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Alternating projections on manifolds

Adrian Lewis∗ Jérôme Malick†

July 27, 2006

Abstract

We prove that if two smooth manifolds intersect transversally, then
the method of alternating projections converges locally at a linear rate.
We bound the speed of convergence in terms of the angle between the
manifolds, which in turn we relate to the modulus of metric regularity
for the intersection problem, a natural measure of conditioning. We
discuss a variety of problem classes where the projections are com-
putationally tractable, and we illustrate the method numerically on a
problem of finding a low-rank solution of a matrix equation.

Key words: alternating projections, nonconvex, linear convergence, sub-
space angle, metric regularity, low-rank approximation, spectral set
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1 Introduction

The method of alternating projections finds a point in the intersection
of two closed convex sets by iteratively projecting a point onto one set and
then the other. Popular because of its simplicity and intuitive appeal, the
method has been rediscovered many times in the literature. The survey ar-
ticle [BB96] covers much of the history; a careful development of the method
appears in [Deu01]. Many practitioners have experimented with the method
and its enhancements, in a wide variety of applications: typical examples are
signal processing [Com93], finance [Hig02], and the “perceptron algorithm”
in machine learning (see for example [WW96]). The method extends in an
obvious manner to find points in the intersection of several sets.

The attractive theory and extensive practice of alternating projections
for convex feasibility makes it tempting to experiment with analogous heuris-
tics for nonconvex feasibility problems. Two very important application ar-
eas well-suited to such techniques are low-order control design problems (see
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for example [GB00], and [OHM05] for enhancements), and phase retrieval in
image processing (see for example [BCL02]). Existing theory is sparse and
much weaker than the convex case [CT90], and has not explained some sub-
stantial practical successes with such methods. Our aim in this work is to
enhance theoretical understanding of nonconvex alternating projections. We
consider the simplest case, that of alternating projections onto two smooth
manifolds, intersecting transversally. Locally, the manifolds can be approxi-
mated by affine subspaces, and since in the case of subspaces, the method of
alternating projections converges linearly, one might also hope (as expressed
in [Ors06], supported by numerical evidence) for linear convergence in the
manifold case. Our main result is a proof of local linear convergence.

Some of the appeal of the alternating projection method for convex fea-
sibility problems is the ease of the projection subproblem. If a closed set in
a Euclidean space is convex, then any point has a unique nearest point in
the set (and indeed the converse is also true, by the Motzkin-Bunt theorem
[BL05]). Furthermore, providing the set is reasonably described, computing
the projection is tractable computationally: modern interior point methods
provide one avenue [NN94].

By contrast, for nonconvex sets, the projection mapping can no longer
be single-valued, and may be hard to compute. Furthermore, even if two
closed nonconvex sets have a nonempty intersection, very simple examples
show we cannot expect alternating projections to converge in general. On the
other hand, smooth manifolds belong to a large class of interesting sets that
admit unique projections locally (specifically, “prox-regular” sets [PRT00]).
Furthermore, for some fundamental nonconvex sets, the projection prob-
lem is computationally cheap. An obvious example is projection onto the
unit sphere, but, more generally, projection onto any set defined by a single
quadratic equation or inequality is an easy problem numerically. By argu-
ments analogous to the theory for the classical “trust region subproblem”
[NW99], any optimal solution of the projection problem

min
x

{

‖x − a‖2 : x⊤Ax + b⊤x = c
}

,

associates with a (scalar) Lagrange multiplier solving the Lagrangian dual
problem. This latter problem is a univariate maximization, solvable very
efficiently by diagonalizing the symmetric matrix A and applying a specially-
designed Newton-type method. The approach for an inequality constraint
is very similar.

The singular value decomposition furnishes another efficient and well-
known nonconvex projection technique [HJ89]. If the real matrix A has
singular value decomposition UDV⊤, where the matrices U and V are or-
thogonal, and the matrix D is nonnegative on its main diagonal and zero off
it, then by replacing by zero all the main diagonal entries of D except the
r largest, we obtain a nearest matrix to A (with respect to the Frobenius
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norm) from the set of matrices with rank no more than r.
The spectral decomposition for symmetric matrices gives access to a

broad range of projection techniques onto nonconvex “spectral” sets: that
is, sets of matrices defined via properties of their eigenvalues. For example,
given any symmetric matrix, a nearest matrix, with respect to the Frobenius
norm, with given eigenvalues (and multiplicities) is easy to compute. This
observation was used recently in [Ors06] in an alternating projection method
to solve nonnegative inverse eigenvalue problems. Equally easy to compute
is a nearest matrix from the set of matrices having largest eigenvalue mul-
tiplicity at least k. The (locally identical) set of matrices having largest
eigenvalue multiplicity exactly k is a manifold, and [Ous00] uses the corre-
sponding projection as part of an eigenvalue optimization algorithm. We
summarize general results about projections onto spectral sets of symmetric
matrices in an appendix.

After outlining our notation in Section 2, we discuss the notion of an-
gle between subspaces (and manifolds) in Section 3, a key idea both in the
classical convergence theory for alternating projection on subspaces and for
our extension to manifolds. We prove our main result—that the alternating
projection method on transversal manifolds converges linearly locally—in
Section 4. Just as in the classical theory for subspaces, the angle predicts
the rate of linear convergence for the method. In Section 5, we relate this
constant to a natural measure of the “conditioning” of the underlying feasi-
bility problem. Finally in Section 6, we illustrate the theory with a numerical
example, seeking a low rank solution of a linear matrix equation. Our aim
in this work is not to develop efficient numerical schemes. Indeed, even for
the classical alternating projection method on subspaces, many authors have
observed the slow convergence of the raw method, and have experimented
with enhancements. Our goal here is primarily to initiate a solid theoretical
explanation for observed successes of heuristics based on nonconvex alter-
nating projections.

2 Notation and basic results

We begin with elementary definitions. In this paper, we will consider
a Euclidean space E (in other words, a finite-dimensional real space with
inner product denoted 〈·, ·〉). We denote by B its unit ball and by S its unit
sphere. A sequence (xk)k in E converges linearly with rate κ < 1 to x
if there is some constant α such that

‖xk − x‖ ≤ α κk for all k ≥ 0.

More precisely, this property is “R-linear convergence” [DS83]: the infimum
of all possible constants κ, namely

lim sup
k→∞

‖xk − x‖
1

k
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is the “rate of R-linear convergence”.

Manifolds. A smooth manifold in E is, loosely speaking, a set consisting
locally of the solutions of some smooth equations. More precisely, we say
that a set M ⊂ E is a Ck-manifold (of codimension d) around a point
x ∈ M if there is an open set U ⊂ E containing x such that

M∩ U = {x ∈ V : F (x) = 0},

where F : U → R
d is a Ck function with surjective derivative throughout U .

Note that k, the degree of smoothness of M, will be omitted in statements
if obvious or non-useful. Note also that the tangent space to M at x ∈ M
is given by

TM(x) = ker∇F (x)

(which is actually independent of the choice of F ), and that the normal
space at M at x is then its orthogonal complement, namely

NM(x) = range∇F (x)∗.

Example 1 (Affine manifold). Particularly easy examples of smooth man-
ifolds are affine subspaces. If M is an affine subspace of E, the equation
F (x) = 0 can be taken to be affine: that is, of the form A(x) − b = 0 with
A : E → R

m a linear map and a vector b ∈ R
d. The tangent space kerA is

the same at any point in the affine subspace.

Example 2 (Fixed rank matrices). Let E = Mn,m(R) be the space of n×m-
matrices with the classical inner product 〈A,B〉 = trace(A⊤B). Routine
calculations show that the set of matrices with fixed rank r,

Rr = {X ∈ Mn,m(R) : rank(X) = r},

is a smooth manifold around any matrix A ∈ Rr. With the help of the singu-
lar value decomposition A = UDV⊤ (the two matrices U = [u1, u2, . . . , un]
and V = [v1, v2, . . . , vm] being orthogonal, and the diagonal entries in the
diagonal matrix D being written in decreasing order) the tangent space at
A to Rr is

TRr
(A) = {H ∈ Mn,m(R) : ui

⊤Hvj = 0, for all r < i ≤ n, r < j ≤ m}.

Let M and N be two Ck-manifolds around x ∈ M ∩ N . The classical
sufficient assumption to ensure that the intersection M∩N is also a manifold
around x is the following standard transversality assumption.
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Definition 3 (transversality). Suppose M and N are two Ck-manifolds
around a point x ∈ M∩N . We say that M and N are transverse at x if

TM(x) + TN (x) = E.

In this case, the intersection M∩N is a Ck-manifold around x and there
holds TM∩N (x) = TM(x) ∩ TN (x).

Projections. The projection of an element x ∈ E onto a closed subset
M ⊂ E is defined by

PM (x) := argmin{‖x − y‖ : y ∈ M},

if it exists. In the case where M is convex, PM (x) exists and is unique
for all x ∈ E, then the projector operator PM : E → E is well-defined. If
furthermore the boundary of the closed convex M is a Ck manifold, the
projection mapping PM is Ck [Hol73]. If M is no longer convex, versions
of these results still hold locally. This is stated precisely in the following
lemma, which will be a basic tool afterwards. We include a short proof.

Lemma 4 (Projection onto a manifold). Let M ⊂ E be a manifold of class
Ck (with k ≥ 2) around a point x̄ ∈ M. Then the projection PM is well-
defined around x̄. Moreover PM is of class Ck−1 around x̄ and

∇PM(x̄) = PTM(x̄).

Proof. Let us introduce first the “normal bundle”

NM = {(x, y) ∈ E
2 : x ∈ M, y ∈ NM(x)}.

It is well-known (and easy to check through local equations of M) that NM
is a manifold of class Ck−1 and of the same dimension as E. Moreover there
holds TNM(x̄) = TM(x̄) × NM(x̄). Let us now define

F :

{

NM −→ E

(x, v) 7−→ x + v,

which is also of class Ck−1 with derivative at the point (x̄, 0) ∈ NM given by

∇F (x̄, 0) :

{

TM(x̄) × NM(x̄) −→ E

(u, v) 7−→ u + v.

Since this derivative is invertible, the local inverse theorem for manifolds
yields that there are neighborhoods of (x̄, 0) in NM and of F (x̄, 0) = x̄ in
E such that F is a Ck−1 onto diffeomorphism, and furthermore

∀h ∈ E, ∇F−1(x̄)(h) = ∇F (x̄, 0)−1(h) =
(

PTM(x̄)(h),PNM(x̄)(h)
)

.
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Introducing now the Ck−1 function

π :

{

NM −→ M

(x, v) 7−→ x,

we see that PM = π ◦ F−1 is also Ck−1 around x̄, and

∇PM(x̄) = ∇π(x̄, 0)∇F−1(x̄) = PTM(x̄),

which completes the proof.

Example 5 (Projection onto fixed rank matrices). In the notation of Ex-
ample 2, consider a matrix X ∈ Mn,m(R) with singular value decomposition
X = UDV⊤. Then the nearest matrix with rank no more than r is

X̂ =

r
∑

i=1

σiuivi
⊤,

where the σi are the r first singular values (see [HJ89]). Consequently, if X
is close to a matrix X̄ ∈ Rr, the projection of X onto Rr is also X̂, since X̂
cannot have rank strictly less than r.

3 Angles between subspaces or manifolds

Let M and N be two subspaces of E. Following [Fri37] and [Deu01], we
define the angle between M and N as the angle between 0 and π/2 whose
cosine is

c(M, N) := max{ 〈x, y〉 : x ∈ S ∩ M ∩ (M ∩ N)⊥

y ∈ S ∩ N ∩ (M ∩ N)⊥ }.
(1)

The quantity c(M,N) is well-defined unless one subspace is a subspace of
the other, in which case we set c(M, N) = 0. Note that there holds (see
[Deu01, 9.5])

‖PMPN − PM∩N‖ = c(M, N), (2)

and more generally [Deu01, Theorem 9.31],

‖(PMPN )n − PM∩N‖ = c(M, N)2n−1 (3)

for n = 1, 2, . . ..
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3.1 Properties of the angle between two subspaces

We begin by developing some basic properties of the angle, useful in our
later discussion of metric regularity.

Lemma 6. Let M and N be two subspaces of the space E. Consider two
vectors m ∈ S ∩ M ∩ (M ∩ N)⊥ and n ∈ S ∩ N ∩ (M ∩ N)⊥ such that
c(M,N) = 〈m,n〉. Then

PM (n) = PM∩(M∩N)⊥(n) = c(M,N)m.

Proof. Consider first the decomposition

n = PM (n) + PM⊥(n). (4)

Observe from

n ∈ (M ∩ N)⊥ and n − PM (n) = PM⊥(n) ∈ M⊥ ⊂ (M ∩ N)⊥,

that we have PM (n) ∈ M ∩ (M ∩ N)⊥, and that we also have

PM⊥(n) ∈ M⊥ ⊂ (M ∩ (M ∩ N)⊥)
⊥
.

Thus equation (4) gives PM (n) = PM∩(M∩N)⊥(n). Now observe that the
choice of n and m yields

m = argmax
x∈S∩M∩(M∩N)⊥

〈x, n〉,

which can be written

m = argmin
x∈S∩M∩(M∩N)⊥

(

‖n‖2 + ‖x‖2 − 2〈x, n〉
)

= argmin
x∈S∩M∩(M∩N)⊥

‖n − x‖2.

This finally gives us

m = PM∩(M∩N)⊥(n)/‖PM∩(M∩N)⊥(n)‖ = PM (n)/‖PM (n)‖, (5)

so
‖PM (n)‖ = 〈m, PM (n)〉 = 〈m,n〉.

The proof is complete.

This result permits us to prove that the angle between two subspaces is
equal to the angle between their orthogonal complements, as stated in the
next lemma.

Lemma 7. Let M and N be two subspaces of E. Then

c(M, N) = c(M⊥, N⊥).
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Proof. If one subspace is a subspace of the other, the result is immediate.
Otherwise, denote c = c(M,N), and consider vectors m ∈ S∩M∩(M ∩ N)⊥

and n ∈ S ∩ N ∩ (M ∩ N)⊥ such that 〈m,n〉 = c. Then consider the two
following vectors

m̄ = α(n − cm) and n̄ = α(cn − m), with α = 1/
√

1 − c2.

Let us check that m̄ ∈ S∩M⊥∩(M⊥ ∩ N⊥)
⊥
. Firstly, by definition, we have

m̄ ∈ N + M = (M⊥ ∩ N⊥)
⊥
. Secondly, Lemma 6 shows m̄ = αPM⊥(n) ∈

M⊥. Thirdly, we obtain

‖m̄‖2 = α2(‖n‖2 + c2‖m‖2 − 2c〈m,n〉) = 1.

Similarly, we obtain n̄ ∈ S ∩ N⊥ ∩ (M⊥ ∩ N⊥)
⊥
. Finally we observe that

〈m̄, n̄〉 = α2〈n − cm, cn − m〉 = cα2〈n − cm, n〉 = c.

Thus by definition of the angle (1), we see that

c(M⊥, N⊥) ≥ 〈m̄, n̄〉 = c = c(M, N).

Changing the roles of M and N with their orthogonal complements, we get
the reverse inequality c(M,N) ≥ c(M⊥, N⊥) with the same argument.

We also state the following technical result that will be useful afterwards.

Lemma 8. Let M and N be two subspaces of E such that M ∩ N = {0}.
Then

1 − c(M, N) = min
x∈S, m∈M, n∈N

(

‖x − m‖2 + ‖x − n‖2
)

.

Proof. Denote by R the right hand side of the equality to be proved.
Developing the sum of squared norms, we get

R − 2 = min
m∈M, n∈N

(

‖n‖2 + ‖m‖2 − 2max
x∈S

〈x,m + n〉

)

= min
m∈M, n∈N

(

‖n‖2 + ‖m‖2 − 2‖m + n‖
)

= min
m∈M∩S, n∈N∩S

min
α,β∈R

(

α2 + β2 − 2‖αm + βn‖2
)

Observe now that the function fm,n(α, β) = α2 + β2 − 2‖αm + βn‖ has
compact lower level sets, and is smooth on R

2 \{(0, 0)} (since M∩N = {0}),
and that it has a local maximum at (0, 0). Hence fm,n achieves its minimum
at a critical point. Some algebra then gives

min
α,β∈R

fm,n(α, β) = −1 − 〈m,n〉
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Minimizing now with respect to m and n we get

min
m∈M∩S, n∈N∩S

(−1 − 〈m,n〉) = −1 − max
m∈M∩S, n∈N∩S

〈m,n〉 = −1 − c(M,N),

the last equality holding again because of the assumption M ∩ N = {0}.
Finally we thus get R = 2 + (−1 − c(M,N)) = 1 − c(M,N) which is the
targeted equality.

3.2 Angle between two manifolds

Let us now generalize the previous framework: in view of the definition
of the angle between two subspaces, the following definition makes sense.

Definition 9 (angle between two manifolds). Let M and N be two mani-
folds in E around a point x ∈ M∩N . The angle between M and N at x
is the angle between the tangent spaces TM(x) and TN (x). In other words,
it is the angle between 0 and π/2 with cosine

c(M,N , x) := c(TM(x), TN (x)).

If M and N are actually subspaces, it is clear that the angle between
them does not depend on the point in their intersection and that the two def-
initions coincide. Let us add a lemma that formalizes an obvious smoothness
property.

Lemma 10 (Smoothness of the angle). Let M and N be two transverse
Ck-manifolds in the space E (with k ≥ 2) around the point x̄ ∈ M ∩ N .
Then the function

c(M,N , ·) :

{

M∩N −→ [0, 1]

x 7−→ c(M,N , x)

is of class Ck−1 around x̄.

Proof. From property (2) and Definition 9, we know for any point x ∈
M∩N ,

c(M,N , x) = ‖PTM(x)PTN (x) − PTM(x)∩TN (x)‖. (6)

Moreover, the projectors x 7→ PTM(x) are Ck−1: the columns of the deriv-

ative of a local Ck parametrization of the manifold form a basis for the
tangent space that is a Ck−1 function of the base point, so the projectors
(expressed with this basis) are also Ck−1. Property (6) now proves the re-
sult.
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4 Alternating projections onto manifolds

We are now ready to consider the alternating projection algorithm. We
consider two manifolds M and N in the space E, and study the alternating
projection sequence defined iteratively as follows:

x0 ∈ E given, xk+1 = PMPN (xk) (7)

When M and N are actually affine subspaces, this algorithm is well-defined
and its behaviour is well-understood, see [BB93]. In particular we have the
following theorem (see [BB93, 4.11]).

Theorem 11 (alternating projections for two affine subspaces). Let M and
N be two affine subspaces of the space E. Then the alternating projection
sequence (7) converges linearly with rate the cosine of the angle between the
two subspaces, c(M, N), independent of the starting point.

When M and N are general smooth manifolds, we will see in Theorem 13
that the sequence (7) is also well-defined in a neighborhood of a point x̄
belonging to the intersection M ∩ N (assuming transversality), and that
the previous convergence result generalizes. The next result gives the main
tool.

Theorem 12 (Asymptotical improvement). Let M and N be two transverse
C2-manifolds around a point x̄ ∈ M∩N . Then

lim sup
x→x̄, x/∈M∩N

‖PMPN (x) − PM∩N (x)‖

‖x − PM∩N (x)‖
≤ c(M,N , x̄).

Proof. Lemma 4 implies that there exists δ > 0 such that the projection
operators PM, PN and PM∩N are well defined and of class C1, on the ball
Bδ(x̄). Restricting further to points x ∈ Bδ/2(x̄), we have

‖x̄ − PN (x)‖ ≤ ‖x̄ − x‖ + ‖x − PN (x)‖ ≤ 2‖x − x̄‖ ≤ δ,

so PN (x) ∈ Bδ(x̄), and therefore PMPN is also well-defined and C1 on
Bδ/2(x̄). We thus ensure that the fraction in the result makes sense.

Let (xr)r be an arbitrary sequence of points in Bδ/2(x̄)\(M∩N ) tending
to x̄. To simplify notation, we use x̄r = PM∩N (xr). Of course x̄r ∈ M∩N ,
so

PMPN (xr) − x̄r = PMPN (xr) − PMPN (x̄r).

Observe also that the continuity of PM∩N yields that x̄r tends to x̄ too. So,
the previous equation and continuous differentiability shows

PMPN (xr) − x̄r = ∇(PMPN )(x̄r)(xr − x̄r) + o(‖xr − x̄r‖). (8)

10



Using Lemma 4 and the chain rule, we get

∇(PMPN )(x̄r) = PTM(x̄r)PTN (x̄r). (9)

The transversality assumption now shows

PTM(x̄r)∩TN (x̄r)(xr − x̄r) = PTM∩N (x̄r)(xr − x̄r) = 0,

since xr − x̄r ∈ NM∩N (x̄r) = TM∩N (x̄r)
⊥. So we can write

PTM(x̄r)PTN (x̄r)(xr − x̄r) = (PTM(x̄r)PTN (x̄r) − PTM(x̄r)∩TN (x̄r))(xr − x̄r).

Combined with equations (8) and (9), this gives

‖PMPN (xr) − x̄r‖

‖xr − x̄r‖
≤ ‖PTM(x̄r)PTN (x̄r) − PTM(x̄r)∩TN (x̄r)‖ + o(1),

that is
‖PMPN (xr) − x̄r‖

‖xr − x̄r‖
≤ cos(M,N , x̄r) + o(1),

by equation (2) and Definition 9. Taking the lim sup in this inequality, the
result now follows by Lemma 10.

A refinement of the above argument, using equation (3) in place of equation
(2), shows the generalization

lim sup
x→x̄, x/∈M∩N

‖(PMPN )n(x) − PM∩N (x)‖

‖x − PM∩N (x)‖
≤ c(M,N , x̄)2n−1 (10)

for n = 1, 2, . . ..
Observe that, with the hypotheses of the above theorem, we have that,

for all constants c > cos(M,N , x̄), there exists a radius η > 0 such that

∀x ∈ Bη(x̄), ‖PMPN (x) − PM∩N (x)‖ ≤ c‖x − PM∩N (x)‖. (11)

We can now prove our main result.

Theorem 13 (Linear convergence). In the space E, let M and N be two
transverse manifolds around a point x̄ ∈ M∩N . If the initial point x0 ∈ E

is close to x̄, then the method of alternating projections

xk+1 = PMPN (xk) (k = 0, 1, 2, . . .)

is well-defined, and the distance dM∩N (xk) from the iterate xk to the in-
tersection M ∩ N decreases Q-linearly to zero. More precisely, given any
constant c strictly larger than the cosine of the angle of intersection between
the manifolds, cos(M,N , x̄), if x0 is close to x̄, then the iterates satisfy

dM∩N (xk+1) ≤ c · dM∩N (xk) (k = 0, 1, 2, . . .), (12)
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Furthermore, xk converges linearly to some point x∗ ∈ M ∩ N : for some
constant α > 0,

‖xk − x∗‖ ≤ α ck (k = 0, 1, 2, . . .). (13)

Proof. Choose c such that 1 > c > cos(M,N , x̄) and η > 0 such that (11)
is satisfied. Set δ := (1 − c)η/4 and choose any starting point x0 ∈ Bδ(x̄).

First step: properties of xk. Let us prove by induction that the sequence
of points xk is well-defined, and that both xk and and its projection x̄k =
PM∩N (xk) belong to the neighborhood Bη(x̄) and satisfy the properties

‖xk − x̄k−1‖ ≤ δck (H1)
‖xk − x̄k‖ ≤ δck (H2)

‖x̄k − x̄k−1‖ ≤ 2δck (H3)

‖x̄k − x̄‖ ≤ 2
(
∑k

i=0 ci
)

δ (H4)

‖xk − x̄‖ ≤ 2
(
∑k

i=0 ci
)

δ. (H5)

Setting x̄−1 = x̄0 and using

‖x0 − x̄0‖ ≤ ‖x0 − x̄‖ ≤ δ,

it is easy to see that these inequalities (H1)-(H5) hold for k = 0. Assume
now that these inequalities hold for some k ≥ 0: we prove they also hold
with k replaced by k+1. Note that if xk belongs to M∩N , there is nothing
to prove. Otherwise, since xk belongs to Bη(x̄), the next iterate xk+1 is
well-defined and inequality (11) holds, so:

dM∩N (xk+1) ≤ ‖xk+1 − x̄k‖ ≤ c‖xk − x̄k‖ = c · dM∩N (xk).

(H1) With the help of property (H2), the above inequality yields

‖xk+1 − x̄k‖ ≤ δck+1. (14)

(H2) Note that ‖xk+1 − x̄k+1‖ ≤ ‖xk+1 − x̄k‖ by definition of x̄k+1. With
inequality (14), this implies

‖xk+1 − x̄k+1‖ ≤ δck+1. (15)

(H3) We get property (H3) from inequalities (14) and (15), by observing

‖x̄k+1 − x̄k‖ ≤ ‖x̄k+1 − xk+1‖ + ‖xk+1 − x̄k‖ ≤ 2δck+1. (16)

(H4) Finally, note

‖x̄k+1 − x̄‖ ≤ ‖x̄k+1 − x̄k‖ + ‖x̄k − x̄‖

so inequality (16) and property (H4) enable us to write

‖x̄k+1 − x̄‖ ≤ 2δ ck+1 + 2δ
k

∑

i=0

ci ≤ 2δ
k+1
∑

i=0

ci. (17)
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(H5) Similarly,
‖xk+1 − x̄‖ ≤ ‖xk+1 − x̄k‖ + ‖x̄k − x̄‖,

so we have from inequality (14) and property (H4)

‖xk+1 − x̄‖ ≤ δ ck+1 + 2δ
k

∑

i=0

ci ≤ 2δ
k+1
∑

i=0

ci. (18)

Observe now that inequality (17) yields

‖x̄k+1 − x̄‖ ≤ 2δ/(1 − c) ≤ η/2

and inequality (18) yields

‖xk+1 − x̄‖ ≤ η/2.

So x̄k+1 and xk+1 belong to Bη(x̄) too. This ends the proof by induction.

Second step: convergence. We first prove the convergence of the sequence of
projections (x̄k)k: this sequence in M∩N ∩ Bη(x̄) is Cauchy. To see this,
use property (H3) to write, for all indices k, p ≥ 0 with p ≥ k,

‖x̄p − x̄k‖ ≤

p
∑

i=k+1

‖x̄i − x̄i−1‖ ≤ 2δ

p
∑

i=k+1

ci ≤
2 δ

1 − c
ck+1. (19)

So (x̄k)k converges to an element x∗ in M∩N . Passing to the limit in p in
inequality (19), we obtain

‖x̄k − x∗‖ ≤
2 δ

1 − c
ck+1.

With the help of property (H2), this implies

‖xk − x∗‖ ≤ ‖xk − x̄k‖ + ‖x̄k − x∗‖ ≤ (1 + 2c/(1 − c))δ ck,

which yields inequality (13) and completes the proof.

Remark 14 (Stronger bound). In fact, the distance dk from the iterate xk

to the intersection of the two manifolds M ∩ N decreases to zero with R-
linear rate cos2(M,N , x∗), a faster rate than predicted by inequality (12).
To see this refinement, we argue as follows.

Fix any constant c in the interval (cos(M,N , x∗), 1), and any integer
n > 0. We claim

lim sup
r

d1/r
r ≤ c2−1/n. (20)

Our result then follows, by taking the infimum over c and n.

13



To verify the claim, note first that Theorem 13 and inequality (10) guar-
antee that there is an integer t0 such that dt+n < c2n−1dt for all integers
t > t0, and hence by induction

dt+kn < ck(2n−1)dt for all t > t0, k = 1, 2, 3, . . . . (21)

If inequality (20) fails, then there is a constant ǫ > 0 and a sequence of
integers r1 < r2 < r3 < · · · , all satisfying

lim sup
j

d
1/rj
rj > c2−1/n + ǫ. (22)

By considering the sequence (rj) modulo n, and taking a further subse-
quence, we can suppose each rj has the form a+bjn for some fixed integer a
and sequence of integers b1 < b2 < b3 < · · · . Choose any integer b satisfying
a + bn > t0. Then we have

drj
= da+bjn = da+bn+(bj−b)n < c(bj−b)(2n−1)da+bn,

using inequality (21). We deduce

drj
< c(n−1[rj−a]−b)(2n−1)da+bn.

Raising both sides to the power 1/rj and letting j → ∞ now contradicts
inequality (22). This completes the proof of our claim (20), and the result
follows.

Naturally, the convergence of Theorem 13 is only local, since the projec-
tions themselves are well-defined only locally in general. However by adding
a convexity assumption, we can get a global convergence while preserving
the local rate. A result of this kind is the following.

Corollary 15. Let A and B two closed convex subsets of E such that the
boundaries bdA and bdB are smooth manifolds. If the intersection A ∩ B
is non-empty, then the alternating projection method

x0 given, xk+1 = PAPB(xk)

is well-defined and converges to a point x∗ ∈ A ∩ B. If furthermore bdA
and bdB are transversal at x∗, the sequence (xk)k in fact converges linearly,
with R-linear rate c(bdA,bdB, x∗).

Proof. Since C1 and C2 are closed and convex, the sequence (xk)k is
well-defined for any starting point x0. The classical theory of alternating
projections (see for example [CG59]) implies global convergence to a point
x∗ ∈ A ∩ B. Theorem 13 then gives the local linear convergence.
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5 Metric regularity and linear rate

The previous section shows that the rate of convergence of the method of
alternating projections for two transverse manifolds is related to the angle
between the manifolds. The speed of basic algorithms is often closely asso-
ciated with Lipschitzian properties of the underlying generalized equations,
“error bounds” for these equations (see [FP03], for example), and “metric
regularity” (see [RW98]). Metric regularity in turn is related to the condi-
tioning of a well-posed generalized equation, measured in terms of the size of
allowable linear perturbations to the equation that preserve well-posedness
(see the discussion in [DLR03]). In this section, we pursue this pattern
in our context, by relating the angle between the manifolds to the metric
regularity of a natural associated generalized equation. To accomplish this,
we use a variety of tools from variational analysis: we refer the reader to
[RW98] for terminology.

5.1 Regular intersection

We consider the metric regularity of the problem of finding a point in the
intersection of two closed sets M and N in the space E. To use variational
tools for this analysis, we introduce the multifunction φ : E

2
⇒ E defined by

φ(x, y) =

{

{x − y} if x ∈ M and y ∈ N,
∅ otherwise.

Thus we have
0 ∈ φ(x, y) ⇐⇒ x = y ∈ M ∩ N.

Therefore we say M and N have regular intersection at x if φ is metrically
regular at (x, x) for 0. In that case we define the regularity modulus of
the intersection at x via the regularity modulus of φ:

regM,N (x) := reg φ((x, x)|0). (23)

Lemma 16 (Coderivatives of φ). Let M and N be two closed sets, and x be
a point in the intersection M∩N . Then the coderivative of the multifunction
φ at the point (x, x) is related to the normal cones to M and N at x by

∀z ∈ E, D∗φ((x, x)|0)(z) =
(

z + NM (x),−z + NN (x)
)

(24)

Proof. Let us write φ as the sum

φ(x, y) = x − y + ψ(x, y),

where the multifunction ψ : E
2

⇒ E is defined by

ψ(x, y) =

{

0 if x ∈ M and y ∈ N,
∅ otherwise.
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Since the function F : (x, y) 7→ x − y is smooth, the calculus rule [RW98,
10.43] yields

D∗φ((x, x)|0)(z) = ∇F (x, x)∗(z) + D∗ψ((x, x)|0)(z),

so
D∗φ((x, x)|0)(z) = (z,−z) + D∗ψ((x, x)|0)(z). (25)

Thus we just have to compute D∗ψ((x, x)|0)(z). Observe that

graphψ = M × N × {0} ⊂ E
3,

and, for x ∈ M ∩ N , this yields

Ngraph ψ(x, x, 0) = NM (x) × NN (x) × E.

Returning to the definition of coderivatives [RW98, 8.33], we compute

(u, v) ∈ D∗ψ((x, x)|0)(z) ⇐⇒ (u, v,−z) ∈ Ngraph ψ(x, x, 0)

⇐⇒ (u, v) ∈ NM (x) × NN (x).

Thus equation (25) gives

D∗φ((x, x)|0)(z) = (z,−z) + NM (x) × NN (x),

which is exactly equation (24).

We can use this result to recognize regular intersections, as follows.

Theorem 17 (Condition for regularity). Two closed sets M and N have
regular intersection at a point x ∈ M ∩ N if and only if

−NM (x) ∩ NN (x) = {0}.

In this case, we also have

1

regM,N (x)
= min

‖z‖=1

√

d(z,−NM (x))2 + d(z,NN (x))2. (26)

Proof. We apply [RW98, 9.43] : the metric regularity of φ at (x, x) for 0
is equivalent to

(0, 0) ∈ D∗φ((x, x)|0)(z) =⇒ z = 0.

In view of Lemma 16, this means
(

0 ∈ z + NM (x) and 0 ∈ −z + NN (x)
)

=⇒ z = 0,

that is −NM (x) ∩ NN (x) = {0}. Now combining [RW98, 9.43] and the
Mordukhovich criterion [RW98], we obtain

1

reg φ((x, x)|0)
= min

‖z‖=1
d
(

(0, 0), D∗φ((x, x)|0)(z)
)

,

and equation (26) follows using equations (23) and (24).
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5.2 Regular intersection of two manifolds

The regularity of the intersection is easier to grasp when dealing mani-
folds. The following result proves that the nonsmooth regularity notion we
introduced via metric regularity coincides with the regularity notion from
smooth geometry, namely transversality.

Theorem 18 (Regularity for two manifolds). Consider two manifolds M
and N around a point x ∈ M∩N . Then their intersection is regular at x
if and only if they are transverse at x. In this case, the intersection M∩N
is a smooth manifold around x, and the regularity modulus is related to the
angle between them by

regM,N (x) =
1

√

1 − c(M,N , x)
. (27)

Proof. The normal cone NM(x) is linear in this case, so the condition for
regularity of Theorem 17 becomes {0} = NM(x)∩NN (x). Taking orthogonal
complements, the condition is then

E = (NM(x) ∩ NN (x))⊥ = NM(x)⊥ + NN (x)⊥ = TM(x) + TN (x),

which is exactly the transversality assumption (Definition 3). This property
yields in particular that M ∩ N is a smooth manifold around x. Let us
prove now equation (27). From equation (26), we first get

(regM,N (x))−2 = min
z∈S, m∈NM(x), n∈NN (x)

(

‖z − m‖2 + ‖z − n‖2
)

,

Since we have NM(x) ∩ NN (x) = {0}, Lemma 8 gives

(regM,N (x))−2 = 1 − c(NM(x), NN (x)).

So Lemma 7 and inequality (11) yield

(regM,N (x))−2 = 1 − c(TM(x), TN (x)) = 1 − c(M,N , x),

which completes the proof.

Having this connection between regularity modulus and the angle, the
asymptotical rate of converge of the alternating projection method of The-
orem 13 can be written

1 − (regM,N (x̄))−2.
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6 A numerical illustration

In this section we give a numerical illustration showing the linear con-
vergence of the alternating projection method. We focus on the following
problem: using the notation of Example 2, we want to find an n×m-matrix
X of rank r, satisfying a linear system A(X) = b. In other words, we seek
a matrix in the intersection

Rr ∩ {X ∈ Mn,m(R) : A(X) = b},

for given linear map A : Mn,m(R) → R
d and vector b ∈ R

d. This problem is
a simple analogue of feasibility problems appearing in control, and treated
by alternating projections in [GB00].

General features of alternating projection methods are that they can
be implemented easily and that usually the amount of calculation in one
iteration is very small. In our example, the projection onto Rr is computed
through a singular value decomposition (see Example 5). The projection
onto the affine subspace A of equation A(X) = b is computed directly as

PA (X) = X −A∗(AA∗)−1(A(X) − b),

with AA∗ and its LU factorization computed only one time at the beginning
of the algorithm. So the work of each iteration is dominated by the singular
value decomposition.

Experiments with MATLAB on randomly generated problems (that is,
the operator A(X) = (〈A1, X〉, . . . , 〈Ad, X〉) being constructed with random
matrices, and the vector b being chosen so that A(X) = b has a rank r
solution) always exhibit the linear convergence predicted by Theorem 13.
For our experiments, we take in general matrix dimensions m ≥ n, rank r
rather small (lower than 10) and we pick the number of linear equations d
satisfying

mr < d ≤ r (m + n − r).

The left-hand inequality ensures we cannot solve the problem too easily,
simply by setting all but r rows of the matrix X to zero, and the right-
hand inequality, ensures (by counting dimensions) that a random problem
typically has a solution and transversality holds. Starting at a random initial
matrix X0, we compute

Xk+1 = PRr
(PA (Xk))

and we stop the algorithm when the absolute error satisfies

‖A(Xk) − b‖ ≤ 10−7.

We illustrate with one typical case.

18



Example 19 (Linear convergence). We take n = 100, m = 110, r = 4 and
d = 450. The algorithms stops after 1869 iterations (with around 7 minutes
of computing time on a standard PC). We give below a summary of the
information printed at each iteration, that is:

• iter is the number of the iteration,

• log|AX-b|= log10(‖A(Xk) − b‖),

• log|X-Xpre|= log10(‖Xk − Xk−1‖).

iter log|AX-b| log|X-Xpre|

1 -0.3010 0.4604

50 -1.3197 -2.5445

100 -1.6744 -3.0021

500 -3.1839 -4.6450

1000 -4.6511 -6.1343

1500 -6.0199 -7.5133

1850 -6.9516 -8.4491

1869 -7.0018 -8.4995

We plot on Figure 1 the value of log10(‖A(Xk) − b‖) at each iteration k.
We see that after 200 iterations the quantity decrases linearly as expected,
illustrating the linear convergence.

A second, very simple, example illustrates the relationship between the
angle of intersection and the convergence rate.

Example 20 (Angle and rate of convergence). We repeat the same exper-
iment but with d = 1, that is A(X) = 〈A, X〉. In this case, we can simply
compute the cosine of the angle at the intersection, c(Rr,A , X∗). Indeed
Lemmas 6 and 7 show

c(Rr, A , X∗) = cos(NRr
(X∗), A) = ‖PNRr (X∗)

(

A/‖A‖
)

‖. (28)

In practice, this case is much easier and the algorithm stops after 178
iterations. Here is the information printed at some iterations:

iter log|AX-b| improv log|X-Xpre| c2

1 -1.1511 1.3350 0.4634 0.0004

50 -2.7735 0.9203 -5.1524 0.9197

100 -4.4291 0.9265 -6.8079 0.9265

150 -6.0846 0.9266 -8.4635 0.9266

178 -7.0117 0.9266 -9.3906 0.9266
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Figure 1: the plot of log10(‖A(Xk)−b‖) for each iteration k (with parameters
n = 100, m = 110, r = 4 and d = 450)

At iteration k, the quantity

〈 xk − xk+1

‖xk − xk+1‖
,

PA (xk) − PA (xk+1)

‖PA (xk) − PA (xk+1)‖

〉

,

provides an approximation of c(Rr,A , X∗). We print at each iteration c2,
the square of this quantity. We also get improv, the improvement at each
iteration, that is

‖A(Xk) − b‖

‖A(Xk−1) − b‖

We observe that the four quantities

• 10s with s being the slope of the graph of log10(‖A(Xk) − b‖),

• c(Rr,A )2 the square cosine of the angle (computed with (28)),

• the approximations c2 (for the final iterations),

• the improvements improv (for the final iterations)

all coincide and the common value is here around 0.9266. This illustrates
that the asymptotic convergence rate is the square cosine of the angle, as
predicted by Remark 14.
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7 Appendix: Projection onto spectral sets

In this appendix, we show that projection problems for “spectral” sets of
symmetric matrices (that is, sets described solely by eigenvalue properties)
are often easy. We begin with some basic ideas and notation, following
[Lew96a, Lew96b] and the references therein.

The space Sn of real symmetric n-by-n matrices, equipped with the trace
inner product, is a Euclidean space. A subset T is spectral if, for every
matrix X ∈ T and every U in the group On of orthogonal matrices, we have
U⊤XU ∈ T . The eigenvalue map λ : Sn → R

n maps any symmetric matrix
X to its eigenvalues arranged in nonincreasing order, λ1(X) ≥ λ2(X) ≥
· · · ≥ λn(X). It is easy to see that any spectral set can be written in the
form λ−1(K) = {X : λ(X) ∈ K}, for some set K ⊂ R

n, and that we can
further restrict K to be permutation-invariant: for every vector x ∈ K
and every P in the group Pn of permutation matrices, we have Px ∈ K.

Projecting a matrix Y ∈ Sn onto a spectral set λ−1(K) (where the
set K ⊂ R

n is permutation-invariant) is easy, providing we know how to
project onto K. We proceed as follows: Calculate a spectral decomposition
Y = U⊤Diag(y)U , where the matrix U is orthogonal and Diag(y) denotes the
diagonal matrix with diagonal entries the components of the vector y ∈ R

n;
next, find a nearest point x ∈ K to y; now the matrix U⊤Diag(x)U is a
nearest matrix to Y in λ−1(K).

This approach depends on the following classical result (see for example
[Lew96a, Lemma 2.1 and Theorem 2.2]):

sup
V ∈On

trace
(

V⊤Diag(z)V Diag(y)
)

= sup
P∈Pn

z⊤Py, (29)

for any vectors y, z ∈ R
n . We justify the projection procedure above in the

following result.

Theorem 21 (Spectral projection). If the point x in the permutation-
invariant set K ⊂ R

n is a nearest point to the point y ∈ R
n, then for

any orthogonal matrix U , the matrix U⊤Diag(x)U is a nearest matrix in the
spectral set λ−1(K) to the matrix U⊤Diag(y)U .

Proof. We can assume without loss of generality that the matrix U is the
identity. Now using equation (29), the permutation-invariance of the set K,
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and the assumption on the point x, we have

inf
X∈λ−1(K)

‖X − Diag(y)‖2

= inf
V ∈On, z∈K

∥

∥V⊤Diag(z)V − Diag(y)
∥

∥

2

= inf
V ∈On, z∈K

{

‖z‖2 + ‖y‖2 − 2trace
(

V⊤Diag(z)V Diag(y)
)

}

= inf
P∈Pn, z∈K

{

‖z‖2 + ‖y‖2 − 2z⊤Py
}

= inf
P∈Pn, z∈K

{

‖P⊤z‖2 + ‖y‖2 − 2z⊤Py
}

= inf
z∈K

{

‖z‖2 + ‖y‖2 − 2z⊤y
}

= inf
z∈K

‖z − y‖2

= ‖x − y‖2.

The first infimum is attained by X = Diag(x), completing the proof.

A useful tool for projecting onto permutation-invariant sets is the fol-
lowing easy result. We denote the vectors in R

n with components in nonin-
creasing order by R

n
≥.

Lemma 22. If the set K ⊂ R
n is permutation-invariant, then for any vector

y ∈ R
n
≥ we have

inf
x∈K

‖x − y‖ = inf
x∈K∩Rn

≥

‖x − y‖.

Proof. A classical inequality (see for example [Lew96a, Lemma 2.1]) shows
that for any vector x ∈ R

n
≥ we have supP∈Pn y⊤Px = y⊤x. The permutation-

invariance of the set K now shows

inf
x∈K

‖x − y‖2

= inf
x∈K∩Rn

≥, P∈Pn
‖Px − y‖2

= inf
x∈K∩Rn

≥, P∈Pn

{

‖x‖2 + ‖y‖2 − 2y⊤Px
}

= inf
x∈K∩Rn

≥

{

‖x‖2 + ‖y‖2 − 2y⊤x
}

= inf
x∈K∩Rn

≥

‖x − y‖2,

as desired.

Our first example, showing how to project onto the “isospectral” set of all
symmetric matrices with a given vector of eigenvalues, follows immediately.
This result was observed in [Ors06].
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Example 23 (Isospectral projection). Suppose the matrix Y ∈ Sn has spec-
tral decomposition U⊤Diag(λ(Y ))U . Then a nearest matrix to Y among
all matrices with given eigenvalues x1 ≥ x2 ≥ · · · ≥ xn is the matrix
U⊤Diag(x)U . This follows by applying Lemma 22 and Theorem 21 to the
set K = Pnx.

Another interesting case concerns projection onto the set of matrices with
maximum eigenvalue having a given multiplicity. The following example
completes a partial result of [Ous00].

Example 24 (Maximum eigenvalue multiplicity projection). Suppose the
matrix Y ∈ Sn has spectral decomposition U⊤Diag(λ(Y ))U . Then a nearest
matrix to Y among all matrices with maximum eigenvalue having multiplic-
ity at least k is the matrix U⊤Diag(x)U , where

xi =

{

k−1
∑k

j=1 λj(Y ) (i ≤ k)

λi(Y ) (i > k).

To see this result, we apply Lemma 22 and Theorem 21 to the set K ⊂ R
n

consisting of all vectors whose k largest components are equal. Suppose we
wish to project a point y ∈ R

n
≥ onto this set. By Lemma 22, we need to

solve the problem
inf

x∈K∩Rn
≥

‖x − y‖,

and it is not hard to check that a solution is given by

xi =

{

k−1
∑k

j=1 yj (i ≤ k)

yi (i > k).

The result then follows.
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