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Optimality of Affine Policies in Multi-stage Robust Optimization

Dimitris Bertsimas ∗ Dan A. Iancu† Pablo A. Parrilo ‡

Abstract

In this paper, we show the optimality of a certain class of disturbance-affine control policies in the
context of one-dimensional, constrained, multi-stage robust optimization. Our results cover the finite
horizon case, with minimax (worst-case) objective, and convex state costs plus linear control costs. We
develop a new proof methodology, which explores the relationship between the geometrical properties
of the feasible set of solutions and the structure of the objective function. Apart from providing an
elegant and conceptually simple proof technique, the approach also entails very fast algorithms for the
case of piecewise affine state costs, which we explore in connection with a classical inventory management
application.

1 Introduction.

Multi-stage optimization problems under uncertainty have been prevalent in numerous fields of science and
engineering, and have elicited interest from diverse research communities, on both a theoretical and a prac-
tical level. Several solution approaches have been proposed, with various degrees of generality, tractability,
and performance guarantees. Some of the most successful ones include exact and approximate dynamic
programming, stochastic programming, sampling-based methods, and, more recently, robust and adaptive
optimization, which is the focus of the present paper.

The topics of robust optimization and robust control have been studied, under different names, by a
variety of academic groups, mostly in operations research (Ben-Tal and Nemirovski [1999], Ben-Tal et al.
[2002], Ben-Tal and Nemirovski [2002], Bertsimas and Sim [2003], Bertsimas and Sim [2004], Bertsimas
et al. [2004]) and control theory (Bertsekas and Rhodes [1971], Fan et al. [1991], El-Ghaoui et al. [1998],
Grieder et al. [2003], Bemporad et al. [2003], Kerrigan and Maciejowski [2004], Zhou and Doyle [1998],
Dullerud and Paganini [2005]), with considerable effort put into justifying the assumptions and general
modeling philosophy. As such, the goal of the current paper will not be to justify the use of robust (and,
more generally, distribution-free) techniques. Rather, we will take the modeling approach as a given, and
investigate tractability and performance issues in the context of a certain class of optimization problems.
More precisely, we will be concerned with the following multi-stage decision problem:

Problem 1.1. Consider the following one-dimensional, discrete, linear, time-varying dynamical system:

xk+1 = αk · xk + βk · uk + γk · wk (1)

where αk, βk, γk 6= 0 are known scalars, and the initial state x1 ∈ R is specified. The random disturbances
wk are unknown, but bounded:

wk ∈ Wk
def

= [wk , wk]. (2)

We would like to find a sequence of robust controllers {uk}, obeying certain constraints:

uk ∈ [Lk, Uk] (3)
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(Lk, Uk are known and fixed), and optimizing the following min-max cost function over a finite horizon
1, . . . , T :

JmM
def

= min
u1

[

c1 · u1 +max
w1

[

h1(x2) + · · ·+min
uk

[

ck · uk +max
wk

[hk(xk+1) + . . .

+min
uT

(

cT · uT +max
wT

hT (xT+1)

)

. . .

]

. . .

] ]

(4)

where the functions hk : R → R are known, convex and coercive, and ck ≥ 0 are fixed and known.

The problem corresponds to a situation in which, at every time step k, the decision maker has to compute
a control action uk, in such a way that certain constraints (3) are obeyed, and a cost penalizing both the state
(hk(xk+1)) and the control (ck · uk) is minimized. The uncertainty, wk, always acts so as to maximize the
costs, hence the problem solved by the decision maker corresponds to a worst-case scenario (a minimization of
the maximum possible cost). Examples of such problems include the case of quadratic state costs, hk(xk+1) =
rk+1 ·x

2
k+1, (rk+1 ≥ 0), as well as norm-1 or norm-∞ costs, hk(xk+1) = rk+1 · |xk+1| , (rk+1 ≥ 0), all of which

have been studied extensively in the literature in the unconstrained case (see, for example, Zhou and Doyle
[1998], and Dullerud and Paganini [2005]).

The solution to Problem 1.1 could be obtained using a “classical” Dynamic Programming formulation
(see Bertsekas [2001]), in which the optimal policies u∗

k(xk) and the optimal value functions J∗
k (xk) are

computed backwards in time, starting at the end of the planning horizon, k = T . The resulting policies are
piecewise affine in the state xt, and have properties that are well known and documented in the literature,
dating back to Scarf et al. [1958].

In the current paper, we would like to study the performance of a new class of policies, where instead of
regarding the controllers uk as functions of the state xk, one seeks direct parameterizations in the observed
disturbances:

uk : W1 ×W2 × · · · ×Wk−1 → R. (5)

In this framework, we would require that constraint (3) should be robustly feasible:

uk(w
k) ∈ [Lk, Uk] , ∀wk def

= (w1, . . . , wk−1) ∈ W1 × · · · ×Wk−1. (6)

Note that if we insisted on this category of parameterizations, then we would have to consider a new state
for the system, Xk, which would include all the past-observed disturbances, wk. Furthermore, while xk

summarizes all the past information needed to make an optimal decision at stage k, the same would not
necessarily be true for wk, so we may want to include even more information in Xk (for example, the
previous controls {ut}1≤t<k or the previous states {xt}1≤t<k or some combination thereof). Compared with
the original, compact state formulation, xk, the new state Xk would become much larger, and solving the
Dynamic Program with state variable Xk would produce exactly the same optimal objective function value
JmM . Therefore, one would be tempted to ask what the benefit for introducing such a complicated state
might be.

The hope is that, by considering policies over a larger state, one might be able to obtain simpler functional
forms, for instance, affine policies. These have a very compact representation, since only the coefficients of the
parameterization are needed, and, for certain classes of convex costs hk(·), there may be efficient procedures
available for computing them.

This approach is also not new in the literature. It has been originally advocated in the context of stochastic
programming (Rockafellar andWets [1978]), then in robust optimization (Ben-Tal et al. [2004]), and extended
to linear systems theory (Ben-Tal et al. [2005a], Ben-Tal et al. [2006]), with notable contributions from
researchers in robust model predictive control and receding horizon control (see Bemporad et al. [2003],
Kerrigan and Maciejowski [2004], Löfberg [2003], Skaf and Boyd [2008], and references therein). In all the
papers, which usually deal with the more general case of multi-dimensional linear systems, the authors show
how the reformulation can be done, and how the corresponding affine policies can be found by solving specific
types of optimization problems, which vary from linear and quadratic programs (Ben-Tal et al. [2005a],
Kerrigan and Maciejowski [2004], Kerrigan and Maciejowski [2003]) to conic and semi-definite (Ben-Tal
et al. [2005a], Löfberg [2003], Bertsimas and Brown [2007], Grieder et al. [2003]), or even multi-parametric,
linear or quadratic programs (Bemporad et al. [2003]). The first steps towards analyzing the properties of
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such parameterizations were made in Kerrigan and Maciejowski [2004], where the authors show that, under
suitable conditions, the resulting affine parameterization has certain desirable system theoretic properties
(stability and robust invariance). Another notable contribution was made by Goulart and Kerrigan [2005],
who prove that the class of affine disturbance feedback policies is equivalent to the class of affine state
feedback policies with memory of prior states, thus subsuming the well known classes of open-loop and pre-
stabilizing control policies. However, to the best of our knowledge, apart from these theoretical advances,
there has been very little progress in proving results about the quality of the objective function values
resulting from the use of such parameterizations.

Our main result, summarized in Theorem 3.1 of Section 3, is that, for Problem 1.1 stated above, affine
policies of the form (5) are, in fact, optimal. Furthermore, we are able to prove that a certain (affine)
relaxation of the state costs is also possible, without any loss of optimality, which gives rise to very efficient
algorithms for computing the optimal affine policies when the state costs hk(·) are piece-wise affine. To the
best of our knowledge, this is the first result of its kind, and it provides intuition and motivation for the
widespread advocation of such policies in both theory and applications. Our theoretical results are tight
(if the conditions in Problem 1.1 are slightly perturbed, then simple counterexamples for Theorem 3.1 can
be found), and the proof of the theorem itself is atypical, consisting of a forward induction and making
use of polyhedral geometry to construct the optimal affine policies. Thus, we are able to gain insight into
the structure and properties of these policies, which we explore in connection with a classical inventory
management problem.

The paper is organized as follows. Section 2 presents an overview of the Dynamic Programming formula-
tion in state variable xk, extracting the optimal policies u∗

k(xk) and optimal value functions J∗
k (xk), as well as

some of their properties. Section 3 contains our main result, and briefly discusses some immediate extensions
and computational implications. In Section 4, we introduce the constructive proof for building the affine
control policies and the affine cost relaxations, and present counterexamples that prevent a generalization
of the results. In Section 5, we explore our results in connection with a classical inventory management
problem. Section 6 presents our conclusions and directions for future research.

2 Dynamic Programming Solution.

As already mentioned in the introduction, the solution to Problem 1.1 can be obtained using a “classical”
Dynamic Programming formulation [Bertsekas, 2001], in which the state is taken to be xk, and the optimal
policies u∗

k(xk) and optimal value functions J∗
k (xk) are computed starting at the end of the planning horizon,

k = T , and moving backwards in time. In this section, we will briefly outline the solution of the Dynamic
Program for our problem, and will state some of the key properties that will be used throughout the rest of
the paper. For completeness, a full proof of the results is included in Section 7.1 of the Appendix.

In order to simplify the notation, we remark that, since the constraints on the controls uk and the
bounds on the disturbances wk are time-varying, and independent for different time-periods, we can restrict
attention, without loss of generality1, to a system with αk = βk = γk = 1. With this simplification, the
problem that we would like to solve is the following:

(DP )

JmM
def
= min

u1

[

c1 · u1 +max
w1

[

h1(x2) + · · ·+min
uk

[

ck · uk +max
wk

[hk(xk+1) + . . .

+min
uT

(

cT · uT +max
wT

hT (xT+1)

)

. . .

]

. . .

] ]

s.t. xk+1 = xk + uk + wk

Lk ≤ uk ≤ Uk ∀ k ∈ {1, 2, . . . , T }

wk ∈ Wk = [wk , wk].

1Such a system can always be obtained by the linear change of variables x̃k = xk
Qk−1

i=1 αi

, and by suitably scaling the bounds

Lk, Uk, wk
, wk.
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The corresponding Bellman recursion for (DP ) can then be written as follows:

J∗
k (xk)

def
= min

Lk≤uk≤Uk

[

ck · uk + max
wk∈Wk

[
hk(xk + uk + wk) + J∗

k+1 (xk + uk + wk)
]
]

,

where J∗
T+1(xT+1) ≡ 0. By defining:

yk
def
= xk + uk

gk (yk)
def
= max

wk∈Wk

[
hk(yk + wk) + J∗

k+1 (yk + wk)
]
,

(7)

we obtain the following solution to the Bellman recursion (see Section 7.1 in the Appendix for the derivation):

u∗
k(xk) =







Uk, if xk < y
k
− Uk

−xk + y∗, otherwise

Lk, if xk > yk − Lk

(8)

J∗
k (xk) = ck · u

∗
k(xk) + gk (xk + u∗

k(xk)) =







ck · Uk + gk(xk + Uk), if xk < y
k
− Uk

ck · (y
∗ − xk) + gk(y

∗), otherwise

ck · Lk + gk(xk + Lk), if xk > yk − Lk ,

(9)

where y∗ ∈ [y
k
, yk], and [y

k
, yk] represents the (compact) set of minimizers of the convex function ck·y+gk(y).

A typical example of the optimal control law and the optimal value function is shown in Figure 1.

y * -Uk y * - Lk
xk

Lk

Uk

uk
*

y * -Uk y * - Lk
xk

Jk
*

uk = uk
*

uk = y * - xk

uk = Lk

uk = Uk

Figure 1: Optimal control law u
∗
k(xk) and optimal value function J

∗
k (xk) at time k.

The main properties of the solution that will be relevant for our later treatment are listed below:

P1 The optimal control law u∗
k(xk) is piecewise affine, with 3 pieces, continuous and non-increasing.

P2 The optimal value function, J∗
k (xk), and the function gk(yk) are convex.

P3 The difference in the values of the optimal control law at two distinct arguments s ≤ t always satisfies:
u∗
k(s)− u∗

k(t) = −fk · (s− t), for some fk ∈ [0, 1].

P4 The optimal value function, J∗
k (xk), has a subgradient at most −ck for xk < y

k
− Uk, exactly −ck in

the interval [y
k
− Uk, yk − Lk], and at least −ck for xk > yk − Lk.

P5 The function gk(yk) is decreasing, with a subgradient at most −ck, in the interval (−∞, y
k
], and is

increasing, with a sugradient at least −ck, in the interval [yk ,∞).
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3 Optimality of Affine Policies in wk.

In this section, we introduce our main contribution, namely a proof that policies that are affine in the
disturbances wk are, in fact, optimal for problem (DP ). Using the same notation as in Section 2, we can
summarize our main result in the following theorem:

Theorem 3.1. For every time step k = 1, . . . , T , the following quantities exist:

• An affine control policy:

qk(w
k)

def

= qk,0 +

k−1∑

t=1

qk,t · wt (10)

• An affine running cost:

zk(w
k+1)

def

= zk,0 +

k∑

t=1

zk,t · wt (11)

such that the following properties are obeyed:

Lk ≤ qk(w
k) ≤ Uk, ∀wk ∈ W1 × · · · ×Wk−1 (12)

zk(w
k+1) ≥ hk

(

x1 +

k∑

t=1

(
qt(w

t) + wt

)

)

, ∀wk+1 ∈ W1 × · · · ×Wk (13)

JmM = max
w1,...,wk

[
k∑

t=1

(
ct · qt(w

t) + zt(w
t+1)

)
+ J∗

k+1

(

x1 +
k∑

t=1

(
qt(w

t) + wt

)

)]

. (14)

Let us interpret the main statements and results in the theorem. Equation (12) confirms the existence
of an affine policy qk(w

k) that is robustly feasible, i.e. that obeys the control constraints, no matter what
the realization of the disturbances may be. Equation (13) states the existence of an affine cost zk(w

k+1)
that is always larger than the convex state cost hk(xk+1) incurred when the affine policies {qt(·)}1≤t≤k are
used. Equation (14) guarantees that, despite using the (suboptimal) affine control law qk(w

k), and incurring
a (potentially larger) affine stage cost zk(w

k+1), the overall objective function value JmM is, in fact, not
increased. This translates in the following two main results:

• Existential result. Affine policies qk(w
k) are, in fact, optimal for Problem 1.1.

• Computational result. When the convex costs hk(xk+1) are piecewise affine, the optimal affine policies
{
qk(w

k)
}

1≤k≤T
can be computed by solving a Linear Programming problem.

To see why the second implication would hold, suppose that hk(xk+1) is the maximum of mk affine functions:

hk(xk+1) = max
(
pik · xk+1 + pik,0

)
, i ∈ {1, . . . ,mk}.

Then an optimal affine policy qk(w
k) can be obtained by solving the following optimization problem (see

Ben-Tal et al. [2005a,b]):

min
J ; {qk,t}; {zk,t}

J

s.t. ∀w ∈ W1 ×W2 × · · · ×WT , ∀ k = 1, . . . , T :

(AARC) J ≥

T∑

k=1

[

ck · qk,0 + zk,0 +

k−1∑

t=1

(ct · qk,t + zk,t) · wt + zk,k · wk

]

∀ i ∈ {1, . . . ,mk} : zk,0 +

k∑

t=1

zk,t · wt ≥ pik ·

[

x1 +

k∑

t=1

(

qt,0 +

t−1∑

τ=1

qt,τ · wτ + wt

) ]

+ pik,0

Lk ≤ qk,0 +

k−1∑

t=1

qk,t · wt ≤ Uk.

5



Although Problem (AARC) is still a semi-infinite LP (due to the requirement of robust constraint feasibility,
∀w), since all the constraints are inequalities that are bi-affine in the decision variables and the uncertain
quantities, a very compact reformulation of the problem is available. In particular, with a typical constraint
in (AARC) written as:

λ0[x] +
T∑

t=1

λt[x] · wt ≤ 0, ∀w ∈ W1 ×W2 × · · · ×WT ,

where λ[x] denotes that λ is an affine function of the decision variables x, it can be shown (see Ben-Tal and
Nemirovski [2002], Ben-Tal et al. [2004] for details) that the previous condition is equivalent to:

{

λ0[x] +
∑T

t=1

(

λt[x] ·
wt+wt

2 +
wt−wt

2 · ξt

)

≤ 0

−ξt ≤ λt[x] ≤ ξt, t = 1, . . . , T ,
(15)

which are linear constraints in the decision variables x, ξ. Therefore, (AARC) can be reformulated as a
Linear Program, with O

(
T 2 ·maxk mk

)
variables and O

(
T 2 ·maxk mk

)
constraints, which can be solved

very efficiently using commercially available software.
We will conclude our observations by making one last remark related to an immediate extension of the

results. Note that in the statement of Problem 1.1, there was no mention about constraints on the states xk

of the dynamical system. In particular, one may want to incorporate lower or upper bounds on the states,
as well:

Lx
k ≤ xk ≤ Ux

k (16)

We claim that, in case the mathematical problem including such constraints remains feasible2, then affine
policies will, again, be optimal. The reason is that such constraints can always be simulated in our current
framework, by adding suitable convex barriers to the stage costs hk(xk+1). In particular, by considering the
modified, convex3 stage costs:

h̃k(xk+1)
def
= hk(xk+1) + 1[Lx

k+1,U
x
k+1]

(xk+1), where

1[Lx
k+1,U

x
k+1]

(xk+1)
def
=

{

0, if xk+1 ∈ [Lx
k+1, U

x
k+1]

∞, otherwise ,

it can be easily seen that the original problem, with convex stage costs hk(·) and state constraints (16),
is equivalent to a problem with the modified stage costs h̃k(·) and no state constraints. And, since affine
policies are optimal for the latter problem, the result is immediate. Therefore, our decision to exclude such
constraints from the original formulation was made only for sake of brevity and conciseness of the proofs,
but without loss of generality.

4 Proof of Main Theorem.

The current section contains the proof of Theorem 3.1. Before presenting the details, we would first like to
give some intuition behind the strategy of the proof, and introduce the organization of the material.

Unlike most Dynamic Programming proofs, which utilize backward induction on the time-periods, we will
have to proceed with a forward induction. Section 4.1 will present a test of the first step of the induction,
and will then introduce a detailed analysis of the consequences of the induction hypothesis.

We will then separate the completion of the induction step into two parts. In the first part, handled in
Section 4.2, by exploiting the structure provided by the forward induction hypothesis, and making critical
use of the properties of the optimal control law u∗

k(xk) and optimal value function J∗
k (xk) (the solutions

to problem (DP ) in Section 2), we will be able to introduce a candidate affine policy qk(w
k). In Section

2Such constraints may lead to infeasible problems. For example: T = 1, x1 = 0, u1 ∈ [0, 1], w1 ∈ [0, 1], x2 ∈ [5, 10].
3The functions h̃k(·) are convex in xk+1, since 1([Lk+1, Uk+1]), the indicator function of a convex set, is convex (see pages

28, 33 in Rockafellar [1970] or Example 7.1.2 in Bertsekas [2003]), and the sum of convex functions remains convex.
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4.2.1, we will then prove that this policy is robustly feasible, and preserves the min-max value of the overall
problem, JmM , when used in conjunction with the original, convex state costs, hk(xk+1).

Similarly, for the second part of the inductive step, (Section 4.3), by re-analyzing the feasible sets of the
optimization problems resulting after the use of the (newly computed) affine policy qk(w

k), we will determine
a candidate affine cost zk(w

k+1), which we will prove (Section 4.3.1) to be always larger than the original
convex state costs, hk(xk+1). However, despite this fact, in Section 4.3.1 we will also show that when this
affine cost is incurred, the overall min-max value JmM remains unchanged, which will complete the proof of
the inductive step.

Section 4.3.2 will then conclude the proof of Theorem 3.1, and will outline several counterexamples that
prevent an immediate extension of the result to more general cases.

4.1 Induction Hypothesis.

As mentioned before, the proof of the theorem will utilize a forward induction on the time-step k. Let us
begin by verifying the induction at k = 1.

Using the same notation as in Section 2, by taking the affine control to be q1
def
= u∗

1(x1), we immediately
get that q1, which is simply a constant, is robustly feasible, so (12) is obeyed.

Furthermore, since q1 = u∗
1(x1) is optimal, we can write the overall optimal objective value, JmM , as:

JmM = J∗
1 (x1) = min

u1∈[L1,U1]
[ c1 · u1 + g1(x1 + u1) ] = c1 · q1 + g1 (x1 + q1)

(61)
=

(61)
= c1 · q1 +max{ (h1 + J∗

2 ) (x1 + q1 + w1) , (h1 + J∗
2 ) (x1 + q1 + w1) }. (17)

Next, we introduce the affine cost z1(w1)
def
= z1,0+ z1,1 ·w1, where we constrain the coefficients z1,i to satisfy

the following system of linear equations:

{

z1,0 + z1,1 · w1 = h1(x1 + q1 + w1)

z1,0 + z1,1 · w1 = h1(x1 + q1 + w1) .

Note that for fixed x1 and q1, the function z1(w1) is nothing but a linear interpolation of the mapping
w1 7→ h1(x1 + q1 + w1), matching the value at points {w1 , w1}. Since h1 is convex, the linear interpolation
defined above clearly dominates it, so condition (13) is readily satisfied. Furthermore, by (17), JmM is
achieved for w1 ∈ {w1 , w1}, so condition (14) is also obeyed.

Having checked the induction at time k = 1, let us now assume that the statements of Theorem 3.1 are
true for times t = 1, . . . , k. Equation (14) written for stage k then yields:

JmM = max
w1,...,wk

[
k∑

t=1

(
ct · qt(w

t) + zt
(
wt+1

))
+ J∗

k+1

(

x1 +

k∑

t=1

(
qt(w

t) + wt

)

)]

=

= max
(θ1,θ2)∈Θ

[
θ1 + J∗

k+1(θ2)
]
, (18)

where Θ
def
=

{

(θ1, θ2) : θ1
def
=

k∑

t=1

(
ct · qt(w

t) + zt
(
wt+1

))
, θ2

def
= x1 +

k∑

t=1

(
qt(w

t) + wt

)

}

. (19)

Since {qt}1≤t≤k and {zt}1≤t≤k are affine functions, this implies that, although the uncertainties w1, . . . , wk

lie in a set with 2k vertices (the hyper-rectangleW1×· · ·×Wk), they are only able to affect the objective JmM

through affine combinations taking values in the set Θ. Such a polyhedron, arising as a 2-dimensional affine
projection of a k-dimensional hyper-rectangle, is called a zonogon. It belongs to a larger class of polytopes,
known as zonotopes, whose combinatorial structure and properties are well documented in the discrete and
computational geometry literature. The interested reader is referred to Chapter 7 of Ziegler [2003] for a very
nice and accessible introduction.

The main properties of a zonogon that we are interested in are summarized in Lemma 7.2, found in the
Appendix. In particular, the set Θ is centrally symmetric, and has at most 2k vertices (see Figure 2 for an

7
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v0 = v− [000000]

v1 [100000]

v2 [110000]

v3 [111000]

v4 [111100]

v5 [111110]

v6 = v+ [111111]

vj v
#
j

θ1

θ2

Figure 2: Zonogon obtained from projecting a hypercube in R6.

example). Furthermore, by numbering the vertices of Θ in counter-clockwise fashion, starting at:

v0 ≡ v− def
= argmax

θ1

{

argmin
θ2

{θ ∈ Θ}

}

, (20)

we can establish the following result concerning the points of Θ that are relevant in our problem:

Lemma 4.1. The maximum value in optimization problem (18) is achieved for (θ1, θ2) ∈ {v0,v1, . . . ,vk}.

Proof. The optimization problem described in (18) and (19) is a maximization of a convex function over
a convex set. Therefore (see Section 32 of Rockafellar [1970]), the maximum is achieved at the extreme
points of the set Θ, namely on the set {v0,v1, . . . ,v2p−1,v2p ≡ v0}, where 2p is the number of vertices of
Θ. Letting O denote the center of Θ, by part (iii) of Lemma 7.2 in the Appendix, we have that the vertex

symmetrically opposed to v−, namely v+ def
= 2O − v−, satisfies v+ = vp.

Consider any vertex vj with j ∈ {p+ 1, . . . , 2p− 1}. From the definition of v−,v+, for any such vertex,

there exists a point v#
j ∈ [v−,v+], with the same θ2-coordinate as vj , but with a θ1-coordinate larger than

vj (refer to Figure 2). Since such a point will have an objective in problem (18) at least as large as vj ,

and v
#
j ∈ [v0,vp], we can immediately conclude that the maximum of problem (18) is achieved on the set

{v0, . . . ,vp}. Since 2p ≤ 2k (see part (ii) of Lemma 7.2), we can immediately arrive at the conclusion of the
lemma.

Since the argument presented in the lemma will be recurring throughout several of our proofs and
constructions, we will end this subsection by introducing two useful definitions, and generalizing the previous
result.

Consider the system of coordinates (θ1, θ2) in R2, and let S ⊂ R2 denote an arbitrary, finite set of
points and P denote any (possibly non-convex) polygon such that its set of vertices is exactly S. With

y− def
= argmaxθ1

{
argminθ2

{θ ∈ S}
}
, y+ def

= argmaxθ1
{
argmaxθ2 {θ ∈ S}

}
, by numbering the vertices of

the convex hull of S in a counter-clockwise fashion, starting at y0
def
= y−, and with ym = y+, we define the

right side of P and the zonogon hull of S as follows:

Definition 4.1. The right side of an arbitrary polygon P is:

r-side (P)
def
= {y0,y1, . . . ,ym} . (21)

Definition 4.2. The zonogon hull of a set of points S is:

z-hull (S)
def

=

{

y ∈ R2 : y = y0 +

m∑

i=1

wi ·
(
yi − yi−1

)
, 0 ≤ wi ≤ 1

}

. (22)
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Figure 3: Examples of zonogon hulls for different sets S ∈ R2.

Intuitively, r-side(P) represents exactly what the names hints at, i.e. the vertices found on the right side
of P . An equivalent definition using more familiar operators could be the following:

r-side(P) ≡ ext

(

cone

([
0
−1

])

+ conv (P)

)

,

where cone(·) and conv(·) represent the conic and convex hull, respectively, and ext(·) denotes the set of
extreme points.

Using Definition 7.1 in Section 7.2 of the Appendix, one can see that the zonogon hull of a set S
is simply a zonogon that has exactly the same vertices on the right side as the convex hull of S, i.e.
r-side (z-hull (S)) = r-side (conv (S)). Some examples of zonogon hulls are shown in Figure 3 (note that the
initial points in S do not necessarily fall inside the zonogon hull, and, as such, there is no general inclusion
relation between the zonogon hull and the convex hull). The reason for introducing this object is that it
allows for the following immediate generalization of Lemma 4.1:

Corollary 4.1. If P is any polygon in R2 ≡ (θ1, θ2) with a finite set S of vertices, and f : R → R is any
convex function, then the following string of equalities holds:

max
(θ1,θ2)∈P

[ θ1 + f(θ2) ] = max
(θ1,θ2)∈conv(P)

[ θ1 + f(θ2) ] = max
(θ1,θ2)∈S

[ θ1 + f(θ2) ] = max
(θ1,θ2)∈r-side(P)

[ θ1 + f(θ2) ]

= max
(θ1,θ2)∈z-hull(S)

[ θ1 + f(θ2) ] = max
(θ1,θ2)∈r-side(z-hull(S))

[ θ1 + f(θ2) ] .

Proof. The proof is identical to that of Lemma 4.1, and is omitted for brevity.

Using this result, whenever we will be faced with a maximization of a convex function θ1+f(θ2), we will be
able to switch between different feasible sets, without affecting the overall optimal value of the optimization
problem.

In the context of Lemma 4.1, the above result allows us to restrict attention from a potentially large set
of relevant points (the 2k vertices of the hyper-rectangle W1 × · · · × Wk), to the k + 1 vertices found on
the right side of the zonogon Θ, which also gives insight into why the construction of an affine controller
qk+1(w

k+1) with k + 1 degrees of freedom, yielding the same overall objective function value JmM , might
actually be possible.

In the remaining part of Section 4.1, we would like to further narrow down this set of relevant points,
by using the structure and properties of the optimal control law u∗

k+1(xk+1) and optimal value function
J∗
k+1(xk+1), derived in Section 2. Before proceeding, however, we will first reduce the notational clutter by

introducing several simplifications and assumptions.

4.1.1 Simplified Notation and Assumptions.

To start, we will omit writing the time subscripts (k or k + 1) whenever possible, and will take:

θ1(w)
def
= a0 +

k∑

i=1

ai · wi; θ2(w)
def
= b0 +

k∑

i=1

bi · wi; qk+1(w) ≡ q(w)
def
= q0 +

k∑

i=1

qi · wi , (23)
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where a = (a1, . . . , ak) and b = (b1, . . . , bk) are the generators of the zonogon Θ. We will use the same
counter-clockwise numbering of the vertices of Θ as introduced earlier in Section 4.1:

v0
def
= v−, . . . ,vp

def
= v+, . . . ,v2p = v− , (24)

where 2p is the number of vertices of Θ, and we will use the following overloaded notation for θ1 and θ2:

• θi(w), for w ∈ Rk, will denote the θi value assigned by the affine projection to w, via (23).

• θi [v], applied to v ∈ R2, will be used to denote the θi-coordinate of the point v.

Also, since θ2 ≡ xk+1, instead of referring to J∗
k+1(xk+1) and u∗

k+1(xk+1), we will use J
∗(θ2) and u∗(θ2), and

we will occasionally use the short-hand notations u∗(vi), J
∗(vi) and g (vi), instead of u∗ (θ2[vi]), J

∗ (θ2[vi])
and g (θ2[vi] + u∗(θ2[vi])), respectively.

Since many of the sets of interest will lie in R2, for a system with coordinates (x, y), we define the
following convenient notation for the cotangent of the angle formed by an oriented line segment [M ,N ] with
the x-axis:

cotan (M , N )
def
=

xN − xM

yN − yM
, where M = (xM , yM ) ∈ R2, N = (xN , yN) ∈ R2. (25)

We will also make the following simplifying assumptions:

Assumption 1. The uncertainty vector at time k, wk = (w1, . . . , wk), belongs to the unit hypercube Hk of
Rk, i.e. wi = 0, wi = 1, ∀ i = 1, . . . , k.

Assumption 2. The zonogon Θ has a maximal number of vertices, i.e. p = k.

Assumption 3. The vertex of the hypercube projecting to vi, i ∈ {0, . . . , k}, is exactly [1, 1, . . . , 1, 0, . . . , 0],
i.e. 1 in the first k components and 0 thereafter (see Figure 2).

These assumptions are made only to facilitate the exposition, and result in no loss of generality. To
see this, note that the conditions of Assumption 1 can always be achieved by adequate translation and
scaling of the generators a and b (refer to Section 7.2 of the Appendix for more details), and Assumption
3 can be satisfied by renumbering the coordinates of the hyper-rectangle, i.e. renumbering the disturbances
w1, . . . , wk. As for Assumption 2, we argue that an extension of our construction to the degenerate case
p < k is immediate (one could also remove the degeneracy by applying an infinitesimal perturbation to the
generators a or b, with infinitesimal cost implications).

4.1.2 Further Analysis of the Induction Hypothesis.

With this simplified notation, by using (9) to express J∗(·) as a function of u∗(·) and g(·), we rewrite equation
(18) as follows:

(OPT ) JmM = max
(γ̃1,γ̃2)∈Γ̃

[ γ̃1 + g (γ̃2) ] ,

where Γ̃
def
=
{

(γ̃1, γ̃2) : γ̃1
def
= θ1 + c · u∗(θ2), γ̃2

def
= θ2 + u∗(θ2), (θ1, θ2) ∈ Θ

}

.
(26)

A characterization for the set Γ̃ = (γ̃1, γ̃2) can be obtained by replacing the optimal, piecewise affine control
law u∗(θ2), given by4 (8) in equation (26):

Γ̃ : (γ̃1, γ̃2) =







(θ1 + c · U, θ2 + U) , if θ2 < y∗ − U

(θ1 − c · θ2 + c · y∗, y∗) , otherwise

(θ1 + c · L, θ2 + L) , if θ2 > y∗ − L

(27)

Using the same overloaded notation5 for γ̃1, γ̃2:

4For simplicity, we focus on the case when g(·) has a unique minimizer, such that y = y = y∗ in (8), (9). The analysis could

be immediately extended to the set of minimizers, [y , y ].
5To avoid confusion, in addition to different types of parentheses, we will consistenly use tilded arguments to denote points

ṽi ∈ Γ̃, and non-tilded arguments for v ∈ Θ.
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• γ̃i(v), applied to v ∈ Θ ⊂ R2, will refer to the γ̃i value assigned by the mapping (27) to v

• γ̃i [ṽ], applied to ṽ ∈ Γ ⊂ R2, will denote the γ̃i coordinate of the point ṽ,

we can now provide a compact characterization for the maximizers in problem (OPT ) from (26):

Lemma 4.2. The maximum in problem (OPT ) over Γ̃ is reached on the right side of:

∆Γ
def
= conv ({ṽ0, . . . , ṽk}) , (28)

where:

ṽi
def

= ( γ̃1(vi), γ̃2(vi) ) = ( θ1[vi] + c · u∗(vi), θ2[vi] + u∗(vi) ) , i ∈ {0, . . . , k}. (29)

Proof. By Lemma 4.1, the maximum in (18) is reached at one of the vertices v0,v1, . . . ,vk of the zonogon
Θ. Since this problem is equivalent to problem (OPT ) in (26), written over Γ̃, we can immediately conclude
that the maximum of the latter problem is reached at the points {ṽi}1≤i≤k given by (29). Furthermore,
since g(·) is convex (see Property P2 of the optimal DP solution, in Section 2), we can apply Corollary 4.1,
and replace the points ṽi with the right side of their convex hull, r-side (∆Γ), without changing the result of
the optimization problem, which completes the proof.

Since this result will be central to our future construction and proof, we will spend the remaining part
of the subsection discussing some of the properties of the main object of interest, the set of points on the
right side of ∆Γ, r-side(∆Γ). To understand the geometry of the set ∆Γ and its connection with the optimal
control law, note that the mapping (27) from Θ to Γ̃ will discriminate points θ = (θ1, θ2) ∈ Θ depending on
their position relative to the horizontal band:

BLU
def
=
{
(θ1, θ2) ∈ R2 : θ2 ∈ [y∗ − U, y∗ − L]

}
. (30)

In particular, from (27) and the definition of v0, . . . ,vk in (24) and (20), we can distinguish a total of
four distinct cases. The first three, shown in Figure 4, are very easy to analyze:
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Figure 4: Trivial cases, when zonogon Θ lies entirely [C1] below, [C2] inside, or [C3] above the band BLU .

[C1] If the entire zonogon Θ falls below the band BLU , i.e. θ2 [vk] < y∗ − U , then Γ̃ is simply a translation
of Θ, by (c · U,U), so that r-side (∆Γ) = {ṽ0, ṽ1, . . . , ṽk}.

[C2] If Θ lies inside the band BLU , i.e. y∗ − U ≤ θ2 [v0] ≤ θ2 [vk] ≤ y∗ − L, then all the points in Γ̃ will
have γ̃2 = y∗, so Γ̃ will be a line segment, and |r-side (∆Γ)| = 1.

[C3] If the entire zonogon Θ falls above the band BLU , i.e. θ2 [v0] > y∗ − L, then Γ̃ is again a translation
of Θ, by (c · L,L), so again r-side (∆Γ) = {ṽ0, ṽ1, . . . , ṽk}.

The remaining case, [C4], is when Θ intersects the horizontal band BLU in a nontrivial fashion. We can
separate this situation in the three sub-cases shown in Figure 5, depending on the position of the vertex
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ṽt

ṽt
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vt ∈ r-side(Θ), where the index t relates the per-unit control cost, c, with the geometrical properties of the
zonogon:

t
def
=

{

0 , if a1

b1
≤ c

max
{

i ∈ {1, . . . , k} : ai

bi
> c
}

, otherwise .
(31)

We remark that the definition of t is consistent, since, by the simplifying Assumption 3, the generators a, b
of the zonogon Θ always satisfy:

{
a1

b1
> a2

b2
> · · · > ak

bk

b1, b2, . . . , bk ≥ 0.
(32)

An equivalent characterization of vt can be obtained as the result of an optimization problem:

vt ≡ argmin
θ2

{

argmax
(θ1,θ2)∈Θ

{θ1 − c · θ2}

}

. (33)

The following lemma summarizes all the relevant geometrical properties corresponding to this case:

Lemma 4.3. When the zonogon Θ has a non-trivial intersection with the band BLU (case [C4]), the convex
polygon ∆Γ and the set of points on its right side, r-side(∆Γ), satisfy the following properties:

1. r-side(∆Γ) is the union of two sequences of consecutive vertices (one starting at ṽ0, and one ending at
ṽk), and possibly an additional vertex, ṽt:

r-side(∆Γ) = {ṽ0, ṽ1, . . . , ṽs} ∪ {ṽt} ∪ {ṽr, ṽr+1 . . . , ṽk} , for some s ≤ r ∈ {0, . . . , k}.

2. With cotan (·, ·) given by (25) applied to the (γ̃1, γ̃2) coordinates, we have that:

{

cotan
(
ṽs, ṽmin(t,r)

)
≥ as+1

bs+1
, whenever t > s

cotan
(
ṽmax(t,s), ṽr

)
≤ ar

br
, whenever t < r.

(34)
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While the proof of the lemma is slightly technical, which is why we have decided to leave it for Section
7.3 of the Appendix, its implications are more straightforward. In conjuction with Lemma 4.2, it provides
a compact characterization of the points ṽi ∈ Γ̃ which are potential maximizers of problem (OPT ) in (26),
which immediately narrows the set of relevant points vi ∈ Θ in optimization problem (18), and, implicitly,
the set of disturbances w ∈ Hk that can achieve the min-max cost JmM .

4.2 Construction of the Affine Control Law.

Having analyzed the consequences that result from using the induction hypothesis of Theorem 3.1, we now
return to the task of completing the inductive proof, which amounts to constructing an affine control law
qk+1(w

k+1) and an affine cost zk+1(w
k+2) that verify conditions (12), (13) and (14) in Theorem 3.1. We will

separate this task into two parts. In the current section, we will exhibit an affine control law qk+1(w
k+1) that

is robustly feasible, i.e. satisfies constraint (12), and that leaves the overall min-max cost JmM unchanged,
when used at time k+ 1 in conjunction with the original convex state cost, hk+1(xk+2). The second part of
the induction, i.e. the construction of the affine costs zk+1(w

k+2) satisfying (13) and (14), will be left for
Section 4.3.

In the simplified notation introduced earlier, the problem we would like to solve is to find an affine control
law q(w) such that:

JmM = max
w∈[0,1]k

[ θ1 + c · q(w) + g (θ2 + q(w)) ]

L ≤ q(w) ≤ U , ∀w ∈ Hk.

The maximization represents the problem solved by the disturbances, when the affine controller, q(w),
is used instead of the optimal controller, u∗(θ2). As such, the first equation amounts to ensuring that the
overall objective function JmM remains unchanged, and the inequalities are a restatement of the robust
feasibility condition. The system can be immediately rewritten as:

(AFF ) JmM = max
(γ1,γ2)∈Γ

[ γ1 + g (γ2) ]

L ≤ q(w) ≤ U ,
(35)

where:

Γ
def
=
{

(γ1, γ2) : γ1
def
= θ1 + c · q(w), γ2

def
= θ2 + q(w), (θ1, θ2) ∈ Θ

}

. (36)

With this reformulation, all our decision variables, i.e. the affine coefficients of q(w), have been moved
to the feasible set Γ of the maximization problem (AFF ) in (35). Note that, with an affine controller
q(w) = q0 + qTw, and θ1, θ2 affine in w (23), the feasible set Γ will represent a new zonogon in R2, with
generators given by a + c · q and b + q. Furthermore, since the function g is convex, the optimization
problem (AFF ) over Γ is of the exact same nature as that in (18), defined over the zonogon Θ. Thus, in
perfect analogy with our discussion in Section 4.1 (Lemma 4.1 and Corollary 4.1), we can conclude that the
maximum in (AFF ) will occur at a vertex of Γ found in r-side(Γ).

In a different sense, note that optimization problem (AFF ) is also very similar to problem (OPT ) in
(26), which was the problem solved by the uncertainties w when the optimal control law, u∗(θ2), was used at
time k+1. Since the optimal value of the latter problem is exactly equal to the overall min-max value, JmM ,
we will interpret the equation in (35) as comparing the optimal values in the two optimization problems,
(AFF ) and (OPT ).

As such, note that the same convex objective function, ξ1 + g(ξ2), is maximized in both problems, but
over different feasible sets, Γ̃ for (OPT ) and Γ for (AFF ), respectively. From Lemma 4.2 in Section 4.1.2,
the maximum of problem (OPT ) is reached on the set r-side(∆Γ), where ∆Γ = conv ({ṽ0, ṽ1, . . . , ṽk}). From
the discussion in the previous paragraph, the maximum in problem (AFF ) occurs on r-side(Γ). Therefore,
in order to compare the two results of the maximization problems, we must relate the sets r-side(∆Γ) and
r-side(Γ).

In this context, we introduce the central idea behind the construction of the affine control law, q(w).
Recalling the concept of a zonogon hull introduced in Definition 4.2, we argue that, if the affine coefficients of
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the controller, q0, q, were computed in such a way that the zonogon Γ actually corresponded to the zonogon
hull of the set {ṽ0, ṽ1, . . . , ṽk}, then, by using the result in Corollary 4.1, we could immediately conclude
that the optimal values in (OPT ) and (AFF ) are the same.

To this end, we introduce the following procedure for computing the affine control law q(w):

Algorithm 1 Compute affine controller q(w)

Require: θ1(w), θ2(w), g(·), u∗(·)
1: if (Θ falls below BLU) or (Θ ⊆ BLU) or (Θ falls above BLU ) then
2: Return q(w) = u∗(θ2(w)).
3: else
4: Apply the mapping (27) to obtain the points ṽi, i ∈ {0, . . . , k}.
5: Compute the set ∆Γ = conv ({ṽ0, . . . , ṽk}).
6: Let r-side(∆Γ) = {ṽ0, ṽ1, . . . , ṽs} ∪ {ṽt} ∪ {ṽr, . . . , ṽk} be the set of points on the right side of ∆Γ.
7: Solve the following system for q0, . . . , qk and KU ,KL:

(S)







q0 + · · ·+ qi = u∗ (vi) , ∀ ṽi ∈ r-side(∆Γ) (matching)

ai + c · qi
bi + qi

= KU , ∀ i ∈ {s+ 1, . . . ,min(t, r)} (alignment below t)

ai + c · qi
bi + qi

= KL, ∀ i ∈ {max(t, s) + 1, . . . , r} (alignment above t)

(37)

8: Return q(w) = q0 +
∑k

i=1 qiwi.
9: end if

Before proving that the construction is well-defined and does produce the expected result, we will give
some intuition for the constraints in system (37). In order to have the zonogon Γ be the same as the zonogon
hull of {ṽ0, . . . , ṽk}, we must ensure that the vertices on the right side of Γ exactly correspond to the points on
the right side of ∆Γ = conv ({ṽ0, . . . , ṽk}). This is achieved in two stages. First, we ensure that vertices wi

of the hypercube Hk that are mapped by the optimal control law u∗(·) into points ṽi ∈ r-side(∆Γ) (through

the succession of mappings wi
(19)
7→ vi ∈ r-side(Θ)

(29)
7→ ṽi ∈ r-side(∆Γ)), will be mapped by the affine control

law, q(wi), into the same point ṽi (through the mappings wi
(19)
7→ vi ∈ r-side(Θ)

(36)
7→ ṽi ∈ r-side(∆Γ)).

This is done in the first set of constraints, by matching the value of the optimal control law at any such
points. Second, we ensure that any such matched points ṽi actually correspond to the vertices on the right
side of the zonogon Γ. This is done in the second and third set of constraints in (37), by computing the
affine coefficients qj in such a way that the resulting segments in the generators of the zonogon Γ, namely
(

aj + c · qj
bj + qj

)

, are all aligned, i.e. have the same cotangent, given by the KU ,KL variables. Geometrically,

this exactly corresponds to the situation shown in Figure 6 below.

We remark that the above algorithm does not explicitly require that the control q(w) be robustly feasible,
i.e. second condition in (35). However, we will soon prove that this is a direct result of the way matching
and alignment are performed in Algorithm 1.

4.2.1 Affine Controller Preserves Overall Objective and Is Robust.

In this section, we prove that the affine control law q(w) produced by Algorithm 1 satisfies the requirements of
(35), i.e. it is robustly feasible, and it preserves the overall objective function JmM when used in conjunction
with the original convex state costs, h(·). With the exception of Corollary 4.1, all the key results that we will
be using are contained in Section 4.1.2 (Lemmas 4.2 and 4.3). Therefore, we will preserve the same notation
and case discussion as initially introduced there.

First consider the condition on line 1 of Algorithm 1, and note that this corresponds to the three trivial
cases [C1], [C2] and [C3] of Section 4.1.2. In particular, since θ2 ≡ xk+1, we can use (8) to conclude that
in these cases, the optimal control law u∗(·) is actually affine:
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ṽ6
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ṽ3

ṽ4

ṽ5
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Figure 6: Outcomes from the matching and alignment performed in Algorithm 1.

[C1] If Θ falls below the band BLU , then the upper bound constraint on the control at time k is always
active, i.e. the optimal control is u∗(θ2(w)) = U, ∀w ∈ Hk.

[C2] If Θ ⊆ BLU , then the constraints on the control at time k are never active, i.e. u∗(θ2(w)) = y∗−θ2(w),
hence affine in w, since θ2 is affine in w, by (23).

[C3] If Θ falls above the band BLU , then the lower bound constraint on the control is always active, i.e.
u∗(θ2(w)) = L, ∀w ∈ Hk.

Therefore, with the assignment in line 2 of Algorithm 1, we obtain an affine control law that is always feasible
and also optimal.

When none of the trivial cases holds, we are in case [C4] of Section 4.1.2. Therefore, we can invoke the
results from Lemma 4.3 to argue that the right side of the set ∆Γ is exactly the set on line 7 of the algorithm,
r-side(∆Γ) = {ṽ0, . . . , ṽs} ∪ {ṽt} ∪ {ṽr, . . . , ṽk}. In this setting, we can now formulate the first claim about
system (37) and its solution:

Lemma 4.4. System (37) is always feasible, and the solution satisfies:

1. −bi ≤ qi ≤ 0, ∀ i ∈ {1, . . . , k}.

2. L ≤ q(w) ≤ U, ∀w ∈ Hk.

Proof. Note first that system (37) has exactly k + 3 unknowns, two for the cotangents KU ,KL, and one for
each coefficient qi, 0 ≤ i ≤ k. Also, since |r-side(∆Γ)| ≤ |ext(∆Γ)| ≤ k+1, and there are exactly |r-side(∆Γ)|
matching constraints, and k + 3 − |r-side(∆Γ)| alignment constraints, it can be immediately seen that the
system is always feasible.

Consider any qi with i ∈ {1, . . . , s} ∪ {r + 1, . . . , k}. From the matching conditions, we have that
qi = u∗(vi) − u∗(vi−1). By property P3 from Section 2, the difference in the values of the optimal control
law u∗(·) satisfies:

u∗(vi)− u∗(vi−1)
def
= u∗(θ2[vi])− u∗(θ2[vi−1])

(by P3) = −f · (θ2[vi]− θ2[vi−1])

(23)
= −f · bi, where f ∈ [0, 1].

Since, by (32), bj ≥ 0, ∀ j ∈ {1, . . . , k}, we immediately obtain −bi ≤ qi ≤ 0, for i ∈ {1, . . . , s}∪{r+1, . . . , k}.

Now consider any index i ∈ {s+1, . . . , t∧ r}, where t∧ r ≡ min(t, r). From the conditions in system (37)
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for alignment below t, we have qi =
ai−KU ·bi
KU−c

. By summing up all such relations, we obtain:

t∧r∑

i=s+1

qi =

∑t∧r
i=s+1 ai −KU ·

∑t∧r
i=s+1 bi

KU − c
⇔ (using the matching)

u∗(vt∧r)− u∗(vs) =

∑t∧r
i=s+1 ai −KU ·

∑t∧r
i=s+1 bi

KU − c
⇔

KU =

∑t∧r

i=s+1 ai + c · (u∗(vt∧r)− u∗(vs))
∑t∧r

i=s+1 bi + u∗(vt∧r)− u∗(vs)

=

[
∑t∧r

i=0 ai + c · u∗(vt∧r)
]

− [
∑s

i=0 ai + c · u∗(vs)]
[
∑t∧r

i=0 bi + u∗(vt∧r)
]

− [
∑s

i=0 bi + u∗(vs)]

(29)
=

γ̃1[ṽt∧r]− γ̃1[ṽs]

γ̃2[ṽt∧r]− γ̃2[ṽs]

(25)
= cotan (ṽs, ṽt∧r) .

In the first step, we have used the fact that both ṽs and ṽmin(t,r) are matched, hence the intermediate
coefficients qi must sum to exactly the difference of the values of u∗(·) at vmin(t,r) and vs respectively. In
this context, we can see that KU is simply the cotangent of the angle formed by the segment [ṽs, ṽmin(t,r)]
with the horizontal (i.e. γ̃1) axis. In this case, we can immediately recall result (34) from Lemma 4.3, to
argue that KU ≥ as+1

bs+1
. Combining with (31) and (32), we obtain:

KU ≥
as+1

bs+1

(32)

≥ · · · ≥
amin(t,r)

bmin(t,r)
≥

at
bt

(31)
> c.

Therefore, we immediately have that for any i ∈ {s+ 1, . . . ,min(t, r)},

{

ai −KU · bi ≤ 0

KU − c > 0
⇒ qi =

ai −KU · bi
KU − c

≤ 0 ,







ai − c · bi > 0

qi + bi =
ai − c · bi
KU − c

⇒ qi + bi ≥ 0.

The argument for indices i ∈ {max(t, s) + 1, . . . , r} proceeds in exactly the same fashion, by recognizing
that KL defined in the algorithm is the same as cotan

(
ṽmax(t,s), ṽr

)
, and then applying (34) to argue that

KL < ar

br
≤

amax(t,s)+1

bmax(t,s)+1
≤ at+1

bt+1
≤ c. This will allow us to use the same reasoning as above, completing the

proof of part (i) of the claim.

To prove part (ii), consider any w ∈ Hk
def
= [0, 1]k. Using part (i), we obtain:

q(w)
def
= q0 +

k∑

i=1

qi · wi ≤ (since wi ∈ [0, 1], qi ≤ 0) ≤ q0
(∗∗)
= u∗(v0) ≤ U ,

q(w) ≥ q0 +

k∑

i=1

qi · 1
(∗∗)
= u∗(vk) ≥ L.

Note that in step (∗∗), we have critically used the result from Lemma 4.3 that, when Θ * BLU , the points
ṽ0, ṽk are always among the points on the right side of ∆Γ, and, therefore, we will always have the equations
q0 = u∗(v0), q0 +

∑k

i=1 qi = u∗(vk) among the matching equations of system (37). For the last arguments,
we have simply used the fact that the optimal control law, u∗(·), is always feasible, hence L ≤ u∗(·) ≤ U .

This completes our first goal, namely proving that the affine controller q(w) is always robustly feasible.
To complete the construction, we introduce the following final result:

Lemma 4.5. Using the affine control law q(w) computed in Algorithm 1 satisfies the first equation in (35).
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Proof. From (36), the affine controller q(w) induces the generators a + c · q and b + q for the zonogon Γ.
This implies that Γ will be the Minkowski sum of the following segments in R2:

[
a1 + c · q1
b1 + q1

]

, . . . ,

[
as + c · qs
bs + qs

]

,

[
KU · (bs+1 + qs+1)

bs+1 + qs+1

]

, . . . ,

[
KU ·

(
bmin(t,r) + qmin(t,r)

)

bmin(t,r) + qmin(t,r)

]

,

[
KL ·

(
bmax(t,s)+1 + qmax(t,s)+1

)

bmax(t,s)+1 + qmax(t,s)+1

]

, . . . ,

[
KL · (br + qr)

br + qr

]

,

[
ar+1 + c · qr+1

br+1 + qr+1

]

, . . . ,

[
ak + c · qk
bk + qk

]

. (38)

From Lemma 4.4, we have that qi + bi ≥ 0, ∀ i ∈ {1, . . . , k}. Therefore, if we consider the points in R2:

yi =





i∑

j=0

(aj + c · qj),

i∑

j=0

(bj + qj)



 , ∀ i ∈ {0, . . . , k},

we can make the following simple observations:

• For any vertex vi ∈ Θ, i ∈ {0, . . . , k}, that is matched, i.e. ṽi ∈ r-side(∆Γ), if we let wi represent the
unique6 vertex of the hypercube Hk projecting onto vi, i.e. vi = (θ1(wi), θ2(wi)), then we have:

yi

(36)
= (γ1(wi), γ2(wi))

(37)
= (γ̃1(vi), γ̃2(vi))

(29)
= ṽi.

The first equality follows from the definition of the mapping that characterizes the zonogon Γ. The
second equality follows from the fact that for any matched vertex vi, the coordinates in Γ and Γ̃ are
exactly the same, and the last equality is simply the definition of the point ṽi.

• For any vertex vi ∈ Θ, i ∈ {0, . . . , k}, that is not matched, we have:

yi ∈ [ys,ymin(t,r)], ∀ i ∈ {s+ 1, . . . ,min(t, r)− 1}

yi ∈ [ymax(t,s),yr], ∀ i ∈ {max(t, s) + 1, . . . , r − 1}.

This can be seen directly from (38), since the segments inR2 given by [ys,ys+1], . . . , [ymin(t,r)−1,ymin(t,r)]
are always aligned (with common cotangent, given byKU ), and, similarly, the segments [ymax(t,s),ymax(t,s)+1],
. . . , [yr−1,yr] are also aligned (with common cotangent KL).

This exactly corresponds to the situation shown earlier in Figure 6. By combining the two observa-

tions, it can be seen that the points
{

y0,y1, . . . ,ys,ymax(t,s),ymin(t,r),yr, . . . ,yk

}

will satisfy the following

properties:

yi = ṽi, ∀ ṽi ∈ r-side(∆Γ) ,

cotan (y0, y1) ≥ cotan (y1, y2) ≥ · · · ≥ cotan
(
ys−1, ys

)
≥ cotan

(

ys, ymin(t,r)

)

≥

≥ cotan
(

ymax(t,s), yr

)

≥ cotan
(
yr, yr+1

)
≥ · · · ≥ cotan

(
yk−1, yk

)
,

where the second relation follows simply because the points ṽi ∈ r-side(∆Γ) are extreme points on the right
side of a convex hull, and thus satisfy the same string of inequalities. This immediately implies that this set
of yi (corresponding to ṽi ∈ r-side(∆Γ)) exactly represent the right side of the zonogon Γ, which, in turn,
implies that Γ ≡ z-hull

({
ṽ0, ṽ1, . . . , ṽs, ṽmax(t,s), ṽmin(t,r), ṽr, ṽr+1, . . . , ṽk

})
. But then, by Corollary 4.1,

the maximum value of problem (OPT ) in (26) is equal to the maximum value of problem (AFF ) in (35),
and, since the former is always JmM , so is that latter.

This concludes the construction of the affine control law q(w). We have shown that the policy computed
by Algorithm 1 satisfies all the conditions in (35), i.e. is robustly feasible (by Lemma 4.4) and, when used in
conjunction with the original convex state costs, preserves the overall optimal min-max value JmM (Lemma
4.5).

6This vertex is unique due to our standing Assumption 2 that the number of vertices in Θ is 2k (also see part (iv) of Lemma
7.2 in the Appendix).
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4.3 Construction of the Affine State Cost.

Note that we have essentially completed the first part of the induction step. For the second part, we would
still need to show how an affine stage cost can be computed, such that constraints (13) and (14) are satisfied.
We will return temporarily to the notation containing time indices, so as to put the current state of the
proof into perspective.

In solving problem (AFF ) of (35), we have shown that there exists an affine qk+1(w
k+1) such that:

JmM = max
wk+1∈Hk

[
θ1(w

k+1) + ck+1 · qk+1(w
k+1) + gk+1

(
θ2(w

k+1) + qk+1(w
k+1)

)]

(36)
= max

wk+1∈Hk

[
γ1(w

k+1) + gk+1

(
γ2(w

k+1)
)]

.

Using the definition of gk+1(·) from (7), we can write the above (only retaining the second term) as:

JmM = max
wk+1∈Hk

[

γ1(w
k+1) + max

wk+1∈Wk+1

[
hk+2(γ2(w

k+1) + wk+2) + J∗
k+2(γ2(w

k+1) + wk+2)
]
]

def
= max

wk+2∈Hk+1

[
π1(w

k+2) + hk+2

(
π2(w

k+2)
)
+ J∗

k+2

(
π2(w

k+2)
) ]

,

where π1(w
k+2)

def
= γ1(w

k+1), and π2(w
k+2)

def
= γ2(w

k+1) + wk+2. Is is easy to note that:

Π
def
=
(
π1(w

k+2), π2(w
k+2)

)
(39)

represents yet another zonogon, obtained by projecting a hyper-rectangle Hk+1 ⊂ Rk+1 into R2. It has
a particular shape relative to the zonogon Γ = (γ1, γ2), since the generators of Π are simply obtained by
appending a 0 and a 1, respectively, to the generators of Γ, which implies that Π is the convex hull of two
translated copies of Γ, where the translation is occuring on the π2 axis. As it turns out, this fact will bear
little importance for the discussion to follow, so we include it here only for completeness.

In this context, the problem we would like to solve is to replace the convex function hk+2(π2(w
k+2)) with

an affine function zk+2(w
k+2), such that the analogues of conditions (13) and (14) are obeyed:

zk+2(w
k+2) ≥ hk+2(π2(w

k+2)), ∀wk+2 ∈ Hk+1

JmM = max
wk+2∈Hk+1

[
π1(w

k+2) + zk+2(w
k+2) + J∗

k+2(π2(w
k+2))

]
.

We can now switch back to the simplified notation, where all the time subscripts or superscripts are removed.
Furthermore, to preserve as much of the familiar notation from Section 4.1.1, we will denote the generators
of zonogon π by a, b, so that we have:

π1(w) = a0 +

k+1∑

i=1

ai · wi , π2(w) = b0 +

k+1∑

i=1

bi · wi (40)

In perfect analogy to our discussion in Section 4.1, we can introduce:

v− def
= argmax

π1

{

argmin
π2

{π ∈ Π}

}

; v+ def
= 2O − v− (O is the center of Π) (41)

v0
def
= v−, . . . ,vp1

def
= v+, . . . ,v2p1 = v− (counter-clockwise numbering of the vertices of Π) .

Without loss of generality, we will, again, work under Assumptions 1, 2, and 3, i.e. we will analyze the
case when Hk+1 = [0, 1]k+1, p1 = k + 1 (the zonogon Π has a maximal number of vertices), and vi =
[1, 1, . . . , 1, 0, . . . , 0] (ones in the first i positions). Furthermore, we will again use π1,2(w) for w ∈ Hk+1 to
denote the mapping from Hk+1 7→ Π ⊂ R2, and π1,2[v] to denote the coordinates of the point v ∈ R2, and
will use the shorthand notations h(vi), J

∗(vi) instead of h(π2[vi]) and J∗(π2[vi]), respectively.
With the simplified notation, the goal is to find z(w) such that:

z(w) ≥ h(π2(w)), ∀w ∈ Hk+1 (42)

max
(π1,π2)∈Π

[π1 + h(π2) + J∗(π2) ] = max
w∈Hk+1

[π1(w) + z(w) + J∗ (π2(w)) ] (43)
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In (43), the first maximization problem corresponds to the problem solved by the uncertainties, w, when
the original convex state cost, h(π2), is incurred. As such, the result of the maximization is always exactly
equal to JmM , the overall min-max value. The second maximization corresponds to the problem solved by
the uncertainties when the affine cost, z(w), is incurred instead of the convex cost. Requiring that the two
optimal values be equal thus amounts to preserving the overall min-max value, JmM , under the affine cost.

Since h and J∗ are convex (see property P2 in Section 2), we can immediately use Lemma 4.1 to conclude
that the optimal value in the first maximization problem in (43) is reached at one of the vertices v0, . . . ,vk+1

found in r-side(Π). Therefore, by introducing the points:

ṽi
def
= ( π1[vi] + h(vi), π2[vi] ) , ∀ i ∈ {0, . . . , k + 1}, (44)

we can immediately conclude the following result:

Lemma 4.6. The maximum in problem:

(OPT ) max
(π̃1,π̃2)

[ π̃1 + J∗ (π̃2) ] ,

where π̃1
def

= π1 + h(π2), π̃2
def

= π2, (π1, π2) ∈ Π,
(45)

is reached on the right side of:

∆Π
def

= conv ({ṽ0, . . . , ṽk+1}) . (46)

Proof. The result is analogous to Lemma 4.2, and the proof is a rehashing of similar ideas. In particular,
first note that problem (OPT ) is a rewriting of the first maximization problem in (43). Therefore, since the
maximum of the latter problem is reached at the vertices vi, i ∈ {0, . . . , k+ 1}, of zonogon Π, by using (44)
we can conclude that the maximum in problem (OPT ) must be reached on the set {ṽ0, . . . , ṽk+1}. Noting
that the function maximized in (OPT ) is convex, this set of points can be replaced with its convex hull, ∆Π,
without affecting the result [see Section 32 of Rockafellar, 1970]. Furthermore, since the function maximized
is of the form ξ1 + f(ξ2), with f convex, by applying the results in Corollary 4.1, and replacing the set by
the right-side of its convex hull, r-side(∆Π), the result of the optimization would remain unchanged.

Continuing the analogy with the construction in Section 4.2, we rewrite the second optimization in (43)
as:

(AFF ) max
(π̂1,π̂2)∈Π̂

[ π̂1 + J∗ (π̂2) ] ,

where Π̂
def
=
{

(π̂1, π̂2) : π̂1(w)
def
= π1(w) + z(w), π̂2(w)

def
= π2(w), w ∈ Hk+1

}

.
(47)

In order to examine the maximum in problem (AFF ), we remark that its feasible set, Π̂ ⊂ R2, also represents
a zonogon, with generators given by a + z and b, respectively. Therefore, by Lemma 4.1, the maximum of
problem (AFF ) is reached at one of the vertices on the right side of Π̂.

Using the same key idea from the construction of the affine control law, we now argue that, if the
coefficients of the affine cost, zi, were computed in such a way that Π̂ represented the zonogon hull of the
set of points {ṽ0, . . . , ṽk+1}, then (by Corollary 4.1), the maximum value of problem (AFF ) would be the
same as the maximum value of problem (OPT ).

To this end, we introduce the following procedure for computing the affine cost z(w):
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Algorithm 2 Compute affine stage cost z(w)

Require: π1(w), π2(w), h(·), J∗(·).
1: Apply the mapping (44) to obtain ṽi, ∀ i ∈ {0, . . . , k + 1}.
2: Compute the set ∆Π = conv ({ṽ0, . . . , ṽk+1}).

3: Let r-side(∆Π)
def
= {ṽs(1), . . . , ṽs(n)}, where s(1) ≤ s(2) ≤ · · · ≤ s(n) ∈ {0, . . . , k + 1} are the sorted

indices of points on the right side of ∆Π.
4: Solve the following system for zj, (j ∈ {0, . . . , k + 1}), and Ks(i), (i ∈ {2, . . . , n}):







z0 + z1 + · · ·+ zs(i) = h
(
vs(i)

)
, ∀ ṽs(i) ∈ r-side(∆Π) (matching)

zj + aj
bj

= Ks(i), ∀ j ∈ {s(i− 1) + 1, . . . , s(i)}, ∀ i ∈ {2, . . . , n}, (alignment)
(48)

5: Return z(w) = z0 +
∑k+1

i=1 zi · wi.

To visualize how the algorithm is working, an extended example is included in Figure 7.
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ṽ0 = ṽs(1) = ys(1)

ṽ1
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ṽ5

ṽ6
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ṽk+1 = ṽs(n) = ys(n)

ṽi
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Figure 7: Matching and alignment performed in Algorithm 2.

The intuition behind the construction is the same as that presented in Section 4.2. In particular, the
matching constraints in system (48) ensure that for any vertex w of the hypercube Hk+1 that corresponds

to a potential maximizer in problem (OPT ) (through w ∈ Hk+1
(40)
7→ vi ∈ Π

(44)
7→ ṽi ∈ r-side(∆Π)), the value

of the affine cost z(w) is equal to the value of the initial convex cost, h(vi) ≡ h(π2(w)), implying that the
value in problem (AFF ) of (47) at (π̂1(w), π̂2(w)) is equal to the value in problem (OPT ) of (45) at ṽi.
The alignment constraints in system (48) ensure that any such matched points, (π̂1(w), π̂2(w)), actually
correspond to the vertices on the right side of the zonogon Π̂, r-side(Π̂), which implies that, as desired,
Π̂ ≡ z-hull ({ṽ0, . . . , ṽk+1}).

We conclude our preliminary remarks by noting that system (48) does not directly impose the robust
domination constraint (42). However, as we will soon see, this result is a byproduct of the way the matching
and alignment are performed in Algorithm 2.

4.3.1 Affine Cost z(·) Dominates Convex Cost h(·) and Preserves Overall Objective.

In this section, we will prove that the affine cost z(w) computed in Algorithm 2 not only robustly dominates
the original convex cost (42), but also preserves the overall min-max value (43).

The following lemma summarizes the first main result:

Lemma 4.7. System (48) is always feasible, and the solution z(w) always satisfies equation (43).
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Proof. We first note that s(1) = 0 and s(n) = k + 1, i.e. ṽ0, ṽk+1 ∈ r-side(∆Π). To see why that is
the case, note that, by (41), v0 will always have the smallest π2 coordinate in the zonogon Π. Since
the transformation (44) yielding ṽi leaves the second coordinate unchanged, it will always be true that
ṽ0 = argmaxπ̃1

argminπ̃2
{ṽi, i ∈ {0, . . . , k + 1}}, which will immediately imply that ṽ0 ∈ r-side(∆Π). The

proof for ṽk+1 follows in an identical matter, since vk+1 has the largest π2 coordinate in Π.
It can then be checked that the following choice of zi always satisfies system (48):

z0 = h(v0); zj = Ks(i) · bj − aj , ∀ j ∈ {s(i− 1) + 1, . . . , s(i)}, ∀ i ∈ {2, . . . , n},

Ks(i) =
zs(i−1)+1 + · · ·+ zs(i) + as(i−1)+1 + · · ·+ as(i)

bs(i−1)+1 + · · ·+ bs(i)
=

h(vs(i))− h(vs(i−1)) + as(i−1)+1 + · · ·+ as(i)

bs(i−1)+1 + · · ·+ bs(i)
.

The proof of the second part of the lemma will be analogous to that of Lemma 4.5. To start, consider
the feasible set of problem (AFF ) in (47), namely the zonogon Π̂, and note that, from (40), its generators
are given by a+ z, b:

[
a+ z

b

]

=

[
a1 + z1 . . . as(i) + zs(i) as(i)+1 + zs(i)+1 . . . ak+1 + zk+1

b1 . . . bs(1) bs(1)+1 . . . bk+1

]

. (49)

By introducing the following points in R2:

yi =





i∑

j=0

(aj + zj),
i∑

j=0

bj



 ,

we have the following simple claims:

• For any vi ∈ Π that is matched, i.e. ṽi ∈ r-side(∆Π), with wi = [1, 1, . . . , 1, 0, . . . , 0] denoting the
unique7 vertex of Hk+1 satisfying (π1(wi), π2(wi)) = vi, we have:

yi

(47)
= (π1(wi) + z(wi), π2(wi))

(48)
= (π1[vi] + h(vi), π2[vi])

(44)
= ṽi.

The first equality follows from the definition of the zonogon Π̂, the second follows because any ṽi ∈
r-side(∆Π) is matched in system (48), and the third equality represents the definition of the points ṽi.

• For any vertex vj ∈ Π, that is not matched, i.e. ṽj /∈ r-side(∆Π), and s(i) < j < s(i+1) for some i, we
have yj ∈ [ys(i),ys(i+1)]. This can be seen by using the alignment conditions in system (48) in conjunc-

tion with (49), since the segments inR2 given by [ys(i),ys(i)+1], [ys(i)+1,ys(i)+2], . . . , [ys(i+1)−1,ys(i+1)]
will always be parallel, with common cotangent given by Ks(i+1).

For a geometric interpretation, the reader is referred back to Figure 7. Corroborating these results with the
fact that

{
ṽs(1), . . . , ṽs(n)

}
= r-side(∆Π) must always satisfy:

cotan
(
ṽs(1), ṽs(2)

)
≥ cotan

(
ṽs(2), ṽs(3)

)
≥ · · · ≥ cotan

(
ṽs(n−1), ṽs(n)

)
, (50)

we immediately obtain that the points
{

ys(1),ys(2), . . . ,ys(n)

}

(corresponding to ṽi ∈ r-side(∆Π)) exactly

represent the right side of the zonogon Π̂, which, in turn, implies that Π̂ ≡ z-hull ({ṽ0, ṽ1, . . . , ṽk+1}). But
then, by Corollary 4.1, the maximum value of problem (OPT ) in (45) is equal to the maximum value of
problem (AFF ) in (47), and, since the former is always JmM , so is that latter.

In order to complete the second step of the induction, we must only show that the robust domination
constraint (42) is also obeyed:

z(w) ≥ h (π2(w)) ⇔ z0 + z1 · w1 + · · ·+ zk+1 · wk+1 ≥ h (b0 + b1 · w1 + · · ·+ bk+1 · wk+1) , ∀w ∈ Hk+1.

The following lemma will take us very close to the desired result:

7Recall that we are, again, working under Assumption 2, which implies uniqueness by part (iv) of Lemma 7.2 in the Appendix)
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Lemma 4.8. The coefficients for the affine cost z(w) computed in Algorithm 2 will always satisfy the following
property:

h
(
b0 + bj(1) + · · ·+ bj(m)

)
≤ z0 + zj(1) + · · ·+ zj(m), ∀ j(1), . . . , j(m) ∈ {1, . . . , k + 1}, ∀m ∈ {1, . . . , k + 1}.

Proof. Before proceeding with the proof, we will first list several properties related to the construction of the
affine cost. We claim that, upon termination, Algorithm 2 will produce a solution to the following system:







z0 = h
(
vs(1)

)

z0 + z1 + · · ·+ zs(2) = h
(
vs(2)

)

...
...

z0 + z1 + · · ·+ zs(n) = h
(
vs(n)

)

z1+a1

b1
= · · · =

zs(2)+as(2)

bs(2)
= Ks(2)

...
...

zs(n−1)+1+as(n−1)+1

bs(n−1)+1
= · · · =

zs(n)+as(n)

bs(n)
= Ks(n)

(51)

Ks(2) ≥ · · · ≥ Ks(n) (52)






h(vj)−h(v0)+a1+···+aj

b1+···+bj
≤ Ks(2) ≤

h(vs(2))−h(vj)+aj+1+···+as(1)

bj+1+···+bs(1)
,

∀ j ∈ {1, . . . , s(2)− 1}
...

...
h(vj)−h(vs(n−1))+as(n−1)+1+···+aj

bs(n−1)+1+···+bj
≤ Ks(n) ≤

h(vs(n))−h(vj)+aj+1+···+as(n)

bj+1+···+bs(n)
,

∀ j ∈ {s(n− 1) + 1, . . . , s(n)− 1} .

(53)

Let us explain the significance of all the equations. (51) is simply a rewriting of the original system (48),
which states that at any vertex vs(i), the value of the affine function should exactly match the value assigned
by the convex function h(·), and the coefficients zi between any two matched vertices should be such that
the resulting segments, [zj + aj, bj ], are aligned (i.e. the angle they form with the π̃1 axis has the same
cotangent, specified by K(·) variables). We note that we have explicitly used the fact that s(1) = 0, which
we have shown in the first paragraph of the proof of Lemma 4.7.

Equation (52) is a simple restatement of (50), that the cotangents on the right side of a convex hull must
be decreasing.

Equation (53) is a direct consequence of the fact that {ṽs(1), ṽs(2), . . . , ṽs(n)} represent r-side(∆Π). To
see why that is, consider an arbitrary j ∈ {s(i) + 1, . . . , s(i+ 1)− 1}. Since ṽj /∈ r-side(∆Π), we have:

cotan
(
ṽs(i), ṽj

)
≤ cotan

(
ṽj , ṽs(i+1)

) (40),(44)
⇔

as(i)+1 + · · ·+ aj + h (vj)− h
(
vs(i)

)

bs(i)+1 + · · ·+ bj
≤

aj+1 + · · ·+ as(i+1) + h
(
vs(i+1)

)
− h (vj)

bj+1 + · · ·+ bs(i+1)
⇔

as(i)+1 + · · ·+ aj + h (vj)− h
(
vs(i)

)

bs(i)+1 + · · ·+ bj
≤ Ks(2) ≤

aj+1 + · · ·+ as(i+1) + h
(
vs(i+1)

)
− h (vj)

bj+1 + · · ·+ bs(i+1)
,

where, in the last step, we have used the mediant inequality8 and the fact that, from (51), Ks(2) =

cotan
(
ṽs(i), ṽs(i+1)

)
=

as(i)+1+···+as(i+1)+h(vs(i+1))−h(vs(i))
bs(i)+1+···+bs(i+1)

(refer back to Figure 7 for a geometrical in-

terpretation).
With these observations, we will now prove the claim of the lemma. The strategy of the proof will be

to use induction on the size of the subsets, m. First, we will show the property for any subset of indices
j(1), . . . , j(m) ∈ {s(1) = 0, . . . , s(2)}, and will then extend it to j(1), . . . , j(m) ∈ {s(i) + 1, . . . , s(i + 1)} for
any i, and then to any subset of {1, . . . , k + 1}.

8If b, d > 0 anda

b
≤ c

d
, then a

b
≤ a+c

b+d
≤ c

d
.
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The following implications of the conditions (51), (52) and (53), are stated here for convenience, since
they will be used throughout the rest of the proof:

h
(
vs(1)

)
= h(v0) = z0; h(vs(2)) = z0 + z1 + · · ·+ zs(2). (54)

h(vj)− h(v0) ≤ z1 + · · ·+ zj , ∀ j ∈ {1, . . . , s(2)− 1}. (55)

z1
b1

≤ · · · ≤
zj
bj

≤ · · · ≤
zs(2)
bs(2)

, ∀ j ∈ {1, . . . , s(2)− 1}. (56)

Their proofs are straightforward. (54) follows directly from system (51), and:

h(vj)− h(v0) + a1 + · · ·+ aj
b1 + · · ·+ bj

(53)

≤ Ks(2)
(51)
=

z1 + · · ·+ zj + a1 + · · ·+ aj
b1 + · · ·+ bj

⇒ (55) true.

{

(51) : a1+z1
b1

= · · · =
aj+zj

bj
= · · · =

as(2)+zs(2)
bs(2)

Π zonogon ⇒ a1

b1
> · · · >

aj

bj
> · · · >

as(2)

bs(2)

⇒ (56) true.

We can now proceed with the proof, by checking the induction for m = 1. We would like to show that:

h (b0 + bj) ≤ z0 + zj, ∀ j ∈ {1, . . . , s(2)}

Writing b0 + bj as:

b0 + bj = (1− λ) · b0 + λ · (b0 + · · ·+ bj)

λ =
bj

b1 + · · ·+ bj
,

we obtain:

h(b0 + bj) ≤ (1 − λ) · h(b0) + λ · h(b0 + · · ·+ bj)
︸ ︷︷ ︸

≡h(vj)

= h(v0) +
bj

b1 + · · ·+ bj
[h(vj)− h(v0) ] ≤ (by (54) if j = s(2) or (55) otherwise)

≤ z0 +
bj

b1 + · · ·+ bj
(z1 + · · ·+ zj) ≤ (by (56) and the mediant inequality)

≤ z0 + zj.

Assume the property is true for any subsets of size m. Consider a subset j(1), . . . , j(m), j(m + 1), and,
without loss of generality, let j(m+ 1) be the largest index. With the convex combination:

b∗
def
= b0 + bj(1) + · · ·+ bj(m) + bj(m+1)

= (1− λ) · (b0 + bj(1) + · · ·+ bj(m)) + λ · (b0 + b1 + · · ·+ bj(m+1)−1 + bj(m+1)),

where λ =
bj(m+1)

(b1 + b2 + · · ·+ bj(m+1))− (bj(1) + bj(2) + · · ·+ bj(m))
,

we obtain:

h(b∗) ≤ (1 − λ) · h(b0 + bj(1) + · · ·+ bj(m)) + λ · h
(
vi(m+1)

)
≤ (by induction hypothesis and (54), (55))

≤ (1 − λ) · (z0 + zj(1) + · · ·+ zj(m)) + λ ·
(
z0 + z1 + · · ·+ zi(m+1)

)

= z0 + zj(1) + · · ·+ zj(m) +
bj(m+1)

(b1 + b2 + · · ·+ bj(m+1))− (bj(1) + bj(2) + · · ·+ bj(m))
·

·
[
(z1 + z2 + · · ·+ zj(m+1))− (zj(1) + zj(2) + · · ·+ zj(m))

]
≤ (by (56) and mediant inequality)

≤ z0 + zj(1) + · · ·+ zj(m) + zj(m+1).
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We claim that the exact same procedure can be repeated for a subset of indices from {s(i)+ 1, . . . , s(i+1)},
for any index i ∈ {1, . . . , n − 1}. We would simply be using the adequate inequality from (53), and the
statements equivalent to (54), (55) and (56). The following results would be immediate:

h
(
(b0 + b1 + · · ·+ bs(i)) + bj(1) + · · ·+ bj(m)

)
≤
(
z0 + z1 + · · ·+ zs(i)

)
+ zj(1) + · · ·+ zj(m), (57)

∀ i ∈ {1, . . . , n}, ∀ j(1), . . . , j(m) ∈ {s(i) + 1, . . . , s(i+ 1)}.

Note that instead of the term b0 for the argument of h(·), we would use the complete sum b0+b1+ · · ·+bs(i),
and, similarly, instead of z0 we would have the complete sum z0 + z1 + · · · + zs(i). With these results, we
can make use of the increasing increments property of convex functions:

h(x1 +∆)− h(x1)

∆
≤

h(x2 +∆)− h(x2)

∆
, ∀∆ > 0, x1 ≤ x2 ,

to obtain the following result:

h




b0 + bj(1) + · · ·+ bj(m)

︸ ︷︷ ︸

j(·)∈{1,...,s(2)}

+ bi(1) + · · ·+ bi(l)
︸ ︷︷ ︸

i(·)∈{s(2)+1,...,s(3)}




− h

(
b0 + bj(1) + · · ·+ bj(m)

)
≤

≤ h




b0 + b1 + · · ·+ bs(2)

︸ ︷︷ ︸

all indices in {1,...,s(2)}

+ bi(1) + · · ·+ bi(l)




 − h

(
b0 + b1 + · · ·+ bs(2)

)

︸ ︷︷ ︸

def
= h(vs(2))

(54),(57)

≤

≤
(
z0 + z1 + · · ·+ zs(2)

)
+ zi(1) + · · ·+ zi(l) −

(
z0 + z1 + · · ·+ zs(2)

)

= zi(1) + · · ·+ zi(l) ⇒

h
(
b0 + bj(1) + · · ·+ bj(m) + bi(1) + · · ·+ bi(l)

)
≤ h

(
b0 + bj(1) + · · ·+ bj(m)

)
+ zi(1) + · · ·+ zi(l)

(57)

≤

≤ z0 + zj(1) + · · ·+ zj(m) + zi(1) + · · ·+ zi(l).

We showed the property for indices drawn only from the first two intervals, {s(1)+ 1, . . . , s(2)} and {s(2)+
1, . . . , s(3)}, but it should be clear how the argument can be immediately extended to any collection of
indices, drawn from any intervals. We omit the details for brevity, and conclude that the claim of the lemma
is true.

We are now ready for the last major result:

Lemma 4.9. The affine cost z(w) computed by Algorithm 2 always dominates the convex cost h(π2(w)):

h

(

b0 +
k+1∑

i=1

bi · wi

)

≤ z0 +
k+1∑

i=1

zi · wi, ∀w ∈ Hk+1 = [0, 1]k+1.

Proof. Note first that the function f(w)
def
= h

(

b0 +
∑k+1

i=1 bi · wi

)

− (z0 +
∑k+1

i=1 zi · wi) is a convex function

of w. Furthermore, the result of Lemma 4.8 can be immediately rewritten as:

h

(

b0 +

k+1∑

i=1

bi · wi

)

≤ z0 +

k+1∑

i=1

zi · wi, ∀w ∈ {0, 1}k+1 ⇔ f(w) ≤ 0, ∀w ∈ {0, 1}k+1.

Since the maximum of a convex function on a polytope occurs on the extreme points of the polytope, and
ext(Hk+1) = {0, 1}k+1, we immediately have that: maxw∈Hk+1

f(w) = maxw∈{0,1}k+1 f(w) ≤ 0, which
completes the proof of the lemma.

We can now conclude the proof of correctness in the construction of the affine stage cost, z(w). With
Lemma 4.9, we have that the affine cost always dominates the convex cost h(·), thus condition (42) is obeyed.
Furthermore, from Lemma 4.7, the overall min-max cost remains unchanged even when incurring the affine
stage cost, z(w), hence condition (43) is also true. This completes the construction of the affine cost, and
hence also the full step of the induction hypothesis.
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4.3.2 Proof of Main Theorem.

To finalize the current section, we summarize the steps that have lead us to the result, thereby proving the
main Theorem 3.1.

Proof of Theorem 3.1. In Section 4.1, we have verified the induction hypothesis at time k = 1. With the
induction hypothesis assumed true for times t = 1, . . . , k, we have listed the initial consequences in Lemma
4.1 and Corollary 4.1 of Section 4.1.1. By exploring the structure of the optimal control law, u∗

k+1(xk+1),
and the optimal value function, J∗

k+1(xk+1), in Section 4.1.2, we have finalized the analysis of the induction
hypothesis, and summarized our findings in Lemmas 4.2 and 4.3.

Section 4.2 then introduced the main construction of the affine control law, qk+1(w
k+1), which was

shown to be robustly feasible (Lemma 4.4). Furthermore, in Lemma 4.5, we have shown that, when used in
conjuction with the original convex state costs, hk+1 (xk+2), this affine control preserves the min-max value
of the overall problem.

In Section 4.3, we have also introduced an affine stage cost, zk+2(w
k+2), which, if incurred at time k+1,

will always preserve the overall min-max value (Lemma 4.7), despite being always larger than the original
convex cost, hk+1 (xk+2) (Lemma 4.9).

4.3.3 Counterexamples for potential extensions.

On first sight, one might be tempted to believe that the results in Theorem 3.1 could be immediately extended
to more general problems. In particular, one could be tempted to ask one of the following natural questions:

1. Would both results of Theorem 3.1 (i.e. existence of affine control laws and existence of affine stage
costs) hold for a problem which also included linear constraints coupling the controls ut across different
time-steps? (see Ben-Tal et al. [2005b] for a situation when this might be of interest)

2. Would both results of Theorem 3.1 hold for multi-dimensional linear systems? (i.e. problems where
xk ∈ Rd, ∀ k, with d ≥ 2)

3. Are affine policies in the disturbances optimal for the two problems above?

In the rest of the current section, we would like to show how these questions can all be answered negatively,
using the following simple counterexample:

T = 4, ck = 1, hk(xk+1) = max{18.5 · xk+1, −24 · xk+1}, Lk = 0, Uk = ∞, ∀ k ∈ {1, . . . , 4} ,

(CEx) w1 ∈ [−7, 0], w2 ∈ [−11, 0], w3 ∈ [−8, 0], w4 ∈ [−44, 0] ,

k∑

i=1

ui ≤ 10 · k , ∀ k ∈ {1, . . . , 4}.

The first two rows describe a one-dimensional problem that fits the conditions of Problem 1.1 in Section 1.
The third row corresponds to a coupling constraint for controls at different times, so that the problem fits
question (i) above. Furthermore, since the state in such a problem consists of two variables (one for xk and

one for
∑k

i=1 uk), the example also fits question (ii) above.
The optimal min-max value for the counterexample (CEx) above can be found by solving a stochastic

optimization problem (see Ben-Tal et al. [2005b]), in which non-anticipatory decisions are computed at all
the extreme points of the uncertainty set, i.e. for {w1 , w1}×{w2 , w2}×{w3 , w3}×{w4 , w4}. The resulting
model, which is a large linear program, can be solved to optimality, resulting in a corresponding value of
approximately 838.493 for problem (CEx).

To compute the optimal min-max objective obtained by using affine policies qk(w
k) and incurring affine

costs zk(w
k+1), one can ammend the model (AARC) from Section 3 by including constraints for the cumu-

lative controls (see Ben-Tal et al. [2005b] for details), and then using (15) to rewrite the resulting model as
a linear program. The optimal value of this program for counterexample (CEx) was approximately 876.057,
resulting in a gap of 4.4%, and thus providing a negative answer to questions (i) and (ii).

To investigate question (iii), we remark that the smallest objective achievable by using affine policies
of the type qk(w

k) can be found by solving another stochastic optimization problem, having as decision
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variables the affine coefficients {qk,t}0≤t<k≤T , as well as (non-anticipatory) stage cost variables z
w
k for every

time step k ∈ {1, . . . , T } and every extreme point w of the uncertainty set. Solving the resulting linear
program for instance (CEx) gave an optimal value of 873.248, so strictly larger than the (true) optimum
(838.493), and strictly smaller than the optimal value of the model utilizing both affine control policies and
affine stage costs (876.057).

Thus, with question (iii) also answered negatively, we conclude that policies that are affine in the dis-
turbances, qk(w

k), are in general suboptimal for problems with cumulative control constraints or multiple
dimensions, and that replacing the convex state costs hk(xk+1) by (larger) affine costs zk(w

k+1) would, in
general, result in even further deterioration of the objective.

5 An application in inventory management.

In this section, we would like to explore our results in connection with a classical inventory problem. This
idea was originally introduced by Ben-Tal et al. [2005b], in the context of a more general model: the retailer-
supplier with flexible commitment contracts problem (RSFC). We will first describe a simplified version of
the problem, and then draw a very interesting connection with our results.

The setting is the following: consider a single-product, single-echelon, multi-period supply chain, in
which inventories are managed periodically over a planning horizon of T periods. The unknown demands
wt from customers arrive at the (unique) echelon, henceforth referred to as the retailer, and are satisfied
from the on-hand inventory, denoted by xt at the beginning of period t. The retailer can replenish the
inventory by placing orders ut, at the beginning of each period t, for a cost of ct per unit of product. These
orders are immediately available, i.e. there is no lead-time in the system, but there are capacities on how
much the retailer can order: Lt ≤ ut ≤ Ut. After the demand wt is realized, the retailer incurs holding
costs Ht · max{0, xt + ut − wt} for all the amounts of supply stored on her premises, as well as penalties
Bt ·max{wt − xt − ut, 0}, for any demand that is backlogged.

In the spirit of robust optimization, we will assume that the only information available about the demand
at time t is that it resides within a certain inverval centered around a nominal (or mean) demand d̄t, which
results in the uncertainty set Wt = {

∣
∣wt − d̄t

∣
∣ ≤ ρ · d̄t }, where ρ ∈ [0, 1] can be interpreted as an uncertainty

level. As such, if we take the objective function to be minimized as the cost resulting in the worst-case
scenario, we immediately obtain an instance of our original Problem 1.1, with αt = βt = 1, γt = −1, and the
convex state costs ht(·) denoting the Newsvendor cost, ht(xt+1) = Ht ·max{xt + ut−wt, 0}+Bt ·max{wt −
xt − ut, 0}.

Therefore, the results in Theorem 3.1 are immediately applicable to conclude that no loss of optimality
is incurred when we restrict attention to affine order quantities qt that depend on the history of available
demands at time t, qt(w

t) = qt,0 +
∑t−1

τ=1 qt,τ · wτ , and when we replace the Newsvendor costs ht(xt+1) by
some (potentially larger) affine costs zt(w

t+1). The main advantage is that, with these substitutions, the
problem of finding the optimal affine policies becomes an LP (see the discussion in Section 3 and the paper
by Ben-Tal et al. [2005b] for more details).

The more interesting connection with our results comes if we recall the construction in Algorithm 1. In
particular, we have the following simple claim:

Proposition 5.1. If the affine orders qt(w
t) computed in Algorithm 1 are implemented at every time step

t, and we let: xk(w
k) = x1 +

∑k−1
t=1 (qt(w

t)− wt)
def

= xt,0 +
∑k−1

t=1 xk,t · wt denote the affine dependency of
the inventory xk on the history of demands, wk, then:

1. If a certain demand wt is fully satisfied by time k ≥ t+ 1, i.e. xk,t = 0, then all the (affine) orders qτ
placed after time k will not depend on wt.

2. Every demand wt is at most satisfied by the future orders qk, k ≥ t+1, and the coefficient qk,t represents
what fraction of the demand wt is satisfied by the order qk.

Proof. To prove the first claim, recall that, in our notation from Section 4.1.1, xk ≡ θ2 = b0 +
∑k−1

t=1 bt · wt.
Applying part (i) of Lemma 4.4 in the current setting9, we have that 0 ≤ qk,t ≤ −xk,t. Therefore, if

9The signs of the inequalities are changed because every disturbance, wt, is entering the system dynamics with a coefficient
−1, instead of +1, as was the case in the discussion from Section 4.1.1.
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xk,t = 0, then qk,t = 0, which implies that xk+1,t = 0. By induction, we immediately get that qτ,t = 0, ∀ τ ∈
{k, . . . , T }.

To prove the second part, note that any given demand, wt, initially has an affine coefficient of −1 in the
state xt+1, i.e. xt+1,t = −1. By part (i) of Lemma 4.4, 0 ≤ qt+1,t ≤ −xt+1,t = 1, so that qt+1,t represents a
fraction of the demand wt satisfied by the order qt+1. Furthermore, xt+2,t = xt+1,t + qt+1,t ∈ [−1, 0], so, by

induction, we immediately have that qk,t ∈ [0, 1], ∀ k ≥ t+ 1, and
∑T

k=t+1 qk,t ≤ 1.

In view of this result, if we think of {qk}k≥t+1 as future orders that are partially satisfying the demand
wt, then every future order quantity qk(w

k) will satisfy exactly a fraction of the demand wt (since the
coefficient for wt in qk will always be in [0, 1]), and every demand will be at most satisfied by the sequence
of orders following after it appears. This interpretation bears some similarity with the unit decomposition
approach of Muharremoglu and Tsitsiklis [2007], where every unit of supply can be interpreted as satisfying
a particular unit of the demand. Here, we are accounting for fractions of the total demand, as being satisfied
by future order quantities.

6 Conclusions. Future Directions.

We have presented a novel approach for theoretically handling robust, multi-stage decision problems. The
method strongly utilized the connections between the geometrical properties of the feasible sets (zonogons),
and the objective functions being optimized, in order to prune the set of relevant points and derive properties
about the optimal policies for the problem. We have also shown an interesting implication of our theoretical
results in the context of a classical problem in inventory management.

On a theoretical level, one immediate direction of future research would be to study systems with mixed
(polyhedral) constraints, on both state and control at time t. Furthermore, we would like to explore the
possibility of utilizing the same proof technique in the context of multi-dimensional problems, as well as for
more complicated uncertainty sets W .

Second, we would like to better understand the connections between the matching performed in Algorithm
2 and the properties of convex (and supermodular) functions, and explore extensions of the approach to
handle cost functions that are not necessarily convex, as well as non-linear cost structures for the control ut.
Another potential area of interest would be to use our analysis tools to quantify the performance of affine
policies even in problems where they are known to be suboptimal (such as the one suggested in Section
4.3.3). This could potentially lead to fast approximation algorithms, with solid theoretical foundations.

On a practical level, we would like to explore potential applications arising in robust portfolio optimiza-
tion, as well as operations management. Also, we would like to construct a procedure that mimics the
behavior of our algorithms, but does not require knowledge of the optimal value functions J∗(·) or optimal
controllers u∗(·). One potential idea would be to explore which types of cuts could be added to the linear
program (AARC), to ensure that it computes a solution as “close” to the affine controller q(w) as possible.

7 Appendix.

7.1 Dynamic Programming Solution.

This section contains a detailed proof for the solution of the Dynamic Programming formulation, initially
introduced in Section 2. Recall that the problem we would like to solve is the following:

JmM
def
= min

u1

[

c1 · u1 +max
w1

[

h1(x2) + · · ·+min
uk

[

ck · uk +max
wk

[hk(xk+1) + . . .

(DP ) +min
uT

(

cT · uT +max
wT

hT (xT+1)

)

. . .

]

. . .

] ]

s.t. xk+1 = xk + uk + wk

Lk ≤ uk ≤ Uk ∀ k ∈ {1, 2, . . . , T },

wk ∈ Wk = [wk , wk]
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which gives rise to the corresponding Bellman recursion:

J∗
k (xk)

def
= min

Lk≤uk≤Uk

[

ck · uk + max
wk∈Wk

[
hk(xk + uk + wk) + J∗

k+1 (xk + uk + wk)
]
]

.

According to our definition of running cost and cost-to-go, the cost at T + 1 is J∗
T+1 = 0, which yields the

following Bellman recursion at time T :

J∗
T (xT )

def
= min

LT≤uT≤UT

[

cT · uT + max
wT∈WT

hT (xT + uT + wT )

]

.

First consider the inner (maximization) problem. Letting yT
def
= xT + uT , we obtain:

gT (yT )
def
= max

wT∈[wT ,wT ]
hT (xT + uT + wT )

(since hT (·) convex) = max {hT (yT + wT ) , hT (yT + wT )} (58)

Note that gT is the maximum of two convex, coercive functions of yT , hence it is also convex and coercive
(see Theorem 5.5 in Rockafellar [1970] or Proposition 1.2.4 in Bertsekas [2003] for details). The outer
(minimization) problem at time T becomes:

J∗
T (xT ) = min

LT≤uT (·)≤UT

cT · uT + gT (xT + uT )

= −cT · xT + min
LT≤uT (·)≤UT

[ cT · (xT + uT ) + gT (xT + uT ) ]

For any xT , cT · (xT + uT ) + gT (xT + uT ) is a convex function of its argument yT = xT + uT . As such, by
defining [y

t
, yt] to be the compact set of minimizers of the convex and coercive function cT · y + gT (y), we

obtain that the optimal controller and optimal value function at time T will be:

u∗
T (xT ) =







UT , if xT < y
T
− UT

−xT + y∗, otherwise

LT , if xT > yT − LT

(59)

J∗
T (xT ) =







cT · UT + gT (xT + UT ), if xT < y
T
− UT

cT · (y∗ − xT ) + gT (y
∗), otherwise

cT · LT + gT (xT + LT ), if xT > yT − LT

(60)

where y∗ ∈ [y
T
, yT ] .

The following properties are immediately obvious:

1. u∗
T (xT ) is piecewise affine (with at most 3 pieces), continuous, monotonically decreasing in xT .

2. J∗
T (xT ) is convex, since it represents a partial minimization of a convex function with respect to one

of the variables (see Proposition 2.3.6 in Bertsekas [2003]).

The results can be immediately extended by induction on k:

Lemma 7.1. The optimal control policy u∗
k(xk) is piecewise affine, with at most 3 pieces, continuous, and

monotonically decreasing in xk. The optimal objective function J∗
k (xk) is convex in xt.

Proof. The induction is checked at k = T . Assume the property is true at k + 1. Letting yk
def
= xk + uk, the

Bellman recursion at k becomes:

J∗
k (xk)

def
= min

Lk≤uk≤Uk

[ ck · uk + gk (xk + uk) ]

gk (yk)
def
= max

wk∈Wk

[
hk(yk + wk) + J∗

k+1 (yk + wk)
]
.
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Consider first the maximization problem. Since hk is convex, and (by the induction hypothesis) J∗
k+1 is

also convex, the maximum will be reached on the boundary of Wk = [wk , wk]:

gk (yk) = max
{
hk(yk + wk) + J∗

k+1 (yk + wk) , hk(yk + wk) + J∗
k+1 (yk + wk)

}
(61)

and gk(yk) will be also be convex. The minimization problem becomes:

J∗
k (xk) = min

Lk≤uk≤Uk

[ ck · uk + gk (xk + uk) ]

= −ck · xk + min
Lk≤uk≤Uk

[ ck · (xk + uk) + gk (xk + uk) ] (62)

Defining, as before, [y
k
, yk] as the set of minimizers of ck · y + gk(y), we get:

u∗
k(xk) =







Uk, if xk < y
k
− Uk

−xk + y∗, otherwise

Lk, if xk > yk − Lk

(63)

J∗
k (xk) =







ck · Uk + gk(xk + Uk), if xk < y
k
− Uk

ck · (y∗ − xk) + gk(y
∗), otherwise

ck · Lk + gk(xk + Lk), if xk > yk − Lk

(64)

where y∗ ∈ [y
k
, yk] .

In particular, u∗
k will be piecewise affine with 3 pieces, continuous, monotonically decreasing, and J∗

k will
be convex (as the partial minimization of a convex function with respect to one of the variables). A typical
example of the optimal control law and the optimal value function is shown in Figure 1 of Section 2.

7.2 Zonotopes and Zonogons.

In this section of the Appendix, we would like to outline several useful properties of the main geometrical
objects of interest in our exposition, namely zonotopes. The presentation here parallels that in Chapter 7 of
Ziegler [2003], to which the interested reader is referred to for a much more comprehensive treatment.

Zonotopes are special polytopes that can be viewed in various ways: as projections of cubes, as Minkowski
sums of line segments, and as sets of bounded linear combinations of vector configurations. Each description
gives a different insight into the combinatorics of zonotopes, and there exist some very interesting results that
unify the different descriptions under a common theory. For our purposes, it will be sufficient to understand
zonotopes under the first two descriptions. In particular, letting Hk denote the k-dimensional hypercube,
Hk = {w ∈ Rk : 0 ≤ wi ≤ 1, ∀ i}, we can introduce the following definition:

Definition 7.1 (7.13 in Ziegler [2003]). A zonotope is the image of a cube under an affine projection, that
is, a d-polytope Z ⊆ Rd of the form

Z = Z(V ) := V · Hk + z = {Vw + z : w ∈ Hk}

= {x ∈ Rd : x = z +

k∑

i=1

wivi, 0 ≤ yi ≤ 1}

for some matrix (vector configuration) V = (v1, . . . ,vk) ∈ Rd×k.

The rows of the matrix V are often referred to as the generators defining the zonotope. An equivalent
description of the zonotope can be obtained by recalling that every k-cube Hk is a product of line segments
Hk = H1 × · · · ×H1. Since for a linear operator π we always have: π(H1 × · · · ×H1) = π(H1)+ · · ·+ π(H1),
by considering an affine map given by π(w) = Vw+z, it is easy to see that every zonotope is the Minkowski
sum of a set of line segments:

Z(V ) = [0,v1] + · · ·+ [0,vp] + z.
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For completeness, we remark that there is no loss of generality in regarding a zonotope as a projection
from the unit hypercube Hk, since any projection from an arbitrary hyper-rectangle in Rk can always be
seen as a projection from the unit hypercube in Rk. To see this, consider an arbitrary hyper-rectangle in
Rk:

Wk = [w1 , w1]× [w2 , w2]× · · · × [wk , wk],

and note that, with V ∈ Rd×k, and aT ∈ Rk denoting the j-th row of V , the j-th component of Z(V )
def
= V ·

Wk + z can be written:

Z(V )j
def
= zj +

k∑

i=1

(ai · wi) =

(

zj +
k∑

i=1

ai · wi

)

+
k∑

i=1

ai · (wi − wi) · yi, where yi ∈ [0, 1], ∀ 1 ≤ i ≤ k.

An example of a subclass of zonotopes are the zonogons, which are all centrally symmetric, 2-dimensional
2p-gons, arising as the projection of p-cubes to the plane. An example is shown in Figure 2 of Section 4.1.
These are the main objects of interest in our treatment, and the following lemma summarizes their most
important properties:

Lemma 7.2. Let Hk = [0, 1]k be a k-dimensional hypercube, k ≥ 2. For fixed a, b ∈ Rk and a0, b0 ∈ R,

consider the affine transformation π : Rk → R2, π(w) =

[
aT

bT

]

·w +

[
a0
b0

]

and the zonogon Θ ⊂ R2:

Θ = π (Hk)
def

=
{
θ ∈ R2 : ∃w ∈ Hk s.t. θ = π(w)

}
.

If we let VΘ denote the set of vertices of Θ, then the following properties are true:

1. ∃O ∈ Θ such that Θ is symmetric around O : ∀x ∈ Θ ⇒ 2O − x ∈ Θ.

2. |VΘ| = 2p ≤ 2k vertices. Also, p < k if and only if ∃ i 6= j ∈ {1, . . . , k} such that rank

([
ai aj
bi bj

])

<

2.

3. If we number the vertices of VΘ in cyclic order:

VΘ = (v0, . . . ,vi,vi+1, . . . ,v2p−1) (v2p+i
def

= v(2p+i) mod (2p))

then 2O − vi = vi+p, and we have the following representation for Θ as a Minkowski sum of line
segments:

Θ = O +

[

−
v1 − v0

2
,
v1 − v0

2

]

+ · · ·+

[

−
vp − vp−1

2
,
vp − vp−1

2

]

def

= O +

p
∑

i=1

λi ·
vi − vi−1

2
, −1 ≤ λi ≤ 1.

4. If ∃w1,w2 ∈ Hk such that v1
def

= π(w1) = v2
def

= π(w2) and v1,2 ∈ VΘ, then ∃ j ∈ {1, . . . , k} such that
aj = bj = 0.

5. With the same numbering from (iii) and k = p, for any i ∈ {0, . . . , 2p − 1}, the vertices of the
hypercube that are projecting to vi and vi+1, respectively, are adjacent, i.e. they only differ in exactly
one component.

Proof. We will omit a complete proof of the lemma, and will instead simply suggest the main ideas needed
for checking the validity of the statements.

For part (i), it is easy to argue that the center of the hypercube, OH = [1/2, 1/2, . . . , 1/2]T , will always
project into the center of the zonogon, i.e. O = π (OH). This implies that any zonogon will be centrally
symmetric, and will therefore have an even number of vertices.
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Part (ii) can be shown by induction on the dimension k of the hypercube, Hk. For instance, to prove
the first claim, note that the projection of a polytope is simply the convex hull of the projections of the
vertices, and therefore projecting a hypercube of dimension k simply amounts to projecting two hypercubes
of dimension k − 1, one for wk = 0 and another for wk = 1, and then taking the convex hull of the two
resulting polytopes. It is easy to see that these two polytopes in R2 are themselves zonogons, and are
translated copies of each other (by an amount [ak, bk]

T ). Therefore, by the induction hypothesis, they have
at most 2(k− 1) vertices, and taking their convex hull introduces at most two new vertices, for a total of at
most 2(k − 1) + 2 = 2k vertices. The second claim can be proved in a similar fashion.

One way to prove part (iii) is also by induction on p, by taking any pair of opposite (i.e. parallel, of the
same length) edges and showing that they correspond to a Minkowski summand of the zonogon.

Part (iv) also follows by induction. Using the same argument as for part (ii), note that the only ways to
have two distinct vertices of the hypercube Hk (of dimension k) project onto the same vertex of the zonogon
Θ is to either have this situation happen for one of the two k − 1 dimensional hypercubes (in which case
the induction hypothesis would complete the proof), or to have zero translation between the two zonogons,
which could only happen if ak = bk = 0.

Part (v) follows by using parts (iii) and (iv) and the definition of a zonogon as the Minkowski sum of
line segments. In particular, since the difference between two consecutive vertices of the zonogon, vi,vi+1,
for the case k = p, is always given by a single column of the projection matrix (i.e. [aj , bj ]

T , for some j),
then the unique vertices of Hk that were projecting onto vi and vi+1, respectively, must be incidence vectors
that differ in exactly one component, i.e. are adjacent on the hypercube Hk.

7.3 Technical Lemmas.

This section of the Appendix contains a detailed proof for the technical Lemma 4.3 introduced in Section
4.1.2, which we include below, for convenience.

Lemma 4.3. When the zonogon Θ has a non-trivial intersection with the band BLU (case [C4]), the
convex polygon ∆Γ and the set of points on its right side, r-side(∆Γ), satisfy the following properties:

1. r-side(∆Γ) is the union of two sequences of consecutive vertices (one starting at ṽ0, and one ending at
ṽk), and possibly an additional vertex, ṽt:

r-side(∆Γ) = {ṽ0, ṽ1, . . . , ṽs} ∪ {ṽt} ∪ {ṽr, ṽr+1 . . . , ṽk} , for some s ≤ r ∈ {0, . . . , k}.

2. With cotan (·, ·) given by (25) applied to the (γ̃1, γ̃2) coordinates, we have that:

{

cotan
(
ṽs, ṽmin(t,r)

)
≥ as+1

bs+1
, whenever t > s

cotan
(
ṽmax(t,s), ṽr

)
≤ ar

br
, whenever t < r.

Proof of Lemma 4.3. In the following exposition, we will use the same notation as introduced in Section
4.1.2. Recall that case [C4] on which the lemma is focused corresponds to a nontrivial intersection of the
zonotope Θ with the horizontal band BLU defined in (30). As suggested in Figure 5 of Section 4.1.2, this
case can be separated into three subcases, depending on the position of the vertex vt relative to the band
BLU , where the index t is defined in (31). Since the proof of all three cases is essentially identical, we will
focus on the more “complicated” situation, namely when vt ∈ BLU . The corresponding arguments for the
other two cases should be straightforward.

First, recall that ∆Γ is given by (28), i.e. ∆Γ = conv ({ṽ0, . . . , ṽk}), where the points ṽi are given by
(29), which results from applying mapping (27) to vi ∈ Θ. From Definition 4.1 of the right side, it can be
seen that the points of interest to us, namely r-side(∆Γ), will be a maximal subset

{
ṽi(1), ṽi(2), . . . , ṽi(m)

}
⊆

{ṽ0, . . . , ṽk}, satisfying:







ṽi(1) = argmax
γ̃1

argmin
γ̃2

[ γ̃ : γ̃ = (γ̃1, γ̃2) ∈ {ṽ0, . . . , ṽk} ]

ṽi(m) = argmax
γ̃1

argmax
γ̃2

[ γ̃ : γ̃ = (γ̃1, γ̃2) ∈ {ṽ0, . . . , ṽk} ]

cotan
(
ṽi(1), ṽi(2)

)
> cotan

(
ṽi(2), ṽi(3)

)
> · · · > cotan

(
ṽi(m−1), ṽi(m)

)
.

(65)
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For the analysis, we will find it useful to define the following two indices:

ŝ
def
= min {i ∈ {0, . . . , k} : θ2(vi) ≥ y∗ − U} , r̂

def
= max {i ∈ {0, . . . , k} : θ2(vi) ≤ y∗ − L} . (66)

In particular, ŝ is the index of the first vertex of r-side(Θ) falling inside BLU , and r̂ is the index of the last
vertex of r-side(Θ) falling inside BLU . Since we are in the situation when vt ∈ BLU , it can be seen that
0 ≤ ŝ ≤ t ≤ r̂ ≤ k, and thus, from (31) (the definition of t) and (32) (typical conditions for the right side of
a zonogon):

a1
b1

> · · · >
aŝ
bŝ

> · · · >
at
bt

> c ≥
at+1

bt+1
> · · · >

ar̂
br̂

> · · · >
ak
bk

. (67)

With this new notation, we proceed to prove the first result in the claim. First, consider all the
vertices vi ∈ r-side(Θ) falling strictly below the band BLU , i.e. satisfying θ2[vi] < y∗ − U . From the
definition of ŝ, (66), these are exactly v0, . . . ,vŝ−1, and mapping (27) applied to them will yield: ṽi =
( θ1[vi] + c · U, θ2[vi] + U ). In other words, any such points will simply be translated by (c · U,U). Simi-
larly, any points vi ∈ r-side(Θ) falling strictly above the band BLU , i.e. θ2[vi] > y∗ − L, will be translated
by (c · L,L), so that we have:

ṽi = vi + (c · U,U), i ∈ {0, . . . , ŝ− 1},

ṽi = vi + (c · L,L), i ∈ {r̂ + 1, . . . , k},
(68)

which immediately implies, since vi ∈ r-side(Θ), that:

{

cotan (ṽ0, ṽ1) > cotan (ṽ1, ṽ2) > · · · > cotan (ṽŝ−2, ṽŝ−1) ,

cotan (ṽr̂+1, ṽr̂+2) > cotan (ṽr̂+2, ṽr̂+3) > · · · > cotan (ṽk−1, ṽk) .
(69)

For any vertices inside BLU , i.e. vi ∈ r-side(Θ) ∩ BLU , mapping (27) will yield:

ṽi = ( θ1[vi]− c · θ2[vi] + c · y∗, y∗ ) , i ∈ {ŝ, . . . , t, . . . , r̂}, (70)

that is, they will be mapped into points with the same γ̃2 coordinates. Furthermore, using (23), it can be
seen that ṽt will have the largest γ̃1 coordinate among all such ṽi:

γ̃1[ṽt]− γ̃1[ṽi]
def
= θ1[vt]− θ1[vi]− c · (θ2[vt]− θ2[vi])

(23)
=







∑t

j=i+1 aj − c ·
∑t

j=i+1 bj
(67)

≥ 0, if ŝ ≤ i < t

−
∑i

j=t+1 aj + c ·
∑i

j=t+1 bj
(67)

≥ 0, if t < i ≤ r̂.

(71)

Furthermore, since the mapping (27) yielding γ̃2 is only a function of θ2, and is monotonic non-decreasing
(strictly monotonic increasing outside the band BLU ), vertices v0, . . . ,vk ∈ r-side(Θ) will be mapped into
points ṽ0, . . . , ṽk ∈ Γ̃ with non-decreasing γ̃2 coordinates:

γ̃2[ṽ0] < γ̃2[ṽ1] < · · · < γ̃2[ṽŝ−1] < y∗ = γ̃2[ṽŝ] = · · · = γ̃2[ṽt] = · · · = γ̃2[ṽr̂] < γ̃2[ṽr̂+1] < · · · < γ̃2[ṽk].

Therefore, combining this fact with (69) and (71), we can conclude that the points ṽi satisfying conditions
(65) are none other than:

r-side(∆Γ) = {ṽ0, ṽ1, . . . , ṽs, ṽt, ṽr, ṽr+1, ṽk} ,

where the indices s and r are given as:

s
def
=

{

max {i ∈ {1, . . . , ŝ− 1} : cotan (ṽi−1, ṽi) > cotan (ṽi, ṽt)}

0, if the above condition is never true,

r
def
=

{

min {i ∈ {r̂ + 1, . . . , k − 1} : cotan (ṽt, ṽi) > cotan (ṽi, ṽi+1)}

k, if the above condition is never true.

(72)
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This completes the proof of part (i) of the Lemma. We remark that, for the cases when vt falls strictly
below BLU or strictly above BLU , one can repeat the exact same reasoning, and immediately argue that the
same result would hold.

In order to prove the first claim in part (ii), we first recall that, from (72), if s < ŝ− 1, we must have:

cotan (ṽs, ṽs+1) ≤ cotan (ṽs+1, ṽt) ,

since otherwise, we would have taken s+ 1 instead of s in (72). But this immediately implies that:

cotan (ṽs, ṽs+1) ≤ cotan (ṽs+1, ṽt)
(25)
⇔

γ̃1[ṽs+1]− γ̃1[ṽs]

γ̃2[ṽs+1]− γ̃2[ṽs]
≤

γ̃1[ṽt]− γ̃1[ṽs+1]

γ̃2[ṽt]− γ̃1[ṽs+1]
⇒ (mediant inequality)

γ̃1[ṽs+1]− γ̃1[ṽs]

γ̃2[ṽs+1]− γ̃2[ṽs]
≤

γ̃1[ṽt]− γ̃1[ṽs]

γ̃2[ṽt]− γ̃1[ṽs]

(68)
⇔

as+1

bs+1
≤ cotan (ṽs, ṽt) ,

which is exactly the first claim in part (ii). Thus, the only case to discuss is s = ŝ− 1. Since s ≥ 0, it must
be that, in this case, there are vertices vi ∈ r-side(Θ) falling strictly below the band BLU . Therefore, we can
introduce the following point in Θ:

M
def
= argmax

θ1

{ (θ1, θ2) ∈ Θ : θ2 = y∗ − U } (73)

Referring back to Figure 6 in Section 4.2, it can be seen that M represents the point with smallest θ2
coordinate in BLU ∩ r-side(Θ), and M ∈ [vŝ−1,vŝ]. If we let (θ1[M ], θ2[M ]) denote the coordinates of M ,
then by applying mapping (27) to M , the coordinates of the point M̃ ∈ Γ̃ are:

M̃ = ( θ1[M ] + c · U, θ2[M ] + U ) = ( θ1[M ] + c · U, y∗ ) . (74)

Furthermore, a similar argument with (71) can be invoked to show that γ̃1[M̃ ] ≤ γ̃1[ṽt]. With s = ŝ− 1, we
then have:

cotan (ṽs, ṽt)
(25)
=

γ̃1[ṽt]− γ̃1[ṽŝ−1]

γ̃2[ṽt]− γ̃2[ṽŝ−1]
≥ (since γ̃2[ṽt] = γ̃2[M̃ ] = y∗ > γ̃2[ṽŝ−1])

≥
γ̃1[M̃ ]− γ̃1[ṽŝ−1]

γ̃2[M̃ ]− γ̃2[ṽŝ−1]

(68),(74)
=

θ1[M ]− θ1[vŝ−1]

θ2[M ]− θ2[vŝ−1]
= (since M ∈ [vŝ−1,vŝ])

=
as+1

bs+1
,

which completes the proof of the first claim in part (ii).
The proof of the second claim in (ii) proceeds in an analogous fashion, by first examining the trivial case

r > r̂+1 in (72), and then introducingN
def
= argmaxθ1 { (θ1, θ2) ∈ Θ : θ2 = y∗ − L } for the case r = r̂+1.
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