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SERIES JACKSON NETWORKS

AND NON-CROSSING PROBABILITIES

A. B. DIEKER AND J. WARREN

Abstract. This paper studies the queue length process in series Jackson networks with
external input to the first station only. We show that its Markov transition probabilities
can be written as a finite sum of non-crossing probabilities, so that questions on time-
dependent queueing behavior are translated to questions on non-crossing probabilities.
This makes previous work on non-crossing probabilities relevant to queueing systems and
allows new queueing results to be established. To illustrate the latter, we prove that the
relaxation time (i.e., the reciprocal of the ‘spectral gap’) of a positive recurrent system
equals the relaxation time of an M/M/1 queue with the same arrival and service rates as
the network’s bottleneck station. This resolves a conjecture of Blanc [6], which he proved
for two queues in series.

1. Introduction

The queue length process {Q(t) : t ≥ 0} of an M/M/1 queue with Q(0) = 0 admits the
sample-path representation

Q(t) = sup
0≤s≤t

[N0(t) −N1(t) − (N0(s) −N1(s))] ,

where both N0 and N1 are Poisson counting processes, N0 being the arrival process and
N1 the process counting the number of departures and unused services. Using time-reversal
we find that Q(t) given Q(0) = 0 equals sup0≤s≤t[N0(s) − N1(s)] in distribution, and in
particular that P(Q(t) = 0|Q(0) = 0) can be expressed as a non-crossing probability

(1) P(Q(t) = 0|Q(0) = 0) = P(T > t),

where T = inf{t ≥ 0 : N1(t) < N0(t)}.
This paper generalizes (1) to a network setting, partially relying on the combinatorial

techniques and symmetric functions discussed in [10]. The networks we study are series
Jackson networks with external input to the first station only. We express Markov transition
probabilities arising from these networks as a finite (weighted, signed) sum of non-crossing
probabilities for multidimensional Poisson processes.

Time-dependent results for queue lengths in Jackson networks are mostly focused on the
case of two stations, e.g., Blanc [6] and Baccelli and Massey [4]. The spectral techniques from
the work of Kroese, Scheinhardt, and Taylor [14] seem to be relevant in a time-dependent
context, even though they are developed for the stationary distribution. O’Connell [17]
obtains results for series Jackson networks with an arbitrary number of stations, and these
results are most closely related to this paper. Indeed, as in [17], the combinatorial mechanism
underlying our results is the Robinson-Schensted-Knuth (RSK) correspondence.

Date: November 1, 2018.
2000 Mathematics Subject Classification. Primary: 60K25, 60J25, Secondary: 05E05.
Key words and phrases. Collision probability, departure process, Jackson network, non-crossing probabil-

ity, relaxation time, spectral gap, tandem queues.

1

http://arxiv.org/abs/0808.0513v3


2 A. B. DIEKER AND J. WARREN

It is well-known that, through the RSK correspondence, departures from queues in series
are related to non-crossing Poisson processes. For instance, O’Connell and Yor [18] prove
that the cumulative departure process of the last queue is equal in distribution to the smallest
component of Poisson processes conditioned not to cross. In turn, the latter process is
closely related to the Charlier random-matrix ensemble. Our representations for transition
probabilities as a sum of non-crossing probabilities have a different flavor. In fact, our
arguments do not exploit the RSK correspondence explicitly, but we use a recent result of
Rákos and Schütz [20] as a starting point. Their formula is a generalization of the Schütz
formula for the transition probabilities in the totally asymmetric simple exclusion process
(TASEP).

The connection between queues in series and non-crossing Poisson processes studied here
can possibly be used to obtain new results on queueing networks that are beyond the scope of
the present paper. For instance, the recent work of Pucha la and Rolski [19] on non-crossing
probabilities suggests that the ‘sharp’ asymptotic behavior (as t→ ∞) of the queue-length
transition probabilities may be found; we discuss this in somewhat more detail at the end of
Section 4. It may also be possible to find a ‘spectral’ representation for queueing probabilities
analogous to the M/M/1 spectral (or integral) representation, see, e.g., [1], from a ‘spectral’
representation for the transition probabilities of non-crossing Poisson processes.

Convergence to stationarity. Representing Markov transition probabilities as a sum of
non-crossing probabilities allows us to examine the speed at which the multi-dimensional
queue length vector Q(t) converges to its steady-state vector Q(∞). More precisely, given
that all queues are initially empty, we investigate the probability that the system is empty at
time t for large t. Using a large-deviation result for non-crossing probabilities, we determine
the relaxation time for the queueing network, i.e., the ‘asymptotic’ time required for this
probability to decrease to 1/e. For many Markovian transition probabilities (including
reversible kernels on a finite state space), the relaxation time is the reciprocal of the spectral
gap. We show that the network’s relaxation time equals the relaxation time of an M/M/1
queue with the same arrival and service rates as the bottleneck station, see (10). This
resolves a conjecture of Blanc [6], which he proved for two queues in series. For work on
relaxation times for non-Markovian processes, we refer to the recent work of Glynn, Mandjes,
and Norros [11].

The model. We consider a queueing system with several single-server queues in series,
each with an unlimited waiting space. Customers arrive according to a Poisson process at
the first queue. They join station i + 1 after receiving service at station i, and leave the
system after being served at the last station. The service discipline in each of the stations
is first-in-first-out. All service times are exponentially distributed with a parameter only
depending on the station, as well as mutually independent and independent of the arrival
process. It is convenient to imagine that the arrival stream arises as the output process of
an auxiliary zeroth station with an infinite number of customers; the service requirements at
this station then become the interarrival times. We suppose that the total number of stations
(excluding the auxiliary station) is N , and we let νi be the parameter of the exponential
service distribution at station i. In particular, ν0 is the arrival rate of customers at the first
station.

Two natural Markov processes associated to series Jackson networks are the cumulative
number of departures vector D and the queue length vector Q. For i = 0, . . . , N and t ≥ 0,
let Di(t) be the total number of departures from the i-th queue in the time interval [0, t]. For
i = 1, . . . , N , write Qi(t) for the queue length at station i at time t. The vector Q is readily
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described in terms of D: Q(t) = (Q1(0)+D0(t)−D1(t), Q2(0)+D1(t)−D2(t), . . . , QN (0)+
DN−1(t) −DN (t)).

Organization and notation. This paper is organized as follows. Section 2 presents results
on the cumulative departure process which are principal tools in our investigations. Section 3
derives two identities for the probability of an empty system at time t given an initially empty
system, the second identity being only applicable in the positive recurrent case. Relaxation
times are studied in Section 4. In Section 5, we discuss how the identities of Section 3 change
when the underlying assumptions are relaxed. We review the concepts of combinatorics and
symmetric functions that are most relevant to us in Appendix A.

Throughout, we let the family {wn : n ∈ Z} of functions on R be given by wn(t) =
tn/n!1{t≥0} for n > 0, while w0(t) = 1{t≥0} and wn = 0 for n < 0. Here and throughout, 1A
denotes the indicator function of the set A. We also define

WN = {x ∈ Z
N+1 : x0 ≥ . . . ≥ xN}.

Unless otherwise indicated, all determinants in the present paper are (N + 1) × (N + 1),
with the indices i and j ranging from 0 to N .

2. The cumulative number of departures

This section focuses on the probabilistic behavior of the cumulative number of departures
from each of the queues, by presenting the transition kernel of this process. We also express
this kernel in terms of the kernel arising from non-colliding Poisson processes.

A full description of the process D on a probabilistic level is given by the transition
probabilities φνt , defined for d, d′ ∈WN and t > 0 as

φνt (d, d′) = P(D(t) = d′|D(0) = d).

Rákos and Schütz [20] derive an explicit formula for φνt , which we describe next. They
study an interacting particle process known as totally asymmetric simple exclusion process
(TASEP), which is equivalent to the departure process from queues in series. Both the
vector-valued process D and the TASEP particle system are Markov jump processes. The
departure process at the i-th queue Di makes a jump of +1 at rate νi, corresponding to a
service (or arrival if i = 0), unless Di(t) = Di−1(t) in which case it cannot jump because the

i-th queue is empty. Now consider the ‘shifted’ vector D̃ where D̃i(t) = Di(t) − i, and note
that this process has the same dynamics as the ordered positions of particles in an (N + 1)-
particle TASEP exclusion process with particle i having jump rate νi for i = 0, . . . , N .

The next proposition presents the result by Rákos and Schütz in a form which closely
follows [10]. Rákos and Schütz [20] prove this proposition by verifying the Kolmogorov
forward equations for D, and an alternative proof can be given using the results from [10].
For n ∈ Z, t ∈ R and 0 ≤ i, j ≤ N , we write

(2) w(ij)
n (t) =

{∑i−j
k=0(−1)ke

(ji)
k (ν)wn+k(t) if j ≤ i,

∑∞
k=0 h

(ij)
k (ν)wn+k(t) if i ≤ j,

where e
(ji)
k (ν) and h

(ij)
k (ν) are coefficients which are elementary functions of the vector

ν = (ν0, . . . , νN ); see Appendix A for explicit formulas. In the remainder, for notational

convenience, we suppress the arguments ν of the coefficients e
(ij)
k (ν) and h

(ij)
k (ν). As an

aside, we note that w
(ij)
n (t) is a shifted multiple orthogonal polynomial of Charlier [3] for

j ≤ i.
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Proposition 1 (Rákos-Schütz [20]). For d, d′ ∈WN , we have for any t > 0,

φνt (d, d′) =
N∏

k=0

[
e−νktν

d′
k
−dk

k

]
det
{
w

(ij)
d′i−dj−i+j

(t)
}
.

It is our next aim to derive a representation for φνt in terms of the transition kernel of
Poisson processes killed on their first crossing time. To describe these processes in more de-
tail, consider a measurable space on which a stochastic process {X(t) = (X0(t), . . . ,XN (t)) :
t ≥ 0} is defined. Suppose that this space is equipped with a family of measures {Pν

x : ν ∈
R
N+1
+ , x ∈ WN}. Under Pν

x, Xi is a Poisson counting process starting at xi with rate νi,
and the elements of X are mutually independent. We set Pν = Pν

0 and define T as the first
exit time from the Weyl chamber WN , i.e.,

T = inf{t ≥ 0 : X(t) 6∈WN}.
The process X killed at time T is a Markov process on WN , and by the Karlin-McGregor
formula [13] its transition kernel P ν

t is given by, for t > 0,

(3) P ν
t (z, z′) = Pν

z(X(t) = z′, T > t) =

N∏

k=0

[
ν
z′
k
−zk

k e−νkt
]

det
{
wz′i−zj−i+j(t)

}
.

Note that the rates νi do not appear in the determinant, so that a simple change-of-measure
allows us to change jump rates: for z, z′ ∈WN ,

(4) P ν
t (z, z′) = P λ

t (z, z′)

N∏

k=0

[(
νk
λk

)z′
k
−zk

e−(νk−λk)t

]
.

For z, d ∈WN , we define

Λν(z, d) = νd0−z0
0 · · · νdN−zN

N det
{
h
(jN)
zi−dj−i+j

}
,

Πν(d, z) = νz0−d0
0 · · · νzN−dN

N det
{

(−1)di−zj−i+je
(iN)
di−zj−i+j

}
.

As detailed in Lemma 3 below, in the terminology of Appendix A, Λν(z, d) is a weighted
analog of the number of Gelfand-Tsetlin patterns with specified bottom row and left edge.
The representation of φνt in the following proposition is readily obtained from the Cauchy-
Binet identity (e.g., [12, Prop. 2.10])

(5)
∑

z∈WN

det
{
ξi(zj − j)

}
det
{
ψj(zi − i)

}
= det

{
∑

z∈Z

ξi(z)ψj(z)

}
.

For two kernels A and B on WN , we define the product kernel AB through AB(z, z′) =∑
y∈WN A(z, y)B(y, z′).

Proposition 2. We have φνt = ΠνP ν
t Λν .

Proof. With Cauchy-Binet and the observation

n∑

r=0

(−1)re(iN)
r h

(jN)
n−r =

{
h
(ji)
n if j ≤ i,

(−1)ne
(ij)
n if i ≤ j,

we obtain the claim. �
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The kernel Πν is the inverse of the kernel Λν as shown in [10]. Proposition 2 is therefore
equivalent with the so-called intertwining P ν

t Λν = Λνφνt , which has the following probabilis-
tic significance. There exist processes with values in Gelfand-Tsetlin patterns which give rise
to couplings of the process D and the process X conditioned to stay in the Weyl chamber
WN . The kernel Λν describes the conditional distribution of D(t) given X(t) under this
coupling. Further details can be found in [10, 22].

The preceding proposition connects departures from queues with non-colliding processes,
and forms the starting point for our investigations. Another ingredient is the following
alternative expression for Λν , which is Proposition 2 of [10]. It rephrases Λν as a sum over
Gelfand-Tsetlin patterns of order N + 1; see Appendix A for notation and terminology.

Lemma 3. For z, d ∈WN , we have

Λν(z, d) = ν−z0
0 · · · ν−zN

N

∑

x∈KN : sh(x)=z, ledge(x)=d

νx.

This lemma shows that Λν(z, d) vanishes unless zN = dN , which is not so apparent from
the definition.

3. Transition probabilities for Q and sums of non-crossing probabilities

This section presents two identities relating kνt (0, 0) and non-crossing probabilities, where
kνt is the transition kernel for Q: for q, q′ ∈ Z

N ,

kνt (q, q′) = P(Q(t) = q′|Q(0) = q),

suppressing the dependence on ν on the right-hand side.
Recall that Pν(T > t) is the probability that a multidimensional Poisson process with

rate vector ν stays in the Weyl chamber WN up to time t. We write SN+1 for the symmetric
group on {0, . . . , N}, i.e., all permutations of this set. This group acts on R

N+1
+ by permuting

the coordinates. An immediate consequence of the proof of the theorem is that kνt (0, 0) is
symmetric in ν1, . . . , νN ; this has already been observed in [17]. This property does not
extend to kνt (q, q′) for q, q′ 6= 0.

Theorem 4. Suppose that ν1, . . . , νN are distinct. Then we have for t > 0,

kνt (0, 0) =
∑

σ∈SN+1:σ(N)=0

Pσ(ν)(T > t)∏
0≤i<j<N

[
1 − νσ(j)/νσ(i)

] .

Proof. Since e
(iN)
k = 0 for k < 0 and i ≤ N , it readily follows that Πν(0, z) = 0 unless

z = 0, in which case it equals 1. Since h
(jN)
k = 0 for k < 0 and j ≤ N , we similarly find

that Λν(z, d) = 0 unless zN = dN , which can alternatively immediately be deduced from
Lemma 3. On combining Proposition 2 with these facts, we find that for t > 0,

kνt (0, 0) =
∑

ℓ∈Z

φνt (0, (ℓ, . . . , ℓ)) =
∑

ℓ∈Z,z∈WN

P ν
t (0, z)Λν(z, (ℓ, . . . , ℓ))

=
∑

z∈WN

P ν
t (0, z)Λν(z, (zN , . . . , zN ))(6)

= e−
PN

k=0 νkt
∑

z∈WN

det {wzi−i+j(t)}
∑

x∈KN :sh(x)=z,ledge(x)=(zN ,...,zN )

νx,

where the last equality follows from (3) and Lemma 3. Recall that the relevant notation is
introduced in Appendix A. Set ∆ν =

∏
1≤i<j≤N(νi − νj), a determinant of a Vandermonde
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matrix. An empty product should be interpreted as 1. We next write the sum over x ∈ KN

in terms of a Schur polynomial:
∑

x∈KN :sh(x)=z,ledge(x)=(zN ,...,zN )

νx = νzN0 · · · νzNN
∑

x∈KN−1:sh(x)=(z0−zN ,...,zN−1−zN )

νx

= νzN0 · · · νzNN s(z0−zN ,...,zN−1−zN )(ν1, . . . , νN )

=
1

∆ν
νzN0 · · · νzNN det

{
ν
zi−1−zN−i+N
j

}
i,j=1,...,N

,

where the last equality follows from the alternative definition of Schur polynomials given in
Appendix A. We thus obtain for t > 0

kνt (0, 0) =
1

∆ν
e−

PN
k=0 νkt

∑

z∈WN

det {wzi−i+j(t)} νzN0 det
{
ν
zi−1−i+N
j

}
i,j=1,...,N

.

The symmetry of kνt (0, 0) with respect to ν1, . . . , νN immediately follows from the symmetry
of the Schur polynomial. With the Karlin-McGregor formula (3) and the Leibniz formula
applied to the second determinant, we obtain

kνt (0, 0) =
(−1)N

∆ν

∑

σ∈SN+1:σ(N)=0

sgn(σ)νN−1
σ(0) ν

N−2
σ(1) · · · νσ(N−2)P

σ(ν)(T > t).

We next note that for σ with σ(N) = 0,

(−1)N

∆ν
sgn(σ)νNσ(0)ν

N−1
σ(1) · · · νσ(N−1)

=

∏
0≤i<j≤N

[
νσ(i)

]

(−1)N sgn(σ)∆ν
=

∏
0≤i<j≤N

[
νσ(i)

]
∏

0≤i<j≤N−1[νσ(i) − νσ(j)]

=

∏
0≤i<j≤N

[
νσ(i)

]∏N−1
j=0 [νσ(j) − νσ(N)]∏

0≤i<j≤N [νσ(i) − νσ(j)]
=

∏N−1
j=0 [νσ(j) − νσ(N)]∏

0≤i<j≤N

[
1 − νσ(j)/νσ(i)

]

=

∏N−1
j=0 νσ(j)

∏N−1
j=0

[
1 − νσ(N)/νσ(j)

]
∏

0≤i<j≤N

[
1 − νσ(j)/νσ(i)

] =

∏N−1
j=0 νσ(j)∏

0≤i<j<N

[
1 − νσ(j)/νσ(i)

] ,

and we have finished the proof. �

For j = 1, . . . , N , define the load ρj of station j by ρj = ν0/νj . We next work under
the ‘stability’ assumption maxN

j=1 ρj < 1, and express the difference kνt (0, 0) − kν∞(0, 0) as a
weighted sum of non-crossing probabilities.

Theorem 5. Suppose that maxN
j=1 ρj < 1 and that all νi are distinct. Then we have for

t > 0,

kνt (0, 0) =

N∏

j=1

[1 − ρj] −
∑

σ∈SN+1:σ(N)6=0

∏N
j=1 [1 − ρj]∏

0≤i<j≤N

[
1 − νσ(j)/νσ(i)

]Pσ(ν)(T > t).

Proof. For λ ∈ R
N+1
+ and x ∈WN , we define

ωλ(x) = λ−x0
0 · · ·λ−xN

N det
{
λxi−i+j
j

}
,
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which can be expressed in terms of Schur polynomials (see Appendix A) as

ωλ(x) =
∏

0≤i<j≤N

(
1 − λj

λi

)
λ−x0
0 · · · λ−xN

N sx(λ).

For convenience, we write ωλ for ωλ(0) =
∏

0≤i<j≤N [1 − λj/λi].
Theorem 4 yields for t > 0,

(7)

N∏

j=1

[1 − ρj ]
−1 kνt (0, 0) =

∑

σ∈SN+1:σ(N)=0

ω−1
σ(ν)P

σ(ν)(T > t).

Let σ̃ be the permutation for which νσ̃(N) < νσ̃(N−1) < . . . < νσ̃(0). The choice of σ̃ entails

that the term for σ̃ converges to the constant Pσ̃(ν)(T = ∞); the idea of the proof is to
rewrite this term.

As outlined in Biane et al. [5, Sec. 5.2] for the Brownian case, we have P
σ̃(ν)
x (T = ∞) =

ωσ̃(ν)(x); see also [16, Sec. 4]. Moreover, ωσ̃(ν)(·) is harmonic for the killed transition kernel

of X under Pσ̃(ν), meaning that
∑

y∈WN

Pσ̃(ν)
x (X(t) = y, T > t)ωσ̃(ν)(y) = ωσ̃(ν)(x).

Indeed, using the Karlin-McGregor formula (3), this is readily verified with the Cauchy-
Binet identity (5). We thus obtain

Pσ̃(ν)(T > t) =
∑

x∈WN

Pσ̃(ν)(X(t) = x, T > t)
[
ωσ̃(ν)(x) + (1 − ωσ̃(ν)(x))

]

= ωσ̃(ν) +
∑

x∈WN

Pσ̃(ν)(X(t) = x, T > t)(1 − ωσ̃(ν)(x)).(8)

Next note that the expansion of the determinant ων(x) in conjunction with the change-of-
measure formula (4) yield

∑

x∈WN

Pν(X(t) = x, T > t)(1 − ων(x))

= −
∑

x∈WN

Pν(X(t) = x, T > t)
∑

σ∈SN+1:σ 6=id

sgn(σ)ν−x0
0 · · · ν−xN

N

N∏

i=0

ν
xi−i+σ(i)
σ(i)

= −
∑

x∈WN

∑

σ∈SN+1:σ 6=id

sgn(σ)Pσ(ν)(X(t) = x, T > t)
N∏

i=0

ν
−i+σ(i)
σ(i)

= −
∑

σ∈SN+1:σ 6=id

sgn(σ)ν00 · · · νNN ν−0
σ(0) · · · ν

−N
σ(N)P

σ(ν)(T > t)

= −
∑

σ∈SN+1:σ 6=id

ωνω
−1
σ(ν)P

σ(ν)(T > t).

Replacing ν by σ̃(ν), we see that the second term in (8) can be rewritten as
∑

x∈WN

Pσ̃(ν)(X(t) = x, T > t)(1 − ωσ̃(ν)(x)) = −ωσ̃(ν)

∑

σ∈SN+1:σ 6=σ̃

ω−1
σ(ν)P

σ(ν)(T > t).
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We have thus shown that the right-hand side of (7) equals
∑

σ∈SN+1:σ(N)=0

ω−1
σ(ν)P

σ(ν)(T > t)

=
∑

σ∈SN+1:σ(N)=0,σ 6=σ̃

ω−1
σ(ν)P

σ(ν)(T > t) + 1 −
∑

σ∈SN+1:σ 6=σ̃

ω−1
σ(ν)P

σ(ν)(T > t)

=
∑

σ∈SN+1:σ(N)=0

ω−1
σ(ν)P

σ(ν)(T > t) + 1 −
∑

σ∈SN+1

ω−1
σ(ν)P

σ(ν)(T > t)

= 1 −
∑

σ∈SN+1:σ(N)6=0

ω−1
σ(ν)P

σ(ν)(T > t),

and the claim follows. �

4. Relaxation times

The representation in Theorem 5 is particularly suitable for studying the regime t→ ∞.
Before giving a result into this direction, we prove a large-deviation result that we need in
our analysis. For terminology, see Dembo and Zeitouni [9]. Recall that the process X is
defined on a measurable space equipped with Pν . The Pν-law of X(t)/t satisfies a large-
deviation principle (LDP) in R

N+1 on scale 1/t. The (good) rate function is Iν : RN+1 → R

given by

Iν(x) =

{∑N
k=0 [xk log(xk/νk) − xk + νk] if x ∈ R

N+1
+ ,

∞ otherwise.

This can be seen, for instance, as a corollary of Exercise 5.2.12 in [9]. It turns out that the
Pν -law of X(t)/t also satisfies an LDP in

WN
R

= {x ∈ R
N+1 : x0 ≥ . . . ≥ xN}

on the event that X is killed at the boundary of WN .

Lemma 6. For any ν ∈ R
N+1
+ , the (defective) measures Pν(X(t)/t ∈ dx, T > t) satisfy an

LDP in WN
R

on scale 1/t. The rate function is Iν restricted to WN
R
.

Proof. Since Pν(X(t)/t ∈ F, T > t) ≤ Pν(X(t)/t ∈ F ), the upper bound follows from the
LDP for the Pν-law of X(t)/t, i.e., without the killing mechanism. For the lower bound, we
prove that for any y in the interior of WN

R
and any δ > 0,

lim inf
t→∞

1

t
logPν

(
X(t)/t ∈

N∏

k=0

(yk − δ, yk + δ), T > t

)
≥ −Iν(y).

This inequality is trivial if y 6∈ R
N+1
+ , so we assume the contrary. In view of (3), the

probability can be written as
∫

QN
k=0(ykt−δt,ykt+δt)

N∏

k=0

[(
νk
yk

)zk

e−νkt+ykt

]
Py(X(t) ∈ dz, T > t)

≥
N∏

k=0

[(
νk
yk

)ykt

e−ǫ| log(yk/νk)|te−νkt+ykt

]
Py

(
X(t)/t ∈

N∏

k=0

(yk − ǫ, yk + ǫ), T > t

)
,

for any 0 < ǫ < δ. Since the probability on the right-hand side is bounded from below by a
positive constant as t → ∞, we have proven the lower bound after letting t → ∞ and then
ǫ→ 0. �
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We use the above lemma to investigate the asymptotic behavior of the sum given in
Theorem 5, as it implies that

(9) lim
t→∞

1

t
logPσ(ν)(T > t) = − inf

x∈WN
R

Iσ(ν)(x).

By convexity, the infimum is attained on one of the faces of the polyhedron WN
R

. The
following result follows from a comparison of the exponential rates of each of the terms in
Theorem 5. We write ν(i) for the i-th smallest rate among ν1, . . . , νN , so that ν(1) is the
smallest rate and ν(N) the largest. The notation f(t) ∼ g(t) is shorthand for f(t)/g(t) → 1.

Corollary 7. Suppose that maxN
j=1 ρj < 1 and that all νi are distinct. As t → ∞, we have

∣∣∣∣∣∣
kνt (0, 0) −

N∏

j=1

[1 − ρj ]

∣∣∣∣∣∣
∼

ρ(1)∏
1≤i<j≤N

[
1 − ν(i)/ν(j)

]P(ν(N),...,ν(2),ν0,ν(1))(T > t).

Proof. We may assume that ν0 < ν1 < . . . < νN since kνt (0, 0) is symmetric in ν1, . . . , νN .

Theorem 5 shows that kt(0, 0)−∏N
j=1 [1 − ρj] is a linear combination of probabilities Pσ(ν)(T >

t) with σ(N) 6= 0, and it is our aim to show that the term P(νN ,...,ν2,ν0,ν1)(T > t) has the
slowest exponential decay in t. In view of (9), we thus need to prove that σ̄ := (N, . . . , 2, 0, 1)
minimizes infx∈WN

R

Iσ(ν)(x) over σ ∈ SN+1 with σ(N) 6= 0.

Let σ with σ(N) 6= 0 be given, and write j = σ−1(0) < N . The rate function Iσ(ν) is

strictly convex on (0,∞)N+1. Moreover, it achieves its minimum 0 at x = σ(ν) 6∈ WN
R

;

since σ(ν)j < σ(ν)N , the latter point is separated from WN
R

by the hyperplane {x ∈ R
N+1 :

xj = xN}. The infimum of Iσ(ν) over WN
R

is thus at least as large as the infimum over

this hyperplane, with equality if and only if the minimizing argument lies in WN
R

. It is not
hard to see that the infimum over the hyperplane is ν0 + νσ(ν)N − 2

√
ν0νσ(ν)N , and that it

is achieved at ν∗(σ) given by

ν∗(σ)i =

{
σ(ν)i if i 6∈ {j,N},√
ν0σ(ν)N otherwise.

We conclude that, if j = σ−1(0) < N ,

inf
x∈WN

R

Iσ(ν)(x) ≥ inf
x∈(0,∞)N+1:xj=xN

Iσ(ν)(x)

= ν0 + νσ(ν)N − 2
√
ν0νσ(ν)N

≥ ν0 + ν1 − 2
√
ν0ν1,

where the last equality uses that x 7→ ν0 + x− 2
√
xν0 is increasing in x ≥ ν0.

We next argue that this lower bound is attained only for σ = σ̄. By strict convexity
of Iσ(ν), the first inequality in the preceding display is strict unless ν∗(σ) ∈ WN

R
, showing

that σ = σ̄ is the only candidate to attain the lower bound. In fact, since both inequalities
become equalities if σ = σ̄, σ̄ corresponds to the unique asymptotically dominant term in
Theorem 5.

A direct calculation shows that for σ = σ̄,
∏N

j=1 [1 − ρj ]∏
0≤i<j≤N

[
1 − νσ(j)/νσ(i)

] =
−ρ1∏

1≤i<j≤N [1 − νi/νj ]
,

and this determines the prefactor. �
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The relaxation time is defined as the reciprocal of the exponential rate at which |kνt (0, 0)−
kν∞(0, 0)| converges to zero. The proof of Corollary 7 shows in particular that, if the νi are
all distinct and the system is stable, the relaxation time is

(10)
1

ν0 + ν(1) − 2
√
ν0ν(1)

=
1

ν(1)(1 −√
ρ(1))2

.

This is the same as the relaxation time of an M/M/1 queue with arrival rate ν0 and service
rate ν(1). Therefore, the relaxation time is determined by a single bottleneck station. These
observations prove a conjecture of Blanc [6].

Corollary 7 is also of interest in order to obtain exact asymptotics (as t→ ∞) for the ab-
solute difference between kνt (0, 0) and kν∞(0, 0), in contrast with the rough (i.e., logarithmic)
asymptotics obtained here. In fact, exact tail asymptotics for non-crossing probabilities are
a current research topic. For recent work on such asymptotics in a Brownian setting, refer
to Pucha la and Rolski [19]. Thus, a Poisson-process analog of the results in [19] would
immediately yield new results for queues in series.

5. Generalizations

This section discusses analogs of the identity presented in Theorem 4 for kνt (q, q′) with
q, q′ 6= 0, and how it changes if the service rates are not necessarily distinct.

Define π : WN → Z
N
+ via π(x) = (x0 − x1, x1 − x2, . . . xN−1 − xN ) and recall that the

queue length vector and departures vector are related by Q(t) = Q(0) +π(D(t)). For ℓ ∈ Z,
we also define the ‘inverse’ π̃ℓ : ZN

+ → WN of π through π̃ℓ(q) = (ℓ+ q1 + . . .+ qN , ℓ+ q2 +
. . .+ qN , . . . , ℓ+ qN , ℓ), and we abbreviate π̃0 by π̃.

The transition probabilities for Q can be expressed in terms of those of D through
kνt (q, q′) =

∑
ℓ∈Z φ

ν
t (π̃(q), π̃ℓ(q

′)), for q, q′ ∈ Z
N
+ . Now if we define for z ∈WN , q ∈ Z

N
+ ,

Λν
Q(z, q) =

∑

ℓ∈Z

Λν(z, π̃ℓ(q)) = Λν(z, π̃zN (q))

= ν−z0
0 · · · ν−zN

N

∑

x∈KN : sh(x)=z, ledge(x)=eπzN
(q)

νx(11)

=

N−1∏

k=0

[
ν

eπ(q)k−zk
k

]
det
{
νzNj h

(jN)
zi−zN−eπ(q)j−i+j

}
i,j=0,...,N−1

,

then it follows from P ν
t Λν = Λνφνt that P ν

t and kνt are intertwined:

P ν
t Λν

Q(z, q) =
∑

ℓ∈Z

P ν
t Λν(z, π̃ℓ(q)) =

∑

ℓ∈Z

Λνφνt (z, π̃ℓ(q)) = Λν
Qk

ν
t (z, q).

The kernel Λν
Q is not invertible, however it does admit a (non-unique) left inverse Πν

Q defined

by Πν
Q(q, z) = Πν(π̃(q), z): for q, q′ ∈ Z

N
+ ,

Πν
QΛν

Q(q, q′) =
∑

ℓ∈Z

∑

z∈WN

Πν(π̃(q), z)Λν(z, π̃ℓ(q
′)) =

∑

ℓ∈Z

1{eπ(q)=eπℓ(q′)} = 1{q=q′}.

Consequently we obtain the representation of the queue length transition probabilities, which
also follows directly from Proposition 2:

Proposition 8. For any t > 0, we have

kνt = Πν
QP

ν
t Λν

Q.
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The above proposition may equivalently be written as

(12) kνt (q, q′) =
∑

z∈WN

Πν
Q(q, z)Eν

z

[
Λν
Q(X(t), q′), T > t

]
.

The function z 7→ Πν
Q(q, z) is supported on a finite set for fixed q, as is readily verified from

its definition. Therefore, the sum over z ∈WN in (12) is in fact a finite sum.
Of special interest is the case q′ = 0. From (11) it then follows that Λν

Q(z, q′) can be

expressed in terms of a Schur polynomial for nonnegative z ∈WN :

Λν
Q(z, 0) = ν−z0

0 · · · ν−zN
N

∑

x∈KN : sh(x)=z, ledge(x)=(zN ,...,zN )

νx

= νzN−z0
0 · · · νzN−zN−1

N−1 s(z0−zN ,...,zN−1−zN )(ν1, . . . , νN ).

It is only if the rates νi are distinct that this can be expressed as a sum of geometric terms
and a result of the form of Theorem 4 can be obtained from (12) by suitable changes of
measure, cf. the determinantal representation of Schur polynomials in Appendix A. At the
other extreme, when all the νi are equal to ν, we have Λν

Q(z, 0) =
∏

0≤i<j≤N−1(zi−zj−i+j)
and (12) becomes

kνt (q, 0) =
∑

z∈WN

Πν
Q(q, z)Eν

z




∏

0≤i<j≤N−1

(Xi(t) −Xj(t) − i+ j), T > t


 .

If q′ 6= 0 and the rates νi are distinct, then Λν
Q(z, q′) has a piecewise sum-of-geometric form

as long as z ≥ π̃(q′), otherwise it is zero. We expect that Theorem 4 can be generalized into
this direction, but that it involves the sum of probabilities of the form {X(t) ≥ π̃(q′), T > t}.

We close this section by relating Proposition 8 to the literature. In the single-station
case N = 1, we have Λν

Q(z, q) = (ν1/ν0)z0−z1−q1{z0≥z1+q} and Πν
Q(q, z) = 1{z=(q,0)} −

ν11{z=(q−1,0)} for q ≥ 1 while Πν
Q(0, z) = 1{z=0}. This leads to

kνt (q, q′) = e−(ν0+ν1)t
∑

z∈W 1

z0≥z1+q′

νz1+q′−q
0 νz0−q′

1

∣∣∣∣
wz0−q(t) − ν1wz0−q+1(t) wz0+1(t)
wz1−q−1(t) − ν1wz1−q(t) wz1(t)

∣∣∣∣ .

We know from the sum representation of the modified Bessel function (e.g., [2, 9.6.10]) that
∑

k∈Z

νk0ν
k
1wk+d(t)wk(t) = (ν0ν1)−d/2Id(2

√
ν0ν1t)

for d ∈ Z. Expanding the determinant, we find that kνt (q, q′) equals

ρ(q
′−q)/2Iq′−q + ρ(q

′−q−1)/2Iq+q′+1 + (1 − ρ)ρq
′
∑

ℓ≥q+q′+2

ρ−ℓ/2Iℓ,

where ρ := ν0/ν1 and all arguments of the Bessel functions are 2
√
ν0ν1t. This is the well-

known expression for the time-dependent M/M/1 queue. A similar program can be followed
for N > 1, and kνt (q, q′) can then be interpreted as weighted sum of so-called lattice Bessel
functions [4, 15, 8]. To our knowledge, for N > 2 this representation has not been recorded
in the literature. Note that it is numerically inefficient to use the resulting representation
of kνt , see [7].
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Appendix A. Symmetric functions and Gelfand-Tsetlin patterns

This appendix defines the coefficients e
(ij)
k and h

(ij)
k used in Section 2. We also introduce

Gelfand-Tsetlin patterns and Schur polynomials, which play important roles in the proof of
our main results. More details can be found in, e.g., Chapter 7 of Stanley [21].

The rth complete homogeneous symmetric polynomials in the indeterminates α0, . . . αN

is given by

hr(α) =
∑

k0≥0,...,kN≥0:k0+k1+···+kN=r

αk0
0 α

k1
1 · · ·αkN

N .

By convention h0 = 1 and hr = 0 for r < 0. Now for 0 ≤ i < j ≤ N , let h
(ij)
r (α) = hr(α

(ij))

where α(ij) is the (N + 1)-vector (0, . . . , 0, αi+1, αi+2, . . . , αj , 0, . . . 0) obtained from α by
setting the first i + 1 weights and the last N − j weights equal to 0. Equivalently it is the
rth complete homogeneous symmetric polynomial in the indeterminates αi+1, . . . , αj . We

set h
(jj)
r (α) = 1(r = 0).

We write er for the rth elementary symmetric polynomial defined as

er(α) =
∑

0≤k1<k2<···<kr≤N

αk1 · · ·αkr .

In analogy with the complete homogeneous symmetric polynomials, we use the conventions

e
(jj)
r (α) = 1(r = 0) and e0(α) = 1. We also set e

(ij)
r (α) = er(α

(ij)), so that in particular

e
(ij)
r (α) = 0 for r < 0.

Let x be an array of real-valued variables x = (x0, . . . , xN ) with xk = (xk0 , x
k
1 , . . . , x

k
k) ∈

Zk+1, such that the coordinates satisfy the inequalities

xkk ≤ xk−1
k−1 ≤ xkk−1 ≤ xk−1

k−2 ≤ . . . ≤ xk1 ≤ xk−1
0 ≤ xk0

for k = 1, . . . , N . We write KN for the set of all x satisfying the above constraint, and
say that any x ∈ KN is a Gelfand-Tsetlin (GT) pattern of order N + 1. For x ∈ KN , we

set sh(x) = (xN0 , x
N
1 , . . . , x

N
N ) and ledge(x) = (x00, . . . , x

N
N ). If ledge(x) ≥ 0, i.e., all xji are

nonnegative, integer-valued GT patterns of order N + 1 are in one-to-one correspondence
with so-called semistandard Young tableau with N+1 rows and entries not exceeding N+1.
For a vector α = (α0, α1, . . . , αN ) of weights, we define the weight αx of a GT pattern x by

αx = α
x0
0

0

N∏

k=1

α
P

xk
i −

P

xk−1
i

k .

The Schur polynomial in the indeterminates α0, . . . αN corresponding to a nonnegative
z ∈WN is given by

sz(α) =
∑

x∈KN :sh(x)=z

αx.

Schur polynomials are symmetric in the αi, which is readily seen from their alternative
determinantal definition:

sz(α) =
1∏

0≤i<j≤N [αi − αj ]
det
{
αzi−i+N
j

}
.
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This representation requires that the αi be distinct, but there is no singularity; there are
factors of (αi−αj) implicit in the determinant which cancel with factors in the denominator.
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