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1 Introduction

Aumann (1974) defined the concept ofcorrelated equilibrium(CE) for games in strategic
form. Before the game starts, a device selects private signals from a joint probability
distribution and sends them to the players. In thecanonical representationof a CE, these
signals are strategies that players are recommended to play.

This paper proposes a new concept of correlated equilibrium for extensive games,
calledextensive form correlated equilibriumor EFCE. Like in a CE (which is defined
in terms of the strategic form), the recommendations to the players are moves that are
generated before the game starts. However, each recommended move is assumed to be in
a “sealed envelope” and is only revealed to a player when he reaches the information set
where he can make that move.

As recommendations become local in this way, players know less. Consequently, the
set of EFCE outcomes islarger than the set of CE outcomes. However, an EFCE is more
restrictive than anagent-form correlated equilibrium(AFCE). In the agent form of the
game, moves are chosen by a separate agent for each information set of the player. In
an EFCE, players remain in control of their future actions, which is important when they
consider deviating from their recommended moves.

The EFCE is a natural definition of correlated equilibrium for extensive games with
perfect recall as defined by Kuhn (1953). Earlier extensions of Aumann’s concept ap-
plied only to multi-stage games, including Bayesian games and stochastic games, which
have a special time and information structure. These earlier approaches are discussed in
Section 2.4.

The main motivation for the EFCE concept iscomputational. The algorithmic input
is some description of the extensive game with its game tree, information sets, moves,
chance probabilities and payoffs. Polynomial (or linear or exponential) size and time
always refer to the size of this description. The strategic form of the extensive game has
typically exponential size. Hence, there are also exponentially many linear constraints
that define the set of strategic-form correlated equilibria. In this paper, we are interested
in the set of all EFCE of the game, and prove the following result.

Theorem 1.1.For a two-player, perfect-recall extensive game without chance moves, the
set of EFCE can be described by a system of linear equations and inequalities of poly-
nomial size. For any solution to that system (which defines an EFCE), a pair of pure
strategies containing the recommended moves can be sampled in polynomial time.

This theorem is analogous to the description of the set of CE for a game in strategic
form by incentive constraints. The incentive constraints compare any two strategies of
a player, so their number is polynomial in the size of the strategic form. Consequently,
for games given in strategic form, one can find in polynomial time a CE that maximizes
the sum of payoffs to all players, which we call the problem MAXPAY-CE (which we
consider for various descriptions of games as input). In contrast, the problem MAXPAY-
NE (finding a Nash equilibrium with maximum payoff sum) for games in strategic form
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is NP-hard (Gilboa and Zemel (1989), Conitzer and Sandholm (2003); see Garey and
Johnson (1979) or Papadimitriou (1994) for notions of computational complexity).

While CE are computationally easier than Nash equilibria for games in strategic form,
this is not clear for games in extensive form, because their strategic form may be expo-
nentially large. The following negative result confirms that, unless P= NP, the set of
(strategic-form) CE does not have a polynomial-sized description.

Theorem 1.2. For two-player, perfect-recall extensive games without chance moves, the
problemMAXPAY-CE is NP-hard.

Theorem 1.1 implies that the problem MAXPAY-EFCE (finding an EFCE with maxi-
mum payoff sum) can be solved in polynomial time for two-player, perfect-recall games
without chance moves. Interestingly, that problem becomes NP-hard when chance moves
are allowed; a closely related result has been shown earlier by Chu and Halpern (2001).

Theorem 1.3. For two-player, perfect-recall extensive games with chance moves, the
problemsMAXPAY-NE , MAXPAY-CE, MAXPAY-AFCE, andMAXPAY-EFCE are NP-
hard.

For zero-sum, two-player extensive games with perfect recall, a Nash equilibrium
can be found in polynomial time, as shown by Romanovskii (1962), Koller and Megiddo
(1992), and von Stengel (1996). These methods (most explicitly von Stengel (1996)) use
thesequence formof an extensive game where mixed strategies are replaced by behavior
strategies, by Kuhn’s (1953) theorem. A behavior strategy is represented by its realization
probabilities for sequences of moves along a path in the game tree. These realization prob-
abilities can be characterized by linear equations, one for each information set. Thereby,
the sequence form provides a strategic description that has the same size as the game tree,
unlike the exponentially large strategic form. The sequence form applies also to games
with chance moves.

Recently, Hansen, Miltersen and Sørensen (2007) have found another case where the
introduction of chance moves marks the transition from polynomial-time solvable to NP-
hard problems. They give a linear-time algorithm that decides if a two-player zero-sum
extensive game with perfect recall has apure-strategy equilibrium. Blair, Mutchler and
van Lent (1996) have shown that this problem is NP-hard if chance moves are allowed.
(For games withimperfect recall, even if they are zero-sum and have no chance moves,
it is NP-hard to find the unique Nash or correlated equilibrium payoff; see Koller and
Megiddo (1992, p. 534).)

For the set of EFCE, two-player perfect-recall games without chance moves are com-
putationally tractable for the following reason. An EFCE describes correlations of moves
between information sets of the two players, rather than correlations of entire strategies as
in a CE. This is similar to using behavior strategies rather than mixed strategies in a Nash
equilibrium. The recommended moves at an information set depend on what the other
player has been recommended (this is stated as “sampling a pure-strategy pair” in Theo-
rem 1.1 and proved in Theorem 3.9). Consider some information set, sayk of player2,
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where a move is to be recommended. Perfect recall and the absence of chance moves im-
ply that previous recommendations to the other player must define asequenceof moves,
of which there is only a linear number (see also Figure 7). Hence, there are only few
conditional distributions for generating the move atk. In contrast, a chance move, when
learned by a player, may give rise toparallel information sets (which are preceded by the
same own earlier moves of the player, see von Stengel (1996, Def. 4.3)). The number
of move combinations at parallel information sets may grow exponentially, and each of
them may produce a different conditional distribution for the recommended move. This
applies in general for CE, with possibly exponentially many recommended strategies and
corresponding conditional distributions.

The polynomially many constraints that describe the set of EFCE according to The-
orem 1.1 extend, in a relatively natural way, the sequence form constraints as used for
Nash equilibria. They define joint probabilities for correlating moves at any two infor-
mation sets of the two players by means of suitableconsistencyandincentiveconditions.
These constraints are valid even when the game has chance moves or more than two play-
ers, but they do not characterize the set of EFCE in those cases (otherwise, Theorem 1.3
would imply P= NP). The constraints do suffice for two-player games without chance
moves, which needs careful reasoning because many subtleties arise; for example, there
may be cycles (of length four or more) in the possible temporal order of information sets,
as Figure 6 demonstrates.

Papadimitriou and Roughgarden (2005) study the computation of CE for various com-
pactly represented games such as certain graphical games, congestion games, and others.
For anonymousgames, they give an explicit, polynomial-sized description of the set of
CE, and (in Papadimitriou and Roughgarden (2008)) a way to sample a pure strategy pro-
file from a CE described in that way, analogous to our Theorem 1.1. (The players in an
anonymous game have equal strategy sets, and a player’s payoff depends only on how
many, but not which, other players choose a particular strategy.)

We consider the problems MAXPAY-CE and MAXPAY-EFCE to see whether the set
of CE or EFCE can be described by a polynomial number of linear constraints. Similar
to our Theorem 1.3, Papadimitriou (2005) and Papadimitriou and Roughgarden (2008)
prove that for many compactly represented games, the problem MAXPAY-CE is NP-hard.
However, their main result (Theorem 3.12 below) states thatoneCE can often be found in
polynomial time, which shows that finding a CE is usually computationally simpler than
payoff maximization. In Section 3.8 we confirm this observation by explicitly constructing
Nash equilibria for the games used in the NP-hardness proofs of Theorems 1.2 and 1.3.
Moreover, as a corollary to the result of Papadimitriou (2005), Proposition 3.13 states that
for any extensive game, an AFCE can be found in polynomial time. This holds because
the agent form, unlike the strategic form, has few strategies per player. The computational
complexity of finding one CE or EFCE for a general extensive game is an open problem.

Chapters 2 and 3 of this paper treat the conceptual and computational aspects of EFCE,
respectively; an overview is given at the beginning of each chapter. Chapter 4 discusses
open problems.
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2 The EFCE concept

This chapter presents the basic properties of the EFCE. In Section 2.1, we define the
solution concept in canonical form. As we explain, this is without loss of generality.
In Section 2.2, we show that an EFCE can always be defined with a correlation device
that generates profiles ofreducedstrategies. Section 2.3 discusses a signaling game with
costless signals, in which an EFCE is “type-revealing” while all CE are nonrevealing. In
Section 2.4, we compare the EFCE with other extensions of the CE, which have been
defined for games with special time or information structures.

2.1 Definition of EFCE

We use the following standard terminology for extensive games. LetN be the finite set of
players. Thegame treeis a finite directed tree, that is, a directed graph with a distinguished
node, theroot, from which there is a unique path to any other node. The non-terminal
decisionnodes of the game tree are partitioned intoinformation sets. Each information
set belongs to exactly one playeri. The set of all information sets of playeri is denoted
by Hi . The set of choices ormovesat an information seth is denoted byCh. Each node in
h has|Ch| outgoing edges, which are labeled with the moves inCh.

We assume each player hasperfect recall, defined as follows. Without loss of gen-
erality, choice setsCh andCk for h 6= k are considered disjoint. Asequenceof moves of
a particular player is a sequence of his moves (ignoring the moves of the other players)
along the path from the root to some node in the game tree. By definition, playeri has
perfect recall if all nodes in an information seth in Hi define the same sequenceσh of
moves for playeri.

The set ofpure strategiesof playeri is

Σi = ∏
h∈Hi

Ch . (1)

The set of allstrategy profilesis
Σ = ∏

i∈N
Σi . (2)

Definition 2.1. A (canonical)correlation deviceis a probability distributionµ on Σ.

A correlation deviceµ makes recommendations to the players by picking a strategy
profile π according to the distributionµ, and privately recommending the componentπi

of π to each playeri for play. It defines a CE if no player can gain by unilaterally deviating
from the recommended strategy, given his posterior on the recommendations to the other
players (see Aumann (1974)). We define an EFCE also by means of a correlation device,
but with a different way of giving recommendations to the players.

Definition 2.2. Given a correlation deviceµ as in Definition 2.1, consider the extended
game in which a chance move first selects a strategy profileπ according toµ. Then,
whenever a playeri reaches an information seth in Hi , he receives the movec ath specified
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in π as a signal, interpreted as a recommendation to playc. An extensive form correlated
equilibrium (EFCE)is a Nash equilibrium of such an extended game in which the players
follow their recommendations.

In an EFCE, the strategy profile selected according to the device defines a movec
for each information seth of each playeri, which is revealed to playeri only when he
reachesh. It is optimal for the player to follow the recommended move, assuming that all
other players follow their recommendations. When a player considers a deviation from a
recommended move, he may choose any moves at his subsequent information sets. This
distinguishes the EFCE from the AFCE, where each move is optimal assuming that the
behavior atall other information sets is fixed (see also Section 2.4).

The above description of an EFCE is incanonical form. That is, the recommendations
to players are moves to be made at information sets and not arbitrary signals. In the same
way as for the CE, this can be assumed without loss of generality (see Forges (1986a)).

2.2 Reduced strategies suffice

In the reduced strategic formof an extensive game, strategies of a player that differ in
moves at information sets which are unreachable due to an own earlier move are identified.
(Defined in this way, the reduced strategic form only depends on the game tree structure
and not on the payoffs.) In our characterization of EFCE in Theorem 1.1, it is not possible
to specify move recommendations for unreachable information sets, so the device can only
generate reduced strategy pairs. As shown in this section, this is no loss of generality.

A reduced strategy can still be considered as a tuple of moves, except that the unspec-
ified move at any unreachable information set is denoted by a new symbol, for example a
star “∗”, which does not belong to any set of movesCh. We denote the set of all reduced
strategies of playeri by Σ∗i , and the set of all reduced strategy profiles by

Σ∗ = ∏
i∈N

Σ∗i . (3)

By construction, the payoffs for a profile of reduced strategies are uniquely given as in the
strategic form. This defines thereduced strategic formof the extensive game.

In Definition 2.1, a correlation device is defined onΣ, that is, using the unreduced
strategic form. We now re-define a correlation device to be a probability distribution on
Σ∗. Any CE that is specified using the unreduced strategic form can be considered as a CE
for the reduced strategic form. This is achieved by defining the probability for a profile
π∗ of reduced strategies as the sum of the probabilities of the unreduced strategy profiles
π thatagreewith π∗ (in the sense that wheneverπ∗ specifies a move other than “∗” at an
information set, thenπ specifies the same move). Because the incentive constraints hold
for the unreduced strategies, and payoffs are identical, appropriate sums of these give rise
to the incentive constraints for the reduced strategies, which therefore hold as well.

Conversely, any CE for the reduced strategic form can be applied to the unreduced
strategic form by arbitrarily defining a move for every unreachable information set (which
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is “∗”, that is, undefined, in the reduced strategy profile), thereby defining a particular
unreduced strategy to be selected by the correlation device.

In the same manner, an EFCE can be defined by assigning probabilities only to re-
duced strategy profiles. This defines an EFCE for unreduced strategy profiles by recom-
mending an arbitrary move at each unreachable information set. Conversely, consider an
EFCE defined using unreduced strategy profiles as in Definition 2.2. Then, just as in the
strategic form, this gives rise to an EFCE for reduced profiles, as follows. In the strategy
profile π generated by the correlation device, any recommendation at an unreachable in-
formation set is replaced by “∗”. Suppose a player deviates from his recommended move
at some information set, and gets a higher payoff by subsequently using moves at pre-
viously unreachable information sets where he only gets the recommendation “∗”. Then
the player could profitably deviate in the same way when getting recommendations of
moves for these information sets as inπ, which he ignores. This contradicts the assumed
equilibrium property.

2.3 Example: A signaling game

Figure 1 shows an example of an extensive game. This is a signaling game as discussed by
Spence (1973), Cho and Kreps (1987), and Gibbons (1992, Section 4.2), but with costless
signals (such games are often referred to as “sender-receiver” games). Player 1, a student,
is with equal probability of a good typeG or bad typeB. He applies for a summer research
job with a professor, player 2. Player 1 sends a costless signalX orY (denoted as moveXG

or YG for the good type, and asXB andYB for the bad type). The professor can distinguish
the signalsX andY but not the type of player 1, as shown by her two information sets.
She can either let the student work with her (lX or lY), which gives the payoff pair(4,10)
for G, and(6,0) for B, or refuse to work with the student (rX or rY), which for either type
gives the payoff pair(0,6).

Y
X

Y

G

2

B

2

chance

1/21/2

0
60610

60 0
60610

6044

G
B

B
XG

1 1

r rl l r rl lX X XX Y Y YY

Figure 1 Signaling game with costless signals (X or Y) for player 1.
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5 5 0 0

5 5 6 6

5 2 3 0

5 8 3 6

5 3 2 0

5 3 8 6

5 0 5 0

5 6 5 6

@
@
1

2

XGXB

XGYB

YGXB

YGYB

lX lY lXrY rX lY rXrY

0 a a′ a′′

0 b b′ b′′

0 c c′ c′′

0 d d′ d′′

Figure 2 Left: Strategic form of the game in Figure 1. Right: Correlated equilibrium
probabilities.

The CE of this game are found as follows. Figure 2 shows the strategic form and
the possible CE probabilitiesa,a′,a′′,b,b′, . . ., where player 2’s strategylX lY is strictly
dominated byrXrY and never played. The incentive constraints for player 1 imply thata≥
a′ (by comparingXGXB with any other row), and similarlyd′ ≥ d. ComparingXGYB with
XGXB (respectively,YGYB) impliesb′ ≥ b (b≥ b′), sob = b′; similarly, c = c′. Intuitively,
this means that player 2 must not give preference to either signal because otherwise the
bad type would switch to that signal. Then the incentive constraints where player 2’s
strategieslXrY andrX lY are compared withrXrY state

5a+8b+3c≥ 6a+6b+6c, 3b+8c+5d′ ≥ 6b+6c+6d′,

which when added give5a+ 11b+ 11c+ 5d′ ≥ 6a+ 12b+ 12c+ 6d′ or 0 ≥ a+ b+
c+ d′ and thusa = b = c = d′ = 0 = a′ = d. Any CE is therefore a Nash equilibrium
where player 1 plays the mixed strategy(a′′,b′′,c′′,d′′) and player 2 playsrXrY. The
remaining incentive constraints fora′′,b′′,c′′,d′′ mean that player 1 must not give player 2
any incentive to accept him (lX or lY) by making the conditional probability forG too high
relative toB when she receives signalX or Y.

However, there is an EFCE with better payoff to both players compared to the outcome
with payoff pair(0,6): A signalXG orYG is chosen with equal probability for typeG, and
player 2 is told to accept when receiving the chosen signal and to refuse when receiving
the other signal (soXG andlXrY are perfectly correlated, as well asYG andrX lY). The bad
typeB is given an arbitrary recommendation which is independent of the recommendation
to typeG. Because the move recommended toG is unknownto B, the bad type cannot
distinguish the two signals and, no matter what he does, will match the signal ofG with
probability1/2. When player 2 receives the signal chosen forG, it is therefore twice as
likely to come fromG rather than fromB, so that her expected payoff20/3 for choosing
l is higher than6 when she choser. When she receives the wrong signal, it comes fromB
with certainty, and then the best reply is certainlyr with payoff 6. The expected payoffs
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in this EFCE are3.5 to player 1 and6.5 to player 2. In a more elaborate game withM
signals instead of just two signals, where the bad type can only guess the correct signal
with probability1/M, the pair of expected payoffs is(2+3/M,8−3/M).

In the terminology of signaling games, any Nash or correlated equilibrium is the de-
scribed “pooling equilibrium” with payoff pair(0,6). This is due to the fact that signals
are costless and therefore uninformative. In contrast, the EFCE concept allows for a “par-
tially revealing” equilibrium, where signals can distinguish the types, which has better
payoffs for both players.

2.4 Relationship to other solution concepts

Our definition of an EFCE generalizes the Nash equilibrium in behavior strategies and
applies to any game in extensive form (with perfect recall). Other extensions of Aumann’s
CE have been proposed in order to take account of the dynamic structure ofspecificclasses
of games, namely Bayesian games and multi-stage games.

In a Bayesian game, every player has a type which can be represented by an informa-
tion set. Players move simultaneously and only once, so that an AFCE is the same as an
EFCE. For Bayesian games, AFCE have been studied by Forges (1986b), Samuelson and
Zhang (1989), Cotter (1994), and Forges (1993, 2006).

In general extensive form games, any EFCE is an AFCE, by giving arbitrary rec-
ommendations at unreachable information sets that in an EFCE are left unspecified (see
Section 2.2). However, the set of AFCE outcomes can be larger than the set of EFCE
outcomes. An easy example is a one-player game where the player moves twice, first
choosing either “Out” and receiving zero, or “In” and then choosing again between “Out”
with payoff zero or “In” with payoff one. If the two agents at the two decision points both
choose “Out”, this defines an AFCE but not an EFCE.

In multi-stage games, the best known extension of the CE is thecommunication equi-
librium introduced by Myerson (1986) and Forges (1986a). This solution concept differs
from the EFCE, because the players can send inputs to the device, which they cannot do
in an EFCE.

Like the communication equilibrium, theautonomous correlated equilibrium(Forges
(1986a)) applies to multistage games. However, the players cannot make any inputs to the
device. They still receive outputs at every stage. In the canonical version of the solution
concept, the output to every player at every stage is a mapping telling him which move to
choose at that stage as a function of his information (i.e., the relevant part of his strategy
for the given stage). However, unlike in an EFCE, the respective signal is known to the
player for the entire stage and not only locally for each information set.1 The set of au-
tonomous correlated equilibrium outcomes is included in the set of EFCE outcomes, and
the inclusion may be strict, as shown in the example of Section 2.3, where an autonomous

1In Forges (1986a, p. 1378), a correlated equilibrium based on an autonomous device is called “extensive
form correlated equilibrium”, but this is now typically referred to as “autonomous correlated equilibrium”.
We suggest now to use “EFCE” in our sense.
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correlated equilibrium is the same as a CE. The inclusion may also be strict for two-player
games without chance moves, which we consider later (see the example in Section 3.3).

Solan (2001) defines the concept of general communication equilibrium forstochastic
games, where the device knows the game state and all past moves. He proves that this
concept is outcome equivalent to the autonomous correlated equilibrium. Because any
autonomous correlated equilibrium outcome is an EFCE outcome, which, by definition,
is a general communication equilibrium outcome, these concepts coincide for stochastic
games.

Kamien, Tauman and Zamir (1990) and Zamir, Kamien and Tauman (1990) study
extensive games with a single initial chance move. The game is modified by introducing
a disinterested additional player (the “maven”) who can reveal any partial information
about the chance move to each player. In some games, the resulting set of payoffs has
some similarity with that obtainable in an EFCE. However, the correlation device used in
an EFCE is weaker than such a maven, for the following reasons: Recommendations are
generated at the beginning of the game. The device does not observe play, and “knows” the
game state only implicitly under the assumption that players observe their recommended
moves. The device cannot make recommendations conditional on game states that have
been determined by a chance move.

Moulin and Vial (1978) proposed a “simple extension” of Aumann’s (1974) corre-
lated equilibrium that is completely different from the ones reviewed above. Like the CE,
their solution concept, which is also referred to ascoarse correlated equilibrium(Young
(2004)), is described by a probability distributionµ on pure strategy profiles and applies
to the strategic form of the game. However, the players do not receive any recommen-
dation on how to play the game: each of them can just choose to either adhere toµ and
get the corresponding correlated expected payoff or to deviate ex ante, by picking some
strategy. The coarse correlated equilibrium conditions express that no player can gain by
unilaterally deviating ex ante. Moulin and Vial’s solution concept assumes in effect some
limited commitment from the players, who let the correlation device play for them at equi-
librium. Every EFCE defines a coarse correlated equilibrium: Namely, given an EFCE,
it is clear that no player can benefit by ignoring the recommendations of the device at
his information sets and deviating unilaterally before the beginning of the extensive form
game.

3 Computational complexity

So far, we have argued that the EFCE is a “natural” concept for games in extensive form.
This chapter deals with computational aspects of the EFCE. The main technical work is
to prove Theorem 1.1, which concerns two-player games without chance moves. In Sec-
tion 3.1, we review the sequence form. This is a compact description ofrealization plans
that specify the probabilities for playing sequences of moves, which can be translated to
behavior strategy probabilities. Section 3.2 describes how to extend the constraints for
realization plans toconsistency constraintsfor joint probabilities of pairs of sequences,
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which define what we call acorrelation plan. Section 3.3 gives an example that illustrates
the use of the consistency constraints.

In general, the consistency constraints apply only to mutuallyrelevantinformation sets
that share a path in the game tree, as explained in Section 3.4. That section also describes
the special structure of information sets in two-player perfect-recall games without chance
moves, and defines the concept of areference sequence, which is used to generate move
recommendations. Based on these technical preliminaries, Section 3.5 shows how to use
the consistency constraints as a compact description of a correlation device as used in an
EFCE. The incentive constraints are described in Section 3.6.

In Section 3.7, we prove, in that order, the hardness results Theorem 1.3 and 1.2.
These hardness results do not apply to the problem of finding one CE, which is the topic
of Section 3.8.

3.1 Review of the sequence form

The sequence form of an extensive game is similar to the reduced strategic form, but uses
sequences of moves of a player instead of reduced strategies. Because playeri has perfect
recall, all nodes in an information seth in Hi define the same sequenceσh of moves for
playeri (see Section 2.1). The sequenceσh leading toh can be extended by an arbitrary
movec in Ch. Hence, any movec at h is the last move of a unique sequenceσhc. This
defines all possible sequences of a player except for the empty sequence/0. The set of
sequences of playeri is denotedSi , so

Si = { /0} ∪ {σhc | h∈ Hi , c∈Ch}.

We will use the sequence form for characterizing EFCE of two-player games (without
chance moves). Then we denote sequences of player 1 byσ and sequences of player 2
by τ, and for readability the sequence leading to an information setk of player 2 byτk.

The sequence form is applied to Nash equilibria as follows (see also von Stengel
(1996), Koller, Megiddo and von Stengel (1996), or von Stengel, van den Elzen and Tal-
man (2002)). Sequences are played randomly according torealization plans. A realization
planx for player 1 is given by nonnegative real numbersx(σ) for σ ∈S1, and a realization
plany for player 2 by nonnegative numbersy(τ) for τ ∈ S2. They denote the realization
probabilities for the sequencesσ andτ when the players use mixed strategies. Realization
plans are characterized by the equations

x( /0) = 1, ∑
c∈Ch

x(σhc) = x(σh) (h∈ H1) ,

y( /0) = 1, ∑
d∈Ck

y(τkd) = y(τk) (k∈ H2) .
(4)

The reason is that equations (4) hold when a player uses a behavior strategy, in particu-
lar a pure strategy, and therefore also for anymixed strategy, because the equations are
preserved when taking convex combinations.
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A realization planx (and analogously,y) fulfilling (4) results from a behavior strategy
of player 1 (respectively, player 2) that chooses movec at an information seth∈ H1 with
probability x(σhc)/x(σh) if x(σh) > 0 and arbitrarily if x(σh) = 0. The probability of
reaching any node of the game tree depends only on the probabilities for the players’
move sequences defined by the path to the node. So, viax, every mixed strategy has a
realization equivalent behavior strategy, as stated by Kuhn (1953). This canonical proof
of Kuhn’s theorem (essentially due to Selten (1975)) works for any number of players.
The behavior ath is unspecified ifx(σh) = 0, which means thath is unreachable due to an
earlier own move. Not specifying the behavior at such information sets is exactly what is
done in the reduced strategic form.

Sequence formpayoffsare defined for profiles of sequences whenever these lead to
a leaf (terminal node) of the game tree, multiplied by the probabilities of chance moves
on the path to the leaf. Here, we consider the special case of two players and no chance
moves, and extend the sequence form to a compact description of the set of EFCE.

The sequence form is much smaller than the reduced strategic form, because a real-
ization plan is described by probabilities for the sequences of the player, whose number
is the number of his moves. In contrast, a mixed strategy is described by probabilities
for all pure strategies of the player, whose number is generally exponential in the size of
the game tree.2 A polynomial number of constraints, namely one equation (4) for each
information set (and nonnegativity), characterizes realization plans. These constraints can
be used to describe Nash equilibria, as explained in the papers on the sequence form cited
above.

3.2 Correlation plans and marginal probabilities

In the following sections, we consider an extensive two-player game with perfect recall
and without chance moves. Then any leaf of the game tree defines a unique pair(σ ,τ) of
sequences of the two players. Leta(σ ,τ) andb(σ ,τ) denote the respective payoffs to the
players at that leaf. Then if the two players use the realization plansx andy, their expected
payoffs are given by the expressions, bilinear inx andy,

∑
σ ,τ

x(σ)y(τ)a(σ ,τ) , ∑
σ ,τ

x(σ)y(τ)b(σ ,τ) , (5)

respectively. The expressions in (5) represent the sums over all leaves of the payoffs
multiplied by the probabilities of reaching the leaves. The sums in (5) may be taken over
all σ ∈ S1 andτ ∈ S2 by assuming thata(σ ,τ) = b(σ ,τ) = 0 whenever the sequence pair
(σ ,τ) does not lead to a leaf. This is useful when using matrix notation, where the payoffs
in the sequence form are entriesa(σ ,τ) andb(σ ,τ) of sparse|S1|× |S2| payoff matrices
andx andy are regarded as vectors.

In order to describe an EFCE, the productx(σ)y(τ) in (5) of the realization probabili-
ties forσ in S1 andτ in S2 will be replaced by a more generaljoint realization probability

2A class of games with exponentially large reduced strategic form is described by von Stengel, van den
Elzen and Talman (2002).
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z(σ ,τ) that the pair of sequences(σ ,τ) is recommended to the two players, for a suit-
able correlation deviceµ, as far as this probability is relevant. These probabilitiesz(σ ,τ)
define what we call acorrelation planfor the game.

As a tentative definition, given in full in Definition 3.8 below, a correlation plan is
a functionz: S1×S2 → R for which there is a probability distributionµ on the set of
reduced strategy profilesΣ∗ such that for each sequence pair(σ ,τ),

z(σ ,τ) = ∑
(p1,p2)∈Σ∗

(p1,p2) agrees with(σ ,τ)

µ(p1, p2). (6)

Here, the reduced pure strategy pair(p1, p2) agrees with(σ ,τ) if p1 chooses all the moves
in σ andp2 chooses all the moves inτ.

In an EFCE, a player gets a move recommendation when reaching an information set.
The move corresponds uniquely to a sequence ending in that move. For player 1, say, the
sequence denotes a row of the|S1|× |S2| correlation plan matrix. From this row, player 1
should have a posterior distribution on the recommendations to player 2. This behavior
of player 2 must be specified not only when player 1 follows a recommendation, but also
when player 1 deviates, so that player 1 can decide if the recommendation given to him
is optimal; see also the example in Section 3.3. The recommendations to player 2 off
the equilibrium path are therefore important, so the collection of recommended moves to
player 2 has to define a reduced strategy. Otherwise, one could simply choose a distribu-
tion on the leaves of the tree (with a correlation plan that is a sparse matrix like the payoff
matrix), and merely recommend to the players the pair of sequences corresponding to the
selected leaf.

Our first approach is therefore to define a correlation planzas a full matrix. Except for
a scalar factor, a column of this matrix should be a realization plan of player 1, and a row
should be a realization plan of player 2. According to (4) (except for the equationsx/0 = 1
andy/0 = 1 that define the scalar factor), this means that for allτ ∈ S2, h∈H1, σ ∈ S1, and
k∈ H2,

∑
c∈Ch

z(σhc,τ) = z(σh,τ), ∑
d∈Ck

z(σ ,τkd) = z(σ ,τk). (7)

Furthermore, the pair( /0, /0) of empty sequences is selected with certainty, and the proba-
bilities are nonnegative, which gives the trivial consistency constraints

z( /0, /0) = 1, z(σ ,τ)≥ 0 (σ ∈ S1,τ ∈ S2). (8)

Clearly, the constraints (7) and (8) hold for the special casez(σ ,τ) = x(σ)y(τ) wherex
andy are realization plans. With properly defined incentive constraints that make it an
EFCE, such a correlation plan of rank one should define a Nash equilibrium. In particular,
if x andy stand for reduced pure strategies, where each sequenceσ or τ is chosen with
probability zero or one, then the probabilitiesz(σ ,τ) = x(σ)y(τ) are also zero or one,
and equations (7) and (8) hold. For anyconvex combinationof pure strategy pairs, as
in an EFCE, (7) and (8) therefore hold as well, so these arenecessaryconditions for a
correlation plan.
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Figure 3 Left: Correlation plan representing the pure strategy pair(XGYB, lX lY). Right:
Distribution on sequence pairs that is “locally” (in each row and column) con-
sistent, but which is not a convex combination of pure strategy pairs.

Figure 3 shows on the left a correlation plan defined in this manner for the game in
Figure 1. Because both players move only once, every non-empty sequence is just a move.
The correlation plan on the left in Figure 3 arises from the pure strategy pair(XGYB, lX lY).

Figure 3 shows on the right a possible assignment of probabilitiesz(σ ,τ) that fulfills
(7) and (8). These probabilities are “locally consistent” in the sense that the marginal prob-
ability of each move is1/2. However, theycannotbe obtained as a convex combination of
pure strategy pairs like the pure strategy pair on the left in Figure 3. Otherwise, one such
pair would have to recommend moveXG to player 1 and movelX to player 2 to account
for the respective entry1/2. In that pure strategy pair, given that player 2 is recommended
movelX, the recommendation to player 1 at the other information set must beYB because
the move combination(XB, lX) has probability zero. Similarly, moveXG requires that
movelY is recommended to player 2. This pure strategy pair is thus(XGYB, lX lY) as in the
left picture of Figure 3, but that pair also selects(YB, lY), which is not possible according
to the right picture. This shows that (7) and (8) do not suffice to characterize the convex
hull of pure strategy profiles. For games with chance moves, Theorem 1.3 shows that this
convex set cannot be characterized by a polynomial number of linear inequalities (unless
P= NP).

However, we will show that the constraints (7) and (8) suffice to characterize correla-
tion plans when the game has only two players and no chance moves.

3.3 Example of generating move recommendations

The left picture in Figure 4 shows a game very similar to Figure 1, except that the ini-
tial chance move is replaced by a move by player 1, as if that player “chose his own
type”. A similar analysis as in Section 2.3 shows that there is only one outcome in a
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strategic-form or autonomous correlated equilibrium, or even communication equilibrium
(see Section 2.4), which is non-revealing.

Figure 4 shows on the right an example of probabilitiesz(σ ,τ) that fulfill (7) and (8).
We demonstrate how to generate a pair of reduced strategies usingz, described in general
in Section 3.5 below. We consider only the generation of moves, and not any incentive
constraints (treated in Section 3.6), which are in fact violated for thisz.
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Figure 4 Left: Game similar to Figure 1 with a move by player 1 instead of chance.
Right: A possible distribution on sequence pairs for this game.

The generation of moves starts at the root of the game tree. The information set
containing the root belongs to player 1 and has the two movesG andB. We consider a
“reference sequence” of the other player, which is hereτ = /0 of player 2 because that
is the sequence of player 2 leading to the root. This reference sequenceτ determines a
column ofzdescribing the probabilities for making a moveG or B. In Figure 4,z(G,τ) =
z(B,τ) = 1/2. Suppose that moveG is chosen. The next information set belongs again
to player 1 with movesXG andYG. The reference sequence is stillτ = /0. The moves of
player 1 correspond to the sequencesGXG andGYG, which have probabilitiesz(GXG,τ) =
z(GYG,τ) = 1/4 in Figure 4. These probabilities have to be divided byz(G,τ) to obtain the
conditional probabilities for generating the moves, which are here both1/2; the respective
general equation is (10) below. Suppose that moveXG is chosen.

The next information set to be considered (because it still precedes any information
set of player 2) is the information set of player 1 with movesXB andYB. However, this
information set is unreachable due to player 1’s earlier moveG. Because it suffices to
generate only a reduced strategy of player 1 as explained in Section 2.2, no move is rec-
ommended at this information set. All information sets of player 1 have been considered,
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so the generated reduced strategy is(G,XG,∗); recall that the moves in that strategy are
recommended to player 1 when he reaches his respective information sets.

The remaining information sets belong to player 2. For the information set with moves
lX andrX, the reference sequence isσ = GXG because these moves have been generated
for player 1 and reach player 2’s information set. This reference sequenceσ determines
a row in Figure 4 wherez(σ , lX) = 1/4 andz(σ , rX) = 0. Normalized by dividing by the
probabilityz(σ , /0) = 1/4 for the incoming sequence/0 of player 2, this meanslX is chosen
with certainty.

The information setk of player 2 with moveslY andrY is interesting because it will not
be reached when player 1 plays his recommended movesG andXG. Nevertheless, a move
atk must be recommended to player 2 because player 1 must be able to decide if choosing
his recommended moveXG is optimal, or ifYG is better. Player 1 can only decide this if he
has a posterior over the moveslY or rY of player 2. The reference sequence for player 2’s
selection is againσ = GXG because its last moveXG is made at the unique information set
of player 1 that still allows to reachk, described in generality in Section 3.5. According to
Figure 4,z(σ , lY) = 1/4 andz(σ , rY) = 0, solY is also chosen with certainty. The reduced
strategy whose moves are recommended to player 2 is therefore(lX, lY).

The four squares at the bottom right of Figure 4 describe a correlation between the
moves at pairs of information sets of player 1 and player 2, with nonzero entries like in
the right picture of Figure 3. However, unlike in that picture, these numbers are not only
“locally” but also “globally” consistent in the sense that they can arise from a distribution
µ on reduced strategy profiles. The reason is that, for example, the moveslY andrY of
player 2 are correlated witheitherXG andYG or XB andYB of player 1, depending on the
first moveG or B of player 1, but not with both move pairs. In contrast, the conflict in
Figure 3 arises becauseG or B is chosen by a chance move.

3.4 Information structure of two-player games without chance moves

In the following sections, we consider only two-player games without chance moves.
Using the condition of perfect recall, we describe structural properties of information sets
in such games. We then define the concepts ofrelevantsequence pairs andreference
sequences, which we use later in Theorem 3.9.

Definition 3.1. Let u andv be two nodes in an extensive game, whereu is on the path
from the root tov. Thenu is called anancestorof v (or earlier thanv), andv is said to be
later thanu. If h andk are information sets (possibly of the same player) withu∈ h and
v∈ k, thenh is said toprecedek, andh andk are calledconnected(sharing a path).

Lemma 3.2. Consider an extensive game with perfect recall.
(a) If h′,h,k are information sets so thath′ andh belong to the same player,h′ precedesh,

andh precedesk, thenh′ precedesk.
(b) Restricted to the information sets of a single player, “precedes” is an irreflexive and

transitive relation.
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Proof. For (a), some nodeu in h is earlier than some nodev in k, and some node inh
has an earlier node inh′, so by perfect recall all nodes ofh have an earlier node inh′,
includingu, which implies thath′ precedesv.

For (b), it is easy to see that no two nodes in an information set share a path in the
tree, so “precedes” is irreflexive, and by (a) it is transitive.

By Lemma 3.2(b), any setH ′ of information sets of a single player is partially ordered.
We call an information seth in H ′ maximalif it is not preceded by any other information
set inH ′.

The following lemma states that for two-player games without chance moves, “pre-
cedes” is antisymmetric even for information sets of different players (which is easily seen
to be false if there are chance moves or a third player).

Lemma 3.3. Consider a two-player extensive game without chance moves and with per-
fect recall. Then for any two information setsh and k, if h precedesk, thenk does not
precedeh.

v’v

h
ku

u’

w

Figure 5 Proof of Lemma 3.3.

Proof. Let h andk be two information sets so thath precedesk, let u be a node inh and
let v be a node ink so that there is a path fromu to v in the tree. Suppose that, contrary
to the claim,k also precedesh, with v′ ∈ k andu′ ∈ h so that there is a path fromv′ to u′.
Let w be the last common ancestor ofu andv′. If w = u (or w = v′), then two nodes
in h (respectively,k) share a path, which is not possible with perfect recall. Otherwise,
Figure 5 shows that perfect recall is violated ifh andk belong to the same player, or else
for the player who moves atw.

For two-player games without chance moves, “precedes” is in general not a transitive
relation on all information sets, and it may even have cycles, as shown by Figure 6.

If σ andσ ′ are sequences of moves of a player, then the sequenceσ is called aprefix
of σ ′ if σ = σ ′ or if σ ′ is obtained fromσ by appending some moves. The following
lemma is illustrated by Figure 7.
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Figure 6 Extensive game of two players with perfect recall where the information sets
h,k,h′,k′ form a cycle with respect to the “precedes” relation.

Lemma 3.4. Consider a two-player perfect-recall extensive game without chance moves,
and let h,h′ ∈ H1 and k ∈ H2 so thath and h′ both precedek but are not connected.
Then there is an information seth′′ in H1 that precedes bothh andh′ with different moves
c,c′ ∈Ch′′ leading toh andh′, respectively, that is,σh has a prefix of the formσh′′c and
σh′ has a prefix of the formσh′′c

′.

Proof. Consider two paths from the root tok that intersecth andh′, respectively. These
paths split at some nodeu becauseh andh′ are not connected (see Figure 7). That is,
from u onwards, the paths follow along different movesc andc′ to h andh′, respectively,
and subsequently reachk. Thenu belongs to an information seth′′ of player 1, because
otherwise player 2 would not have perfect recall. That is,c,c′ ∈Ch′′ so thatc 6= c′ andh′′
precedesh andh′, as claimed.

As considered so far in (6), a correlation planz describes how to correlate moves at
any two information sets of player 1 and player 2. However, it suffices to specify only
correlations of moves at connected information sets where decisions can affect each other
during play. We will specifyz(σ ,τ) only for “relevant” sequence pairs(σ ,τ).

Definition 3.5. Consider a two-player extensive game with perfect recall. The pair(σ ,τ)
in S1×S2 is calledrelevantif σ or τ is the empty sequence, or ifσ = σhc andτ = τkd
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Figure 7 Proof of Lemma 3.4.

for connected information setsh andk, whereh∈ H1, c∈Ch, k∈ H2, d ∈Ck. Otherwise,
(σ ,τ) is calledirrelevant.
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b c b c

h
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Figure 8 Example demonstrating relevant sequence pairs, reference sequences, and the
proof of Theorem 3.9.

Note that in Definition 3.5, theinformation setsare connected where the respective
last move inσ andτ is made. It is not necessary that the sequences themselves share a
path. In the example in Figure 8, player 1 has information setsh andh′, and player 2
hask andk′. The sets of sequences of player 1 and 2 areS1 = { /0,b,c,cb′,cc′} andS2 =
{ /0,d,e,dd′,de′}. The two information setsh′ andk′ are not connected (all others are), so
the sequence pairs(cb′,dd′), (cb′,de′), (cc′,dd′), and(cc′,de′) are irrelevant. We will not
specify probabilitiesz(σ ,τ) for such irrelevant sequence pairs(σ ,τ), because correlating
the moves at the two information setsh′ and k′ would not matter. Moreover, such an
over-specified correlation planz would be hard to translate into a generation of moves.

We do specify correlations of moves at connected information sets, not just of moves
that share a path, because a player may consider deviations from the recommended moves.
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The following lemma shows that it makes sense to restrict the equations (7) to relevant
sequence pairs.

Lemma 3.6. Consider a two-player extensive game without chance moves and with per-
fect recall. Assume that the pair(σ ,τ)∈S1×S2 of sequences is relevant, and thatσ ′ ∈S1

is a prefix ofσ and thatτ ′ ∈ S2 is a prefix ofτ. Then(σ ′,τ ′) is relevant.

Proof. If σ or τ is the empty sequence, then so isσ ′ or τ ′, respectively, and(σ ′,τ ′) is
relevant by definition.

Let σ = σhc and τ = τkd, whereh and k are information sets of player 1 and 2,
respectively. Becauseh andk are connected, assume thath precedesk ; the case thatk
precedesh is symmetric. Ifσ ′ or τ ′ is empty, the claim is trivial, otherwise letσ ′ = σh′c

′
andτ ′ = τk′d

′ for h′ ∈ H1 andk′ ∈ H2.
We first show that(σ ′,τ) is relevant, so leth 6= h′. Thenh′ precedesh, andh′ pre-

cedesk by Lemma 3.2(a).
Similarly, (σ ′,τ ′) is relevant, which only needs to be shown fork′ 6= k: Thenk′ andh′

precedek, with some nodev in k having an earlier nodeu in h′. Because some node ink
has an earlier node ink′, nodev has also an earlier node ink′, which is therefore on the
path from the root tov which also containsu. This shows thatk′ andh′ are connected.

For an inductive generation of recommended moves, we restrict the concept of rele-
vant sequence pairs further. The concept of a “reference sequence” was mentioned in the
example in Section 3.3. A reference sequenceτ of player 2, for example, defines a “col-
umn” of z (like in Figure 4) to select a movec at some information seth of player 1; then
τ is called the reference sequence forσhc. We give the formal definition for both players.

Definition 3.7. Consider a two-player extensive game without chance moves and with
perfect recall, and let(σ ,τ) ∈ S1×S2. Thenτ is called areference sequencefor σ if
σ = σhc and
(a1) τ = /0, or τ = τkd andk precedesh, and
(a2) there is nok′ in H2 with τk′ = τ so thatk′ precedesh.
Correspondingly,σ is called areference sequencefor τ if τ = τkd and
(b1) σ = /0, or σ = σhc andh precedesk, and
(b2) there is noh′ in H1 with σh′ = σ so thath′ precedesk.

If τ is a reference sequence forσhc, then all information sets where player 2 has
made the moves inτ precedeh, according to Definition 3.7(a1), and by (a2),τ cannot be
extended to a longer sequence with that property (because the next move in such a longer
sequence would be at an additional information setk′ with τk′ = τ that precedesh). Note,
however, that ifτ = τkd, the information seth may not be reachable after the moved of
player 2; it is only required that the information setk precedesh.

In Figure 8, any sequence of player 2 has the reference sequence/0 of player 1. For the
sequences of player 1 that end in a move ath, the possible reference sequences aredd′,
de′, or e. For the sequences that end in a move ath′, the reference sequences ared or e.
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3.5 Using the consistency constraints

In this section, we first restrict the definition (6) of correlation plan probabilitiesz(σ ,τ)
to pairs of relevant sequences(σ ,τ). We then show the central result that the constraints
(8) and (7), restricted to relevant sequence pairs, characterize a correlation plan. For that
purpose, any solutionz to these constraints is used to generate, as a random variable, a
pair of reduced pure strategies to be recommended to the two players. The moves in that
reduced strategy pair are generated inductively, assuming moves at preceding informa-
tion sets have already been generated; these moves define each time a suitable reference
sequence for the next generated move.

Definition 3.8. Consider a two-player extensive game without chance moves and with
perfect recall. Acorrelation planis a partial functionz: S1×S2 → R so that there is a
probability distributionµ on the set of reduced strategy profilesΣ∗ so that for each relevant
sequence pair(σ ,τ), the termz(σ ,τ) is defined and fulfills (6).

Theorem 3.9. In a two-player, perfect-recall extensive game without chance moves,z is
a correlation plan if and only if it fulfills(8), and(7) whenever(σhc,τ) and(σ ,τkd) are
relevant, for anyc∈Ch andd ∈Ck. A corresponding probability distributionµ on Σ∗ in
Definition 3.8 is obtained fromz by generating the moves in a reduced pure strategy pair
inductively by an iteration over all information sets.

Proof. As already mentioned, (7) and (8) are necessary conditions for a correlation plan,
because they hold for reduced pure strategy profiles and therefore for any convex combi-
nation of them, as given by a distributionµ on Σ∗.

Consider now a functionz defined onS1×S2 that fulfills (8), and (7) for relevant
sequence pairs. Usingz, a pair(p1, p2) of reduced pure strategies is generated as a random
variable. We will show that the resulting distributionµ on Σ∗ has the correlation planz.

The moves in(p1, p2) are generated one move at a time, taking the already generated
moves into account. For that purpose, we generalize reduced strategies as follows. Define
apartial strategyof playeri as an element of

∏
h∈Hi

(
Ch∪{∗}

)
.

Let the components of a partial strategypi of player i be denoted bypi(h) for h ∈ Hi .
Whenpi(h) = ∗, thenpi(h) is undefined for the information seth, otherwisepi(h) defines
a move ath, that is,pi(h) ∈Ch.

If σ is a sequence of playeri and pi is a partial strategy of playeri, then pi agrees
with σ if pi prescribes all the moves inσ , that is,pi(h) = c for any movec in σ , where
c∈Ch. The information seth is reachable when playingpi if pi agrees withσh. It is easy
to see that a reduced strategy of playeri is a partial strategypi so that for allh in Hi , the
movepi(h) is defined if and only ifpi agrees withσh.

Initially, p1 and p2 are partial strategies that are everywhere undefined, and eventu-
ally both are reduced strategies. In an iteration step, an information seth of player i is
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considered where all information sets (of either player) that precedeh have already been
treated in a previous step. Forh, a movec in Ch is generated randomly, according toz
as described below, providedh is reachable when playingpi . If this is not the case, that
is, if pi does not agree withσh, then pi(h) remains undefined. In that sense, the partial
strategiespi will always bereducedpartial strategies.

The iteration proceeds “top down” (in the direction of play), starting from the root. To
define the iteration step, consider the pair(p1, p2) of reduced partial strategies generated
so far, which is not yet a pair of reduced strategies. Leth be an information set so that
for all information setsk that precedeh, wherek may belong to either playeri, the move
pi(k) is defined, or undefined becausek is unreachable when playingpi .

We claim that such an information seth always exists. Initially, whenp1 and p2 are
everywhere undefined,h is the information set containing the root of the game tree. In
general, letH ′

1 be the set of information sets of player 1 wherep1 is not yet defined, and
which are not unreachable due to an earlier move inp1, and letH ′

2 be the analogous set
for player 2. The setsH ′

1 andH ′
2 are partially ordered by “precedes” (see Lemma 3.2(b)).

Consider a maximal information set inH ′
1. It may be preceded by a information set in

H ′
2 (otherwise we are done) that by Lemma 3.2(a) is maximal inH ′

2, which in turn may
be preceded by another maximal information set inH ′

1, and so on, but we claim that
there cannot be a cycle of such sets. Otherwise, let the cycle begin withh precedingk
andk precedingh′, with h,h′ ∈ H ′

1 andk ∈ H ′
2; the cycle must have length at least four

by Lemma 3.3, becauseh′ cannot precedeh because otherwise it would precedek by
Lemma 3.2(a). Letu ∈ h andv,v′ ∈ k so thatu is earlier thanv, andv′ is earlier than
some node inh′, as in the example in Figure 6. Letw be the last common ancestor of
u andv′. Then (see Figure 6)w must belong to an information set of player 1 because
otherwise player 2 would not have perfect recall. That information set is noth, because
otherwiseh would precedeh′, buth′ is maximal inH ′

1, sow belongs to an information set
where the move underp1 is already specified, or not specified because the information set
is unreachable underp1, but thenh is unreachable as well. According to that move atw,
at least one ofh or h′ is unreachable, contradicting the definition ofH ′

1. So, as claimed,
there is an information seth in H ′

1∪H ′
2 not preceded by any other such set. Assume thath

belongs to player 1; the case for player 2 is analogous. Becauseh is not unreachable when
playing p1 (where the movep1(h) stays undefined),p1 agrees withσh.

The movec = p1(h) will be generated based on a reference sequence forσhc. This
sequence consists of the moves that player 2 makes at the information sets that precedeh
when player 2 plays as inp2. These moves form a sequence because of Lemma 3.4: Let

K = {k∈ H2 | k precedesh andτk agrees withp2}. (9)

We claim that for any two information setsk andk′ in K, one precedes the other. Oth-
erwise, if there arek and k′ in K that are not connected, we obtain a contradiction as
follows: Lemma 3.4 (with the players exchanged) shows thatk andk′ are preceded by
distinct movesd andd′ at an information setk′′ of player 2 that precedesh. Becausek and
k′ were reachable when playingp2, so isk′′, so thatp2(k′′) is defined. However, of the
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two movesd andd′, at most one can be chosen byp2, and so thatp2 cannot agree with
bothτk andτk′ , that is,k andk′ cannot both belong toK. This proves our claim.

If K in (9) is empty, letτ = /0. Otherwise, letk be the unique last (minimal) information
set inK not preceding any other, and letτ = τkd, whered = p2(k). Thenτ is a reference
sequence forσhc for any movec ath by construction ofK.

The pair of partial strategies(p1, p2) generated so far agrees with(σh,τ). Conse-
quently, all moves in(σh,τ) have been generated, and this event has positive probability.
We will show shortly by induction that this probability isz(σh,τ). For the base case of the
induction where(σh,τ) = ( /0, /0), this is true becausez( /0, /0) = 1 by (8).

Given the described reference sequenceτ, the movec at h is generated randomly
according to the probability

β (c,τ) =
z(σhc,τ)
z(σh,τ)

(c∈Ch), (10)

where by inductive assumptionz(σh,τ) > 0. The probabilityβ (c,τ) is well defined when
consideringh in the induction, because it only depends on having generated the moves in
σh (as part ofp1) and inτ (as part ofp2); any other moves inp2 do not matter because they
are not at information sets that precedeh, by the definition ofK in (9). By construction
of τ, the sequence pairs(σh,τ) and(σhc,τ) in (10) are relevant. Moreover, (10) defines a
probability distribution onCh by (7) and (8).

When all information sets have been considered,(p1, p2) is a pair of reduced strate-
gies. The described process of generating moves defines a distributionµ on Σ∗.

For any relevant pair of sequences(σ ,τ), let

µ(σ ,τ) = ∑
(p1,p2)∈Σ∗

(p1,p2) agrees with(σ ,τ)

µ(p1, p2).

In the process described above, a move is generated once for each reachable information
set, soµ(σ ,τ) is the probability that all moves in(σ ,τ) are generated. We want to show
(6), that is,

µ(σ ,τ) = z(σ ,τ), (11)

for all relevant sequence pairs(σ ,τ). If σ or τ is the empty sequence, this imposes no
constraint on the moves of the respective player. Thus, if(σ ,τ) = ( /0, /0), then (11) holds
becausez( /0, /0) = 1 by (8). If at least one of the sequencesσ or τ is not empty, then
according to Definition 3.5 one of the following cases applies:

(a) (σ ,τ) = (σhc, /0), or (σ ,τ) = (σhc,τkd) andk precedesh; or, symmetrically,
(b) (σ ,τ) = ( /0,τkd), or (σ ,τ) = (σhc,τkd) andh precedesk.

Using Definition 3.7 and Lemma 3.6, it is easy to see that (a) and (b) are, respectively,
equivalent to the statements

(a’) τ is the prefix of a reference sequence forσ = σhc,
(b’) σ is the prefix of a reference sequence forτ = τkd.

We prove (11) for case (a’) with a two-part induction; the same reasoning applies to (b’)
by symmetry. The “outer” inductive assumption is that (11) holds for(σ ,τ) = ( /0, /0), and
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for case (a’) withh′ instead ofh for any information seth′ that precedesh, and for case
(b’) for anyk that precedesh.

We prove (11) with a second “inner” induction over the prefixesτ of reference se-
quences forσh as in (a’), where we consider the longest prefixes first. We say that the
prefixτ of a reference sequence forσhc hasdistancen if n is the largest number of moves
d1,d2, . . . ,dn of player 2 so thatτd1d2 · · ·dn is a reference sequence forσhc. We will prove
by induction onn: If τ is the prefix of a reference sequence forσhc of distancen, then
µ(σhc,τ) = z(σhc,τ). Then this shows (11) for case (a’).

If n = 0, the sequenceτ is itself a reference sequence forσhc. That is, movec is
generated according to (10) with probabilityβ (c,τ), so thatµ(σhc,τ) = β (c,τ) ·µ(σh,τ).
The moves inσh andτ are all made at information sets that precedeh, so by the “outer”
inductive hypothesis,µ(σh,τ) = z(σh,τ). Consequently,µ(σhc,τ) = β (c,τ) ·z(σh,τ) =
z(σhc,τ). This proves the base casen = 0 for the “inner” induction.

Suppose thatn> 0and thatτ is the prefix of a reference sequence forσhcof distancen.
As “inner” inductive hypothesis, (11) holds for such sequences for all smaller values ofn.
Becausen> 0, there is an information setk in H2 with τk = τ so thatk precedesh; similar
to the construction ofK in (9), this information setk is seen to be unique with the help of
Lemma 3.4. Then for alld ∈Ck, the sequencesτkd are all prefixes of reference sequences
for σhc of distance less thann, so by the “inner” inductive hypothesis,µ(σhc,τkd) =
z(σhc,τkd). If all the moves inσhc andτk are generated, then exactly one of the moves in
Ck is generated. This implies

µ(σhc,τk) = ∑
d∈Ck

µ(σhc,τkd) = ∑
d∈Ck

z(σhc,τkd) = z(σhc,τk). (12)

This completes the “inner” and thereby also the “outer” induction.
This shows (6) for all relevant sequence pairs(σ ,τ), so thatz is indeed the correlation

plan corresponding toµ .

The example in Figure 8 demonstrates the two-part induction in the preceding proof.
Recall that the sequencesb andc of player 1 have possible reference sequencesdd′, de′,
or e, whereas the sequencescb′ andcc′, which are longer thanc, have possibly shorter
reference sequencesd or e. That is, reference sequences can be “non-monotonic”, in
the sense that later information sets (hereh′, preceded byh) can have shorter reference
sequences. For this reason, one needs the second, “inner” induction step (12) in the pre-
ceding proof, which amounts here to proving thatµ(c,d) = µ(c,dd′)+ µ(c,de′). In this
example, all other cases of (11) involve a reference sequence directly, so that only the base
case of the inner induction is required.

3.6 Incentive constraints

In an EFCE, a player gets a move recommendation when reaching an information set.
This recommendation induces a posterior distribution on the recommendations given to
the other player. For past moves, this induces a certain distribution on where the player
is in the information set. For future moves, it expresses the subsequently expected play.
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Both are represented by the eventual distribution on the leaves of the game tree. The
players want to optimize the expected payoffs which they receive at the leaves, assuming
the other player follows his or her recommendations.

The incentive constraintsin an EFCE express that it is optimal to follow any move
recommendation, under two assumptions about the player’s own behavior: When follow-
ing the recommended move, the player considers his expected payoff when he follows
recommendations in the future. When deviating from the recommended move, the player
optimizes his payoff, given the current knowledge about the other player’s behavior. Any
recommendations given after a deviation are ignored, and are in fact not given, because
an EFCE only generates a pair of reduced strategies: When a player deviates, he sub-
sequently only reaches own information sets that would be unreachable when following
the original move in the strategy, so these later moves are left unspecified in a reduced
strategy.

Assume that a pair of reduced strategies is generated according to a correlation planz
as in Theorem 3.9. Suppose that player 1, say, gets a recommendation for a movec at h
which is the last move of the sequenceσ = σhc. For the sequencesτ of player 2, the row
entriesz(σ ,τ) of the correlation planz define, up to normalization, a realization plan that
describes player 2’s behavior. This is only given where(σ ,τ) is relevant, which suffices
for the decision of player 1 whether to accept the recommendation to play movec.

In order to state the incentive constraints, we first introduce auxiliary variablesu(σ)
for any σ ∈ S1 (and, throughout, analogously for player 2). These denote the expected
payoff contribution ofσ (that is, of all reduced strategies agreeing withσ ) when player 1
follows his recommendations. They are given by

u(σ) = ∑
τ

z(σ ,τ)a(σ ,τ)+ ∑
k∈H1:σk=σ

∑
d∈Ck

u(σkd) . (13)

(All incentive constraints will refer to information setsh,k, l and movesc,d of a single
player.) In (13),a(σ ,τ) is the payoff to player 1 at the leaf that defines the sequence
pair (σ ,τ), which is then obviously a relevant pair; if there is no such leaf,a(σ ,τ) =
0. The first sum in (13) captures the expected payoff contribution whereσ and suitable
sequencesτ of player 2 are defined by leaves. The second, double sum in (13) concerns
the information setsk of player 1 reached byσ . The sum of the payoff contributions
u(σkd) for d ∈Ck is the expected payoff when player 1 follows the recommendation to
choosed atk, given the new posterior information that he obtains there.

Applying (13) inductively, starting with the longest sequences, gives eventually for the
empty sequenceu( /0) = ∑σ ,τ z(σ ,τ)a(σ ,τ). This denotes the overall payoff to player 1
under the correlation planz (and similarly for player 2), which generalizes (5).

Whenσ is not the empty sequence, the payoffu(σ) when player 1 chooses the recom-
mended last movec of σ = σhc must be compared with the possible payoff when player 1
deviates from his recommendation. This is described by an optimization against the be-
havior of player 2 in rowσ of z, by considering the other moves ath, as well as moves at
information setsk that player 1 can reach later on. By optimizing in this way, the payoff
contribution at an information setk of player 1 is denoted byv(k,σ). The parameterσ
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indicates the given row of the correlation planz against which player 1 optimizes. The
optimal payoffv(k,σ) at an information setk of player 1 is the maximum of the payoffs
for the possible moves atk, which may either directly give a payoff when they lead to a
leaf, or are obtained from subsequent optimal payoffs at later information sets. This is
expressed by the following inequalities, for anyk∈H1 with k = h or h precedingk (where
σ = σhc), and all movesd atk:

v(k,σ)≥∑
τ

z(σ ,τ)a(σkd,τ)+ ∑
l∈H1:σl =σkd

v(l ,σ) (d ∈Ck). (14)

The first sum in (14) is well defined, because when(σkd,τ) leads to a leaf, then(σ ,τ)
is relevant becauseσ = σhc andσh is a prefix ofσkd. These incentive constraints are
completed by

v(h,σhc) = u(σhc) (15)

which says that the recommended movec ath is optimal.
As an illustration of the incentive constraints, consider an information seth that pre-

cedes no further information sets of player 1. Then (13), (15) and (14) show that

u(σhc) = ∑
τ

z(σhc,τ)a(σhc,τ)≥∑
τ

z(σhc,τ)a(σhd,τ), (d ∈Ch) (16)

which says that player 1 cannot gain by changing his movec at h to d. This is analogous
to the incentive constraint in a CE that states that player 1, say, cannot gain by changing
from the recommended strategy to some other strategy. In both cases, the posterior on
player 2’s behavior is given by the recommended “row” of the joint distribution, in (16)
given by rowσhc of z.

The number of variablesv(k,σ) is quadratic in the number of sequences of player 1
because they are parameterized by the information setsk and the sequencesσ . The latter
reflect player 1’s current information about the behavior of the other player, which varies
because correlation is allowed. By comparison, this behavior is fixed in aNash equilib-
rium, wherez(σ ,τ) is replaced byy(τ) with a constant realization plany of player 2.
Furthermore, the variablesv(k,σ) are replaced by variablesv(k), one for each informa-
tion setk of player 1. Then the inequalities (14) are exactly those expressing the Nash
equilibrium condition, with certaindualvariablesv(k), normally derived from linear pro-
gramming duality. These dual variables also express, like here, the computation of the
player’s optimal payoff by dynamic programming, as described by von Stengel (1996,
p. 239).

In summary, in a two-player, perfect-recall extensive game without chance moves, a
correlation planz as in Theorem 3.9 that fulfills for both players the incentive constraints
(13), (14), and (15) defines an EFCE. This proves Theorem 1.1.

We conclude with an interesting case of (14), namelyk = h andc= d. This is the opti-
mality condition applied to therecommendedmovec, where the player chooses to follow
the move recommendation now, but henceforth ignores all future recommendations and
the associated Bayesian update about the other player’s behavior. The constraint (14)
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with k = h andc = d states that such an optimization following movec, given the current
knowledge about the other player as represented by the parameterσhc of the variables
v(l ,σhc), will not give higher payoff to the player than when following the recommen-
dation as expressed byu(σhc) in (13). In fact, this constraint can be omitted because it
is implied by the other conditions. Intuitively, this holds because the player cannot gain
anything by ignoring private information. The simple proof of this fact is analogous to the
observation that any CE is a coarse correlated equilibrium as defined by Moulin and Vial
(1978).

3.7 Hardness results

Theorem 1.1 shows that the set of EFCE for two-player games without chance moves has
a compact description, with a polynomial number of linear equations and inequalities. In
this section, we first prove Theorem 1.3. This theorem implies that a compact description
of the set of CE, AFCE or EFCE cannot be expected when chance moves are admitted
(which is already known for Nash equilibria). Otherwise, one could maximize in polyno-
mial time the sum (or any linear function) of the expected payoffs to the players over the
respective set, which would imply P= NP. Chu and Halpern (2001, Theorem 3.1) have
given a very similar NP-hardness proof for finding optimal play in a “possible worlds”
model. They also give a reduction from SAT where player 1 chooses a truth assignment
and player 2 a literal to be made true in a clause, but the chance move picks a literal rather
than a clause, and player 2 has to match the chosen “possible world”.

Proof of Theorem 1.3. We give a reduction from SAT that applies to all four problems. An
instance of SAT is a boolean formulaφ in conjunctive normal form. Ifφ hasn clauses,
the reduction gives an extensive two-player gameΓ(φ) with perfect recall that has size
proportional to the size ofφ , with identical payoffs to the players. The game has a pure
strategy profile (which is a Nash equilibrium) with payoff1 for each player ifφ is sat-
isfiable, and payoff at most1−1/n if φ is not satisfiable; the payoff sum is that payoff
times the number of players (which is higher in the agent form). This applies also to
mixed-strategy Nash equilibria, CE, AFCE, and EFCE, because they are convex combi-
nations of pure strategy profiles. Finding any such equilibrium with maximum payoff sum
is therefore NP-hard.

We constructΓ(φ) as follows; Figure 9 shows an example. When referring to the two
players, we mean the original players in case of the agent form. Player 2 hasn decision
nodes in singleton information sets, which correspond to the clauses ofφ . Player 1 has
as many decision nodes as there are literals (negated or nonnegated variables) inφ , and
the game has twice as many terminal nodes as decision nodes of player 1. Ifφ hasm
variables, then player 1 hasm information sets, where each information set contains the
“literal” nodes that have the same variable. An initial chance move at the root chooses
with probability1/n one of then nodes of player 2. Player 2 is informed about the chance
move and, for each clause chosen, selects one of the literals in the clause, which are nodes
of player 1. Player 1 has two moves at each information set, with a move setting the
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Figure 9 Extensive gameΓ(φ) for the SAT instanceφ = (x)∧ (¬x∨ y)∧ (¬x∨¬y),
which is not satisfiable. Chance chooses a clause (this part, above the dotted
line, is replaced in Figure 10). Player 2 picks a literal within the clause, and
player 1 chooses for each variable the literal to be made true. The payoffs0
and1 are the same for both players.

respective variable to true or false. Both players then receive the same payoff, which is 0
if the literal (chosen by player 2 from the clause) is false and 1 if it is true.

The gameΓ(φ) has a pair of pure strategies for the two players (or a strategy profile
for them+ n players in the agent form) with payoff1 for each player if and only ifφ is
satisfiable. The2m pure strategies of player 1 are the possible truth assignments to the
variables inφ . A satisfying assignment defines a pure strategy for player 1, and player 2
can pick for each clause a literal that makes the clause true, so that both players get their
maximum possible payoff 1. Conversely, ifφ is not satisfiable, then any truth assignment
to the m variables has at least one clause that is false, so that the respective move of
player 2, which is chosen with probability1/n by the chance move, leads to a payoff zero.
The overall expected payoff to each player is then at most1−1/n.

Theorem 1.3 holds also when instead of chance moves, a third player is allowed in the
game. In that case, the chance move is replaced by a move of player 3, who receives the
negative of the identical payoffs to players 1 and 2. Player 3 has then an incentive to ran-
domize, and the maximum payoff sum (which is equal to player 1’s payoff) in equilibrium
is equal to 1 if and only if the SAT formula is satisfiable.
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In the gameΓ(φ) constructed in the proof of Theorem 1.3, both players have an expo-
nential number of pure strategies. If the chance move is replaced by a move of player 2,
then the number of reduced strategies of player 2 equals the number of literals ofφ . How-
ever, the strategic form is still exponential.

Our second result, stated as Theorem 1.2 in the introduction, uses such a construc-
tion to show that even for two-player games without chance moves, it is NP-hard to find
a CE with maximum payoff sum. The constructed game has a first stage given by a
high-stakes zero-sum game with a unique mixed equilibrium that induces player 2 to ran-
domize, which replaces the initial chance move. Goldberg and Papadimitriou (2006) have
introduced this game ofgeneralized matching penniesfor a similar purpose. One can
also use the “generalized rock-scissors-paper game” by von Stengel (2001), with payoffs
( j− i) modn (suitably scaled) forai j in (17) below, but the explicit construction of a Nash
equilibrium in Proposition 3.11 below is more complicated for that game.
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Figure 10 Pre-play of a zero-sum pursuit-evasion game between player 2 and player 1
that induces player 2 to completely mix between her choicesc1, . . . ,cn. After
the dotted line following movein of player 1, the gameΓ′(φ) continues as in
Figure 9.

Proof of Theorem 1.2. The proof is again by reduction from SAT, by constructing a game
Γ′(φ) from a SAT formulaφ ; let φ haven clauses. The game is derived from the extensive
gameΓ(φ) constructed in the proof of Theorem 1.3, but with the initial chance move
replaced by a decision node of player 2 withn moves calledc1, . . . ,cn (see Figure 10).
These moves lead ton decision nodes of player 1 that all belong to a single information
set. At that information set, player 1 hasn+1 moves calledo1, . . . ,on, andin.

Any move combinationc j ,oi for 1≤ i, j ≤ n leads to a separate terminal node with
payoffai j to player 1 and−ai j to player 2, where
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ai j =

{
2−2n if i = j,

2 if i 6= j.
(17)

Then edges for movein of player 1 lead to then “clause” nodes of player 2, with the rest
of the game defined as before. Player 1 has perfect recall because all his later information
sets (for them variables ofφ ) are preceded by the same movein. Player 2 has perfect
information and therefore perfect recall.

If player 1 uses only hisoutside optionso1, . . . ,on, then the game is a zero-sum game
with payoffs ai j as in (17). Player 2 and 1 are here pursuer and evader in a game of
generalized matching pennies (Goldberg and Papadimitriou (2006, Def. 1)), scaled so that
it has value zero, with the uniform mixed strategy as optimal strategy for each player.
If player 2 chooses movec j with probability q < 1/2n, then player 1 can respond with
moveo j and get payoff2−2nq> 1, which is larger than any payoff following movein.
Consequently, in any CE ofΓ′(φ) where a pure strategy involvingin is recommended to
player 1, the conditional probability for each movec1, . . . ,cn of player 2 is at least1/2n
because otherwise player 1 would deviate to one of his outside options.

Consider a CE ofΓ′(φ), and suppose thatφ is not satisfiable. Any recommendation
to the players where player 1 is recommended an outside option contributes payoff sum
zero. When player 1 is told a pure strategy where he playsin, the payoff sum is at most
2−1/n because each clause has probability at least1/2n and at least one of the clauses is
false. So the expected payoff sum is at most2−1/n. If φ is satisfiable, then player 2 can
play c1, . . . ,cn uniformly, player 1 choosesin, andΓ′(φ) has a CE with payoff1 to each
player and payoff sum2, as before. So solving MAXPAY-CE forΓ′(φ) would answer
whetherφ is satisfiable.

The preceding proof does not apply to the EFCE concept, where player 1 is not told
his full strategy. Instead, the following defines an EFCE ofΓ′(φ) with payoff 1 to each
player for any formulaφ : With probability 1/n, choose any of then pure strategy pairs
where player 2 choosesci for 1≤ i ≤ n, and any literal in theith clause ofφ , and player 1
choosesin and a truth assignment that makes this literal true (with arbitary assignments
to the other variables). This is an EFCE because at his first information set, player 1 only
receives the recommendation to playin, which is an optimal move for player 1 because
each of player 2’s movesc1, . . . ,cn has conditional probability1/n.

3.8 Finding one correlated equilibrium

The hardness results in Theorems 1.3 and 1.2 apply only to finding a correlated equilib-
rium with maximum payoff sum. Findingonecorrelated equilibrium is computationally
easier than payoff maximization. To demonstrate this, we first give explicit constructions
of Nash equilibria (which are also CE, AFCE and EFCE) for the gamesΓ(φ) andΓ′(φ)
in the proofs of the above NP-hardness theorems. Then, we apply the central result of
Papadimitriou (2005) to finding one AFCE.

Proposition 3.10. Given aSAT formulaφ , a Nash equilibrium of the gameΓ(φ) in the
proof of Theorem 1.3 can be found in polynomial time.
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Proof. The following straightforward algorithm produces a pure-strategy Nash equilib-
rium of Γ(φ). For initialization, declare all clauses ofφ asactive. Consider the variables
of φ in some arbitrary order. Each variablex occurs among the active clauses (possibly
none) as a positive literalx or negative literal¬x. At the information set ofΓ(φ) for x,
let player 1 choose the truth value forx that satisfies the majority of active clauses (ties
broken arbitrarily), for example false (so that¬x is true) in Figure 9. Then let player 2
choose that literal¬x for each clause in that majority of clauses, and let these clauses
becomeinactive.

After all variables ofφ have been assigned truth values in this way, all remaining
active clauses are unsatisfied. Let player 2 choose an arbitrary literal from each of those
clauses.

This defines a Nash equilibrium ofΓ(φ): Player 2 cannot improve her payoff by
changing any move, and neither can player 1 because at each of his information sets
(variables ofφ ), at least as many moves of player 2 (from the clauses) lead to the high
payoff 1 as to the low payoff0.

Proposition 3.11. Given aSAT formulaφ , a Nash equilibrium of the gameΓ′(φ) in the
proof of Theorem 1.2 can be found in polynomial time.

Proof. We extend the Nash equilibrium ofΓ(φ) given in the proof of Proposition 3.10
with suitable mixed strategies of the initial zero-sum game ofΓ′(φ). Namely, letSbe the
subset of{1, . . . ,n} indicating the satisfied clauses, ands= |S|. Let player 2 choosec j

with probability2/(n+s) if j ∈ Sand with probability1/(n+s) otherwise. Because the
satisfied clauses are thereby given higher weight than the unsatisfied clauses, the moves
of player 1 that choose the truth values as inΓ(φ), now following his movein, are still
optimal (for this we need that player 1 is the evader and player 2 the pursuer in the initial
generalized matching pennies game).

With these probabilities forc1, . . . ,cn, the expected payoff to player 1, according to
(17), is2−4n/(n+ s) when he choosesoi and i ∈ S, and higher, namely2−2n/(n+ s)
when he choosesoi and i 6∈ S, and the same, that is,2s/(n+ s), when he choosesin.
So player 1 can mix betweenoi for the unsatisfied clausesi and in. He choosesoi with
probability1/(3n−s) if i 6∈ S(and zero ifi ∈ S), andin with probability2n/(3n−s). The
expected payoff to player 2 following any initial movec j is then(−2(n−s)+2n)/(3n−s),
that is,2s/(3n−s). (This works for any0≤ s≤ n.)

The following result of Papadimitriou (2005) is of interest for compactly represented
games, where the description of the game is much smaller than its strategic form.

Theorem 3.12 (Papadimitriou (2005)).Consider a gameG in some description so that
the number of players and the number of strategies per player is polynomial in the size of
the description, and so that the expected payoff for any product distribution (mixed strat-
egy profile) can be computed in polynomial time. Then one can compute in polynomial
time a CE ofG that is a convex combination of polynomially many product distributions.

An extensive game can be viewed as a compact representation of its strategic form or
agent form.
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Proposition 3.13.For any extensive game, an AFCE can be found in polynomial time.

Proof. In the agent form of the game, every information seth is represented by a separate
player with the moves ath as his strategies, which are polynomial in number in the size of
the game. The expected payoffs for a product distribution are found in polynomial time
by summing over all leaves of the game tree. Thus, by Theorem 3.12, a CE of the agent
form can be found in polynomial time.

Theorem 3.12 cannot be applied directly to the problem of finding one CE or EFCE
of an extensive game because a player may have exponentially many strategies.

In contrast to finding one CE, the problem MAXPAY-CE is NP-hard for most types of
compactly represented games (see Papadimitriou (2005) and Papadimitriou and Rough-
garden (2008)). These results are similar to our Theorem 1.3.

4 Discussion and open problems

For an extensive game, a CE generalizes a Nash equilibrium in mixed strategies, by al-
lowing for correlations of strategies. An EFCE recommends moves rather than strategies
to the players, so an EFCE can be seen as the correlated counterpart to a Nash equilibrium
in behavior strategies. The EFCE is therefore closer in spirit to the dynamic description
of the game by a tree than the CE. At the same time, the correlation device does not
have additional power in the sense of observing the game state, because it generates its
recommendations at the beginning of the game. In addition, the EFCE concept is compu-
tationally tractable for two-player games without chance moves.

Does the EFCE concept reflect “common knowledge of rationality for extensive games
with Bayesian players”, in analogy to Aumann’s (1987) interpretation for strategic-form
games? This should be confined to a static description of the game. In a dynamic de-
scription, rationality would also mean sequential rationality. Such a concept would lead
to refinements such as subgame perfect or sequential equilibrium. This is not the case
for EFCE which include all Nash equilibria, in particular those that are not sequential.
The reason is that when, say, player 1 considers deviating from a recommended move, he
assumes that player 2 follows her recommendations (which have already been generated),
even if player 2 can conclude that player 1 has deviated. On the other hand, the EFCE
seems easily extendable to subgames and subgame perfection. In further research, one
could investigate refinements of the EFCE in the same way as, for example, Dhillon and
Mertens (1996) and Gerardi (2004, p. 117) did for the CE.

For implementingan EFCE, the recommended moves have to be put into “sealed en-
velopes” which a player can only open when reaching the respective information set. We
assume that the players cannot obtain the information earlier, in the same way as the in-
formation sets themselves describe the rules of the game. “Sealed envelopes” should be
implementable by cryptographic techniques. Dodis, Halevi and Rabin (2000), Urbano and
Vila (2002), and Lepinski et al. (2004) have shown how to use cryptography to replace the
mediator in a CE.
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By Proposition 3.13, the AFCE seems more suitable than the EFCE if one is only
interested in finding one equilibrium. However, the underlying Theorem 3.12 is based on
the ellipsoid algorithm (see Grötschel, Lov́asz and Schrijver (1993)), and not very practi-
cal. The agent form has exponentially many strategy profiles. For a direct comparison of
EFCE and AFCE, is there a compact description of the set of AFCE for two-player games
without chance moves? How difficult is the problem MAXPAY-AFCE for these games?

A related open problem is the complexity of finding one EFCE or CE for a general ex-
tensive game with perfect recall. One possible approach, following Papadimitriou’s proof
of Theorem 3.12, would be to extend the existence proof for CE by Hart and Schmeidler
(1989) or Nau and McCardle (1990) to extensive games, where one would need to find a
suitable compact encoding of strategies.
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