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Abstract

This paper provides su¢ cient conditions for the optimal value func-
tion of a given linear semi-in�nite programming problem to depend
linearly on the size of the perturbations, when these perturbations
involve either the cost coe¢ cients or the right-hand-side function or
both, and they are su¢ ciently small. Two kinds of partitions are con-
sidered. The �rst one concerns the e¤ective domain of the optimal
value as a function of the cost coe¢ cients, and consists of maximal
regions on which this value function is linear. The second class of par-
titions considered in the paper concern the index set of the constraints
through a suitable extension of the concept of optimal partition from
ordinary to semi-in�nite linear programming. These partitions pro-
vide convex sets, in particular segments, on which the optimal value
is a linear function of the size of the perturbations, for the three types
of perturbations considered in this paper.
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1 Introduction

Given a linear semi-in�nite programming (LSIP) problem, we give conditions
guaranteeing the linearity of the optimal value function with respect to per-
turbations provided they are su¢ ciently small and involve either the cost
coe¢ cients or the right-hand-side function or both. The preceding works
are, �rst, a stream of papers on sensitivity analysis in ordinary and para-
metric linear programming (LP) from an optimal partition perspective ([1],
[2], [6], [8], [9], [13], [14], [15], [16], [18], [19], [20], [22], [23]) and, second,
the recent paper [10], where conditions are given for the linearity (not only
on segments) of the optimal value function of a LSIP problem with respect
to (non-simultaneous) perturbations of the cost vector or the RHS function
from a duality perspective.
Given a vector c 2 Rn, we consider two (possibly in�nite) sets of indices,

U and V , such that U \ V = ; and U 6= ;, and two functions a : T ! Rn
and b : T ! R, where T := U [ V . We associate with the triple (a; b; c) 2
(Rn)T � RT � Rn (the data) a primal nominal problem,

P : Infx2Rn c0x
s.t. a0tx � bt; t 2 U;

a0tx = bt; t 2 V;

which is assumed to be consistent, and its corresponding dual nominal prob-
lem in R(T ) (the linear space of generalized �nite sequences, i.e., the functions
� : T ! R such that �t = 0 for all t 2 T except maybe for a �nite number
of indices),

D : Sup�2R(T )
X

t2T
�tbt

s.t.
X

t2T
�tat = c;

�t � 0; t 2 U:
These problems are called bounded when their optimal values are �nite. In
contrast with LP, in LSIP the boundedness of both problems does not imply
their solvability and zero duality gap. We denote by F and F � (by � and
��) the feasible and the optimal sets of P (of D; respectively). We assume
throughout that ; 6= F 6= Rn: In many practical applications T is a compact
Hausdor¤ space and the functions a� and b� are continuous on T; in which
case P is called continuous.
If we replace c by z 2 Rn in P and D we get parametric LSIP problems

whose optimal value depends on z, namely
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P (z) : Infx2Rn z0x
s.t. a0tx � bt; t 2 U;

a0tx = bt; t 2 V;
and

D (z) : Sup�2R(T )
P
t2T
�tbt

s.t.
P
t"T

�tat = z;

�t � 0; t 2 U:
We denote the optimal values of P (z) and D (z) by vP (z) and vD (z), re-
spectively. Since Sections 4-6 deal with optimal value functions of di¤erent
parameters, in order to avoid confusion, our notation makes explicit the
corresponding argument, i.e., we represent the optimal value functions by
vP (z) and vD (z), instead of just vP and vD, which denote the optimal value
of the nominal problems P and D; respectively. With this notation, we have
vP (c) = vP and vD (c) = vD, respectively. In [10, Section 2], using dual-
ity theory, it is shown that vP (z) is linear on a certain neighborhood of c
if and only if P has a strongly unique optimal solution. It is also proved
there, that vP (z) is linear on a segment emanating from c in the direction
of d 2 Rnn f0ng if P and D are solvable, with vD = vP , and the following
problem is also solvable and has zero duality gap:

Dd : Sup�2R(T );�2R
P
t2T
�tbt + �v

P (c)

s.t.
P
t"T

�tat + �c = d;

�t � 0; t 2 U:

Alternatively, if we replace b by w 2 RT in P and D we get parametric
LSIP problems whose optimal value depends on w. These perturbed prob-
lems are

P (w) : Infx2Rn c0x
s.t. a0tx � wt; t 2 U;

a0tx = wt; t 2 V;
and

D (w) : Sup�2R(T )
P
t2T
�twt

s.t.
P
t"T

�tat = c;

�t � 0; t 2 U;
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with respective optimal values vP (w) and vD (w). Consequently, the opti-
mal values of the nominal problem P and its dual D are vP (b) = vP and
vD (b) = vD, respectively. Concerning the perturbations of b : T ! R,
we consider the linear space RT equipped with the pseudometric � (f; g) :=
supt2T jf (t)� g (t)j, for f , g 2 RT (we may have � (f; g) = +1). The zero-
vector in RT is denoted by 0T : In [10, Section 2 ], using also duality theory, it
is shown that, if vP (w) is linear on a certain neighborhood of b (in the pseudo-
metric space

�
RT ; �

�
), then D has at most one optimal solution (the converse

is true under strong assumptions). Moreover, vP (w) is linear on a segment
emanating from b in the direction of a bounded function f 2 RTn f0Tg if P
and D are solvable with the same optimal value, the problem

Pf : Infx2Rn;y2R c0x + vP (b) y
s.t. a0tx+ bty � ft; t 2 U;

a0tx+ bty = ft; t 2 V

is also solvable and has zero duality gap, and Pf satis�es certain additional
condition.
The duality approach used in [10] does not provide conditions for the

a¢ nity of the optimal value functions for simultaneous perturbations of c
and b: In this paper we exploit a suitable extension (from LP to LSIP) of
the concept of optimal partition in order to obtain counterparts of the men-
tioned results about separate perturbations of c and b, as well as conditions
guaranteeing the a¢ nity of the optimal value functions under simultaneous
perturbations of c and b: The authors of [12] and [25] have extended the
notion of optimal partition from LP to semide�nite programming (SDP) and
conic linear programming (CLP), respectively, obtaining sensitivity results
for both types of optimization problems. Any SDP problem admits a LSIP re-
formulation, and any LSIP problem admits a CLP reformulation with in�nite
dimensional decision space (Rn � RU for our LSIP problem P ), whereas the
converse reformulations are generally impossible. Since the decision spaces
of the CLP problems considered in [25] are �nite dimensional, our results
cannot be derived from the theories developed in these two papers.
This paper is structured as follows. Section 2 shows that the domain of

any convex homogeneous function can be partitioned into maximal relatively
open convex cones where the function is linear, which are called linearity
cones of the given function. This result generalizes the characterization of
the largest open set containing c on which vP (z) is linear ([10, Theorem 3]),
where P is required to have a strongly unique optimal solution, to a wide

4



family of extended functions. Section 3 extends and analyzes the concepts
of complementary solution and optimal partition from LP to LSIP. Section
4 examines the linearity of the optimal value functions associated with per-
turbations of c on convex sets (e.g., on segments emanating from c and on
maximal relatively open convex cones containing c) by means of the theory
developed in Section 2 (as both optimal value functions are concave, proper
and homogeneous in the case of perturbations of c) and Section 3. Sections 5
and 6 give su¢ cient conditions for the optimal value function to depend lin-
early on the size of the perturbations when the perturbed data are the RHS
function b or both parameters, vector c and function b, respectively. These
conditions are expressed in terms of optimal partitions. Finally, Section 7
contains the conclusions.
We �nish this introduction by summarizing some basic concepts and re-

sults of LSIP theory that will be used throughout. All these results can be
easily derived from [11], where V = ;. First we introduce some necessary
notation.
We consider Rn equipped with the Euclidean norm in Rn; k�k : The canon-

ical basis, the zero-vector, and the open unit ball in Rn will be denoted by
fe1; :::; eng, 0n; and B (0n; 1), respectively. For any set X; jXj denotes the
cardinality of X: If ; 6= X � Rn, we denote by clX, intX, rintX, convX,
coneX, a�X, spanX; and X0 the closure, the interior, the relative interior,
the convex hull, the convex conical hull (of X [ f0ng), the a¢ ne hull, the
linear hull, and the positive polar of X; respectively. The dimension of a
convex set X � Rn will be denoted by dimX. A set X � Rn is relatively
open if rintX = X: A vector y 2 Rn is a feasible direction at x 2 X if there
exists " > 0 such that x + "y 2 X. The cone of feasible directions at x will
be denoted by D (X;x).
The domain of f : Rn ! R = R[f�1g is dom f = fx 2 Rn j f (x) 2 Rg.

A function f : Rn ! R is called (positively) homogeneous on a cone X �
dom f if f (�x) = �f (x) for all x 2 X and � > 0: We say that f : Rn ! R
is a¢ ne on a nonempty convex set X � dom f if the graph of f jX is convex
and concave, i.e., if there exist d 2 Rn and � 2 R such that f (x) = d0x+� for
all x 2 X: In particular, if X is a convex cone and f is homogeneous on X,
then f is called linear on X (i.e., there exists d 2 Rn such that f (x) = d0x
for all x 2 X).
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Let problem P be de�ned by the triple (a; b; c). Its characteristic cone is

K := cone

��
at
bt

�
; t 2 T ;�

�
at
bt

�
; t 2 V ;

�
0n
�1

��
:

The generalized Farkas lemma establishes that u0x � � for all x 2 F if
and only if (u; �) 2 clK: Thus clK only depends on F whereas � depends
on K (and so on the constraint system of P ): Given x 2 F , the set of active
indices at x is T (x) := ft 2 T j a0tx = btg. Obviously, V � T (x). The active
cone at x is

A (x) := cone fat; t 2 T (x) ;�at; t 2 V g :
It is easy to see that x 2 F � if and only if c 2 D (F ;x)0 and also that
A (x) � D (F ;x)0 for all x 2 F . Consequently, if c 2 A (x) (the KKT
condition) then x 2 F �, and the converse statement holds if K is closed.
A point x� 2 F is a strongly unique optimal solution if there exists � > 0

such that c0x � c0x� + � kx� x�k for all x 2 F (in which case F � = fx�g).
This happens if and only if c 2 intD (F ;x�)0.
The weak duality theorem establishes that vD � vP . The equality holds

if either K is closed or c 2 rintM , whereM := cone fat; t 2 T ;�at; t 2 V g is
the so-called �rst moment cone. Moreover the �rst condition entails �� 6= ;
if � 6= ; and the second one F � 6= ;.
The set F is bounded if and only ifM = Rn and F � is bounded if and only

if c 2 intM . Since M is invariant through the perturbations considered in
this paper, if the primal feasible set is bounded, the same is true under arbi-
trary perturbations of b and su¢ ciently small perturbations of c: The strong
Slater condition (existence of x 2 Rn and " > 0 such that a0tx � bt + " for
all t 2 U; and a0tx = bt for all t 2 V ), together with the linear independence
of fat; t 2 V g if V 6= ;, guarantees the consistency of the problem obtained
by replacing b with w 2 RT provided � (w; b) is su¢ ciently small. If P is
continuous, the strong Slater condition is equivalent to the Slater one (exis-
tence of x 2 Rn such that a0tx > bt for all t 2 U; and a0tx = bt for all t 2 V ).
In the continuous case, under both assumptions, the perturbed problems are
solvable and have zero duality gap for su¢ ciently small perturbations of the
data.
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2 Linearity cones of convex homogeneous func-
tions

In this section we prove that, if f is convex and homogeneous, then there
exists a partition of (dom f) n f0ng into maximal relatively open convex cones
on which f is linear.

Lemma 1 Let C and D be two cones in Rn such that C is convex, relatively
open and C \D 6= ;. Then C � C +D:

Proof : Let c 2 C \D. Given x 2 C, since c; x 2 C and this is relatively
open, there exists � > 1 such that y := (1� �) c + �x 2 C. Then x =
��1y + (1� ��1) c 2 C +D. Hence C � C +D: �

Proposition 1 Let f : Rn ! R be a convex homogeneous function. Let
fCi; i 2 Ig be a �nite family of relatively open convex cones containing c 2
Rnn f0ng on which f is linear. Then f is linear on

P
i2I Ci:

Proof : We prove this result by induction on jIj : First we prove the state-
ment for jIj = 2:
Let I = f1; 2g : C1 +C2 is a relatively open convex cone (the three prop-

erties are preserved by the sum) and c = 1
2
c+ 1

2
c 2 C1 + C2:

First we prove that

f (c1 + c2) = f (c1) + f (c2) ; 8c1 2 C1;8c2 2 C2: (1)

Since f is linear on Ci; we can write f (x) = d0ix for all x 2 Ci; i = 1; 2: By
homogeneous convexity,

f (c1 + c2) � f (c1) + f (c2) 8c1 2 C1;8c2 2 C2:

In order to prove the converse inequality, observe that

c = " (c1 + c2) +
1

2
(c� 2"c1) +

1

2
(c� 2"c2) 8" 2 R:

Take " > 0 so that c� 2"ci 2 Ci; i = 1; 2: Again by homogeneous convexity,
we have

f (c) � "f (c1 + c2) + 1
2
f (c� 2"c1) + 1

2
f (c� 2"c2)

= "f (c1 + c2) + f (c) +
1
2
d01 (�2"c1) + 1

2
d02 (�2"c2)

= "f (c1 + c2) + f (c)� " [f (c1) + f (c2)] ;
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so that f (c1) + f (c2) � f (c1 + c2) :
>From (1), by the a¢ nity of f on C1 and C2; we conclude that f is

a¢ ne on C1 + C2; i.e., the statement holds for jIj = 2. Now assume that
it holds for jIj � 1 cones. Select an arbitrary k 2 I and let J = I� fkg :
Since

X
i2J
Ci is a relatively open convex cone containing c; f is linear onX

i2J
Ci by the induction hypothesis. Then, by the same reason, f is linear

on
P

i2I Ci = Ck +
X

i2J
Ci: ut

Let us illustrate Proposition 1 with two simple examples.

Example 1 Consider the convex cones C1 = fx 2 R3 j x1 = 0; x3 > 0g and
C2 = fx 2 R3 j x2 = 0; x3 > 0g. They are relatively open and e3 2 C1 \ C2.
Thus, any convex homogeneous function f : R3 ! R which is linear on both
cones, C1 and C2, is also linear on CI = C1 + C2 = fx 2 R3 j x3 > 0g.

Example 2 The function f (x) = jxj is convex and homogeneous on R; and
it is linear on the relatively open convex cones C1 = R++ and C2 = �C1; but
it is not even linear on its sum C1 + C2 = R because C1 \ C2 = ;:

Proposition 2 Let f : Rn ! R be a convex homogeneous function and
let c 2 Rnn f0ng : Then there exists a largest relatively open convex cone
containing c on which f is linear.

Proof : Let C := fCi; i 2 Ig be the class of all relatively open convex cones
containing c on which f is linear. We shall prove that C := [i2ICi 2 C (i.e.,
C is the maximum of C with respect to the inclusion).
Since f is linear on cone fcg n f0ng, this is an element of C so that I 6= ;.
Let us denote with J the family of all nonempty �nite subsets of I.

For each J 2 J , the sum CJ :=
P

i2J Ci is a relatively open convex cone
containing c and so CJ 2 C by Proposition 1. Since C �fCJ ; J 2 J g � C, we
have C = [J2JCJ . On the other hand, given fJ;Hg � J such that J � H,
by Lemma 1,

CJ � CH : (2)

Now we show that C satis�es all the requirements.
C is a convex cone: The union of cones is a cone. On the other hand,

given x1; x2 2 C, if xi 2 CJi, i = 1; 2, taking J = J1 [ J2 2 J , (2) yields
xi 2 CJ , i = 1; 2. Since CJ is convex, we have [x1; x2] � CJ � C.
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C is relatively open: Let x 2 C and let y 2 a� C. Then we can write

y =
mX
i=1

�iyi; m 2 N;
mX
i=1

�i = 1; and yi 2 C; i = 1; :::;m:

By (2) there exists J 2 J such that x; yi 2 CJ , i = 1; :::;m: Since CJ is
relatively open, there exists � > 1 such that �x+ (1� �) y 2 CJ � C. Thus
x 2 rintC.
f is linear on C: Let x1; x2 2 C. Let J 2 J such that x1; x2 2 CJ . Since

f is linear on CJ , we have f ((1� �)x1 + �x2) = (1� �) f (x1) + �f (x2) for
all � 2 [0; 1]. ut
Given a convex (concave) homogeneous function f , we de�ne the linearity

cone of f at z 2 (dom f) n f0ng as the largest relatively open convex cone
containing z on which f is linear (this de�nition is correct by Proposition 2).
We denote it by Cz:

Proposition 3 The linearity cones of a convex (concave) homogeneous func-
tion f : Rn ! R constitute a partition of (dom f) n f0ng :

Proof : We denote by Cz be the family of all the relatively open convex
cones containing z 2 (dom f) n f0ng on which f is linear. Obviously, Cz is
the maximum of Cz with respect to the inclusion.
Let us assume that the statement is not true. Let z1; z2 2 (dom f) n f0ng

such that Cz1 \ Cz2 6= ; and Cz1 6= Cz2. Take an arbitrary z 2 Cz1 \ Cz2 :
Since Cz1 ; Cz2 2 Cz, we have Cz1 ; Cz2 � Cz, with Czi  Cz for some i = 1; 2:
Then, Czi cannot be the linearity cone of f at zi: ut

3 Optimal partitions

Let us consider the primal LSIP problem P introduced in Section 1 and
its dual problem D: We associate with each primal-dual feasible solution,
(x; �) 2 F � �, the support sets � (x) := ft 2 U j a0tx > btg and � (�) :=
ft 2 U j �t > 0g. The pair (x; �) 2 F �� is called a complementary solution
of the primal-dual problem P �D if � (x) \ � (�) = ;.
The next two results clarify the relationship between optimality and com-

plementary solutions in LSIP, which is more involved than in case of LP.
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Proposition 4 The pair (x; �) 2 F � � is a complementary solution of
P � D if and only if it is a primal-dual optimal solution and vD = vP . In
that case, the following statements are true:
(i) If x 2 F satis�es a0tx = bt for all t 2 � (�) ; then x 2 F �:
(ii) If � 2 � satis�es �t = 0 for all t 2 � (x) ; then � 2 ��:

Proof: Observe that (x; �) 2 F � � implies that

c0x =
X
t2T

�ta
0
tx =

X
t2T

�tbt +
X

t2�(x)[�(�)

�t (a
0
tx� bt) ; (3)

so that c0x =
X
t2T

�tbt if and only if � (x) [ � (�) = ;; i.e., (x; �) is a comple-

mentary solution of P �D:
Now we assume that (x; �) is a complementary solution of P �D: Then,

statements (i) and (ii) also follow from (3), applied to the pairs (x; �) ;
�
x; �
�
2

F � �; which gives vP � c0x =
X
t2T

�tbt = v
D and vP = c0x =

X
t2T

�tbt � vD;

respectively. ut
An immediate consequence of Proposition 4 is that, if c 2 rintM and K

is closed, then there exists a complementary solution of P �D:

Corollary 1 Given a point x 2 F; there exists � 2 � such that
�
x; �
�
is a

complementary solution of P �D if and only if x is an optimal solution for
some �nite subproblem of P:

Proof: If
�
x; �
�
is a complementary solution of P �D, by Proposition 4, X

t2T
�tat

!0
x = c0x =

X
t2T

�tbt; so that
X
t2T

�t (a
0
tx� bt) = 0; i.e., c 2 A (x).

Thus x is an optimal solution of the problem obtained by replacing U by
�
�
�
�
in P . Replacing in that problem fa0tx = bt; t 2 V g by an equivalent

�nite subsystem, we obtain an equivalent �nite subproblem with optimal
solution x:
Conversely, assume that x is an optimal solution of the �nite subproblem

of P obtained by substituting U and V with the �nite subsets U and V : Since
the KKT condition characterizes optimality in LP, there exists � 2 R(T )+ such
that �t = 0 for all t 2 T�

�
U [ V

�
; �t � 0 for all t 2 U;

P
t2T �t (a

0
tx� bt) =
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0; and c 2
P

t2T �tat: Then it is easy to show that
�
x; �
�
is a complementary

solution of P �D, again by Proposition 4. ut
A triple (B;N;Z) 2

�
2U
�3
is called an optimal partition if there ex-

ists a complementary solution (x; �) such that B = � (x), N = � (�) and
Z = U� (B [N) (for the sake of brevity we omit problems and couples of
problems when they are implicit in the context). Obviously, the nonempty
elements of the tripartition1 (B;N;Z) give a partition of U (similar tripar-
titions have been used in [2] and [9] in order to extend the optimal partition
approach to sensitivity analysis from LP to quadratic programming). We say
that a tripartition

�
B;N;Z

�
is maximal if

B =
[
x2F �

�(x); N =
[
�2��

�(�) and Z = U n (B [N):

Note that the de�nition of the maximal partition implies that B � B and
N � N for every optimal partition (B;N;Z) : The uniqueness of the maximal
partition is a straightforward consequence of the de�nition. If there exists an
optimal solution pair x 2 F � and � 2 �� such that �(x) = B and �(�) = N ,
then the maximal partition is called the maximal optimal partition and (x; �)
a maximally complementary optimal pair. As a consequence of Proposition
4, if

�
B;N;Z

�
is an optimal partition such that Z = ;; then it is a maximal

optimal partition. Now, if
�
x; �
�
is a complementary solution such that B =

� (x) and N = �
�
�
�
, then

�
x; �
�
is called a strictly complementary solution.

If (x; �) 2 F � � ��; by Proposition 4, (x; �) and
�
x; �
�
are complementary

solutions, so that B \ �(�) = ; and N \ �(x) = ;; i.e., �(x) � B and
�(�) � N:
Next we characterize the existence of maximal optimal partition in the

usual case that V = ;:

Proposition 5 Let P be such that V = ;: Then, the maximal optimal par-
tition exists if and only if vD = vP ; P and D are solvable, and the sets of
extreme points and extreme directions of �� are �nite.

1The existence of an optimal tripartition for linear complementarity problems was
introduced by McLinden [21]. He proved important results concerning such solutions,
which was used by Güler and Ye [17] to show that path-following interior point methods
generate such a solution (in the limit), and Bonnans and Gonzaga [3] proved that the
interior point iterates may converge to the analytic center of the solution set.
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Proof: By Proposition 4, we can assume that P and D are solvable, with
vD = v: Let

�
�i; i 2 I

	
and f
j; j 2 Jg be the sets of extreme points and

extreme directions of ��; respectively. By Theorem 9.6 in [11], applied to

�� =

�
� 2 R(T )+ j

X
t2T
�t

�
at
bt

�
=

�
c
v

��
; we can express

�� = conv
�
�i; i 2 I

	
+ cone

�

j; j 2 J

	
:

Assume that I and J are �nite sets. By the �nite dimension of Rn;
rintF � 6= ;: In this case, any x 2 rintF � satis�es � (x) � � (x) for all
x 2 F �. Concerning ��; � := 1

jIj

X
i2I
�i +

X
j2J

j satis�es � (�) � �

�
�
�

for � 2 ��:
Conversely, let x 2 F � and � 2 �� be such that � (x) � � (x) and � (�) �

�
�
�
�
for all (x; �) 2 F � � ��: Let � (
j) =

�
t 2 T j 
jt > 0

	
; j 2 J: By The-

orem 9.4 and Corollary 9.4.1 in [11], applied to ��;
��

at
bt

�
; t 2 �

�
�i
��

is linearly indepedent for all i 2 I and
��

at
bt

�
; t 2 � (
j)

�
is a¢ nely

independent for all j 2 J; respectively. Since
[

i2I
�
�
�i
�
� �

�
�
�
and[

j2J
� (
j) � �

�
�
�
; a standard algebraic argument yields jIj �

�
q
n

�
and jJ j �

�
q

n+ 1

�
; where q = max

�
n+ 1;

��� �����	 : ut

In many practical applications V = ;; K is closed (e.g., P is a continuous
problem satisfying the Slater condition), c 2 rintM; P is solvable, and D has
a unique optimal solution. In that case, according to Proposition 5, there
exists maximal optimal partition. The next example illustrates the existence
of maximal optimal partitions

�
B;N;Z

�
such that Z 6= ;.

Example 3 Consider the problem P in R2 such that T = f�2;�1; 0; 1; :::g ;
the objective function is the null one, and the constraints are tx1 � �1; for
t = 1; 2; ::, �x1 � 0 (t = 0), x2 � 0 (t = �1), and �x2 � �1 (t = �2). We
have F � = f0g�[0; 1] and �� = f0Tg : It is easy to show that (T� f0g ; ;; f0g)
is the maximal optimal partition.

The next example shows that the assumption on the �niteness of the
sets of extreme points and extreme directions of �� in Proposition 5 is not
super�uous.
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Example 4 Consider the following LSIP problem:

P : Infx2R2 x2
s.t. �x1 + x2 � 0; (t = 1)

x1 + x2 � 0; (t = 2)
x2 � 0; t = 3; 4; :::

Obviously, vD = vP = 0, with F � = f02g : For r 2 N we denote by �r :
N! R the function such that �rr = 1 and �

r
t = 0 for all t 6= r: Since �� =

� = conv
n
�1+�2

2
; �3; �4; :::

o
;
[

�2��
�(�) = T and so the maximal partition

(;; T; ;) cannot be optimal.

Concerning the optimality tests based on statements (i) and (ii) of Propo-
sition 4, observe that, if (B;N;Z) is an optimal partition of P and its
maximal optimal partition

�
B;N;Z

�
exists, then

� (x�) \N = ; ) � (x�) \N = ; ) x� 2 F �; for all x� 2 F

and

� (��) \B = ; ) � (��) \B = ; ) �� 2 ��; for all �� 2 �:

4 Perturbing c

The perturbed problems of P andD to be considered in this section are P (z)
and D (z) as de�ned in Section 1.

Lemma 2 Let
��
ci; �i

�
; i 2 I

	
� Rn�R(T ) and x 2 Rn be such that

�
x; �i

�
is a complementary solution of P (ci) �D (ci) for all i 2 I: Then P (z) and
D (z) are solvable and

vP (z) = vD (z) = x0z for all z 2 conv
�
ci; i 2 I

	
: (4)

Proof : Let z 2 conv fci; i 2 Ig : Then there exists � 2 R(I)+ such that

z =
X
i2I
�ic

i and
X
i2I
�i = 1:

Since the feasible set is the same for P (z) and for all P (ci), i 2 I, x is a
feasible solution of P (z) :

13



It is easy to prove that �z :=
P

i2I �i�
i 2 R(T ). Since � (�z) � [i2I�

�
�i
�

and � (x) \ �
�
�i
�
= ; for all i 2 I, we have � (x) \ � (�z) = ;, i.e., (x; �z) is

a complementary solution of P (z). Then, applying Proposition 4 to P (z),
we conclude that vP (z) = vD (z) = z0x: ut

Proposition 6 Let fci; i 2 Ig � Rn be such that there exists a common
optimal partition for the family of problems fP (ci) ; i 2 Ig : Then vP (z) =
vD (z) is linear on conv fci; i 2 Ig :

Proof : Let (B;N;Z) be an optimal partition for P (ci) ; for all i 2 I: Let�
xi; �i

�
be a primal-dual optimal solution of P (ci)�D (ci) ; i 2 I: Select j 2 I

arbitrarily and let x = xj. Then, by Proposition 4,
�
x; �i

�
is a complementary

solution of P (ci)�D (ci) ; for all i 2 I: Applying Lemma 2, P (z) and D (z)
are solvable and vP (z) = vD (z) = z0x for all z 2 conv fci; i 2 Ig : ut
Under the assumption of Proposition 6, if c 2 int conv fci; i 2 Ig (e.g.,

if all the problems P (ci) have the same maximal optimal partition), then
P has a strongly unique optimal solution. This is the case if there exists a
common optimal partition for all the problems P (z), such that z belongs to a
certain neighborhood of c. In fact, the next example shows that the linearity
of vP (z) = vD (z) on a neighborhood of c does not entail the existence of a
set fci; i 2 Ig as in Proposition 6.

Example 5 Let us consider the LSIP problem with index set Z

P : Infx2R2 x1 + x2
s.t. tx1 � �1; t = 1; 2; 3; :::;

�tx2 � �1; t = 0;�1;�2; ::::

Since the characteristic cone is K = fx 2 R3 j x1 � 0; x2 � 0; x3 < 0g[f03g,
F = R2+, 02 is the strongly unique solution of P and vP (z) = 0 for all z 2 R2+
(the e¤ective domain of vP (z)). Given z 2 R2+; since vD (z) � vP (z) = 0

and the sequence f�rg � R(Z)+ such that

�rt =

8<:
z1
r
; t = r;

z2
r
; t = �r;
0; otherwise,

14



is feasible for D (z) and satis�es
P

t2Z �
r
t bt = � z1+z2

r
! 0 as r ! 1, we

have also vD (z) = 0 for all z 2 R2+ although D (z) is only solvable when
z = 02: Thus no complementary solution exists for D (z) if z 6= 02: It is easy
to see that the maximal optimal partition of P (02) is (Z; ;; ;).

Corollary 2 Given d 2 Rn, if there exists " > 0 such that P (c+ "d) and P
have a common optimal partition, then vP (z) = vD (z) is linear on [c; c+ "d] :

Proof : Apply Proposition 6 to fc1; c2g, where c1 := c and c2 := c+ "d:ut

Example 6 Consider the primal LSIP problem

P : Infx2R2 c0x
s.t. � (cos t)x1 � (sin t)x2 � �1; t 2

�
0; �

2

�
;

x1 � 0 (t = 2); x2 � 0 (t = 3):
for three di¤erent cost vectors:

(a) c = (1; 1)0 : If z 2 R2++; there exists a unique complementary solution
of P (z)�D (z) :

�
02; �

�
; where

�t =

8<:
z1; t = 2;
z2; t = 3;
0; otherwise.

Since
��
0; �

2

�
; f2; 3g ; ;

�
is a common optimal (actually maximal) parti-

tion for
�
P (z) ; z 2 R2++

	
; vP (z) = vD (z) is linear on R2++ by Propo-

sition 6. In fact, vP (z) = vD (z) = 0 for all z 2 R2++ (Figure 1
represents the graph of vP (z) = vD (z)).

(b) c = (1; 0)0. P (c) has a maximal optimal partition
��
0; �

2

�
[ f3g ; f2g ; ;

�
,

and two other optimal partitions. If d =2 cone fcg and " > 0 is su¢ -
ciently small, z := c + "d satis�es z1 > 0 and either z2 > 0 (in which
case the maximal partition of P (z) is

��
0; �

2

�
; f2; 3g ; ;

�
; as in (a)) or

or z2 < 0: In this case the unique complementary solution is
�
(0; 1) ; �

�
;

where

�t =

8<:
�z2; t = �

2
;

z1; t = 2;
0; otherwise.

Thus the maximal optimal partition of P (z) is
��
0; �

2

�
[ f3g ;

�
�
2
; 2
	
; ;
�
:

This implies that, for any d 2 R2; there exists " > 0 such that vP (z) =
vD (z) is linear on [c; c+ "d] :
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(c) c = (�1;�1)0 : The unique complementary solution is
�
x0; �0

�
such that

x0 = 1p
2
(1; 1)0 and

�0t =

� p
2; t = �

4
;

0; otherwise;

so that the maximal optimal partition of P (�1;�1) is (B;N; ;), where
B =

��
0; �

2

�
n
�
�
4

		
[f2; 3g and N =

�
�
4

	
: Given an arbitrary d 2 R2,

c + �d 2 R2�� if � is su¢ ciently small. For such a �, the optimal set
of P (c+ �d) is F � (c+ �d) = fx�g, where x� = � c+�d

kc+�dk 2 R
2
++: There

exists a unique � 2
�
0; �

2

�
(depending on �) such that x� =

�
cos�
sin�

�
:

Obviously, � (x�) =
��
0; �

2

�
n f�g

	
[ f2; 3g : Similarly, the optimal set

of D (c+ �d) is �� (c+ �d) = f��g, where

��t =

�
kc+ �dk ; t = �;
0; otherwise:

Thus � (x�) = B and � (x�) = N if and only if d 2 span fcg : Observe
that, given d 2 R2; there exists " > 0 such that vP (z) = vD (z) is linear
on [c; c+ "d] if and only if d 2 span fcg :

Figure 1: Graph of the primal optimal value function.

Figure 1 shows the existence of a partition of
�
dom vP (z)

�
n f02g =

R2n f02g in relatively open convex cones on which vP (z) is linear. In fact,
since the hypograph of vP (z) is the convex cone clK ([11, Theorem 8.1]),
vP (z) is a concave, proper, upper semi-continuous homogeneous function
and, according to Proposition 3,

�
CPz ; z 2

�
dom vP (z)

�
n f0ng

	
; where CPz

denotes the linearity cone of vP (z) at z; is a partition of
�
dom vP (z)

�
n f0ng

in maximal regions of linearity.
In the particular case of Example 6, the partition associated with vP (z)

has in�nitely many elements, i.e.,
CP(1;1) = R2++, CP(�1;�1) = cone f(�1;�1)g n f02g, CP(1;0) = cone f(1; 0)g n f02g.
Observe that

�
CPz ; z 2 R2n f02g

	
is a partition of R2n f02g, such that

dimCPz =

�
1; z 2

�
R2� [ (R+ � f0g) [ (f0g � R+)

�
n02;

2; otherwise.
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Concerning vD (z) ; it is also concave, proper and homogeneous. We de-
note by

�
CDz ; z 2Mn f0ng

	
the corresponding partition. In Example 6,

vD (z) = vP (z) ; so that both functions have the same partition. This is
not true in general, as the following example shows.

Example 7 Take n = 3; T = ft 2 R3 j t1 + t2 + t3 = 1; ti > 0; i = 1; 2; 3g [
f(1; 1; 0)g, and the constraints t1x1 + t2x2 + t3x3 � 0 for all t 6= (1; 1; 0) and
x1 + x2 � �1 otherwise. Then the linearity cones of vP (z) are the seven
faces of dom vP (z) = R3+ di¤erent from f03g whereas vD (z) has only two
linearity cones, R3++ and cone f(1; 1; 0)g n f03g.

Proposition 7 Let c 6= 0n: If d 2 spanCPc (d 2 spanCDc ), then there exists
" > 0 such that vP (z) (vD (z), respectively) is linear on [c; c+ "d] :

Proof : If d 2 spanCPc , then there exists " > 0 such that [c; c+ "d] � CPc .
Since vP (z) is linear on CPc the conclusion is immediate (the proof is the
same for vD (z)). ut

5 Perturbing b

The perturbed problems in this section are the parametric problems P (w)
and D (w) de�ned in Section 1. Observe that now vP (w) ; vD (w) : RT ! R,
so that we cannot expect simple counterparts for the results in Section 4
unless jT j < 1. In fact, in LP, vP (w) ; vD (w) : RjT j ! R are ordinary
homogeneous convex functions, so that Proposition 7 applies (observe that
the parameter is now the gradient of the objective function ofD, as in Section
4, but exchanging the roles of the problems). In such a case, if there exists
x� 2 F � such that fat; t 2 T (x�)g is a basis of Rn, then vP (w) = c0x (w) in
a certain neighborhood of b, where x (w) is the unique solution of the system
fa0tx = wt; t 2 T (x�)g (by Cramer�s rule). Then dimCPb = jT j and vP (w) is
linear on a certain neighborhood of b.
If T is in�nite, then the �rst di¢ culty comes from the fact that the

perturbations of w a¤ect the feasible set of the primal problem and possibly
its consistency and the second from the in�nite dimension of RT which does
not allow us to use Proposition 3.
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Lemma 3 Let f(bi; xi) ; i 2 Ig � RT �Rn and � 2 R(T ) be such that
�
xi; �

�
is a complementary solution of P (bi)�D (bi) for all i 2 I: Then P (w) and
D (w) are solvable and

vP (w) = vD (w) =
X
t2T

�twt for all w 2 conv
�
bi; i 2 I

	
: (5)

Proof : Let w =
P

i2I �ib
i, with

P
i2I �i = 1 and � 2 R

(I)
+ .

It is easy to prove that xw :=
P

i2I �ix
i is a feasible solution of P (w).

On the other hand, if t 2 U satis�es a0txw > wt, i.e.,
P

i2I �i (a
0
tx
i � bit) > 0,

then there exists j 2 I such that �j
�
a0tx

j � bjt
�
> 0 so that a0tx

j � bjt > 0.
Since

�
xj; �

�
is a complementary solution of P (bj), we must have �t = 0.

We have shown that the primal-dual feasible solution
�
xw; �

�
of P (w) is a

complementary solution of that problem. Applying Proposition 4 we get the
aimed conclusion. ut

Proposition 8 Let conv fbi; i 2 Ig be such that all the problems P (bi) ; i 2
I; have the same optimal partition. Then vP (w) = vD (w) is linear on
conv fbi; i 2 Ig :

Proof : It is a straightforward consequence of Lemma 3. ut

In particular, if b 2 int conv fbi; i 2 Ig (e.g., the maximal partition is the
same for all the problems P (w) such that w belongs to a certain neighbor-
hood of b), then D has a unique optimal solution. We can have vP (w) =
vD (w) linear (or even constant) on a certain neighborhood of b such that no
optimal partition exists on that neighborhood.

Example 8 (Example 5 revisited) Let w 2 RT be such that

� (w; b) = sup
t2T

jwt + 1j < 1:

It is easy to see that �2 < w (t) < 0 for all t 2 T: Thus P (w) and P have
the same characteristic cone

K =
�
x 2 R3 j x1 � 0; x2 � 0; x3 < 0

	
[ f03g ;

in which case
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vP (w) = sup f
 2 R j (1; 1; 
) 2 clKg = 0
and

vD (w) = sup f
 2 R j (1; 1; 
) 2 Kg = 0:
Since 0 =2 f
 2 R j (1; 1; 
) 2 Kg, D (w) is not solvable and so P (w) has

no complementary solution.

Corollary 3 Given d 2 RT , if there exists " > 0 such that P (b+ "d) has the
same optimal partition as P , then vP (w) = vD (w) is linear on [b; b+ "d].

Proof : It follows from Lemma 3. ut

Let us mention that the recent paper [5] provides an upper bound for
vD (b)� vD (w) when D (b) is consistent and P (w) is also consistent in some
neighborhood of b:

6 Perturbing c and b

The main advantage of the optimal partition approach is that it allows to
study the simultaneous perturbation of cost and RHS coe¢ cients. We denote
by (z; w) the result of perturbing the vector (c; b) (called rim data in the LP
literature [16]). To do this we consider the parametric problem

P (z; w) : Infx2Rn z0x
s.t. a0tx � wt; t 2 U;

a0tx = wt; t 2 V;

and its corresponding dual

D (z; w) : Sup�2R(T )
X

t2T
�twt

s.t.
X

t2T
�tat = z;

�t � 0; t 2 U:

In order to describe the behavior of the value functions of these problems,
we de�ne a class of functions after giving a brief motivation. Let L be a linear
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space and let ' : L2 ! R be a bilinear form on L. Let C = conv fvi; i 2 Ig �
L and let qij := ' (vi; vj), (i; j) 2 I2: Then any v 2 C can be expressed as

v =
X
i2I
�ivi;

X
i2I
�i = 1; � 2 R

(I)
+ : (6)

Then we have
' (v; v) =

X
i;j2I

�i�jqij: (7)

Accordingly, given q : C ! R, where C = conv fvi; i 2 Ig � L, we say
that q is quadratic on C if there exist real numbers qij, i; j 2 I, such that (7)
holds for all v 2 C satisfying (6).

Proposition 9 Let f(ci; bi) ; i 2 Ig � Rn � RT be such that there exists a
common optimal partition for the family of problems P (ci; bi) ; i 2 I: Then
P (z; w) and D (z; w) are solvable, vP (z; w) = vD (z; w) on conv fci; i 2 Ig�
conv fbi; i 2 Ig and vP (z; w) is quadratic on conv f(ci; bi) ; i 2 Ig :
Moreover, if (c; b) 2 conv fci; i 2 Ig � conv fbi; i 2 Ig, then vP (z; b) and
vP (c; w) are linear on conv fci; i 2 Ig and conv fbi; i 2 Ig, respectively.

Proof : Let (B;N;Z) be a common optimal partition of P (ci; bi) for all
i 2 I: Let (z; w) 2 conv fci; i 2 Ig � conv fbi; i 2 Ig. Then we can write

z =
X
i2I
�ic

i; w =
X
i2I

ib

i;
X
i2I
�i =

X
i2I

i = 1; �; 
 2 R

(T )
+ : (8)

Let
�
xi; �i

�
2 Rn � R(T ) be a complementary solution of P (ci; bi) �

D (ci; bi), i 2 I; corresponding to (B;N;Z) : We prove that x :=
P

i2I 
ix
i

and � :=
P

i2I �i�
i constitute a complementary solution of P (z; w).

Since a0tx
i � bit for all t 2 U and a0tx

i = bit for all t 2 V , we have
a0tx � wt for all t 2 U and a0tx = wt for all t 2 V , i.e., x is a feasible solution
of P (z; w).
On the other hand, �it � 0 for all t 2 U and all i 2 I entails �t � 0 for all

t 2 U , whereas
P
t"T

�itat = c
i for all i 2 I implies

P
t"T

�tat = z.

We have shown that
�
x; �
�
is a primal-dual feasible solution. Moreover, if

t 2 U satis�es a0tx > wt, i.e.,
P

i2I 
i (a
0
tx
i � bit) > 0, then there exists j 2 I

such that a0tx
j > bjt . Thus, by the assumption on the optimal partition of

the family of problems, t 2 B and so �it = 0 for all i 2 I. Hence �t = 0
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and
�
x; �
�
turns out to be a complementary solution of P (z; w). Then, by

applying Proposition 4 to P (z; w), we have that P (z; w) and D (z; w) are
solvable and vP (z; w) = vD (z; w). Since

�
x; �
�
is a primal-dual optimal

solution, we have

vP (z; w) = x0z =
X
t"T

�twt = v
D (z; w) : (9)

Let qij = (ci)
0
xj, i; j 2 I and let C := conv f(ci; bi) ; i 2 Ig. Let (z; w) =P

i2I �i (c
i; bi),

P
i2I �i = 1 and � 2 R

(T )
+ : Then, since we can take �i = 
i =

�i in (8), (9) yields

vP (z; w) =

 X
j2I
�jx

j

!0 X
i2I
�ic

i

!
=
X
i;j2I

�i�jqij:

Now assume that (c; b) 2 conv fci; i 2 Ig � conv fbi; i 2 Ig.
Let b =

P
i2I 
ib

i; with
P

i2I 
i = 1; 
 2 R(T )+ : Then x :=
P

i2I 
ix
i is

constant and (9) yields vP (z; b) = z0x for all z 2 conv fci; i 2 Ig. Similarly,
vP (c; w) =

P
t"T

�twt if w 2 conv fbi; i 2 Ig, with � �xed, and this is an a¢ ne
function of w. ut

Obviously, if (c; b) 2 int conv f(ci; bi) ; i 2 Ig, then vP (z; w) = vD (z; w) is
quadratic on a neighborhood of (c; b). In particular, if problems P (z; w) have
a common optimal partition when (z; w) ranges on a certain neighborhood
of (c; b), then we can assert that P has a strongly unique solution and D has
a unique solution. In Example 5, vP (c; w) = vD (c; w) = 0 for all (c; w) such
that � (w; b) < 1 and kz � ck < 1. Nevertheless, the only perturbed problems
which have optimal partition are of the form P (0n; w), so that the condition
in Proposition 9 fails to hold.

Corollary 4 Given (d; f) 2 Rn � RT , if there exists " > 0 such that the
problem P ((c; b) + " (d; f)) has the same maximal optimal partition as P ,
then vP (z; w) = vD (z; w) is quadratic on the interval [(c; b) ; (c; b) + " (d; f)] :
Moreover, vP (z; b) (vP (c; w)) is an a¢ ne function of z on [c; c+ "d] (of w
on [b; b+ "f ] ; respectively).

Proof : It is an immediate consequence of Proposition 9. ut
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7 Conclusions

In this paper we examine the linearity of the primal and the dual optimal
value functions, which can be di¤erent in LSIP, relative to perturbations of
the cost vector, the RHS vector or both, on convex subsets of their domain.
The new results on sensitivity analysis in LSIP in Sections 4-6 have been
obtained by means of two di¤erent partition approaches whose fundamentals
are developed in Sections 2 and 3:

1. Partition of the domain of the optimal value functions in maximal rel-
atively open convex cones, where they are linear (the so-called lin-
earity cones). The partition corresponding to the primal optimal value
function only depends on the primal feasible set, whereas the one corre-
sponding to the dual optimal value function depends on the constraints.
The advantage of this approach is that it provides a signi�cant insight
into the behavior of the optimal value functions. The inconveniences
are: �rst, that this approach only applies to perturbations of c; and
second, that computing linearity cones may be a di¢ cult task in prac-
tice.

2. Optimal partitions of the index set of the inequality constraints. The
advantage of this approach is that it yields su¢ cient conditions for
the linearity of the optimal value functions for a variety of convex sets
for the three types of perturbations considered in this paper. The
multiplicity of optimal partitions and the possible lack of a maximal
partition in LSIP is the main di¢ culty when checking these su¢ cient
conditions in practice (at least in comparison with LP).

Duality theory provides a third approach to sensitivity analysis in LSIP,
as sketched at the beginning of Section 1, which is valid for perturbation of
b or c, but not both. The main inconvenience of this approach is that it only
provides a¢ nity tests for the optimal value functions on segments, and its
main advantage consists of the fact that these tests also provide directional
derivatives in the direction of the corresponding segment extending Gauvin�s
formulae [7].
Sensitivity analysis in LSIP can also be approached from a nonlinear

perspective, obtaining bounds for either the optimal value functions or their
directional derivatives in terms of the admissible perturbations. For instance,
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a lower bound for the dual optimal value under perturbations of b, and an up-
per bound for the directional derivative of the primal optimal value function
under arbitrary perturbation can be found in [5] and [4], respectively. The
main inconvenience of this approach is that it provides inaccurate informa-
tion on the variation of the optimal value functions, and its main advantage
is that, in general, this type of results can be applied under weaker conditions
on P .
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