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In this paper, optimization problems P with complementarity constraints are considered. Characterizations for local minimizers
x̄ of P of Orders 1 and 2 are presented. We analyze a parametric smoothing approach for solving these programs in which
P is replaced by a perturbed problem P� depending on a (small) parameter � . We are interested in the convergence behavior
of the feasible set �� and the convergence of the solutions x̄� of P� for � → 0. In particular, it is shown that, under generic
assumptions, the solutions x̄� are unique and converge to a solution x̄ of P with a rate ��

√
��. Moreover, the convergence

for the Hausdorff distance d��� �� � between the feasible sets of P� and P is of order ��
√
��.
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1. Introduction. This paper deals with optimization problems of the form

P� min
x

f �x�

s.t. gj�x�≥ 0� j ∈ J �= 
1� � � � � q��

ri�x�si�x�= 0� i ∈ I �= 
1� � � � �m��

ri�x�� si�x�≥ 0� i ∈ I �

(1)

As usual, such a program will be called a mathematical program with complementarity constraints or a mathe-
matical program with equilibrium constraints (MPEC). All functions f � gj� ri� si� �

n →� are assumed to be C2

functions. The constraints ri�x�si�x�= 0, ri�x�� si�x�≥ 0 are called complementarity constraints.
This class of MPEC problems is a topic of intensive recent research. (See, e.g., Fukushima and Lin [4],

Fukushima and Pang [5], Hu and Ralph [8], Leyffer [9], Lin and Fukushima [10], Luo et al. [11], Ralph and
Wright [13], Scheel and Scholtes [14], Scholtes and Stöhr [16], and the references in these contributions.)
Complementarity constraints arise in problems with equilibrium conditions (cf. Outrata et al. [12]) or as special
cases in the so-called Karush-Kuhn-Tucker (KKT) approach for solving problems with a bilevel structure (see,
e.g., Stein and Still [17]).

We say that at a local solution x̄ of P the strict complementary (SC) slackness is fulfilled if the relation

(SC): ri�x̄�+ si�x̄� > 0� ∀ i ∈ I (2)

is satisfied. The problem in MPEC is that typically the condition SC is not satisfied at a solution x̄ of P . It is also
well known that the Mangasarian-Fromovitz constraint qualification (MFCQ) of standard finite programming
(and thus the stronger Linear Independency constraint qualification [LICQ]) fails to hold at any feasible point
of P (see, e.g., Chen and Florian [2]). So, to solve these complementarity constrained programs numerically, we
cannot use standard software of nonlinear programming, since the standard algorithms always rely on LICQ.

To circumvent this problem the following parametric smoothing approach can be applied. Instead of P , we
consider the perturbed problem

P�� min
x

f �x�

s.t. gj�x�≥ 0� j ∈ J �
ri�x�si�x�= �� i ∈ I�
ri�x�� si�x�≥ 0� i ∈ I�

(3)
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where � > 0 is a small perturbation parameter. In this paper, we intend to analyze the convergence behavior of
this approach.

In the following, let �, �� denote the marginal values, � , �� the feasible sets, and �� , � the sets of minimizers
of P = P0� P� , respectively. We expect, by letting �→ 0, that a solution x̄� of P� converges to a solution x̄ of P .

It will be shown that under natural (generic) assumptions the convergence rate for

�� →� and for x̄� → x̄ is of order �
(√

�
)
�

The assumptions MPEC-LICQ, MPEC-SC, and MPEC-SOC (cf. (6), (15), (16)) will play a crucial role in the
convergence analysis.

The paper is organized as follows: Section 2 illustrates the convergence behavior on some motivating examples
and discusses natural regularity conditions. Section 3 reviews the genericity results in Scholtes and Stöhr [16]
and presents necessary and sufficient optimality conditions for a minimizer x̄ of P of Orders 1 and 2 under
natural assumptions. In §4, the convergence behavior of the perturbed feasible set �� is analyzed from local and
global viewpoints. Finally, in the last section we prove the existence of local minimizers x̄� of P� near a local
minimizer x̄ of P and their unicity. We show that generically the rate 
x̄� − x̄
 = ��

√
�� takes place.

We introduce some notation. The distance between a point x̂ and a set � is defined by d�x̂�� �=min

x− x̂
 �
x ∈� �. We also use the notation B��x̄�= 
x � 
x− x̄
<�� and denote its closure by B̄��x̄�. The norm 
x
 will
always be the Euclidean norm.

In the rest of this introduction, we will discuss earlier results related to our investigations. The parametric
approach (3) was used for the first time by Luo et al. [11] in connection with equilibrium constrained problems.
Here, constraints yiwi = 0 had been perturbed to yiwi =  ! (cf. Luo et al. [11, p. 280]). For problems of the
type (1), this smoothing method has been applied by Facchinei et al. [3], Fukushima and Pang [5], and Hu [7]
(using NCP-functions). In these papers, the convergence to a B-stationary point has been established (under
appropriate regularity assumptions). In Stein and Still [17], such a convergence is obtained for a similar (interior
point) approach for solving semi-infinite programming problems. A referee drew our attention to the (preprint)
of Ralph and Wright [13]. Here, a convergence 
x̄� − x̄
 ≤ ���1/4� has been shown (see also Corollary 5.2).
Under an additional MPEC-SC condition, we will prove the convergence 
x̄� − x̄
 = ���1/2� (cf. Theorem 5.1).
With respect to this result, the present contribution is complementary to the paper (Ralph and Wright [13]).

Other regularizations of MPEC problems have been considered in the literature such as

P≤
� � min

x
f �x�

s.t. gj�x�≥ 0� j ∈ J �
ri�x�si�x�≤ �� i ∈ I�
ri�x�� si�x�≥ 0� i ∈ I �

�P≤
� � min

x
f �x�

s.t. gj�x�≥ 0� j ∈ J �
rT �x�s�x�≤ ��

ri�x�� si�x�≥ 0� i ∈ I �

Scholtes [15] answered the question under which assumptions a stationary point x��� of P≤
� , � ↓ 0, converges

to a B-stationary point of P . In Ralph and Wright [13], it is shown that (under natural conditions) the solution
x��� of P≤

� converges to a (nearby) solution x̄ of MPEC with order ����. Similar results are stated for the
problem �P≤

� .
We emphasize that these regularizations P≤

� , �P≤
� are structurally completely different from the smoothing

approach P� . For P≤
� , e.g., the following is shown in Scholtes [15, Theorem 3.1, Corollary 3.2]: if x̄ is a solution

of P where MPEC-LICQ and MPEC-SC holds, then for the (nearby) minimizers x̂� of P≤
� (for � small enough),

the complementarity constraints ri�x�si�x�≤ � , i ∈ Irs�x̄�, are not active (cf. §2 for a definition of Irs�x̄�). More
precisely,

ri�x̂� �= si�x̂� �= 0� ∀ i ∈ Irs�x̄�
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is true. This fact can also be deduced from Corollary 3.1 (cf. §3). In particular, in the case I = Irs�x̄� (for all
small � > 0), the solution x̂� of P≤

� coincides with the solution x̄ of P . In Hu and Ralph [8], the following
parametric version of P has been studied:

P���� min
x

f �x� ��

s.t. gj�x� ��≥ 0� j ∈ J �
ri�x� �� · si�x� ��= 0� i ∈ I�
ri�x� ��� si�x� ��≥ 0� i ∈ I�

under the assumption f � gj� ri� si ∈ C2 (with respect to [wrt] all variables). Let x̄ be a local minimizer of P�0�
(i.e., � = 0). In contrast to our perturbation P� in (3), under natural assumptions the parametric program P���
can be analyzed using the (smooth) Implicit Function Theorem so that, roughly speaking, the perturbation P���
behaves more smoothly than the perturbation P� . (In fact, by using the result of Corollary 3.1, the problem
P��� can be analyzed as the parametric version of the relaxed problem PR�x̄� [see Corollary 3.1], i.e., it can be
treated as a standard parametric optimization problem.) In particular, under the assumption that MPEC-LICQ
and MPEC-SOC hold at x̄, the value function ���� of P��� is differentiable at � = 0 implying

�����−�� = ����

and a similar behavior for the minimizers. This contrasts with the nonsmooth behavior �����−�� = ��
√
�� for

the perturbation P� (see Example 2.1 and Corollary 5.1).
Remark 1.1. For numerical purposes, it is convenient to model the constraints ri�x�si�x� = � and

ri�x�� si�x�≥ 0 equivalently by a unique constraint %��ri�x�, si�x��= 0 where %� is a so-called parameterized
NCP-function (see, e.g., Chen and Mangasarian [1] and Fukushima and Pang [5]).
Remark 1.2. We emphasize that all results in this paper remain valid for problems P containing additional

equality constraints cl�x�= 0 if we assume additional linear independence of the gradients (cl�x�. To keep the
presentation as clear as possible, we omit these equality constraints.

The smoothing approach P� is directly connected with the interior point method for solving finite optimization
problems (FP). To solve a program

FP: min f �x�

s.t. gj�x�≥ 0� j ∈ J �
one tries to solve the perturbed KKT system

E�� (f �x�−(T g�x�!= 0�

gj�x�!j = �� ∀ j ∈ J �
and !j , gj�x�≥ 0. This is a special case of a feasible set of a problem P� (including equality constraints). In
Wright and Orban [19] the convergence behavior of solutions x� , !� of E� has been analyzed (via properties
of the log barrier function) also for the case that the SC condition is not satisfied at the solution x̄, !̄ of E0.
Here also, a convergence rate ��

√
�� has been established (under the weaker MFCQ assumption). So the results

of §5 can be seen as a generalization of (some of the) results in Wright and Orban [19].

2. Motivating examples and regularity conditions. We begin with some illustrative examples and formu-
late regularity conditions to avoid some negative convergence behavior.
Example 2.1.

min x1 + x2

s.t. x1 · x2 = 0�

x1� x2 ≥ 0�

Here, the set �� converges to the set � and the solutions x̄� = �
√
��

√
�� of P� converge to the solution x̄ = 0

of P with a rate 
x̄� − x̄
 =√
2 ·√� and ��� −�� =√

2 ·√� .
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Example 2.2.

min �x2 − 1�2

s.t. x2 · e−x1 = 0�

x2� e
−x1 ≥ 0�

g�x� �= x1 ≥ 0�

Here, � = 
�x1�0� � x1 ≥ 0� coincides with the set � of minimizers. The feasible set �� = 
�x1� �e
x1� � x1 ≥ 0�

however does not converge to � . The (unique) minimizer of P� is given by x̄� = �− ln ��1�, implying
d�x̄+�� �= 1. The problem here is that the feasible set is not compact.

In the next example (from a preliminary version of Scholtes and Stöhr [16]), the perturbed feasible set �� is
smaller than � .
Example 2.3.

min �x3 − 1�2 + x2
2

s.t. x1 · x2 = 0�

x1 · x3 = 0�

x1� x2� x3 ≥ 0�

The minimizer is given by x̄ = �0�0�1�. The feasible set �� is smaller than � and the (unique) minimizer
x̄� = �2�� 1

2 �
1
2 � does not converge to x̄. The problem here is that the feasible set � does not satisfy MPEC-LICQ

(at any point �0� x2� x3� ∈� ; see (6)).
In the following example, the feasible set �� behaves well but the rate of convergence of 
x̄�− x̄
 is arbitrarily

slow.
Example 2.4.

min x
q
1 + x2

s.t. x1 · x2 = 0�

x1� x2 ≥ 0�

with q > 0. The minimizer x̄= �0�0� of the problem and the solutions of P� , x̄� = ���/q�1/�q+1�� q1/�q+1��q/�q+1��
show the convergence rate 
x̄� − x̄
 = ���1/�q+1��.

In the sequel, we are interested in the convergence behavior and the rate of convergence

�� →� � �� → �� and x̄� → x̄ if �→ 0

for the feasible sets, the value functions, and the solutions of P and P� . To avoid the negative behavior in the
Examples 2–4 we need some (natural) assumptions.

First, motivated by Example 2.2, we assume throughout the paper that the feasible sets are compact. Note that
in practice this does not mean a restriction since it is advisable to add (if necessary) to the constraints gj�x�≥ 0,
e.g., box constraints, �x,� ≤ K, , = 1� � � � � n, for some large number K > 0. So, in the sequel we assume that
for all � ≥ 0,

�� ⊂X where X ⊂�n is compact� (4)

Under this condition, in particular, global solutions of P and P� exist (unless the feasible set is empty). Moreover,
we assume throughout the paper that all functions f , gj , ri, si are from C2�X���. Then, in particular, the
functions are Lipschitz continuous on X; i.e., there is some L> 0 such that

�f �x̂�− f �x�� ≤ L · 
x̂− x
 ∀ x̂� x ∈X� (5)

To avoid the bad behavior in Example 2.3 we have to assume a constraint qualification for the feasible set. To do
so, for a point x ∈� we define the active index sets J �x�= 
j ∈ J � gj�x�= 0�, Irs�x�= 
i ∈ I � ri�x�= si�x�= 0�,
Ir �x�= 
i ∈ I � ri�x�= 0� si�x� > 0�, and Is�x�= 
i ∈ I � ri�x� > 0� si�x�= 0�. We say that at the feasible point
x ∈� the condition MPEC-LICQ holds, if the active gradients

(gj�x�� j ∈ J �x�� (ri�x�� i ∈ Irs�x�∪ Ir �x�� (si�x�� i ∈ Irs�x�∪ Is�x� (6)

are linearly independent.
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As we shall see later on, this condition will imply that locally around x the set �� converges to the set �
with a rate ��

√
��. To ensure the global convergence we have to assume that MPEC-LICQ holds globally, i.e.,

that MPEC-LICQ is fulfilled at every point x ∈� . We emphasize that this assumption is generically fulfilled as
will be shown in the next section (cf. Theorem 3.1).

3. Optimality conditions for minimizers of P . In this section, we are interested in necessary and sufficient
optimality conditions for local minimizers of P . New characterizations for minimizers of Order 1 are given and
known optimality conditions for solutions of Order 2 (cf., e.g., Luo et al. [11] and Scholtes and Stöhr [16]) are
extended. We also review the genericity results for problems P in Scholtes and Stöhr [16]; these results will
play an important role throughout the article.

Recall that x̄ ∈� is said to be a local minimizer of P of order 0> 0 if in a neighborhood B��x̄�, �> 0, of x̄
with some 1> 0:

f �x�≥ f �x̄�+1
x− x̄
0 ∀x ∈� ∩B��x̄�� (7)

The point x̄ is called a global minimizer of order 0 if we can choose �=�.
Perhaps the most natural way to obtain optimality conditions for P is to consider the MPEC problem as a

problem that can be subdivided into finitely many common finite programs. To this end, let x̄ ∈� be given. For
any subset I0 ⊂ Irs�x̄� we define Ic0 = Irs�x̄�\I0 and consider the common finite optimization problem:

PI0�x̄�� min
x

f �x�

s.t. gj�x�≥ 0� j ∈ J �x̄��
ri�x�= 0� si�x�≥ 0� i ∈ I0�
ri�x�≥ 0� si�x�= 0� i ∈ Ic0 �
ri�x�= 0� i ∈ Ir �x̄��
si�x�= 0� i ∈ Is�x̄��

(8)

With the feasible sets �I0
�x̄� of PI0�x̄�, obviously, the following piecewise (or disjunctive) description holds (see

also, e.g., Luo et al. [11, Chapter 4], Scheel and Scholtes [14, p. 6]).

Lemma 3.1. Let x̄ be feasible for P . Then we have
(a) There exists a neighborhood B��x̄� (�> 0) of x̄ such that

� ∩B��x̄�=
⋃

I0⊂Irs �x̄�
��I0

�x̄�∩B��x̄���

(b) The point x̄ ∈ � is a local minimizer of order 0 of P if and only if x̄ is a local minimizer of order 0 of
PI0�x̄� for all I0 ⊂ Irs�x̄�.

By this lemma, all optimality conditions and genericity results for the common problems PI0�x̄� directly lead
to corresponding results for the complementarity constrained program P . To do so, let us recall some notation.
CI0

�x̄� denotes the cone of critical directions for PI0�x̄� at x̄,

CI0
�x̄�=



d ∈�n

∣∣∣∣∣∣∣∣∣∣∣∣∣

(f �x̄�d ≤ 0� (gj�x̄�d ≥ 0� j ∈ J �x̄�
(ri�x̄�d= 0� (si�x̄�d ≥ 0� i ∈ I0
(ri�x̄�d ≥ 0� (si�x̄�d= 0� i ∈ Ic0

(ri�x̄�d= 0� i ∈ Ir �x̄�
(si�x̄�d= 0� i ∈ Is�x̄�



� (9)

The point x̄ ∈�I0
�x̄� is called a KKT point for PI0�x̄� if there exist multipliers 2, 3,  such that

(xL�x̄�2�3� � �= (f �x̄�− ∑
j∈J �x̄�

2j(gj�x̄�−
∑

i∈Irs �x̄�
43i(ri�x̄�+ i(si�x̄�5

− ∑
i∈Ir �x̄�

3i(ri�x̄�−
∑

i∈Is �x̄�
 i(si�x̄�= 0 and (10)

2j ≥ 0� j ∈ J �x̄�� 3i ≥ 0� i ∈ Ic0 �  i ≥ 0� i ∈ I0� (11)
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where L denotes the Lagrange function, as usual. The vector �x̄� 2�3� � is then called a KKT solution of PI0�x̄�
and the SC slackness is said to hold if

�SCI0
�x̄�): 2j > 0� j ∈ J �x̄�� 3i > 0� i ∈ Ic0 �  i > 0� i ∈ I0�

and the SOC if
(SOCI0

�x̄��� dT ( 2
x L�x̄� 2�3� �d > 0 ∀d ∈CI0

�x̄�\
0�� (12)

We now introduce some notation for P . We define

Cx̄ =
⋃

I0⊂Irs �x̄�
CI0

�x̄� (13)

and call x̄ ∈� a MPEC-KKT point of P if x̄ is a KKT point of PI0�x̄� for all I0 ⊂ Irs�x̄�. A vector �x̄� 2�3� �
is said to be a MPEC-KKT solution of P if it is a KKT solution of PI0�x̄� for all I0 ⊂ Irs�x̄�. Note that for a
MPEC-KKT solution of P from (11) it follows that

(10) holds with 2j ≥ 0� j ∈ J �x̄�� 3i ≥ 0�  i ≥ 0� i ∈ Irs�x̄�� (14)

We say that such a MPEC-KKT solution satisfies the SC slackness for MPEC if

�MPEC-SC�� 2j > 0� j ∈ J �x̄�� 3i > 0�  i > 0� i ∈ Irs�x̄�� (15)

and the SOC for MPEC if

�MPEC-SOC�� dT ( 2
x L�x̄� 2�3� �d > 0 ∀d ∈Cx̄\
0�� (16)

Note that (wrt the conditions for 3i� i in (15)) the condition SC (i.e., Irs�x̄�=�) is stronger than MPEC-SC. By
definition, the condition MPEC-LICQ at x̄ means that the common LICQ condition holds at x̄ for all problems
PI0�x̄�.
Remark 3.1. In the context of MPEC problems there are different concepts of stationarity (or Fritz-John,

KKT-points) (see, e.g., Scheel and Scholtes [14]). We emphasize that all these concepts coincide if the MPEC-
LICQ assumption holds at x̄ (even the weaker SMFCQ). In this case: x̄ is a MPEC-KKT point ⇔ x̄ is a
B-stationary point ⇔ x̄ is a strong stationary point (cf. Scheel and Scholtes [14, Theorem 4]). Therefore, in this
paper we will use the term MPEC-KKT point.

If at a MPEC-KKT point x̄ the condition MPEC-LICQ holds, then there is a unique corresponding MPEC-
KKT solution �x̄� 2�3� � (same unique multipliers 2, 3,  for P and all PI0�x̄�). Moreover, it is not difficult
to see that in this case the set Cx̄ simplifies (see (9) and (13)) to the cone:

Cx̄ =




d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(gj�x̄�d
=≥ 0 if 2j >= 0� j ∈ J �x̄�

(ri�x̄�d
=≥ 0 if 3i >= 0� i ∈ Irs�x̄�

(si�x̄�d
=≥ 0 if  i >= 0� i ∈ Irs�x̄�

(ri�x̄�d = 0� i ∈ Ir �x̄�
(si�x̄�d = 0� i ∈ Is�x̄�




� (17)

We now sketch some genericity results for problem P . In the sequel, let all functions f , gj , si, ri be in the
space C2��n��� endowed with the C2

s -topology (strong topology, cf. Guddat et al. [6, p. 23]). Then, for fixed
n, m, q, the set of all problems P can be identified with the set � �= 
�f � g� s� r��≡C2��n���q+2m+1. We say
that a property holds generically for P if it holds for a (in the C2

s -topology) dense and open subset �0 of �.
From the well-known genericity results for the problems PI0�x̄� (see Guddat et al. [6]), we directly obtain via
the piecewise formulation in Lemma 3.1 the following genericity results (see also Scholtes and Stöhr [16]):

Theorem 3.1. There is a dense and open (generic) subset �0 of � such that for all MPEC problems P ∈�0

the following holds: for any feasible point x ∈ � , the condition MPEC-LICQ is satisfied and for any local
minimizer x̄ of P the conditions MPEC-SC and MPEC-SOC are fulfilled.
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Remark 3.2. We briefly comment on the genericity concept. A generic subset �0 of � is an open and dense
subset. Dense means that any MPEC problem from � can be approximated arbitrarily well by a problem in
the (nice) generic set �0. The openness implies stability; i.e., if we are given a problem P from the generic
set �0, then all sufficiently small C2

s -perturbations of P remain in the set �0. In other words, when dealing with
a MPEC problem theoretically or numerically we can expect (generically) that the problem has the structure of
a problem in the (nice) generic set; a general purpose solver for MPEC should be designed in such a way that
it is able to deal (at least) with all situations encountered by problems in the generic set �0. A problem that is
not in the generic set can be seen as an exceptional case.

As an example of a typical genericity result, it can be shown that generically the Newton method can be
applied to solve nonlinear equations F �x�= 0 (see Guddat et al. [6, Chapter 2]) in the following sense: for a
generic set of functions F ∈C2��n��n�, the regularity conditions det�(F �x̄�� �= 0 hold at all solutions x̄ of the
equation F �x̄�= 0.

We now give some optimality conditions for MPEC problems P (see also Luo et al. [11], Scheel and
Scholtes [14]). It is well known (see Scheel and Scholtes [14, Theorem 2, Lemma 2]) that any minimizer of (1)
that satisfies MPEC-LICQ (or the weaker SMFCQ) must necessarily be an MPEC-KKT point.

From the piecewise description of P we obtain the following characterizations for minimizers of order one.
In the context of MPEC problems, these results are new.

Theorem 3.2 (Primal Conditions of Order 1). For a point x̄, which is feasible for P ,

Cx̄ = 
0� ⇒ x̄ is a (isolated) local minimizer of order 0= 1 of P�

If MPEC-LICQ holds at x̄, the converse is also true.

Proof. It is well known (see, e.g., Still and Streng [18, Theorem 3.2, Theorem 3.6]) that CI0
�x̄� = 
0�

implies that x̄ is an (isolated) local minimizer of Order 1 of PI0�x̄�; under LICQ, the converse holds. Recall that
MPEC-LICQ coincides with the common LICQ condition for PI0�x̄�. With regard to the definition of Cx̄ in (13),
the result follows from Lemma 3.1. �

Theorem 3.3 (Dual Conditions of Order 1). Let MPEC-LICQ hold at x̄ ∈ � . Then x̄ is a (isolated)
local minimizer of order 0 = 1 of P if and only if one of the following equivalent conditions (a) or (b) is
satisfied:

(a) (f �x̄� ∈ int�x̄ where

�x̄ =
{
d= ∑

j∈J �x̄�
2j(gj�x̄�+

∑
i∈Irs �x̄�

43i(ri�x̄�+ i(si�x̄�5+
∑

i∈Ir �x̄�
3i(ri�x̄�

+ ∑
i∈Is �x̄�

 i(si�x̄�� 2j ≥ 0� j ∈ J �x̄�� 3i ≥ 0� i ≥ 0� i ∈ Irs�x̄�
}
�

(b) The vector x̄ is an MPEC-KKT point with (unique) multipliers 2�3� such that �J �x̄�� + 2�Irs�x̄�� +
�Ir �x̄�� + �Is�x̄�� = n and 2j > 0, j ∈ J �x̄�, 3i > 0,  i > 0, i ∈ Irs�x̄�, i.e., MPEC-SC holds.
Proof. (a) It is well known (cf., e.g., Still and Streng [18]) that the primal condition CI0

�x̄� = 
0� is
equivalent to the condition (f �x̄� ∈ int�I0

�x̄� where

�I0
�x̄� =

{
d= ∑

j∈J �x̄�
2j(gj�x̄�+

∑
i∈Irs �x̄�

43i(ri�x̄�+ i(si�x̄�5+
∑

i∈Ir �x̄�
3i(ri�x̄�

+ ∑
i∈Is �x̄�

 i(si�x̄�� 2j ≥ 0� j ∈ J �x̄�� 3i ≥ 0� i ∈ Ic0 �  i ≥ 0� i ∈ I0
}
�

By Lemma 3.1, this yields (a).
(b) We now prove under MPEC-LICQ (a) ⇔ (b). Note that the direction “⇐” is evident. To prove the

converse, let us assume that (f �x̄� ∈ int�x̄ but �J �x̄�� + 2�Irs�x̄�� + �Ir �x̄�� + �Is�x̄��< n. The latter means that
there exists d ∈�n such that d � S0:

S0 �= span
(gj�x̄�� j ∈ J �x̄�� (ri�x̄�� i ∈ Irs�x̄�∪ Ir �x̄�� (si�x̄�� i ∈ Irs�x̄�∪ Is�x̄���
Note that since, in particular, x̄ is an MPEC-KKT point, it follows that S0 = span

−(f �x̄��∪S0�. Consequently,
for any �> 0, �d � span

−(f �x̄��∪S0�; thus (f �x̄�+�d � spanS0 in contradiction to (a). Let us now assume
that MPEC-SC does not hold, say 21 = 0. Then, by MPEC-LICQ for any �> 0, the vector (f �x̄�− �(g1�x̄� is
not contained in �x̄, which is a contradiction to (a). �
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We now give a characterization of minimizers of Order 2. We refer to Scheel and Scholtes [14] for similar
necessary and sufficient conditions (under weaker assumptions).

Theorem 3.4 (Dual Conditions of Order 2). Let MPEC-LICQ hold at x̄ ∈� and assume Cx̄ �= 
0� (i.e.,
in view of Theorem 3.2, x̄ is not a local minimizer of Order 1). Then x̄ is a (isolated) local minimizer of order
0= 2 of P if and only if x̄ is an MPEC-KKT point of P such that with (unique) multipliers 2, 3,  the condition
MPEC-SOC holds.
(Under this condition, x̄ is locally the unique MPEC-KKT point of P .)

Proof. Cx̄ �= 
0� implies CI0
�x̄� �= 
0� for (at least) one set I0 ⊂ Irs�x̄� so that x̄ is not a local minimizer of

Order 1 of PI0�x̄� (see the proof of Theorem 3.2) and thus not of P (cf. Lemma 3.1). By Still and Streng [18,
Theorem 3.6] (under MPEC-LICQ) (for any I0 ⊂ Irs�x̄�), x̄ is a (isolated) local minimizer of Order 2 of PI0�x̄�
iff x̄ is a KKT point for PI0�x̄� satisfying (12). Under this condition, by Still and Streng [18, Theorem 3.23],
x̄ is locally the unique KKT point of PI0�x̄�. Again, the result follows from Lemma 3.1. �

Note that in view of the genericity result in Theorem 3.1 we can state

generically each local minimizer of P has either order 0= 1 or order 0= 2. (18)

It is interesting to note that with the common finite problem (a relaxation of P )

PR�x̄�� min
x

f �x�

s.t. gj�x�≥ 0� j ∈ J �x̄��
ri�x�≥ 0� si�x�≥ 0� i ∈ Irs�x̄��
ri�x�= 0� i ∈ Ir �x̄��
si�x�= 0� i ∈ Is�x̄��

(19)

the following is true (cf. also Scheel and Scholtes [14]).

Corollary 3.1. Let MPEC-LICQ hold at x̄ ∈� . Then x̄ is a local minimizer of order 0= 1 or 0= 2 of P
if and only if x̄ is a local minimizer of order 0 = 1 or 0 = 2 of PR�x̄�. (Recall that generically each local
minimizer of P is either of Order 1 or of Order 2.)

Proof. Under MPEC-LICQ, any local minimizer x̄ of P must be a MPEC-KKT point of P with unique
multipliers 2, 3,  . Note that by (14), �x̄� 2�3� � is also a KKT solution of PR�x̄� with the same Lagrange
function L�x�2�3� �. Moreover, the set of critical directions for PR�x̄� coincides with Cx̄ (see (17)). So the
first-order optimality condition Cx̄ = 
0� (cf. Theorem 3.2) and the second order optimality conditions (cf.
Theorem 3.4) for P and PR�x̄� coincide. �

4. The convergence behavior of the feasible set �� . In this section, we consider the convergence behavior
of the feasible set �� from local and global viewpoints. The local convergence relies on a local MPEC-LICQ
assumption; the global results are proven under a global assumption.

We begin with an auxiliary result.

Lemma 4.1. For x� ∈ �� and � → 0, it follows that d�x��� �→ 0 uniformly: to any � > 0, there exists
�0 > 0 such that for all 0< � ≤ �0 and for all x� ∈�� the bound d�x��� � < � holds.

Proof. Assuming that the statement is not true, there must exist 2 > 0 and a sequence x� ∈�� such that for
�→ 0, d�x��� �≥ 2.

Due to the compactness Assumption (4) we can choose a convergent subsequence x�, → x̄ ∈X. The condition
ri�x�, �si�x�, � = �, , gj�x�, � ≥ 0 together with the continuity of the functions ri, si, gj leads for �, → 0 to
ri�x̄�si�x̄�= 0 and gj�x̄�≥ 0; i.e., x̄ ∈� , a contradiction. �

To prove our main results on the behavior of �� we make use of a local (local) diffeomorphism. The idea is to
transform the problem into an equivalent problem with simpler structure so that the proofs of the results become
technically much simpler. However, this approach relies on the MPEC-LICQ assumption. Such a transformation
has been mentioned in Scholtes and Stöhr [16] to illustrate the local behavior of �� . Here, we present a complete
global analysis.
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Consider a point x̄ ∈ � satisfying MPEC-LICQ with �J �x̄�� = q0, �Irs�x̄�� = p where p ≤ m, q0 ≤ q, and
m+p+ q0 ≤ n. Without loss of generality (wlog) we can assume

J �x̄�= 
1� � � � � q0�� Irs�x̄�= 
1� � � � � p�� Ir �x̄�= 
p+ 1� � � � �m�� Is�x̄�=��
By MPEC-LICQ, the gradients (gj�x̄�, j ∈ J �x̄�, (ri�x̄�, i= 1� � � � �m, (si�x̄�, i= 1� � � � � p, are linearly inde-
pendent and we can complete these vectors to a basis of �n by adding vectors vi, i =m+ p+ q0 + 1� � � � � n.
Now, we define the transformation y = T �x� by

yi = ri�x�� i= 1� � � � �m�

yi+m = si�x�� i= 1� � � � � p�

ym+p+i = gi�x�� i= 1� � � � � q0�

yi = vTi �x− x̄�� i=m+p+ q0 + 1� � � � � n�

(20)

By construction, the Jacobian (T �x̄� is regular and T defines locally a diffeomorphism. This means that there
exists �= ��x̄� > 0 and neighborhoods B��x̄� of x̄ and U��ȳ� �= T �B��x̄�� of ȳ = 0 such that T � B��x̄�→U��ȳ�
is a bijective mapping with T �T −1 ∈C1, T �x̄�= ȳ, and that for y = T �x� it follows that

x ∈�� ∩B��x̄� ⇔

ym+p+j ≥ 0 j = 1� � � � � q0�

yi · ym+i = � i = 1� � � � � p�

yi · s̃i�y� = � i = p+ 1� � � � �m� y ∈U��ȳ��

yi ≥ 0 i = 1� � � � �m�

ym+i ≥ 0 i = 1� � � � � p�

where s̃i�ȳ� �= si�T
−1�ȳ��= si�x̄� > 0, i= p+1� � � � �m and g̃j �ȳ� �= gj�T

−1�ȳ��= gj�x̄� > 0, j = q0 +1� � � � � q.
In particular, since T is a diffeomorphism, the distance between two points remains equivalent in the sense

that with constants 0<1− <1+,

1−
y1 − y2
 ≤ 
x1 − x2
 ≤ 1+
y1 − y2
 ∀x1� x2 ∈ B��x̄�� y1 = T �x1�� y2 = T �x2��

So (after applying a diffeomorphism T ) we may assume x̄= 0,

gj�x�= xm+p+j j = 1� � � � � q0�

ri�x�= xi i= 1� � � � �m�

si�x�= xm+i i= 1� � � � � p�

(21)

csi �= si�x̄� > 0� i= p+ 1� � � � �m� (22)

and that there is some �> 0 such that

x ∈�� ∩B��x̄� ⇔

gj�x� = xm+p+j ≥ 0 j = 1� � � � � q0�

hi�x� = xi · xm+i = � i = 1� � � � � p�

hi�x� = xi · si�x�= � i = p+ 1� � � � �m�

xi ≥ 0 i = 1� � � � �m�

xm+i ≥ 0 i = 1� � � � � p�

(23)

By choosing � small enough, we also can assume

si�x�≥
csi
2
� i= p+ 1� � � � �m� ∀x ∈ B��x̄�� (24)

By making use of the previously described transformation, we are now able to prove the local convergence result
for �� .

Lemma 4.2. Let MPEC-LICQ hold at x̄ ∈� .
(a) Then there exist �� �0�<�=> 0 such that for all 0< � ≤ �0 the following holds: there exist x̄� ∈�� with


x̄� − x̄
 ≤ <
√
�� (25)
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and for any x̄� ∈�� ∩B��x̄� there exists a point x̂� ∈� ∩B��x̄� satisfying

x̂� − x̄�
 ≤ =

√
�� (26)

Moreover, if SC holds at x̄, the statements are true with
√
� replaced by � .

(b) If the condition SC is not fulfilled at x̄, then the convergence rate ��
√
�� in (25) is optimal. More

precisely, there is some 2 > 0 such that for all x̄� ∈�� , the relation 
x̄� − x̄
 ≥ 2
√
� holds for all small � .

Proof. (a) Let MPEC-LICQ hold at x̄ ∈ � . As discussed before (after applying a diffeomorphism) we can
assume that x̄= 0 and that in a neighborhood B��x̄� of x̄ the set B��x̄�∩�� is described by (23). To construct a
suitable element x� ∈�� , we fix the components x�i = x�m+i =

√
� , i= 1� � � � � p and x�i = 0, i=m+p+1� � � � � n.

From (23), we then find

gj�x
��= 0 j = 1� � � � � q0�

hi�x
��= � i= 1� � � � � p�

hi�x
��= x�i · si�x��= � i= p+ 1� � � � �m�

where the first two relations are already satisfied. So we only need to consider the remaining equations

hi�x̃� �= x�i · si�x��= �� i= p+ 1� � � � �m� (27)

which (for fixed �), depend only on the remaining variables x̃ = �x�p+1� � � � � x
�
m�. For x̃ = 0, the gradients

(hi�0� = eisi�0� = eic
s
i , i = p + 1� � � � �m (cf. (22)), are linearly independent. As usual, ei denote the unit

vectors. So the function h� �m−p → �m−p, h = �hp+1� � � � � hm�, h�0� = 0 has locally near x̃ = 0 a C1-inverse
such that (for small �) the vector x̃� �= h−1�e�� (with e= �1� � � � �1� ∈�m−p) defines a solution of (27). Because
of h−1�0�= 0, it follows that 
x̃�
 = ����.

Altogether with the other fixed components x�i , this vector x̃� defines a feasible point x� ∈�� that satisfies


x� − x̄
 ≤ �
(√

�
)
�

We now prove (26). As shown above (cf. (23)), for some � > 0 the point x̄� ∈ B��x̄� is in �� if and only if
x �= x̄� satisfies the relations

gj�x�= xm+p+j ≥ 0 j = 1� � � � � q0�

hi�x�= xi · xm+i = � i= 1� � � � � p�

hi�x�= xi · si�x�= � i= p+ 1� � � � �m�

Obviously, min
xi� xm+i�≤
√
� , i= 1� � � � � p, so that, wlog, xi ≤

√
� , i= 1� � � � � p. By (24) for x= x̄� ∈ B��x̄�

it follows that
xi =

�

si�x�
≤ �

csi /2
� i= p+ 1� � � � �m� (28)

Given this element x = x̄� ∈ �� we now choose the point x̂� of the form x̂� = �0� � � � �0� xm+1, � � � � xn� that is
contained in � . By using (28) and xi ≤

√
� , i= 1� � � � � p, and by putting cs =min
csi /2� i= p+ 1� � � � �m�, we

find (x= x̄� )


x̂� − x̄�
 ≤
√
p� + �m−p�

�2

c2
s

≤ �
(√

�
)
�

Now let SC be satisfied at x̄ ∈� (see (2)). Then, locally in B��x̄� the set �� is defined by (x̄= 0)

gj�x�= xm+j ≥ 0 j = 1� � � � � q0�

xi · si�x�= � i= 1� � � � �m�
(29)

where si�x� ≥ csi /2 for all x ∈ B��x̄�. As in the first part of the proof, we can fix the coefficients of x� by
x�i = x̄i �=0�, i=m+ 1� � � � � n, and find a solution x = x� ∈ �� by applying the Inverse Function Theorem to
the remaining m equations

hi�x̃� �= xisi�x�= �� i= 1� � � � �m�
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depending only on the remaining variables x̃ �= �x1� � � � � xm�. This provides us with a solution x� of (29)
satisfying


x� − x̄
 = �����

On the other hand, for any solution x �= x̄� of (29) in B��x̄�, the point x̂� = �0� � � � �0� xm+1� � � � � xn� is an
element in � with 
x̂� − x̄�
 = ����.

(b) Suppose now that SC is not fulfilled at x̄; i.e., for some i0 ∈ 
1� � � � �m� (see (a)):

hi�x̄�= x̄i0 · x̄m+i0 = 0 with x̄i0 = x̄m+i0 = 0�

Then near x̄ any point x� ∈�� must satisfy x�i0 · x�m+i0 = � , which implies (x̄= 0)


x� − x̄
 ≥max
x�i0� x
�
m+i0�≥

√
��

Recall that (because of the diffeomorphism applied) this inequality only holds up to a constant 2 > 0. �

Lemma 4.2 yields the local convergence of �� near a point x̄ ∈ � . We now are interested in the global
convergence behavior (on the whole compact set X, cf. (4)).

Lemma 4.3. Let MPEC-LICQ hold at each point x̄ ∈ � . Then there are �0�<�= > 0 such that for all
0< � ≤ �0 the following holds: for each x̄ ∈� , there exists x̄� ∈�� with


x̄� − x̄
 ≤ <
√
�� (30)

and for any x̄� ∈�� , there exists a point x̂� ∈� satisfying


x̂� − x̄�
 ≤ =
√
�� (31)

Moreover, if SC holds at all x̄ ∈� , the statements are true with
√
� replaced by � .

Proof. We first prove (31). To extend the analysis from a local to a global statement we have to apply a
compactness argument. Recall the local transformation constructed above near any point x̄ ∈ � (see (23)). The
union

⋃
x̄∈� B��x̄��x̄� forms an open cover of the compact feasible set � ⊂ X. Consequently, by definition of

compactness, we can choose a finite cover: i.e., points x, ∈ � , , = 1� � � � �N , such that with �, = ��x,� the set⋃
,=1� � � � �N B�, �x,� provides an open cover of � and with =, > 0 the corresponding Condition (26) holds. By

defining B��� �= 
x ∈X � d�x�� � < ��, we can choose some �0 > 0 (small) such that

B�0
�� �⊂ ⋃

,=1� � � � �N

B�, �x,��

By choosing �= �0 and �0 in Lemma 4.1, we find for all 0 ≤ � ≤ �0:

�� ⊂ B�0
�� �⊂ ⋃

,=1� � � � �N

B�, �x,��

The second convergence result (31) now directly follows by combining the finite cover argument with the
local convergence and by noticing that we can choose as convergence constant the number == max
=,� , =
1� � � � �N �.

To prove (30), we have to show that the following sharpening of the local bound (25) holds: for x̄ ∈� , there
exist �0 > 0, �> 0 such that for any x ∈� ∩B��x̄� and for any 0 ≤ � ≤ �0 there is a point x� ∈�� with


x� − x
 ≤ <
√
�� (32)

Then a finite cover argument as above yields the global Relation (30). We only sketch the proof of (32). Let x̄ ∈�
be fixed. In the proof of Lemma 4.2(a), we made use of a local diffeomorphism Tx̄�x� leading to Relation (25).
This transformation Tx̄ is constructed depending on the active index set Ia�x̄� �= Irs�x̄� ∪ Ir �x̄� ∪ Is�x̄� ∪ J �x̄�
(see (20)). For any x near x̄, we have Ia�x�⊂ Ia�x̄� and there are only finitely many choices I!, != 1� � � � �R,
for I! = Ia�x�. So if we fix I!, I! ⊂ Ia�x̄�, any point x̂ near x̄ yields a local diffeomorphism Tx̂, which depends
smoothly on x̂ (see the construction (20)). So we find a common bound: there exist <!��! > 0 such that for
any x ∈� ∩B�!�x̄� with Ia�x�= I! there is a point x� ∈�� such that (for all � small)


x� − x
 ≤ <!
√
��

Then, by choosing � = min
�! � ! = 1� � � � �R� and < = max
<! � ! = 1� � � � �R�, we have shown the Rela-
tion (32). �

Note that Lemma 4.3 proves that the convergence in the Hausdorff distance

d��� �� � �=max
{

max
x�∈��

d�x��� ��max
x∈�

d�x��� �
}

between �� and � satisfies d��� �� �= ��
√
��.



Bouza and Still: Mathematical Programs with Complementarity Constraints
478 Mathematics of Operations Research 32(2), pp. 467–483, © 2007 INFORMS

5. Convergence results for the value function and for the solutions of P� . Let (in this section) x̄ ∈ �
denote a global or local minimizer of P and x̄� a nearby local solution of P� . Recall that by our compactness
Assumptions (4) a global minimizer of P� always exists (assuming �� �= �).

In the present section, we are interested in the convergence behavior and the convergence rate

�� → � and x̄� → x̄ if �→ 0

for the value functions and the solutions of P and P� . From a viewpoint of parametric optimization to ensure
convergence, the following assumptions are needed:

Assumption (A1). There exists a (global) solution x̄ of P and a continuous function <� 40���→ 40���,
<�0�= 0 such that for any � > 0 (small enough) we can find a point x� ∈�� satisfying


x� − x̄
 ≤ <����

Assumption (A2). There exists a continuous function =� 40���→ 40���, =�0�= 0 such that for any � > 0
(small enough) the following holds: we can find a (global) solution x̄� of P� and a corresponding point x̂� ∈�
such that


x̂� − x̄�
 ≤ =����

It now appears that (A1) is connected to the upper semicontinuity of �� (and �� ) (see Lemma 5.1) and (A2) to
the lower semicontinuity (see Lemma 5.2). To show this, we have to use that by Lemma 4.2 the Assumption (A1)
is satisfied with <���= ��

√
�� if MPEC-LICQ holds at one (at least one) solution x̄ ∈� and (see Lemma 5.2)

(A2) holds with =���= ��
√
�� if MPEC-LICQ is satisfied at all x̄ ∈� .

Lemma 5.1. Let MPEC-LICQ hold at a point x̄ ∈� (at least one). Then
(a) there exist constants L> 0, <> 0 such that for all � small enough, the relation

�� −�≤ L<���

is true with <���= <
√
� . If, moreover, SC is satisfied at x̄, the inequality holds with <���= <�;

(b) to any �1 > 0 there is some �1 such that

d�x̄� �� � < �1 for all x̄� ∈�� and for all 0 ≤ � ≤ �1�

Proof. (a) By Lemma 4.2, the Relation (A1) holds with the given function <���. So with the solution x̄ of
P and the points x� in (A1) by using the Lipschitz continuity (5), we find

�� −�≤ f �x��− f �x̄�≤ L
x� − x̄
 ≤ L<����

(b) Suppose, to the contrary, that there is some �> 0 and some sequence �, → 0 with corresponding x̄�, ∈��,

satisfying
d�x̄�, �� �≥ � � (33)

By compactness assumption without restriction we can assume x̄�, → x̂. In view of Lemma 4.1, it follows that
x̂ ∈� , and from (a) we find

f �x̄�, �= ��, ≤ �+L<��,�→ ��

and thus f �x̂�= � implying x̂ ∈� in contradiction to (33). �

Lemma 5.2. Let MPEC-LICQ hold at every point x̄ ∈� . Then the Condition (A2) is satisfied with =���=
=
√
� for some => 0 (and with =���= =� in the case that SC holds at all x̄ ∈� ) and there exists L> 0 such

that for all � small enough
−L=���≤ �� −��

Proof. The set � ⊂X is compact and arguing as in the proof of Lemma 4.3 it follows that
⋃

x̄∈� B��x̄��x̄�
forms an open cover of the set � . So we can choose a finite cover � ⊂⋃,=1� � � � �K B�, �x̄,�, x̄, ∈� and define
B��� � �= 
x � d�x�S� < ��. Now we choose �1 > 0 such that

B�1
�� �⊂ ⋃

,=1� � � � �K

B�, �x̄,��
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By Lemma 5.1(b), there exists some �1 > 0 such that

x̄� ∈ B�1
�� � for all x̄� ∈�� and for all 0 ≤ � ≤ �1�

By construction, for 0 ≤ � ≤ �1, any point x̄� ∈ �� is contained in (at least) one of the balls B�, �x̄,�,
, ∈ 
1� � � � �K� (, = ,��; in view of Lemma 4.2(a), we can choose a point x̂� ∈� such that


x̂� − x̄�
<=,
√
� (respectively <=,��

(=, corresponding to x̄,). By defining ==max
=, � , = 1� � � � �K�, we have proven (A2). With these points x̄� ,
x̂� by using (5) again we find

�� −�≥ f �x̄��− f �x̂��≥−L=���� �

To obtain qualitative results on the rate of convergence for the solutions x̄� of P� , we have to assume some
growth condition for f at the solution x̄ of P . We will assume that x̄ is a minimizer of order 0≥ 1 (see (7)).
Sufficient and necessary conditions for these assumptions are given in §3. Note that in this case � = 
x̄�. For
minimizers of order 0= 2, the next result, i.e., a convergence ���1/4�, is also proven in Ralph and Wright [13]
(although with a different technique).

Corollary 5.1. Let x̄ be a global minimizer of P of order 0 ≥ 1 and let MPEC-LICQ hold at x̄. Then
��� −�� ≤ ��

√
� � and there is some c > 0 such that for any global minimizer x̄� of P� it follows that


x̄� − x̄
 ≤ c ·√�1/0
� (34)

If SC holds at x̄
√
� , can be replaced by � .

Proof. By Lemmas 5.1 and 5.2, the convergence for the value function �� is immediate. Moreover, the
Assumptions (A1) and (A2) hold with functions <���= <

√
� , etc. Then with the points x̄� x̂� ∈ � , x̄� � x� ∈ ��

in (A1) and (A2) we obtain

f �x̄�≤ f �x̂��≤ f �x̄��+L=���≤ f �x��+L=���≤ f �x̄�+L<���+L=���

and thus
0 ≤ f �x̂��− f �x̄�≤ L<���+L=����

Again, by taking the point x̂� ∈� in (A2) in view of (7), this inequality yields


x̄� − x̄
 ≤ 
x̄� − x̂�
+
x̂� − x̄
 ≤ =���+
(
f �x̂��− f �x̄�

1

)1/0

≤ =���+ 1
11/0

�L<���+L=����1/0�

which in view of 0≥ 1, proves the statement. �

The preceeding corollary presents a result on the global minimizers, which always exist. Recall that �� , �
are compact (see (4)). In the next corollary also, the existence of local minimizers for P� is established.

Corollary 5.2. Let x̄ ∈� be a local minimizer of order 0≥ 1 of P such that MPEC-LICQ holds at x̄. Then
for any � > 0 small enough there exist (nearby) local minimizers x̄� of P� and ( for each of these minimizers)
it follows that


x̄� − x̄
 ≤ �
(√

�
1/0)

�

If SC holds at x̄
√
� , can be replaced by � .

Proof. Let x̄ be a local minimizer of P satisfying MPEC-LICQ. Then with some @ > 0 (small enough),
x̄ is a global solution of the problem restricted to �� ∩ B̄@�x̄�. Note that we have chosen a closed ball B̄@�x̄�
to ensure the existence of a minimizer x̄� . By Corollary 5.1, the statements follow for the problem restricted to
�� ∩ B̄@�x̄�, but since x̄� → x̄ for �→ 0, the points x̄� are also elements of the open set B@�x̄�; i.e., x̄� are local
minimizers of the problems P� . �
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We emphasize that, in general (without SC), for the minimizer x̄� we cannot expect a faster convergence rate
than ��

√
� �. More precisely, from Lemma 4.2(b) we deduce that at a minimizer x̄ of P where SC does not hold

the following is true with some c2 > 0:

x̄� − x̄
 ≥ c2

√
�� (35)

If x̄ is a local minimizer of order 0 = 1, the optimal convergence rate 
x̄� − x̄
 ≤ ��
√
� � occurs (cf. Corol-

lary 5.2) (optimal, unless SC holds). Recall that generically all local minimizers of P are either of order 0= 1
or 0= 2 (see (18)). We give a counterexample for the remaining case 0= 2.
Example 5.1.

min x2
1 + x2�

s.t. x1 · x2 = 0�

x1� x2 ≥ 0�

i.e., r�x�= x1, s�x�= x2. The minimizer x̄= �0�0� is of order 0= 2 and it is an MPEC-KKT point satisfying
the KKT condition (f �x̄�= 0 ·(r�x̄�+1 ·(s�x̄�, so the MPEC-SC condition is not fulfilled. Here, the minimizers
of P� read: x̄� = ���/2�1/3� �2�2�1/3�.

The preceding example (see also Ralph and Wright [13]) shows that at a local minimizer x̄ of Order 2 even
under MPEC-LICQ the convergence rate for 
x̄� − x̄
 can be slower than ��

√
��. Note, however, that this

example is not a generic one since the MPEC-SC condition does not hold. We will now show that in the generic
case this bad behavior can be excluded. More precisely, under the conditions MPEC-LICQ, MPEC-SC, and
MPEC-SOC at x̄ we prove that the minimizers x̄� of P� are (locally) unique and the (optimal) convergence rate

x̄� − x̄
 = ��

√
�� takes place. The proof again makes use of the local transformation of the problem into an

equivalent simpler one (cf. §4).

Theorem 5.1. Let x̄ be a local minimizer of P such that MPEC-LICQ, MPEC-SC, and MPEC-SOC hold.
Then, for all � > 0 (small enough), the local minimizers x̄� of P� (near x̄) are uniquely determined and satisfy

x̄� − x̄
 = ��

√
� �.

The same statement holds for the global minimizers x̄ and x̄� of P and P� , respectively.

Proof. To prove this statement, we again consider the problem P� in standard form (see §4, (23)),

P�� min f �x�

s.t. hi�x�= xi · xm+i = � i= 1� � � � � p�

hi�x�= xi · sp+i�x�= � i= 1� � � � �m−p�

gi�x�= xm+p+i ≥ 0 i= 1� � � � � q0�

xi� xm+i ≥ 0 i= 1� � � � � p�

xi� si�x�≥ 0 i= p+ 1� � � � �m�

(36)

where x̄= 0 is the local solution of P0 with sp+i�0�= csi > 0, i= 1� � � � �m− p. Under MPEC-LICQ, the KKT
condition for x̄ reads

(f �x̄�−
p∑
i=1

(
21
i ei +22

i+mei+m
)− m−p∑

i=1

23
i ep+i −

q0∑
i=i
24
j em+p+i = 0 (37)

with multiplier vector �21� 22� 24� > 0, by MPEC-SC. So in (36) the function f �x� has the form

f �x̄�=
p∑
i=1

(
21
i xi +22

i+mxi+m
)+ m−p∑

i=1

23
i xp+i +

q0∑
i=i
24
i xm+p+i + q�x�� (38)

where �q�x�� = ��
x
2�. For convenience, we now introduce the abbreviation x1 = �x1� � � � � xp�, x2 =
�xm+1� � � � � xm+p�, x3 = �xp+1� � � � � xm�, x

4 = �xm+p+1� � � � � xm+p+q0
�, and x5 = �xm+p+q0+1� � � � � xn� and write

x = �x1� � � � � x5�. In this setting, the tangent space at x̄ becomes Tx̄ = span
ei� i = m+p+ q0 + 1� � � � � n��
(Tx̄ =Cx̄ cf. (17)), and MPEC-SOC takes the form

( 2
x f �x� is positive definite on Tx̄ or ( 2

x5f �x� is positive definite (39)
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and (36) reads
P�� min �21�T x1 + �22�T x2 + �23�T x3 + �24�T x4 + q�x�

s.t. x1
i · x2

i = � i= 1� � � � � p�

x3
i · sp+i�x�= � i= 1� � � � �m−p�

x4
i = 0 i= 1� � � � � q0�

(40)

Note that by the condition 24 > 0, near x̄, all inequalities x4
i ≥ 0 must be active.

The minimizers x̄� of P� are solutions of the following KKT system of (40) in the variables �x�A�!�,� (we
omit the variable x),




21 +(x1q

22 +(x2q

23 +(x3q

24 +(x4q

(x5q



−




x2
1

� � �

x2
p

x1
1

� � �

x1
p

0 0 0

0 0 0

0 0 0




A−




x3
1(x1sp+1 � � � x3

m−p(x1sm

x3
1(x2sp+1 � � � x3

m−p(x2sm

x3
1(x3sp+1 + sp+1e1 � � � x3

m−p(x3sm+ smem−p

x3
1(x4sp+1 � � � x3

m−p(x4sm

x3
1(x5sp+1 � � � x3

m−p(x5sm



!−




0

0

0

,

0



= 0�

together with the constraints in (40). In this system, the vectors e1� � � � � em−p are unit vectors in �m−p.
Now the trick is to eliminate the unknown A and to simplify (regularize) the equations x1

i · x2
i = � as follows:

we define

�21 �= 21 +(x1q− 4x3
1(x1sp+1 · · ·x3

m−p(x1sm5!�

�22 �= 22 +(x2q− 4x3
1(x2sp+1 · · ·x3

m−p(x2sm5!

and note that due to 21� 22 > 0 and �q�x�� = ��
x
2�, near x̄= 0, the vectors satisfy �21, �22 > 0. So near x̄= 0
the functions √

�21/ �22 and
√

�22/ �21

are C1-functions of x. From the system we deduce �21
i = x2

i Ai, �22
i = x1

i Ai, and �21
i �22

i = ��Ai�
2 or Ai =

√ �21
i �22

i /�

and finally

x1
i =

√
�22
i / �21

i ·
√
�� x2

i =
√

�21
i / �22

i ·
√
��

So the system above can be subdivided into two equations:

x1
i −

√ �22
i / �21

i ·
√
� = 0�

x2
i −

√ �21
i / �22

i ·
√
� = 0�

�x3
1(x3sp+1 + sp+1e1 · · ·x3

m−p(x3sm+ sp+1em−p�!−23 −(x3q = 0�

�x3
1(x5sp+1 · · ·x3

m−p(x5sm�!−(x5q = 0�

x3
i sp+i − � = 0�

x4
i = 0�

(41)

and the system corresponding to the multiplier ,

−�x3
1(x5sp+1 · · ·x3

m−p(x5sm�!+24 +(x4q = ,� (42)



Bouza and Still: Mathematical Programs with Complementarity Constraints
482 Mathematics of Operations Research 32(2), pp. 467–483, © 2007 INFORMS

The Relation (41) represents a system F �x�!� �� = 0 of n + m − p equations in n + m − p + 1 variables
�x�!� ��. The point �x̄� !̄� �̄� with x̄ = 0, �̄ = 0, and !̄ = �23

1/sp+1�x̄�� � � � � 2
3
m−p/sm�x̄�� (recall si�x̄� > 0)

solves (41). The Jacobian with respect to �x�!� at this point �x̄� !̄� �̄� has the form

x1 x2 x3 x4 x5 !

I 0 0 0 0 0

0 I 0 0 0 0

X X X X X



sp+1

� � �
sm




0 0 X 0 ( 2
x5q 0

0 0



sp+1

� � �
sm


 0 0 0

0 0 0 I 0 0

(X is some matrix of appropriate dimension; recall (xiq�x̄�= 0.) Since ( 2
x5q�x̄� is positive definite (cf. (39)) and

si�x̄� > 0, i = p+ 1� � � � �m, we see that this matrix is regular. Therefore, we can apply the Implicit Function
Theorem to the equation F = 0, which near �̄ = 0 yields a unique solution x���, !��� differentiable in the
parameter

√
� . This implies x���= x̄+ ��

√
�� !���= !̄+ ��

√
��. Substituting this solution x���, !��� into

the Equation (42) determines the variable ,���. Since the (local) minimizers x̄� of P� must solve the systems
(41), (42), clearly x̄� = x��� is uniquely determined. The unique multipliers wrt P� are ,i��� corresponding to
x4
i = 0, !i��� corresponding to x3

i sp+i�x�= � , and �21
i , �22

i belonging to x1
i , x

2
i . This proves the statement for the

local minimizers.
If x̄ is a global minimizer, we can argue as in the second part of the proof of Corollary 5.2. First, by restricting

the minimization to a neighborhood B̄@�x̄�, the result follows as above. The compactness assumption for F� and
the fact that x̄ is a global minimizer (of order 0= 2) exclude global minimizers x̄� of P� outside B̄@�x̄�. �

In the next remark, we indicate that the result of Theorem 5.1 is also true for C-stationary points.
Remark 5.1. Let x̄ be a feasible point of the complementarity constrained problem P . It is called

C-stationary point if the Condition (10) holds with some multiplier �2�3� �, satisfying 2j ≥ 0, j ∈ J �x̄� and
3i · i ≥ 0, i ∈ Irs�x̄� (see, e.g., Scheel and Scholtes [14]). If MPEC-LICQ holds at x̄, the multiplier is uniquely
determined. In this case, we define

�MPEC-SC′�� 2j > 0� j ∈ J �x̄�� 3i · i > 0� i ∈ Irs�x̄��
�MPEC-SOC′�� dT ( 2

x L�x̄� 2�3� �d �= 0 ∀d ∈Cx̄\
0��
The genericity result in Theorem 3.1 then also holds for C-stationary points:

Generically, in C2
s at all C-stationary points of a problem P the conditions MPEC-LICQ, MPEC-SC′, and

MPEC-SOC′ hold.
By modifying the proof of Theorem 5.1 in an obvious way (use 21

i · 22
i > 0 instead of 21

i � 2
2
i > 0, etc.) the

statement of Theorem 5.1 is also true for C-stationary points:
Let x̄ be a C-stationary point of P such that MPEC-LICQ, MPEC-SC′, and MPEC-SOC′ hold. Then for

all � > 0 (small enough) there exist (locally) unique stationary points x̄� of P� and 
x̄� − x̄
 = ��
√
��. Note

that C-stationarity is a weaker concept than the concept of local minimizers. As shown (e.g., in Scheel and
Scholtes [14]) under a certain MFCQ assumption at x̄ (which is weaker than MPEC-LICQ), any local minimizer
of P is necessarily a C-stationary point. Moreover, the limit points of a sequence of minimizers x̄� of P� (for
�→ 0) are typically C-stationary points of P .

We end up with some further observations.
Remark 5.2. Let us note that from the results of this paper we also can deduce the convergence results of

Ralph and Wright [13] for the relaxation P≤
� of §1 (under the stronger MPEC-LICQ condition).

Suppose we have given a local solution x̄ of P such that MPEC-LICQ holds, and with a corresponding KKT-
solution MPEC-SC, MPEC-SOC is satisfied (i.e., by Theorem 3.4 x̄ is a minimizer of order 0= 2). In view of
Corollary 3.1, it is also a solution of the relaxed problem PR�x̄� in (19), and by using MPEC-SC it follows that
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for the solutions x̂� of P≤
� (near x̄) (see §1) the conditions ri�x�si�x�≤ � , i ∈ Irs�x̄� are not active, but that for

all � > 0 small enough
ri�x̂� �= si�x̂� �= 0� ∀ i ∈ Irs�x̄� (43)

holds. So to analyze the behavior of the solution x̂� the whole analysis can be done under the Condition (43);
i.e., we are in the situation as for the case that the strong SC-condition holds. So instead of the convergence
��

√
�� (cf. e.g. Lemma 4.2) we obtain a rate ����; in the same way, the analysis in §5 simplifies, resulting in

a convergence behavior 
x̂� − x̄
 = ����.
Remark 5.3. We wish to emphasize that the convergence results of this paper can be generalized in a

straightforward way to problems P! containing constraints of the product form

r1�x�r2�x� · · · r!�x�= 0� r1�x�� r2�x�� � � � � r!�x�≥ 0�

Here, at a solution x̄ of P!, where all constraints ri are active, i.e.,

r1�x̄�= r2�x̄�= · · · = r!�x̄�= 0�

a perturbation r1�x�r2�x� · · · r!�x�= � will lead to a convergence rate


x̄� − x̄
 ≈ ���1/!�

for the solutions x̄� of the perturbed problem. Also, all other results in the present paper can be extended in a
straightforward way to this generalization.
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