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Abstract

We consider the mixed integer version of bipartite vertex cover.
This is equivalent to the mixed integer network dual model, recently
introduced in [2], that generalizes several mixed integer sets arising in
production planning.

We derive properties of inequalities that are valid for the convex
hull of the mixed integer bipartite covers by projecting an extended
formulation onto the space of the original variables. This permits us
to give a complete description of the facet inducing inequalities of the
double mixing set and of the continuous mixing set with flows, two
mixed integer sets that generalize several models studied in the litera-
ture.

1 Introduction

Given a bipartite graph G = (UUV, E) aset I C UUV and rational numbers
bij, ij € E, we study the set of mized integer vertex covers

SCD = {z e RYY |z +2;> by ijeE;a,€Z i€l}.

We show that the set S(&1) is equivalent to the “network dual” set intro-
duced and studied recently by Conforti, Di Summa, Eisenbrand and Wolsey
[2] as a generalization of several mixed integer sets that have appeared in
the literature [3, 5, 10, 13].

As an example of a mixed integer set that can be transformed into the form
S(GD)  we mention the continuous mizing set, studied by Van Vyve [13],
defined as XM = {(s,r,2) ERX R x Z" | s+ 1+ a; > bj,i=1,...,n}.
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Introducing new variables 7 = —s, y; = s + r; and substituting for s and r;,
the set XM is transformed into the set {(7,y,z) € R x R" x Z" |1 + y; >
0, yi+x; > b;, i =1,...,n}, where the inequality ; > 0 becomes 7+y; > 0.
The above set is of the form S where G is a tree on the node set
{T,yi,zi, 1 =1,...,n} and edge set {Ty;, yix;, i =1,...,n}.

An extended formulation of a polyhedron P in the z-space is an inequality
description Az + Bu > d of a polyhedron @ in the (z, u)-space such that P
is the projection of @) in the z-space.

Conforti et al. [2] give an extended formulation for conv(S(E1), whose
size, however, is not always polynomial in |F| and the size of b., e € E. In
that paper, the authors show that for many models of the type S(&!) arising
in the literature, the extended formulation has polynomial size. Hence, in
those cases, the problem of optimizing a linear function over S (@D g polyno-
mial time. However in general the computational complexity of optimizing
a linear function over S(&!) is not known.

An inequality description of conv(S(@), in the original space of the
x variables is not known in general, except for the case where the b.s are
half-integral [4] or for specific graph topologies. To find such a description,
one possible approach is to try to characterize the facet-defining inequalities
of conv(S(@D) by projection of an extended formulation, and this is the
subject of this paper.

In Section 2 we derive an extended formulation for conv(S(©). This
formulation differs slightly from that proposed in [2], but its projection cone
is easier to analyze. Throughout the paper, k denotes the smallest integer
such that kb;; € Z for all ij € E. The extended formulation we describe is
polynomial in |E| and k. Section 3 is devoted to showing the equivalence of
the “network dual” set of [2] and the set S(GD).

In Section 4, we give several properties of the rays of the projection cone
of the extended formulation that generate facets of conv(S(@1)). Special
emphasis is given to the case in which G is a tree. Many models studied in
the literature fit this case [3, 5, 10, 13]. In particular, a “cyclic property” of
the coefficients of the rays, given in Lemma 19, will prove crucial in deriving
facet-defining inequalities of conv(S%) when G is a tree.

In Section 5 we rely on the results of the previous section to obtain
explicit inequality descriptions for some mixed integer sets. More precisely,
we describe the convex hull of the double mizing set,

XOMIX — f(2g,2) ER X Z™|b; <wo+a; <c¢jyi=1,...,n},
and of the continuous mizing set with flows
XOME {(s,7,2,) € RxRY xR} XZ" | s+ri+z; > b;, z; <, i = 1,...,n}.

Both results are new. The characterization of the continuous mixing set
generalizes work of Van Vyve [13] and solves an open problem in [3].



2 The extended formulation

We assume here that & is a positive integer and that b;; = [bs;] + h]ij for
some integer h;; between 0 and k — 1 for each ij € F,.

Let L = V(G)\ I. For any vector z € RV(%) we denote by z; and zr,
its restrictions to the components indexed by I and L respectively.

Remark 1 Every point of S@1) is a convex combination of points z', ... z €
S(GD such that kat is integral for € =1,..., h.

Proof: The constraint matrix of the system x; +x; > b;;, ij € E is the edge-
node incidence matrix A of G. Since G is bipartite, A is totally unimodular.
Let z € S(G,I). By definition of S(@1) Z; is integral. Furthermore, z =
kZ 1, is in the polyhedron @ defined by Apz > k(b— ArZr), where Ay, and A
are the column submatrices of A indexed by L and I, respectively. Since A,
is totally unimodular and k(b — ArZ) is an integral vector, @ is an integral

polyhedron. Hence Z is a convex combination of integral points z!,..., 2"

of Q. Let 2* = (z1,k'2") € S(@D  then 7 is a convex combination of
1 h

T, ..., 2" O

Remark 2 The polyhedron COHV(S(G’I )) 18 not pointed. Indeed the dimen-
ston of its lineality space is the number of connected components of G. A
basis of the lineality space is given by the vectors, defined by each component
C, of the formx;=1,i€UNC,z;, =—-1,ieVNC,z;=0,i¢C.
Remark 1 shows that every minimal face of conv(S(G,I)) contains a point
that is 1/k-integral.

Consider a point # of conv(S(“) with kz is integral. Thus 7; = [Z;|+%

for some integer r;, i € UUV. For every i € U UV, define it = |z;] for
t—O ok —mri—1, gt = [z;] for t = k—r;...,k —1. Then z; =

(ul +t /,Lf 1) where ), ... ,ﬂf_l € Z. Furthermore, if ¢ € I, then Z; is
integer and ,U,Z = ﬂf_l.
Therefore we asso<31ate k auxiliary integer variables ,u?, ey ,uf_l to each

variable z;, i € V(G). This allows us to define conv(S(©1)) as the projection
of a polyhedron in the (z, 1) space, as follows.

Theorem 3 The polyhedron conv(S(G’I)) is the projection onto the space
of the x-variables of the polyhedron Q defined as the set of points (x, )
satisfying

1
xi—E(ug—I— +uf H=0 ieUUV (1)
il T S by b= 0, k—hy—1 GEE ()

pl ST w1 t=k—hg,....k—1 ijeE (3
(4)

pit =0 t=1,....,k—1,i€el. 4
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Figure 1: Representation of the extended formulation of a single inequality
x; +x; > b;;. Each edge joins the node corresponding to variable u! on the
left to the node corresponding to variable ,u?ij ‘ on the right. Edges at the top
group represent inequalities (2), while edges below represent inequalities (3).

We will need the following result of Heller and Tompkins.

Theorem 4 (Heller and Tompkins [6]) Let A be a 0, +1-matriz with at
most two nonzero entries per row. The matriz A is totally unimodular if
and only if the columns of A can be partitioned into two sets R and B such
that the sum of the columns in R minus the sum of the columns in B is a
0, &=1-vector.

For ease of notation, given an edge 5 € F and an index t,0 <t < k—1,
we define

S k‘—hij—l—t, tZO,...,k‘—hij—l;
Git =\ 2k —hyj—1—t, t=k—hg,... k-1

Proof of Theorem 3. We first show that the projection of Q; onto the z-
space is contained in conv(S(¢))). Notice that, given ij € F, summing
all inequalities (2)-(3) relative to ij, dividing them by £k and adding the

. 1 pt —1 K .
equations z; — 5:01 % =0and z; — fzol =+ = 0, one obtains z; +x; > b;;.

Therefore x; + x; > b;; is valid for the projection of Q.

Let M be the constraint matrix of the system defined by (2),(3),(4).
Then M is a 0,£1 matrix with exactly two nonzero elements in each row,
and the sum of the columns of M corresponding to nodes in U minus the
sum of the columns corresponding to nodes in V yields the vector of all
zeroes. By Theorem 4, matrix M is totally unimodular.

Consider a point (Z, 1) of Q;. We wish to show that Z € conv(S!
Since the constraint matrix M of the system defined by (2),(3),(4) is to-
tally unimodular, and the right-hand-side of such system is integral, iz can
be written as a convex combination of integral vectors pl,..., u" satisfy-
ing (2),(3),(4). Let x',...,2" be the vector defined by p',...,u" in the

G’,I)).



system of equations (1). By (4), },... 2% are integral vectors, therefore
z', ..., z" € S(GD  Furthermore Z is a convex combination of z!,..., 2",

thus Z € conv(S(@1).

Conversely, we show that conv(S(@1)) is contained in the projection of
Q; onto the z-space. By Remark 1, given a point Z of S(&!) such that kZ is
integral, we only need to show that there is a vector i such that (z, ) € Q.
Since kz is integral, z; = [Z;] 4+ 7 for some integer r;, i € U U V. Also,
Z; € Z for every i € I, thus r; = 0 for every i € I. For every i € U UV,
define gt = |z;] for t =0,...,k—r; — 1, gt = [z;| for t =k —ry,..., k— 1.
Clearly (z, 1) satisfies (1) and (4). We now show that i satisfies (2),(3). In
fact, given ¢j € F and an index ¢, 0 <t < k — 1, observe that the vector j
defined above satisfies

_ e 1 _
ST AT 2 by
1 1
%ﬁi_gﬂf— 07 6207 >t_1a
1 1
k:u’z k,MfZ _%7 E_t+1 k_]-v
1 1
kf,u‘;]”t_% gZ O) 62077q2]t_15
1 q”t 1 Z 1
k J —%‘]Z 5 Ezq”t‘i_l,,k—l

Summing all these inequalities, we obtain

1
MH’MQW > bij E(2k—2_t_%jt)-

Fort=0,...,k—h;j — 1 this gives jif + ,uq”t > b;; — 1 — 7 (hij — 1), that is
ak+ ,uq”t > {bUJ — 1+ +. Since ji is integral, it satisfies (2).
For t = k — hyj,...,k — 1, this gives fi! —l—,uq”t > byj %(h — 1), that is

ak+ ﬁ?”t > |bij] + % Since [i is integral, it satisfies ( ).0

Remark 5 Observe that constraints (4) are equivalent to x; = pu} = ... =
Y for i € I. Therefore, for i € I, the variables ph,t=0,...,k—1 can

be eliminated in the system defining O by replacing them with variable x;.

The constraint matriz of the system obtained from (2),(3), ij € E, by the

above substitution is again totally unimodular.

Example. The mizing set [10] is the set
X;]L\/[IX:{(w(),a}> ERXZ"|zog+a; > b, i=1,...,n}.

Let b; = %, i=1,...,n, where k and hq,...,h, are integer. After replace-
ment of each variable uf, i =1,...,k, t =0,...,k — 1 by the variable z; as



explained in Remark 5, the extended formulation for conv(XMIX

Theorem 3 becomes

) given in

kxo_ug_--._ugil = 07
ph+xi > |bi|, t=0,....,k—h;—1,i=1,...,n;
,uf)ﬂ—xl > [bz-|, t=k—h;....k—1,i=1,...,n.

Figure 2 depicts the constraints defining XM/X and the corresponding
extended formulation. l

Figure 2: Mixing set and extended formulation.

Remark 6 The extended formulation in Theorem 3 has O(k|U U V|) vari-
ables and O(k|E|) constraints. Therefore its size is pseudopolynomial, but
in general not polynomial, in the size of the encoding of S(G1).

The extended formulation in Theorem 3 can be turned into a formula-
tion of polynomial size whenever we have the property that every point in
conv(S(@ D) can be expressed as convex combination of points of S(&1) in
which the fractional parts of the coordinates of these points can take only
“a small number” of possible values. More formally.

Remark 7 Suppose we are given L C {0,... .k — 1} with the property that
conv(S D) = conv(S D N {z | k(x; — |:]) € L}).

(By Lemma 1, the set {0,...,k — 1} has the above property.)

The extended formulation presented in Section 2 can be turned into an
extended formulation of size polynomial in |L| by setting pt = uf‘l whenever
k—1t & L and then eliminating variables and duplicate constraints.

In particular, whenever such a set L is known whose size is polynomial in

the input data, this yields a polynomial size extended formulation.



Conforti et al. [2] give bounds on the smallest size of a set £ satisfying
the conditions of Remark 7. Given any such set £, they also give an extended
formulation for conv(S()) that has |£||V(G)| additional variables. It can
be seen that such an extended formulation is that given in Remark 7, with
the additional constraints pu! — uﬁ_l >0, t=1,...,k—1, ,u,g — f_l > —1.

3 Equivalence of bipartite vertex covers and dual
network models

Let A be a totally unimodular matrix with two nonzero entries in each row.
Let N be the set of columns of A, and let I C N. Let b be a rational vector
and o, 8 € QV. In this section we show how the problem of characterizing
the convex hull of

XU — {4 e RV | Az > b, a <z < f3, z; integer, i € I}

can be reduced to the problem of characterizing the convex hull of a set
of type S(GI). We start by considering the special case in which A has
no negative (-1) entries, and show how to deal with bounds on the integer
variables and lower bounds on the continuous variables, before treating the
general case.

If Aisa 0,1 matrix with two ones per row, then A is totally unimodular
if and only if it is the edge-node incidence matrix of some bipartite graph
G, and therefore the set S(G) is a set of the type X 27U,

Bounds on variables First we show how to deal with bounds in the
model S(@1) namely we consider sets of the form S@D N {z|a <z < 3}
where o, 8 € QUUY,

Lemma 8 Given «;,3; € RU {£oo} for everyi e I,
conv(S DN {z | oy < 2 < By, i € I}) = conv(S NN {a | [oy] < 2 < |Bi), i € I}.

Proof: The nontrivial inclusion to prove is that the set on the left contains
the set on the right. Let Z € conv(S @) N {x|[a;] < x; < B, 1 € I}.
Then there exists i such that (Z, ) is in the polyhedron Q; defined in The-
orem 3. In particular fi satisfies the system defined by (2),(3),(4) and by
the constraints [o;] < it < [Bi], i € I, t =0,...,k — 1. The constraint
matrix of the latter system is totally unimodular and the right-hand-side is
integral, thus fi is convex combination of integral points u', ..., u" satisfy-
ing (2),(3),(4), and [oy] <t < |Bi), i€, t=0,...,k—1. Let zt,... 2"
be the points defined by p!,..., " in (1). Then z',..., 2" are elements of
S(G’I)ﬂ{x |a; < x; < B, €I} and Z is a convex combination of z!, ..., z".
Thus Z € conv(SED N {z| oy < a; < B, 1 € T}). O



Given Z C L and «; € Q for every i € Z, we observe next that the
problem of characterizing the convex hull of @D N {x|z; > oy, i € Z} can
be reduced to that of characterizing conv(S(©"1")) for some suitable bipartite
graph G’ and a subset I’ of its nodes. Graph G’ is obtained as follows: let
7' be a copy of Z disjoint from U UV, and let i’ be the copy of i in Z’ for
every iin Z. Let EZ = BEU{ii'|i € Z}, b, =b. fore € B, b, = a;,i € Z',
and I' =TUZ".

Lemma 9 Given Z C L and o; € Q for every i € Z, then
conv(SENN{z |2y > ay, i € Z}) = conv (ST INN{z € RVVVYZ |2 =0, i € Z}.

Proof. Note that S(&1) N {x|xz; > a4, i € Z} is the projection onto RVYY of
the set of vectors in 2 € RVWVYZ' satisfying x; + x; > bj; for every ij € EZ,
;€ Z,iel, xy =0 for every i € Z. By Lemma 8, conv(S(E"1) n {z €
RUVWVYZ | 2 = 0,4 € Z}) = conv(SE@ 1))y N {z € RVWVYY |z = 0,4 € Z}.
Therefore an inequality is valid for (@0 N {z|xz; > ay, i € Z} if and only if
it is obtained from some valid inequality for S (@I by replacing the variable
xy with zero for every i € Z. O

Lemma 8 implies that adding a bound on an integer variable does not
give rise to any new inequality. On the other hand, when z; is a continuous
variable, the polyhedron conv(S(“D N {z|z; > o;}), that can be derived
from conv(S(lell)) using Lemma 9, may have exponentially many more
facets than conv(S(©1).

Negative entries We now consider a general set of the form X2V,

Let N’ be a copy of N, and let ' € N’ be the copy of i € N. We define
a system of inequalities in the variables z;, z;/, i € N. Specifically replace
—x; by zy in every constraint of Ax > b in which z; appears with a —1
coefficient. Let ATax + A2’ > b, x; + x5y = 0, i € N, be the resulting
system. Theorem 4 implies that the columns of A can be partitioned into
two sets R and B so that every row of A has either a +1 and a —1 in the
same side of the partition, or two 1s or two —1s in distinct sides. Let RT,
BT denote the set of columns of AT corresponding to R and B respectively,
and define R~, B~ similarly for A~. Then every row of

AT A™

I I
has a 1 in R"UB~ and a 1 in R~ U B*. Since the constraint matrix of
the above system has two ones per row, it is the edge-node incidence matrix

of a bipartite graph G4. We define b,y = 0, i € N, while, if e € E(G )
corresponds to the hth inequality of Az > b, we define b, = by,

Proposition 10 conv({z € RN |Azx > b, 2; € Z, i € I}) is the projection
onto RN of conv(S(EaDyn {z € RNYN' |z, + 2y =0, i € N}.



Proof. Note that {z € RN | Az > b, 2; € Z, i € I} is the projection onto RV
of the points of S(G4:1) satisfying z;4+z; = 0, i € N. Since z;+z; > 0 define
faces of conv(S(G4a:D) it follows that conv(S(EaD N {z € RVNUN' | z; + 25 =
0, i € N}) coincides with conv(S(Ea-D)yn {z € RNYN |z, + 24 =0, i € N}.
O
Finally, we can express the constraints x; < 3;, ¢ € N, by x;y > —0;.
By Lemmas 8 and 9, adding lower bounds on components of the points in
S(GaD) can again be reduced to studying a set of the form S(E"!") for some
suitable bipartite graph G’ and subset of nodes I’. Therefore studying the
set S(&1) is equivalent to studying the seemingly more general set X27U.

We observe that the above discussion also allows us to give an extended
formulation for X27V similar to that described in Theorem 3. Sometimes it
will be more convenient to deal directly with such a formulation rather than
appealing to Proposition 10, thus we give it explicitly.

Theorem 11 Let G be a graph, I a subset of V(G), be, e € E(G) be rational
numbers, and E,, E,_, E__ be a partition of E(G). Let X C RF(G) pe
the set of points satisfying

ri+xp > by ij € Eiy
T —xj > by i€ Ei_

—r;—x; > by ijek__
T €7 1€ 1.

Assume that the constraint matriz of the above system is totally unimodular.
Then the following is an extended formulation for conv(X).

1

xi—%(?+---+uf*1):0 iceUUV
ph T S b =0, k—hy—1; ij € Eay
pb T S bl b=k hy k-1 i€ By
,uf—,u?“—HZ{bijJ, t=0,....,k—hy—1;, ije b, _
pb— T S ), t=k— i, k=1 i€ By
—pb — T > by t=0,... h;—1 ijeE__
b= T > by ) t=hij,... . k—1 ijeE__
pt— b =0 t=1,....k—1,i¢el.

Proof. We discuss here constraint of the form x; — x; > b;;. Applying the
transformation described in Proposition 10, the latter becomes x;+x; > by,
xj + x5 = 0, therefore the extended formulation is



1
= () =0
1
v ) = 0
1
vy =g+ ) =0
“H“?t > |bijl, t=0,....k—hy—1;
NE‘FMjf]t > [biﬂ, t:k‘—hlj,...,k—l.
phy it =0, t=0,....k—1.

Substituting —,u,;‘?_t_l for ug-,, we can express the previous constraints
only in terms of x;, x;, y;, pt;, namely

1 _
{L‘i—%(,ug‘F""F,uf H =0

1 _
:cj—%(u2+-~+u§ H =0

h;i+t
ph— T > byl =0, k= Ry — 1
hij—k+t
/‘Lgfﬂj] > |Vb’ij—|7 t:k*hij,...,k‘*l.

Similarly one can treat constraints of the form —z; — x; > b;;. O
Example. To illustrate Theorem 11, consider the set
{z €eRY —x1 + 29 >3/4, —x9 — 3> 1/4, 23 — 24 > 2/4,24 € L}.

The extended formulation is depicted in Figure 3. Each edge corresponds to
an inequality, a minus sign on an edge indicates that the coefficient of the
corresponding yf variable in the inequality is —1, and the number indicates
the right-hand side. B

Figure 3: Extended formulation in the example.
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4 On the projection of the extended formulation

By Theorem 3 and Remark 5, conv(S (@1 )) is the projection onto the space
of the x variables of the polyhedron described by the following inequalities.

(ci) hxy—pd —- —pi =0, icL;

(uf)  pb+pl? > |bijl, t=0,....k—hy—1,ij € E,ijeL
(uf)  pb+p” > [bij], t=k—hij....k=1,ijeEijel
(ufj) ;Lg—I-ZL‘j > LbijJa tZO,...,k‘—hij—l,ijEE,’iGL,jGI;
(’LLZ) ug—f—xj > H)ij-|7 t:k‘—hi]’,...,k—LijGE,iEL,jGI;
(wij) Ti + T > ’—bij-la ije E,i,5€l.

Foreachij e Fandt=0,...,k—1, let ﬁfj be the right-hand-side of the
inequalities relative to edges ¢j with ¢ € L. Notice that to each inequality
we have associated a multiplier, written on the left between parentheses.

Because of the symmetry between indices i and j in the inequality p!+ ,uj-ij b >
Bij, we identify the multipliers u;j’j and u?ijt
t=0,... . k—1.

Any valid inequality for S(&1) is determined by a vector of multipliers

(¢,u,w), and has the form 7(&%®)g > §(©4®) where

k-1
rleuwly = Z keix; + Z( Z Z uj;)wj + Z( Z wij) i,

for every ij € E, i,j € L, and

icL jel ieL: t=0 icl jel:
ijeE ijEE
k-1
s = NS g+ S wy by, (5)
t=0 ijeE: ijEE:
icL ijel

when (¢, u,w) satisfy

Youlj =c, i€Lt=0,... k-1

JiijeER
ul;: >0, ijEE, t=0,... k—1; (6)
wi; >0, ijeE, i,jel.

(See Theorem 4.10 in [9]).

11



Example. Consider the following problem

T +Is5 > 0
X2 +xs5 > 3/4
xs +5 > 2/4
gy +5 > 1/4
+x5 +Tg > 0
T6 +x7 > 0
T +x3 > 3/4
T “+x9 > 2/4
Tg +x19 > 1/4

T1, T2, T3, T4, T7, Ty, Tg, T10 € Z, T5,76 € R

represented in Figure 4.

xl x7
xz x(‘f
x3 x9
x x

Figure 4: Original problem. Square nodes correspond to integer variables.

The extended formulation is given by

4, =Y oul = 0 i=5,6
k g > 0 t=0,1,2,3;
pe +x; > BL i=1,8,9,10;t=0,1,2,3;

Figure 5: Extended problem. Non-zero requirements on the edges are shown.
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Consider the vector of multipliers (c,u) where c5 = 1, ul, = 1 for t =
0,1,2,3 and all other entries are equal to 0 that satisfies (6). Then the
corresponding inequality (5) is 4xo + 4x5 > 3, which is one of the original
inequalities.

As another example, let (c,u) be given by ¢5 = ¢ = 1, ugﬁ = ugﬁ =1,
uty, = ud; = uly = udy = 1, and all other entries equal to 0. Then the
corresponding inequality (5) is xo + x4 + 45 + dag + x7 + 29 > 3. A

Remark 12 If G’ is a subgraph of G and I' = V(G')N I, a valid inequality
for conv(SE"1) is also valid for conv(S(E1).

We are interested in characterizing the vectors (¢, u, w) satisfying (6) for
which r(e®®)g > §leuww) ig facet-defining for conv(S(@1)), but is not one of
the original inequalities x; + x; > b;;, ij € E. Let E be the set of edges
ij € F such that ugj > 0 for some t € {0,...,k — 1} or w;; > 0. Let G be
the subgraph of G whose edges are the elements of £ and whose nodes are
the endnodes of edges in E. We call G the skeleton of (¢, u,w).

Remark 13 If the inequality 7(¢*® g > §(©ww) s facet-defining for COHV(S(G’I)),
then it is facet-defining for conV(S(éj)), where I = V(G)N 1.

Proof. Note that m(&%®)g > §(&ww) is valid for conv(S(C*vj))7 since uﬁj, Wi

are zero on the edges ij of E(G)\ E(G) and ¢; = 0 for every i € V(G)\V(G).

If plewwly > §leww) s facet-defining for conv(S(@1), it is satisfied at
quality by |V (G)| affinely independent points x!, ... L2Vl in §(GD | Let

z,. .., zlVG be the restriction of 2, ..., 2Vl to the components relative
to nodes in V(G). Then, by standard linear algebra, z', ..., V(&I contain
|V (G)| affinely independent vectors. O

In the light of Remarks 12 and 13, we may assume that G coincides with
the skeleton G of (¢, u,w).

Notice that the equations in (6) are defined only for the nodes i € L.
This implies the following:

Lemma 14 Let E', E” be a partition of the edges of E such that, for every
node i € L, the edges incident to i are either all in E' or all in E". Let
G' = (UUV,E') and G" = (UUV, E"). Then conv(S©1) = conv(S1)N
conv(S(E":D)y.

Proof: Clearly conv(S(@1) C conv(S(E D) N conv(SE"D). Next we show
the reverse containment.
Let w(ew®@) g > §(e%) be defined by multipliers (¢, u, w) satisfying (6). De-

fine vectors (¢, v/, w"), (", u”,w") as follows. ¢, = ¢;, ¢/ =0ifi € L is
s Uy ) 3 ) i 1y O
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! = ¢ if i € L is adjacent only

I ij = 0, ng = Wiy, w;/] =0, if ij € E';
=0, w). = wj, if ij € E”. Notice that (c,u,w) =

adjacent only to edges in E', ¢, = 0, ¢
to edges in E"; u: ul., "t
u’gj =0, u”ﬁj =ul, w i
(d, v, w") + (", 4", w"), and, by our assumptions on E’ and E”, (¢/, v/, w")
and (¢, u”,w") satisfy (6). Furthermore, since (¢/,u’,w’) is zero on all en-
tries relative to edges in E” and (¢, u”,w") is zero on all entries relative to
edges in F', ml(dww) > 5w’ w') ang (e’ ww”) g > 5w w") are valid for
conv(S(@"D) and conv(S(E"1)), respectively. Hence n(&®)g > §(euw) can
be written as nonnegative combination of inequalities valid for conv(S(&"1)
or conv(S(@"D), thus the statement follows. O

ij

ST
<

~—

Because of Lemma 14, we assume the following from now on:
A1) G has no edge ij withi,j € I;
A?2) There is no node-cutset S of G with S C I.

Indeed, if 45 is an edge with ¢,j € I, then E' = {ij}, E” = E\ {ij} satisfy
the hypothesis of Lemma 14, while if S C I is a cutset of GG, then the edges
of G can be partitioned into two subsets E' and E” satisfying the hypothesis
of Lemma 14.

Under assumption A1), the vector w disappears in (6) and the inequality
defined by (5) becomes

k-1 k-1
)SICTED 0 ID SUALED 9p I ML
i€L jel ieL: t=0 t=0ijeE
ijell 1€L
We will denote such an inequality by 7(¢®az > §(e%)  Without loss of gen-

erality, we will assume that:
A3) (c,u) is integral, and its entries are co-prime.

The following remarks explains the use of assumption A3).

Remark 15 Let (c,u) be an integral vector with coprime entries satisfy-
ing (6). If there exist (',u’) and (", u") satisfying (6) such that (c,u) =
(&, u) + (", u"), then (&M g > 5% s not facet-defining.

Since we assume that G coincides with the skeleton of (¢, u), the following
holds.

A4) For every ij € F, there is at € {0,...,k — 1} such that uj; > 0.

14



Assume that, for some edge ij € E, ufj >0fort=0,...,k—1. Let
u’gj = ufj —1,fort =0,...,k—1, and 'y, = ub,, for hk € E\ {ij},
t=0,....,k—1 Letc;=c¢;—1ifi€ L, ¢, =c¢;—1if j € L, and ¢}, = ¢, for
h e L\ {i,j}. We have that (¢, /) satisfy (6). Furthermore, w(&%)z > §(cv)
is the sum of the inequality 7(¢*)z > §(¢"%) and kx; + kx; > kb;j. Since
we are assuming that 7(¢®gz > §(&%) is facet-defining, then by A3) it must
be precisely the inequality kx; + kx; > kb;;. Hence we can assume the
following:

A5) For everyij € F, thereis at € {0,...,k — 1} such that uj; = 0.

4.1 Facets defined by trees

In this section we focus our attention on the multipliers (¢, u) whose skeleton
is a tree, namely the case where G is a tree. We will assume that (c,u)
satisfies A1)-A5) and (&g > §(¢¥) is facet-defining for conv(S(1).

Remark 16 The set I coincides with the set of leaves of G.

Proof: By assumption A2), every node in I must be a leaf of G, because every
node of G that is not a leaf is a cut-node of G. On the other hand, suppose
there exists a node ¢ € L that is a leaf of G. Let j be the unique neighbor
of 7 in G. Since (c,u) satisfies (6), then ¢; = u;fj fort =0,...,k—1. By
assumption A4), we must have uﬁj >0 fort=0,...,k—1. This contradicts
assumption A5). O

Given i € I, we will denote by n(i) the unique neighbor of 7 in G. By
assumption Al), n(i) € L for every i € I.

Since G is a tree, we can reduce the requirements b, ¢ € F, to a simpler
form by a change of variables. Specifically, choose a root node r € L. For
every node ¢ distinct from r, denote by P; the unique path from 7 to 7 in
G, and by p(i) the unique neighbor of i in P;. For every node i, define the
number 7; by induction on the distance of ¢ from r, starting with ~,. = 0
and deﬁning Yi = bp(z)z — ")/p(z)

For every i € L, define the new variable z; = x; — 7;, while for every
i € I we define the new variable a} = z; — |;]. Notice that, for every i € I,
x; has integer value if and only if 2 has integer value. For every ij € E
such that ¢,j € L, the inequality x; + z; > b;; becomes x} + x; > 0.

For every i € I, the inequality x; + x,,(;y > b;; becomes x + ], W = Vi |73 -

Remark 17 We can assume that b;; = 0 for every ij € FE with i,j € L,
and that 0 < b;; < 1 otherwise.

In the light of the previous remark, we may assume that by,;); = h;/k
for every ¢ € I, where k is an integer and h; is an integer between 0 and
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k — 1. Under these assumptions, the extended formulation described at the
beginning of this section becomes:

(¢i) kay —pd — - —pbt =0, iel;

(ul;) /L,L—i-,uftl > 0, t=0,....,k—1,ij € E,i,j€L;
(Wh) phay Fxi = 0, t=0,.. k—hi—1i€l
( ZJ o +xi > 1, t=k—hy... k-1i€l

<

¢
n
ut
n

For every i € I, we denote by 3! the right-hand-side of the inequality
with multiplier ufb(i)i, namely 3! =0 fort=0,...,k—h; —1 and 8! =1 for
t=k—h;....k—1

The inequality 7(>®z > §(¢%) defined by (7) becomes

k=1 k-1
Z keixi + Z(Z Un(a)i) i > Z Z Un(i)i- (8)
i€l iel =0 i€l t=k—h;

Notice that the right-hand-side of (8) can also be written ) ; "y fuZ(i)i'

Given a node r of G, an r-branch of G is any subgraph induced by
{r} U C where C is a connected component of G \ r. Two r-branches T
and T" of G are said to be specular if there exists a graph isomorphism
¢ : V(T) — V(T') such that ¢(r) = r and by, (;); = bg(n(i))e(:) for every node
ieInV(T).

Lemma 18 For any node r, G does not have two distinct specular r-branches.

Proof: By contradiction, let T, T’ be specular r-branches, where r is a node
of G. Notice that r € L. Define vectors u/, u” as follows.

t .. .

u’ij = ujj+ulyay t=0,... k=14 € B(T), i€ L;

sie) = 0, t=0,....k—1,ij € E(T), i€ L;

i = ulj, ij ¢ E(T)U E(T").

u”fj = 0, t=0,....k—1,ij € BE(T), i€ L;
_ t t _ .. . i

v f(z)d»( B = Ui T Uhaegy t=0--k—1dij e B(T), i€ L

u'"y; = uﬁj, ij ¢ E(T)UE(T.

c,u’)

Notice that (¢,u’), (¢, u”) satisfy (6). Also notice that 7T§ = ﬂgc’u) +

((;;1;) 7r(c(1;) =0, Wéc(zi )= (Cu)+7r((z)( )) 7r(cu ) =0 for every i € V(T)\{r},

while ﬂ(cu) = Wl(cu ) = Z( W for every other node of G. Thus, for any i €

V(T)\ {r}, the numbers X' = 7>/ () 4+ 7{¢)) and x':wgzl;)/(w(wu
(c)

T ) are independent of the choice of i. Furthermore m(¢%) = \z(ew') 4
)\l/ﬂ.(c,u”)7 §leu) — y/gleu) + A §eu) Since rleu) £ (cu)  pleu), > §lew)
cannot be facet-defining. O
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Consider the inequality x,,;) +x; > h;/k for some i € I. In the extended
formulation, this inequality corresponds to the k inequalities ”Z(i) +x; >0,
t=20,....,k—1— hy ,u;(i) 4+x; > 1, t =k —hsy...,k— 1. The next

lemma shows that the multipliers uz(i)i associated with these k inequalities

are cyclically non-increasing starting from ui(_l;l;, and this is a key property
in characterizing facet-defining inequalities.

Lemma 19 For every node i € I,

kh kh+1 kl k—h;—1

Proof: Given iy € I, let i1 = n(ip). Assume 7,7’ € {0,...,k— 1} are indices
such that uf ; > umO
Claim: There exists a path ig,i1,...,%s,0s+1 0 G, where i1,...,is € L,

is+1 € I, such that:

— T k— 1 -7 k—1—-7" .
o Forr=1,....8,u;;  >u irirﬂ if v is odd, wi T <ug T if v s
even;
T T/ k—1—71 k—1—7" - .
[ ] .« . P
Ui < Ui if s is odd, uy; ioir > Uiio if s is even.

Let ig,1,...,%s be a path in G, that is maximal with the properties that
k— 1 T k— 1 il

i1,...,1s € L, and that u] ; | >um _, ifrisodd, u;” <wg o Tifris
even, r = 1,...,s. Clearly 10, 71 is a path with such propertles Slnce (c,u)
satisfy
Z Ui = i
jiisjeEE

for every t € {0,.. k: — 1}, there exists a node 7541, adjacent to is in G,
such that uj; = < uZ ioy, I s 1s odd, and uk 1 > uf;zsl“T if s is even.
If 541 € I, then the statement is proven. Suppose then that is+1 € L.
Thus (since uf] = ufj =1 for every ij € F) uf ris ul’ siris Af s+ 1s
odd, and uk ﬁl T < uf ﬁl ™ if s+ 1 is even. Therefore we can increase
the path ig, ..., is by adding the element 751, contradicting the maximality

assumption. This concludes the proof of the claim.

Suppose now that there exists a node ig € I that contradicts the state-
ment of the lemma. Let i1 = n(ig). Then there exist two indices 7, 7/ such

that u ; > “mo and such that 7,7’ satisfy one of the following:

a) TE{O,...,k—hio—l}, T/E{k—hio,...,k—l}.

b) 7> 7’ and either 7, 7" € {0, ..., k—h;,—1}or 7,7 € {k—hi,, ..., k—1}.
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Then there exists a path P = dg,...,is41 as in the statement of the
previous Claim. We define two vectors v and w as follows:

Uzrir—l = UZMT 3 -1 r=1,...,s rodd
vl = Ufm T+1 r=1,...,s reven
e = Ui, 1 if s odd
15231: = UZ:SI_HT —1 if s even
Ufj = Uﬁj otherwise
wl, = wli 41 r=1,..sro0dd
/ ’
Z;;;T = “Z;}: -1 r=1,...,s reven
Ti, = uli, -1 ifsodd
ZZSIHT = UZ;SIJ;T +1 if s even
wfj = U;Ej otherwise

One can verify that (c,v) and (¢, w) both satisfy conditions (6). Fur-
C

thermore, 7ri(c’u) = Wl(c’v) =, ) for every node ¢ distinct from ig and is41,

while W(C’v) = 7% _1 and W(O’w) = <§’“> + 1.

7

If sis odd, then 7(® )—W(Cu)—|—1 B CL) —1, §(ev) = glew) T+ 37

Ts+1 Zs+1 Ts4+1 7/§+1 Ts+1
an 51649 = 560 4 57 5
(cv) _ (C»U) (cw) _ - (eu) _ slew) _ pr
If s is even, then 7, 1 =T~ 1, mio =)+ 1, §lev) — slew) ﬁiTo

k—1—1 . / k—1—71'
ﬁis+l and 5(C,’LU) - 5(6 %) + z:) + ﬁis+1 :
Therefore 7(¢% = L(z(e?) 4 7(ew)) Moreover, 7(¢¥) # (e, We will show
next that

1
5((;(av) + olew)y > glew), (9)

contradicting the fact that (¢ gz > §(e) is facet-defining.

If 7,7/ satisfy a), then Bi, = 0 and BZ»TO/ =1. If s is odd 6(¢¥) > §(e¥) and
slew) > 5lew) while, if s is even, §(&?) > §(ew) — 1 and §(¢®) > §lew) 41, In
both cases, (9) holds.

If 7,7 satisfy b), then 87 = B7. If s is odd, then §(¢¥) 4 §lew) =

i0 10

25(eu) 4 ZH . L l+ L2 26(¢4)  where the inequality follows from the fact

that ﬂT > [/H, since 7 > 7/. If s is even, then §(&?) 4 §lew) = g5leu)

ﬂf;} T ﬁfi ™ > 95(e ) where the inequality follows from the fact that
k—1 k—1—

ﬁierlT_ﬂiS“ Tosincek—1—7">k—1-7. O

Remark 20 If the skeleton of a facet-defining inequality Wz > §lew
induces a tree T', then by Remark 16, the set of leaves of T is V(T) N I.
In this case, (c,u) is completely determined by T and by the vectors uyy;,
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i € I. Indeed, leti be aleaf of T\ I andl be the unique node of T\ I adjacent
to i, then

— t
C; = m.é.lX_l{' Z WUij 55 (10)

as otherwise uﬁl >0,t=0,...,k—1, a contradiction to Assumption A5).
Since ul, = ¢; — Zjel: ijeE u’éj, we can proceed recursively on a leaf of T\
(I U{i}), to reconstruct the vector (c,u).

5 On mixing sets

In this section, we use the results established so far to derive descriptions of
the facet-defining inequalities of special types of mixed integer sets.

5.1 Mixing set

Recall that the mixing set is the set
XMIX — f(zg,2) e RXZ" g+ x5 > by i=1,...,n}.

When there is no ambiguity, we denote XMX simply by XMX The facet-
defining inequalities describing the convex hull of X™/X have been charac-
terized by Giinliik and Pochet [5]. These are the so called mizing inequalities
that we now define. Let f; = b; — |b;], and assume that f; > ... > f, > 0.
Given any sequence 1 < i1 < ... < i, < n. The mixing inequality relative
to this sequence is

m—1
zo + Z(flh - fih+1)(xih - U)Zhj) + (1= fiy + fir)(@m — b3 ]) = fiy- (11)
h=1

Theorem 21 conv(XMIX) is defined by the mizing inequalities.
Proof: By the usual change of variables z; = x; — [b;], we may assume

b; = fi = hi/k for some integers k and h;, i = 1,...,n. The extended

formulation for XM!X  represented in Figure 2, becomes

© ko e— =

(ul) ph+x > 0, t=0,....k—h;—1,i=1,...,n;
(ul) ph+xz, > 1, t=k—h;y...,k—1,i=1,...,n.

Let (¢, u) be a vector satisfying (6), namely > & jul =c, t =0,...,k—1,
u > 0, such that 7(&Wz > §(¥) is facet-defining for conv(X™/X). Then we
may assume that (c,u) satisfy Al),...,A5). By Lemma 18, we may also
assume hi; > ... > h,. Notice also that ¢ = 1. Otherwise, if ¢ > 1,
for t = 0,...,k — 1, choose i(t) such that u’;:(t) > 0. Define u’g(t) =1,
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t=0,...,k—1,and u/; = u} otherwise. Let ¢/ = 1, (¢, u") = (c,u) — (', ).
Then (¢, ), (¢, u") satisty (6) and (c,u) = (¢, u')+(¢”,u"). By Remark 15,
newg > §ew) i not facet-defining, a contradiction. Therefore ¢ = 1 and
w has 0,1 components. Since Y . ,ul =1, ¢t =0,...,k — 1, it follows
from Lemma 19 that the vector wu; is the vector defined by ul = 1 for
t =k —hi....,k — hiyx1 — 1 (the indices being taken modulo k), u! = 0
otherwise. The inequality 7(“*)z > §(®¥) is therefore

n—1 n—1
ko + > (hi = his1)@i + (hn + k= h1)xn > > (hi = his1) + by
i=1 h=1
=hy
Dividing the inequality by k gives the mixing inequality. (]

We should point out that in the literature [5, 8], the following mixed
integer set has been usually studied

XMIX = {(zg,2) €ERy X Z" |mg+a; > b, i =1,...,n}.

If we define b, 1 = 0, XMX+ is the set of points (xq, ) such that (zg,x,0)
is in {(zo,7,7n11) € R x Z" 29 + 2y > b;, i = 1,...,n + 1}. Notice
that the latter is a mixing set X%AX . Therefore XMIX+ is the projec-
tion on the space of variables g, ..., z, of X%rllX NA{(zo, 2, Tpt1) | Ty =
0}. By Proposition 8, the convex hull of the latter set is conv(XM1X) N
{(z0, %, Zn11) | Tny1 = 0}. Therefore the irredundant inequalities for XM/ X+
are obtained from the mixing inequalities for XT%QX by setting x,11 to 0.
Given any sequence 1 < iy < ... < iy, < n, there are two mixing inequalities
associated with it, the mixing inequality (11) and the one obtained by the
mixing inequality for X%rllx relative to the sequence 1 <41 < ... < i <

im+1 = n + 1 by setting x,41 to 0, namely

Zo + Z(flh - fih+1)(xih - LbZhJ) > fil' (12)

h=1

5.2 Double mixing set
Here we consider the double mizing set
XOMIX — f(gg,2) ERXZ"|b; <mo+a; < djyi=1,...,n}.
We let
XMIX2 — {(gg,2) ERX Z™ |xo 42 > b, i = 1,...,n},
XMIXS — f(gg,2) ERXZ™| —xg — a7 > —d;, i =1,...,n}.
These last two sets are mixing sets, thus their facet-defining inequalities are

described in Theorem 21.
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XGMIX)

Theorem 22 conv( is the set of points x € R satisfying

XMIXE) XMIXS)‘

x € conv( N conv(

Proof: There exist integers k, h;, l;, i = 1,...,n, such that b; = |b;| + h;/k,

The extended formulation for XMIX g

() kwo—pg—-—pg ' =0,

(ul) ph+z; > b)), t=0,....k—h—1,i=1,...,n;
(uf) ph+xi > (b, t=k—hy... k—1i=1,...,n;
(vl) —ph—z; > [—d;], t=0,...;k—1l;—1,i=1,...,n;
(vl) —pb—x; > |—di], t=k—1l....,k—1,i=1,...,n

Any valid inequality for XEMIX ig of the form p(©®¥)g > 4(©uv) where
n k—1
POy = kemo 4 Z Z(uf — b))
i=1 t=0
n k—hi—1 k—1 k—l;—1 k—1
ylewn = Ny kb + Y bl + Y oi[—dil+ Y vl=di])
=1 t=0 t=k—h; t=0 t=k—1;
where N
Z(uf—vf):cfort:0,...,k:—1, u,v > 0. (13)
i=1

Notice that, if v = 0, then p(c’“’“)m > ’y(c’“’”) is valid for XMIXZ while if u =
0, then p(euv)g > 4(euw) js valid for XMIX<_ Therefore we are interested
in the facet-defining inequalities for which u # 0, v # 0. We assume (c, u, v)
is integer with coprime entries. In this case, we show that ¢ = 0. If not,
then by symmetry assume ¢ > 0. For t =0,...,k — 1, choose i(t) such that
uf, > 0. Define u’ﬁ(t) =1,t=0,....,k—1, and v/} = u! otherwise. Let
d=1,(u") = (c,u) — (d,u). Then (,u,0), (", u",v) satisfy (13) and
(c,u,v) = (¢,u',0) + (¢",u”,v). By Remark 15, p(&®) gz > ~(&wv) is not
facet-defining, a contradiction.

Thus > i ul = >0 vt for t = 0,...,k — 1. Next we show that, for

some € {0,...,k — 1} and some i,j € {1,...,n}, uf = vi = 1, and u,

v are zero everywhere else. If not, choose ¢ € {0,...,k — 1} such that

i,7€{l,...,n} uf >0, v§ > 0. Define v/, v" by u’ﬁ = v’§ =1, v/, v be zero
in all other entries. Let u” = u — v/, v = v —v'. Then (0,u/,v") ,(0,u”,v")
both satisfy (13), and (0,u,v) = (0,4/,v") + (0,u”,v"). By Remark 15,
pl0u0) g > 4 (0u) 49 ot facet-defining, a contradiction.

Therefore p(©%) g = z; — xj, and 7 # j. We only need to show leuv) =

[b; — dj]. If one among b; and d; is integer, then it is not difficult to see
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that the optimal choice of # gives 4(©%?) = [b;] + [~d;] = [b; — d;]. Thus
we assume b; — LbZJ > 0, —dj — L—de > 0. If b; — Lle + (—dj — L—dJJ) <1,
then k —; < k — h;, therefore the optimal choice of ¢ is either ¢ <k —1; — 1
or t > k — h;, which gives 4(©%?) = |b;| + [—d;] = [b; — d;]. Finally, if
bi—|bi|+(—d;j—|—d;]) > 1, then k—I; > k—h;, therefore the optimal choice
of tis k—h; <t <k—1;—1, which gives 7" = [b;] + [~d,] = [b; — d;].
U

5.3 Continuous mixing set with flows

The continuous mixing set with flows is the following:
XCMF {(s,7,2,2) € RxRY xR} XZ" | s41i+2; > by, 2z < wg, i =1,...,n}.

When there is no ambiguity, we denote XSMF simply by X“MF, We de-
scribe the facet-defining inequalities for conv(X“MF) in the original space.
We will discuss later how this model encompasses the continuous mix-
ing set of Van Vyve [13]. Conforti, Di Summa, and Wolsey [3] give a
polynomial size extended formulation for the convex hull of X¢MF+ —
XOMENL(s 7 2z x)|s > 0}, but describing the facet-defining inequalities for
conv (X CMFE +) in the original space was an open problem. We will show how
the description for conv(X“MF+) can be derived from that for conv(X“MF).

Let f; = b; — |b;], and assume that f; > ... > f, > 0. Every facet for
conv(X“MF) is of the following form. Let (X,T) be a partition of V(G).
Consider the complete directed graph D on n nodes, and let C be a directed
cycle of D. Let ¢ denote the number of arcs (i,j) in C' such that i > j.
The following is the cycle inequality associated with the cycle C' and the
partition (X, 7).

Ycs + Z T + Z zi + Z fj T + Z (1+fi_fj)xi2

eV (C) 1€TNV(C) (i,9)eC (i,9)eC
1<j,1€X i>7,1€X
Yoofit > G-l + YD A+ fi- bl (14)
(i,))€C (i,))€C (i,4)€C
i>7 1<J i>7

Given a partition (X,T) of V(G), let

s+ri+z>b i=1,...,n
XX = L (s,r,2,2) ERXRE X R" X Z"| 2, >0 ieT
zi < x5 1€ X

Theorem 23 Given by,...,b, € R such that fi > fo > ... > f,, we have

conv (X MY = ﬂ conv(X (15)
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where the intersection ranges over all partitions (X,T) of V(G).
Furthermore, for a given partition (X,T) of V(G), conv(X X)) is defined
by the inequalities s+r;j+2; > b, r; >0,1=1,...,n, 2, >20,i €T, z; < x;,
i € X, and by the cycle inequalities (14) for every directed cycle C.

XCMF

Proof: We can transform into a set of the usual form by applying

the change of variables y; = s+ 1y, 2, = z; — b;, ©, = x; — |bi], i =1,...,n.
The inequalities r; > 0 become

—s+y; =0, (16)
the inequalities s + r; + z; > b; become

i+ 2 > 0, (17)
the inequalities —z; + x; > 0 become

—z+ @ > fi, (18)
while the inequalities z; > 0 become

zi+ 0 > —fi, (19)
and

;= [bi]

Consider the sets
S = {(s,y, 2,2, ) satisfying (16)-(19) i =1,...,n, 2/,£ € Z"}

(16)-(17) i =1,....n,
ST — L (s,y, 2,4’ 0) satisfying (18)i e X, (19)ie T,
o 0ezn

The continuous mixing set with flows X “M¥ is equivalent to SN{(s, y, 2/, 2, £) | ; =
|bi], i =1,...,m}, while XX7T) is equivalent to STN{(s,y, 2/, 2/, ) | 4; =
|bi], i=1,...,m}.
Let G be the graph whose nodes are the variables s, v;, 2., =, and ¢,
i =1,...,n, and where two variables are joined by an edge when they appear
in one of the inequalities (16)-(17). Note that G is a tree, thus S and S(-T)
fit the framework of Section 4.1.
As usual, let k, h;, i = 1,...,n be integers, such that f; = h;/k. The
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extended formulation for conv(S) is

(c) —k3+uo+ Fppg =0

ST T R Sy ST

(QZ) ]CZ—O'O— '_O-]’C_l - 07 7::1)"'777’

(vf) _:“0'1"“@ > 0, t=0,....k—1,i=1,...,n;
(u) M+a >0, t=0,...k—1i=1,...,m
(fwf) —0; —|—$; > 1, t=0,....,h; —1,1=1,...,n;
(wh) —ol+al > 0, t=hy....,k—1,i=1,...,n;
(ml) UZ—FE > =1, t=0,....h—1,2=1,...,n;
(m!) ot+t0; > 0, t=hi....k—1,i=1,....,n

Any valid inequality for conv(S) is thus of the form

n k-1 n k— n  h;—1 h;—1
—l{:cs—i—z kpzyl—i—z kqlzz—f—z Zw )z; —1—2 Z )l > Z Z wf— Z mf)
=1 t=0 =1 t=0 =1 t=0 (t2:(;

where (¢, p, ¢, v, u, w, m) satisfy

Tauho= ¢ t=0,...,k-1
vitul = p t=0,...,k—1, i=1,...,n (21)
uf_l_t—wf+m§ = q t=0,....k—1, i=1,...,
u,v,w,m > 0

Note that, given a partition (X, T) of V(G), any valid inequality for conv(SX-1))
is of the form (20), where (c,p,q,v,u,w,m) satisfy (21), and such that
wl =0 for every i € T, t = 0,...,k — 1 and m{ = 0 for every i € X,
t=0,... k-1

The rest of the proof is divided into two parts. In part I we show
that (15) holds, while in part IT we show that any nontrivial inequality
for conv(XX1)) is a cycle inequality.

I. Since XXT) contains X“MF | the inclusion “C” of (15) is trivial. We
show the reverse inclusion.

We will show that, given an inequality of the form (20), where (¢, p, ¢, v, u, w, m)
satisfy (21), if such an inequality is facet-defining for conv(S), then there
exists a partition (X,T) of V(G) such that w! = 0 for every i € T, t =
0,...,k—1and m! =0 for every i € X, t =0,...,k — 1. This implies that
the inequality is valid for conv(S57)).

As usual, we assume that (¢, p, ¢, v, u, w, m) has entries that are integer
and coprime, and that the inequality (20) is facet-defining. Notice that, even
though the inequalities defining the set S contain terms with negative coeffi-
cients, assumption Ab) still holds, as one can verify using the transformation
in Proposition 10.
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Claim 1 The following chains of inequalities hold.

h;—1 h;—2 0 k-1 h;
wiT w2 L 2w 2w > > ) (22)
mhit > mMt > > bl >l > > i (23)
ubmhe s il s s Rl > 0 > s kL (24)

To prove (22),(23), we will apply Lemma 19. We thus need to apply the
transformation in Proposition 10 to turn our problem into one of the form
S(GD  We introduce variables 2!, i =1,...,n, and replace the inequality

—zl+a; > fiby Zi+ 2/ =0and 2/ +z; > fi, i = 1,...,n. In the

extended formulation, we have integer variables o/, ... ,ogk_l, where 2] =
o0 + .-+ dF71 The inequalities relative to 2/ + 2/ = 0 in the extended
formulation are o} + a;k_l_t =0,t=1,....k—1,¢ =1,...,n. The

inequalities relative to z' + z; > f;, are off +; > 0, for 0 <t <k —h; — 1,
ot +x; > 1, for k—h; <t <k —1, and we associate projection multipliers
w! to such inequalities, 0 <t < k—1,i=1,...,n. Since of = —* 171 we
have that w! = w;k_t_l, 0<t<k—-1,i=1,...,n. By Lemma 19,

w;k—hi > w;kfhﬂrl > > w1 > wgo

hi h
mit = my

v

. 2 w;kfhifl‘

i

> > mE el > s mt
and (22),(23) follow.
Finally, (24) follows from (22),(23) and the third equation in (21).

Claim 2 Fori=0,...,nandt=0,...,k—1, ml =0 or w! = 0.

Indeed, assume that both m! > 0 and w! > 0 for some i and t. Let

(d,p',q v u',w';m') be obtained from (¢, p, q, v, u, w,m) by decreasing m!

and w! by 1 and leaving all other components unchanged. Let (¢”, p”, ¢",v", v, w", m")
be the vector having all components equal to 0, except m! = w! = 1. Then

(d,p ¢ v, w' m')and (", p", ¢" 0" u",w” , m") satisty (21), and (¢, p, ¢, v, u, w,m) =
(d,p ¢ v W' m') + (¢ p", ¢" v u w” ;m”). By Remark 15, the in-

equality (20) defined by (¢, p, ¢, v, u, w, m) is not facet-defining for conv(.S),

a contradiction. This concludes the proof of the claim.

Claim 3 Fori=1,...,n, ¢ >0. Ifg >0, thenw! =0,0<t<k—1. If
¢ =0, thenm!=0,0<t<k-—1.

If ¢; < 0, then by (21), w! > 0,¢=0,...,k — 1, a contradiction to Assump-
tion A5). Hence ¢; > 0
By Remark 20

gi = max {mj—uwi} (25)
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Assume ¢; = 0. If m! > 0 for some ¢, then by (25) w! > 0, a contradiction
to Claim 2. Therefore m! =0,¢t=0,...,k— 1.

Finally, assume ¢; > 0. If w! > 0, then by (25) m! > 0, again a contradiction
to Claim 2. Therefore w! =0, ¢ =0,...,k — 1. This concludes the proof of
the claim.

We define the set X’ as the set of indices 7 in {1, ..., n} such that w! > 0
for some ¢, 0 <t < k —1, and T” the set of indices 7 in {1,...,n} such that
mt > 0 for some ¢, 0 < ¢t < k— 1. By Claim 3, X' and 7" are disjoint,
so there exists a partition (X,7T) of V(G) such that X’ C X and 77 C T.
Furthermore, Claims 2 and 3 imply that m! =0, ¢ =0,...,k — 1, for every

i€ X, whilew!=0,t=0,...,k—1, for every i € T.

IT Let (X,T) be a partition of V(G).

We first show that the cycle inequalities are valid for conv(X(
Given a cycle C' in D, we describe the multipliers (¢, p, ¢, v, @, w,m) in (20)
that determine the cycle inequality associated to C' and (X,T). We define
vector u as follows.
- For every arc (i,7) in C, if i < j welet ! = 1fort € {k—h;,...,k—h;—1},
0 otherwise;
-For every arc (i,j) in C,ifi > j, welet u! = 0fort € {k—h;,...,k—h;—1},
1 otherwise;
- For every i ¢ V(C), we let ut =0,¢t=0,...,k— 1.
We define p; = 1 for i € V(C), p; = 0 otherwise. Thus, by (21), for
i=1,...,nand t =0,....,k—1, 0! =1—alifi € V(C), v} =0 for
ig V().

One can verify that, since C' is a cycle, 1 ot = S0 ¢ for 0 <t <

=1 "1 7

t' <k-—1. Let ¢ = Y o for any t € {0,...,k — 1}. Note that, for

7
(i,7) € C, @) = 0 if i < j, while @? = 1 if i > j. Thus, for (i,5j) € C, 00 =1
if i < j, while 9 = 0 if ¢ > j. In particular, ¢ = Y., %) is precisely the
number of arcs (7,j) € C such that i < j, that is ¢ = |C| — v¢.

For every i € X, let w! = ﬁf‘l_t and m! = 0, ¢t = 0,...,k — 1. Thus
g = 0 for every i € X. For every i € T, let @} = 0 and ! = 1 —af 7",

t=0,...,k—1. Thus q; =1 for every i € T..

X,T))'
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The right-hand-side in (20) is therefore

n  h;—1 h;—1
SO wi=>"mh = Y (h—h)+ Y. (“h)+ > h
i=1 t=0 t=0 (i,5)eC (i,5)€C (i,5)eC
i<j,i€X i<j,i€T i>j4,1€X
= Z (hi — h;) Z h; th
(i,j)eC (i,§)eC i€T
i<j i>j
= > h-> h
(3,7)€C €T
i>]

The inequality obtained with this choice of multipliers is

k(ve—|C|)s+ Z kyi+ Z kzi+ Z (hi—hj)z;+ Z (k+hi—hj)x;+

eV (C) 1€TNV(C) (3,5)€C (i,5)eC
1<j,1€X i>7,1€X
+ Z (k —h; + h])& + Z (hj — hz)& > Z hj — Z h;. (26)
(i,))€C (i,5)eC (i,j)eC i€T
1<j,1€T 1>7,1€T 1>]

Note that, dividing (26) by k, and replacing y; with s+r;, 2} with z; — b,
x} with x; — |b;|, and setting ¢; = |b;], i = 1,...,n, one obtains the cycle
inequality (14).

We finally show that any facet-defining inequality for conv(S (X’T)) is of
the form (26).

Let (¢,p, q,v,u, w, m) satisfy (21), wl =0 for every i € T, t = Jk—
1, and m! = 0 for every i € X, t = 0,...,k — 1. We assume that the
inequality (20) associated with multipliers (¢, p, ¢, v, u, w, m) is facet-defining
for conv(S™X-T)), and that the entries of (c,p,q,v,u,w,m) are integer and
coprime.

Claims 2 and 3 imply that wf = uf_l_t, t=0,...,k—1foreveryi: € X,

while mﬁ =q; — uf_l_t, t=20,... k: — 1 for every i € T.

Given j = 1,...,n, by (24) u. hios g fhtt S s uffhj“*l for i =
1,...,n where the superscript indlces are taken modulo k, and hypq1 = hi.
This implies

n
Zkhj>zkh+1 >Zukh+11 (27)
i=1

where the superscript indices are taken modulo k. Let d = Y I, p; — c.
By (21), >" jul =dfor t =0,...,k — 1. Hence, by (27), for every i,j =
1,...,n,

W — uf_hﬁl =...= uf_h”1_1, (28)

2
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where the superscript indices are taken modulo k.

Let I' be the directed graph on n nodes defined as follows. For every
k—h;—1 k—h;
—u

i,j € {1,...,n}, i # j, there are u, y arcs from ¢ to j in T’

(superscript indices being taken modulo k). By (24), uffhj*l — uffhj > 0.
Notice that, since Y ;- ul =dfort =0,...,k—1, then, given j € {1,...,n},

n o k—hj—1 n k—h;
Yo, — > =0, so

)

n

k—h,;,—1 k—h; k—h; k—h,;—1
Dol T ) = T
=1

i#]

Notice that the value of the left-hand-side of the latter expression is the
number of arcs in I' entering j. On the other hand, one can readily verify
that, by (28), u?ihj - u?ihrl = Z?:l#j(u?_hi_l — uf_hi), which is the
number of arcs leaving j. Thus I' is Eulerian, i.e. for each node j the number
of arcs entering j equals the number of arcs leaving j.

Therefore there exists a directed cycle C' in I'. Let (¢,p,q,v,u,w,m)
be the multipliers determining the inequality (26) associated with C. Let
vV=v-—0,v=u—uw=w—w,m' =m-—-m,cd =c—¢ p =p-—p,
¢ =q—q. Then (¢, p', ¢, v/, u/,w',m’) satisfy (21), and (¢, p, q, v, u, w,m) =
(¢, p,q,v,u,w,m) + (', p', ¢, v/, ,w',m'), therefore (c,p,q,v,u, w,m) does
not determine a facet-defining inequality unless I' is just a cycle. O

Remark 24 If a cycle inequality (14) associated with a cycle C of D and
partition (X,T) is facet-defining for conv(XCME), then f; # f; for every
i,jeV(C), i #].

Proof. Suppose there exist h,k € V(C) with h # k and f;, = fxr. Among
such h, k, choose two minimizing |h — k|. Since f; > fo > ... > f,, the
above choice implies that, for every i € V(C), either i > h, k or i < h, k.

If C has length two, then the corresponding cycle inequality is implied
by the original inequalities. So we assume the C' has length at least three.
Let A’ be the predecessor of h € C. Since C has length at least three, we
may assume h’ # k. Let P’ be the unique directed path in C' from k to A/,
and C’ be the cycle k, P, I/, k. By the choice of h, k, we have that b/ > h if
and only if i/ > k, and, obviously, fnr — fn = fu — [k-

Let k' be the predecessor of k € C. We consider two cases: k' # h, or
k' = h (in which case (h,k) € C).

If k' # h, let P” be the unique directed path in C' from h to k', and C”
be the cycle h, P”, k', h. Again, by the choice of h, k, we have that k' > k
if and only if ¥ > h, and fr — fx = fir — frn. One can now verify that the
cycle inequality defined by C' and (X, T") is the sum of the cycle inequalities
defined by C’ and (X, T), and C” and (X, T).
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If (h,k) € C, we have four cases. The cycle inequality defined by C' and
(X, T) is the sum of the cycle inequalities defined by C’ and (X, T) and
es+ry,+xp>byifh>k heX;
es+rp+zp>bypifh>k heT,
er,>0ifh<k, heX;
oer,+z,>0ifh<k hel.

O

Example. Consider an instance of the continuous mixing set with flows
with n =4, by = 5/6, bo = 9/6, bs = 20/6, by = 1/6. Thus k = 6, hy = 5,
he =3, hg =2, hgy = 1. Let X = {1,3}, T = {2,4}. The graph on the left
in Figure 6 depicts the extended formulation for conv(ST)).

Consider the directed cycle C = (1,4), (4,2),(2,3),(3,1). The graph on
the right in Figure 6 depicts the multipliers (¢, p, , v, 4, w, m) defined in the
proof of Theorem 23 that determine inequality (26). One obtains

4
—125+6 )y + 625 + 62) + 4af + 3k + 5ly + 20y > 4.

i=1
Dividing by 6 and substituting y; = s+, i = 1,2,3,4, 2§ = z1 — 5/6,
Zh = 29— 9/6, 25 = 23 —20/6, zj = 2z —1/6, &} = x1, v, = zy — 1,
xh =w3—3, 2y =x4, {1 =0, lo =1, {3 =3, {4, = 0, one obtains the cycle
inequality associated with C

18

4 3
25+Zm+zz—1—24+8x1+6x32€. |

Continuous mixing set The continuous mixing set, studied by Van
Vyve [13], is the following:

XM = {(s,r,2) ERXRYL X Z"|s+7ri+a; > by, i=1,...,n}.
Next we state Van Vyve’s result and show how to derive it from Theorem 23.

Theorem 25 (Van Vyve [13]) conv(XCM) is defined by the inequalities
s+ri+x;>b, r;,>0,i=1,...,n, and by the inequalities

Yo's + Z ri + Z fj i + Z 1+ fi — fj Tp >

eV (C) (i,5)eC (i,7)€C
1<j i>]
STof+ Y -+ YD (£ )b (29)
(3,7)eC (i,5)eC (i,)€eC
i>j i<j i>]

for every directed cycle C' of D.
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Figure 6: Extended formulation for conv(S™-T)) in the example. The black
dots represent the additional variables associated to each of the variables s,
Yi, 75, %, £;. The indices t go from 0 on top to k — 1 on the bottom of each
stack. The +1s on the edges represent the non-zero right-hand-sides of the
corresponding inequalities.
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Proof. Let X = {1,...,n} and T = (). Note that a point (s,r,z) is in
conv(X M) if and only if the point (s, 7, z, z) is in conv(X XN (s, 7, 2,2 | 2 =
x}. Since the latter polyhedron is a face of conv(X 7)), we have that any
facet-defining inequality for conv(X M) is obtained from some facet-defining

inequality for conv(XXT)) by replacing z by z;, i = 1,...,n. Given a di-
rected cycle C' of D, if we substitute z; with x;, ¢ = 1,...,n, in the cycle
inequality (14) relative to (X,T') and C, we obtain precisely (29). O
Description of XM+  Conforti, Di Summa, and Wolsey [3], give a poly-
nomial size extended formulation for the set X5 /™ = XEMEAL(s,r,2,x) |5 >

0}.

} Note that in [3], the authors used the name “continuous mixing set with
flows” for the set ch MFE+  Ag demonstrated for the mixing set above, it is
easy to see that XS MFE+ can be considered as a face of XS %F . Indeed, if
we define b,+1 = 0, then a point (s, 7, z, ) belongs to conV(XSMF+) if and
only if (s,r,0,z,0,z,0) belongs to

CODV(XgﬁF)ﬂ{(SJ‘a Tna1s 25 Znt 1, T, Tny1) | Tne1 = 0, 2n01 = 0, 2p41 = Ty )

Since the latter polyhedron is a face of conv(XSMF) any facet-defining

MF+)

inequality for conv(X,? is obtained from some facet-defining inequality
CMF

for conv(X 1) by replacing 741, 2nt1 and 2,41 with 0.

Separating cycle inequalities for X¢MF  We conclude the section by
discussing how to separate the cycle inequalities (14) for the continuous mix-
ing set with flows. The polynomial algorithm we provide is almost identical
to that proposed by Van Vyve [13] for the continuous mixing set.

We construct a digraph D’ on the node set {1,...,n}, where for each
pair {i,7} C{1,...,n}, i # j, there are two parallel arcs efg and eg; from
to j and two parallel arcs eﬁ and e;‘-pi from j to i. Given a point (8,7, 2, Z),
we assign costs ¢, to the arcs e of D" as follows.

cx = Tit (fi= fi)Ti = (fi = fi)Lbi], i < J;
Cr = i+ zi — (fi — f)bils i < J;
Cx = ST (U fim f)T— f— (U fi- )b 0>
cr = 5+7i+z—fi— 1+ fi— )b, i> j.

ij

Compute a directed cycle C' in D’ of minimum mean cost. This can be
done in polynomial time [7]. If C has negative cost, let X be the set of
nodes ¢ € V(C) such that the unique arc leaving i in C is CeX s for some
j € V(C), and let T be the set of nodes i € V(C') such that the unique arc
leaving ¢ in C is Cel s for some j € V(C). Then (5,7, z, ) violates the cycle

31



inequality (14) defined by C, X, T. On the other hand, if C' has non-negative
cost, then no cycle inequality is violated by (5,7, z, Z).

6 Final remarks

When G is a tree, several properties of the facet-defining inequalities for
conv(S(“1) have been given in Section 4.1. However, a full characterization
of such inequalities is known only for special cases. Here we propose the
following conjecture.

Conjecture 26 Let G be a tree and I be the leaves of G. Let (c,u) be a
vector satisfying (6) and i € I be a leaf of G. If rlewy > 5w s facet-
defining for S(G1  then ufl(l.)i €{0,1} ,t=0,...,k—1.

By Lemma 19, Conjecture 26 would imply that, for any ¢ € I, the
vector u,(;); is a 0,1 vector where the 1 entries are consecutive starting from
entry uﬁ(_l;l; Furthermore, Remark 20 implies that all entries of (c,u) are
determined by the vectors u,,;); for i € I.

The following example shows that the vector u of multipliers is not a 0, 1

vector in general, even if G is a tree.

Example. Consider the set S(@1) defined by the following

T +xg > 2/5 T11+x12 > 0
xo+x7 > 3/5 ri2+x9 > 0
xs+xg > 4/5 Tri2+x190 = 0
r6+r11 = 0 x9+x4 > 0
zr+x11 > 0 x10+xs > 4/5
rg+x11 > 0 I=1{1,2,3,4,5}.

We checked with PORTA that the inequality

221+ 229+ 223+ 324+ 325+ x4+ 527+ 528 +dxr9 + 5210+ 15211 + 10212 > 9

is facet-defining for conv(S(@1)). It can be verified that the unique multi-

pliers u that produce the above inequality are those depicted in Figure 7.
Two of the multipliers associated with the edge {11,12}, namely uhl 12}

and u2 have value 2. R

{11,12}>
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