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either perishable or carried over to the next period. In this setting, we propose non-parametric adaptive policies
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known the underlying demand distribution – by at most O(1/
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1. Introduction The problem of inventory control and planning has received much interest from
practitioners and academics from the early years of operations research. The early literature in this
area modeled demand as deterministic and having known quantities, but it soon became apparent that
deterministic modeling was often inadequate, and uncertainty needed to be incorporated in modeling
future demand. As a result, a majority of the papers on inventory theory during the past fifty years employ
stochastic demand models. In these models, future demand is given by a specific exogenous random
variable, and the inventory decisions are made with full knowledge of the future demand distribution. In
many applications, however, the demand distribution is not known a priori. Even when past data have
been collected, the selection of the most appropriate distribution and its parameters remains ambiguous.
In the case when excess demand is lost, the information available to the inventory manager is further
limited since she does not observe the realized demand but only observes the sales quantity (often referred
to as censored demand), which is the smaller of the stocking level and the realized demand. Motivated
by these realistic constraints, we develop a non-parametric approach to stochastic inventory planning in
the presence of lost sales and censored demand.

In our model, time periods are indexed forward by t = 1, . . . , T , and random demands in each period
D1, D2, . . . are independent and identically distributed. We denote by D a generic random variable with
the same common distribution. We develop an adaptive inventory policy φ = (yt | t ≥ 1), where the deci-
sion yt represents the order-up-to level in period t. We allow yt to depend only on the observed historical
sales (or censored demand) during the previous t − 1 periods, neither assuming any prior knowledge of
the underlying demand distribution nor observing any lost sales quantity. We assume that the inventory
decision is made at the beginning of each period and the replenishment lead time is instantaneous. We
consider two separate models in which excess inventory at the end of a period either perishes or is carried
over to the next period.

For any order-up-to level y, let Q(y) denote the expected overage and underage cost in a period,
where the overage cost and the underage cost are linear and the expectation is taken with respect to
the underlying (yet unknown) demand distribution. Had we known the underlying demand distribution,
it is a well-known result that the minimum expected cost corresponds to the newsvendor cost, that is,
miny≥0 Q(y) = Q

(
yNV

)
, where yNV denotes the newsvendor quantity.

To assess the quality of an inventory policy φ = (yt : t ≥ 1), we use the newsvendor cost Q
(
yNV

)
as

the benchmark, and compare it to the average expected cost over time under φ, that is, we consider the
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T -period average expected regret

∆T (φ) = E

[
1
T

T∑
t=1

Q (yt)

]
−Q

(
yNV

)
,

where T ≥ 1. Note that ∆T is nonnegative by the definition of Q
(
yNV

)
. A major result of this paper is

to propose an adaptive inventory policy φ whose average expected cost converges to the newvendor cost
benchmark at the rate of 1/

√
T , that is , ∆T (φ) = O

(
1/
√

T
)
. Our convergence results hold for both

perishable and non-perishable inventory settings. To our knowledge, this represents the first algorithm
with a provable rate of convergence for this problem.

1.1 Algorithm Overview We briefly outline the ideas behind our algorithm for perishable prod-
ucts. The problem described above is difficult to solve optimally because it involves multiple periods; the
current period’s decision affects the censoring of the current demand data, which in turn affects future
inventory decisions. However, the newsvendor benchmark Q

(
yNV

)
corresponds to the minimum of a

single-period convex cost function Q. Given the order-up-to level yt in period t, it turns out that we can
compute an unbiased estimate of a subgradient of Q at yt using only the sales (censored demand) data
at time t. This result enables us to leverage the online convex optimization method for minimizing the
convex function Q, by adjusting the order-up-to level in the next period based on the subgradient of Q
evaluated at the order-up-to level of the current period. Under our proposed algorithm, the sequence of
order-up-to levels (yt : t ≥ 1) is generated as follows: for any t ≥ 1,

yt+1 = P[0,ȳ] (yt − εtHt (yt)) ,

where εt denotes the step size in period t and Ht(yt) denotes an unbiased estimate of the subgradient of
Q at yt, which is computed solely from the sales data in period t. We use the projection operator P[0,ȳ](·)
onto a bounded interval [0, ȳ] where ȳ denotes an upper bound on the newsvendor quantity. (Later in
the paper, we extend the result to the case where the knowledge of ȳ is not available. See Section 3.1
for more details.) By choosing εt = O

(
1/
√

t
)
, we show that the average expected cost converges to the

newsvendor benchmark Q
(
yNV

)
at the rate of O

(
1/
√

T
)

(Theorem 2 in Section 2.2). We also show
how we can obtain better convergence rates of O (log T/T ) by imposing additional assumptions on the
problem (in Section 3.5). Our analysis makes use of recent results in the online convex optimization
literature.

In the case of non-perishable inventory, the major difficulty in applying existing online convex opti-
mization is the dependency of decisions from one period to another; the order-up-to level decision in each
period is constrained by the current on-hand inventory because left-over inventory is carried over to the
next period. Thus, the target order-up-to level computed using the above stochastic gradient descent
method may not be feasible because it may be less than the on-hand inventory. We circumvent this
difficulty by establishing a relationship between the amount of inventory in excess of the target level and
the waiting time process in a GI/D/1 queue. By controlling the step size of the gradient descent method,
we prove that, over T periods, the average expected inventory in excess of our target order-up-to levels
is also at most O

(
1/
√

T
)
. Thus, the average incremental holding cost is at most O

(
1/
√

T
)
, still giving

us the desired convergence result.

1.2 Literature Review and Our Contributions Classical Inventory Theory: The non-
parametric approach taken in this paper contrasts with conventional approaches that exist in the in-
ventory literature. The classical stochastic inventory theory assumes that while the inventory manager
does not know the realization of future demand, she has full access to its distribution when she makes
inventory ordering decisions. The most well-known stochastic inventory problem is the newsvendor prob-
lem, whose objective is to minimize the expected overage and underage costs in a single period. The
optimal solution for this problem corresponds to a fractile – a ratio involving per-unit overage and un-
derage costs – of the underlying demand distribution. Whether excess inventory is perishable or not, the
newsvendor-based base-stock policy is optimal. (See, for example, Karlin and Scarf [21].) In this paper,
unlike the classical stochastic inventory literature, we assume that the manager has no prior information
regarding future demand distributions, and observes only the sales data.

Bayesian Approaches: When the information on the demand distribution is not available, the most
common approach in the literature is the use of Bayesian updates. Under this approach, the inventory
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manager has limited access to demand information; in particular, she knows the family of distributions to
which the underlying demand belongs, but she is uncertain about its parameters. She has an initial prior
belief regarding the uncertainty of the parameter values, and this belief is continually updated based on
historical realized demands by computing posterior distributions. Early papers such as Scarf [36, 35],
Karlin [20] and Iglehart [17] consider cases where the demand distribution belongs to the exponential and
range families. Other papers that incorporate the Bayesian approach into stochastic inventory models
include Murray and Silver [30], Chang and Fyffe [6], and Azoury [2]. Lovejoy [27] shows that a simple
myopic inventory policy based on a critical fractile is optimal or near-optimal. In all of the above references
to Bayesian updates, in contrast to our approach, the manager observes the realized demand, regardless
of whether it is higher or lower than the inventory level.

In many applications, however, excess demand is lost when stock-out occurs, making it impossible
for the manager to observe the realized demand; she observes only the sales (or censored demand)
information. The contrast between demand and sales quantities was pointed out by Conrad [9], who shows
the effect of censoring in estimating the parameter of the Poisson demand distribution. In the Bayesian
literature with unobservable lost sales, demand is assumed to be stationary, and the replenishment lead
time is instantaneous. Excess inventory is either perishable or non-perishable. In the former case of
perishable inventory, the inventory decision in each period is not constrained by the ending inventory
level of the previous period. The main result, here, is that the optimal stocking quantity is higher than
the myopic solution. The intuition behind this result is that by stocking higher, it is more likely that
we can obtain more accurate, uncensored demand information, which is useful for future decisions. This
result is due to Harpaz et al. [14] and Ding et al. [10]. A recent paper by Lu et al. [28] provides an
alternate proof of this result using the first order condition of the optimality equation.

In the latter case of non-perishable inventory, however, the inventory level of a period is constrained
below by the ending inventory of the previous period. Thus, the impact of overstocking may last longer
than a single period, and the above stock-higher result no longer holds. In this case, the optimal
inventory level may be higher or lower than the myopic solution. Lariviere and Porteus [24] study this
case with a particular distribution called the “newsvendor distribution” (Braden and Freimer [4]), and
provide sufficient conditions for the stock-higher result to hold. Using a sample-path argument, Lu et
al. [29] prove that, in general, the stock-higher result does not hold. Chen and Plambeck [7] also consider
the Bayesian learning of product substitution.

In the case where the manager knows the distribution family to which demand belongs, but does
not know either its parameters or its priors, Liyanage and Shanthikumar [26] propose an approach
called operational statistics, which integrates the tasks of parameter estimation and expected profit
optimization. They consider the stationary models with perishable inventory. Subsequently, Chu et
al. [8] show how to find the optimal mapping from data to the decision variable.

All the current literature on unobservable lost sales and censored demand focus primarily on the
Bayesian framework, where the posterior distribution of the demand is updated based on observed sales
data. In the Bayesian approach, it is sometimes difficult to parsimoniously update the prior distribution
as pointed out by Nahmias [31]. Additionally, in many applications, it is unclear which particular prior
distribution one should be using.

We point out subtle but important differences in the formulation of the objective function between
the Bayesian approach and our non-parametric method. In the Bayesian framework, the expected cost in
each period is accounted for using the Bayesian estimate of the demand distribution in that period. This
estimate is computed based on the assumed family of distributions that the underlying demand belongs
to as well as historical observations. In other words, the expected cost in a period depends not on the
underlying demand distribution, but on the manager’s belief of the demand distribution in that period.
(See, for example, Ding et al. [10]). The inventory planning problem under the Bayesian framework can
thus be formulated using a Markov Decision Process whose state at time t corresponds to the posterior
distribution φt of the underlying demand distribution based on observations up to time t. We then have
the following dynamic programming recursion relating the cost-to-go functions Vt’s:

Vt(φt) = inf
yt≥0

{Qφt(yt) + E [Vt+1 (φt+1(φt, yt))]} ,

where the random variable φt+1(φt, yt) corresponds to the posterior distribution of the demand in period
t + 1, which depends on the posterior distribution φt in period t and the order-up-to decision yt. Note
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that the expected cost Qφt
(y) incurred in period t is computed based on the posterior distribution φt of

the demand in period t, representing the manager’s belief about the demand in period t.

In contrast, our method assumes that there exists a unique true underlying demand distribu-
tion (even though the manager does not know it a priori). The expected cost in each period, Q(·),
is always computed with respect to this unique true underlying demand distribution. Our analysis uses
the newsvendor cost Q(yNV ) as the benchmark (corresponding to the minimum expected cost that the
manager would incur had she known the true underlying demand distribution), and examines the rate
at which the average expected cost

∑T
t=1 Q(yt)/T converges to this newsvendor benchmark cost. Our

method does not use any prior distribution.

Non-Parametric Approaches. In this paper, we take a non-parametric approach, where the inventory
manager knows neither the demand distribution nor the distribution family to which the demand belongs.
The manager must make an ordering decision in each period based only on historical sales (censored
demand) data. There is a limited number of non-parametric approaches dealing with censored demand
data. One such approach is based on a variant of a stochastic approximation algorithm that finds the
critical fractile of the demand distribution using censored demand samples. Using this approach, Burnetas
and Smith [5] develop an adaptive algorithm for ordering and pricing when inventory is perishable. They
show that the average profit converges to the optimal, but they do not establish the rate of convergence.
Our algorithms exploit the convexity of the cost function and make use of the gradient information in
each iteration, enabling us to establish the convergence rate and to extend our result to the case of
non-perishable inventory.

Another non-parametric approach that utilizes censored data to estimate the newsvendor cost function
by recognizing its convexity is the Concave, Adaptive Value Estimation (CAVE) algorithm. This algo-
rithm successively approximates the cost function with a sequence of piecewise linear functions. When
inventory is perishable, Godfrey and Powell [13] show that the CAVE algorithm has good numerical per-
formance, but does not prove any convergence result. Powell et al. [33] extend this line of research and
propose a modified algorithm that produces an asymptotically optimal solution. (In both of the above
papers, the speed of convergence was addressed experimentally.)

While these methods mentioned above have been used only for the perishable inventory case, our algo-
rithms apply to both perishable and non-perishable inventories. Furthermore, we provide the convergence
rates of our algorithms in both cases; to our knowledge, our rates of convergence represent the first such
results for these problems.

We mention other non-parametric approaches in the inventory literature. Recently, Levi et al. [25]
study a multi-period inventory system without any knowledge of the demand distribution, when uncen-
sored samples from the demand distributions are available. They compute the sample size required to
achieve a certain level of accuracy with high probability. Also with uncensored demand data, Chang
et al. [?] propose an adaptive algorithm using results from multi-armed bandit problems (see Lai and
Robbins [23] and Auer et al. [1] for more details). Another approach with uncensored demand data is
the bootstrap method, as shown in Bookbinder and Lordahl [3], to estimate the fractile of the demand
distribution. Yet another approach is applicable when the manager has limited access to the demand
distribution (such as mean and standard deviation). The objective is to compute the optimal stocking
quantity that will provide the maximum expected profit against the worst possible demand for that
stocking quantity. See Scarf [34], Jagannathan [18], and Gallego and Moon [12]. Perakis and Roels [32]
present an algorithm for minimizing regrets from not ordering the optimal quantity.

Online Convex Optimization. The analysis of the algorithms developed in this paper is based on
recent developments in computer science. The aim of online convex optimization, as in regular convex
optimization, is to minimize a convex function defined over a convex compact set. However, it is “online”
since the optimizer does not know the objective function at the beginning of the algorithm, and at each
iteration, he chooses a feasible solution based on the information available to him thus far. He incurs
a cost associated with his decision for that period, and obtains some pertinent information regarding
the problem. When this information is the gradient of the objective function at the current solution,
Zinkevich [37] has shown that the average T -period cost converges to the optimal cost at the rate of
O
(
1/
√

T
)
. This result was extended by Flaxman et al. [11] to the case where the optimizer instead

obtains an unbiased estimator of the gradient. Under additional technical assumptions on the shape
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of the convex function, a modified algorithm by Hazan et al. [15] achieves a faster convergence rate of
O (log(T )). The case where the available information is an unbiased estimator of the objective value, not
its derivative, has been studied by Flaxman et al. [11] and Kleinberg [22].

Mathematical Contributions: Our paper offers the following contributions to the mathematical inven-
tory theory.

• Motivated by realistic constraints faced by an inventory manager, we offer non-parametric adap-
tive inventory policies that do not require any prior knowledge of the underlying demand dis-
tribution and make the ordering decision in each period based only on historical sales (censored
demand) data. We also establish the first rate of convergence guarantee for this class of inventory
problems.

• While our proof technique for the perishable inventory case relies on existing results on online
convex optimization, existing analysis however no longer applies if inventory is not perishable;
the order-up-to level decision in each period is constrained by the decisions made in the earlier
periods. In this case, we introduce a new proof technique by establishing a connection between
the application of the stochastic gradient method and the waiting time process in a single server
GI/D/1 queue, whose service time parameter is related to the step size of the gradient descent
method (see Theorem 6 in Section 2.3.2). We believe that this new insight is of independent
interest, and may be applicable to other online optimization problems where the decision in each
period may be constrained by past decisions.

• The existing analysis of online optimization methods requires the compactness of the feasible
set, which, in the inventory model, corresponds to the assumption the manager knows an upper
bound on the optimal order-up-to level (the newsvendor quantity) a priori. In many applications,
however, this information on the upper bound might not be available. We introduce a new
variation of the stochastic gradient descent method that does not require any knowledge of the
upper bound on the optimal order-up-to level (Section 3.1). We show that for any δ > 0, there is
an adaptive algorithm whose average expected cost converges to the newsvendor cost benchmark
at the rate of O

((
1/T 0.5−δ

)
+
(
A1/δ/T

))
, where the constant A is independent of δ (Theorem

7). Our technique is applicable to a general online convex optimization problem in removing the
assumption that the compact feasible set is known a priori.

1.3 Organization This paper is organized as follows. In Section 2, we describe the problem in
detail, and propose an adaptive policy. We establish that the T -period average expected cost of the
policy converges to the newsvendor cost benchmark at a rate of O

(
1/
√

T
)

in both perishable and non-
perishable inventory settings. In Section 3, we consider several generalizations and extensions, including
the case where an upper bound on the newsvendor quantity is not available a priori. We conclude in
Section 4.

2. Adaptive Inventory Control In this section, we develop an adaptive inventory policy and
prove its convergence. We present our problem formulation in Section 2.1, and state the algorithm and
our main result (Theorem 2) in Section 2.2. After establishing a connection between the application of
the stochastic gradient descent method and the waiting time process in a GI/D/1 queue in Section 2.3,
we prove Theorem 2 in Section 2.4.

2.1 Problem Formulation We consider a multi-period inventory system with stationary demand,
where any demand that cannot be satisfied immediately is lost. Excess inventory in each period is either
scrapped entirely (perishable) or carried over to the next period (non-perishable). (In Section 3.3, we
discuss the case of partially perishable inventory – where only a fraction of the inventory is scrapped.)
Both overage and underage costs are linear. Let D1, D2, . . . denote the sequence of nonnegative demand
random variables, where Dt denotes the demand in period t. While the manager knows that the demand is
independent and identically distributed in each period, we assume that she does not know its distribution
a priori. She observes only the sales quantity in each period, corresponding to the minimum of the
demand and the stocking quantity; she does not observe lost sales.

In each period t ≥ 1, we assume that the following sequence of events occur.

(i) At the beginning of each period t, the manager observes the initial on-hand inventory level xt ≥ 0.
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Without loss of generality, we assume that x1 = 0. In the case of perishable inventory, we have
xt = 0 for each t.

(ii) She makes a replenishment decision to order ut ∈ R+ units, incurring the ordering cost of c · ut.
We assume instantaneous replenishment. Let yt = xt + ut denote the inventory level after the
replenishment decision.

(iii) The demand Dt in period t is realized and we denote its realized value by dt. The manager does
not observe dt, instead she observes the sales quantity min{dt, yt}.

(iv) The overage and underage cost associated with this period is h · [yt − dt]+ + b · [dt − yt]+. While
the manager does not observe the quantity of lost sales, we assume that she incurs the goodwill
loss of b per unit. The inventory at the beginning of the next period is given by xt+1 = 0 in the
perishable case, and xt+1 = [yt − dt]+ in the non-perishable case.

Note that our cost-minimization formulation is equivalent to the following profit-maximization version.
Let c̄ be the purchase cost and let p̄ be the selling price per unit, where p̄ ≥ c̄ ≥ 0. Let h̄ be the per-unit
holding cost in the case of excess inventory, and let b̄ be the goodwill lost in the case of unsatisfied
demand. Then, the T -period profit is

T∑
t=1

(
c̄ · ut + p̄ ·min{dt, yt} − h̄ · [yt − dt]+ − b̄ · [dt − yt]+

)
.

Since ut = yt − xt and xt = yt−1 −min{dt−1, yt−1}, it equals

c̄ · (xT+1 − x1) + (p̄− c̄) ·
T∑

t=1

dt −
T∑

t=1

(
h̄ · [yt − dt]+ + (b̄ + p̄− c̄) · [dt − yt]+

)
.

Under any reasonably policy, the first term is finite, and does not affect the long-run average cost. The
second term is a constant independent of the decisions. The third term represents the overage and
underage cost, where h = h̄ and b = b̄+ p̄− c̄. Thus, in this paper, we suppose c = 0, and under the long-
run average cost criterion, this assumption is without loss of any generality by appropriately modifying
h and b parameters. Interested readers are referred to Veinott and Wagner [?] and Janakiraman and
Muckstadt [19] for more details.

For any y ≥ 0, let Q(y) denote the expected one-period cost when the inventory level is y, where

Q(y) = h · E[y −D]+ + b · E[D − y]+ , (1)

where D denotes the demand random variable, having the same distributions as D1, D2, . . .. This single-
period cost function is also known as the newsvendor cost function. It is well-known that Q(·) is convex
since its left-derivative is

lim
ε↓0

Q(y + ε)−Q(y)
ε

= h · P [y ≥ D]− b · P [y < D] , (2)

and that Q achieves its minimum at the newsvendor quantity given by

yNV = inf {y ≥ 0 | F (y) ≥ b/(b + h)} ,

where F denotes the distribution function of the demand D. (See, for example, Zipkin [?] or Porteus [?].)

Since the manager does not know the demand distribution, she does not know the function Q. In
both perishable and non-perishable inventory settings, we aim to find a sequence of inventory levels
(yt : t ≥ 1) whose average expected cost E

[
1
T

∑T
t=1 Q(yt)

]
converges to the newsvendor cost Q

(
yNV

)
.

We require that the inventory level yt depends only on the sales quantities observed by the manager during
the previous t− 1 periods.

In the classical inventory model where the manager knows the demand distribution, the stationarity of
demand implies that a myopic solution is optimal. Thus, the stationary multi-period inventory model is
analytically equivalent to the single-period newsvendor model, and ordering up to yNV in each period is
also optimal for this problem; in such case, the expected cost incurred in each period is Q

(
yNV

)
. Under

this myopic policy, the constraint yt+1 ≥ [yt − dt]+ never becomes binding. However, when the demand
distribution is unknown, the manager makes a decision based on the collection of observed sales quantities,
and as a result, the order-up-to levels may change. Thus, in the case of non-perishable inventory, her
decision in each period may be tightly constrained by the carry-over inventory from the previous period.
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2.2 AIM Algorithm In this section, we define the Adaptive Inventory Management (AIM) algo-
rithm that generates an asymptotically optimal sequence of inventory levels. To facilitate our discussion
and analysis, let us introduce the following assumption that will be used throughout Section 2.

Assumption 1 The manager knows an upper bound ȳ on the newsvendor quantity yNV , that is, yNV ≤
ȳ. Furthermore, in the non-perishable inventory case, she also knows a lower bound ρ > 0 on the expected
demand, that is, 0 < ρ < E[D1].

The above assumption is introduced primarily to simplify the description and analysis of our AIM
algorithm. We emphasize that even when the above assumption fails, we can still develop variations of the
AIM algorithm that yield an asymptotically optimal sequence of inventory levels with similar convergence
rates. These variations and extensions are considered in Sections 3.1 and 3.2.

The AIM algorithm maintains a pair of sequences (ŷt : t ≥ 1) and (yt : t ≥ 1). The auxiliary sequence
(ŷt : t ≥ 1) represents the target inventory levels while the second sequence (yt : t ≥ 1) represents the
actual implemented inventory levels after ordering, with yt ≥ ŷt for all t. The two sequences are recursively
defined as follows. Set y1 = ŷ1 to any value in [0, ȳ]. For t ≥ 1, let

ŷt+1 = P[0,ȳ] (ŷt − εtHt(ŷt)) and (3)
yt+1 = max {ŷt+1, xt+1} ,

where the function P[0,ȳ] (·) denotes the projection operator onto the set [0, ȳ], mapping any point z to
its closest point in the interval [0, ȳ], i.e., P[0,ȳ](z) = max{min{z, ȳ}, 0}. The step size εt is given by

εt =
γȳ

max{b, h}
√

t
for some γ > 0 , (4)

and the random variable Ht (ŷt) is defined as

Ht(ŷt) =
{

h, if Dt < ŷt ,
−b, if Dt ≥ ŷt .

(5)

Use of Historical Sales Data in the AIM Algorithm: We emphasize that the random variable
Ht (ŷt) appearing in the update equation for the AIM algorithm (see Equation (3)) can be computed
based on the sales (censored demand) data observed by the manager in period t. In the perishable
inventory case where ŷt = yt, the event Dt ≥ ŷt corresponds to zero ending inventory (that is, sales equal
inventory), and the event Dt < ŷt corresponds to strictly positive ending inventory. These events are
observable by the manager, who sees the inventory level and the sales quantity in each period. In the
non-perishable inventory case where yt ≥ ŷt, the event Dt ≥ ŷt is equivalent to the case where the ending
inventory in period t is at most yt− ŷt; thus, this event is also observable. In both cases, we can compute
Ht (ŷt) based on the observed sales quantity and inventory level yt in period t.

The main result of this section is given in Theorem 2, which states that the expected running average
cost of the AIM algorithm converges to the newsvendor benchmark cost Q

(
yNV

)
at the rate of O(1/

√
T ).

The proof of Theorem 2 appears in Section 2.4. Furthermore, we provide an example in Section 2.5
showing the convergence rate of Θ(1/

√
T ).

Theorem 2 Under Assumption 1, the sequence of order-up-to levels (yt : t ≥ 1) generated by the AIM
algorithm has the following properties.

• Perishable Inventory Case: For any T ≥ 1,

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) ≤

(
γ +

1
γ

)
ȳ max{b, h}√

T
.

• Non-Perishable Inventory Case: Suppose E[D6
1] < ∞ and γ ≤ (ρ max{b, h}) /(hȳ). There is a

constant C such that for any T ≥ 1,

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) ≤ C√

T
.
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The explicit formula for the constant C above is given in the proof of Theorem 2 in Section 2.4
(Equation 9). According to Theorem 2, when excess inventory is perishable, the average expected cost
under the AIM algorithm converges to the newsvendor benchmark for any choice of the scaling parameter
γ used in the definition of the step size. The algorithm and performance analysis use the knowledge of
ȳ, but not ρ. When excess inventory is non-perishable, however, the AIM algorithm uses both ȳ and ρ,
requiring the scaling parameter γ be sufficiently small relative to ρ. As we mentioned earlier, we will
generalize the AIM algorithm to the settings when ȳ and ρ are not known a priori later in Section 3.1
and 3.2.

2.3 Preliminaries In this section, we present and prove properties of online convex programming
(Section 2.3.1) and establish a connection between the gradient descent method and a queueing process
(Section 2.3.2). We use these results in the proof of Theorem 2.

2.3.1 Online Convex Programming In an online convex optimization problem, the objective
function is not known a priori, and an iterative selection of a feasible solution yields some pertinent
information. When this information is the exact gradient at each step, Zinkevich [37] has proposed the
first asymptotically optimal algorithm, where the expected running average converges to the optimal at
the rate of O(1/

√
t). This algorithm is extended to the case of the stochastic gradient by Flaxman et

al. [11]. Lemma 3 below is a minor adaption of this result to the case where the objective function may
not be differentiable, and this lemma is used to establish Theorem 2. The proof of Lemma 3 appears
in Appendix A, and it will be modified later in Section 3.1 to address a case where the domain of the
function may not be bounded.

Let S be a compact and convex set in Rn. We denote by diam(S) the diameter of S, i.e.,

diam(S) = max {‖u− v‖ | u, v ∈ S} ,

where ‖·‖ denotes the standard Euclidean norm. Let PS : Rn → S denote the projection operator onto
the set S. For any real-valued convex function Φ : S → R defined on S, let 5Φ(z) denote the set of
subgradients of Φ at z ∈ S.

Lemma 3 Let Φ : S → R be a convex function defined on a compact convex set S ∈ Rn. For any z ∈ S,
let g(z) be any subgradient of Φ at z, i.e., g(z) ∈ 5Φ(z). For any z ∈ S, let H(z) be an n-dimensional
random vector defined on S such that E [H(z) | z] = g(z). Suppose that there exists B̄ such ‖H(z)‖ ≤ B̄
with probability one for all z ∈ S. Let w1 be any point in S. For any t ≥ 1, recursively define

wt+1 = PS (wt − εtH(wt)) ,

where εt = γ diam(S)/
{
B̄
√

t
}

for some γ > 0. Then, for all T ≥ 1,

E

[
1
T

T∑
t=1

Φ(wt)

]
− Φ(w∗) ≤

(
γ +

1
γ

)(
diam(S) B̄√

T

)
where w∗ = arg minw∈S Φ(w).

2.3.2 Connection Between the Stochastic Gradient Descent Method and the Waiting
Time Process in a GI/D/1 Queue A GI/D/1 queue denotes a single server queue with general
identical and independently distributed (IID) inter-arrival times and deterministic service times. For
any θ > 0, consider the stochastic process (Wt(θ) | t ≥ 0) defined by the following Lindley’s equation:
W0(θ) = 0 and

Wt+1(θ) = [Wt(θ) + θ −Dt]
+

, (6)

where D1, D2, . . . are independent and identically distributed demand random variables. For any i ≥ 1,
define a random variable τi(θ) by τi(θ) = inf {t > τi−1(θ) | Wt(θ) = 0}, where τ0(θ) = 0. Let Ji(θ) =
{s | τi−1(θ) < s ≤ τi(θ)}. The random variable Wt(θ) can be interpreted as the waiting time of the
tth customer in the GI/D/1 queuing system, where the inter-arrival time between the tth and t + 1th

customers is distributed as Dt, and the service time is deterministically θ. Then, |Ji(θ)| corresponds to
the length of the ith busy period. Proposition 4 below establishes an upper bound on the second moment
of |Ji(θ)| for any θ > 0. The proof is based on the Markov’s Inequality and the Hoeffding Inequality, and
is given in Appendix B.
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Proposition 4 Suppose 0 < θ < E [D1].

(i) If E
[
D6

1

]
< ∞, then E

[
|J1(θ)|2

]
≤ 7π2E

[
(D1 − E[D1])

6
]/

(E [D1]− θ)6.

(ii) If there exists D̄ > 0 such that D1 ≤ D̄ with probability one, then E
[
|J1(θ)|2

]
≤ 2α

/
(1 − α)2,

where α = exp
{
−2 · (E [D1]− θ)2

/
D̄2
}
.

Note that the condition E
[
D6

1

]
< ∞ is satisfied for a large class of demand distributions, including

Gaussian, Poisson, Geometric, Negative Binomial, light-tail distributions, and any distribution with a
finite support.

For any θ > 0, we define an auxiliary stochastic process (Zt(θ) | t ≥ 0) where

Zt+1(θ) =
[
Zt(θ) +

θ√
t
−Dt

]+
, (7)

and Z0(θ) = 0. The process (Zt(θ) | t ≥ 0) is closely related to the original waiting time process
(Wt(θ) | t ≥ 0) as shown in the following lemma.

Lemma 5 For any θ > 0 and T ≥ 1, E
[∑T

t=1 Zt(θ)
]
≤ 2θE

[
|J1(θ)|2

]√
T .

The main idea behind the proof of Lemma 5 is to circumvent the difficulty of working with the non-
stationary Zt process by using the process Wt given in (6), which is stationary and dominates the original
process along each sample path. The proof of Lemma 5 appears in Appendix C.

The main result of this section is stated in the following theorem, which shows the connection between
the inventory yt− ŷt in excess of our target level ŷt under the stochastic gradient descent method and the
waiting time of the tth customer in the queueing process Zt (ρ). Our proof approach is novel to the best of
our knowledge, and it is instrumental in upper-bounding the impact of the period-to-period dependency
of the ordering decisions (in the non-perishable inventory setting).

Theorem 6 Under Assumption 1, suppose that excess inventory is non-perishable. If γ ≤
(ρ max{b, h}) /(hȳ) holds, then for any t, yt − ŷt ≤ Zt (ρ) with probability one.

Proof. The difference yt − ŷt is always nonnegative by our definition. We claim that it satisfies the
following recursive relation: for any t ≥ 1,

yt+1 − ŷt+1 ≤ [(yt − ŷt) + hεt − dt]+ ,

where dt denotes the realized demand in period t. If xt+1 ≤ ŷt+1, then by definition of the AIM algorithm,
we have yt+1 − ŷt+1 = 0, and the above claim holds. Otherwise, we have xt+1 > ŷt+1, in which case
yt+1 = xt+1 = yt−dt holds. Since the AIM algorithm starting at x1 = 0 does not let any target inventory
level ŷt exceed ȳ, we have that ȳ ≥ xt+1 > ŷt+1, which implies that

yt+1 − ŷt+1 = yt+1 − P[0,ȳ] (ŷt − εtHt(yt)) ≤ yt+1 − (ŷt − εtHt(yt)) ,

where the last inequality follows from the fact that ŷt+1 < ȳ, and thus, ŷt − εtHt(yt) ≤
P[0,ȳ] (ŷt − εtHt(yt)). From yt+1 = yt − dt, it follows

yt+1 − ŷt+1 ≤ yt − ŷt + εtHt(yt)− dt ≤ yt − ŷt + hεt − dt ,

where the last inequality follows from the fact that Ht(yt) ≤ h. Thus, we prove the claim.

Now, consider the stochastic process (Zt(ρ) | t ≥ 1) defined in Equation (7) by

Zt+1(ρ) =
[
Zt(ρ) +

ρ√
t
−Dt

]+
,

where Z1(ρ) = 0. Since γ ≤ (ρ max{b, h}) /(hȳ), it follows from the definition of εt (Equation (4)) that
for any t ≥ 1,

hεt =
hγȳ

max{b, h}
√

t
≤ ρ√

t
.

Since yt+1− ŷt+1 ≤ [(yt − ŷt)+hεt − dt]+ for all t from the above claim and y1− ŷ1 = 0, it follows, from
the recursive definition of Zt process, that yt − ŷt ≤ Zt(ρ) holds with probability one. �
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2.4 Proof of the Rate of Convergence for the AIM Algorithm (Theorem 2) In this section,
we prove Theorem 2 for both the perishable and non-perishable inventory settings simultaneously. The
proof relies on the results established in Section 2.3. We express

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) = Λ1(T ) + Λ2(T ) ,

where

Λ1(T ) = E

[
1
T

T∑
t=1

Q(ŷt)

]
−Q(yNV ) and Λ2(T ) = E

[
1
T

T∑
t=1

Q(yt)−Q(ŷt)

]
. (8)

We will first show that

Λ1(T ) ≤
(

γ +
1
γ

)
ȳ max{b, h}√

T
.

This result follows from the fact that the expected single-period cost Q, given in Equation (1), is convex,
and has a left-derivative given by h · P {D1 < y}− b · P {D1 ≥ y}. It follows from the definition of Ht(ŷt)
(see Equation (5)) that E

[
Ht (ŷt)

∣∣ŷt

]
is an unbiased estimate of the left-derivative of Q. Moreover, it

is easy to verify that |H(·)| ≤ max{b, h}. Let S = [0, ȳ] and B̄ = max{b, h}. The desired result follows
directly from Lemma 3.

In the perishable inventory case, we have ŷt = yt, which implies that Λ2(T ) = 0. Thus, the result of
Theorem 2 for perishable inventory follows directly from the bound on Λ1(T ). For the remainder of this
section, we focus on the non-perishable case. Since yt = max{ŷt, xt} for each t, it follows

Q(yt)−Q(ŷt) = h · E[yt −Dt]+ + b · E[Dt − yt]+ − h · E[ŷt −Dt]+ − b · E[Dt − ŷt]+

= h · E[yt −max{ŷt, Dt}]+ − b · E[min{y, Dt} − ŷt]+

≤ h · (yt − ŷt) .

It follows from Theorem 6 that yt − ŷt ≤ Zt(ρ) with probability one, and therefore, for any T ≥ 1,

Λ2(T ) = E

[
1
T

T∑
t=1

Q(yt)−Q(ŷt)

]
≤ h · E

[
1
T

T∑
t=1

(yt − ŷt)

]

≤ h · E

[
1
T

T∑
t=1

Zt(ρ)

]
≤ 2hρE[|J1(ρ)|2]√

T
,

where the last inequality follows from Lemma 5. To complete the proof, note that if E
[
D6

1

]
< ∞, it

follows from Proposition 4 that

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) = Λ1(T ) + Λ2(T )

≤
(

γ +
1
γ

)
ȳ max{b, h}√

T
+

2hρE
[
|J1(ρ)|2

]
√

T
≤ C√

T
,

where

C =
(

γ +
1
γ

)
ȳ max{b, h}+

14π2hρE[(D1 − E[D1])6]
(E[D1]− ρ)6

, (9)

completing the proof of the theorem.

2.5 Example: Θ(1/
√

T ) Convergence Rate for Theorem 2 In Theorem 2, we have shown
that the expected running average cost of the AIM algorithm converges to the newsvendor benchmark at
the rate of O(1/

√
T ). In this section, we show by example that this rate can indeed be Θ(1/

√
T ). Hazan

et al. [15] have established such a lower bound on the convergence rate in an adversarial setting, but not
for the stochastic non-adversarial setting.

Suppose that each Dt assumes 0, 1 or 2 with the equal probability. Let b = h = 1. Then,

Q(y) =
{

1− y/3 for y ∈ [0, 1]
1/3 + y/3 for y ∈ [1, 2] ,
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which is minimized at yNV = 1 with Q(yNV ) = 2/3. We consider the perishable inventory only. Then,

yt+1 =
{

yt − 2γ/
√

t if Dt < yt

yt + 2γ/
√

t if Dt ≥ yt.

Observe that yt ≥ 1 implies P [yt+1 ≥ 1 + 2γ/
√

t] ≥ 1/3, and that yt ≤ 1 implies P [yt+1 ≤ 1− 2γ/
√

t] ≥
1/3. Thus,

E[Q(yt+1)]−Q(yNV ) ≥ P
[
yt+1 ≥ 1 + 2γ/

√
t or yt+1 ≤ 1− 2γ/

√
t
]
· 2γ

3
· 1√

t
≥ 2γ

9
· 1√

t
,

implying that
∑T

t=1 E[Q(yt)]/T−Q(yNV ) = Ω(1/
√

T ). Combining this result with Theorem 2, we obtain
that

∑T
t=1 E[Q(yt)]/T −Q(yNV ) = Θ(1/

√
T ).

3. Generalizations and Remarks on the AIM Algorithm In the previous section, we describe
and analyze the AIM algorithm under the assumption that the manager has prior knowledge on the
upper bound ȳ of the newsvendor quantity yNV and she knows a lower bound ρ on the expected demand
(Assumption 1). We develop generalizations of the AIM algorithm that remain asymptotically optimal
with similar convergence rates even when these assumptions fail. In Section 3.1 and 3.2, we discuss the
case when the manager does not have prior knowledge of ȳ and ρ, respectively. Then, in Section 3.3,
we show that the original AIM algorithm from Section 2 continues to work even when only a fraction
of excess inventory perishes. Section 3.4 considers the case of discrete demand and discrete ordering
quantities. In Section 3.5, we discuss how to improve the convergence rate to O (log(T )/T ) under a minor
technical condition.

3.1 Without Prior Knowledge of ȳ The description of the AIM algorithm in Section 2 depends on
ȳ, an upper bound on the newsvendor stocking quantity yNV . In this section, we consider the case when ȳ
is not known a priori. We will show that for any δ > 0, there is a modified AIM algorithm whose average
expected cost converges to the newsvendor cost benchmark at the rate of O

((
1/T 0.5−δ

)
+
(
A1/δ/T

))
,

where the constant A is independent of δ. Thus, even when ȳ is not known a priori, we can still obtain
an asymptotically optimal sequence of order-up-to levels with a convergence rate that is comparable to
the case when the upper bound is known in advance. For ease of exposition, we focus on the perishable
inventory case only; a similar result can be shown for the non-perishable case as well.

Let δ > 0 be given. The modified AIM algorithm generates a sequence of order-up-to levels
(
ŷδ

t : t ≥ 1
)

whose definition is similar to the original AIM algorithm described in Section 2.2, with the changes listed
below. The key idea is to iteratively expand the domain of the projection operator in order to achieve a
target convergence rate.

Highlights of the modified AIM algorithm:

• Redefine the step size εt in Equation (4) so that it does not depend on ȳ, i.e., for any t ≥ 1,

εt =
1

max{b, h} ·
√

t
.

• Modify the updating of order-up-to levels in Equation (3) so that the projection operation does
not depend on ȳ. We define

ŷδ
t+1 = P[0,tδ/2]

(
ŷδ

t − εtHt(ŷδ
t )
)

.

Note that the range of the projection operation
[
0, tδ/2

]
increases with t and depends on the param-

eter δ. Theorem 7 shows that the modified AIM algorithm has a T -period average expected regret of
O
((

1/T 0.5−δ
)

+
(
A1/δ/T

))
.

Theorem 7 Consider the perishable inventory case. Suppose the manager does not know any upper
bound on yNV a priori. For any δ ∈ (0, 1/2), the sequence of order-up-to levels

(
ŷδ

t : t ≥ 1
)

generated by
the modified AIM algorithm has the following property: for any T ≥ 1,

E

[
1
T

T∑
t=1

Q
(
ŷδ

t

)]
−Q

(
yNV

)
≤ max{b, h} ·

 1
T 0.5−δ

+
1

T 0.5
+

(
yNV

)1+ 2
δ

T

 .
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Proof. Let δ > 0 be given and let B̄ = max{b, h}. For any t ≥ 1, let αt = tδ/2, and let y∗t be the
minimizer of Q in the restricted domain [0, αt], i.e., y∗t = min{yNV , αt}. Then, for any T ≥ 1,

E

[
T∑

t=1

Q(ŷδ
t )−Q(yNV )

]
= E

 ∑
t<(yNV )2/δ

{
Q(ŷδ

t )−Q(yNV )
} + E

 ∑
t≥(yNV )2/δ

{
Q(ŷδ

t )−Q(yNV )
} .

To establish the result of Theorem 7, it suffices to prove the following two inequalities.

E

 ∑
t<(yNV )2/δ

{
Q(ŷδ

t )−Q(yNV )
} ≤ B̄

(
yNV

)1+ 2
δ , and (10)

E

 ∑
t≥(yNV )2/δ

{
Q(ŷδ

t )−Q(yNV )
} ≤ B̄ · T 0.5+δ + B̄ · T 0.5 . (11)

To establish the inequality in Equation (10), note that t < (yNV )2/δ implies αt = tδ/2 < yNV . Since
ŷδ

t ∈ [0, αt], it follows 0 ≤ yNV − ŷδ
t < yNV . Thus, Q(ŷδ

t )−Q(yNV ) is bounded above by B̄ · yNV . Thus,
the left-hand-side of (10) is bounded above by B̄ · yNV multiplied by (yNV )2/δ, obtaining the bound in
the right-side of (10).

Now we prove the inequality in Equation (11). Let t◦ = d(yNV )2/δe. Observe that most of the
arguments in the proofs of Lemma 3 remain valid in this case. In particular, Equation (15) in the proof
of Lemma 3 in Appendix A holds. Thus,

T∑
t=t◦

E
[
Q(ŷδ

t )−Q(y∗t )
]

≤
T∑

t=t◦

{
E
∥∥ŷδ

t − y∗t
∥∥2

2εt
−

E
∥∥ŷδ

t+1 − y∗t
∥∥2

2εt
+

εt

2
E
∥∥H(ŷδ

t )
∥∥2

}

≤
T∑

t=t◦

{
E
∥∥ŷδ

t − yNV
∥∥2

2εt
−

E
∥∥ŷδ

t+1 − yNV
∥∥2

2εt

}
+

B̄2

2
·

T∑
t=t◦

εt ,

where the last inequality follows from the fact that y∗t = min{yNV , αt} = yNV for t ≥ t◦. Since
εt = 1/(B̄

√
t), the second sum above is bounded above by B̄ · T 0.5. Thus, it remains to show that the

first term above is bounded by B̄ · T 0.5+δ.

Consider

T∑
t=t◦

{
E
∥∥ŷδ

t − yNV
∥∥2

2εt
−

E
∥∥ŷδ

t+1 − yNV
∥∥2

2εt

}

≤
E
∥∥ŷδ

t◦ − yNV
∥∥2

2εt◦

+
1
2

T∑
t=t◦

[
1

εt+1
− 1

εt

]
E
∥∥ŷδ

t+1 − yNV
∥∥2

≤
α2

t◦

2εt◦

+
1
2

T∑
t=t◦

[
1

εt+1
− 1

εt

]
α2

t+1 ,

where the last inequality follows from
∥∥ŷδ

t − yNV
∥∥ ≤ αt for all t ≥ t◦. Then,

α2
t◦

2εt◦

+
1
2

T∑
t=t◦

[
1

εt+1
− 1

εt

]
α2

t+1 =
1
2

[
α2

T+1

εT+1
+

T∑
t=t◦

1
εt

{
α2

t − α2
t+1

}]
≤

α2
T+1

2εT+1
,

where the last inequality follows from αt ≤ αt+1. Using the definition of αT+1 and εT+1 and the fact
that (T + 1)0.5+δ ≤ 2T 0.5+δ for δ ∈ (0, 0.5), we have

α2
T+1

2εT+1
=

B̄ · (T + 1)δ ·
√

T + 1
2

=
B̄

2
(T + 1)0.5+δ ≤ B̄ · T 0.5+δ,

which is the desired result. �
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3.2 Without Prior Knowledge of ρ In the non-perishable inventory case of Theorem 2, we have
required that the scaling parameter γ used in the step size of the AIM algorithm to be small relative to
ρ, a lower bound on the expected demand. This requirement assumes that the manager knows ρ a priori.
In this section, using a more refined analysis, we show that the AIM algorithm remains asymptotically
optimal with the same convergence rate for any choice of the parameter γ. We assume, for ease of
exposition, that the manager knows ȳ a priori. The intuition underlying our analysis follows from the
fact that the step size εt = O(1/

√
t) given in Equation (4) decreases in t; thus, even when γ is large, its

impact on the running average cost decreases over time.

For any θ and z, consider a random walk starting at z with the IID increment of {θ −Ds | s ≥ 1}.
Let K(θ, z) be the first hitting time of (−∞, 0] by the random walk, i.e.,

K (θ, z) = min

{
t ≥ 0

∣∣∣∣ z +
t∑

s=1

(θ −Ds) ≤ 0

}
. (12)

Also, recall that for any θ, Ji (θ) denotes the ith renewal period associated with the stochastic process
Wt(θ) defined in Equation (6). The following theorem establishes an error bound for the AIM algorithm
under any arbitrary scaling parameter γ. We note that by Equation (8) in Section 2.4, it suffices to
establish a bound on Λ2(T ) since the bound for Λ1(T ) is already given in the proof of Theorem 2.

Theorem 8 Let m = (hγȳ) / max{b, h}. Consider the AIM Algorithm for the non-perishable inventory
case, and suppose that the manager knows an upper bound ȳ on yNV . For any choice of the parameter
γ, we have, for any T ≥ 1 and ρ′ < min {m,E [D1]},

Λ2(T ) ≤ max{b, h}ȳ
T

{⌈
(m/ρ′)2

⌉
+ E

[
K

(
ρ′,

2
√

2 m2

ρ′

)]}
+

2hmE[|J1(ρ′)|2]√
T

.

Theorem 8 provides an upper bound on Λ2(T ) for any choice of scaling parameter γ. The second term
in the above error bound is similar to the bound that appears in the proof of Theorem 2 (Section 2.4),
reflecting the average excess inventory above the target levels ŷt’s. The first term in the error bound
reflects a bound on the amount of time that is required for the impact of γ/

√
t to become small and

the stochastic process Wt(θ) to have a renewal at 0. The bound in Theorem 8 is O
(
1/
√

T
)

provided

that both |J1(·)|2 and K(·, ·) have finite expectations. The bound on E
[
|J1(·)|2

]
is finite and given in

Proposition 4. Before we proceed to the proof of Theorem 8, Lemma 9 below provides an explicit bound
on E[K(·, ·)] that depends only on b, h, γ, and the moment of the demand.

Lemma 9 If θ < E [D1] and E
[
D4

1

]
< ∞, then for any z > 0,

E [K (θ, z)] ≤ 2z

E [D1]− θ
+

8π2E [D1 − E [D1]]
4

(E [D1]− θ)4
.

The proof of Lemma 9, based on Markov’s Inequality and the definition of K(θ, z), appears in Appendix
D. Below is the proof of Theorem 8.

Proof. [Proof of Theorem 8] Fix any ρ′ satisfying ρ′ < min {m,E[D1]}. Using a similar argument as
in the proof of Theorem 6, we can show that for any t ≥ 1,

yt+1 − ŷt+1 ≤ [(yt − ŷt) + hεt −Dt]
+ =

[
(yt − ŷt) +

m√
t
−Dt

]+
,

where the equality follows from the definition of m and εt. As in the proof of Theorem 6, we can
show that the above inequality implies that yt − ŷt ≤ Zt(m) with probability one for all t. Since
Q(yt)−Q(ŷt) ≤ h (yt − ŷt), we have that

Λ2(T ) =
1
T

T∑
t=1

E [Q(yt)−Q(ŷt)] ≤ 1
T

K̃∑
t=1

E [Q(yt)−Q(ŷt)] +
h

T

T∑
t=K̃+1

E [Zt(m)] , (13)

where

T̃ = min
{

t ∈ Z+

∣∣∣ m√
t
≤ ρ′

}
and K̃ = min

{
t > T̃

∣∣ Zt(m) = 0
}

.
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We will now bound each of the terms in the above sum separately. We will provide an upper bound
on the first term in the right-most expression of (13). By definition of T̃ , we have that T̃ =

⌈
(m/ρ′)2

⌉
≤

1 + (m/ρ′)2, which implies that, with probability one,

ZT̃ (m) ≤
T̃∑

t=1

m√
t
≤ 2m

√
T̃ ≤ 2m

√
1 + (m/ρ′)2 ≤ 2m

√
2 (m/ρ′)2 =

2
√

2 m2

ρ′
.

Moreover, for any T̃ < t ≤ K̃, the definition of T̃ implies

Zt(m) =
[
Zt−1(m) +

m√
t− 1

−Dt−1

]+
≤ [Zt−1(m) + ρ′ −Dt−1]

+
,

and since ZT̃ (m) ≤
(
2
√

2 m2
)
/ρ′, it follows from the definition of K (· , ·) that

E
[
K̃
]

= E
[
T̃ + (K̃ − T̃ )

]
≤
⌈
(m/ρ′)2

⌉
+ E

[
K

(
ρ′,

2
√

2 m2

ρ′

)]
.

Therefore, since
∣∣Q (y1

)
−Q

(
y2
)∣∣ ≤ max{b, h}ȳ for any y1, y2 ∈ [0, ȳ], we have

1
T

K̃∑
t=1

E [Q(yt)−Q(ŷt)] ≤ max{b, h}ȳ
T

E
[
K̃
]

≤ max{b, h}ȳ
T

{⌈
(m/ρ′)2

⌉
+ E

[
K

(
ρ′,

2
√

2 m2

ρ′

)]}
,

which is the first term of the bound given in the statement of Theorem 8.

We now consider the second term in Equation (13), corresponding to time periods K̃ + 1 through T .
From the above definitions of T̃ and K̃, a modification of arguments used in the proofs of Lemma 5 and
Theorem 6 yields

h

T

T∑
t=K̃+1

E [Zt(m)] ≤ 2hmE[|J1(ρ′)|2]√
T

. (14)

Please see Appendix E for details. This completes the proof of Theorem 8. �

3.3 Partial Perishability of Excess Inventory In Section 2, we have assumed that excess inven-
tory is either perishable or non-perishable, i.e., xt+1 = 0 or xt+1 = [yt − dt]+. We consider the case when
only some of the excess inventory is perishable. Let σt represent all events up to the end of period t. In
particular, recall that [yt − dt]+ is the excess inventory at the end of period t. Now, suppose that the
inventory level at the beginning of period t + 1 is given by

xt+1 = Υ([yt − dt]+, σt) ,

where Υ(·, ·) is a random function whose value lies between 0 and [yt − dt]+ with probability one. This
model of partial perishability is quite general, and can handle, for example, age-dependent perishability.
Note that Υ([yt − dt]+, σt) = 0 corresponds to the perishable inventory case, and Υ([yt − dt]+, σt) =
[yt − dt]+ corresponds to the non-perishable inventory case.

With the partially perishable inventories, the AIM algorithm described in Section 2.2 is still applicable,
and it can be shown that the convergence rate in Theorem 2 (for the non-perishable inventory case)
remains valid as indicated in the following corollary.

Corollary 10 Under Assumption 1, suppose that excess inventory is partially perishable with E[D6
1] < ∞

and γ ≤ (ρ max{b, h}) /(hȳ). Then, the sequence of order-up-to levels (yt : t ≥ 1) generated by the AIM
algorithm has the following properties: there exist a constant C such that for any T ≥ 1,

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) ≤ C√

T
,

where the constant C is the same as the one given in Theorem 2 for the case of non-perishable inventory.

The proof of the above corollary parallels the proof of Theorem 2 for non-perishable inventory, and we
omit the details. The key observation is that the excess inventory level in each period in the partially
perishable case does not exceed the corresponding quantity in the non-perishable case.
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3.4 Discrete Demand and Discrete Ordering Quantities In Section 2, we assume that the
order quantity in each period can be any nonnegative real number, while the demand distribution is
either continuous or discrete. In practice, the set of possible ordering quantities may be constrained to
a discrete set. In this section, we study adaptive inventory control when both the demand and ordering
quantities are nonnegative integers. For simplicity, we consider the perishable inventory case only under
Assumption 1.

In the AIM Algorithm of Section 2, the update in the inventory decision is given by (3)-(5). The
value of Ht(yt) represents an estimate of the left-derivative of Q at ŷt, which depends on 1 [Dt < ŷt],
corresponding to whether or not there exists excess inventory. All of the analysis of Section 2 remains
valid if we have instead an estimator for the right-derivative of Q. The estimator of the right-derivative
depends on 1 [Dt ≤ ŷt], corresponding to whether or not there exists any lost sales. For this estimator, it
is not sufficient to observe historical inventory quantities and sales quantities; we also need an indicator
for whether lost sales has occurred. In this section, we assume that this lost sales indicator is available,
and thus can obtain an estimator for the right-derivative of Q.

To address the integrality constraint, we introduce the following variant of the AIM algorithm, which
we will call AIM-Discrete. The AIM-Discrete algorithm maintains an auxiliary sequence (zt ∈ R : t ≥ 1)
and a sequence of integer stocking levels (yt ∈ Z+ ∪ {0} : t ≥ 1). We set z1 = y1 to be any integer in
[0, ȳ], where ȳ is an upper bound on the newsvendor quantity yNV . For any t ≥ 1, the auxiliary sequence
is defined by

zt+1 = P[0,ȳ]

(
zt − εtĤt (zt)

)
,

where εt = ȳ/
(
max{b, h}

√
t
)

as defined previously, and Ĥt (zt) = −b + (b + h) · 1 [Dt ≤ zt]. We obtain
yt+1 from zt+1 by probabilistic rounding, i.e.,

yt+1 =
{

dzt+1e, with probability zt+1 − bzt+1c;
bzt+1c, with probability 1− (zt+1 − bzt+1c).

Although we maintain the auxiliary sequence, we implement the integral stocking level yt, incurring the
expected cost of Q (yt).

Assuming that lost sales indicator is available, we now argue that we can compute the estimator
Ĥt (zt), which represents an unbiased estimator of the right-derivative of the newsvendor cost function
Q(·) at zt. If zt happens to be an integer, then zt = yt and the result follows from the lost sales indicator
assumption. Suppose that zt is not an integer. It follow from the definition that Q is a piece-wise linear
function with integer breakpoints (see Equation (1)). Thus, for any non-integer zt ∈ <+, the slope of
Q at zt is the same as the right-derivative of Q at bztc (or equivalently the left-derivative of Q at dzte).
Thus, we have

Ĥt (zt) =
{

−b + (h + b) · 1[Dt ≤ yt] , if yt = bztc
−b + (h + b) · 1[Dt ≤ yt − 1] , if bztc < yt = dzte.

The above events are observable: 1[Dt ≤ yt] can be determined from the lost sales indicator, and
1[Dt ≤ yt − 1] can be computed from the sales quantity. It is straightforward to show that the expected
value of Ĥt (zt) is a subgradient of Q at zt. The reason we require the right-derivative is due to the fact
that the AIM-Discrete Algorithm involves probabilistic rounding; we need to find a gradient when zt is
rounded down. We remark that without the lost sales indicator, the above approach does not work; in
case of yt = bztc, we cannot obtain an estimate of the slope of Q at zt.

Since Q is piecewise linear, it can be shown that Q(zt) = E [Q (yt) | zt]. Thus, we obtain the following
performance guarantee of AIM-Discrete. The proof of Theorem 11 is based on the observations of this
section and Theorem 2, and is therefore omitted.

Theorem 11 Under Assumption 1, consider the case where excess inventory is perishable. Suppose that
the lost sales indicator is available for observation. Then, the AIM-Discrete Algorithm satisfies, for any
T ≥ 1,

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) ≤

(
γ +

1
γ

)
ȳ max{b, h}√

T
.
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3.5 Improving the Rate of Convergence If we impose additional assumptions on the problem,
we can improve the convergence rate of the AIM algorithm to O (log T/T ). Suppose that the demand is
continuous random variable with a continuous density function f such that infx∈[0,ȳ] f(x) ≥ α > 0. In
this case, we can show that the one-period expected overage and underage cost function Q(·) is strictly
convex because for any y ∈ R, it can be shown from (2) that Q is differentiable and

Q′(y) = h · P [y ≥ D]− b · P [y < D] = (b + h)F (y)− b .

Thus,

Q′′(y) = (b + h)f(y) ≥ α · (b + h).

If we modify the step size of the original AIM algorithm so that for εt = 1/ (α(b + h)t) for all t, then it
follows from Theorem 1 in Hazan et al. [15] that, for the perishable inventory case,

E

[
1
T

T∑
t=1

Q(yt)

]
−Q(yNV ) ≤ max{b, h}2

2α(b + h)
· log(T + 1)

T
.

4. Conclusion Motivated by the constraints faced by inventory managers, we present a non-
parametric asymptotic analysis of the inventory planning problem with censored demand. Building
upon the recent results on online convex optimization, we propose an adaptive inventory policy for both
perishable and non-perishable products, and establish the rate of convergence. By doing so, we extend
the applicability of the existing online convex optimization literature to the cases where the feasible set
may not be bounded and where the decisions may be dependent from one period to another. Our work
offers many interesting directions for future research. We have established a relationship between the
gradient descent method and the waiting time process in a single-server queue. It would be interesting
to explore if similar relationships exist in more general settings. We can also consider extensions of our
results to the case where the replenishment lead-time is positive, or the inventory system consists of
multiple products or multiple echelons.

Appendix A. Proof of Lemma 3 Proof. [Proof of Lemma 3] The proof of Lemma 3 is a minor
adaptation of Flaxman et al. [11]. We first claim

E [Φ(wt)− Φ(w∗)] ≤ E ‖wt − w∗‖2

2εt
− E ‖wt+1 − w∗‖2

2εt
+

εt

2
E ‖H(wt)‖2

. (15)

To prove this claim, let 〈·, ·〉 denote the inner product in Rn. Since the projection operation PS (·) does
not increase the distance between two points (i.e., non-expansive), we have for any t ≥ 1,

E ‖wt+1 − w∗‖2 = E ‖PS (wt − εt ·H(wt)− w∗)‖2

≤ E ‖wt − εt ·H(wt)− w∗‖2

= E ‖(wt − w∗)− εt ·H(wt)‖2

= E ‖wt − w∗‖2 + ε2t E ‖H(wt)‖2 − 2εt · E [〈H(wt), wt − w∗〉] .

By conditioning E [〈H(wt), wt − w∗〉] on the value of wt, and taking an expectation,

E [〈H(wt), wt − w∗〉] = E [E [〈H(wt), wt − w∗〉 | wt]]
= E [〈E [H(wt) | wt] , wt − w∗〉]
= E [〈g(wt), wt − w∗〉] .

Therefore, it follows that E [〈g(wt), wt − w∗〉] is bounded above by the right-hand side of (15). Since
the subgradient g(z) defines the supporting hyperplane of the convex function Φ at z, it follows that
〈g(wt), wt − w∗〉 is an upper bound on Φ(wt) − Φ(w∗). Therefore, we complete the proof of the claim
(15).

Now, it remains to prove that the summation of the right-hand sides of (15) over t = 1, . . . , T is
bounded above by (γ + 1/γ) diam(S) B̄

√
T . Observe

T∑
t=1

{
E ‖wt − w∗‖2

2εt
− E ‖wt+1 − w∗‖2

2εt
+

εt

2
E ‖H(wt)‖2

}
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≤ E ‖w1 − w∗‖2

2ε1
+

1
2

T∑
t=1

[
1

εt+1
− 1

εt

]
E ‖wt+1 − w∗‖2 +

B̄2

2

T∑
t=1

εt

≤ diam(S)2

2

{
1
ε1

+
T∑

t=1

[
1

εt+1
− 1

εt

]}
+

B̄2

2

T∑
t=1

εt

=
diam(S)2

2εT+1
+

B̄2

2

T∑
t=1

εt ,

where

diam(S)2

2εT+1
=

diam(S) B̄

2γ

√
T + 1 ≤ diam(S) B̄

γ

√
T

B̄2

2

T∑
t=1

εt =
diam(S) B̄ γ

2

T∑
t=1

1√
t
≤ diam(S) B̄ γ

2

∫ T

0

t−1/2dt = diam(S) B̄ γ
√

T .

Thus, we complete the required proof. �

Appendix B. Proof of Proposition 4 The proof of Proposition 4 makes use of the following
lemma.

Lemma 12 Let X1, X2, . . . be a sequence of independent and identically distributed random variables
such that EX1 = 0. Then, for any n ≥ 1,

E

[
n∑

i=1

Xi

]4

≤ 3n2EX4
1 if EX4

1 < ∞, and E

[
n∑

i=1

Xi

]6

≤ 21n3EX6
1 if EX6

1 < ∞.

Proof. It follows from the multinomial theorem and the fact that EX1 = 0 that

E

[
n∑

i=1

Xi

]4

=
(

n

2

)
4!

2! 2!
EX2

1EX2
2 +

(
n

1

)
EX4

1 = 6
(

n

2

)
EX2

1EX2
2 +

(
n

1

)
EX4

1

E

[
n∑

i=1

Xi

]6

=
(

n

3

)
6!

2! 2! 2!
EX2

1EX2
2EX2

3 +
(

n

2

)
6!

3! 3!
EX3

1EX3
2

+ 2
(

n

2

)
6!

4! 2!
EX4

1EX2
2 +

(
n

1

)
EX6

1

= 90
(

n

3

)
EX2

1EX2
2EX2

3 + 20
(

n

2

)
EX3

1EX3
2 + 30

(
n

2

)
EX4

1EX2
2 +

(
n

1

)
EX6

1 .

By Jensen’s Inequality, EX2
1EX2

2 ≤ EX4
1 , and each of (EX2

1 )3, (EX3
1 )2 and EX4

1EX2
2 is bounded above

by EX6
1 . We have

E

[
n∑

i=1

Xi

]4

≤
(

6
(

n

2

)
+
(

n

1

))
EX4

1

= (3n(n− 1) + n) EX4
1

=
(
3n2 − 2n

)
EX4

1

≤ 3n2EX4
1

E

[
n∑

i=1

Xi

]6

≤
[
90
(

n

3

)
+ 50

(
n

2

)
+
(

n

1

)]
· EX6

1

= (15n(n− 1)(n− 2) + 25n(n− 1) + n)EX6
1

=
(
15n3 − 20n2 + 6n

)
EX6

1

≤ 21n3EX6
1 ,

which is the desired result. �
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Here is the proof of Proposition 4.

Proof. [Proof of Proposition 4] Observe

E[|J1(θ)|2] =
∞∑

r=1

r2P {|J1(θ)| = r} ≤
∞∑

r=1

(
2

r∑
`=1

`

)
P {|J1(θ)| = r}

= 2
∞∑

`=1

`
∞∑

`=r

P {|J1(θ)| = r} = 2
∞∑

`=1

` · P {|J1(θ)| ≥ `} .

We need to establish an upper bound on P {|J1(θ)| ≥ `}. The event |J1(θ)| ≥ ` occurs if and only if
the cumulative sum

∑`′

s=1(θ − Ds) remains non-negative for all `′ = 1, . . . , ` remains positive. Thus,
|J1(θ)| ≥ l implies

∑`
s=1(θ −Ds) ≥ 0. Therefore,

P {|J1(θ)| ≥ `} ≤ P

{∑̀
s=1

(θ −Ds) ≥ 0

}
= P

{∑̀
s=1

(E[Ds]−Ds) ≥ ` · (E[D1]− θ)

}
.

(i) Consider the first case where E
[
D6

1

]
< ∞. Since ED1 > θ, it follows from Markov’s Inequality

that

P

{∑̀
s=1

(E[Ds]−Ds) ≥ ` · (E[D1]− θ)

}
≤ P


[∑̀

s=1

(E[Ds]−Ds)

]6

≥ `6 · (E[D1]− θ)6


≤

E
[∑`

s=1(E[Ds]−Ds)
]6

`6 · (E[D1]− θ)6

≤
E
[
(D1 − ED1)6

]
(E[D1]− θ)6

· 21 `3

`6
,

where the last inequality follows from Lemma 12. Therefore,

E[|J1(θ)|2] ≤ 2
∞∑

`=1

` · P {|J1(θ)| ≥ `} ≤ 2
∞∑

`=1

21
`2

·
E
[
(D1 − ED1)6

]
(E[D1]− θ)6

≤ 7π2 E
[
(D1 − ED1)6

]
(E[D1]− θ)6

,

where the last inequality follows from
∑∞

l=1 1/l2 = π2/6. Thus, we obtain the desired result.

(ii) We will now consider the second case when D1 ≤ D̄ with probability one. Recall the following
inequality due to Hoeffding [16]. For a sequence (Us | s ≥ 1) of independent random variables with mean
0 and as ≤ Us ≤ bs for each s,

P

{∑̀
s=1

Us ≥ η

}
≤ exp

{
−2η2∑`

s=1(bs − as)2

}
holds for any ` ≥ 1 and η > 0. Since (E[Ds]−Ds | s ≥ 1) is a sequence of identical and independently
distributed random variables with mean 0, and its support is contained in the interval of length D̄, it
follows

P

{∑̀
s=1

(E[Ds]−Ds) ≥ ` · (E[D1]− θ)

}
≤ exp

{
−2 · (` · (E[D1]− θ))2

` · D̄2

}
= α` .

Therefore, since α ∈ (0, 1), it follows

E[|J1(θ)|2] ≤ 2
∞∑

`=1

` · P {|J1(θ)| ≥ `} ≤ 2
∞∑

`=1

`α` =
2α

(1− α)2
,

where the last equality follows from d
dα

∑∞
l=0 αl = d

dα1/(1− α). �

Appendix C. Proof of Lemma 5 For any i ≥ 1, recall that the random variable τi de-
notes the ith renewal time of the stochastic process (Wt(θ) | t ≥ 1) defined in (6), and |Ji(θ)| =
|{s | τi−1(θ) < s ≤ τi(θ)}| denotes the length of the ith renewal period. For each t ≥ 1, let the ran-
dom variable i(θ, t) denote the index k such that Jk(θ) contains t. The following lemma establishes an
upper bound on the expected value of

∣∣Ji(θ,t)(θ)
∣∣.
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Lemma 13 For any t ≥ 1, E
[∣∣Ji(θ,t)(θ)

∣∣] ≤ E[|J1(θ)|2].

Proof. Since the collection of Ji(θ)’s are disjoint and partition the natural numbers, i(·) is well-
defined. Consider the following recursive equation defined by conditioning on the time of the first renewal:

E
[∣∣Ji(θ,t)(θ)

∣∣] =
t−1∑
s=1

E
[∣∣Ji(θ,t)(θ)

∣∣ · 1 [|J1(θ)| = s]
]
+ E [|J1(θ)| · 1 [|J1(θ)| ≥ t]]

=
t−1∑
s=1

E[|Ji(θ,t−s)(θ)|] · P {|J1(θ)| = s}+ E [|J1(θ)| · 1 [|J1(θ)| ≥ t]] ,

where the last equality follows from the observation that (Wt(θ) : t ≥ 1) is a renewal process with a
regeneration point at 0. It follows that for all t ≥ 1,

E
[∣∣Ji(θ,t)(θ)

∣∣] ≤ max
1≤s≤t−1

E[|Ji(θ,t−s)(θ)|] + E [|J1(θ)| · 1 [|J1(θ)| ≥ t]] .

By iteratively applying the above recursion, we have

E
[∣∣Ji(θ,t)(θ)

∣∣] ≤
t∑

s=1

E [|J1(θ)| · 1 [|J1(θ)| ≥ s]] =
t∑

s=1

∞∑
r=s

rP {|J1(θ)| = r}

≤
∞∑

s=1

∞∑
r=s

rP {|J1(θ)| = r} =
∞∑

r=1

r∑
s=1

rP {|J1(θ)| = r}

=
∞∑

r=1

r2P {|J1(θ)| = r} ,

completing the proof of the proposition. �

Here is the proof of Lemma 5.

Proof. [Proof of Lemma 5] From the definition of (Wt(θ) | t ≥ 1), we observe that Zt(θ) ≤ Wt(θ)
with probability one. We introduce another stochastic process (Vt(θ) | t ≥ 1), where Vt(θ) corresponds
to the cumulative inflow in the renewal cycle containing t, without accounting for its outflow, i.e.,

Vt(θ) =
t∑

t′=1

θ√
t′
· 1
[
t′ ∈ Ji(θ,t)(θ)

]
=
∑
t′

θ√
t′
· 1
[
τi(θ,t)−1(θ) < t′ ≤ t

]
. (16)

We claim that for all t, Zt(θ) ≤ Vt(θ) with probability one. This result follows from the fact that when
Zt(θ) > 0, then τi−1(θ) < t < τi(θ) for i = i(θ, t). Since Wτi−1(θ)(θ) = 0, we have Zτi−1(θ)(θ) = 0, and
therefore

Zt(θ) ≤
∑
t′

θ√
t′
· 1 [τi−1(θ) < t′ ≤ t]

=
∑
t′

θ√
t′
· 1
[
τi(θ,t)−1(θ) < t′ ≤ t

]
= Vt(θ), (17)

which is the desired claim.

Thus, to complete the proof of Lemma 5, it suffices to establish

1
θ
·

T∑
t=1

E [Vt(θ)] ≤ 2E[|J1(θ)|2]
√

T .

For any fixed T ,

1
θ
·

T∑
t=1

Vt(θ) =
T∑

t=1

t∑
s=1

1√
s
· 1
[
s ∈ Ji(θ,t)(θ)

]
≤

T∑
t=1

T∑
s=1

1√
s
· 1
[
s ∈ Ji(θ,t)(θ)

]
=

T∑
s=1

1√
s

T∑
t=1

1
[
s ∈ Ji(θ,t)(θ)

]
≤

T∑
s=1

1√
s

∣∣Ji(θ,s)(θ)
∣∣ .
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Therefore,

1
θ
·

T∑
t=1

E [Vt(θ)] ≤
T∑

s=1

1√
s

E
[∣∣Ji(θ,s)(θ)

∣∣]
≤

T∑
s=1

1√
s

E
[
|J1(θ)|2

]
≤ 2E

[
|J1(θ)|2

]√
T ,

where the second inequality follows from Lemma 13, and the final inequality follows from the fact that∑T
s=1 1/

√
s ≤ 2

√
T . �

Appendix D. Proof of Lemma 9

Proof. Let θ < E [D1] be given. For any z > 0, we have

E [K(θ, z)] =
∞∑

s=0

P {K(θ, z) > s}

≤ 2z

E [D1]− θ
+

∑
s≥ 2z

E[D1]−θ

P {K(θ, z) > s} .

For any s ≥ 2z
/

(E [D1]− θ), it follows from the definition of K(θ, z) in Equation (12) that

P {K(θ, z) > s} ≤ P

{
z +

s∑
i=1

(θ −Di) > 0

}

= P

{
s∑

i=1

(E [Di]−Di) > s
(
E [D1]− θ − z

s

)}

≤ P

{
s∑

i=1

(E [Di]−Di) > s · E [D1]− θ

2

}

≤
16E [

∑s
i=1 (E [Di]−Di)]

4

s4 (E [D1]− θ)4

≤ 16 · 3 · s2E [D1 − E [D1]]
4

s4 (E [D1]− θ)4
,

where the second inequality follows from s ≥ 2z
/

(E [D1]− θ), the third inequality follows from Markov’s
inequality, and the final inequality follows from Lemma 12. Therefore,

E [K(θ, z)) ≤ 2z

E [D1]− θ
+

∑
s≥ 2z

E[D1]−θ

48E [D1 − E [D1]]
4

s2 (E [D1]− θ)4

≤ 2z

E [D1]− θ
+

48E [D1 − E [D1]]
4

(E [D1]− θ)4
∑
s≥1

1
s2

=
2z

E [D1]− θ
+

8π2E [D1 − E [D1]]
4

(E [D1]− θ)4
,

where the last equality follows from the fact that
∑∞

i=1 1/i2 = π2/6. �

Appendix E. Proof of Claim (14) in the Proof of Theorem 8 We will now establish an upper
bound on Zt(m) for t > K̃, using arguments similar to the proof of Lemma 5 given in Appendix C. It
follows from the definition of T̃ and K̃ that ZK̃(m) = 0 and t > K̃ implies that m/

√
t− 1 ≤ ρ′. Thus,

for any t > K̃,

Zt(m) =
[
Zt−1(m) +

m√
t− 1

−Dt−1

]+
≤ [Zt−1(m) + ρ′ −Dt−1]

+ ≤ Wt (ρ′) .
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Thus, when Zt(m) > 0, then τi−1(ρ′) < t < τi(ρ′) for some i. Using the same argument as in Equation
(17), we conclude that for t > K̃,

Zt(m) ≤
∑
t′

m√
t′
1 [τi−1(ρ′) < t′ ≤ t] =

m

ρ′

∑
t′

ρ′√
t′
1 [τi−1(ρ′) < t′ ≤ t] =

m

ρ′
Vt(ρ′),

where the last inequality follows from the fact that τi−1(ρ′) < t < τi(ρ′). Therefore,

T∑
t=K̃+1

E[Zt(m)] ≤ m

ρ′

T∑
t=K̃+1

E[Vt(ρ′)] ≤ m

ρ′
·

T∑
t=1

E[Vt(ρ′)] ≤ m

ρ′
· 2ρ′ · E[|J1(ρ′)|

2]
√

T ,

where the last inequality follows as in the proof Lemma 5 since ρ′ < E [D1]. We thus obtain

h

T

T∑
t=K̃+1

E [Zt(m)] ≤ 2hmE[|J1(ρ′)|2]√
T

,

proving Claim (14).
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