A;, then Lemma 5.4 implies
E0 i) = (T3 ) + 1kt <e((TF) < @) (7.4)

On the other hand, if f((“”grl )) < Ag, then the triangular inequality of the norm &
and the inequality £ < 2|| - || — which follows from Lemma 4.3 i) — imply that

0 migg) <E((9)) +E((9)) <As+2< A (7.5)
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The combination of (7.3), (7.4) and (7.5) now show

(0 2i41) < max (A, E(T'zy)). (7.6)

Applying (7.6) iteratively, we find

i) < @ ag]] < €(F ;) < max(E(P " 2p), Ay).

It remains to bound £(z) and A;, which can be done as in the proof of Theorem
6.1, leading to (7.1). Finally, progressing as in the proof of Corollary 6.2, one obtains

(7.2). O
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