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In this paper, we show a significant role that geometric properties of uncertainty sets, such as symmetry, play in determining
the power of robust and finitely adaptable solutions in multistage stochastic and adaptive optimization problems. We consider a
fairly general class of multistage mixed integer stochastic and adaptive optimization problems and propose a good approximate
solution policy with performance guarantees that depend on the geometric properties of the uncertainty sets. In particular, we
show that a class of finitely adaptable solutions is a good approximation for both the multistage stochastic and the adaptive
optimization problem. A finitely adaptable solution generalizes the notion of a static robust solution and specifies a small set
of solutions for each stage; the solution policy implements the best solution from the given set, depending on the realization
of the uncertain parameters in past stages. Therefore, it is a tractable approximation to a fully adaptable solution for the
multistage problems. To the best of our knowledge, these are the first approximation results for the multistage problem in such
generality. Moreover, the results and the proof techniques are quite general and also extend to include important constraints
such as integrality and linear conic constraints.
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1. Introduction. In most real-world problems, several parameters are uncertain at the optimization phase,
and decisions are required to be made in the face of these uncertainties. Deterministic optimization is often
not useful for such problems, as solutions obtained through such an approach might be sensitive to even small
perturbations in the problem parameters. Stochastic optimization was introduced by Dantzig [15] and Beale [1]
and since then has been extensively studied in the literature. A stochastic optimization approach assumes a
probability distribution over the uncertain parameters and seeks to optimize the expected value of the objective
function typically. We refer the reader to several textbooks including Infanger [22], Kall and Wallace [24],
Prékopa [26], Shapiro [28], Shapiro et al. [30], and the references therein for a comprehensive review of
stochastic optimization.

While the stochastic optimization approach has its merits and there has been reasonable progress in the field,
there are two significant drawbacks of the approach.

(i) In a typical application, only historical data is available, rather than probability distributions. Modeling
uncertainty using a probability distribution is a choice we make, and it is not a primitive quantity fundamentally
linked to the application.

(i) More importantly, the stochastic optimization approach is by and large computationally intractable.
Shapiro and Nemirovski [29] give hardness results for two-stage and multistage stochastic optimization prob-
lems, where they show the multistage stochastic optimization is computationally intractable, even if approximate
solutions are desired. Dyer and Stougie [16] show that a multistage stochastic optimization problem, where the
distribution of uncertain parameters in any stage also depends on the decisions in past stages, is PSPACE-hard.

To solve a two-stage stochastic optimization problem, Shapiro and Nemirovski [29] show that a sampling-
based algorithm provides approximate solutions, given that a sufficiently large number of scenarios are sampled
from the assumed distribution, and the problem has a relatively complete recourse. A two-stage stochastic
optimization problem is said to have a relatively complete recourse if, for every first-stage decision, there is a
feasible second stage recourse solution almost everywhere, i.e., with probability one (see the book by Shapiro
et al. [30]). Shmoys and Swamy [32], Swamy and Shmoys [33], and Gupta et al. [20, 21] consider the two-stage
and multistage stochastic set covering problem under certain restrictions on the objective coefficients and propose
sampling-based algorithms that use a small number of scenario samples to construct a good first-stage decision.
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However, the stochastic set covering problem admits a complete recourse, i.e., for any first-stage decision there
is a feasible recourse decision in each scenario, and the sampling-based algorithms only work for problems with
complete or relatively complete recourse.

More recently, the robust optimization approach has been considered to address optimization under uncertainty
and has been studied extensively (see Ben-Tal and Nemirovski [4, 5, 6], El Ghaoui and Lebret [17], Goldfarb
and Iyengar [19], Bertsimas and Sim [11, 12]). In a robust optimization approach, the uncertain parameters are
assumed to belong to some uncertainty set, and the goal is to construct a single (static) solution that is feasible
for all possible realizations of the uncertain parameters from the set and optimizes the worst-case objective. We
point the reader to the survey by Bertsimas et al. [13] and the book by Ben-Tal et al. [7] and the references therein
for an extensive review of the literature in robust optimization. This approach is significantly more tractable,
as compared to a stochastic optimization approach, and the robust problem is equivalent to the corresponding
deterministic problem in computational complexity for a large class of problems and uncertainty sets (Bertsimas
et al. [13]). However, the robust optimization approach has the following drawbacks. Since it optimizes over
the worst-case realization of the uncertain parameters, it may produce highly conservative solutions that may
not perform well in the expected case. Moreover, the robust approach computes a single (static) solution even
for a multistage problem with several stages of decision-making as opposed a fully-adaptable solution where
decisions in each stage depend on the actual realizations of the parameters in past stages. This may further add
to the conservativeness.

Another approach is to consider solutions that are fully-adaptable in each stage and depend on the realiza-
tions of the parameters in past stages and optimize over the worst case. Such solution approaches have been
considered in the literature and referred to as adjustable robust policies (see Ben-Tal et al. [8] and the book by
Ben-Tal et al. [7] for a detailed discussion of these policies). Unfortunately, the adjustable robust problem is
computationally intractable and Ben-Tal et al. [8] introduce an affinely adjustable robust solution approach to
approximate the adjustable robust problem. Affine solution approaches (or just affine policies) were introduced
in the context of stochastic programming (see Gartska and Wets [18] and Rockafeller and Wets [27]) and have
been extensively studied in control theory (see the survey by Bemporad et al. [3]). Affine policies are useful
because of their computational tractability and strong empirical performance. Recently, Bertsimas et al. [14]
showed that affine policies are optimal for a single-dimension, multistage problem with box constraints and
box uncertainty sets. Bertsimas and Goyal [10] consider affine policies for the two-stage adaptive (or adjustable
robust) problem and give a tight bound of O(,/dim(%)) on the performance of affine policies with respect to a
fully adaptable solution where dim(%) denotes the dimension of the uncertainty set.

In this paper, we consider a class of solutions called finitely adaptable solutions that were introduced by
Bertsimas and Caramanis [9]. In this class of solutions, the decision-maker a priori computes a small number
of solutions, instead of just a single (static) solution, such that for every possible realization of the uncertain
parameters, at least one of them is feasible, and in each stage, the decision maker implements the best solution
from the given set of solutions. Therefore, a finitely adaptable solution policy is a generalization of the static
robust solution and is a middle ground between the static solution policy and the fully adaptable policy. It can
be thought of as a special case of a piecewise-affine policy where the each piece is a static solution instead
of an affine solution. As compared to a fully adaptable solution, which prescribes a solution for all possible
scenarios (possibly an uncountable set), a finitely adaptable solution has only a small finite number of solutions.
Therefore, the decision space is much sparser, and it is significantly more tractable than the fully adaptable
solution. Furthermore, for each possible scenario, at least one of the finitely adaptable solutions is feasible.
This makes it different from sampling-based approaches where a small number of scenarios are sampled and an
optimal decision is computed for only the sampled scenarios, while the rest of the scenarios are ignored. We
believe that finitely adaptable solutions are consistent with how decisions are made in most real-world problems.
Unlike dynamic programming that prescribes an optimal decision for each (possibly uncountable) future state
of the world, we make decisions for only a few states of the world.

We aim to analyze the performance of static robust and finitely adaptable solution policies for the two-
stage and multistage stochastic optimization problems, respectively. We show that the performance of these
solution approaches, as compared to the optimal fully adaptable stochastic solution, depends on fundamental
geometric properties of the uncertainty set, including symmetry for a fairly general class of models. Bertsimas
and Goyal [10] analyze the performance of static robust solution in two-stage stochastic problems for perfectly
symmetric uncertainty sets such as ellipsoids and norm-balls. We consider a generalized notion of symmetry
of a convex set introduced in Minkowski [25], where the symmetry of a convex set is a number between 0
and 1. The symmetry of a set being equal to one implies that it is perfectly symmetric (such as an ellipsoid).
We show that the performance of the static robust and the finitely adaptable solutions for the corresponding
two-stage and multistage stochastic optimization problems depends on the symmetry of the uncertainty set. This
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is a two-fold generalization of the results in Bertsimas and Goyal [10]. We extend the results in Bertsimas and
Goyal [10] of performance of a static robust solution in two-stage stochastic optimization problems, for general
convex uncertainty sets using a generalized notion of symmetry. Furthermore, we also generalize the static robust
solution policy to a finitely adaptable solution policy for the multistage stochastic optimization problem and
give a similar bound on its performance that is related to the symmetry of the uncertainty sets. The results are
quite general and extend to important cases such as integrality constraints on decision variables and linear conic
inequalities. To the best of our knowledge, there were no approximation bounds for the multistage problem in
such generality.

2. Models and preliminaries. In this section, we first set up the models for two-stage and multistage
stochastic, robust, and adaptive optimization problems considered in this paper. We also discuss the solution
concept of finite adaptability for multistage problems. Then we introduce the geometric quantity of symmetry
of a convex compact set and some properties that will be used in the paper. Lastly, we define a quantity called
translation factor of a convex set.

2.1. Two-stage optimization models. Throughout the paper, we denote vectors and matrices using boldface
letters. For instance, x denotes a vector, while « denotes a scalar. A two-stage stochastic optimization problem,
I1%,..,, is defined as,

Zstoch += Hll(?) cTX+ [E,u[dry(b)]’ (l)
X,y

st. Ax+By(b)>b, pu-ae belU CRY,
x € R x Ry,

y(b) e R xR, VbeU.

Here, the first-stage decision variable is denoted as x; the second-stage decision variable is y(b) for b € U,
where b is the uncertain right-hand side with the uncertainty set denoted as %. The optimization in (1) for the
second stage decisions y(-) is performed over the space of piecewise affine functions, because there are finitely
many bases of the system of linear inequalities Ax + By(b) > b. Note that some of the decision variables in both
the first and second stage are free, i.e., not constrained to be nonnegative. A probability measure u is defined
on %. Both A and B are certain, and there is no restriction on the coefficients in A, B, or on the objective
coefficients ¢, d. The linear constraints Ax 4+ By(b) > b hold for p almost everywhere on %, i.e., the set of
b € U for which the linear constraints are not satisfied, has measure zero. We use the notation w-a.e. b € U to
denote this.

The key assumption in the above problem is that the uncertainty set % is contained in the nonnegative orthant.
In addition, we make the following two technical assumptions.

(1) Zstoen 18 finite. This assumption implies that zg,,, > 0. If zg,., < 0, then it must be unbounded from below,
as we can scale the solution by an arbitrary positive factor and still get a feasible solution.

(ii) For any first-stage solution x, and a second-stage solution y(-) that are feasible for u almost everywhere
on U, E,[y(b)] exists.

These technical conditions are assumed to hold for all of the multistage stochastic models considered in the
paper as well. We would like to note that because A is not necessarily equal to B, our model does not admit
relatively complete recourse.

A two-stage adaptive optimization problem, Hidam, is given as

. T T
Z = min ¢’ x+ maxd y b
Adapt . y(b) beal ( )7

st. Ax+By(b)>b, VbeUCRY,
x €RM x Ry,

y(b) e R xR, Vbeu.

@)

Note that the above problem is also referred to as an adjustable robust problem in the literature (see Ben-Tal
et al. [8] and the book by Ben-Tal et al. [7]).
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The corresponding static robust optimization problem, Il ,, is defined as
Zrop :=min ¢’x+d"y,
X,y

st. Ax+By>b, VbeUCRY, 3)
xeRM xR},
y e R x R,

Note that any feasible solution to the robust problem (3) is also feasible for the adaptive problem (2), and
thus z, g,y < Zror- Moreover, any feasible solution to the adaptive problem (2) is also feasible for the stochastic
problem (1) and, in addition, we have

¢'x+E,[d"y(b)] <c"x+maxd"y(b),
beU

leading 0 Zgion < Zagap- Henee, we have zgos < Zagapt < Zrob-

We would like to note that when the left-hand side of the constraints, i.e., A and B, are uncertain, even
a two-stage, two-dimensional problem can have an unbounded gap between the static robust solution and the
stochastic solution.

2.2. Multistage optimization models. For multistage problems, we consider a fairly general model in which
the evolution of the multistage uncertainty is given by a directed acyclic network G = (N, o), where .V is the
set of nodes corresponding to different uncertainty sets and s is the set of arcs that describe the evolution
of uncertainty from stage k to (k+ 1) for all k=2,...,K — 1. In each stage (k+1) for k=1,...,K —1,
the uncertain parameters u, belong to one of the N, uncertainty sets, Gll’f e, OM’]‘\,k C R’'. We also assume that
the probability distribution of wu, conditioned on the fact that u, € “Zé’,‘ forall k=2,...,K, j=1,...,N, is
known. In our notation, the multistage uncertainty network starts from stage 2 (not stage 1), and we refer to the
uncertainty sets and uncertain parameters in stage (k + 1) using index k. Therefore, in a K-stage problem, the
index ke{l,...,K—1}.

In stage 2, there is a single node %', which we refer to as the root node. Therefore, N, = 1. For any k =
1,...,K—1, suppose the uncertain parameters u, in stage (k + 1) belong to °M’J‘ for some j=1,...,N,. Then
for any edge from %’]‘ to %f,* "in the directed network, u,,, € %ff ! with probability p’; 7» which is an observable
event in stage (k+2). In other words, in stage (k +2), we can observe which state transition happened in stage
(k 4+ 1). Therefore, at every stage, we know the realizations of the uncertain parameters in past stages, as well
as the path of the uncertainty evolution in G, and the decisions in each stage depend on both of these. Note
that because we also observe the path of the uncertainty evolution (i.e., what edges in the directed network were
realized in each stage), the uncertainty sets in a given stage need not be disjoint. This model of uncertainty is a
generalization of the scenario tree model often used in stochastic programming (see Shapiro et al. [31]), where
the multistage uncertainty is described by a tree. If the directed acyclic network G in our model is a tree and
each uncertainty set is a singleton, our model reduces to a scenario tree model described in Shapiro et al. [31].

The evolution of the multistage uncertainty is illustrated in Figure 1. We would like to note that this is a very
general model of multistage uncertainty. For instance, consider a multiperiod inventory management problem,
where the demand is uncertain. In each stage, we observe the realized demand and also a signal from the
market about the next period demand, such as the weekly retail sales index. In our model, the observed market
signals correspond to the path in the multistage uncertainty network, and the observed demand is the actual
realization of the uncertain parameters. As another example, consider a multiperiod asset management problem
with uncertain asset returns. In each period, we observe the asset returns and also a market signal, such as
S&P 500 or NASDAQ indices. Again, the market signals correspond to the path in the multistage uncertainty
network in our model, and observed asset returns are the realization of uncertain parameters in the model.

Let & denote the set of directed paths in G from the root node, %{, to node %f’l, forall j=1,..., Ng_,.
We denote any path P € % as an ordered sequence, (jj,...,jx_;) of the indices of the uncertainty sets in
each stage that occur on P. Let Q(P) denote the set of possible realizations of the multistage uncertainty from
uncertainty sets in P. For any P=(j,, ..., jx_) € P,

QP)={w=(b,...,bg_)) |bke°lé’;k, Vk=1,...,K—1}. 4)
For any P=(ji,...,jx_;) €P and k=1,...,K — 1, let P[k] denote the index sequence of Path P from
stage 2 to stage (k+1), i.e.,, P[k] = (j, - . ., ji)- Let P[k] = {P[k] | P € }. Also, for any o = (b, ...,bg_,) €

Q(P), let w[k] denote the subsequence of first k elements of w, i.e., w[k] = (b,,...,by).
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FIGURE 1. Illustration of the evolution of uncertainty in a multistage problem.

We define a probability measure for the multistage uncertainty as follows. For any k=1,..., K -1, j=
1,...,N,, let p,f be a probability measure defined on %f that is independent of the probability measures over
other uncertainty sets in the network. Therefore, for any P = (j,, ..., jx_;) € P, the probability measure wu,
over the set Q(P) is the product measure of ,u,’]‘.k, k=1,...,K — 1. Moreover, the probability that the uncertain
parameters realize from path P is given by ]_[kK:_l2 pﬁkq e This defines a probability measure on the set of
realizations of the multistage uncertainty, (Jp., (2(P).

We can now formulate the K-stage stochastic optimization problem IIX ., where the right-hand side of the

constraints is uncertain, as follows:

K—1

2o =Min €' X+ Y Epey[E,,, [diy, (o[k], PIK]]],
k=1

st. VPeP, pup-ae. om=(by,...,bg_) e Q(P),

K—1

Ax+ Y. By, (o[k].P[K]) = 3" b,.
k=1

k=1

®)

ny—p
xe R xR},
Vi(o[k],P[k]) e R xR, Vk=1,...,K—1,
There is no restriction on the coefficients in the constraint matrices A, B, or on the objective coefficients
c,d,, k=1,...,K — 1. However, we require that each uncertainty set °M’J‘ CRY forall j=1,...,N, k=
l,...,K—1. As mentioned before, we assume that z% . is finite and that the expectation of every feasible

multistage solution exists.
We also formulate the K-stage adaptive optimization problem Hfdapt as follows:

K—1
Ky =min " i d’ k], P[k]),
Chgap ST CX O By se(olk), PRI ... K—lg «Yi(olk]. LK)
st. YPeP, Vo=(b,,....by_,)eQ(P),
K-1 K—1 (6)
Ax+ ) By (w[k],P[k]) > > b,
k=1 k=1
x e R x Ry,

v (0[k], P[k]) e R x R, Vk=1,...,K—1.
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We also formulate the K-stage stochastic optimization problem Hsmch(b a)» Where both the right-hand side and
the objective coefficients are uncertain, as follows. The subscript Stoch(b, d) in the subscript of the problem
name denotes that both the right-hand side b and the objective coefficient d are uncertain. Here, @ denotes the
sequence of uncertain right-hand side and objective coefficients realizations, and for any k =1,..., K — 1, o[k]
denotes the subsequence of first k elements. Also, for any P € 2, the measure w, is the product measure of the
measures on the uncertainty sets in Path P:

K-1

ngch(b, 4) = min c'x+ Z Epes[E,, [dkTYk (o[k], P[K])]],
k=1
st. VPeP, pup-ae. o= ((b,d,)),...,(bg_,,dg_))) € Q(P),
K—-1 (7)

Ax+ ) By, (w[k], P[k]) > Z by,

k=1
x € R x R},

yi(o[k],P[k]) e R* x R}, Vk=1,...,K—1.

Also, we can formulate the K-stage adaptive problem Hl[idapl(b, 2 a8

K . T .
=min ¢’ X max min d’ k
“Adapt(b. d) + Pe, weQ(P) i (w[k], PIk]), k=1, ..., Z eYi(@[k], PK]),

st. YPeP, VYo=(b,d),..., (b .de_))eQ,

Ax—i—ZBkyk(w [k]) > Zbk, ®

k=1
x eRM x Ry,
yi(o[k], P[k]) e R x R, Vk=1,...,K—1.

In §7, we consider an extension to the case on which the constraints are general linear conic inequalities and
the right-hand side uncertainty set is a convex and compact subset of the underlying cone. Furthermore, in §8,
we also consider extensions of the above two-stage and multistage models wherein some decision variables in
each stage are integer.

2.3. Examples. In this section, we show two classical problems that can be formulated in our framework
to illustrate the applicability of our models.

Multiperiod inventory management problem. We show that we can model the classical multiperiod inven-
tory management problem as a special case of (5). In a classical single-item inventory management problem, the
goal in each period is to decide on the quantity of the item to order under an uncertain future period demand.
In each period, each unit of excess inventory incurs a holding cost and each unit of backlogged demand incurs
a per-unit penalty cost, and the goal is to make ordering decisions such that the sum of expected holding and
backorder-penalty cost is minimized.

As an example, we model a 3-stage problem in our framework. Let ) denote the set of demand scenarios with
a probability measure w, x denote the initial inventory, y.(b,, ..., b,) denote the backlog, and z,(b,, ..., b,)
denote the order quantity in stage (k + 1) when the first k-period demand is (b, ..., b;). Let h, denote
the per unit holding cost and p, denote the per-unit backlog penalty in stage (k + 1). We model the 3-stage
inventory management problem as follows, where the decision variables are x, y,(b,), ¥,(b,, b,), and z,(b,) for
all (b, b,) € U:

min E, [, (x +y,(by) = b)) + pyyi (b)) + By, [Bo(x + 2, (b)) + y,(by, by) — (by + b)) + pays by, by)]],
st. x+y,(b)>b;, p-ae.(b,b,)e,
x+2z,(b)) +y,(by, b)) = b+ b,, p-ae.(b,b,y) e,
%, 31(b1), y2(by, by), 2, (by) = 0.
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The previous formulation can be generalized to a multiperiod problem in a straightforward manner. We can
also generalize to multi-item variants of the problem. However, we would like to note that we can not model a
capacity constraint on the order quantity, because we require that the constraints are of “greater than or equal to”
form with nonnegative right-hand sides. Nevertheless, the formulation is fairly general, even with this restriction.

Capacity planning under demand uncertainty. In many important applications, we encounter the problem
of planning for capacity to serve an uncertain future demand. For instance, in a call center, staffing capacity
decisions need to be made well in advance of the realization of the uncertain demand. In electricity grid
operations, generator unit-commitment decisions are required to be made at least a day ahead of the realization
of the uncertain electricity demand because of the large startup time of the generators. In a facility location
problem with uncertain future demand, the facilities need to be opened well in advance of the realized demand.
Therefore, the capacity planning problem under demand uncertainty is important and widely applicable.

We show that this can be modeled in our framework using the example of the facility location problem. For
illustration, we use a 2-stage problem. Let & denote the set of facilities and & denote the set of demand points.
For each facility i € 7, let x; be an integer decision variable that denotes the capacity for facility i. For each
point j € %, let b; denote the uncertain future demand, and let y;;(b) denote the amount of demand of ;j assigned
to facility / when the demand vector is b. Also, let d;; denote the cost of assigning a unit demand from point j
to facility i, and let ¢; denote the per-unit capacity cost of facility i. Therefore, we can formulate the problem
as follows. Let U be the uncertainty set for the demand, and let i be a probability measure defined on U:

min Z c;ix; + [Eu |:Z dijyij(b)i| >
i€F JED
st. Y y;(b) > b;, w-ae.beU, Vjep,
i€F
X; — Zyij(b) >0, up-ae.beU, VieT,

JED
x, €, VieF,

yi(b)eR,, VieF, jeD, p-ae beU.

2.4. Finitely adaptable solutions. We consider a finitely adaptable class of solutions for the multistage
stochastic and adaptive optimization problems described above. This class of solutions was introduced by
Bertsimas and Caramanis [9] where the decision-maker computes a small set of solutions in each stage a priori.

A static robust solution policy specifies a single solution that is feasible for all possible realizations of the
uncertain parameters. On the other extreme, a fully adaptable solution policy specifies a solution for each
possible realization of the uncertain parameters in past stages. Typically, the set of possible realizations of the
uncertain parameters is uncountable which implies that an optimal fully-adaptable solution policy is a function
from an uncountable set of scenarios to optimal decisions for each scenario and often suffers from the “curse of
dimensionality.” A finitely adaptable solution is a tractable approach that bridges the gap between a static robust
solution and a fully adaptable solution. In a general finitely adaptable solution policy, instead of computing an
optimal decision for each scenario, we partition the scenarios into a small number of sets and compute a single
solution for each possible set. The partitioning of the set of scenarios is problem specific and is chosen by the
decision maker. A finitely adaptable solution policy is a special case of a piecewise affine solution where the
solution in each piece is a static solution.

For the multistage stochastic and adaptive problems (5) and (6), we consider the partition of the set of scenarios
based on the realized path in the multistage uncertainty network. In particular, in each stage (k+ 1), the decision
¥, depends on the path of the uncertainty realization until stage (k 4 1). Therefore, there are |2[k]| different
solutions for each stage (k+1), k=1,...,K — 1, one corresponding to each directed path from the root node
to a node in stage (k4 1) in the multistage uncertainty network. For any realization of uncertain parameters and
the path in the uncertainty network, the solution policy implements the solution corresponding to the realized
path. Figure 2 illustrates the number of solutions in the finitely adaptable solution for each stage and each
uncertainty set in a multistage uncertainty network. In the example in Figure 2, there are following four directed
paths from stage 2 to stage K (K=4):P,=(1,1,1),P,=(1,1,2), P, =(1,2,2), and P, = (1, 2, 3). We know
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{y3(1, 1, D}

{3(1, 1)}

{y3(1, 1, 2), y5(1, 2, 2)}
{» (D}

{3 (1, 2)}

{3:(1,2,3)}

FIGURE 2. A finitely adaptable solution for a four-stage problem.
Note. For each uncertainty set, we specify the set of corresponding solutions in the finitely adaptable solution policy.

that P,[1] = (1) for all j=1,...,4. Also, P|[2] =P,[2] = (1, 1) and P;[2] = P,[2] = (1, 2). Therefore, in a
finitely adaptable solution, we have the following decision variables apart from x:

Stage 2. y,(1).

Stage 3. y,(1,1),y,(1, 2).

Stage 4. y;(1,1,1),y5(1,1,2),y5(1,2,2),y,(1, 2, 3).

2.5. The symmetry of a convex set. Given a nonempty compact convex set % C R™ and a point u € U, we
define the symmetry of u with respect to U as follows:

sym(u, %) :=max{a>0:ut+a(u—u) e U, Yu' €U}. 9)

To develop a geometric intuition on sym(u, %), we first show the following result. For this discussion, assume
U is full-dimensional.

LEMMA 2.1. Let &£ be the set of lines in R™ passing through u. For any line 1 € &£, let u) and u] be the
points of intersection of 1 with the boundary of U, denoted §(U) (these exist as U is full-dimensional and
compact). Then,

(a) sym(u, %)sm(” —u)|l -]

[l —WHIW—UN)
HH—MWIW—UN>

o —wj[| " [lu—wf|

(b) sym(u, %) = min min(
le?

ProoF. Let sym(u, %) = «,. Consider any 1 € £ and consider u; € §(%) as illustrated in Figure 3. Let
u, , =u+a(u—u). From (9), we know that u; . € %. Note that u; , is a scaled reflection of u; about u by a
factor a;. Furthermore, u; , lies on 1. Therefore, u; . € % implies that

lu—w | <fu—v/] = a-u—wl=<o—u],

which in turn implies that

N el

sym(u, %) =a, < Tu—u
|

Using a similar argument starting with u; instead of u;, we obtain that

o —wf

sym(u, %) < ||u Wl
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oy o (el flu—w]
sym(u, %) = min min s o
let lu—w)| " flu—u|

v

FIGURE 3. Geometric illustration of sym(u, ).

To prove the second part, let

I (IIU—UE’II ||u—112||>
o, = minmin — — .
e o —wf " flu—uf|
From the above argument, we know that sym(u, %) < «@,. Consider any uw € %. We show that
(u+a,(u—u’)) eU.
Let 1 denote the line joining u and w’. Clearly, 1 € &£. Without loss of generality, suppose u’ belongs to the
line segment between u and u;. Therefore, u —u’ = y(u —u)) for some 0 <y <1 and

o —u'|| < lu—wl. (10)
We know that
o < lul
27 T u—w

= afu—wjf| < flu—u/|
= a;fu—u'f| < flu—w/|,

where the last inequality follows from (10). Therefore, u + «,||ju — u’|| belongs to the line segment between u
and u; and, thus, belongs to %. Therefore, sym(u, %) > a,. O
The symmetry of set % is defined as

sym (%) := max{sym(u, %) | u € U}. (11

An optimizer u, of (11) is called a point of symmetry of %. This definition of symmetry can be traced back to
Minkowski [25] and is the first and the most widely used symmetry measure (refer to Belloni and Freund [2]
for a broad investigation of the properties of the symmetry measure defined in (9) and (11)). Note that the above
definition generalizes the notion of perfect symmetry considered by Bertsimas and Goyal [10]. In Bertsimas
and Goyal [10], the authors define that a set % is symmetric if there exists u, € % such that, for any z € R”,
(uy+2z) €U & (uy,—z) € U. Equivalently, u € U < (2uy —u) € U. According to the definition in (11),
sym(%) =1 for such a set. Figure 4 illustrates symmetries of several interesting convex sets.

LEMMA 2.2 (BELLONI AND FREUND [2]). For any nonempty convex compact set U C R™, the symmetry of
U satisfies

1
— <sym(%) < L.
m
The symmetry of a convex set is at most 1, which is achieved for a perfectly symmetric set, and at least 1/m,

which is achieved by a standard simplex defined as A = {x e R | 3>_7" | x; < 1}. The lower bound follows from
Lowner-John Theorem (John [23]) (see Belloni and Freund [2]). The following lemma is used later in the paper.
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0 0 1
sym(?) =1 sym(U) = % sym(%) = el

FIGURE 4. Different uncertainty sets {%} and their symmetries.
Notes. The figure on the left is a symmetric polytope with symmetry 1. The middle figure illustrates a standard simplex in R” with
symmetry 1/m. The right figure shows the intersection of a Euclidean ball with R”, which has symmetry 1/./m.

LEmMMA 2.3. Let U CRY be a convex and compact set such that v is the point of symmetry of U. Then,

1
1+——)-uy>u, VYueU.
( +sym(%>) Wzt vd

ProOF. From the definition of symmetry in (11), we have that for any u € U,
u, + sym(U)(u, —u) = (sym(U) + 1)u, — sym(%U)u € U,
which implies that (sym(%) + 1)u, —sym(%)u > 0 because % C R}. O

2.6. The translation factor p(u, %). For a convex compact set U C R”

¥, we define a translation factor
p(u, W), the translation factor of w € U with respect to U, as follows:

p(u, %) =min{a eR, |%—(1—-a) - ucCR}}

In other words, U’ := U — (1 — p)u is the maximum possible translation of % in the direction —u such that
U C RY. Figure 5 gives a geometric picture. Note that for o =1, % — (1 — @) - u = U C R’} Therefore,
0 < p < 1. Note that p approaches 0, when the set % moves away from the origin. If there exists u € % such
that u is at the boundary of R}, then p=1. We denote

p(U) = p(uy, U),

where u,, is the symmetry point of the set %. The following lemma is used later in the paper.

FIGURE 5. Geometry of the translation factor.



Bertsimas, Goyal, and Sun: Power of Finite Adaptability in Multistage Problems
34 Mathematics of Operations Research 36(1), pp. 24-54, © 2011 INFORMS

LEmMMA 2.4, Let U C R be a convex and compact set such that W, is the point of symmetry of U. Let
s =sym(U) =sym(u,, U) and p = p(U) = p(uy, U). Then,

(1—|—£>-uozu, YueU.
s

Proor. Let U =U— (1 —p)u,. Let u; :=u, — (1 — p)u,. Also let z:=u, —u, = (1 — p)u,. Figure 5 gives
a geometric picture. Note that sym(%’) = sym(%) = s. From Lemma 2.3, we know that

1
(1 + —)u1 >u, Vue¥.
s

<1+

= (1 + —)pu0+ (1-p)uy>u, VYuoeU,
s

Adding z on both sides, we have,

)ul—l—zzu, YueU,

—_ | =

= <1+B>uozu, YueU. O
S

3. Our contributions. The contributions of this paper are twofold. We present two significant generaliza-
tions of the model and results in Bertsimas and Goyal [10], where the authors characterize the performance of
static robust solutions for two-stage stochastic and adaptive optimization problems under the assumption that
the uncertainty sets are perfectly symmetric.

First, we generalize the two-stage results to general uncertainty sets. We show that the performance of a
static robust solution for two-stage stochastic and adaptive optimization problems depends on the general notion
of symmetry (11) of the uncertainty set. The bounds are independent of the constraint matrices and any other
problem data. Our bounds are also tight for all possible values of symmetry and reduce to the results in Bertsimas
and Goyal [10] for perfectly symmetric sets.

Second, we consider the multistage extensions of the two-stage models in Bertsimas and Goyal [10] as
described above and show that a class of finitely adaptable solutions, which is a generalization of the static
robust solution, is a good approximation for both the stochastic and the adaptive problem. The proof techniques
are very general and easily extend to the case where some of the decision variables are integer constrained
and the case where the constraints are linear conic inequalities for a general convex cone. To the best of our
knowledge, these are the first performance bounds for the multistage problem in such generality.

Our main contributions are summarized below.

Stochastic optimization. For the two-stage stochastic optimization problem under right-hand side uncer-
tainty, we show the following bound under a fairly general condition on the probability measure,

ZRob = (1 + g) * ZStoch»

where s = sym(%) and p = p(%) are the symmetry and the translation factor of the uncertainty set, respectively.
Note that the above bound compares the cost of an optimal static solution with the expected cost of an optimal,
fully adaptable, two-stage stochastic solution and shows that the static cost is at most (1+ p/s) times the optimal
stochastic cost. The performance of the static robust solution for the two-stage stochastic problem can possibly
be even better. For the two-stage problem, we only implement the first-stage part of the static robust solution.
For the second-stage, we compute an optimal solution after the uncertain parameters (right-hand side in our
case) is realized. Therefore, the expected second-stage cost for this solution policy is, at most, the second-stage
cost of the static robust solution, and the total expected cost is at most zgy, < (1 4+ p/$) - Zgoen- BECAUSE Zg,p 1S a0
upper bound on the expected cost of the solution obtained from an optimal static solution, the bound obtained
by comparing zg., to the optimal stochastic cost is in fact a conservative bound.

For multistage problems, we show that a K-stage stochastic optimization problem, II§ .. can be well approx-
imated efficiently by a finitely adaptable solution. In particular, there is a finitely adaptable solution with at most
|2| solutions that is a (14 p/s)-approximation of the original problem where s is the minimum symmetry over
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all sets in the uncertainty network and p is the maximum translation factor of any uncertainty set. Note that when
all sets are perfectly symmetric, i.e., s =1, the finitely adaptable solution is a 2-approximation, generalizing the
result of Bertsimas and Goyal [10] to multistage. We also show that the bound of (1+ p/s) is tight.

Note that because 0 <p <1 and s > 1/m,

1+ 2 <mir,
)

which shows that, for a fixed dimension, the performance bound for robust and finitely adaptable solutions
is independent of the particular data of an instance. This is surprising because, when the left-hand side has
uncertainty, i.e., A, B are uncertain, even a two-stage, two-dimensional problem can have an unbounded gap
between the static robust solution and the stochastic solution as mentioned earlier. This also indicates that our
assumptions on the model, namely, the right-hand side uncertainty (and/or cost uncertainty) and the uncertainty
set contained in the nonnegative orthant, are tight. If these assumptions are relaxed, the performance gap becomes
unbounded even for fixed dimensional uncertainty.

For the case when both cost and right-hand side are uncertain in Héﬂoch(h a)» the performance of any finitely
adaptable solution can be arbitrarily worse, as compared to the optimal fully adaptable stochastic solution. This
result follows along the lines of arbitrary bad performance of a static robust solution in two-stage stochastic
problems when both cost and right-hand sides are uncertain as shown in Bertsimas and Goyal [10].

Adaptive optimization. We show that for a multistage adaptive optimization problem, Hfdapt, where only
the right-hand side of the constraints is uncertain, the cost of a finitely adaptable solution is at most (1 + p/s)
times the optimal cost of a fully adaptable multistage solution, where s is the minimum symmetry of all sets
in the uncertainty network and p is the maximum translation factor of the point of symmetry over all of the
uncertainty sets. This bound follows from the bound for the performance of a finitely adaptable solution for
the multistage stochastic problem. Furthermore, if the uncertainty comes from hypercube sets, then a finitely
adaptable solution with at most | 9| solutions at each node of the uncertainty network is an optimal solution for
the adaptive problem.

For the case when both cost and right-hand side are uncertain in Hidapt(b, 2> We show that the worst-case cost
of a finitely adaptable solution with at most |%| different solutions at each node of the uncertainty network is
at most (1 + p/s)? times the cost of an optimal fully adaptable solution.

Extensions. We consider an extension of the above multistage models to the case where the constraints are
linear conic inequalities and the uncertainty set belongs to the underlying cone. We also consider the case in
which some of the decision variables are constrained to be integers. Our proof techniques are quite general and
the results extend to both these cases.

For the case of linear conic inequalities and the uncertainty set contained in the underlying convex cone, we
show that a finitely adaptable (static robust) solution is a (1 + p/s)-approximation for the multistage (two-stage,
respectively) stochastic and adaptive problem with right-hand side uncertainty. The result also holds for the
adaptive problem with both the right-hand side and objective coefficient uncertainty and the performance bound
for the finitely adaptable (static robust) solution is (1+ p/s)? for the multistage (two-stage respectively) problem.

We also consider the case where some of the decision variables are integer constrained. For the multistage
(two-stage) stochastic problem with right-hand side uncertainty, if some of the first-stage decision variables are
integer constrained, a finitely adaptable (static robust respectively) solution is a [(1 4 p/s)] approximation with
respect to an optimal fully adaptable solution. For the multistage adaptive problem, we can handle integer con-
strained decision variables in all stages unlike the stochastic problem where we can handle integrality constraints
only on the first stage decision variables. We show that for the multistage (two-stage) adaptive problem with
right hand side uncertainty and integrality constraints on some of the decision variables in each stage, a finitely
adaptable (static robust, respectively) solution is a [(1 4 p/s)]-approximation. For the multistage (two-stage)
adaptive problem with both right-hand side and objective coefficient uncertainty and integrality constraints on
variables, a finitely adaptable (static robust respectively) solution is a [(1+ p/s)] - (1 + p/s)-approximation.

QOutline. The rest of the paper is organized as follows. In §4, we present the performance bound of a static-
robust solution that depends on the symmetry of the uncertainty set for the two-stage stochastic optimization
problem. We also show that the bound is tight and present explicit bounds for several interesting and commonly
used uncertainty sets. In §5, we present the finitely adaptable solution policy for the multistage stochastic
optimization problem and discuss its performance bounds. In §6, we discuss the results for multistage adaptive
optimization problems. In §§7 and 8, we present extensions of our results for the models with linear conic
constraints and integrality constraints, respectively.
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4. Two-stage stochastic optimization problem. In this section, we consider the two-stage stochastic opti-
mization problem (1) and show that the performance of a static robust solution depends on the symmetry of the
uncertainty set.

THEOREM 4.1.  Consider the two-stage stochastic optimization problem in (1). Let  be the probability mea-
sure on the uncertainty set U C R, b, be the point of symmetry of U and p = p(by, U) be the translation
factor of by with respect to U. Denote s =sym(U). Assume that the probability measure | satisfies

E.[b] > b,. (12)
Then,
ZRob = <1+§> * ZStoch+ (13)
ProoF. From Lemma 2.4, we know that
(1+B>bozb, Vb e U (14)
s

For brevity, let 7:= (1+ p/s). Suppose (x,y(b): b € %) is an optimal fully adaptable stochastic solution. We
first show that the solution, (7x, TE[y(b)]), is a feasible solution to the robust problem (3). By the feasibility of
(x,y(b) u-a.e. b€ U), we have

A(7x)+B(7y(b)) > 7b, p-ae.beU.
Taking expectation on both sides, we have
A(7x) + B(7E[y(b)]) = 7E[b] = b, >=b, Vbe U,

where the second inequality follows from (12) and the last inequality follows from (14). Therefore,
(7x, TE[y(b)]) is a feasible solution for the robust problem (3) and

Zrap < 7+ ("X +d"E[y(b)]). (15)

Also, by definition, zg, =¢’x+d"E,[y(b)], which implies that zgy < 7 Zgeen. U

For brevity, we refer to (13) as the symmetry bound. The following comments are in order.

(i) The symmetry bound (13) is independent of the problem data A, B, ¢, d, depending only on the geometric
properties of the uncertainty set %, namely, the symmetry and the translation factor of %U.

(ii) Theorem 4.1 can also be stated in a more general way, removing assumption (12) on the probability mea-
sure, and using the symmetry of the expectation point. In particular, the bound (13) holds for s = sym(E ,[b], %)
and p = p(E,[b], U).

However, we would like to note that (12) is a mild assumption, especially for symmetric uncertainty sets.
Any symmetric probability measure on a symmetric uncertainty set satisfies this assumption. It also emphasizes
the role that the symmetry of the uncertainty set plays in the bound.

(iii) As already mentioned in §3, a small relaxation from the assumptions of our model would cause
unbounded performance gap. In particular, if the assumption, U C R, is relaxed, or the constraint coefficients
are uncertain, the gap between zp,, and zg.,, cannot be bounded even in small dimensional problems. The
following examples illustrate this fact:

(a) U ;(_ RY: Consider the instance where m =1 and ¢ =0, d =1, A=0, B =1, the uncertainty set
U =[-1,1], and a uniform distribution on %. The optimal stochastic solution has cost zg..,(») = 0, while
Zrob (D) = 2. Thus, the gap is unbounded.

(b) A, B uncertain: Consider the following instance taken from Ben-Tal et al. [7]:

min x,

_%b : b : Vbel0
X > r
s.t. [ | :| +[b_2}y()_|:o], €0, r],

x,y(b) >0, Vbel0,r],

where 0 < r < 1. From the constraints, we have that x > 2/(1 — r). Therefore, the optimal cost of a static
solution is at least 2/(1 — r). However, the optimal stochastic cost is at most 4. For details, refer to Ben-Tal
et al. [7]. When r approaches 1, the gap tends to infinity.



Bertsimas, Goyal, and Sun: Power of Finite Adaptability in Multistage Problems
Mathematics of Operations Research 36(1), pp. 24-54, © 2011 INFORMS 37

4.1. Tightness of the bound. In this section, we show that the bound given in Theorem 4.1 is tight. In
particular, we show that for any given symmetry and translation factor, there exists a family of instances of the
two-stage stochastic optimization problem such that the bound in Theorem 4.1 holds with equality.

THEOREM 4.2. Given any symmetry 1/m < s <1 and translation factor 0 < p < 1, there exists a family of
instances such that 7z, = (14 p/$) * Zsioeh-

Proor. For p>1, let
B, ={beR}|[b],<1).

1/p
sm() = ()

m

In Appendix A.2, we show that

and the symmetry point is,
1

—e
m'/r 4+ 1
where b, (%) denotes the symmetry point for any set %. Also, let (B;})" := B + re, for some r > 0. Then, given
any symmetry s > 1/m and translation factor p <1, we can find a p > 1 and r > 0 such that

b}

by(B,) =

1\ 1
S = —_ N - .
m P (m'/P+1)r+1

Now consider a problem instance where A =0, B=1I, ¢ =0, d =e and a probability measure whose expec-
tation is at the symmetry point of (B;)". The optimal static robust solution is y = (r + 1)e, and the optimal
stochastic solution is y(b) =b for all b € (B}})'. Therefore,

1
stoch = | ¥ + m, ZRob — (r + l)m,

mi/p+1
and
ZRob r+1 p
= — 1 + -,
<Stoch r+ 1/(ml/p + 1) s

which shows the bound in Theorem 4.1 is tight. O

4.2. An alternative bound. In this section, we present another performance bound on the robust solution
for the two-stage stochastic problems and compare it with the symmetry bound (13).

For an uncertainty set %, let b" as b_;’ := max,, b;. Also, suppose the probability measure p satisfies (12),
i.e., E,[b] > by, where b, is the symmetry point of %. Let

0 :=min{6: 6-b, >b"}. (16)

Using an argument similar to the proof of Theorem 4.1, we can show that the performance gap is at most 67,
where the subscript s stands for stochasticity, i.e.,

ZRob = H;F * ZStoch - (17)

Let s =sym(b,, %) and p = p(b,, U). From Lemma (2.4), we also know that
p
1+£).b,>b, Vbeu.
s

Therefore, 6% < (1 + p/s). So, 67 is upper bounded by the symmetry bound obtained in Theorem 4.1. For
brevity, we refer to (16) as a scaling bound. A geometric picture is given in Figure 6. As shown in the figure,
u is obtained from scaling E,[b] by a factor greater than one, such that u dominates all the points in %, and 6}
is the smallest such factor.

In the following section, we show that the scaling bound can be strictly tighter than the symmetry bound.
On the other hand, the symmetry bound relates the performance of a static robust solution to key geometric
properties of the uncertainty set. Furthermore, both bounds are equal for several interesting classes of uncertainty
sets, as discussed in the following section. In Theorem 4.2, we show that the symmetry bound is tight for any
p <1, s>1/m for a family of uncertainty sets.
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FIGURE 6. A geometric perspective on the stochasticity gap.

The symmetry bound reveals several key qualitative properties of the performance gap that are difficult to see
from the scaling bound. For example, for any symmetric uncertainty set, without the need to compute b" and
0%, we have a general bound of two on the stochasticity gap. Because symmetry of any convex set is at least
1/m, the bound for any convex uncertainty set is at most (m + 1). Both these bounds are not obvious from the
scaling bound. Most importantly, in practice the symmetry bound gives an informative guideline in designing
uncertainty sets where the robust solution has guaranteed performance.

4.3. Examples: Stochasticity gap for specific uncertainty sets. In this subsection, we give examples of
specific uncertainty sets and characterize their symmetry. Both bounds on the stochasticity gap, the symmetry
bound (13), as well the scaling bound (16), are presented in Table 1 for several interesting uncertainty sets. In
most of the cases, the scaling bound is equal to the symmetry bound. The proofs of the symmetry computation
of various uncertainty sets are deferred to the appendix.

An L ,-ball intersected with the nonnegative orthant. We define

B; ={beRT[|b], =<1},
for p > 1. In Appendix A.2 we show the following:

1

1/p
sym(B,t>=(—) . by(BY)= (18)

—e.
m ml/r 41

Therefore, if % =B, and the probability measure satisfies condition (12), then zg,, < (1 + mP)zgoen- The

bound is tight, as shown in Theorem 4.2. There are several interesting cases for B; uncertainty sets. In particular,
(i) For p=1, B; is the standard simplex centered at the origin. The symmetry is 1/m, and the stochasticity

gap is m+ 1.

(ii) For p=2, B} is the Euclidean ball in the nonnegative orthant. Its symmetry is 1//m, and the stochas-
ticity gap is 1+ /m.

(iii) For p = oo, B; is a hypercube centered at e/2 and touches the origin. The symmetry is 1 and the
stochasticity gap is 2.

Ellipsoidal uncertainty set. An ellipsoidal uncertainty set is defined as

U:={beR}|[E(b-b), <1}, (19)

where E is an invertible matrix. Because % is symmetric, the stochasticity gap is bounded by 2 if % C R}
and the probability measure satisfies (12). In Appendix A.3, we show that the bound can be improved to the
following:

1<i<m

E;!
ZRob = (1 + max B_)ZStoch < 2Zg10ch-
Intersection of two L ,-balls. Consider the following uncertainty set:

U:={beRY||b], <L bl,, <r}, forO<r<1 and 1<p; <p,. (20)
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TaBLE 1. Symmetry and corresponding stochasticity gap for various uncertainty sets.

No. Uncertainty set Symmetry Stochasticity gap
1
1 {b: [b], <1,b>0} T 1+m'? (a,b)
_ - 1
2 {b: [Ib—bll, <1,b, 25} CR] S 1+1n11a)§nb (b)
1<p<o
3 {b: [b—b|l,<1,b,>b}CR” 1 1+1n<13x13;‘ (a,b)
4 {b: [b—b|, <1} CR" 1 1+1m<%é;‘ (a,b)
5 {b: |IE(b—b)], <1} CR? ! =
1
6 {b: [Ib]l,, <1, |Ibll,, <7, b>0} -y 1+ rm'/P1 (a,b)
. k m
7 Budgeted uncertainty set A, - + % (a,b)
(Isk=m)
. r
8 Demand uncertainty set DU(u, I') 1 1+ — (a,b)
m
(n=T)
r 1 r
9 Demand uncertainty set DU(u, I') % 1+ (\/t\/-:)l" (a,b)
m mp
(Gar=r<)
—TI<p<
Jm H
r r
10 Demand uncertainty set DU(u, I') % 1+ Cjﬂ I F) (a,b)
m(p m
0O<up< ! r
Sy S Jm 1 .
11 {b: L<e’b<U,b>0} m LU (m+1)—U(a,b)
1
12 conv(A,, {e}) ey m(a, b)
m—
1
13 conv(b,,...,b,) —<s=<l1 lrnax 3 (b)
m <i<m
1
14 (BeS?|I-B<1} — 1+m (a)
m

Note. Note that footnote (a) or (b) means the tight bound is from the symmetry bound (13) or the scaling
bound (17).

Assume the following condition holds:

r 1

— & rm'/" > m'2, (21)
Tell,, ~ Tell,

which guarantees that the intersection of the two unit norm balls is nontrivial. In Appendix A.4, we show that

1 r
sym(U) = ey b, (U) = T 1C (22)
The budgeted uncertainty set. The budgeted uncertainty set is defined as,
Ak—{bEOI } for 1 <k <m. (23)
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In Appendix A.5, we show that

k k
sym(A,) = —, by(A) = ——e. (24)
m m+k
Demand uncertainty set. We define the following set:
b, —1|S
DU::{beRz lZ’ES‘TS”'“‘gr,VSgN:z{L...,m}}. (25)

Such a set can model the demand uncertainty, where b is the demand of m products; w and I' are the center
and the span of the uncertain range.

The set DU has different symmetry properties, depending on the relation between w and I'. If w > T, the
set DU is in fact symmetric. Intuitively, DU is the intersection of an L ball centered at we with (2" —2m)
halfspaces that are symmetric with respect to ue. If w < T", DU is not symmetric any more—part of it is cut off
by the nonnegative orthant. In Appendix A.6, we present a proof of the following proposition, which summarizes
the symmetry property of DU for all the cases.

ProPOSITION 4.1.  Assume the uncertainty set is DU,
(1) If w =T, then,

sym(DU) =1, b,(DU) = ue. (26)
@) If (1//m)T < u <T, then,
_ mp+T _ (Wmp+T)(p+T)
(iii) If 0 < p < (1//m)T, then,
_ /mp+T _ (mp+T)(n+T)

5. Multistage stochastic problem under RHS uncertainty. In this section, we consider the multistage
stochastic optimization problem, IT§ ., under right-hand side uncertainty, where the multistage uncertainty is
described by a directed network as discussed earlier. We show that a finitely adaptable class of solutions is a
good approximation for the fully adaptable multistage problem. Furthermore, the performance ratio of the finitely
adaptable solution depends on the geometric properties of the uncertainty sets in the multistage uncertainty
network. The number of solutions at each stage (k+1) for k=1, ..., K —1 depends on the number of directed
paths in the uncertainty network from the root node to nodes in stage (k + 1). Therefore, if % is the set of
all directed paths from stage 2 to stage K, the total number of solutions in any stage in the finitely adaptable

solution policy is bounded by |%|.

THEOREM 5.1.  Let s = min, ;sym(uy ;, UY) and p =max, ; p(u ;, U%). Suppose E,[b |b € U] > w, ; where
w, ; is the point of symmetry of OMf CRY forall j=1,...,N,, k=1,...,K — 1. Then there is a finitely
adaptable solution policy that can be computed efficiently and has at most |P| solutions in each stage, where
P is the set of directed paths from the root node in stage 2 to nodes in stage K in the multistage uncertainty
network, such that the expected cost is at most (1+ p/s) times the optimal cost of I1§_,.

5.1. Algorithm. We first describe an algorithm to construct a finitely adaptable solution. In each stage (k +
1) for k=1,...,K —1, the set of finitely adaptable solutions contains a unique solution corresponding to each
directed path from the root node in stage 2 to a node in stage (k 4 1). Therefore, we consider |2[k]| solutions
in stage (k 4 1) each indexed by P[k] for all P € . In other words, the finitely adaptable solution is specified
by the first-stage solution X, and for each stage (k+ 1) for k=1,...,K — 1, y.(P[k]) for all P[k] € P[k].
Recall that for any P = (jj, ..., jx_;) € P, the probability that the uncertain parameters realize from the path
P is given by

K-2
Pr(jl"' "jK—1)= l_[pz,jkﬂ’ (29)
k=1

and the measure ., is defined as a product measure of the measures on the uncertainty sets in path P. We first
show that for any k=1,...,K—1, j=1,..., N, (1+p/s)-u, ; dominates all points in OM’J‘T coordinatewise.
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LEMMA 5.1. Forany k=1,....K, j=1,...,N,, for all ue U,

<1+B>-uk,jzu.
K

PrOOF.  Let p; = p(u; ;, U%), s, =sym(u; ;, U%). From Lemma 2.4, we know that

<1+%)~uk!jzu, Vue“d’;.
1

By definition in Theorem 5.1, we know that p, < p and s, > s. Therefore, for all u € %ﬁ,

(1+£>-uka<l+&)-ukau. O
N ’ M ’

We consider the following multistage problem to compute the finitely adaptable solution:

K—-1
Iy = min ¢’x + Z [EPe@[d]ZYk(P[k])]’

k=1

st YP=(js. ., jx i) €D,
K—1 K—1
P (30)
Ax+ ) B,y (P[k]) > <1 + ;) > Uy s
k=1 k=1

xeRM x R},
v (P[k]) e R x R, Vik=1,...,K—1.

The number of constraints in (30) is equal to |%| - m, where m is the number of rows of A, B, for all k =
1,...,K — 1. Also, the number of decision variables in each stage (k+ 1) for k=1,...,K — 1 is |2[k]],
namely, y,(P[k]) for all P[k] € P[k]. Therefore, the solution is finitely adaptable, as there are only a finite
number of solutions in each stage. Furthermore, in some cases, the number of directed paths is small and
polynomial in the size of the uncertainty network. For instance, if the uncertainty network is a path, we require
exactly one solution at each stage in our finitely adaptable solution. If the network is a tree, then there is a
single path to each uncertainty set from the root node in stage 2 and, therefore, the number of solutions in
the finitely adaptable solution is exactly equal to the number of uncertainty sets in the uncertainty network.
However, in general, the number of directed paths can be exponential in the input size. For example, for the
case of a recombining directed network in Figure 1, the number of directed paths from the root node to the
node j in stage (k+1), j=1,..., N, is equal to (’J‘), which is exponential in k, while the input size is O(k?).

In the next subsection, we show that the finitely adaptable solution computed in (30) is a good approximation
of a fully adaptable optimal stochastic solution.

5.2. Proof of Theorem 5.1. For brevity, let 7= (1+ p/s). The proof proceeds as follows. We first consider
a particular finitely adaptable solution feasible to (30), which implies that its expected cost is at least z,,. We
then extend this particular finitely adaptable solution to a fully adaptable one without changing its expected cost.
Finally, we show that the expected cost of the extended solution is equal to 7 times the expected cost of an
optimal fully adaptable solution.

Let X, §,(w[k], P[k]) denote an optimal fully adaptable solution for IT5 , forall k=1,...,K—1, Pe %,
mp-ae. o € Q(P). For the first step of the proof, we consider the following particular finitely adaptable solution
for (30). Foral Pe 2, k=1,...,K—1, let

Yi(Plk]) = 7 Eqcam [Vi(w[k], P[K])]. (1)

Also, let X = 7 -X. We show that the above finitely adaptable solution is feasible for (30). Consider any P =
(j]7 . e ’jK_l) € P. NOW,

K-1 K-1

AX+ ) By (w[k],Pk]) =D b, wpp-ae.w=(by,...,be_)eQ(P).

k=1 k=1
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Taking conditional expectation with respect to u, on both sides, we have that

K—1

AR+ ) BiE, [§,(w[k].P Z E,.,[b] = Z W s (32)

k=1
where the last inequality follows as E, [b,] > u, ; . Therefore, for any P = (j;, ..., jx_) €%,

K—1 K—1

AX+ Y By, (Pk]) = A(7-%)+ > By (7-E, [d;§, (w[k]. P[k])])

k=1 k=1

=7. <A§+ inrE [d]§, (o[k], P[k ])]) (33)

k=1

v
‘\'
TR
M7
-
£
=
N

where (33) follows from (32). Therefore, the solution X, y is a feasible solution for (30). Let Z be the expected
cost of X, y, i.e.,
K-1

Z=¢"%+ ) Epey[d] 5, (P[K])].

k=1

Clearly, z,, < z. For the second step of the proof, we extend the finitely adaptable solution X,y to a feasible
solution X, ¥ for ITX , as follows:

X=X
~ _ (34)
¥.(o[k],P[K]) =¥, (P[k]), VPeP, Vk=1, ~ 1.
We show that the extended solution X, ¥ is a feasible solution for IT§ . Consider any P = (jy, ..., jx_,) € P,
o= (b,,...,bg_,) € Q(P). Therefore,
K-1 K—1
AX+ ) Bi§,(w[k], P[k]) = AX+ ) B, ¥, (P[k])
k=1 k=1
K-1
=T u (35)
k=1

v

K-1
2. by
=1

where (35) follows from the feasibility of the solution X,y for (30), and the last inequality follows from
Lemma 5.1. Let Z be the expected cost of X, ¥, i.e.,

K-1

F=clii+ Y B [, [d7F, ([k], PIK]]]

k=1
K-1

=%+ Z EpeslE,, [d; ¥ (P[K])]] (36)

K-1

=c’x+ Z Epes dk Y (P[k])]

k=1

229
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where (36) follows from (34). Now, we compare 7 to the expected cost of an optimal fully adaptable solution
as follows:
=1z
K-1
— X+ Y Epe, [d5, (P[K])]
k=1
o (37)
=/ (7-%) + ) Epeyl[df (7 - E,,, [§, (00[K], P[K])])]

k=1

_ K
= T * Zstoch>

where (37) follows from the optimality of X,y for IT§ ,. Combining z, < Z and (37), we obtain that
Iy =T Zg(toch' O

Stochastic problem under cost and RHS uncertainty. For the multistage stochastic problem, TI§ ., 4
where both the objective coefficients and the right-hand side are uncertain, a finitely adaptable solution performs
arbitrarily worse, as compared to the fully adaptable solution. It follows from one of the results in Bertsimas
and Goyal [10], where the authors show that a static-robust solution may perform arbitrarily worse, as compared
to an optimal fully adaptable two-stage solution for the stochastic problem when both cost and right-hand side
are uncertain.

6. Multistage adaptive problem. In this section, we consider multistage adaptive optimization problems
and show that a finitely adaptable solution is a good approximation to the fully adaptable solution. Furthermore,
the performance bound of a finitely adaptable solution is related to the symmetry and translation factors of the
uncertainty sets, as in the case of stochastic optimization problems. The approximation guarantee for the case
when only the right-hand sides of the multistage adaptive problem are uncertain, H’gdap[, follows directly from
the approximation bounds for the stochastic problem. Surprisingly, we can also show that a finitely adaptable
solution is also a good approximation for the multistage adaptive problem when both the right-hand sides and
the objective coefficients are uncertain, Hfdap‘(b’ 4)» unlike the stochastic counterpart. Our results generalize the
performance of a static-robust solution for a two-stage adaptive optimization problem under right-hand side
and/or objective coefficient uncertainty.

6.1. Right-hand side uncertainty: 15, . We show that there is a finitely adaptable solution with at most
|%| solutions for each stage and each uncertainty set that is a good approximation of the fully adaptable problem.
Furthermore, such a finitely adaptable solution can be computed efficiently using exactly the algorithm described
in §5.1. The performance bound of the finitely adaptable solution policy follows directly from its performance
bound with respect to the stochastic problem in Theorem 5.1. Therefore, we have the following theorem.

THEOREM 6.1. Suppose s = mink,jsym(cuf) and v ; € Ollf C RY is the point of symmetry for all j =
I,...,N, k=1,...,K—1. Let p=maxk’jp(02,é§)f0r all j=1,...,N, k=1,...,K — 1. Then there is a
finitely adaptable solution policy that can be computed efficiently and has at most || solutions in each stage,
where P is the set of directed paths from the root node to any node in stage K of the multistage uncertainty
network, such that its worst-case cost is at most (1+ p/s) times the optimal cost of Tl .

6.2. RHS and cost uncertainty. In this section, we consider the multistage adaptive optimization problem
where both the right-hand side and the objective coefficients are uncertain. While for the stochastic problem, the
performance of a finitely adaptable solution can be arbitrarily bad with respect to an optimal stochastic solution,
surprisingly, we can show that there exists a finitely adaptable solution with at most |%| solutions for each stage
for each uncertainty set that is a good approximation for the multistage problem.

THEOREM 6.2.  Suppose s = min, ;sym(U%) and w, ; € U C R is the point of symmetry for all j =
l,....N, k=1,...,K—1. Also, let uz’j, up denote the right-hand side and the objective coefficient uncer-
tainty in w,_; respectively. Let p = maxk’jp(%ﬁ)for allj=1,...,N, k=1,...,K—1. Then there is a finitely
adaptable solution policy that can be computed efficiently and has at most || solutions where % is the set of
directed paths from the root node to any node in stage K of the multistage uncertainty network, such that its

worst-case cost is at most (14 p/s)? times the optimal cost of Hfdapt(b a
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ProOF.  From Lemma 2.4, we know that for any uncertainty set %} in stage (k+1), u< (14 p/s) -u,_; for
allue “Léf.. We compute a finitely adaptable solution by solving the following multistage problem similar to the
one used to compute a finitely adaptable solution for the stochastic counterpart:

T
min ¢’ X+ max min d’y, (P[k])
+PE/ Ve(PIKD, k=1, ..., Z LY (P[K])

st YP=(j,...,jx) €,

K—1 38
Ax+ZBkyk(P[k])>(1+ ) Zu}i,k, 9

k=1
x€R” x R},
yi(o[k],P[k]) e R x R, Vk=1,...,K—1.

Note that the above problem is similar to (30), except for the objective function. Using an argument similar to

the second part of the proof of Theorem 5.1 (see §5.2), we can show that a finitely adaptable solution of (38)
can be extended to a feasible fully adaptable solution for I, , of the same worst-case cost.

Suppose (X, ¥, (w[k], P[k])) for all k=1,...,K—1, Pe P, m» € Q(P) denote an optimal fully adaptable
solution for 1§, (b, d). As defined earlier, for any P = (j,, ..., jx_;) € P, let
@p =, Uy ), (39)

Consider the following approximate solution for (38):

~:<1+§>-§, (40)

and for any Pe %, forall k=1,...,K —1,

FCPkD = (14+2) 5. (pl81, PLRD. ay

For brevity, as before, let 7= (1 + p/s). We first need to show that the solution X, ¥ is feasible for (38). For
any P=(ji,....Jjx_1) €2,

AX + g B, ¥, (P[k])=T- <Ax + KZI B, ¥, (0p[k], P[K] ) (Z u; JA>

k=1

where the last inequality follows from the feasibility for § for m,. Thus, the solution X, ¥ is feasible for (38).

To bound the worst-case cost of the solution, we show that for any P € %, the cost of the approximate
finitely adaptable solution is at most (14 p/s)? times the worst-case cost of the optimal fully adaptable solution.
Consider any P=(ji, ..., jx_) € . Now,

K-1

x4 Y AT, Pk = ( 2+ z a5, (wplk [k]))

k=1

| /\

(c R4 Y (- (0 )5 (woplK], [k]))) “2)

k=1

=71-cIR+ 7% (KX: (ug,jk)Tffk(mP[k], P[k]))
k=1

IA

2 K
T Zadapt(b, d)° (43)

where (42) follows as d < 7- uk for all (b,d) € Gu_’]fk, k=1,...,K — 1. Inequality (43) follows as w, € Q(P)

and, thus, is a feasible scenario 1n X Adapt(b, d)*
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6.3. An alternative bound. In this section, we discuss an alternative bound for the performance of the
finitely adaptable solution, as compared to the optimal fully adaptable solution similar to the one we present for
the stochastic problem. For the sake of simplicity, we present this alternative bound for the adaptive problem
under right-hand side uncertainty, IT%, . The bound extends in a straightforward manner to the case of both
right-hand side and cost uncertainty.

The proof of Theorem 6.1 (and also Theorem 6.2) is based on the construction of a good finitely adaptable
solution from an optimal fully adaptable solution in the following manner. For each P € 9, we consider the
scenario wp, where in each stage the uncertain parameter realization is the point of symmetry of the corre-
sponding uncertainty set on path P. We show that the solution for scenario w, scaled by a factor (1 + p/s)
is a good feasible finitely adaptable solution for all w € Q(P). Because w, € Q(P), the cost for an optimal
solution for this scenario is a lower bound on zfdapl, which implies a bound of (1+ p/s) for the finitely adaptable
solution with respect to the optimal. Now, if for some other scenario w'(P) € Q(P), a smaller scaling factor
than (14 p/s) suffices to obtain a feasible finitely adaptable solution for all w € Q(P) for all P € 2, this would
imply a smaller bound on the performance of the finitely adaptable solution.

Following the discussion in §4.2, we define b"(2) as follows. For all j=1,...,m, b;’ (U) :=max,y, b;. Let

6(%) =min{6 |Ibe U, 6-b>Db"(U)}.

Note that 0(%) < (1+p/s) as (1+ p/s)-b, > b"(U), where b, is the point of symmetry of %, p = p(by, %)
and s = sym(b,, %). Let b'(%) denote the vector b € % that achieves the minimum value of 6. Let

For each k=1,...,K—-1, j=1,...,N, 0(%’]‘.) is defined by a feasible uncertainty realization from %j&
Therefore, scaling the solution corresponding to b‘(QZéj?) by a factor 0 > 0(%’;) produces a feasible finitely
adaptable solution. Also, as we note above, 6 < (1 + p/s). Therefore, 6% is upper bounded by the bound in
Theorem 6.1. We refer to 0 as a scaling bound as earlier.

We can interpret the scaling bound geometrically as follows. For any % C R”, let 6 = 6(%), b' =b' (%), and
b =b" (). We know that

6-b'>b" = blz%-bh.

Therefore, 1/6 is the minimum scaling factor for b” such that it is dominated by some point in % coordinate-
wise. Note that (1/6) - b does not necessarily belong to % but is always contained in

U={beR” |3 €Ub >b}. (44)

To see this, consider the following uncertainty set, U C Ri’ where U = conv((O, 0,0),(1,0,1),(0, 1, 1)) We
can alternatively define % as U = {b € [0, 1]* | by = b, + b,}. It is easy to observe that b" = (1, 1, 1). We show
that b! = (1/2,1/2,1) € % and 6 = 2. We know that Hb} > 1 for all j =1, 2. Therefore,

i i 12
bl=b!4bl >
0
Furthermore, b} < 1, which implies that 6 > 2. For § =2, b' = (1/2, 1/2, 1) € U satisfies 6b' > b". Now,

1, 1 .
O'b _2~(1,1,1)¢ U.
However, b' > (1/6)b” and b' € %, which implies that (1/6)b” € %, as defined in (44). The geometric picture
is given in Figure 7. Note that in Figure 7, b' = (1/6)b”", but this is not true in general, as illustrated in the
previous example.

For certain uncertainty sets, the scaling bound of 67 is strictly better than the bound in Theorem 6.1.

(i) Hypercube. Suppose each uncertainty set in the multistage uncertainty network is a hypercube. Therefore,
s = 1. Also, suppose p = 1, where p is as defined in Theorem 6.1. The bound in Theorem 6.1 is (14 p/s) =2.
On the other hand, 6% = 1 because b"(%) € U, when % is a hypercube. Therefore, the two bounds are in fact
different. The scaling bound implies that the finitely adaptable solution is optimal, while the symmetry bound
implies that it is only a 2-approximation for the multistage adaptive optimization problem.
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FIGURE 7. A geometric perspective on the adaptability gap.

(i) Hypersphere. Suppose the uncertainty sets are all hyperspheres in R”, i.e., L,-balls, with unit radius and

centered at e= (1, 1,...,1). Therefore, p =1 and also s = 1, which implies that the bound from Theorem 6.1
is 2. On the other hand, it is easy to note that the scaling bound
2
0= ———.
1+1/y/m

In this case, the scaling bound is not significantly better than the bound in Theorem 6.1.

7. Extension to general cones. We consider extensions of our results to the case where the constraints
are general linear conic inequalities and the uncertainty set belongs to the underlying cone. For simplicity, we
discuss the two-stage case. The generalization also applies to the multistage problems.

7.1. Stochastic problem with linear conic constraints. We consider the following two-stage conic stochas-
tic optimization problem:

Zgioch = ml(Ibl) CTX+ Eu[dTy(b)],
s.t. six+ By(b) =4 b, pu-ae. beU,
xeRM xR,

y(b) e R x R ™",

(45)

where X is a closed pointed convex cone in a finite dimensional space, such as the nonnegative orthant R,
the second-order cone (SOC) {(b, r) e R"*': ||b]|, <}, and the semidefinite cone S'7. Here s, % are mappings
from R" and R™ to the finite dimensional space that contains X, respectively. For example, if XK is the
nonnegative orthant or the second-order cone, both ¢ and 93 are matrices of the appropriate dimension. If K is
the semidefinite (SDP) cone, then s{, 98 are linear mappings defined as

n ny

sx=3) xA;, By=) yB,

i=1 i=1

where A; and B; are symmetric matrices. The linear conic inequality (45) is equivalent to the inclusion in the
cone, i.e., x+ By(b) =5 b < six+ By(b) —b € X.

LEMMA 7.1.  Suppose the convex, compact set U C I, and by, is the point of symmetry of U. Then,

1
1+ ———) by>,b, Vbeu
(1 ) o=

PrOOF. By the definition of symmetry and the assumption that % C JC, we have for any b € U, b, +
sym(%)(b, —b) = (sym(%) + 1)b, —sym(%)be X. O
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THEOREM 7.1. Consider the two-stage stochastic optimization problem in (45). Let w be the probability
measure on the uncertainty set U, b, be the point of symmetry of U, and p = p(by, U) be the translation factor
of by with respect to U. Denote s = sym(U). Assume the probability measure . satisfies, E,[b] > b,. Then the
cost of an optimal static solution is at most (1+p/s) - zgou-

The proof of the above theorem is similar to the proof of Theorem 4.1. For the sake of completeness,
we present the proof of Theorem 7.1 in Appendix B. A similar result holds for the corresponding adaptive
optimization problem as well.

8. Extensions to integer variables. We can extend our results to the case when some decision variables are
integer constrained for both the stochastic and the adaptive optimization problems. In the case of the multistage
stochastic optimization problem with right-hand side uncertainty, we can handle integer decision variables only
in the first stage, whereas for the multistage adaptive problem, we can handle integer decision variables in every
stage for both versions, 15, and TI{ . a-

8.1. Multistage stochastic problem. We consider the multistage stochastic problem, I1%_,, as defined in (5)
with an additional constraint that some of the first-stage decision variables x are required to be integers. Even
for this case, we show that a finitely adaptable solution provides a good approximation.

THEOREM 8.1.  Consider the multistage stochastic problem 11§, (5) with additional integer constraints on
some first stage decision variables. Suppose E[b|be Ufl=w, ; forall j=1,...,N, k=1,..., K —1. Let
s =min, ;sym(u, ;, %’;) and p =max,; ;p(w ;, %f) Then there is a finitely adaptable solution policy that can
be computed efficiently and has at most |P| solutions in each stage, where P is the set of directed paths from
the root node to nodes in stage K in the multistage uncertainty network, such that the expected cost is at most
[(14p/s)] times the optimal cost.

The proof of Theorem 8.1 is exactly similar to the proof of Theorem 5.1, except that we need to handle
the integrality constraints in constructing a feasible finitely adaptable solution. Therefore, instead of scaling the
optimal fully adaptable solution by a factor of (1+ p/s) to construct a feasible finitely adaptable solution, we
need to scale by [(1 4 p/s)] to preserve the integrality constraints. This implies that the performance ratio of
the finitely adaptable solution with respect to an optimal fully adaptable solution is at most [(1 4+ p/s)]. Note
that the stochastic problem, with both right-hand side and objective coefficients uncertainty, can not be well
approximated by a finitely adaptable solution, even without the integrality constraints.

8.2. Multistage adaptive optimization problem. For the multistage adaptive problem, we can handle inte-
ger decision variables in all stages. In particular, we have the following theorems.

THEOREM 8.2.  Consider the multistage adaptive problem, 15, (6), with additional integer constraints on
some decision variables in each stage. Suppose s =min, ; sym(%f.) and w, ; € OM’J‘. is the point of symmetry for
all j=1,...,N, k=1,...,K—1. Letp:maxk,jp(%;‘.)foralljz1,...,Nk, k=1,...,K—1. Then there
is a finitely adaptable solution policy that can be computed efficiently and has at most || solutions where P is
the set of directed paths from the root node to any node in stage K of the multistage uncertainty network, such
that its worst-case cost is at most [(1 4 p/s)] times the optimal cost.

THEOREM 8.3. Consider the multistage adaptive problem, Hfdapt(b, 2 (8), with additional integer constraints
on some decision variables in each stage. Suppose s = min;_; sym(%’;— )andu, ; € %f is the point of symmetry for
all j=1,...,N, k=1,...,K—1. Also, let u,'(’,j, ug’j denote the right-hand side and the objective coefficient
uncertainty in u;_;, respectively. Let p =max, ;p(u, ;, %’j‘) forall j=1,...,N, k=1,...,K —1. Then there
is a finitely adaptable solution policy that can be computed efficiently and has at most |%| solutions where P is
the set of directed paths from the root node to any node in stage K of the multistage uncertainty network, such
that its worst-case cost is at most [(1 4+ p/s)]| - (14 p/s) times the optimal cost of Hfdap[(b,d).

9. Conclusions. In this paper, we propose tractable solution policies for two-stage and multistage stochastic
and adaptive optimization problems and relate the performance of the approximate solution approaches with the
fundamental geometric properties of the uncertainty set. For a fairly general stochastic optimization problem,
we show that the performance of a static-robust solution for the two-stage problem and a finitely adaptable
solution for the multistage problem is related to the symmetry and translation factor of the uncertainty sets. In
particular, the performance bound is (14 p/s) where p is the translation factor of the uncertainty sets and s is
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the symmetry. We also show that the bound is tight, i.e., given any symmetry and translation factor, there exists
a family of instances where the uncertainty sets have the given symmetry and translation factor, and the cost
of an optimal static-robust solution is exactly equal to (1 + p/s) times the optimal stochastic cost. For most
commonly used uncertainty sets, the performance bound gives quite interesting results. For instance, if the sets
are perfectly symmetric, i.e., s = 1, the bound is less than or equal to 2. Refer to Table 1 for a list of examples of
several interesting uncertainty sets and corresponding bounds. In any model, the uncertainty set is the modeler’s
choice. Our bound offers important insights in this choice of uncertainty set as well.

Although we show that the stochastic problem with only right-hand side uncertainty can be well approximated,
the static-robust solution and the finitely adaptable solution are not a good approximation for the case where
both the right-hand side and the objective coefficients are uncertain. However, for the adaptive optimization
problem, we show that the static-robust and the finitely adaptable solution are a good approximation for the
two-stage and multistage version, respectively, even when both the right-hand side and the objective coefficients
are uncertain. The performance bound in this case is (1 + p/s)?, where again p is the translation factor of the
uncertainty sets and s is the symmetry. This bound is not as strong as the bound for the stochastic problem. We
also present an alternate geometric bound for this case.

Acknowledgments. The authors thank the associate editor and the reviewers of the paper for several insight-
ful comments and suggestions. The research is partially supported by NSF Grant EFRI-0735905.

Appendix A. Examples: Symmetry of specific sets. Our main tool in calculating the symmetry of a convex
compact set is the following proposition in Belloni and Freund [2],

ProPOSITION A.1 (BELLONI AND FREUND [2]). Let S be a convex body, and consider the representation of
S as the intersection of halfspaces: S ={x € R™ | al'x < b;, i € I} for some (possibly unbounded) index set I,
and let 8 :=max,g{—al'x} for i € I. Then for all x € S

) b; —al'x
sym(x, 5) thlf{m}'

A.1. General L, half-ball for p > 1. Define an L, half-ball as
HB,:={beR"|[|b],<1,b, >0}
The dual norm is the L, norm with 1/p+1/q =1. The symmetry of L, half-ball is summarized as follows.

PROPOSITION A.2.  The symmetry and point of symmetry of an L, half-ball are,

1

I/p
sym(HB ) = (§> , b,(HB,) = !

1 L€
Proor. The L, half-ball can be represented by halfspaces as
HB,={beR"|-b <0, w'b=<1, Vst |||, <1, m >0}
For each r in the dual unit ball (i.e., |7, = 1), define

§*(w):= ma —m'h
(m) byt bz0t b

whose optimum b* satisfies b7 =0, ||b*||, = 1. Therefore we have,

§(w) = max —&'b= ||, =(1-a)",
[bl,=1

where b = (b,; b) and 7 = (7,; ). Also define 6*(e,) := max,.gg b; = 1. Now we can compute the symmetry
of HB,,. Because of the geometry, the point of symmetry has the form b, = ae,. We have,

sym(HB ) = max minj inf
ym(HB,) {me[o,l](l—

ael0, 1]

1 —ma a
a i+ ma 1—al’
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The maximum is achieved when the inf term is equal to the second term, because the inf term is decreasing
in @, and the second term is increasing in «. The inf term has an optimality condition:

—a((l _ 77.]‘1)1/‘1 + 77-101) = (1 — 7Tla)<(1 qu)l/p +a>

Therefore, we have
o a

(/1 —m)n)—a  1-a
which implies that (—7{ ' (1 —7,)"/?) =1, i.e., m, = (1/2)"/%, and a=1/(2"7 +1). O

s

A.2. Intersection of an L, ball with R”! for p > 1. Recall that an Lp-ball intersected with the nonnegative
orthant is defined as B} := {b €R™[|b[|, <1, b>0}. We show that the symmetry and symmetry point of B
are as defined in (18). The L, half-ball can 1 be represented by halfspaces as

B ={beR"|-b<0,w'b<1, Vx|, <1, w=>0},

where |-, is the dual-norm with 1/p +1/q = 1. Therefore, define §*() := max,cp; —m’b =0, and §*(e;) :=
max, g b, = 1. Therefore, the symmetry can be computed as

1— T
sym(B) i ae’m o« }

max  min in _— 1,
ael0, (1/m)\/r] Ial,=t.7=0 el l—«a

where we use the property that the symmetry point b, = e for some « € [0, 1/[ e[|,]. The maximum is achieved
when the inf term is equal to the second term. The inf term can be computed, because max ;| _; -0 e'm=|e|,
Thus, at the symmetry point, we have 1/(a(le||,) —1=a/(1 — ). Therefore, a =1/(|le|, + 1) =1/(m"/? +1),
which gives the results.

A.3. Ellipsoidal uncertainty set. An ellipsoidal uncertainty set that is contained in the nonnegative orthant
can be defined as B
U:={b|[E(b—b)[, <1} CRY. (A.1)

We assume that the ellipsoid has full dimension; thus, l_)_> 0. The symmetry of an ellipsoid is 1. However, the
translation factor depends on the position of the center b. The following proposition computes the translation
factor.

PROPOSITION A.3. Assume the uncertainty set U is defined in (A.1). The translation factor p(b, U) is given as

b, U VE
p(b, %) = max i

where E;' is the i-th diagonal element of the inverse matrix E~".

ProOOE. From the definition, the translation factor is the smallest p such that
b :=min{b, | [E(b—pb)|l, <1} >0, Vi=1,2,...,m

From the optimality conditions, we can get that b! = pb, — JE;! ., which gives the result. O

l

A.4. Intersection of two L, balls with R”’. Consider the uncertainty set % defined in (20), where 1 < p; <

., 0 <r <1, and suppose (21) holds. We show that the symmetry and symmetry point of % are as defined
in (22).
The uncertainty set % can be represented by the intersection of halfspaces:

U={beR"|-b=<0,w'b<1,Nb<r, Y|ul, <1,w>0, N[, <r, A>0},
where 1/p, +1/q,=1,1/p, +1/q, = 1. Compute the following quantities,
* . Th —
6" () = max —m b=0, V=m|, <1, w=>0,
8*(N) :=max—A"b=0, V{All, <r, A>0,
beUl -

0"(e):=maxb,=r, Vk=1,...,m
beU
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Because the set % is symmetric with respect to the direction e, the symmetry point must have the form b, = ce.
The symmetry can be computed as

. . 1—ae’sw . l1—ae’N «
sym(%):= max min inf. ———, inff ———, , (A.2)
acl0, (1/m)'/71] I7ly =1 7>0 aeTm  |Al,=1.>0 ae’N ~r—oa
As is shown in the proof of the previous proposition, we have,
) 1—ae’m 1
inf - -1,
Il =L720 aelm oz||e||1,]
) 1—ae™\ r
in -
IAl,=1.420 el N a||e||p2

Using condition (21), we know the first term is dominated by the second term for any «; therefore, the maximum
in the symmetry formula (A.2) is achieved when
1 a

alel,  r—a
Therefore, a = r/(r”e”p] + 1) =r/(rm'/P + 1), which gives the results.

A.5. Budgeted uncertainty set. An important type of uncertainty sets is the budgeted uncertainty set, A,
as defined in (23). We show that the symmetry and the symmetry point are as defined in (24).

First, we observe that the symmetry point b,(A,) must be of the form b, = ae, because of the geometry of
A,. Then, use Proposition A.1, for kK > 1, we have

a  k—ma
sym(A,) = , max mln{ , }
0<a<k/m l -« mao

By the monotonicity of «/(1 — @) and (k — ma)/(ma), the maximum is achieved at & = k/(m + k). Thus, the
symmetry point of A, is by =k/(m+ k)e and sym(A,) = k/m.

A.6. Demand uncertainty set.

PROOF OF PrOPOSITION 4.1. For pu > T, the hypercube centered at ue is completely contained in the positive
orthant. For each S, define

8(S..) = max{—efb} = —|S|u+/[SIT
5°(S_) 1= max{elb} = |S|u+/[SIT".

The symmetry of b is given as follows,

sym(b, DU) =

S|+ /ISIT —elb  —|S|u+/|SIT+elb
S0 | ZiSju+ /ISIT+elb [Slu+ISIT—elb |
Therefore, sym(ue, DU) = 1, which proves (26).

For (1//m)I' < <T, w is in one of the intervals of [(1/+/2)I', ), [(1/+/3)T, (1/+/2)I],. .., ((1//m)T,
(1/5/m —1)T']. We show that (27) holds for u € [(1/+/2)T,T]. A similar argument works for other intervals.

Let us assume u € [(1/+/2)T, T']. Notice that |S|u — /|S|T > 0 for all |S| > 2. Therefore, the constraints in
the definition of DU (25) can be written as

S| —V/ISIT < b, <|S|u++/IS|IT, V[S]>2.

ieS

However, for all |S| =1, because w —I" <0, we will have 0 <b; <u+1T forall i=1,...,m. Thus, according
to Proposition A.1, we can compute the following quantities for all |S| > 2:

* . _ ol _
6°(Sy) == i‘elg%{ egb} = —[S|u+I[SIT,

6" (S_) —max{e b} =[S|u+ /]S,
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and for |S| =1, we have 0*(i, ) :=max,py —b; =0, 6*(i_) :=max,pyb; =+ foralli=1,..., m. Because
DU is symmetric about the direction e, the point of symmetry has the form b, = ae. The range of possible « is
determined by the constraint mu — /ml’ < ma < mu + /mI'. Now we can compute the symmetry of ae:

(p+1)—a a (IS|u+ /ISIT) — |S|ex

a T (pAD) =’ (—|S|u+/ISID) +|S|e’
(=IS|n+ VISID) + ISl vmzz}_
(IS|w++/ISIT) — |S|e

sym(aee, DU) = min{

(A.3)
The symmetry of DU is given as

1 1
sym(DU) = max{sym(ae, DU): a € [,u — ﬁl“, n+ ﬁr] }
Observe that ((|S|w +/|SIT) — |S]|@)/((—|S|pm ++/|S|T) + |S|@) is a decreasing function in «, and ((—|S|u +
VISIT)+18]a)/((|S|m++/IS|T) — |S|e@) is an increasing function in «. Both functions have value 1 when o =
and decrease when |S| increases. The formula (A.3) can be simplified as

r)— IDES - r
sym(ae,DU):min{(M+ ) a’ < , (mps +/ml) = ma , (Cmpt ym )+ma}. (A.4)
a (w+T)—a (—mu+/ml)+ma’ (mp+/ml) — ma
The maximum of sym(ae, DU) is achieved at the following intersection:
a _ (mp+/ml) —ma

(k+D)—a  (—mp+/ml)+ma’
which gives the symmetry and the symmetry point in (27). Because (A.4) also holds when u is in any other
interval, it implies that (27) is true for all (1//m)I" <u <T.
When 0 < u < (1/4/m)T, following a similar argument, we have
{(|S|M+\/|S|T)—|S|a |S|a }
|S]e (ISl +VISIT) = |S|a

Then, the maximum is achieved when a/((u +T') — @) = ((mu + /mI’) — ma)/(ma), which gives the results
in (28). O

sym(ae, DU) = |n}in
S|=1

A.7. Parallel slabs. A parallel slab is defined as PS:={be R |L<e’b<U} for 0<L <U and U > 0.
The symmetry and symmetry point of a parallel slab is given as shown in the following

PRrROPOSITION A 4.
1

PS)=——, AS
sym(PS) =~ (A5)
U2
b,(PS) = ——e. A.6
oP8) = o —L® (A.6)
Proor. Define the following quantities:
koL T _ * L _ ol _
o) 1= rgézll))si{e b} =U, oy .—ggs({ e'bl=-L,

and foreach k=1,...,m,
* . T _
0% (ey) := rbrézlysc{ek b} =U.
According to the geometry of the set, the point of symmetry is of the form b, = ae. Thus, the symmetry can
be written as
. [ma—L U—-—ma a
min , ) .
U—ma ma—L U—-«a

The first two terms are inverse of each other; therefore, one increases and the other decreases in «; the third
term increases in «. Thus, the maximum is attained when the second term is equal to the third, i.e.,

sym(PS) = max

a€[L/m,U/m]

U—ma o

ma—L U-—a’
which gives the results. O
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A8. % =Conv(A,, {e}). The convex hull of the standard m-simplex A, ={beR" |e’b<1,b >0} and a
point e = (1, ..., 1)T has a slightly improved symmetry, compared with the simplex itself, as shown below.

PROPOSITION A.5. The symmetry and point of symmetry of U = Conv(A,, {e}) are given as
1 1
sym(U) = ——, b, (U) = —e.
m—1 m
Proor. The set U can be represented by halfspaces as
U={beR"|-b<0, w/b<1,Vi=1,...,m},
where 71, has (2 —m) in the i-th entry and 1 elsewhere. For each i, define
8 =maxb, =1, 8(m;)* = max{—m/b} =m 2.
beU be

By the symmetry of %, we know the symmetry point should be on the e direction. Therefore, we have

1 —amn’e a
W) = i : , , A7
sym(70) arsn[oa,)ﬁ]mm{(m—Z)+a1'r,-Te l—a} (A7)
. l—«a «o
= max min , . (A.8)
ael0,1] m—24+a 11—«

The maximum is achieved when (1 —a)/(m —2+ a) = «/(1 — @), which gives @ = 1/m, and symmetry is
1/(m—1). O

A.9. The matrix simplex. Define the uncertainty set % as follows:
U={BeS]|I-B<1}, (A9)

where S is the cone of positive semidefinite matrices and I is the identity matrix. We use it as an example
of uncertainty sets for robust SDP problems. The following proposition shows that % has a similar symmetry
property as a simplex in R™.

PROPOSITION A.6. Let U be defined in (A.9) and B, be the center of symmetry of U. We have

1

=——7oIL

m+1
ProOF. The set U can be written in the form of intersection of halfspaces:

U={BeS"|I-B=1, (qq')-B=1V|ql,=1}.

1
sym(U) = m B,

Then, we can compute the following quantities:

8°(@) =max{(qq’) - B} = max (q"p)=1. (A.10)
8" (1) = —min(I - B} =0. (A11)

The second equality in (A.10) comes from the fact that the extreme points of % are rank-1 matrices pp? with
p’p=1. (A.11) follows from I - B > 0, and the minimum is achieved at B = 0. Now we can compute the
symmetry of U as

1-1-B n.B
sym(?%) = max min{ ————, inf L } (A.12)
Beil I-B ’4la=11—(qq”)-B
To compute the inf term is equivalent to solving the following problem, which admits a closed form solution

by Courant minimax theorem: A;(B) =min_ .., {q"Bq}, where A,(B) is the smallest eigenvalue of B, denoted

as (Ay,...,A,) in ascending order. Then, (A.12) can be rewritten as,
1—eN A
U) = in} ——, s A.13
sym(%0) erﬂlﬁ’iwmm{ N 121, } (A.13)
which can be reformulated as
sym() :max{z: e\ < N1, A>0, A, > L, Vi=1,... ,m.}
N z+1 z+1

From the constraints, we have
1 T mz
—>eA>—— = z<—.
z+1 +1

In fact, z=1/m can be achieve by the feasible solution A; = 1/(m + 1) for all i. This completes the proof. [
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Appendix B. Proof of Theorem 7.1

PrROOF OF THEOREM 7.1. Let U’ be the translation of the uncertainty set % with the translation factor p, i.e.,
U =U—(1—p)b,. Let b, :=by,— (1 — p)b,. Also let z:=b, —b, = (1 — p)b,. Following an argument similar
to that in the proof of Theorem 4.1, we have

(1 + é)b1 =4 b, Vb eU.
Translating back to the original uncertainty set % by adding z on both sides, we have,
<1 + %)bl +z>,b, VbeU,
= <1—+—%>pbo—}-(l—p)b0 >4 b, VYbe, (B.1)

= <1+3)b0 >, b, Vbe.
S

For brevity, let 7:= (1 + p/s). Suppose (x,y(b), u-a.e. b € U) is an optimal solution of the stochastic opti-
mization problem (45). We have

A(7x) +B(1y(b)) =5, 7b, pu-ae. beU.

Equivalently,
A(mx) +B(ty(b)) —7be X, p-ae.be.

Therefore, the expectation with respect to the probability measure w satisfies,
A(7mx) +B(E,[7y(b)]) —E,[7h] € X.

Thus, we have
A(mx) +B(E,[7y(b)]) =5 E,[7b] =5 by =5 b, VbeU.

The last inequality uses (B.1). Therefore, (7x, E,[7y(Db)]) is a feasible static-robust solution. Therefore, the cost
of an optimal static-robust solution is, at most,

¢ (7x) +d"E, [ry(b)] =7(c"x+d"E,[y(b)]).

Furtgermore, Zoen = €' X +d"E,[y(b)], which implies that the cost of an optimal static solution is, at most,
T * ZStoch* O
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