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Abstract

Consider a convex set S = {x ∈ D : G(x) � 0} where G(x) is a symmetric matrix
whose every entry is a polynomial or rational function, D ⊆ R

n is a domain on which
G(x) is defined, and G(x) � 0 means G(x) is positive semidefinite. The set S is called
semidefinite representable if it equals the projection of a higher dimensional set which is
defined by a linear matrix inequality (LMI). This paper studies sufficient conditions guar-
anteeing semidefinite representability of S. We prove that S is semidefinite representable
in the following cases: (i) D = R

n, G(x) is a matrix polynomial and matrix sos-concave;
(ii) D is compact convex, G(x) is a matrix polynomial and strictly matrix concave on
D; (iii) G(x) is a matrix rational function and q-module matrix concave on D. Explicit
constructions of semidefinite representations are given. Some examples are illustrated.

1 Introduction

Suppose S is a convex set in R
n given in the form

S = {x ∈ D : G(x) � 0}. (1.1)

Here D ⊆ R
n is a domain, and G(x) is a m×m symmetric matrix polynomial, that is, every

entry of G(x) is a polynomial in x. The notation A � 0 (resp. A ≻ 0) means the matrix A
is positive semidefinite (resp. definite). Suppose G(x) has total degree 2d and

G(x) =
∑

α∈Nn:α1+···+αn≤2d

Gαx
α1

1 · · · xαn
n . (1.2)

The Gα are constant symmetric matrices. The G(x) � 0 is called a polynomial matrix
inequality (PMI). When G(x) is linear, optimizing a linear functional over S becomes a
standard semidefinite programming (SDP) problem. SDP is a very nice convex optimization
problem, has many attractive properties, and can be solved efficiently by numerical methods.
We refer to [16, 23, 24]. It would be a big advantage if an optimization problem can be
formulated in SDP form. So, we are very interested in knowing when and how the set S is
representable by an SDP.
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An elementary approach for this representation problem is to find symmetric matrices
A0, A1, . . . , An such that

S = {x ∈ R
n : A0 +A1x1 + · · ·+Anxn � 0}.

If such Ai’s exist, we say S has a linear matrix inequality (LMI) representation and S is LMI
representable. Unfortunately, not every convex set in R

n is LMI representable. For instance,
the convex set {x ∈ R

2 : 1− x41 − x42 ≥ 0} is not LMI representable, as proved by Helton and
Vinnikov [8]. Therefore, we are more interested in finding a lifted LMI representation, that
is, in addition to Ai, finding symmetric matrices B1, . . . , BN such that

S =






x ∈ R

n : ∃ y ∈ R
N , A0 +

n∑

i=1

Aixi +
N∑

j=1

Bjyj � 0






. (1.3)

If such matrices Ai and Bj exist, we say S is semidefinite programming (SDP) representable or
just semidefinite representable, and (1.3) is called a lifted LMI or semidefinite representation
for S. The variables yj are called lifting variables. Nesterov and Nemirovski [16], Ben-
Tal and Nemirovski [2], and Nemirovski [17] gave collections of convex sets that are SDP
representable. Obviously, to have a lifted LMI, a set must be convex and semialgebraic, i.e.,
it can be defined by a boolean combination of scalar polynomial equalities and inequalities.
However, it is unclear whether every convex semialgebraic set has a lifted LMI or not.

When G(x) is diagonal, i.e., S is defined by scalar polynomial inequalities, there is some
work on the semidefinite representability of S. Parrilo [20] constructed lifted LMIs for planar
convex sets whose boundaries are rational planar curves of genus zero. Lasserre [11, 12] con-
structed lifted LMIs for convex semialgebraic sets satisfying certain conditions like bounded
degree representation (BDR). Their constructions use moments and sum of squares tech-
niques. In [5], Helton and Nie proved sufficient conditions like sos-convexity and strict con-
vexity, which justify lifted LMIs from moment type constructions. Later, in [6] they further
proved every compact convex semialgebraic set is SDP representable if its boundary is non-
singular and positively curved. Recent work in this area can be found in [1, 7, 10, 13, 18, 19].

One might consider to apply the existing results for the case of scalar polynomial inequal-
ities like in [5, 6, 11, 12, 18] to the case of matrix polynomial inequalities. Note

S =
{

x ∈ D : pI(x) ≥ 0 ∀ I ⊂ {1, 2, . . . ,m}
}

.

Here pI(x) are principal minors of G(x) with row (or column) index I. Thus, one could think
of studying the semidefinite representability of S by using principal minors pI(x). If every
pI(x) is sos-concave or strictly concave over D, then S is SDP representable and an explicit
lifted LMI would be constructed, as shown in [5]. Unfortunately, this is generally not the case
in practice. The basic reason is that the determinants of 2×2 or bigger matrices are typically
neither concave nor convex, and hence the principle minors pI(x) would generally be neither
concave nor convex. For instance, when G(x) is linear in x, the minors pI(x) with |I| > 1 are
typically not concave, while the set S is clearly LMI and SDP representable. When G(x) has
degree bigger than one, the minors pI(x) are also generally not concave, as will be shown by
examples later. Furthermore, G(x) has exponentially many principle minors, and they have
much higher degrees. This is also a big disadvantage for using them in practice. So, it is
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usually impractical to study SDP representation through using principle minors. Therefore,
the conditions directly on G(x) are preferable in applications. The motivation of this paper
is to construct explicit SDP representations for S and prove sufficient conditions directly on
G(x) justifying them.

In some applications, G(x) might be given as a matrix rational function, i.e., its every
entry is rational. This is often the case in control theory. When G(x) is a scalar rational
function, the author in [18] studied SDP representability of S. In [18], explicit constructions
of lifted LMIs are given, and sufficient conditions justifying them are proved. One also might
consider to describe S by using polynomials only, e.g., by multiplying denominators. However,
this kind of processing might destroy matrix concavity, and usually makes the problem more
difficult. In this paper, we will construct explicit lifted LMIs for S directly based on G(x),
and prove sufficient conditions justifying them.

This paper is organized as follows. Section 2 discusses the semidefinite representation of
S when D = R

n, and G(x) is polynomial and matrix sos-concave. Section 3 discusses the
semidefinite representation of S when D is a compact convex domain, and G(x) is polynomial
and strictly matrix concave on D. The case that G(x) is rational and q-module matrix concave
over D will be discussed in Section 4.

Notations. The symbol N (resp., R) denotes the set of nonnegative integers (resp., real
numbers). For any t ∈ R, ⌈t⌉ denotes the smallest integer not smaller than t. The R

n
+

denotes the nonnegative orthant. For x ∈ R
n, xi denotes the i-th component of x, that is,

x = (x1, . . . , xn). When y is a vector indexed by integer vectors in N
n and α ∈ N

n, yα denotes
the entry of y whose index is α. For α ∈ N

n, denote |α| = α1 + · · · + αn. For x ∈ R
n and

α ∈ N
n, xα denotes xα1

1 · · · xαn
n . For α, β ∈ N

n, denote α ≤ β if every αi ≤ βi. The symbol
N≤k denotes the multi-index set {α ∈ N

n : |α| ≤ k}. For every integer i ≥ 0, ei denotes the
i-th standard unit vector. The [x]d denotes the vector of all monomials having degrees at
most d with respect to graded lexicographical ordering, that is,

[x]Td = [ 1 x1 · · · xn x21 x1x2 · · · x2n · · · xd1 xd−1
1 x2 · · · xdn ].

A polynomial p(x) is said to be a sum of squares (sos) if there exist finitely many polynomials
qi(x) such that p(x) =

∑
qi(x)

2. A matrix polynomial H(x) is called sos if there is a matrix
polynomial F (x) such that H(x) = F (x)TF (x). A polynomial f(x) is called sos-convex if its
Hessian is sos, and f(x) is sos-concave if −f(x) is sos-convex. For a set S, int(S) denotes
its interior, and ∂S denotes its boundary. For u ∈ R

N , ‖u‖2 denotes the standard Euclidean
norm. For a matrix X, XT denotes its transpose, ‖X‖F denotes the Frobenius norm of X,
i.e., ‖X‖F =

√

Trace(XTX), and ‖X‖2 denotes the standard operator 2-norm of X. The
symbol • denotes the standard Frobenius inner product of matrix spaces, and IN denotes the
N × N identity matrix. For a function f(x), Z(f) = {x ∈ R

n : f(x) = 0}, ∇xf(x) denotes
its gradient with respect to x, and ∇xxf(x) denotes its Hessian with respect to x.

2 Matrix sos-concavity

This section assumes the domain D = R
n is the whole space and G(x) is an m×m symmetric

matrix polynomial of degree 2d. We will first construct an SDP relaxation for S using
moments, and then prove it is a correct lifted LMI when G(x) satisfies certain conditions.
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A natural SDP relaxation of S can be obtained through using moments. Define linear
matrix pencils G(y) and Ad(y) as

G(y) =
∑

α∈N≤2d

yαGα, Ad(y) =
∑

α∈N≤2d

yαA
(d)
α ,

where Gα are from (1.2) and A
(d)
α are such that

[x]d[x]
T
d =

∑

α∈N≤2d

xαA(d)
α . (2.1)

Since S =
{
x ∈ R

n : G(x) � 0, [x]d[x]
T
d � 0

}
, we know

S = {(ye1 , . . . , yen) ∈ R
n : ∃x ∈ R

n, yα = xα ∀α ∈ N≤2d, G(y) � 0, Ad(y) � 0} .

Here, each ei denotes the i-th standard unit vector whose only nonzero entry is one at index
i. If the condition yα = xα is removed in the above, then S is a subset of

L =

{

x ∈ R
n

∣
∣
∣
∣
∣

∃ y ∈ R
(n+2d

2d ), G(y) � 0, Ad(y) � 0,
y0 = 1, x1 = ye1 , . . . , xn = yen

}

. (2.2)

So, S ⊆ L. Does S = L? What conditions make S = L? We look for sufficient conditions
guaranteeing S = L.

The matrix-valued function G(x) is called matrix concave over a convex domain D if for
all u, v ∈ D and 0 ≤ θ ≤ 1 it holds that

G(θu+ (1− θ)v) � θG(u) + (1− θ)G(v).

In the above, when D = R
n, we just say G(x) is matrix concave. The matrix concavity of

G(x) over D is equivalent to

−∇xx(ξ
TG(x)ξ) � 0 ∀ ξ ∈ R

m, ∀x ∈ D.

We would like to point out that G(x) might not be matrix concave while S is still convex.
For instance, the quadratic polynomial matrix inequality

Q(x) :=





x1x2 + 2 x1x2 0
x1x2 x1x2 − 1 0
0 0 x1 + x2



 � 0

defines the convex set {x ∈ R
2
+ : x1x2 ≥ 2}, but Q(x) is not matrix concave on R

2
+.

Generally, it is difficult to check matrix concavity. Even for the simple case of quadratic
matrix polynomials, the problem is already NP-hard, as shown below.

Proposition 2.1. It is NP-hard to check the matrix concavity of quadratic matrix polyno-
mials.
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Proof. Letm = 1
2m(m+1). For any symmetric matrices A1, . . . , Am ∈ R

m×m andB1, . . . , Bm ∈
R
n×n, define the matrix polynomial

G(x) = −
1

2

m∑

i=1

(xTBix)Ai.

Then we have

−∇xx(ξ
TG(x)ξ) =

m∑

i=1

(ξTAiξ)Bi.

So, G(x) is matrix concave if and only if the following bi-quadratic form in (ξ, z)

m∑

i=1

(ξTAiξ)(z
TBiz)

is nonnegative everywhere. It has been proven in [14] that it is NP-hard to check the non-
negativity of bi-quadratic forms. Therefore, it must also be NP-hard to check the matrix
concavity of quadratic G(x).

A stronger but easier checkable condition than matrix concavity is the so called matrix
sos-concavity. We say G(x) is matrix sos-concave if for every ξ ∈ R

m there exists a matrix
polynomial Fξ(x) in x such that

−∇xx(ξ
TG(x)ξ) = Fξ(x)

TFξ(x). (2.3)

The above Fξ(x) has n columns but its number of rows might be different from n, and its
coefficients of xα depend on ξ. Note that when G(x) is quadratic, G(x) is matrix concave
if and only if it is matrix sos-concave. This is because −∇xx(ξ

TG(x)ξ) is independent of x,
and for fixed ξ it is positive semidefinite if and only if it is sos (Cholesky factorization).

Theorem 2.2. Suppose G(x̃) ≻ 0 for some x̃. If G(x) is matrix sos-concave, then S = L.

Proof. We have already seen S ⊆ L, so it suffices to prove the reverse containment. Suppose
otherwise L 6= S, then there must exist a point x̂ ∈ L/S. Since S is closed and convex, by
Hahn-Banach Theorem, there exists a supporting hyperplane H = {x ∈ R

n : aTx ≥ b} ⊇ S
such that aTu = b for some u ∈ S and aT x̂ < b. Consider the linear optimization problem

min
x∈Rn

aTx subject to G(x) � 0. (2.4)

Clearly u is a minimizer and b is the optimal value. The optimization problem (2.4) is convex.
The existence of x̃ with G(x̃) ≻ 0, i.e., the Slater’s condition holds, implies there exists a
matrix Lagrange multiplier Λ � 0 such that

Λ •G(u) = 0, a = ∇x(Λ •G(x))
∣
∣
∣
x=u

.

The value and gradient of aTx−Λ •G(x)− b vanish at u. Then, by the Taylor expansion at
u, we have

aTx− Λ •G(x)− b = (x− u)T
(∫ 1

0

∫ t

0
−∇xx(Λ •G(u+ s(x− u)) ds dt

)

(x− u).
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Since Λ � 0, there exist vectors λ(k) such that Λ =
∑K

k=1 λ
(k)(λ(k))T . So, we have

aTx− Λ •G(x)− b =

K∑

k=1

(x− u)T
(∫ 1

0

∫ t

0
−∇xx((λ

(k))TG(u+ s(x− u))λ(k) ds dt

)

(x− u).

Since G(x) is matrix sos-concave, by Lemma 7 in [5], we know each summand in the above
must be sos. Thus aTx−Λ •G(x)− b must also be an sos polynomial of degree 2d. So, there
exists a symmetric matrix W � 0 such that the identity

aTx− Λ •G(x)− b = [x]Td W [x]d = W •
(
[x]d[x]

T
d

)

holds. By definition of matrices A
(d)
α in (2.1), we have

aTx− Λ •G(x) − b = W •




∑

α∈N≤2d

xαA(d)
α



 .

Since x̂ ∈ L, there exists ŷ such that x̂ = (ŷe1 , . . . , ŷen), G(ŷ) � 0 and Ad(ŷ) � 0. So, if we
replace x̂α by ŷα in the above identity, then

aT x̂− Λ • G(ŷ)− b = W •




∑

|α|≤2d

ŷαA
(d)
α



 = W • Ad(ŷ),

or equivalently
aT x̂− b = Λ • G(ŷ) +W • Ad(ŷ).

Since Λ,G(ŷ),W,Ad(ŷ) � 0, we must have aT x̂ − b ≥ 0, which contradicts the previous
assertion that aT x̂− b < 0. So, S = L.

Example 2.3. Consider the set S =
{
x ∈ R

3 : G(x) � 0
}
where

G(x) =





2− x21 − 2x23 1 + x1x2 x1x3
1 + x1x2 2− x22 − 2x21 1 + x2x3
x1x3 1 + x2x3 2− x23 − 2x22



 .

The Hessian −∇xx(ξ
TG(x)ξ) is positive semidefinite for all ξ ∈ R

3. This is because

−
1

2
∇xx(ξ

TG(x)ξ) =





ξ21 + 2ξ22 −ξ1ξ2 −ξ1ξ3
−ξ1ξ2 ξ22 + 2ξ23 −ξ2ξ3
−ξ1ξ3 −ξ2ξ3 ξ23 + 2ξ21



 � 0 ∀ ξ ∈ R
3,

which is due to the fact that the bi-quadratic form zT
(
− 1

2∇xx(ξ
TG(x)ξ)

)
z in (z, ξ)

z21ξ
2
1 + z22ξ

2
2 + z23ξ

2
3 + 2(z21ξ

2
2 + z22ξ

2
3 + z23ξ

2
1)− 2(z1z2ξ1ξ2 + z1z3ξ1ξ3 + z2z3ξ2ξ3)

is nonnegative everywhere, as shown by Choi [3]. So, this G(x) is matrix sos-concave, be-
cause for every fixed ξ the Hessian −∇xx(ξ

TG(x)ξ) is a constant matrix which is positive

6
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Figure 1: The drawn body is the convex set in Example 2.3.

semidefinite and must be sos. Thus, we know S is convex and by Theorem 2.2 a lifted LMI
for it is






x ∈ R
3 : ∃ yα (α ∈ N≤2) such that





2− y200 − 2y002 1 + y110 y101
1 + y110 2− y020 − 2y200 1 + y011
y101 1 + y011 2− y002 − 2y020



 � 0,







1 x1 x2 x3
x1 y200 y110 y101
x2 y110 y020 y011
x3 y101 y011 y002






� 0







. (2.5)

A picture of the set S is in Figure 1. It would be drawn by finding its boundary points in
various directions sampled on the unit sphere, e.g., by making a fine enough grid.

The matrix sos-concavity condition requires checking the Hessian

−∇xx(ξ
TG(x)ξ)

is sos for every ξ ∈ R
m. This is almost impossible in applications. However, a stronger

condition called uniformly matrix sos-concave is

−∇xx(ξ
TG(x)ξ) = F (ξ, x)TF (ξ, x),

where F (ξ, x) is now a matrix polynomial in joint variables (ξ, x). It is easier to check. The
uniform matrix sos-concavity can be verified by solving a single SDP feasibility problem (see
Section 3 of [5]). Clearly, the following is a consequence of Theorem 2.2.

Corollary 2.4. Suppose G(x̃) ≻ 0 for some x̃ . If G(x) is uniformly matrix sos-concave,
then S = L.

It should be pointed out that when G(x) is matrix sos-concave, it is not necessarily
that G(x) is uniformly matrix sos-concave. For a counterexample, consider the G(x) of

7
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Figure 2: The shaded area is the convex set in Example 2.5, and the curve is detG(x) = 0.

Example 2.3. For any fixed ξ ∈ R
m, the Hessian −∇xx(ξ

TG(x)ξ) there is independent of x
(since G(x) is quadratic), and it is sos if and only if it is positive semidefinite. But if we think
of ξ as an indeterminant vector, then −∇xx(ξ

TG(x)ξ) is not sos in ξ, as shown by Choi [3].
Now let us see an example of uniformly matrix sos-concave G(x).

Example 2.5. Consider the set S =
{
x ∈ R

2 : G(x) � 0
}
where

G(x) =

[
2− 2x41 − 4x21x

2
2 − 2x42 3− x31x2 − x1x

3
2

3− x31x2 − x1x
3
2 5− x41 − 4x21x

2
2 − x42

]

.

The above G(x) is uniformly matrix sos-concave because

−∇xx(ξ
TG(x)ξ) = H1 +H2 +H3 +H4,

H1 = 2

[
2ξ1x1 + ξ2x2
2ξ1x2 + ξ2x1

] [
2ξ1x1 + ξ2x2
2ξ1x2 + ξ2x1

]T

, H2 = 8(ξ21 + ξ22)

[
x21 x1x2
x1x2 x22

]

,

H3 = 2

[
ξ1x1 ξ2x2 ξ2x1
ξ2x1 ξ1x2 ξ2x2

] [
ξ1x1 ξ2x2 ξ2x1
ξ2x1 ξ1x2 ξ2x2

]T

,

H4 = 2

(
(
(ξTx)2 + ξ22x

2
1

)
[
1 0
0 1

]

+ ξ21

[
2x21 + 4x22 0

0 3x21 + 3x22

])

.

So, this set S is convex, and by Corollary 2.4 a lifted LMI for it is






x ∈ R
2 : ∃ yij (0 ≤ i, j ≤ 4) such that

[
2− 2(y40 + 2y22 + y04) 3− (y31 + y13)

3− (y31 + y13) 5− (y40 + 3y22 + y04)

]

� 0,











1 x1 x2 y20 y11 y02
x1 y20 y11 y30 y21 y12
x2 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04











� 0







.
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Let F be the above LMI. The region of x satisfying F would be plotted by function plot

provided in software YALMIP [15], which is drawn in the shaded area of Figure 2. Clearly,
the boundary of S lies on the curve detG(x) = 0, which is also drawn in Figure 2. It has
two connected components. The inner one surrounds S and is its boundary ∂S. The outer
one does not touch S, because G(x) � 0 fails there. So, Figure 2 confirms F in the above
represents S. In this example, the determinant detG(x) is neither concave nor convex.

In the following, we list some classes of G(x) that is (uniformly) matrix sos-concave.

1. Suppose G(x) is of the form

G(x) = A0(x) + f1(x)A1 + · · ·+ fk(x)Ak

whereA0(x) is linear in x, every fi(x) is an sos-concave scalar polynomial, and A1, . . . , Ak �
0. Then G(x) is uniformly matrix sos-concave because

−∇xx (ξ
TG(x)ξ) = (−∇xxf1(x))(ξ

TA1ξ) + · · ·+ (−∇xxfk(x))(ξ
TAkξ)

is sos in (x, ξ). Such an example is

[
1 0
0 1

]

− x41

[
1 1
1 1

]

− x42

[
1 −1
−1 1

]

.

The determinant of the above is not concave in R
2 (also not sos-concave).

2. Suppose G(x) is of the form

G(x) = F (x) + diag(f1(x), . . . , fm(x))

where F (x) is linear in x and each fi(x) is a scalar polynomial. For every ξ, we have

∇xx (ξ
TG(x)ξ) =

m∑

i=1

ξ2i∇xxfi(x).

Clearly, G(x) is matrix concave if and only if every fi(x) is concave, and G(x) is matrix
sos-concave if and only if every fi(x) is sos-concave, which is also equivalent to that
G(x) is uniformly matrix sos-concave. Such an example is

[
x1 x2
x2 x1

]

−

[
x41 0
0 x42

]

.

Its determinant is not concave in R
2 (also not sos-concave).

3. Suppose G(x) is of the form

G(x) = A(x)−Q(x)

where A(x) is linear in x and Q(x) is quadratic and positive semidefinite everywhere.
This G(x) must be matrix sos-concave. For every ξ, we have

−∇xx ξTG(x)ξ = ∇xx ξTQ(x)ξ.

9



Since Q(x) � 0 for all x, the quadratic polynomial ξTQ(x)ξ is nonnegative everywhere,
and there exists a symmetric matrix W = W (ξ) � 0 such that

ξTQ(x)ξ = xTWx, ∇xx ξTQ(x)ξ = 2W.

Thus, the G(x) is matrix sos-concave, and L in (2.2) is a lifted LMI for the set defined
by

A(x)−Q(x) � 0.

This generalizes the following result: if q(x) is a nonnegative quadratic scalar polyno-
mial, then for any linear a(x) the set defined by

a(x)− q(x) ≥ 0

is convex and SDP representable. Such a G(x) is given in Example 2.3.

4. Suppose n = 2 and G(x) is of the form

G(x) = Q1(x)−Q2(x)−Q2d(x)

where Q1(x) is linear in x, Q2(x) is quadratic in x, and Q2d(x) is homogeneous of degree
2d. Then, for any given ξ ∈ R

m the Hessian

−∇xx (ξ
TG(x)ξ) = ∇xx (ξ

TQ2(x)ξ) +∇xx (ξ
TQ2d(x)ξ) � 0 ∀x ∈ R

n

if and only if both ∇xx (ξ
TQ2(x)ξ) and ∇xx (ξ

TQ2d(x)ξ) are positive semidefinite for
every x. The Hessian ∇xx(ξ

TQ2(x)ξ) is independent of x. Note that every bivariate
homogeneous positive semidefinite matrix polynomial is sos (see [4, Theorem 7.1]). In
this case, G(x) is matrix concave if and only if it is matrix sos-concave.

5. Suppose n = 1, then G(x) is matrix concave if and only if

P (x) :=
(

−G′′
ij(x)

)

1≤i,j≤m
� 0 ∀x ∈ R,

which is equivalent to that P (x) is sos. This is because every univariate positive semidef-
inite matrix polynomial is sos [4, Theorem 7.1]. In this case, the matrix concavity co-
incides with uniform matrix sos-concavity, and G(x) � 0 defines an interval like [a, b].
Typically, the end points a, b are algebraic (but not rational) functions of the coeffi-
cients of G. However, the parameters of L are rational in the coefficients of G. This is
interesting when a rational SDP representation is preferable.

3 Strict matrix concavity

This section assumes S = {x ∈ D : G(x) � 0} and

D = {x ∈ R
n : g1(x) ≥ 0, . . . , gr(x) ≥ 0}

is a domain defined by polynomials g1, . . . , gr. When D is compact convex and G(x) is strictly
matrix concave on D, we will show that S is semidefinite representable, and a lifted LMI for
it is explicitly constructible.
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Like in the previous section, a natural SDP relaxation of S is constructible by using
moments. Let g0 ≡ 1 and

d = max {deg(G(x))/2, ⌈deg(gk)/2⌉, k = 0, 1, . . . , r} .

For every integer N ≥ d and k = 0, . . . , r, define symmetric matrices B
(N)
k,β such that

gk(x)[x]N−dk [x]
T
N−dk

=
∑

β∈N≤2N

xβB
(N)
k,β , dk = ⌈deg(gk)/2⌉. (3.1)

This determines B
(N)
k,β uniquely. Then, define the linear matrix pencils B

(N)
k (y) as

B
(N)
k (y) =

∑

β∈N≤2N

yβB
(N)
k,β , k = 0, 1, . . . , r.

Clearly, S can be equivalently described as

S =

{

(ye1 , . . . , yen)

∣
∣
∣
∣
∣

∃x ∈ R
n, yα = xα ∀α ∈ N≤2N ,

G(y) � 0, B
(N)
k (y) � 0, k = 0, . . . , r

}

.

If the conditions yα = xα are removed in the above, then S is contained in the set

LN =

{

x ∈ R
n

∣
∣
∣
∣
∣

∃y ∈ R
(n+2N

n ), y0 = 1, x1 = ye1 , . . . , xn = yen,

G(y) � 0, B
(N)
k (y) � 0, k = 0, . . . , r

}

. (3.2)

So, we have S ⊆ LN for every N ≥ d. It is clear that LN+1 ⊆ LN , because LN+1 is a
restriction of LN . Thus, it holds the nesting containment relation:

Ld ⊇ · · · ⊇ LN ⊇ LN+1 ⊇ · · · ⊇ S.

Does there exist a finite N such that LN = S? What conditions on S make it true? In the
following, we look for sufficient conditions guaranteeing LN = S.

Semidefinite representation of S is closely related to linear functionals nonnegative on S.
For a given 0 6= ℓ ∈ R

n, consider the linear optimization problem

min
x∈int(D)

ℓTx subject to G(x) � 0. (3.3)

When S ⊆ int(D) is compact, (3.3) always has a minimizer u ∈ ∂S ∩ int(D). If further there
exists x̃ ∈ D such that G(x̃) ≻ 0 (Slater’s condition holds) and G(x) is matrix concave in D,
then there exists 0 � Λ ∈ R

m×m such that (see [22, p. 306])

Λ •G(u) = 0, ℓ = ∇x(Λ •G(x))
∣
∣
x=u

. (3.4)

Thus, by its Taylor expansion at u, we know ℓT (x− u)− Λ •G(x) equals

(x− u)T ·

(∫ 1

0

∫ t

0
−∇xx(Λ •G(u+ s(x− u)) ) ds dt

)

︸ ︷︷ ︸

H(u,x)

·(x− u).
(3.5)

If the above matrix polynomial H(u, x) has a weighted sos representation in terms of G(x)
and gi(x), then we can also get a similar one for ℓT (x− u). For this purpose, we need some
assumptions on D and G(x).
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Assumption 3.1. (i) G(x) is matrix concave on D, and G(x) satisfies

−∇xx(Λ •G(u)) ≻ 0 ∀u ∈ ∂S, ∀ 0 6= Λ � 0.

(ii) The archimedean condition (AC) holds for D, i.e., there exist M > 0 and sos polynomials
s0, s1, . . . , sr satisfying

M − ‖x‖22 = s0 + g1s1 + · · ·+ grsr.

Note that the item (i) of Assumption 3.1 is equivalent to −∇xx(ξ
TG(u)ξ) ≻ 0 for every

u ∈ ∂S and every 0 6= ξ ∈ R
m. Clearly, AC in Assumption 3.1 implies the domain D is

compact, since M − ‖x‖22 ≥ 0 for all x ∈ D.

Theorem 3.2. Suppose S ⊆ int(D), D is convex, and G(x̃) ≻ 0 for some x̃ ∈ D. If
Assumption 3.1 holds, then S = LN for all N big enough.

Proof. For a matrix polynomial G(x) given in (1.2), we define its norm ‖G(x)‖ as

‖G(x)‖ = max
α∈N≤2d

α1! · · ·αn!

|α|!
‖Gα‖2.

The AC of Assumption 3.1 implies D is compact. So, there exists ∆ > 0 such that

‖Λ‖−1
F · ‖H(u, x)‖ ≤ ∆ ∀ 0 6= Λ ∈ R

n×n, ∀u ∈ ∂S, ∀x ∈ D.

Here H(u, x) is defined in (3.5). Assumption 3.1 implies H(u, x) ≻ 0 for all u ∈ ∂S and
x ∈ D. This is because otherwise if H(u, x) is not positive definite, we can find 0 6= v ∈ R

n

such that vTH(u, x)v = 0, i.e.,

∫ 1

0

∫ t

0
vT
(

−∇xx

(
Λ •G(u+ s(x− u)

) )

v ds dt = 0.

Since G(x) is matrix concave on the convex domain D, we must have

vT
(

−∇xx

(
Λ •G(u+ s(x− u)

))

v = 0 ∀ 0 ≤ s ≤ t ≤ 1.

In particular, we get vT
(

−∇xx

(
Λ •G(u)

))

v = 0, which contradicts Assumption 3.1. There-

fore, by the compactness of ∂S and D, there exists δ > 0 satisfying

‖Λ‖−1
F ·H(u, x) � δIn ∀u ∈ ∂S, ∀x ∈ D, ∀ 0 6= Λ � 0.

By Theorem 29 in [5] and the AC for D, there exists an integer N∗ such that for every
0 6= Λ � 0 and u ∈ ∂S, there exist sos matrices F0(x), F1(x), . . . , Fr(x) satisfying

‖Λ‖−1
F ·H(u, x) =

r∑

k=0

gk(x)Fk(x), (3.6)

deg(Fk) + 2dk ≤ 2(N∗ − 1), k = 0, , . . . , r.

12



Now we claim S = LN∗ . Since S ⊆ LN∗ , we need to show LN∗ ⊆ S. Suppose otherwise
there exists x̂ ∈ LN∗/S. Since D is compact convex and G(x) is matrix concave on D, S is
closed and convex. By Hahn-Banach Theorem, there exist 0 6= ℓ ∈ R

n and u ∈ ∂S satisfying

ℓT (x− u) ≥ 0 ∀x ∈ S, ℓT (x̂− u) < 0.

Consider the linear optimization problem (3.3) with this ℓ. The point u ∈ ∂S is a minimizer
of (3.3), and it is also a local minimizer of

min
x∈Rn

ℓTx subject to G(x) � 0. (3.7)

Since G(x̃) ≻ 0 and G(x) is matrix concave, it holds that

G(u) +
n∑

i=1

(x̃i − ui)
∂G(x)

∂xi

∣
∣
x=u

� G(x̃) ≻ 0.

This means the Mangasarian-Fromovitz (MF) condition holds at u for optimization problem
(3.7), and thus the first order necessary condition holds at u (see [22, p. 306]). So, there
exists Λ � 0 satisfying (3.4). From (3.5) and (3.6), we know there exist sos polynomials p0,
p1, . . . , pr satisfying

ℓT (x− u) = Λ •G(x) +
r∑

k=0

pk(x)gk(x),

deg(pk) + 2dk ≤ 2N∗, k = 0, 1, . . . , r.

So, there are symmetric matrices W0,W1, . . . ,Wr � 0 such that

ℓT (x− u) = Λ •G(x) +

r∑

k=0

gk(x)[x]
T
N∗−dk

Wk[x]N∗−dk .

By definition of matrices B
(N∗)
k,β in (3.1), it holds the identity

ℓT (x− u) = Λ •G(x) +

r∑

k=0

Wk •




∑

β∈N≤2d

xβB
(N∗)
k,β



 .

By the choice of x̂, there exists ŷ such that x̂ = (ŷe1 , . . . , ŷen), G(ŷ) � 0, and every BN∗

k (ŷ) � 0.
So, if each x̂α is replaced by ŷα in the above, then

ℓT (x̂− u) = Λ • G(ŷ) +

r∑

k=0

Wk •B
N∗

k (ŷ) ≥ 0,

which contradicts ℓT (x̂− u) < 0. Hence, we must have S = LN∗ .
For every N ≥ N∗, the relation S ⊆ LN ⊆ LN∗ implies S = LN .

Assumption 3.1 requires to check −∇xx(Λ • G(u)) ≻ 0 for every nonzero Λ � 0 and
u ∈ ∂S, which is sometimes very inconvenient. However, Assumption 3.1 is true if G(x) is
strictly matrix concave on D, that is, for every 0 6= ξ ∈ R

m the Hessian −∇xx(ξ
TG(x)ξ) ≻ 0

for all x ∈ D. So, the following is a consequence of Theorem 3.2.
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Figure 3: The shaded area is the convex set in Example 3.4, and the curve is detG(x) = 0.

Corollary 3.3. Suppose S ⊆ int(D), D is convex, and G(x̃) ≻ 0 for some x̃ ∈ D. If G(x)
is strictly matrix concave on D and the archimedean condition holds, then S = LN for all N
big enough.

We now give an example of how to apply Theorem 3.2 and Corollary 3.3.

Example 3.4. Consider D = [−1, 1]2 is the square, g1(x) = 1− x21, g2(x) = 1− x22 and

G(x) =

[
1− x21 −

1
2x

2
2

1
6(x

3
1 + x32)

1
6(x

3
1 + x32) 1− 1

2x
2
1 − x22

]

.

The matrix G(x) is strictly concave over D, because for every 0 6= ξ ∈ R
2 the Hessian

−∇xx(ξ
TG(x)ξ) =

[
2ξ21 + ξ22 − 2ξ1ξ2x1 0

0 ξ21 + 2ξ22 − 2ξ1ξ2x2

]

is positive definite for all x ∈ [−1, 1]2. So, the set S = {x ∈ [−1, 1]2 : G(x) � 0} is convex.
Its boundary lies on the curve detG(x) = 0, which is drawn of Figure 3. The convex region
surrounded by detG(x) = 0 is the set S, which is drawn in the shaded area in Figure 3. Some
part of the curve detG(x) = 0 does not lie on the boundary ∂S, because G(x) is not positive
semidefinite there. The determinant detG(x) is not concave (also not convex) over [−1, 1]2,
e.g., its Hessian at (0, 3/4) is indefinite.

By Corollary 3.3, the LN in (3.2) represents S for N big enough. Actually, we have
L2 = S in this example. This justification would be obtained by investigating the degree
bound N∗ in (3.6). When Λ = ξξT has rank one, the matrix H(u, x) defined in (3.5) is

[
1
2(2ξ

2
1 + ξ22)−

1
3ξ1ξ2(2u1 + x1) 0
0 1

2 (ξ
2
1 + 2ξ22)−

1
3ξ1ξ2(2u2 + x2)

]

.
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Note the identities

1

2
(2ξ21 + ξ22)−

1

3
ξ1ξ2(2u1 + x1) =

1

3
(ξ1u1 − ξ2)

2 +
1

6
(ξ1x1 − ξ2)

2

+
ξ21
2

+
ξ21
3
(1− u21) +

ξ21
6
(1− x21),

1

2
(ξ21 + 2ξ22)−

1

3
ξ1ξ2(2u2 + x2) =

1

3
(ξ2u2 − ξ1)

2 +
1

6
(ξ2x2 − ξ1)

2

+
ξ22
2

+
ξ22
3
(1− u22) +

ξ22
6
(1− x22).

So, the representation of H(u, x) in (3.6) is true for N∗ = 2 when Λ = ξξT has rank one.
Every Λ � 0 is a sum of rank one matrices like ξξT . Thus, the representation of H(u, x) in
(3.6) is also true for N∗ = 2 when Λ � 0 is general. From the proof of Theorem 3.2, we can
conclude that L2 is a correct SDP representation of S.

The construction of LN in (3.2) is simply based on gi(x) and G(x). Theorem 3.2 and
Corollary 3.3 tell us that LN is a correct SDP representation for S for N big enough, when
G(x) is strictly concave over D. On the other hand, the degree bound N is not given
explicitly there, which is not favorable in applications. But the situation is not that bad in
many cases. As we have seen in Example 3.4, the degree boundN would possibly be obtained
by investigating the representation of H(u, x) in (3.6). We can assume Λ is a rank one matrix,
and then use the strict matrix concavity of G(x) to determine the degree bound N∗ in (3.6).
This approach would work when S is special like in Example 3.4. For general case, the degree
bound N∗ in (3.6) is usually very difficult to get, as one would imagine. But we have the same
difficulty even when G(x) is scalar. In [5], when S is defined by strictly concave polynomials,
it is only shown that the Lasserre type constructions would give a correct lifted LMI when
N is big enough, but no explicit degree bounds are given there. An interesting future work
is to estimate good degree bounds.

We list some classes of G(x) such that the N∗ in (3.6) is relatively easy to estimate.

1. Suppose G(x) is of the form

G(x) = A0(x) + f1(x)A1 + · · ·+ fk(x)Ak

where A0(x) is linear, every fi(x) is scalar and A1, . . . , Ak � 0. Let

Hfi(u, x) =

∫ 1

0

∫ t

0
−∇xxfi(u+ s(x− u))dsdt.

Then, the H(u, x) in (3.5) has the expression

H(u, x) =
k∑

i=1

Hfi(u, x)Λ • Ai.

Note that Λ •Ai ≥ 0 whenever Λ � 0. Clearly, if every fi(x) is strictly concave over D,
then G(x) is also strictly matrix concave over D. Therefore, the N∗ in (3.6) would be
investigated through studying the degree bound of the representation

Hfi(u, x) = σ0(x) + g1(x)σ1(x) + · · ·+ gr(x)σr(x)
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where each σi(x) is sos. This is relatively easier to do, because the above Hfi(u, x) is
independent of ξ.

2. Suppose G(x) is of the form

G(x) = A(x) + diag(f1(x), . . . , fm(x))

where A(x) is linear in x. When Λ = ξξT has rank one, we have the expression

H(u, x) =

m∑

i=1

ξ2iHfi(u, x).

The G(x) is strictly matrix concave over D if and only if every fi(x) is so. Thus,
the N∗ in (3.6) would possibly be obtained from estimating the degree bound for the
representation of Hfi(u, x) as in the above.

We would like to remark that the smallest Ld in (3.2) is a lifted LMI for S if G(x)
satisfies the q-module matrix concavity given in the next section. This is a consequence of
Theorem 4.2 and Corollary 4.3 that consider the more general case of G(x) being rational.
This leads to our next section.

4 Rational matrix inequality

This section assumes S = {x ∈ D : G(x) � 0} is defined by a matrix rational function G(x),
i.e., every entry of G(x) is rational. Suppose G(x) is matrix-concave on D. As before, the
domain D = {x ∈ R

n : g1(x) ≥ 0, . . . , gr(x) ≥ 0} is still defined by polynomials. The case
of G(x) being a scalar rational function is discussed in [18]. This section discusses the more
general case of G(x) being a matrix. We first construct an SDP relaxation for S, and then
prove it represents S when G(x) satisfies certain conditions.

Suppose the matrix rational function G(x) is given in the form

G(x) =
1

den(G(x))

∑

α∈Nn: |α|≤deg(G)

xαFα, (4.1)

where Fα ∈ R
m×m are symmetric matrices, den(G(x)) is the denominator of G(x), and

deg(G) is the degree of G(x), which equals the maximum of degrees of the denominator and
numerator. Assume den(G(x)) is nonnegative on D. We say G(x) is q-module matrix concave
over D if for every ξ ∈ R

m there exist sos polynomials σi,j(x, u) such that

den(G(x))den(G(u))2 ·
(

ξTG(u)ξ + (∇xξ
TG(x)ξ)T

∣
∣
∣
x=u

(x− u)− ξTG(x)ξ
)

=

m∑

i=0
gi(x)

(
m∑

j=0
gj(u)σij(x, u)

)
(4.2)

is an identity in (x, u). The above g0 ≡ 1. The condition (4.2) is based on Putinar’s
Positivstellensatz [21]. Clearly, if G(x) is q-module matrix concave over D, then it must also
be matrix concave over D. We would like to remark that the S considered in Section 3 is a
special case here (the denominator den(G) is 1).
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Now we turn to the construction of a lifted LMI for S. Assume G(x) is q-module matrix
concave over D and (4.2) holds. Let

d = max

{

max
0≤i,j≤r

⌈12 degx(giσij)⌉,
1
2 deg(G)

}

. (4.3)

For i = 0, . . . , r, define matrices P
(i)
β , Q

(i)
α such that

gi(x)
den(G(x)) [x]d−di [x]

T
d−di

=
∑

α∈Nn:|α|+|LE(den(G))|≤2d

Q
(i)
α xα +

∑

β∈N≤2d:β<LE(den(G))

P
(i)
β

xβ

den(G(x)) .

(4.4)
Here LE(p) denotes the exponent of the leading monomial of p(x) in the lexicographical
ordering (x1 > x2 > · · · > xn), that is, x

α > xβ if the first nonzero entry of α − β is bigger
than 0. Let y be a vector indexed by α ∈ N

n with |α|+ |LE(den(G))| ≤ 2d, and z be a vector
indexed by β ∈ N≤2d with β < LE(den(G)). Define linear matrix pencils

Qi(y, z) =
∑

α∈Nn:|α|+|LE(den(G))|≤2d

Q
(i)
α yα +

∑

β∈N≤2d:β<LE(den(G))

P
(i)
β zβ , i = 0, 1, . . . , r.

(4.5)

Here P
(i)
α , Q

(i)
α are defined in (4.4). Suppose G(x) can be written as

G(x) =
∑

α∈Nn:|α|+|LE(den(G))|≤2d

F (1)
α xα +

∑

β∈N≤2d:β<LE(den(G))

F
(2)
β

xβ

den(G(x))
,

then define the linear matrix pencil

F (y, z) =
∑

α∈Nn:|α|+|LE(den(G))|≤2d

F (1)
α yα +

∑

β∈N≤2d:β<LE(den(G))

F
(2)
β zβ .

Clearly, S can be equivalently described as

S =

{

(ye1 , . . . , yen)

∣
∣
∣
∣
∣

∃x ∈ R
n, yα = xα, zβ = xβ

den(G(x)) ∀α, β

F (y, z) � 0, Qi(y, z) � 0, i = 0, . . . , r

}

.

If we remove yα = xα, zβ = xβ

den(G(x)) in the above, then S is a subset of

Lqmod =

{

x ∈ R
n

∣
∣
∣
∣

∃ y, z, y0 = 1, x1 = ye1 , . . . , xn = yen ,
F (y, z) � 0, Qi(y, z) � 0, i = 0, . . . , r

}

. (4.6)

So, S ⊆ Lqmod. We are interested in conditions guaranteeing S = Lqmod.

Lemma 4.1. Assume S ⊂ int(D) and G(x̃) ≻ 0 for some x̃ ∈ D. Suppose G(x) is q-module
matrix concave over D. If v ∈ ∂S, den(G(v)) > 0, and aT (x− v) ≥ 0 for all x ∈ S, then

den(G(x)) · (aT (x− v)− Λ •G(x)) =
r∑

i=0

gi(x)σi(x)

for some Λ � 0 and sos polynomials σi with deg(giσi) ≤ 2d.
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Proof. Consider the linear optimization problem

min
x∈int(D)

aTx subject to G(x) � 0.

The point v ∈ ∂S is an optimizer. Since den(G(v)) > 0, G(x) is differentiable at v. Since
S ⊂ int(D), v is in the interior of D. Because G(x̃) ≻ 0 (the Slater’s condition holds) and
G(x) is matrix concave on D, there exists Λ � 0 such that (see [22, p. 306])

a = ∇x(Λ •G(v)), Λ •G(v) = 0.

Hence, we get the identity

aT (x− v)− Λ •G(x) = Λ •G(v) +∇x(Λ •G(v))T (x− v)− Λ •G(x).

Since Λ � 0, we have a decomposition Λ =
∑K

i=1 λ
(i)(λ(i))T . Then, it holds that

aT (x− v)− Λ •G(x) =

K∑

i=1

{

(λ(i))TG(v)λ(i)+∇x((λ
(i))TG(v)λ(i))T (x− v)− (λ(i))TG(x)λ(i)

}

.

So, the lemma readily follows the q-module matrix concavity of G(x).

For a function f(x), denote by Z(f) its real zero set, i.e., Z(f) = {x ∈ R
n : f(x) = 0}.

Theorem 4.2. Assume S is closed and convex, S ⊂ int(D), G(x̃) ≻ 0 for some x̃ ∈ D, and

dim
(
Z(den(G)) ∩ ∂S

)
< n− 1.

If G(x) is q-module matrix concave over D, then S = Lqmod.

Proof. Since S ⊆ Lqmod, it is sufficient for us to prove the reverse containment. By a contra-
diction proof, suppose otherwise there exists x̂ ∈ Lqmod/S and (ŷ, ẑ) such that

x̂ = (ŷe1 , . . . , ŷen), F (ŷ, ẑ) � 0, Qi(ŷ, ẑ) � 0, i = 0, . . . , r.

Since S is convex and closed, by Hahn-Banach Theorem, there exists a supporting hyperplane
{aTx = b} of S such that aTx ≥ b for all x ∈ S and aT x̂ < b. Let v ∈ ∂S be a minimizer of
aTx on S. Since dim

(
Z(den(G)) ∩ ∂S

)
< n − 1, by continuity, the supporting hyperplane

{aTx = b} can be chosen to satisfy den(G(v)) > 0. By Lemma 4.1, we have

aT (x− v) = Λ •G(x) +

r∑

i=0

gi(x)

den(G(x))
σi(x) (4.7)

for some sos polynomials σi such that every deg(giσi) ≤ 2d. If we write σi as

σi(x) = [x]Td−di
Wi[x]d−di
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for symmetric Wi � 0 (i = 0, 1, . . . , r), then the identity (4.7) becomes

aT (x− v) = Λ •G(x) +
r∑

i=0

(
gi(x)

den(G(x))
[x]d−di [x]

T
d−di

)

•Wi = Λ •G(x)+

r∑

i=0




∑

α∈Nn:|α|+|LE(den(G))|≤2d

Q(i)
α xα +

∑

β∈Nn:β<LE(den(G))

P (i)
α

xβ

den(G(x))



 •Wi.

In the above identity, if we replace every xα by ŷα and xβ

den(G(x)) by ẑβ, then

aT x̂− b = Λ • F (ŷ, ẑ) +

r∑

i=0

Qi(ŷ, ẑ) •Wi ≥ 0,

because all Λ, F (ŷ, ẑ), Qi(ŷ, ẑ),Wi � 0. This contradicts aT x̂ < b. So, S = Lqmod.

The condition of q-module matrix concavity requires checking (4.2) for every ξ ∈ R
m. In

many situations this is almost impossible. However, if we consider ξ as an indeterminant,
then a sufficient condition guaranteeing (4.2) is

den(G(x))den(G(u))2 ·
(

ξTG(u)ξ + (∇xξ
TG(x)ξ)T

∣
∣
∣
x=u

(x− u)− ξTG(x)ξ
)

=

m∑

i=0
gi(x)

(
m∑

j=0
gj(u)σij(x, u, ξ)

)

,
(4.8)

where every σij(x, u, ξ) is now an sos polynomial in (x, u, ξ). If G(x) satisfies (4.8), we
say G(x) is uniformly q-module matrix concave over D. Clearly, the corollary below follows
Theorem 4.2.

Corollary 4.3. Assume S is closed and convex, S ⊂ int(D), G(x̃) ≻ 0 for some x̃ ∈ D, and

dim
(
Z(den(G)) ∩ ∂S

)
< n− 1.

If G(x) is uniformly q-module matrix concave over D, then S = Lqmod.

We would like to remark that the Lqmod in (4.6) is equivalent to the LN in (3.2) for
N = d when G(x) is a matrix polynomial (its denominator is 1). Therefore, Theorem 4.2
and Corollary 4.3 imply that Ld defined in (3.2) is also a correct SDP representation for S
under the (uniform) q-module matrix concavity.

Now we give some examples on how to apply Theorem 4.2 and Corollary 4.3.

Example 4.4. Consider the set S =
{
x ∈ R

2
+ : G(x) � 0

}
where

G(x) =

[
7− x1 + 2x2 5

5 11− x2

]

−
1

x1x2

[
x1 + x32 x22

x22 x2

]

.

Its domain D = R
2
+. The determinant of G(x) is

1

x1x2
(x21x

2
2 − 11x21x2 − 2x1x

3
2 + 15x1x

2
2 + 54x1x2 − 11x1 + x42 − 11x32 + 8x22 − 7x2 + 1).
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Figure 4: The shaded area is the convex set in Example 4.4, and the curve is detG(x) = 0.

Clearly, the boundary ∂S lies on the curve det(G(x)) = 0. It is a planar curve of degree 4,
and is drawn in Figure 4. The G(x) here is uniformly q-module matrix concave over R

2
+,

because
x1x2u

2
1u

2
2 ·
(

ξTG(u)ξ + (∇xξ
TG(x)ξ)T

∣
∣
∣
x=u

(x− u)− ξTG(x)ξ
)

=

x2u
2
2(u1ξ2 − x1ξ2 + u1x2ξ1 − u2x1ξ1)

2 + x1u
2
1ξ

2
1(u2 − x2)

2.

Hence, the set S here is convex, and by Corollary 4.3 it has the following lifted LMI

[
7− x1 + 2x2 5

5 11− x2

]

−

[
z10 + z03 z02

z02 z01

]

� 0,











0 0 0 0 1 0
0 0 1 0 x1 x2
0 1 0 x1 x2 0
0 0 x1 0 y20 y11
1 x1 x2 y20 y11 y02
0 x2 0 y11 y02 0











+











z00 z10 z01 z20 0 z02
z10 z20 0 z30 0 0
z01 0 z02 0 0 z03
z20 z30 0 z40 0 0
0 0 0 0 0 0
z02 0 z03 0 0 z04











� 0,





0 0 1
0 0 x1
1 x1 x2



+





z10 z20 0
z20 z30 0
0 0 0



 � 0,





0 1 0
1 x1 x2
0 x2 0



+





z01 0 z02
0 0 0
z02 0 z03



 � 0.

The set of x satisfying the above LMIs is drawn in the shaded area of Figure 4. The convex
region there surrounded by detG(x) = 0 is the set S, which is precisely the shaded area. Some
components of the curve detG(x) = 0 do not lie on the boundary ∂S, because G(x) � 0 fails
there. This confirms the above lifted LMI is correct.
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Figure 5: The shaded area is the convex set in Example 4.5, and the curve is detG(x) = 0.

Example 4.5. Consider the set S =
{
x ∈ R

2 : G(x) � 0
}
where

G(x) =

[
1− 2x21 − 2x1x2 − x22 x21

x21 1− x21

]

+
x42

x21 + x22

[
−1 1
1 −1

]T

.

Clearly, the boundary of S lies on the curve detG(x) = 0, which is drawn in Figure 5. It
has three connected components. The domain D = R

2, and the above G(x) is uniformly
q-module matrix concave over R2, because

‖x‖22 · ‖u‖
4
2 ·
(

ξTG(u)ξ + (∇xξ
TG(x)ξ)T

∣
∣
∣
x=u

(x− u)− ξTG(x)ξ
)

=
(

9∑

i=1
f2
i

)

· (ξ1 − ξ2)
2 + 1

2‖x‖
2
2 · ‖u‖

4
2 · ‖x− u‖22 · ξ

2
1

where the polynomials fi are given as below

f1 = −u1u2x
2
2 − u1u2x

2
1 + u1u

2
2x2 + u21u2x1, f6 =

1√
2
(−u22x

2
2 + u32x2 − u21x

2
1 + u31x1),

f2 = −u1u2x
2
2 + u1u2x

2
1 + u1u

2
2x2 − u21u2x1, f7 = −2u1u2x1x2 + u1u

2
2x1 + u21u2x2,

f3 =
1√
2
(−u22x1x2 + u32x1 − u21x1x2 + u31x2), f8 = u22x

2
1 − u21x

2
2,

f4 =
1√
2
(u22x1x2 − u32x1 − u21x1x2 + u31x2), f9 = −u1u

2
2x1 + u21u2x2.

f5 =
1√
2
(u22x

2
2 − u32x2 − u21x

2
1 + u31x1),

So, the set S is convex, and by Corollary 4.3 a lifted LMI for it is

[
1− 2y20 − 2y11 − y02 − z04 y20 + z04

y20 + z04 1− y20 − z04

]

� 0,
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









0 0 0 1 0 0
0 1 0 x1 x2 0
0 0 0 x2 0 0
1 x1 x2 y20 − y02 y11 y02
0 x2 0 y11 y02 0
0 0 0 y02 0 0











+











z00 z10 z01 −z02 z11 z02
z10 −z02 z11 −z12 −z03 z12
z01 z11 z02 −z03 z12 z03
−z02 −z12 −z03 z04 −z13 −z04
z11 −z03 z12 −z13 −z04 z13
z02 z12 z03 −z04 z13 z04











� 0.

The feasible points x satisfying the above are drawn in the shaded area of Figure 5. Only
one component of the curve detG(x) = 0 lies on the boundary ∂S. The other two do not
touch S since G(x) � 0 fails there. This confirms that the above LMI represents S.

Now we make some remarks about the condition of (uniform) q-module matrix concavity.
When the denominator den(G(x)) is nonnegative onD, G(x) � 0 is inequivalent to den(G(x))·
G(x) � 0, and the latter is a polynomial matrix inequality. Thus, one would reduce a rational
matrix inequality to a polynomial matrix inequality and then apply the results of Sections 2
and 3. However, we would like to point out that multiplying den(G(x)) usually destroys the
matrix concavity of G(x), and the resulting den(G(x)) ·G(x) typically is not matrix concave
or (uniform) matrix sos-concave. In Examples 4.4 and 4.5, it would be easily verified that
the den(G(x)) ·G(x)’s there are not matrix concave.

We now list some classes of rational G(x) that are (uniformly) q-module matrix concave.

1. Suppose G(x) is of the form

G(x) = A0(x) + f1(x)A1 + · · ·+ fk(x)Ak

where A0(x) is linear, f1(x), . . . , fk(x) are q-module concave rational functions over D,
and A1, . . . , Ak � 0. Then G(x) is clearly q-module concave over D.

2. Suppose G(x) is of the form

G(x) = F (x) + diag(f1(x), . . . , fm(x))

where F (x) is linear and each fi(x) is a scalar rational function. Clearly, G(x) is matrix
concave over D if and only if every gi(x) is so, and G(x) is (uniformly) q-module matrix
concave if and only if every gi(x) is so.

5 Conclusions

This paper gives explicit constructions of SDP representations for the set S = {x ∈ D :
G(x) � 0} when G(x) is a matrix polynomial or rational function, and proves sufficient
conditions justifying them. These conditions are based on the matrix concavity of G(x).

We would like to remark that the SDP relaxations (2.2) and (3.2) would be tightened if
we replace G(y) � 0 by a bigger LMI. This follows an construction introduced by Henrion and
Lasserre [9, II.D.]. Note that G(x) � 0 is equivalent to the PMI (use ⊗ to denote Kronecker
product of matrices)

G(x)⊗ [x]k[x]
T
k � 0.

The basic idea of their construction is that replacing every monomial xα in the expansion of
G(x) ⊗ [x]k[x]

T
k by a linear moment yα. Then, one would get a bigger LMI, say, K(y) � 0.
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Since G(x) is the first block of G(x) ⊗ [x]k[x]
T
k , G(y) is a leading principle submatrix of

K(y). Thus, the LMI K(y) � 0 is tighter than G(y) � 0 in relaxing the set S. Therefore,
if the constructions (2.2) and (3.2) use K(y) � 0 instead of G(y) � 0, we can get similar
semidefinite representability results like Theorems 2.2 and 3.2. On the other hand, the LMI
G(y) � 0 is simpler than K(y) � 0, and hence might be preferable in applications. Under the
archimedean condition, Henrion and Lasserre [9] proved the asymptotic convergence of the
hierarchy of SDP relaxations for minimizing a polynomial function subject to G(x) � 0.

The matrix concavity is a strong condition for S to be convex. Generally it is very
difficult to check. A stronger but relatively easier checkable one is matrix sos-concavity. This
condition would also be difficult to check, e.g., for the quadratic case it is already NP-hard.
A further stronger but much easier checkable condition is the uniform matrix sos-concavity,
which would be done by solving a single SDP. When G(x) is rational, similar conditions are
(uniform) q-module matrix concavity. Under these conditions, we justified some explicit SDP
representations for S. These conditions are certainly very strong. However, to the author’s
best knowledge, there are no more general conditions than them for justifying the lifted LMIs
constructed in this paper. An interesting future work is to seek weaker conditions justifying
some efficiently constructible SDP representations.

Acknowledgement The author would like to thank Bill Helton and the anonymous referees
for fruitful suggestions on improving this paper.
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