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Abstract

Different search engines conduct similar ad auctions simultaneously and advertisers

have to choose in which search engine(s) to run their ad campaign. In this paper

we discuss two models for a pair of simultaneous ad auctions, A and B: (i) single-

campaign advertisers, which participate in a single ad auction, and (ii) multi-campaign

advertisers, which participate in both auctions. We prove the existence and uniqueness

of a symmetric equilibrium in the first model. Moreover, when the click-through rates

in A are point-wise higher than those in B, we prove that the expected revenue in A is

greater than the expected revenue in B in this equilibrium. In contrast, we show that

higher click-rates do not necessarily imply higher revenues in the second model.

1 Introduction

Search engines and publishers conduct ad auctions for potentially every keyword. In an ad

auction, advertisers compete over positions in the web page associated with the results of

searching for the corresponding keyword. The advertisers submit bids, and the position of

displayed ads on the web page is determined based on these bids. Moreover, an advertiser

pays the search engine each time a user clicks on her ad where the charged price is also based
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on the submitted bids. Due to their enormous impact on the revenues of publishers/search

engines and advertisers and because of the important challenges they provide for auction

designers and participants, ad auctions have become a central topic of study in economics,

electronic commerce, and marketing.1 However, the previous research has yet to account for

the fact that similar ad auctions are held simultaneously by different search engines. That

is, an advertiser has to choose not only how to bid, but where to bid. This paper initiates

research on this question by examining two simultaneous ad auctions. We present two mod-

els. The first considers single-campaign advertisers, who choose a single search engine to run

their campaign. In this case, the game has two stages. In the first stage each advertiser,

after observing her type, chooses her probability for selecting each auction. We refer to this

probability as the advertiser’s participation strategy. After the realization of the participa-

tion strategy, the advertiser chooses her bid. No information is revealed after the first stage,

and therefore, for technical convenience, the game can be viewed as having only one stage

in which each advertiser chooses a participation strategy and two bids, one for each auction.

Implicitly this model assumes that an advertiser has an infinite cost to run ad campaigns in

both auctions. In the second model, we consider multi-campaign advertisers. These adver-

tisers run their campaign and bid in both auctions.2 A main issue in both settings is the

effect of having more than one ad auction on the revenue of the different auctions; of par-

ticular interest is the relationship between the click-rate values (search engines’ popularity)

and the corresponding ad auctions’ revenue. Do higher click-rates result in higher revenue?

In addition, a full analysis of the first setting requires us to introduce equilibrium analysis

1See, e.g., (Varian, 2007; Lahaie, 2006; Edelman et al., 2007; Borgs et al., 2007; Mehta et al., 2007; Athey

and Ellison, 2007).
2Our models of simultaneous ad auctions are not the only reasonable ones. One very interesting model

is to consider a market in which advertiser chooses if to be single-campaign or multi-campaign, for example

by incorporating costs for running ad campaigns (note that our models implicitly assume specific extreme

costs). One can also consider at least two other potential models. In the first model, which is similar in

spirit to our single-campaign model, the assumption that every bidder participates only in one auction is

kept. However, the number of participants in each auction is revealed to all advertisers after the selection

part is over. In the second model, each bidder has a limited budget, and her strategic decision is how to

split this budget among the auctions.
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for simultaneous ad auctions, a subject not tackled for such rich setting thus far. Note that,

in the first setting, advertisers choose a single auction to participate in. As mentioned, ad-

vertisers often do tend to concentrate on only one search engine in certain keyword markets.

One reason for this behavior is the burden that advertisers have in running and managing

their campaigns in each search engine. Another reason arises from the lack of flexibility in

copying advertising campaign data from some search engines to others (see e.g., (Edelman,

2008b), and (Edelman, 2008a)). We analyze simultaneous ad auctions with single-campaign

advertisers within the standard symmetric independent private- value model. We prove our

results for VCG ad auctions and explicitly extend them to regular ad auctions, where roughly

speaking, a regular ad auction is one for which an appropriate revenue equivalence theorem

makes it equivalent to a VCG ad auction. For VCG ad auctions, we assume that a bidder

bids her true valuation, irrespective of the auction she selects. This assumption reduces

the strategy set of every bidder to the set of participation strategies. We prove that the

auction selection game has an essentially unique symmetric equilibrium, whose structure is

analyzed. Particular cases are presented and discussed. Search engines use ad auctions as

one of their main revenue sources. Intuitively, since an advertiser is charged each time a user

clicks on her ad, one would expect that higher click rates will result in higher revenues. This

implies that search firms should care about providing effective search engines, yielding high

traffic to their sites. Indeed, in a setting with simultaneous ad auctions and single-campaign

advertisers, we prove that when Auction A is stronger than Auction B, in the sense that the

click rates in A are point-wise higher than those in B, the expected revenue of A is higher

than the expected revenue of B in the essentially unique equilibrium. However, we show that

this seemingly intuitive result is a consequence of the competition on the auction to be se-

lected. For multi-campaign advertisers, in which advertisers participate in both auctions, we

compare revenues in two monopolistic setups, where one of them has higher click-rates than

the other. In this setting, we characterize cases in which a stronger auction may yield lower

revenue than a weaker one.3 We prove our results for a not necessarily symmetric model, and

3A relevant phenomenon was demonstrated for the VCG combinatorial auctions with complete informa-

tion, where it was shown that higher valuations may reduce revenue. See, e.g., Rastegari et al. (2007) and

the references there.
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without any restriction on the distribution of types. Since the revenue equivalence principle

is less useful for such general models, the theorems are proved only for VCG ad auctions.

Nevertheless, the theorems are applied to next-price ad auctions4 which are used in practice.

This application builds on the pioneering papers of Varian (2007) and Edelman et al. (2007),

where the relationships between next-price ad auctions and VCG ad auctions are explored

using theoretical and empirical tools.

In the last section we extend our results and conclusions to ad auctions with reserve

prices. Our existence and uniqueness results in this setting generalize those in Burguet and

Sakovics (1999), where the authors defined and analyzed a setting among two simultaneous

identical second-price single item auctions with potentially distinct reserve prices. Our work

could have had some implications for (or impact on) the Google-Yahoo Ad Deal, discussed by

the U.S. House of Representatives Committee on the Judiciary Task Force on Competition

Policy and Antitrust Laws in 2008 (see e.g., (Edelman, 2008a)) and by the European Com-

mission(Cheng, 2008). Our results support the claim that this deal would harm advertisers

and internet users in two ways. First, in the monopolistic setup, a search engine can, in

certain circumstances, increase its revenue by decreasing click rates, which implies reducing

quality of service to internet users. Second, the equilibrium structure we establish supports

the claim that, when advertisers have the ability to select among alternatives auctions, those

with low valuations participate in the auction with lower click rates. It is important to note

that our paper does not discuss strategic organizers’ competition in auction design, although

it opens the road for such a model. In general, such a competition is modeled as a two stage

game, where, in the first stage every auction organizer chooses the auction to conduct, and in

the second stage each of the bidders decides which auction to attend and how to bid in this

auction. Such an approach was taken in a restricted symmetric single-item auction setup,

e.g., in (Burguet and Sakovics, 1999) and in (Monderer and Tennenholtz, 2004). However, as

was already shown in (McAfee, 1993) the above two-stage game does not in general possess

a sub-game perfect equilibrium, even in the simple single-item setup.5 Therefore, most of

4Next-price ad auctions are also called generalized second-price ad auctions.
5In (Burguet and Sakovics, 1999) the authors proved the existence of a sellers’ mixed strategy equilibrium

in such setting.
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the literature ((McAfee, 1993; Peters, 1997; Peters and Severinov, 1997)) on competition

in auction design in the single-item setup has dealt with a model with many auctions and

derived results about the limit (partially strategic) behavior of the market, when the number

of auctions’ organizers and buyers is approaching infinity. This approach does not seem the

right one in the ad auction market, where only a few auctions’ organizers (search engines)

control the market.

The paper is organized as follows. In Section 2 we define the basic model of ad auctions.

In Section 3 we define the model of single-campaign advertisers’ competition in simultaneous

ad auctions, and present our main results for the VCG setup: a theorem about existence

and essential uniqueness of symmetric equilibrium, and a theorem about revenue dominance

of the strong auction. The existence and uniqueness theorem is proved in Section 4, and

examples are provided in Section 4.5. The theorem about revenue inequality is proved in

Section 5. In Section 6 we define regular ad auctions and prove that our main theorems

hold for them. Section 8 deals with multi-campaign advertisers, which participate in both

auctions. We show that in a monopolistic setup, higher click-rates do not necessarily imply

higher revenues. In Section 7 we extend our results to a setup with reserve prices.

2 Ad Auctions

There exist n advertisers, which we call bidders, n ≥ 2; A generic bidder is denoted by i,

1 ≤ i ≤ n. In an ad auction there is a seller who offers for sale k positions, k ≥ 1; a

generic position is denoted by j, 1 ≤ j ≤ k. As the seller cannot sell more positions than

the number of bidders, it is assumed that n ≥ k. The positions are sold for a fixed period of

time. For each position j there is a commonly-known number αj > 0, which is interpreted

as the expected number of visitors at that position; αj is called the click rate of position

j. It is assumed that the positions have distinct click rates, and without loss of generality

it is assumed that α1 > α2 > . . . > αk > 0. For convenience, we add a dummy position,

position k + 1 with αk+1 = 0. From now on, unless otherwise specified, the term“position”

includes the dummy position. Let K = {1, . . . , k} be the set of non-dummy positions, and

let Kd = K ∪ {k + 1} denote the set of positions.
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Given the above environment, an ad auction is defined by an allocation rule and a pay-

ment scheme. Each bidder i is requested to submit a bid bi ∈ Bi = [0, 1]. The set of bid

profiles is denoted by B = B1 × · · · × Bn. Based on the profile of bids, the allocation rule

determines the allocation of positions to the bidders. However, in this paper we consider

only ad auctions for which the allocation rule is a welfare maximizer; that is, whenever bids

are distinct, the bidder with the highest bid receives the first position, the second highest

bidder receives the second position etc. Each bidder that does not receive a position j ∈ K

is assigned to the dummy position, k+ 1. Distinct welfare maximizers allocation rules differ

in the tie-breaking rule they use. In this paper tie problems will be successfully avoided.

However, for completeness, it is assumed that ties are resolved by the following simple pri-

ority rule over bidders: i < t implies that i has priority over t, whenever they make the

same bid.6 Hence, with this tie breaking rule there exists a unique allocation rule, which

is a welfare maximizer. We denote by si(b) bidder i’s position with respect to the welfare

maximizer allocation rule when the bid profile is b = (b1, . . . , bn) ∈ B.

A payment scheme is a tuple p = (p1, p2, . . . , pn), where for every i pi : B→ R+ is a non-

negative bounded Borel measurable function, which is called bidder i’s payment function;

That is, pi(b) is bidder i’s payment per click when the bid profile is b. It is assumed that a

bidder that bids 0 pays 0. Thus, the total payment of bidder i equals αsi(b)pi(b). Therefore,

although the payment per-click for a bidder that gets the dummy position can be positive,

his total payment equals 0 since αk+1 = 0. Given a fixed number of bidders, n, an ad

auction with k non-dummy positions and a click rates vector α = (α1, . . . , αk), which uses

the welfare maximizer allocation rule and the payment scheme p = (p1, . . . , pn) is denoted

by G(k, α,p). In some discussions, some of the parameters in G(k, α,p) whose values are

obvious are omitted.

If i holds a position, every visitor to this position gives i a revenue of vi ∈ [0, 1], where vi

is called the valuation of i. Given the bidders’ utility functions and their distribution over

valuations are, an auction generates a Bayesian game. It is assumed that the bidders’ utility

functions are quasi-linear. That is, if bidder i is assigned to position j and pays p per click,

6Our results hold for every tie breaking rule, including randomized ones.
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his utility is αj(vi − p).

We use the independent-private-value model to model the distribution of valuations; that

is, each vi is privately observed by i, and it is drawn from the interval Vi = [0, 1] according to

a random variable ṽi, whose distribution function is Fi; The random variables, ṽi are inde-

pendent. At this point, and unless otherwise specified Fi is not required to satisfy particular

assumptions except for being a distribution function. That is, Fi is a non-decreasing and

right-continuous function on [0, 1], and Fi(1) = 1.

Let F̂ denote the joint distribution of the bidders on V = V1 × V2 · · · × Vn. Throughout

this paper we use the standard notation regarding the subscript −i. E.g., F̂−i denotes the

joint distribution of all bidders except i. The Bayesian game generated by the ad auction

G(k, α,p) and by the vector of distribution functions F = (F1, F2, . . . , Fn) is denoted by

G(k, α,p,F). With a slight abuse of notation G(k, α,p,F) is also called an ad auction. Let

G = G(k, α,p,F) be an ad auction. A strategy for bidder i in G is a Borel measurable

function di : Vi → Bi that assigns a bid, di(vi) to every possible value vi ∈ Vi. We denote by

Γi = Γi(G) the set of possible strategies for bidder i.

For a profile of strategies d = (d1, d2, . . . , dn) and a profile of valuations v = (v1, v2, . . . , vn)

we denote d(v) = (d1(v1), d2(v2), . . . , dn(vn)). Let UG
i (vi,d) be the expected utility of bidder

i given that her valuation is vi and every bidder t uses the strategy dt. That is,

UG
i (vi,d) =

∫
V−i

αsi(d(v))(vi − pi(d(v)))dF̂−i(v−i).

A strategy profile d = (d1, . . . , dn) ∈ Γ1×· · ·×Γn is a Bayesian equilibrium in G if for every

bidder i and every vi,

UG
i (vi,d) ≥ UG

i (vi, d
′

i,d−i) ∀d
′

i ∈ Γi.

We are about to discuss special ad auctions. Before we do it, we need the following definition.

For every vector of real numbers, x = (x1, x2, . . . , xn) we denote by (x(1), x(2), . . . , x(n)) a

permutation of the vector x for which x(1) ≥ x(2) ≥ · · · ≥ x(n). For a bid profile, b, whenever

convenient, we let b(j) = 0 for every j > n.

The leading search engines use variants of the next-price ad auctions:

Definition 2.1 (Next-price ad auction) The ad auction G = G(k, α,p) is called the

7



next-price ad auction if its payment scheme p is defined for every 1 ≤ i ≤ n as follows:

pi(b) = b(si(b)+1). (1)

In this paper we mainly deal with the standard VCG ad auction.

Definition 2.2 (Standard VCG ad auction) The ad auction G = G(k, α,p) is called

the standard VCG ad auction, or in short, the VCG ad auction, if its payment scheme p is

defined for every 1 ≤ i ≤ n as follows:

pi(b) =


1

αsi(b)

∑k+1
j=si(b)+1 b(j)(αj−1 − αj) si(b) ∈ K;

0 si(b) = k + 1.
(2)

In a non-standard VCG ad auction, every bidder may pay an additional amount depend-

ing only on the bids of the other bidders.

3 Simultaneous Ad Auctions with Single-Campaign Ad-

vertisers – Main Results

Consider two ad auctions, A = G(kA, α,pA) and B = G(kB, β,pB), and recall the assump-

tion that n ≥ kA and n ≥ kB. In what follows, whenever necessary, it is assumed that αj = 0

for every j > kA and that βj = 0 for every j > kB. Auctions A and B form a game for the

bidders 1, 2, . . . , n, denoted by H(A,B,F), where F is the vector of distribution functions.

In this game each bidder simultaneously chooses one auction to participate in, and how to

bid at each auction. Bidders can use mixed strategies to select an auction. We assume that a

bidder can not attend both auctions. This assumption captures single-campaign advertisers,

who run their campaign with only a single search engine. As mentioned, single-campaign

advertisement is popular in many keyword markets. Since bidders can always guarantee a

non-negative utility by bidding zero there is no harm in assuming that bidders always choose

to participate in some auction. A strategy for a bidder i in H(A,B,F) is a tuple σi = (qi,di),

where qi = (qAi , q
B
i ) is the participation strategy of i, and di = (dAi , d

B
i ) is the bidding strategy

of i.7 More precisely, qLi : [0, 1] → [0, 1], a Borel measurable function, is the probability

7Note that a bidder’s strategy includes her bid in an auction even if the probability of attending this

auction is zero. This is consistent with the usual redundancy in the definition of strategies in game theory.
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that i will attend the auction L, L ∈ {A,B}. In particular, qAi (vi) = 1 − qBi (vi) for every

valuation vi; d
L
i : [0, 1] → [0, 1] is the bidding strategy in auction L ∈ {A,B}, which is also

assumed to be measurable.

Let Σi be the set of strategies for bidder i. Denote by U
H(A,B,F)
i (vi, σ1, . . . , σn) the ex-

pected utility for bidder i given that her valuation is vi and every bidder t uses the strategy

σt. A strategy profile σ = (σ1, . . . , σn) ∈ Σ1×· · ·×Σn is a Bayesian equilibrium in the game

H(A,B,F) if for every bidder i and every vi,

U
H(A,B,F)
i (vi, σ1, . . . , σn) ≥ U

H(A,B,F)
i (vi, σ

′
i, σ−i)

for every strategy σ′i ∈ Σi.

When dealing with the above setting, we derive our results for a symmetric model.

That is, the distribution functions of all bidders are identical. If the common distribution

function is F , the ad auction G(k, α,p, (F, F, . . . , F )) is denoted by G(k, α,p, F ) and the

game H(A,B, (F, F, . . . , F )) is denoted by H(A,B, F ). In a symmetric model it is natural

to focus on symmetric strategies/equilibrium, and therefore we omit the bidder’s index from

strategies. Hence, we refer to a strategy of a bidder as a vector (q,d) = ((qA, qB), (dA, dB)).

Let (q,d) be a symmetric equilibrium strategy. Note that changing the participation

function q in a set of valuations v with F−probability 0 for which 0 < qA(v) < 1, does not

change the utilities of any of the bidders. This inspires the following definition:

Definition 3.1 (Essential Uniqueness) Let A = G(kA, α,pA) and B = G(kB, β,pB) be

VCG ad auctions, and let F be a distribution function. The game H(A,B, F ) possesses

an essentially unique symmetric equilibrium if it possesses a symmetric equilibrium and for

every two symmetric equilibria q, q̂

q(v) = q̂(v) F−almost everywhere in [0, 1].

Moreover, we will frequently assume that F is standard, where

Definition 3.2 (Standard distribution functions) The distribution function F defined

on [0, 1] is standard if it is differentiable, its derivative is positive on [0, 1], and it has a

density, that is F (x) =
∫ x

0
F ′(t)dt for every x ∈ [0, 1].
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We prove our main results for VCG ad auctions. In such case we naturally assume that the

bidding strategy of each bidder is the truth-telling strategy. Hence, a strategy of a bidder in

such case is determined by his participation strategy.

We prove:

Theorem 3.3 Let A = G(kA, α,pA) and B = G(kB, β,pB) be VCG ad auctions and let F

be a standard distribution function.

The game H(A,B, F ) possesses an essentially unique symmetric equilibrium.

Moreover, If α1 ≥ β1 there exists a unique 0 ≤ v∗ ≤ 1 for which there exists a symmetric

equilibrium, q = (qA, qB) with the following properties: 0 < qB(v) < 1 for every 0 < v < v∗;

qB(v) = 0 for every v∗ < v ≤ 1.
(3)

Furthermore, v∗ = 0 if and only if αn ≥ β1, and v∗ = 1 if and only if α1 = β1.

The condition α1 ≥ β1 in Theorem (3.3) is without loss of generality; Otherwise exchange

the names of the auctions.

In Section 4 we prove Theorem 3.3, and we provide tools for computing the cutting point

v∗ and the values of the probabilities below v∗. In Section 4.5 we apply the tools developed

in the proof in order to explicitly find and discuss the equilibrium in special cases.

Before we state our main theorem regarding revenues we need the following definition:

Definition 3.4 (”Stronger than”) Let A = G(kA, α,pA) and B = G(kB, β,pB) be ad

auctions. We say that A is stronger than B if αj ≥ βj for every 1 ≤ j ≤ max{kA, kB}, and

at least one inequality is strict.

Theorem 3.5 Let A = G(kA, α,pA) and B = G(kB, β,pB) be VCG ad auctions, and let

F be a standard distribution function. If A is stronger than B, the expected revenue in A

is greater than the expected revenue in B in the essentially unique symmetric equilibrium of

the game H(A,B, F ).

Theorem 3.5 is proved in Section 5.
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4 Proof of Theorem 3.3

Consider the game H(A,B, F ), where A and B are VCG auctions, and F is a standard

distribution function, whose density is denoted by f . Without loss of generality assume that

α1 ≥ β1.

If αn ≥ β1 then in particular αn > 0 and therefore n = kA. In such case, for an arbitrary

bidder i, independently of all other bidders’ strategies, the maximal utility in B, β1vi does

not exceed his minimal utility in A, αnvi, and we say that the competition is degenerate. We

cover this trivial case in some more detail in Section 4.4. In the following proof of Theorem

3.3 we assume non-degenerate competition. That is, αn < β1.

4.1 Preparations

Let q be a symmetric strategy. For an arbitrary bidder i let

ϕ(v,q) = ProbF (ṽi ≥ v, i chooses to participate in B).

That is,

ϕ(v,q) =

∫ 1

v

qB(x)dF (x). (4)

When all other bidders but t use the strategy q, bidder t should compare his utilities in

A and in B. When he computes his utility in A, he faces a random number of participants.

Equivalently, bidder t can consider lack of participation in A as participation in A of a bidder

with valuation 0. Hence, bidder i can assume that there exist exactly additional n−1 bidders

in A such that the distribution function of each of them is FA
q , where

FA
q (v) = ϕ(v,q) + F (v). (5)

Similarly, for auction B, let ψ(v,q) =
∫ 1

v
qA(x)dF (x), and let FB

q (v) = ψ(v,q)+F (v). Since

qA(v) = 1− qB(v) for all v, ψ(v,q) = 1− F (v)− ϕ(v,q), and therefore

FB
q (v) = 1− ϕ(v,q). (6)

Denote by PA(v,q) (PB(v,q)) the expected total payment in A (B) experienced by a

bidder with valuation v given that each of the other bidders uses the strategy q. Similarly,
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denote by QA(v,q) (QB(v,q)) the expected click rate in A (B), and denote by UA(v,q)

(UB(v,q)) the expected utility in A (B). Obviously

UL(v,q) = vQL(v,q)− PL(v,q) L ∈ {A,B}, v ∈ [0, 1]. (7)

Note that a bidder with valuation v obtains position j in auction A if there are exactly

n − j other bidders each of whom has a lower valuation than v in A and there are exactly

j − 1 bidders each of whom has a higher valuation than v in A. Since ties have probability

zero, the probability that the bidder obtains j and the above condition is not satisfied equals

0. Therefore,

QA(v,q) =
kA∑
j=1

αj

(
n− 1

j − 1

)
(FA

q (v))n−j(1− FA
q (v))j−1. (8)

Similarly,

QB(v,q) =
kB∑
j=1

αj

(
n− 1

j − 1

)
(FB

q (v))n−j(1− FB
q (v))j−1. (9)

We need the following proposition whose proof is standard in mechanism design theory.

Proposition 4.1 For every L ∈ {A,B} and every symmetric strategy q:

1. QL(·,q) is non-decreasing and continuous in [0, 1].

2. For every symmetric strategy q and for every v ∈ [0, 1]

UL(v,q) =

∫ v

0

QL(x,q)dx. (10)

Consequently, since QL is continuous, the derivative of UL(·,q) equals QL(·,q) everywhere

in [0, 1].

Proof: We prove the proposition for L = A. 1. Let v, w ∈ [0, 1]. Because truth-

telling is a dominant strategy for a bidder, bidding v when his valuation equals v yields

at least as bidding w, that is, vQA(v,q) − PA(v, q) ≥ vQA(w,q) − PA(w,q). Similarly,

wQA(w,q)− PA(w,q) ≥ wQA(v,q)− PA(v,q). Combining these inequalities yields

(v − w)(QA(v,q)−QA(w,q)) ≥ 0 for every v, w ∈ [0, 1], (11)
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which implies that QA is non-decreasing. Since FA
q is continuous in [0, 1], QA is continuous

as well by (8).

2. Let v, w ∈ [0, 1]. Recall that UA(v,q) = vQA(v,q) − PA(v,q). Therefore, by the two

inequalities we derived in part 1 of this proof, and by (7),

UA(v,q)− UA(w,q) ≥ QA(w,q)(v − w).

By (Rockafellar, 1970) this easily implies that UA(·,q) is a convex function, whose derivative

equals QA almost everywhere in [0, 1], and since UA(0,q) = 0, the required integral equality

follows.

The following functions are extensively used in our proofs. For every 0 ≤ x ≤ 1 and

every 0 ≤ y ≤ 1 let

Q̃A(x, y) =
kA∑
j=1

αj

(
n− 1

j − 1

)
(x+ y)n−j(1− x− y)j−1, (12)

Q̃B(x) =
kB∑
j=1

βj

(
n− 1

j − 1

)
(1− x)n−jxj−1, (13)

and let

Q(x, y) = Q̃A(x, F (y))− Q̃B(x). (14)

Note that by (8), (9), (5), and (6), for every 0 ≤ v ≤ 1,

(i) QA(v, q) = Q̃A(ϕ(v,q), F (v)); (ii) QB(v, q) = Q̃B(ϕ(v,q)), (15)

and therefore

Q(ϕ(v,q), v) = QA(v,q)−QB(v,q). (16)

For a function φ(x, y) we denote by φx, φy the derivatives with respect to the first and

second variable respectively. Similarly, if φ(x) is a function of one variable, φx denotes the

derivative of φ. The following technical lemma will be useful for us.

Lemma 4.2

(i) Q̃A
y (x, y) = Q̃A

x (x, y) for every x, y.

(ii) Q̃A
x (x, y) > 0 for every x, y for which 0 < x+ y < 1.
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(iii) Q̃B
x (x) < 0 for every 0 < x < 1.

Consequently,

(iv) Qx(x, y) > 0 for every x, y for which 0 < x+F (y) < 1 or [x+F (y) = 1 and 0 < x, y < 1].

(v) Qy(x, y) > 0 for every x, y for which 0 < x+ F (y) < 1.

Proof: The equality (i) is obvious. (ii) Recall the standard convention that for nonnegative

integers a < b,
(
a
b

)
= 0. Note that

Q̃A
x (x, y) =

kA∑
j=1

αj

(
n− 1

j − 1

)
(n−j)(x+y)n−j−1(1−x−y)j−1−

kA∑
j=1

αj

(
n− 1

j − 1

)
(j−1)(x+y)n−j(1−x−y)j−2 =

kA∑
j=1

αj

(
n− 2

j − 1

)
(n−1)(x+y)n−j−1(1−x−y)j−1−

kA∑
j=2

αj

(
n− 2

j − 2

)
(n−1)(x+y)n−j(1−x−y)j−2,

where the last equality follows since
(
n−1
j−1

)
(n−j) =

(
n−2
j−1

)
(n−1) and

(
n−1
j−1

)
(j−1) =

(
n−2
j−2

)
(n−

1). Therefore,

Q̃A
x (x, y) =

kA∑
j=1

αj

(
n− 2

j − 1

)
(n−1)(x+y)n−j−1(1−x−y)j−1−

kA−1∑
j=1

αj+1

(
n− 2

j − 1

)
(n−1)(x+y)n−j−1(1−x−y)j−1 =

αkA

(
n− 2

kA − 1

)
(n−1)(x+y)n−k

A−1(1−x−y)k
A−1+

kA−1∑
j=1

(αj−αj+1)

(
n− 2

j − 1

)
(n−1)(x+y)n−j−1(1−x−y)j−1.

(17)

Assume 0 < x + y < 1, which implies, in particular, that both summands in RHS(17) are

nonnegative. If n > kA, the first summand in RHS(17) is positive. If n = kA, kA ≥ 2, and

since αj − αj+1 > 0 for every 1 ≤ j ≤ kA − 1, the second summand in RHS(17) is positive.

Therefore, RHS(17) > 0, which completes the proof of (ii). Note that Q̃B(x) = Q̂(1− x, 0),

where Q̂ is defined as Q̃A, except that we replace αj with βj for every relevant j and kA with

kB. Therefore, (iii) follows from (ii).

Before we present our next proposition we present a variant of the Implicit Function

Theorem needed in its proof:

Theorem 4.3 (Implicit Function Theorem) Let F : E × J → R be a continuously dif-

ferentiable function, where E and J are open intervals. and let (x0, y0) ∈ E×J be a point for
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which F (x0, y0) = 0 and Fx(x0, y0) 6= 0. Then, there exists an open interval I = (y0−δ, y0+δ),

δ > 0, and a unique function g : I → J such that g(y0) = x0 and F (g(y), y) = 0 for all

y ∈ I. Moreover g is continuously differentiable on I and for every y ∈ I

g′(y) = −Fy(g(y), y)

Fx(g(y), y)
. (18)

Proposition 4.4

1. There exist a unique valuation in [0, 1] denoted by v∗ for which Q(0, v∗) = 0. Moreover,

v∗ > 0, and v∗ = 1 if and only if α1 = β1.

2. There exists a unique function h : (0, v∗)→ [0, 1] such that the following two conditions

hold for every 0 < v < v∗:

0 ≤ h(v) ≤ 1− F (v).

Q(h(v), v) = 0.

Moreover, this unique function denoted by h satisfies 0 < h(v) < 1 − F (v) for every

0 < v < v∗.

3. h is continuously differentiable and 0 < −h′(v)
f(v)

< 1 for every 0 < v < v∗, where f is

the density function, that is f = F ′.

4. The function h can be continuously extended to the closed interval, [0, v∗]. Denote this

extension also by h; h satisfies h(v∗) = 0.

Proof:

1. By part (v) of Lemma 4.2, Q(0, v) is increasing in v ∈ [0, 1]. Since Q(0, 0) = αn−β1 < 0

and Q(0, 1) = α1 − β1 ≥ 0, the requested results follow.

2. Let v ∈ (0, v∗). Since Q(0, y) is increasing in y ∈ [0, 1] and Q(0, v∗) = 0, Q(0, v) < 0.

By part (iv) in Lemma 4.2, Q(x, v) is increasing in x ∈ [0, 1 − F (v)], and therefore

the proof is completed if we show that Q(1 − F (v), v) > 0. Indeed, Q(1 − F (v), v) =

Q̃A(1−F (v), F (v))−Q̃B(1−F (v)). However, Q̃A(1−F (v), F (v)) = α1 and by Part (iii)
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of Lemma 4.2, Q̃B(1− F (v)) < Q̃B(0) = β1. Therefore, Q(1− F (v), v) > α1 − β1 ≥ 0,

which completes the proof of this part.

3. Let 0 < v < v∗. Since Q(h(v), v) = 0 and by Part (iv) in Lemma 4.2, Qx(h(v), v) > 0,

the Implicit Function Theorem, Theorem 4.3, implies that there exists an interval

(v − δ, v + δ) around v and a unique real-valued function, g defined on this interval

such that g(v) = h(v) and Q(g(y), y) = 0 for every y in this interval. More over

g is continuously differentiable in this interval. For sufficiently small δ > 0, g(y) is

sufficiently close to g(v) = h(v), and since 0 < h(v) < 1 − F (v), g(y) ∈ [0, 1 − F (v)].

Therefore, by what we proved in the previous part of this theorem, g(y) = h(y) for every

y in this smaller neighborhood of v. This implies that h is continuously differentiable

in this smaller neighborhood of v, and in particular it is differentiable in v. By the

Implicit Function Theorem,

h′(v) = −Qy(h(v), v)

Qx(h(v), v)
.

By parts (iv) and (v) of Lemma 4.2, −h′(v) > 0. It remains to prove that −h′(v)
f(v)

< 1.

That is, we have to prove that

Qy(h(v), v)

Qx(h(v), v)f(v)
< 1. (19)

Note thatQy(h(v), v) = Q̃A
y (h(v), F (v))f(v), and by part (i) of Lemma 4.2, Q̃A

y (h(v), F (v))f(v) =

Q̃A
x (h(v), F (v))f(v). Also, Qx(h(v), v) = Q̃A

x (h(v), F (v))− Q̃B
x (h(v)) > Q̃A

x (h(v), F (v))

by part (iii) of Lemma 4.2. Hence, (19) holds.

4. We first prove that limv→v∗ h(v) = 0. Indeed, Since h′(v) < 0 for 0 < v < v∗, h is

decreasing in (0, v∗), and since in addition h(v) is bounded below by 0, there exists

c ≥ 0 such that limv→v∗ h(v) = c. We proceed to prove that c = 0. Since Q(h(v), v) = 0

for every 0 < v < v∗, Q(c, v∗) = 0. Moreover, 0 ≤ c ≤ 1−F (v∗). Hence, c = 0 if v∗ = 1.

Consider the case v∗ < 1: Since by part (iv) of Lemma 4.2, Q(x, v∗) is increasing in

x ∈ [0, c], and Q(0, v∗) = 0, it must be that c = 0.

Similarly, because h is decreasing and bounded from above in (0, v∗) the limit, limv→0 h(v)

exists, and is denoted by h(0).
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We end this subsection with the following useful lemma:

Lemma 4.5

1. For every v ∈ [0, v∗), Q(0, v) < 0; For every v ∈ (v∗, 1], Q(0, v) > 0.

2. For every v ∈ (v∗, 1] and for every x ∈ [0, 1− F (v)], Q(x, v) > 0.

3. For every v > v∗ and for every strategy q, QA(v,q)−QB(v,q) > 0.

Proof:

1. By part (v) in Lemma 4.2, Q(0, y) is increasing in y ∈ [0, 1]. Since Q(0, v∗) = 0 the

result follows.

2. By part (ii) of Lemma 4.2, Q(x, v) is increasing in x ∈ [0, 1 − F (v)], and therefore

Q(x, v) ≥ Q(0, v) > 0 for every x ∈ [0, 1− F (v)].

3. By (16), QA(v,q) − QB(v,q) = Q(ϕ(v,q), v) > 0 by the previous part because

ϕ(v,q) ≤ 1− F (v).

4.2 Existence

We define q̃ = (q̃A, q̃B) by defining q̃B as follows: The values, q̃B(0), q̃B(v∗) are left unspeci-

fied, and for other 0 < v ≤ 1

q̃B(v) =

−
h′(v)
f(v)

0 < v < v∗;

0 v∗ < v ≤ 1.

(20)

In order to prove that q̃ is a symmetric equilibrium it suffices to prove the following two

claims:

(a) UA(v, q̃)− UB(v, q̃) = 0 for every 0 ≤ v ≤ v∗;
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(b) UA(v, q̃)− UB(v, q̃) > 0 for every v > v∗.

We first compute the function ϕ(v, q̃). Obviously, for every v > v∗, ϕ(v, q̃) =
∫ 1

v
q̃B(x)f(x)dx =

0. We will show that:

ϕ(v, q̃) = h(v) for every 0 ≤ v ≤ v∗. (21)

Indeed, if v = v∗ the proof is obvious since ϕ(v∗, q̃) = 0 = h(v∗). Let then 0 ≤ v < v∗. For

sufficiently small ε > 0, ϕ(v, q̃) = I(ε) +
∫ v∗−ε
v+ε

q̃B(x)f(x)dx + J(ε), where I(ε) equals the

integral over the interval [v, v + ε] and J(ε) equal the integral over the interval [v∗ − ε, v∗].

Therefore, ϕ(v, q̃) = I(ε) + h(v + ε) − h(v∗ − ε) + J(ε). Because h is continuous in [0, v∗]

and I(ε), J(ε) converge to zero when ε → 0, ϕ(v, q̃) = h(v) − h(v∗), and since by part 4 in

Proposition 4.4 h(v∗) = 0, (21) holds. Since QA(v,q) − QB(v,q) = Q(ϕ(v, q̃), v), by (21),

QA(v,q) − QB(v,q) = Q(h(v), v) for every 0 ≤ v ≤ v∗. Therefore, since by Proposition

4.4 Q(h(v), v) = 0 for every 0 ≤ v ≤ v∗, QA(v,q) − QB(v,q) = 0 for every 0 ≤ v ≤ v∗.

Therefore, UA(v,q) − UB(v,q) =
∫ v

0
(QA(x,q) − QB(x,q))dx = 0 for every 0 ≤ v ≤ v∗,

which proves (a). By Lemma 4.5, QA(v,q)−QB(v,q) > 0 for every v > v∗. Hence, for every

v > v∗, UA(v,q)− UB(v,q) =
∫ v
v∗

(QA(x,q)−QB(x,q))dx > 0 by Lemma 4.1, which proves

(b).

4.3 Uniqueness

Let q be a symmetric equilibrium. We first prove that:U
A(v,q)− UB(v,q) = 0 for every v ∈ [0, v∗];

UA(v, q̃)− UB(v,q) > 0 for every v > v∗.

(22)

Establishing (22) proves the essential uniqueness as follows: In the interval (v∗, 1) a bidder in

equilibrium must choose A, and therefore qB(x) = 0 = q̃B(x) for every x > v∗. Considering

the other interval, the derivative of UA(v,q) − UB(v,q) equals zero almost everywhere in

(0, v∗). Therefore, QA(v,q)−QB(v,q) = 0 almost everywhere in this interval. Since QA(v,q)

and QB(v,q) are continuous in v, QA(v,q) − QB(v,q) = 0 for every v ∈ [0, v∗]. Therefore

Q(ϕ(v,q), v) = 0 for every v ∈ [0, v∗], and since ϕ(v,q) = h(v) for every v ∈ [0, v∗], it must
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be that ϕ(v,q) = ϕ(v, q̃) in this interval. This finally implies that qB(x) = q̃B(x) almost

every where in [0, v∗].

In order to prove (22) we need the following technical lemma, the proof of which is

standard and hence omitted.

Lemma 4.6 Let φ : [a, b] → R be a continuous function with φ(a) = φ(b) = 0, which

satisfies the following property: for every a ≤ c < d ≤ b for which φ(c) = φ(d) = 0 there

exists c < z < d such that φ(z) = 0. Then, φ(x) = 0 for every a ≤ x ≤ b.

Lemma 4.7 Let 0 ≤ c < d ≤ 1 be two valuations for which UA(c,q) − UB(c,q) = 0 and

UA(d,q)− UB(d,q) = 0. Then, UA(v,q)− UB(v,q) = 0 for every c ≤ v ≤ d.

Proof: Let φ(v) = UA(v,q)−UB(v,q). By Lemma 4.6 it suffices to prove that there exists

c < z < d for which φ(z) = 0. Assume in negation that such z does not exist. Therefore,

either φ(v) > 0 for every c < v < d or φ(v) < 0 for every c < v < d. Without loss of

generality φ(v) < 0 for every c < v < d. Note that since φ(v) < 0 for every v ∈ (c, d),

qB(v) = 1 for every such v. Therefore, QB(d,q)−QB(c,q) = Q̃B(ϕ(d,q))− Q̃B(ϕ(c,q)) =

Q̃B(ϕ(d,q))− Q̃B(ϕ(d,q) + F (d)− F (c)). Since Q̃B is decreasing in [0, 1],

QB(d,q) > QB(c,q). (23)

Recall that by Lemma 4.1, UB(v,q) = UA(c,q) +
∫ v
c
QA(x,q)dx and similarly, UB(v,q) =

UB(c,q) +
∫ v
c
QB(x,q)dx. Therefore, φ(v) =

∫ v
c

(QA(x,q) − QB(x,q))dx. We claim that

QA(c,q) ≤ QB(c,q). Indeed, if QA(c,q) − QB(c,q) > 0, for sufficiently small ε > 0,

QA(x,q)−QB(x,q) > 0 for every x ∈ [c, c + ε]. Therefore for every v ∈ (c, c + ε], φ(v) > 0

contradicting our negation assumption. Similarly, since φ(v) = −
∫ d
v

(QA(x,q)−QB(x,q))dx,

QA(d,q) ≥ QB(d,q). Hence we have:

QA(c,q) ≤ QB(c,q) < QB(d,q) ≤ QA(d,q). (24)

However, since qA(v) = 0 for every c < v < d, QA(c,q) = QA(d,q) contradicting (24).

Therefore there exists c < z < d for which φ(z) = 0. This completes the proof.

Recall that UA(0,q)− UB(0,q) = 0. Define

d = sup{v ∈ [0, 1]| UA(v,q)− UB(v,q) = 0}. (25)
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By continuity ,UA(d,q)−UB(d,q) = 0, and by Lemma 4.7, UA(v,q)−UB(v,q) = 0 for every

0 ≤ v ≤ d. We claim that if d < 1 then UA(v,q) > UB(v,q) for every v > d. By Lemma 4.7

either UA(v,q) > UB(v,q) or UA(v,q) < UB(v,q) for every v > d. Suppose in negation that

UA(v,q) < UB(v,q) for all v > d. Hence qB(v) = 1 for every v > d. Therefore, by Lemma

4.2 QB(v,q) = Q̃B(ϕ(v,q)) < Q̃B(0) = β1. Therefore, since QA(v,q) = α1 for every v > d,

by Lemma 4.1 UA(v,q) = UA(d,q)+
∫ v
d
QA(x,q) = UA(d,q)+α1(v−d) ≥ UB(d,q)+β1(v−

d) > UB(d,q) +
∫ v
d
QB(x,q) = UB(v,q), contradicting our negative assumption. Hence, in

order to establish (22), it suffices to prove that d = v∗. Before we do it, note that since

UA(v,q) − UB(v,q) = 0 for every 0 ≤ v ≤ d, the derivative of UA(v,q) − UB(v,q) equals

0 almost every where in this interval. Hence, QA(v,q) − QB(v,q) = 0 almost everywhere.

However, since QA, QB are continuous, the equality holds everywhere, that is

QA(v,q)−QB(v,q) = 0 v ∈ [0, d]. (26)

Assume in negation that v∗ < d. By Lemma 4.5, QA(v,q) − QB(v,q) > 0 for every v > v∗

contradicting (26).

Assume in negation that d < v∗. Let d < z < v∗. By Lemma 4.5, Q(0, z) < 0. On

the other hand, ϕ(z,q) =
∫ 1

z
qB(x)dF (x) = 0 since for x > d, qB(x) = 0. Therefore,

Q(ϕ(z,q), v) = QA(z,q) − QB(v,q) = Q(0, z) < 0. Let d < v < v∗, UA(v,q) − UB(v,q) =∫ v
d

(QA(z,q)−QB(v,q))dz < 0 contradicting. This completes the proof of uniqueness.

4.4 Degenerate competition

Recall that the competition is degenerate when αn ≥ β1 and that in such case n = kA.

In this case it can be easily seen that the strategy profile in which every bidder chooses A

with probability 1 is in equilibrium. Indeed, If bidder i with valuation vi deviates to B he

receives a utility of β1vi, while if he stays in A, his minimal utility equals αnvi. Therefore, the

existence assertion follows by letting v∗ = 0. Regarding essential uniqueness, if q = (qA, qB)

is a symmetric equilibrium and that ϕ(0,q) > 0, there exists 0 < c < 1 such that qB(c) > 0

and ProbF (v ∈ (c, 1], qB(v) > 0) > 0. Therefore, ϕ(c,q) > 0 and therefore FB
q (c) < 1. Let i

be an arbitrary bidder, and let vi = c. When every other bidder uses q, the utility of i cannot

exceed β1viF
B
q (c) < β1vi ≤ αnvi. Hence, bidder i is better off deviating to A, contradicting
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qB(c) > 0. Hence, in every symmetric equilibrium, q, qB(v) = 0 for almost every v ∈ [0, 1].

�

4.5 Examples for Special Cases

Example 1 (kA = kB = 2) First we consider two ad auctions, each with two positions, that

is, kA = kB = 2. In addition it is assumed that α1 > β1 > α2. When n = 2 the structure of

equilibrium is revealed analytically.

By (12) and (13), Q̃A(x, y) = α1(x+ y) + α2(1− x− y), and Q̃B(x) = β1(1− x) + β2(x).

Recall that Q(x, y) = Q̃A(x, F (y))−Q̃B(x), and that v∗ is the unique solution of Q(0, v∗) = 1.

Hence, v∗ = F−1( β1−α2

α1−α2
). The function h(v) is determined by Q(h(v), v) = 0. Hence,

h(v) = β1−α2−(α1−α2)F (v)
α1−α2+β1−β2

. Since, q̃B(v) = −h′(v)
f(v

, the essentially unique equilibrium q̃ satisfies:

q̃B(v) =


α1−α2

α1−α2+β1−β2
0 < v < v∗;

0 v∗ < v ≤ 1.

(27)

Hence, bidders with high valuations participate with probability 1 in auction A, while a

bidder with a low valuation randomizes and assigns a constant probability to each of the

auctions at the interval (0, v∗). Note that if α1 − α2 > β1 − β2,
α1−α2

α1−α2+β1−β2
> 1

2
, that is, a

bidder with a low valuation assigns a higher probability to the weaker auction.

When n = 2, the function h(v) is determined by a polynomial equation in h(v) of degree

1, and therefore q̃B(v) is constant at the first interval. However, for n > 2, h(v) is determined

by a polynomial equation of degree greater than 1, and q̃B(v) is not a constant function.

Example 2 (Strategies are not monotone) It is interesting to note that q̃B(v) may be

increasing or decreasing in (0, v∗). This is shown in the examples illustrated in Figures 1

and 2, in which the equilibrium is computed by running a computerized method. In both

examples n = 4, kA = kB = 4 and F is the uniform distribution. In Figure 1 the click rate

vectors of ad auctions A and B are α = (100, 70, 50, 20) and β = (80, 30, 10, 5) respectively,

and the cutting point is v∗ = 0.76. In Figure 2 the click rate vectors in ad auctions A and

B are α = (90, 80, 60, 30) and β = (85, 70, 40, 510) respectively, and the cutting point is

v∗ = 0.85.
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Figure 1. Figure 2.

5 Proof of Theorem 3.5

Let A = G(kA, α,pA) and B = G(kB, β,pB) be VCG ad auctions such that A is stronger

than B, and let F be a standard distribution function. Let RA (RB) be the expected revenue

in auction A (B) at the essentially unique symmetric equilibrium, q̃ in H(A,B, F ). We have

to prove that

RA −RB > 0.

Obviously, for L ∈ {A,B}, RL = n
∫ 1

0
PL(v, q̃)q̃L(v)f(v)dv. In the rest of the proof q̃ is fixed

and therefore omitted from the description of the functions. By the proof of Theorem 3.3 and

by (7), PA(v) = PB(v) for every v ∈ [0, v∗], and because, in addition, q̃B(v) = 0, q̃A(v) = 1

for every v∗ ≤ v ≤ 1.

RA −RB

n
=

∫ v∗

0

PA(v)(1− 2q̃B(v))f(v)dv +

∫ 1

v∗
PA(v)f(v)dv.

Let ∆ = RA−RB

n
. Since for v > v∗, q̃B(v) = 0, 1 = 1− 2q̃B(v) for such v, and therefore

∆ =

∫ 1

0

PA(v)(1− 2q̃B(v))f(v)dv.

Plug in PA(v) = vQA(v)− UA(v) in the last equality to get

∆ =

∫ 1

0

vQA(v)(1− 2q̃B(v))f(v)dv −
∫ 1

0

UA(v)(1− 2q̃B(v))f(v)dv.

Since UA(v) =
∫ v

0
QA(x)dx, the second term in the right-hand-side of the last equality is a

double integral. By changing the order of the integrals in this second term, and move to the
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parameter x, we get

∆ =

∫ 1

0

QA(x)[xf(x)− 2xq̃B(x)f(x)− 1 + F (x) + 2ϕ(x)]dx. (28)

We are about to apply the method of integration by parts to the right-hand-side of (28). For

that matter let g(x) = xf(x)− 2xq̃B(x)f(x)− 1 + F (x) + 2ϕ(x). Therefore,

∆ =

∫ 1

0

QA(x)g(x)dx. (29)

Let G(x) =
∫ x

0
g(t)dt. We claim that the derivative QA

x (x) exists at each of the intervals

(0, v∗) and (v∗, 1) and it is bounded at each of these intervals, and that G(1) = 0. Therefore,

by integration by parts

∆ = −
∫ 1

0

QA
x (x)G(x)dx. (30)

Indeed, for 0 < x < v∗, QA(x) = QB(x) = Q̃B(h(x)). Therefore, since h is continuously dif-

ferentiable at that interval, QA
x (x) = Q̃B

x (h(x))h′(x). For v∗ < x < 1, QA(x) = Q̃A(0, F (x)),

and therefore QA
x (x) = Q̃A

x (0, F (x))f(x). It remains to show that G(1) = 0. Indeed, it is

easily verified that G(x) = xF (x) + 2xϕ(x)− x for every 0 ≤ x ≤ 1. Hence, G(1) = 0. Since

by what we showed above QA
x (x) > 0 except at most three values of x, in order to prove that

∆ < 0 it suffices to prove that

G(x) = xF (x) + 2xϕ(x)− x < 0 for every 0 < x < 1. (31)

For every v∗ ≤ x < 1, G(x) = xF (x) − x < 0. So, it remains to prove (31) for 0 < x < v∗.

In order to prove it we use the fact that A is stronger than B. By re-arranging the terms in

(31), we have to prove that

ϕ(x) <
1− F (x)

2
for every 0 < x < v∗. (32)

Let x ∈ (0, v∗) and let h̃(x) = 1−F (x)
2

. Note that h̃(x) + F (x) = 1+F (x)
2

and 1 − h̃(x) −

F (x) = 1−F (x)
2

. Therefore, by (12) and (13)

Q̃A(h̃(x), F (x)) =
kA∑
j=1

αj

(
n− 1

j − 1

)
(
1 + F (x)

2
)n−j(

1− F (x)

2
)j−1 (33)

and

Q̃B(h̃(x)) =
kB∑
j=1

βj

(
n− 1

j − 1

)
(
1 + F (x)

2
)n−j(

1− F (x)

2
)j−1. (34)
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Therefore, Q(h̃(x), x) = Q̃A(h̃(x), F (x)) − Q̃B(h̃(x)) > 0 since A is stronger than B. Let

0 < x < v∗. Recall that the function Q(v, x) is increasing in 0 ≤ v ≤ 1 − F (x). As

h(x), h̃(x) are in this interval, and Q(h(x), x) = 0 < Q(h̃(x), x), h(x) < h̃(x). Since, in

(0, v∗), h(x) = ϕ(x), (32) follows. �

6 Regular Ad Auctions

Consider two ad auctions A = G(kA, α,pA) and B = G(kB, β,pB), Our goal in this section

is to provide conditions under which theorems 3.3 and 3.5 hold when A and B are not

necessarily VCG ad auctions.

Let q : [0, 1]→ [0, 1] be a measurable function. For every standard distribution function

F , regard q as a non-strategic participation function used by each of the n bidders in some

ad auction. That is, q(v) is the probability that a bidder participates strategically in the

bidding. For technical reasons, in order to keep the assumption that all bidders participate,

whenever the realization implies that the bidder does not participate, it is modeled as if this

bidder participates but his valuation equals 0. This forms a new ad auction in which the

distribution function is

Fq(v) = F (v) +

∫ 1

v

(1− q(x))dF (x).

Let D = G(k, α,p) be an ad auction, and let F be a standard distribution function. For

every q let D(q) = G(k, α, p, Fq) be the ad auction with Fq. We say that D is a regular ad

auction if for every standard distribution function F and for every participation function, q,

D(q) possesses a symmetric equilibrium in which every bidder uses a bidding strategy, which

is non-decreasing and equals an increasing function almost everywhere with respect to Fq.

That is, there exists an increasing strategy in [0, 1] which equals the equilibrium strategy

almost everywhere with respect to Fq. In particular, if Fq is constant at a certain interval,

the symmetric equilibrium is not necessarily increasing there.

Let A = G(kA, α,pA), B = G(kB, β,pB) be regular ad auctions, and let F be a distri-

bution function. When A and B are VCG ad auctions we reduce the strategy set of each

bidder to the set of participation strategies by assuming that the bidding strategies are the

truth-telling strategies. In general, we replace this assumption with the following one: A

24



strategy for a bidder is a pair (q,d) in which dA is a symmetric equilibrium strategy in

A(qA), which is increasing almost everywhere with respect to the probability induced by FqA

and dB is a symmetric equilibrium strategy in B(qB), which is increasing almost everywhere

with respect to the probability induced by FqB ; Note that because the bidding strategies are

increasing, the expected click rate functions in H(A,B, F ) are precisely the expected click

rate functions, QA, QB defined at (8) and (9). Moreover, Proposition 4.1 continues to hold

with the same proof.8 Therefore, the following theorem holds:

Theorem 6.1 Theorems 3.3 and 3.5 are valid for regular ad auctions.

The question of which auctions are regular is not dealt with in this paper. However we

conjecture that the first-price and next-price ad auctions are indeed regular. In order to

prove such results it is recommended to consult (Lahaie, 2006), where the existence and

uniqueness of a symmetric equilibrium is proved for a first-price ad auction with a standard

distribution function, F , but not for Fq, as well as (Lebrun, 2006), where equilibrium in

first-price auctions (which can be associated with ad auctions with a single position) are

discussed for general distribution functions.

7 Reserve Prices

In this section we extend our study to the context of ad auctions with reserve prices.

Every ad auction may have a reserve price r, 0 ≤ r < 1, which is modeled as follows:

The allocation rule allocates the non-dummy positions only to the bidders whose bid is at

least r, and all other bidders receive the dummy position; A bidder’s payment is calculated

as if all other bidders whose bid is less than r bid r. An auction G(k, α,p) with a reserve

price r is denoted by G(r, k, α,p). Obviously, G(0, k, α,p) is equivalent to G(k, α,p). The

competition game with two ad auctions A,B with reserve prices rA and rB respectively, and

8 This proposition is just a version of the Utility Equivalence principle, which is implicitly proved in

(Rockafellar, 1970) when dealing with sub-gradients of convex functions, and has been explicitly extended

and proved in mechanism design by Holmstrom (1979) (see also (Myerson, 1981), (Hon-Snir, 2005)). The

Utility Equivalence principle is used to prove the more famous, Revenue Equivalence principle, see e.g.,

(Myerson, 1981).
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with a distribution function F is denoted by H(rA, rB, A,B, F ). The definition of essential

uniqueness of symmetric equilibrium is naturally changed: The game H(rA, rB, A,B, F )

possesses an essentially unique symmetric equilibrium if it possesses a symmetric equilibrium

and for every two symmetric equilibria q, q̂

q(v) = q̂(v) F−almost everywhere in [min{rA, rB}, 1].

The structure of symmetric equilibrium in H(rA, rB, A,B, F ) is described by an additional

cutting point denoted by w∗.

Theorem 7.1 Let A = G(kA, α,pA) and B = G(kB, β,pB) be VCG ad auctions, let 0 ≤

rA, rB < 1, and let F be a standard distribution function.

The game H(rA, rB, A,B, F ) possesses an essentially unique symmetric equilibrium.

Moreover, If α1 ≥ β1 there exist a unique pair of cutting points, 0 ≤ v∗ ≤ 1, max{rA, rB} ≤

w∗ ≤ 1 for which there exists a symmetric equilibrium, q = (qA, qB) with the following prop-

erties:

If rA ≤ rB :


qB(v) = 0 for every rB < v < w∗;

0 < qB(v) < 1 for every min{w∗, v∗} < v < v∗;

qB(v) = 0 for every max{v∗, w∗} < v ≤ 1.

(35)

If rB < rA :


qB(v) = 1 for every rA < v < w∗;

0 < qB(v) < 1 for every min{w∗, v∗} < v < v∗;

qB(v) = 0 for every max{v∗, w∗} < v ≤ 1.

(36)

Furthermore, v∗ = 0 if and only if αn ≥ β1, v∗ = 1 if and only if α1 = β1, and w∗ =

max{rA, rB} if and only if rA = rB.

Theorem 7.1 is proved in Subsection 7.1.

Note that in the case in which α1 > β1, αn < β1 and rA < rB, the new parameter

w∗ satisfies rB < w∗, and a bidder with a valuation between rB and w∗ participates in A

with probability 1. Hence, bidders with low valuations above the maximal reserve price and

bidders with high valuations participate in A. Only bidders with interim size of valuations

randomize. Such a phenomenon cannot happen when rA = rB, and in particular it cannot
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happen when both auctions do not have reserve prices. A typical structure of the equilibrium

for the case in which rA < rB is illustrated in Figure 3.

0 rA rB w* v*           1

qB

v

Figure 3.

Regarding revenue, Theorem 3.5 is extended as follows:

Theorem 7.2 Let A = G(kA, α,pA) and B = G(kB, β,pB) be VCG ad auctions, and let

F be a standard distribution function. If rA ≤ rB and A is stronger than B, the expected

revenue in A is greater than the expected revenue in B in the essentially unique symmetric

equilibrium of the game H(rA, rB, A,B, F ).

The proof of Theorem 7.2 is given in Subsection 7.2.

Note one conclusion of Theorem 7.2: When the stronger auction sets a non strategic

reserve price 0, even if the weaker auction sets an optimal reserve price, its expected revenue

will be less than the one in A, that is, click rates are more influential for revenue than reserve

prices; If auction B’s organizer wishes to have a higher revenue than the one in A, she must

improve her performance and provide better click rates.9

The proofs of the theorems in this section combine extensions of the techniques in previous

sections with extensions of techniques established in (Burguet and Sakovics, 1999).

A very interesting question to ask is what reserve prices will the machanism designers

would choose if they could do so? Unfortunately, there is no sub-game perfect equilibrium

(when sellers cannot use mixed strategies) in such a setting as mentioned in the introduction.

9This is a complementary principle to the one established by Bulow and Klemperer (1996) according to

which, the number of participants in a single-item auction is more influential for revenue than the reserve

price.
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7.1 Proof of Theorem 7.1

The definitions, theorems and proofs in Subsection 4.1 are valid for the setup with reserve

prices with the following modifications: At the presence of reservation prices the formulas

for the expected click rate functions are as follows:

QA(v,q) =


∑kA

j=1 αj
(
n−1
j−1

)
(FA

q (v))n−j(1− FA
q (v))j−1 v ≥ rA

0 v < rA.
(37)

QB(v,q) =


∑kB

j=1 βj
(
n−1
j−1

)
(FB

q (v))n−j(1− FB
q (v))j−1 v ≥ rB

0 v < rB.
(38)

Equalities (i) and (ii) in (15) continue to hold for v ≥ rA and v ≥ rB respectively, and

(16) holds for v ≥ max{rA, rB}.

Finally, in part 3 in Lemma 4.5 one should require that the inequality holds for every

v > max{v∗, rA}.

We proceed with the proof of the theorem assuming rA ≤ rB. The proof for the other

case is very similar and therefore it is omitted.

7.1.1 Existence

Define a family of strategies q̃w = (q̃Aw , q̃
b
w), parameterized by w ∈ [0, 1], as follows: The

values q̃Bw (0),q̃Bw (w) and perhaps q̃Bv∗(v
∗) are left unspecified, and for any other 0 < v ≤ 1

q̃Bw (v) = 0 for every 0 < v < w;

−h′(v)
f(v)

for every min{w, v∗} < v < v∗;

q̃Bw (v) = 0 for every max{v∗, w} < v ≤ 1,

(39)

where the function h is the unique function on [0, v∗] established in Proposition 4.4. Note

that q̃0 coincides with the symmetric equilibrium, q̃ of the game H(A,B, F ), except for at

most three points. Moreover, by similar arguments to those applied in Subsection 4.2, for

every w ≤ v∗

QA(v, q̃w) = QB(v, q̃w) for every w ≤ v ≤ v∗. (40)
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Let D = {w ∈ [0, 1] : rB ≤ w ≤ 1, UA(w,qw) ≤ UB(w,qw)}. Define

w∗ =

 inf D D 6= φ

1 D = φ.
(41)

We argue that q̃w∗ is a symmetric equilibrium. To show this, it suffices to prove the following

three claims:

(a) UA(v, q̃w∗)− UB(v, q̃w∗) = 0 for every min{w∗, v∗} < v < v∗;

(b) UA(v, q̃w∗)− UB(v, q̃w∗) ≥ 0 for every v ≥ max{v∗, w∗}.

(c) UA(v, q̃w∗)− UB(v, q̃w∗) ≥ 0 for every rB ≤ v ≤ w∗.

Note that

ϕ(v, q̃w∗) = ϕ(v, q̃) for every v ≥ w∗. (42)

Therefore, the proofs for (a) and (b) are established by using similar arguments to those

used at the analogous proofs in Subsection 4.2. We proceed to prove (c). By (41) w∗ ≥ rB.

If w∗ = rB, then since UB(rB, q̃w∗) = 0 we are done. Therefore, we assume that rB < w∗.

We distinguish two cases.

Case 1: w∗ ≤ v∗. Note that

UA(rB, q̃w∗) ≥ UB(rB, q̃w∗) = 0, (43)

and by (a) and the continuity of UA, UB in v,

UA(w∗, q̃w∗) = UB(w∗, q̃w∗). (44)

We are about to prove that

QB(v, q̃w∗) ≥ QA(v, q̃w∗) ∀v ∈ (rB, w∗). (45)

However, in latter proofs we will need a stronger result, which is proved at the next lemma.

Lemma 7.3 Let 0 ≤ w ≤ 1. For every rB ≤ v < min{v∗, w}, QB(v, q̃w) ≥ QA(v, q̃w).
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Proof: Since q̃Bw (v) = 0 for every rB < v < w, ϕ(v, q̃w) = ϕ(w, q̃w) for every such v.

Therefore

QB(v, q̃w) = QB(w, q̃w) ∀v ∈ (rB,min{v∗, w}). (46)

We consider the following two cases:

1. w ≤ v∗: Since QA is non-decreasing in v ∈ [0, 1]

QA(w, q̃w) ≥ QA(v, q̃w) ∀v ∈ [rB, w). (47)

By (40) QB(w, q̃w) = QA(w, q̃w). Therefore, together with (46) and (47) the result

follows.

2. w > v∗: Since QA is non-decreasing in v ∈ [0, 1]

QA(v∗, q̃w) ≥ QA(v, q̃w) ∀v ∈ [rB, v∗). (48)

Moreover, by (46) we have that

QB(v, q̃w) = QB(v∗, q̃w). ∀v ∈ [rB, v∗). (49)

By (48) and (49) it remains to show that

QB(v∗, q̃w) ≥ QA(v∗, q̃w). (50)

By (40) we have that QB(v∗, q̃v∗) = QA(v∗, q̃v∗). Hence, Q(ϕ(v∗, q̃v∗), v
∗) = 0. Since

v∗ < w, by (39) ϕ(v∗, q̃w) < ϕ(v∗, q̃v∗) . Therefore, by Lemma 4.2 Q(ϕ(v∗, q̃w), v∗) < 0,

which implies that inequality (50) holds.

We proceed with the main proof. By (43), (45), and Proposition 4.1, if UB(v′, q̃w∗) >

UA(v′, q̃w∗) for some v′ ∈ (rB, w∗), UB(v, q̃w∗) > UA(v, q̃w∗) for every v′ ≤ v ≤ w∗, contra-

dicting (44). Therefore (c) follows for the case w∗ ≤ v∗.

Case 2: w∗ > v∗. By (41), UA(v∗, q̃v∗) > UB(v∗, q̃v∗). Therefore, since q̃Bw∗ equals q̃Bv∗

almost everywhere at [rA, 1],

UA(v∗, q̃w∗) > UB(v∗, q̃w∗). (51)
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In addition, by Lemma 7.3,

QB(v, q̃w∗) ≥ QA(v, q̃w∗) ∀v ∈ [rB, v∗). (52)

By Proposition 4.1 for every L ∈ {A,B} and for every rB ≤ v < v∗ UL(v, q̃w∗) =

UL(v∗, q̃w∗)−
∫ v∗
v
QL(v, q̃w∗). Therefore, by (51) and (52) UA(v, q̃w∗) > UB(v, q̃w∗) for every

rB < v < v∗. Moreover, by Lemma 4.5 QA(v, q̃w∗) ≥ QB(v, q̃w∗) for every v ≥ v∗. Therefore,

by Proposition 4.1 and (51) we obtain that UA(v, q̃w∗) ≥ UB(v, q̃w∗) for every v ≥ v∗, which

completes the proof of part (c). �

7.1.2 Uniqueness

We prove that q̃w∗ is essentially unique. Let q be a symmetric equilibrium. As in the

uniqueness proof for the case with no reserve prices given in Subsection 4.3, it suffices to

show that 
UA(v,q)− UB(v,q) = 0 for every min{w∗, v∗} < v < v∗;

UA(v,q)− UB(v,q) > 0 for every v > max{v∗, w∗};

UA(v,q)− UB(v,q) > 0 for every rA < v < w∗.

(53)

We will use the following Lemma, whose proof is clear and therefore omitted.

Lemma 7.4 For every v ∈ [rA, rB],

UA(v,q) ≥ 0 and UB(v,q) = 0.

Moreover, UA(v,q) > 0 if and only if rA < rB.

We deal first with the simple case in which rB ≥ v∗. By (41) w∗ ≥ rB and therefore

w∗ ≥ v∗. Hence, we need to show only the two strict inequalities in (53). By Lemma 7.4,

UA(v,q)− UB(v,q) > 0 for every rA < v ≤ rB. Therefore, it is enough to show that

UA(v,q)− UB(v,q) > 0 for every v > rB. (54)

By Lemma 7.4, UA(rB,q) ≥ UB(rB,q). Moreover, by Lemma 4.5, QA(v,q) > QB(v,q) for

every v ≥ rB. Therefore, (54) follows from Proposition 4.1.
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Henceforth, we assume that rB < v∗. Lemma 4.7, which plays a key role in the proof of

uniqueness for the case rA = rB = 0 should be slightly modified. The proof of the modified

lemma mimics the proof of the original lemma, and therefore it is omitted:

Lemma 7.5 Let rA ≤ c < d ≤ 1 be two valuations for which UA(c,q) − UB(c,q) = 0 and

UA(d,q)− UB(d,q) = 0. Then, UA(v,q)− UB(v,q) = 0 for every c ≤ v ≤ d.

Let T = {v : v ≥ rA, UB(v,q) ≥ UA(v,q)} and define

t =

 inf T T 6= φ

1 T = φ.
(55)

By similar arguments to the case with no reserve prices and by (55), we have

Lemma 7.6

(a) UA(v,q) > UB(v,q) for every rA < v < t.

(b) UA(v,q) = UB(v,q) for every min{t, v∗} < v < v∗.

(c) UA(v,q) > UB(v,q) for every v > max{t, v∗}.

Since q is an equilibrium, t ≥ rB. Hence, by Lemma 7.6, qB equals q̃Bt almost everywhere

at [rA, 1]. In particular q̃t is a symmetric equilibrium. By definition of w∗, (41), t ≥ w∗.

Therefore, to complete the proof, it remains to show that if w∗ < v∗, t = w∗. Suppose in

negation that w∗ < v∗ and t > w∗. We prove that

UA(w∗, q̃t) < UB(w∗, q̃t). (56)

Since q̃Bt (w∗) = 0 and q̃t is a symmetric equilibrium, (56) implies the desired contradiction.

Note that UA(rA,qw∗) = UA(rA,qt) = 0 and that UB(rB,qw∗) = UB(rB,qt) = 0. Since

ϕ(v, q̃w∗) > ϕ(v, q̃t) for every rA < v ≤ w∗, by Lemma 4.2 and (15)

QA(v, q̃w∗) > QA(v, q̃t)

and

QB(v, q̃w∗) < QB(v, q̃t)
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for every rA < v ≤ w∗.

Therefore, by Proposition 4.1, UB(w∗, q̃t) > UB(w∗, q̃w∗) and UA(w∗, q̃t) < UA(w∗, q̃w∗).

Moreover, since w∗ < v∗ UA(w∗, q̃w∗) = UB(w∗, q̃w∗) and therefore (56) holds. This com-

pletes the uniqueness part. �

7.1.3 Proving the if and only if parts

Proving that v∗ = 0 if and only if αn ≥ β1 and that v∗ = 1 if and only if α1 = β1 is

similar to the analogous proof in the case with no reserve prices. We proceed to prove that

w∗ = max{rA, rB} if and only if rA = rB. Indeed, for every w ∈ [0, 1], UA(rA, q̃w) =

UB(rB, q̃w) = 0. Therefore, if rA = rB, by (41) we have w∗ = rA = rB. Conversely, if

rA > rB, UA(rA, q̃rB) > 0 and UA(rB, q̃rB) = 0 implying w∗ > rB. �

7.2 Proof of Theorem 7.2

Let A = G(rA, kA, α,pA) and B = G(rB, kB, β,pB) be VCG ad auctions with rA ≤ rB such

that A is stronger than B, and let F be a standard distribution function. Let RA,RB be

the expected revenues in auction A and B respectively at the essentially unique symmetric

equilibrium, q̃w∗ of H(rA, rB, A,B, F ). We have to prove that

RA −RB > 0.

We distinguish two cases. Case 1: w∗ ≥ v∗. In this case, for every v ≥ rB except for at most

two values, q̃Bw∗(v) = 0. Therefore, RA > RB.

Case 2: w∗ < v∗. Whenever a strategy is omitted from the description of functions

we assume it to be the strategy q̃w∗ . By Theorem 7.1 and (7), PA(v) = PB(v) for every

v ∈ [w∗, v∗], PA(v) = 0 for every v < rA, and q̃Bw∗(v) = 0 for every rA < v < w∗ and for

every v∗ < v ≤ 1. Therefore,

∆ =

∫ 1

0

PA(v)(1− 2q̃Bw∗(v))f(v)dv,

where ∆ = RA−RB

n
. The proof continues similarly to the proof of Theorem 3.5 to the point

in which

∆ = −
∫ 1

0

QA
x (x)G(x)dx, (57)
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where in this case G(x) =
∫ x

0
[tf(t)− 2tq̃Bw∗(t)f(t)− 1 + F (t) + 2ϕ(t)]dt.

Since QA
x (v) = 0 for all v < rA,

∆ = −
∫ 1

rA

QA
x (x)G(x)dx. (58)

As in the proof of Theorem 3.5, Qx(v) > 0 for every rA < v < v∗. It remains to show that

G(x) < 0 for every rA < x < v∗, which is equivalent to proving that

ϕ(x, q̃w∗) <
1− F (x)

2
for every rA < x < v∗. (59)

We showed in the proof of Theorem 3.5 that with no reserve prices ϕ(v, q̃) < 1−F (x)
2

for every

0 < x < v∗. Since ϕ(x, q̃) ≥ ϕ(x, q̃w∗) for x < v∗, (59) follows. �

8 Multi-Campaign Advertisers: Sensitivity Analysis of

the Revenue in Monopolistic Setups

Our main goal in this section is to derive the general formula for the expected revenue re-

alized by the seller in the VCG auction, and to use it to show that the expected revenue

of the VCG ad auction is not necessarily positively influenced by an increase in its click

rates. For symmetric equilibria, these results can be extended via the revenue equivalence

principle to regular ad auctions.10 In addition, without any reference to the revenue equiva-

lence theorem, these results are applied below to the most common model in the literature

of ad auctions, which involves the next-price ad auction with complete information. Our

results have immediate implications for the simultaneous ad auctions with multi-campaign

advertisers setup in which both auctions attract all advertisers.

Let A = G(k, α,p,F) be the standard VCG ad auction. Denote by RA = R(k, α,p,F)

the expected revenue realized by the seller in A calculated under the assumption that every

bidder uses the truth-telling strategy.11

In this section we address the natural question:

Do more clicks or/and more positions yield more revenue? (60)

10See Section 6.
11Recall that truth telling is a weakly dominant strategy for every bidder.
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Let ṽ(t) be the tth reverse-order statistics generated by the random variables ṽ1, . . . , ṽn. In

particular, ṽ(1) ≥ ṽ(2) ≥ . . . ≥ ṽ(n). ṽ(t) is identically zero for t > n. By (2), the expected

total payment realized in position l equals

k∑
j=l

(αj − αj+1)E[ṽ(j+1)], (61)

where E[·] is the expectation operator with respect to the joint distribution of profiles of

valuations. Therefore,

RA =
k∑
l=1

k∑
j=l

(αj − αj+1)E[ṽ(j+1)],

implying that

RA =
k∑
j=1

(αj − αj+1)jE[ṽ(j+1)], (62)

Hence, by (62), increasing all click rates by a positive multiplicative constant increases

revenue by the same multiplicative constant. However, as is shown in the next theorem, if

the click rates change in a non-linear way, the influence on the revenue is not necessarily

positive.

Theorem 8.1 Let A = G(k, α,p,F) be the standard VCG ad auction with an arbitrary

vector of distribution functions.

1. The revenue, R(k, α,p,F) = R(k, (α1, α2, . . . , αk),p,F), is non-decreasing in α1; It is

increasing in α1 if and only if E[ṽ(2)] > 0.

2. For every position j, 2 ≤ j ≤ k, The revenue, R(k, (α1, α2, . . . , αk),p,F), can be

non-decreasing or non-increasing in αj.

Proof: By (62)

R(k, α,p,F) = α1E[ṽ(2)] +
k∑
j=2

αj
(
jE[ṽ(j+1)]− (j − 1)E[ṽ(j)]

)
, (63)

which proves the theorem.

So, increasing the click rate of position 1 increases revenue. However, the influence of

incresing/decreasing other positions’ click rates on the revenue depends on the distribution
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of valuations. To complete the answer to question (60), note that adding a position is

equivalent to increasing the click rate in the current dummy position. Hence, the value of

such a policy depends on its effects on the other click rates and on the distribution functions.

In the following example we consider a special important case.

Example 3 (Symmetric model, uniform distribution) Consider the classical model in

which, n > k, r = 0 and each Fi is the uniform distribution over [0, 1]. In this model,

E[ṽ(j+1)] = n−j
n+1

, and therefore, for j ≥ 2,

jE[ṽ(j+1)]− (j − 1)E[ṽ(j)] > 0 if and only if j <
n+ 1

2
.

Hence, if for example n = 4 and k = 3, an increase of α3 reduces the revenue.

Although the VCG ad auction is currently not used in practice, it may be used in the

future because of its compelling feature of having dominant strategies. Furthermore, it was

shown by Ashlagi et al. (2008) that a reliable mediator can transform the next-price ad

auction, which is used in practice to a VCG ad auction, which makes the analysis of the

VCG auction relevant. Moreover, Varian (2007) and Edelman et al. (2007) showed that with

complete information, the VCG outcome is obtained in an equilibrium of the next-price ad

auction. In addition, it was proved in (Edelman et al., 2007) that this equilibrium is locally

envy-free, and in (Varian, 2007) it is claimed that this equilibrium is consistent with the

empirical data. Hence, as we show in the next example, results about the revenue in the

VCG auction can be used for existing systems.

Example 4 (Next-price auctions with complete information) In existing systems, auc-

tions’ organizers run variants of the next-price ad auction. This auction has the welfare

maximizer allocation rule and its payment scheme is given in (1). In a model with complete

information bidder i has a commonly known valuation vi, and without loss of generality it

is assumed that

v1 > v2 > · · · > vn > 0, n > k.

Varian (2007) and Edelman et al. (2007) proved that in this game there exist multiple Nash

equilibria, and that one of these equilibria generates the VCG outcome. In addition, it
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was empirically claimed by Varian (2007) that in practice the equilibrium that generates

the VCG outcome is likely to be played. Hence, the revenue of the organizer is the same

revenue as obtained in a VCG ad auction. The VCG ad auction with complete information

is a special case of our study, in which the distribution Fi gives probability 1 to vi. As in

this case E[ṽj+1] = vj+1, the revenue in the next-price ad auction is given by the following

formula:

R = α1v2 +
k∑
j=2

αj (jvj+1 − (j − 1)vj) . (64)

Formula (64) enables one to determine the effects on the revenue of changing the click rates

and/or adding/removing positions. As one can see the revenue can be either increasing or

decreasing with the click-rates as determined by the above equation.

The implications of our findings for a search engine are as follows: a search engine should

take into consideration the characteristics of the positions in the search results, as these

can change the click rates and improve revenue. Moreover, by attracting advertisers and

optimizing the mechanism it may be possible for an ad auction to outperform the revenue

of a stronger ad auction with higher click-rates.
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