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Maximal lattice-free polyhedra:

finiteness and an explicit description in dimension three
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Abstract

A convex set with nonempty interior is maximal lattice-free if it is inclusion-maximal with respect
to the property of not containing integer points in its interior. Maximal lattice-free convex sets are
known to be polyhedra. The precision of a rational polyhedron P in Rd is the smallest natural
number s such that sP is an integral polyhedron. In this paper we show that, up to affine mappings
preserving Zd, the number of maximal lattice-free rational polyhedra of a given precision s is finite.
Furthermore, we present the complete list of all maximal lattice-free integral polyhedra in dimension
three. Our results are motivated by recent research on cutting plane theory in mixed-integer linear
optimization.
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1 Introduction

A convex set K ⊆ Rd with nonempty interior is called lattice-free if the interior of K does not contain a
point of Zd and maximal lattice-free if K is inclusion-maximal in the class of lattice-free convex sets (for
different definitions of lattice-freeness see, for instance, [Rez86, Sca85, Seb99]). Every maximal lattice-free
set K is a polyhedron with an integer point in the relative interior of each facet of K (see, for instance,
[Lov89, Proposition 3.3]).

The study of maximal lattice-free polyhedra is motivated by recent research in mixed-integer linear
optimization. Cutting planes for mixed-integer linear programs can be obtained from a simultaneous
consideration of several rows of a simplex tableau (see, for instance, [ALW09, ALWW07, AWW09b,
Bal71, BBCM09, BC07, CM08, DR08, DW08, Esp08, Zam09]). Such cutting planes are deducible from
lattice-free convex sets. Furthermore, the strongest cutting planes are derived from maximal lattice-free
polyhedra. It is therefore natural to ask for a characterization of maximal lattice-free polyhedra. Since
we aim at algorithmic applications, we restrict considerations to the class of maximal lattice-free rational
polyhedra. In this paper we answer the following two questions:

I. Given the dimension d ∈ N and the precision of a maximal lattice-free rational polyhedron P , how
many different shapes are possible for P?

II. How do maximal lattice-free integral polyhedra in dimension three look like?

The answer to the first question is that P can only have finitely many shapes (a precise formulation will
be given in the following section). In particular, we prove the following result.

Theorem 1.1. Let Id denote the set of all lattice-free integral polyhedra P ⊆ Rd such that P is not
properly contained in another lattice-free integral polyhedron. Then there exists a constant N depending
only on d, and polyhedra P1, . . . , PN ∈ Id such that for every P ∈ Id one has P = UPj + v for some
unimodular matrix U ∈ Zd×d, integral vector v ∈ Zd, and j ∈ {1, . . . , N}.

The proof of Theorem 1.1 suggests that the constant N grows rapidly in d. Moreover, the proof
does not imply any quick constructive procedure for enumeration of the polyhedra P1, . . . , PN . Having
applications in mixed-integer cutting plane theory in mind, it is thus desirable to provide a precise
classification for small dimensions. Notice that finite termination of a cutting plane algorithm only

1

http://arxiv.org/abs/1010.1077v2


requires cutting planes associated with lattice-free integral polyhedra as derived in Theorem 1.1 (see
[BCM10, DL09, DPW10]). The explicit description of Id in Theorem 1.1 for d = 1, 2 is folklore. However,
already the class I3 is rather complex. Thus, the complete enumeration of Id for an arbitrary d ≥ 3 is
challenging. We provide a classification of an important subclass of I3.

Theorem 1.1 follows directly from Theorem 2.1 by setting s = 1. The classification of a subclass of
I3 is stated in Theorem 2.2.

2 Main results and notation

Let us first introduce the notation used in the formulations of our main results. (Introduction of the
standard notation is postponed to the end of this section.) For the relevant background information
in convex geometry, in particular with respect to polyhedra and lattices, we refer to the books [Bar02,
Gru07, GL87, Roc72].

The intersection of finitely many closed halfspaces is said to be a polyhedron. By Pd we denote the
set of all polyhedra in Rd (where the elements of Pd do not have to be full-dimensional). A bounded
polyhedron is called a polytope. A polyhedron P ∈ Pd is said to be integral if P = conv(P ∩ Zd); and
P is said to be rational if sP := {sx ∈ Rd : x ∈ P} is an integral polyhedron for some finite integer
s ≥ 1. The precision of a rational polyhedron P is the smallest integer s ≥ 1 such that sP is an integral
polyhedron.

If Λ is a lattice in Rd, then a polyhedron P ∈ Pd is said to be Λ-free if int(P ) ∩ Λ = ∅. For Λ = Zd

we say “lattice-free” rather than “Λ-free”. In this paper, we restrict Λ to be sZd for some s ∈ N.
Our results are concerned with the interplay of the following three properties of polyhedra: integrality

(abbreviated with “i”), Λ-freeness (abbreviated with “f” and an additional “s” in brackets to indicate the
dependency on Λ = sZd), and inclusion-maximality in a given class (abbreviated with “m”). By Pd

i we
denote the set of integral polyhedra belonging to Pd, by Pd

if(s) the set of Λ-free polyhedra belonging to
Pd
i , and by Pd

ifm(s) the set of elements of Pd
if(s) which are maximal within Pd

if(s) with respect to inclusion.
Let Aff(Λ) denote the group of all affine transformations T in Rd with T (Λ) = Λ. It is not hard to

see that Aff(Λ) ⊆ Aff(Zd). Henceforth, the transformations in Aff(Λ) are called Λ-preserving, while the
transformations in Aff(Zd) are called unimodular. If a set P can be mapped to a set Q by a Λ-preserving
transformation we simply say that both sets are equivalent. The group Aff(Λ) has a natural action on Pd

i .
Typically, we are interested in polyhedra in Pd

i identified modulo Aff(Λ), since this identification does
not change affine properties of integral polyhedra relative to the lattice Λ. In particular, two polyhedra
P,Q ∈ Pd

i which coincide up to an affine transformation in Aff(Λ) contain the same number of lattice
points in Zd and Λ on corresponding faces.

Let us assume that P ∈ Pd is a maximal lattice-free rational polyhedron with precision s. Thus, sP is
an integral polyhedron and the maximality and lattice-freeness of P with respect to the standard lattice
Zd transfers one-to-one into a maximality and Λ-freeness of sP with respect to the lattice Λ = sZd.
Thus, instead of analyzing “maximal lattice-free rational polyhedra” (which correspond to cutting planes
when rational data is assumed) we can equivalently consider the more convenient set of “maximal Λ-free
integral polyhedra”. Indeed, from an analytical point of view, the latter set is easier to handle since
results from the literature can be used which are stated in terms of integral polyhedra. We are now ready
to present our first main result.

Theorem 2.1. Let d, s ∈ N. Then Pd
ifm(s)/Aff(Λ) is a finite set.

We now relate maximal Λ-free integral polyhedra to the set Pd
ifm(s). Let Cd

fm(s) be the class of all
Λ-free convex sets in Rd which are not properly contained in another Λ-free convex set. The elements
of Cd

fm(s) are polyhedra (see [Lov89, Proposition3.3]). Thus, Cd
fm(s) is the class of all maximal Λ-free

polyhedra in Rd. Let Pd
fmi(s) := Pd

i ∩ Cd
fm(s) be the class of all maximal Λ-free integral polyhedra in

Rd. By definition we have Pd
fmi(s) ⊆ Pd

ifm(s). Both classes, Pd
fmi(s) and Pd

ifm(s), are of interest in cutting
plane theory (see [DPW10]). In particular, the complete characterization of pairs of s and d for which the
equality Pd

fmi(s) = Pd
ifm(s) holds is unknown. For d = 1, s ≥ 1 and d = 2, s = 1 equality can be verified in

a straightforward way. On the other hand, for d ≥ 2, s ≥ 3 the inclusion is strict. For instance, consider
the polyhedron Qd

s := conv({o, (2s+1)e1, (2s+1)e1+e2, (2s−1)e1+(2s−1)e2})+ lin({e3, . . . , ed}). It is
easy to verify that Qd

s ∈ Pd
ifm(s)\Pd

fmi(s). The remaining cases (that is, d = 2, s = 2 and d ≥ 3, 1 ≤ s ≤ 2)
are open.

The finiteness of Pd
fmi(s)/Aff(Λ) follows directly from Theorem 2.1. This has two consequences: First,

if we choose s = 1, then for every dimension d, up to unimodular transformations, there is only a finite
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number of maximal lattice-free integral polyhedra. Second, if we fix some integer s ≥ 1 and consider the
set of polytopes with vertices in 1

s
Zd, then there is only a finite number of maximal lattice-free polytopes

in this set up to an affine transformation preserving Zd.
The second part of the paper deals with the classification of the set P3

fmi(1). As we show later (in
Proposition 3.1), we can restrict ourselves to polytopes within P3

fmi(1). Let Md be the set of all maximal
lattice-free integral polytopes in Rd. In dimension one, the set M1 consists of all intervals [n, n+ 1] for
an integer n. Thus, up to a unimodular transformation, [0, 1] is the only maximal lattice-free integral
polytope. In dimension two, it is easy to see that every element of M2 is equivalent to conv({o, 2e1, 2e2}).
In [AWW09a] it has been shown that, up to a unimodular transformation, there are only seven different
simplices in M3. In this paper we complete the classification of elements of M3 by proving the following
theorem.

Theorem 2.2. Let P ∈ M3. Then, up to a unimodular transformation, P is one of the following
polytopes (see Figure 1):

• one of the seven simplices

M1 = conv({o, 2e1, 3e2, 6e3}),
M2 = conv({o, 2e1, 4e2, 4e3}),
M3 = conv({o, 3e1, 3e2, 3e3}),
M4 = conv({o, e1, 2e1 + 4e2, 3e1 + 4e3}),
M5 = conv({o, e1, 2e1 + 5e2, 3e1 + 5e3}),
M6 = conv({o, 3e1, e1 + 3e2, 2e1 + 3e3}),
M7 = conv({o, 4e1, e1 + 2e2, 2e1 + 4e3}),

• the pyramid M8 = conv(B ∪ {a}) with the base B = conv({±2e1,±2e2}) and the apex a = (1, 1, 2),

• the pyramid M9 = conv(B ∪ {a}) with the base B = conv({−e1,−e2, 2e1, 2e2}) and the apex a =
(1, 1, 3),

• the prism M10 = conv(B∪(B+u)) with the bases B and B+u, where B = conv({e1, e2,−(e1+e2)})
and u = (1, 2, 3),

• the prism M11 = conv(B ∪ (B + u)) with the bases B and B + u, where B = conv({±e1, 2e2}) and
u = (1, 0, 2),

• the parallelepiped M12 = conv({σ1u1 + σ2u2 + σ3u3 : σ1, σ2, σ3 ∈ {0, 1}}) where u1 = (−1, 1, 0),
u2 = (1, 1, 0), and u3 = (1, 1, 2).

We now introduce some further notation. Throughout the paper, d ∈ N is the dimension of the
underlying space. Elements of Rd are considered to be column vectors. Transposition is denoted by (·)⊤
and the origin by o. We denote by ej the jth unit vector. Its size will always be clear from the context.
For x, y ∈ Rd, we denote by [x, y] the line segment with endpoints x and y, and by [x, y〉 the ray (i.e., the
half-line) emanating from x and passing through y. An additive subgroup Λ of Rd is said to be a lattice
if the intersection of Λ with every compact set of Rd is finite. In this paper, for the sake of simplicity, we
fix our underlying lattice to be Zd, though, due to affine invariance, the obtained results are independent
of the concrete choice of the lattice.

Given a set K ⊆ Rd, we use the functionals conv(K) (convex hull of K), aff(K) (affine hull of K),
lin(K) (linear hull of K), int(K) (interior of K), relint(K) (relative interior of K), relbd(K) (relative
boundary of K), rec(K) (recession cone of K), and vert(K) (set of vertices of K). For K ⊆ Rd, vol(K)
denotes the volume of K in aff(K).

The dual lattice of Λ = sZd is Λ∗ = 1
s
Zd. By π we denote the projection onto the first d−1 coordinates,

i.e., the mapping π(x) := (x1, . . . , xd−1), where x := (x1, . . . , xd) ∈ Rd. This implies π(Λ) = sZd−1. If
K ⊆ Rd is a closed convex set with nonempty interior, then the lattice width of K (with respect to the
lattice Λ) is defined by

wΛ(K) := min
u∈Λ∗\{o}

w(K,u),

where w(K,u), for u ∈ Rd, is the width function given by

w(K,u) := max
x∈K

u⊤x−min
x∈K

u⊤x.
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(a) M1 (b) M2 (c) M3

(d) M4 (e) M5 (f) M6

(g) M7 (h) M8 (i) M9

(j) M10 (k) M11 (l) M12

Figure 1: All maximal lattice-free integral polytopes in dimension three

The lattice width of K with respect to Λ can be seen as the smallest number of “lattice slices” of K along
any nonzero vector in Λ∗.

Theorem 2.1 is proved in Section 3. In Section 4, we introduce the tools which we need for proving
Theorem 2.2 and we explain the idea of the proof. The proof of Theorem 2.2 is given in Sections 5–8.

3 The finiteness proof

In this section, we prove Theorem 2.1. Let us first highlight the main steps of the proof.

1. Reduction to polytopes. Every unbounded P ∈ Pd
ifm(s) is the direct product of an affine space

and a polytope in Pk
ifm(s) for some 1 ≤ k ≤ d (see Proposition 3.1). Thus, it suffices to verify

finiteness only for polytopes within Pd
ifm(s).

2. Bounding |P ∩ Λ|. Consider a polytope P ∈ Pd
ifm(s). We construct an upper bound on the

number of points of Λ on the boundary of P . For that, we use the lattice diameter. The lattice
diameter of P with respect to Λ is defined as the maximum of |l ∩ P ∩ Λ| − 1 over all lines l. We
show that the lattice diameter of P is bounded from above in terms of d and s only. This is done
as follows.

We assume by contradiction that, for some line l, |l ∩ P ∩ Λ| − 1 is a large number M . By a
Λ-preserving transformation, l = lin({ed}). Let P ′ be the projection of P onto the first d − 1
coordinates. Then π(l) = o and from P ∈ Pd

ifm(s) it follows int(P ′) ∩ π(Λ) 6= ∅ (see Lemma
3.7). Choose p ∈ int(P ′) ∩ π(Λ). Then we construct a k-dimensional simplex S with vertices
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o = p0, p1, . . . , pk in Zd−1 such that p is the only point of π(Λ) in the relative interior of S. This
construction is the key ingredient in our proof (see Lemma 3.6). Let λ0, . . . , λk be the barycentric
coordinates of p with respect to S. By results of [Hen83, LZ91] (see Theorem 3.4), the λi’s are
bounded from below in terms of d and s only. The length of (p+ l) ∩ P is bounded from below in
terms of λ0 and M . On the other hand, since P is Λ-free, the length of (p+ l)∩P is at most s. So,
if M is too large, this leads to a contradiction.

The upper bound on the lattice diameter implies an upper bound on |P ∩ Λ| (see Lemma 3.8).

3. Conclusion of finiteness. The upper bound on |P ∩ Λ| together with results of [Hen83, LZ91]
(see Theorem 3.5) implies an upper bound on the volume of P (see Theorem 3.3). All bounds only
depend on d and s. This, in turn, yields finiteness of Pd

ifm(s) (see Theorem 3.2).

The fact that we can restrict to the study of polytopes in Pd
ifm(s) is a consequence of the following

proposition. We point out that a similar result is true for the set Cd
fm(s) as well (see [Lov89, Proposi-

tion 3.1]).

Proposition 3.1. Let d, s ∈ N and let P ∈ Pd
ifm(s). Then there exists some k ∈ {1, . . . , d} and a polytope

P ′ ∈ Pk
ifm(s) such that P ≡ P ′ × Rd−k (mod Aff(Λ)).

Proof. If P is bounded, the assertion is trivial as we let k = d and P ′ = P . Let P be unbounded. By an
inductive argument, it suffices to show the existence of P ′ ∈ Pd−1

ifm (s) such that P ≡ P ′×R (mod Aff(Λ)).
Since P is unbounded, the recession cone of P contains nonzero vectors. Since P is integral, the

recession cone of P is an integral polyhedron (see, for example, [Sch86, §16.2]). Thus, the recession cone
of P contains a nonzero integer vector u. By scaling, we can assume that u ∈ Λ.

Applying a Λ-preserving transformation we assume that u = sed. The polyhedron P ′ := π(P ) ⊆ Rd−1

is π(Λ)-free. In fact, assume there exists a point p′ ∈ int(P ′)∩ π(Λ). Then int(P ) ∩ π−1(p′) is nonempty
and contains infinitely many points of Λ, a contradiction to the choice of P .

Since P ′ is π(Λ)-free, π−1(P ′) is Λ-free. By construction, P ⊆ π−1(P ′), and since P is maximal
in Pd

if(s) we even have P = π−1(P ′). Furthermore, P ′ ∈ Pd−1
ifm (s). In fact, if P ′ were not maximal

in Pd−1
if (s) we could find P ′′ ∈ Pd−1

if (s) such that P ′  P ′′. Then P is properly contained in the
Λ-free integral polyhedron π−1(P ′′), a contradiction to the assumptions on P . By construction, P ≡
P ′ × R (mod Aff(Λ)).

The following is well-known (see, for instance, [LZ91, Theorem2]).

Theorem 3.2. Let d, s ∈ N and let X ⊆ Pd
i be a set of polytopes. Then the set X/Aff(Λ) (where

Λ = sZd) is finite if and only if the volume of all elements of X is bounded from above by a constant
depending only on d and s.

In the remainder of this section we prepare the proof of the following theorem.

Theorem 3.3. Let d, s ∈ N. Then there exists a constant V (d, s) > 0 such that for every polytope P in
Pd
ifm(s) the inequality vol(P ) ≤ V (d, s) is fulfilled.

Once, Theorem 3.3 is proven, Theorem 2.1 is a direct consequence of Proposition 3.1, Theorem 3.2,
and Theorem 3.3.

The proof of Theorem 3.3 relies on results of Hensley [Hen83] and Lagarias and Ziegler [LZ91].
Hensley [Hen83] showed that the volume and the total number of integer points of a d-dimensional
integral polyhedron with precisely k > 0 interior integer points can be bounded in terms of d and k only.
Lagarias and Ziegler [LZ91] improved these bounds and generalized parts of Hensley’s results. In this
paper, we shall use the main results as well as some intermediate assertions from [Hen83] and [LZ91].

A polytope S is said to be a simplex if S is the convex hull of finitely many affinely independent
points. If S is a simplex in Rd with vertices p0, . . . , pk (0 ≤ k ≤ d) and p is a point in S, then p can

be uniquely represented by p =
∑k

j=0 λjpj , where λ0, . . . , λk ≥ 0 and λ0 + · · · + λk = 1. The values
λ0, . . . , λk are called the barycentric coordinates of p with respect to the simplex S. The point p lies in
the relative interior of S if and only if λ0, . . . , λk > 0.

Theorem 3.4. ([Hen83, Theorem 3.1] and [LZ91, Lemma 2.2].) Let d, s ∈ N. Then there exists a constant
λ∗(d, s) > 0 such that, for every d-dimensional integral simplex S in Rd with precisely one interior point
p in sZd, all barycentric coordinates λi (i = 0, . . . , d) of p with respect to S satisfy λi ≥ λ∗(d, s).
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Note that, in the formulation of Theorem 3.4, λ∗(d, s) is not necessarily best possible. Once some
λ∗(d, s) is known, then any smaller positive constant works as well. Thus, it is always possible and will
be convenient later to choose the values λ∗(d, s) to be nonincreasing in d ∈ N. In fact, the best known
concrete values for λ∗(d, s), given in [LZ91, Lemma 2.2], are nonincreasing in d.

Theorem 3.5. ([Hen83, Theorem 3.6] and [LZ91, Theorem1].) Let d, s, k ∈ N and let Λ = sZd. Let
X be the class of all d-dimensional polytopes P ∈ Pd

i with 1 ≤ | int(P ) ∩ Λ| ≤ k. Then there exists a
constant V (d, s, k) > 0 such that for every P ∈ X one has vol(P ) ≤ V (d, s, k). In particular, X/Aff(Λ)
is a finite set.

We have mentioned all results from the literature that are needed to prove Theorem 3.3. Let us now
show our assertion. We point out that in the remainder of this section, for all statements and proofs, we
always assume Λ = sZd.

Let a ∈ Λ and let X d(a) be the class of all polyhedra P ∈ Pd
i such that a ∈ relbd(P ) and relint(P )∩Λ 6=

∅. On X d(a) we introduce the partial order � as follows: for P,Q ∈ X d(a) we define P � Q if and only
if relint(P ) ⊆ relint(Q). Let us verify that the binary relation � is indeed a partial order. The property
P � P is obvious. If P � Q and Q � P , then relint(P ) = relint(Q). Since P and Q are closed it follows
P = Q. If P � Q and Q � R, then relint(P ) ⊆ relint(Q) ⊆ relint(R). Thus P � R.

By Rd(a) we denote the set of the minimal elements of the poset (X d(a),�), i.e., the set of the
elements Q ∈ X d(a) such that there exists no P ∈ X d(a) with P � Q and P 6= Q. We emphasize that
elements of X d(a) and Rd(a) do not have to be full-dimensional. It is not hard to verify that for every
P ∈ X d(a) there exists Q ∈ Rd(a) such that Q � P . If P is bounded, this follows from the fact that the
set of all Q ∈ X d(a) satisfying Q � P is finite as

∣

∣P ∩ Zd
∣

∣ < +∞. If P is unbounded we replace P by
P̄ = conv(P ∩B ∩ Zd), where B is a sufficiently large box centered at a and such that relint(P̄ ) ∩Λ 6= ∅.
Then we apply the argument for the bounded case to P̄ . We remark that for P,Q ∈ X d(a) the condition
relint(P ) ⊆ relint(Q) holds if and only if one has P ⊆ Q and relint(P ) ∩ relint(Q) 6= ∅. This follows from
standard results in convexity (see, for example, [Roc72, Theorem6.5]).

It turns out that the elements of Rd(a) have a very specific shape which is described as follows.

Lemma 3.6. Let a ∈ Λ and P ∈ Rd(a). Then P has the following properties.

I. P is a simplex of dimension k ∈ {1, . . . , d}.

II. a ∈ vert(P ).

III. relint(P ) ∩ Λ consists of precisely one point.

IV. The facet F of P opposite to the vertex a satisfies F ∩ Zd = vert(F ).

Proof. Let P ∈ Rd(a) and q ∈ relint(P ) ∩ Λ be arbitrary. We consider 2q − a (the reflection of a with
respect to q). First assume that 2q − a ∈ P . Then q ∈ relint(P ) ∩ relint([a, 2q − a]) and [a, 2q − a] ⊆ P .
Thus, since P ∈ Rd(a) we have P = [a, 2q − a]. Again, since P ∈ Rd(a), q is the only point of Λ in
relint(P ). For such a P , Parts I–IV follow immediately. In the remainder of the proof let 2q − a 6∈ P .

Parts I and II. Let b be the intersection point of [a, q〉 and relbd(P ). Since q ∈ relint([a, b]) we have
q = (1 − λ)a + λb for some 0 < λ < 1. Consider a facet F of P which contains b. Since P is integral,
also F is integral, i.e., F = conv(F ∩ Zd). By Carathéodory’s theorem, there exist affinely independent
points q1, . . . , qk ∈ F ∩Zd such that b = λ1q1 + · · ·+λkqk for some λ1, . . . , λk > 0 with λ1 + · · ·+λk = 1.
Thus, q = (1 − λ)q0 + λλ1q1 · · · + λλkqk, where q0 := a. The point a = q0 does not belong to aff(F ).
In fact, otherwise a ∈ P ∩ aff(F ) = F and since b ∈ F we get q ∈ F , a contradiction to q ∈ relint(P ).
Hence q0, . . . , qk are affinely independent. Since P ∈ Rd(a), we have P = conv({q0, . . . , qk}). Hence P is
a simplex and a is a vertex of P .

In the remainder of the proof let P = conv({q0, . . . , qk}) with q0 := a and q1, . . . , qk defined as above.
Part III. For j = 0, . . . , k let Pj be the simplex with vertices {q, q0, . . . , qk} \ {qj}. It can be verified

with straightforward arguments that P = P0 ∪ · · · ∪ Pk and the relative interiors of the simplices Pj

are pairwise disjoint. For proving Part III, we argue by contradiction. We assume that relint(P ) ∩ Λ
contains q′ with q′ 6= q. First we show that q′ ∈ P0. Assume the contrary. Then q′ ∈ Pj for some
j ∈ {1, . . . , k}. Let F be the face of Pj with q′ ∈ relint(F ). Since q′ 6∈ P0, a is a vertex of F . The
existence of F  P with q′ ∈ relint(F ) and a ∈ vert(F ) contradicts the fact that P ∈ Rd(a). Hence
q′ ∈ P0. We define Q := conv((P0 ∩ Zd) \ {q}). Since q′ ∈ relint(P ), and q′, q1, . . . , qk ∈ Q, the polytope
Q has the same dimension as P . We have [a, q〉 ∩ Q = [b, b′], where b ∈ relint(P ) and b′ ∈ relbd(P ).
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Since q ∈ relint([a, b]) one has q = (1 − λ)a + λb for some 0 < λ < 1. Let now G be the facet of
Q containing b. The point a = q0 does not belong to aff(G). In fact, otherwise aff(G) would contain
[b, b′], which implies aff(G) ∩ relintQ 6= ∅, a contradiction. Using Carathéodory’s theorem, let p1, . . . , pm
be affinely independent vertices of G such that b = λ1p1 + · · · + λmpm for some λ1, . . . , λm > 0 with
λ1 + · · ·+ λm = 1. Then q = (1− λ)p0 + λλ1p1 + · · ·+ λλmpm with p0 := a. Since p0 6∈ aff(G) and since
p1, . . . , pm ∈ G are affinely independent, we see that p0, . . . , pm are affinely independent. The simplex
S = conv({p0, . . . , pm}) is properly contained in P , contains a on its relative boundary and satisfies
q ∈ relint(S) ∩ relint(P ), a contradiction to the fact that P ∈ Rd(a). This shows Part III.

Part IV. We argue by contradiction. Let F be the facet of P opposite to a and assume that vert(F )  
F∩Zd. Let S1, . . . , Sm be a triangulation constructed on the points F∩Zd. Then, S1, . . . , Sm are simplices
with pairwise disjoint interiors having the same dimension as F and such that F ∩ Zd =

⋃m

i=1 vert(Si),
F =

⋃m

i=1 Si, and for every Si, vert(Si) are the only integer points in Si. By assumption, we have Si 6= F
for every i.

Then there exists a simplex Sj such that [a, q〉∩Sj is nonempty. Let b be the point [a, q〉∩Sj . Further
on, let G be the face of Sj with b ∈ relint(G). By construction, q ∈ relint(P̄ ) where P̄ := conv({a} ∪G)
and P̄  P . This contradicts the fact that P ∈ Rd(a).

Lemma 3.6 and the following Lemma 3.7 are used in the proof of Lemma 3.8.

Lemma 3.7. Let P ∈ Pd
ifm(s) be a polytope. Then int(π(P )) ∩ π(Λ) 6= ∅.

Proof. If P ′ := π(P ) satisfies int(P ′) ∩ π(Λ) = ∅, then π−1(P ′) is Λ-free and integral, and then in view
of the maximality of P , one has π−1(P ′) ⊆ P which contradicts the boundedness of P .

In the following lemma we prove that the number of points of Λ on the boundary of a polytope
P ∈ Pd

ifm(s) is bounded by a constant which is dependent only on d and s.

Lemma 3.8. Let d, s ∈ N. Then there exists a constant N(d, s) > 0 such that every polytope P ∈ Pd
ifm(s)

contains at most N(d, s) points in Λ.

Proof. Let P ∈ Pd
ifm(s) be a polytope. For the purpose of deriving a contradiction assume that |P ∩Λ| ≥

Md + 1, where M =
⌈

1
λ∗(d,s) + 1

⌉

with λ∗(d, s) defined as in the formulation of Theorem 3.4. Thus,

there exist two distinct points v, w ∈ P ∩ Λ such that 1
s
v ≡ 1

s
w (modM). Then we can choose pairwise

distinct z0, . . . , zM in P ∩ Λ ∩ aff({v, w}) such that conv({z0, . . . , zM}) ∩ Λ = {z0, . . . , zM}. Performing
a Λ-preserving transformation we assume that zj = j · sed for j = 0, . . . ,M . One has π(zj) = o for every
j = 0, . . . ,M . Since M ≥ 2 (which follows from λ∗(d, s) > 0), o is a boundary point of P ′ := π(P ),
otherwise P would not be Λ-free. By Lemma 3.7, int(P ′) ∩ π(Λ) 6= ∅.

By construction, P ′ is integral and belongs to X d−1(o). Thus, there exists a polytope Q ∈ Rd−1(o)
with relint(Q) ⊆ int(P ′). By Lemma 3.6, Q is a simplex with precisely one point of π(Λ), say p, in the
relative interior. Let k be the dimension of Q and let p0, . . . , pk be the vertices of Q with p0 = o. By
Theorem 3.4, if p =

∑k

j=0 λjpj with λ0, . . . , λk > 0 and λ0 + · · ·+ λk = 1, then one has λj ≥ λ∗(d, s) for
every j = 0, . . . , k, where λ∗(d, s) is a constant as in the formulation of Theorem 3.4. For a point x ∈ P ′,
let f(x) denote the length of the line segment π−1(x) ∩ P (and thus, f represents an “X-Ray picture” of
P ). Employing the convexity of P we see that f(·) is concave on P ′. Consequently,

f(p) = f





k
∑

j=0

λjpj



 ≥
k
∑

j=0

λjf(pj) ≥ λ0f(p0) ≥ λ∗(d, s)sM > s.

On the other hand, since p ∈ int(P ′)∩π(Λ), we have f(p) ≤ s as otherwise P would not be Λ-free. Thus,
this gives a contradiction to our assumption on |P ∩Λ|. It follows that P contains at most Md points in
Λ and we can choose N(d, s) := Md.

Proof of Theorem 3.3. Let P ∈ Pd
ifm(s) be a polytope. In the following, we enlarge P to a polytope

Q ∈ Pd
i such that P ⊆ Q and ∅ 6= int(Q) ∩ Λ ⊆ P ∩ Λ. By Lemma 3.8, this implies 1 ≤ |int(Q) ∩ Λ| ≤

|P ∩ Λ| ≤ N(d, s), with N(d, s) defined in the formulation of Lemma 3.8. Then, by Theorem 3.5,
vol(P ) ≤ vol(Q) ≤ V (d, s,N(d, s)) with V (d, s,N(d, s)) defined according to Theorem 3.5. Consequently,
vol(P ) ≤ V (d, s) := V (d, s,N(d, s)).

Let us now construct the polytope Q. For that, we consider a sequence of polytopes P i which we
define iteratively. Choose an arbitrary p1 ∈ Λ such that p1 6∈ P and let P 1 := conv(P ∪ {p1}). For i ≥ 1,
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we proceed as follows. If int(P i) ∩ Λ ⊆ P ∩ Λ, then we stop and define Q := P i. Otherwise, we select
pi+1 ∈ (int(P i) ∩ Λ) \ (P ∩ Λ) and set P i+1 := conv(P ∪ {pi+1}). Note that P i+1  P i for all i ≥ 1 and
that the sequence is finite since P is a polytope. Eventually, we construct a polytope Q ∈ Pd

i such that
P ⊆ Q and int(Q) ∩ Λ ⊆ P ∩ Λ. Furthermore, int(Q) ∩ Λ 6= ∅ since P is properly contained in Q and P
is maximal Λ-free.

Proof of Theorem 2.1. The theorem follows directly from Proposition 3.1, Theorem 3.2, and Theorem
3.3.

Remark 3.9. (The role of Rd(a).) In our proofs we use the class Rd(a). The properties of elements of
this class are stated in Lemma 3.6. It seems that the class Rd(a) deserves an independent consideration.

Remark 3.10. (Growth of constants.) Let us analyze the growth of the constants in our statements.

V (d, s, k) must be (at least) double exponential in d. It can be chosen to be k(8ds)d(8s+ 7)d2
2d+1

(see
[Pik01]).

From the proof of Theorem 3.3 and the above bound on V (d, s, k), it follows that for a polytope

P ∈ Pd
ifm(s) we have vol(P ) ≤ V (d, s,N(d, s)) ≤ N(d, s) · (8ds)d(8s + 7)d2

2d+1

. By the proof of Lemma

3.8, we can choose N(d, s) =
⌈

1
λ∗(d,s) + 1

⌉d

.

The best known lower bound on the constant λ∗(d, s) is (7(s + 1))−2d+1

(see [LZ91, Lemma 2.1]).
Substituting this into the above formula yields

vol(P ) ≤
⌈

(1 +
(

7(s+ 1)
)2d+1

⌉d

(8ds)d(8s+ 7)d2
2d+1

. (1)

In the asymptotic notation the bound can be expressed as vol(P ) = (s+ 1)O(d4d).
Below we give an example which shows that the maximum volume over all polytopes of Pd

ifm(s) is

at least of order (s + 1)Ω(2d). We use the following sequence considered in [LZ91, Lemma 2.1]. (For
the sake of simplicity the dependency on s is not indicated explicitly.) Let us define y1 := s + 1 and

yj := 1 + s
∏j−1

i=1 yi for j ≥ 2 (equivalently one can use the recurrency yj = y2j−1 − yj + 1). For every
d ≥ 2, we introduce the simplex Sd := conv({y1e1, . . . , yd−1ed−1, (yd − 1)ed}). The verification of the fact
that Sd belongs to Pd

ifm(s) (and even to Pd
fmi(s)) is left to the reader. The volume of Sd can be expressed

by

vol(Sd) =
1

d!

(

d−1
∏

i=1

yi

)

(yd − 1) =
1

d!

1

s
(yd − 1)2.

As was noticed in [LZ91, p. 1026] one has yd ≥ (s+1)2
d−2

for all d ≥ 2. This shows vol(Sd) = (s+1)Ω(2d).

Bound (1) does not help to determine all bounded elements of Pd
ifm(s) for fixed values of d and s since

the right hand side is tremendously large (for example, more than 10500 for d = 3 and s = 1). This is the
reason, why our proof of Theorem 2.2 (presented in the following sections) does not rely on (1).

4 Tools and proof outline for the explicit description in

dimension three

In Sections 5, 6, and 7 we use the following additional notation. The area of a set K ⊆ R2 is denoted
A(K) (which is shorter than vol(K) which we used in the previous sections). Since the only lattice in
Sections 5, 6, and 7 is the standard lattice, we write w(K) instead of wΛ(K) to denote the lattice width.
In this paper, a polygon is a two-dimensional polytope. If P is a polygon with integer vertices we use i(P )
and b(P ) to denote the number of integer points in the interior and on the boundary of P , respectively.

The well-known formula of Pick states that A(P ) = i(P ) + b(P )
2 − 1.

Let us explain the structure of the proof of Theorem 2.2 and introduce the tools used in the proof.
The proof is essentially based on the following two ideas. We use the parity argument (a rather

common tool in the geometry of numbers). Two integer points x, y ∈ Zd are said to have the same parity
if each component of x−y is even, i.e., x ≡ y (mod 2). It is easily seen that the point 1

2 (x+y) is integer if
and only if x and y have the same parity. We will apply this argument to integer points on the boundary
of P ∈ M3 by exploiting the fact that each facet of P contains an integer point in its relative interior
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(which is a property of maximal lattice-free convex sets, see Lovász [Lov89]). Clearly, there are at most
23 = 8 points of different parity in dimension three. Proofs based on this idea are presented in Section 5.

The second idea is the following. We take an arbitrary facet F of P ∈ M3 and assume without loss
of generality that F ⊆ R2 × {0} and P ⊆ R2 ×R≥0. Then, we consider the section F ′ = P ∩ (R2 × {1}).
Taking into account that F is an integral polygon and contains at least one integer point in its relative
interior and that F ′ is lattice-free in R2 × {1} with respect to the lattice Z2 × {1}. It follows that either
P is “not too high” with respect to F or that F contains a bounded number of integer points. Proofs
based on this idea are presented in Sections 6 and 7.

Let P,Q be polytopes and let F(P ) and F(Q) be the sets of all faces of P and Q, respectively. Then
P and Q are said to be combinatorially equivalent (or of the same combinatorial type) if there exists a
bijection T : F(P ) → F(Q) satisfying T (F1) ⊆ T (F2) for all F1, F2 ∈ F(P ) with F1 ⊆ F2. Our first
lemma dealing with M3 shows that every element of M3 has at most six facets. This yields a quite
short list of possible combinatorial types for elements in M3. Our arguments proceed by distinction of
different possible combinatorial types. The description of P ∈ M3 with six facets resp. five facets is
given in Sections 5 resp. 6. The description of P ∈ M3 with four facets (i.e., of simplices in M3) can
be found in [AWW09a]. Since the arguments in [AWW09a] are very lengthy, we present an alternative
shorter analysis in Section 7. The following classes of polytopes will be relevant.

• A polytope P ⊆ R3 is said to be a pyramid if P = conv(F ∪ {a}), where F is a polygon and
a ∈ R3 \ aff(F ). In this case F is called the base and a the apex of P .

• A polytope P ⊆ R3 is said to be a prism if P = F + I, where F is a polygon and I is a segment
which is not parallel to F . In this case F + v with v ∈ vert(I) are called the bases of P .

• A polytope P ⊆ R3 is said to be a parallelepiped if P = I1 + I2 + I3 where I1, I2, I3 are segments
whose directions form a basis of R3.

In the rest of this section we present results which we use as tools. From [AW11, Hur90] a relation
between area and lattice width is known. In the following theorem, (2) is shown in [Hur90] and (3) and
(4) in [AW11].

Theorem 4.1. Let K ⊆ R2 be a lattice-free closed convex set with w := w(K) > 1. Then

w ≤ 1 +
2√
3
, (2)

A(K) ≤ w2

2(w − 1)
if 1 < w ≤ 2, (3)

A(K) ≤ 2, if 2 < w ≤ 1 +
2√
3
. (4)

The bound (4) is not sharp but sufficient for our purposes (for the sharp upper bound see [AW11,
Theorem2.2]). For h ∈ Z the set Z2 × {h} in the affine space R2 × {h} can be naturally identified with
the lattice Z2 in R2. Such identification will be used several times.

For characterizing faces of maximal lattice-free polytopes we need results on the description of polygons
with a given small number of interior integer points. In particular, we need the following result of
Rabinowitz [Rab89].

Theorem 4.2. ([Rab89].) Let P ⊆ R2 be an integral polygon with exactly one interior integer point.
Then P is equivalent to one of the polygons shown in Figure 2.

The only result from the previous sections that is used for the description of M3 is Lemma 3.6 dealing
with Rd(a). We use the description of R2(a) presented in the following remark.

Remark 4.3. With the help of Theorem 4.2, the set R2(a) can be computed for a given a ∈ Z2. Let us
assume a = o, since, by a unimodular transformation, the choice of a is not important. Then, up to a
unimodular transformation, every element of R2(o) coincides with one of the following sets:

R1 := conv({o, 2e1}),
R2 := conv({o, 3e1, 2e2}),
R3 := conv({o, 2e1, e1 + 2e2}),
R4 := conv({o, 2e1 + e2, 2e2 + e1}).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2: All integral polygons with one interior integer point

This can be seen as follows. By Lemma 3.6 I and III, all elements of R2(o) are simplices with precisely one
relative interior integer point. Thus, up to a unimodular transformation, all two-dimensional elements of
R2(o) appear in Figures 2(a)–2(e). Using Lemma 3.6 II and IV, we end up with R2, R3, and R4. The
fact that R1 is the only one-dimensional element of R2(o) is straightforward to verify.

5 Elements in M3 with six facets

In this section we show that there exists, up to unimodular transformation, only one P ∈ M3 with six
facets.

Lemma 5.1. Let P ∈ M3. Then, P has at most six facets. Furthermore, if P has six facets, then each
facet of P is either the parallelogram shown in Figure 2(g) or the triangle shown in Figure 2(c).

Proof. We first show that P has at most six facets. Let F be the set of all facets of P . We choose
two integer points p1, p2 on an edge of P with [p1, p2] ∩ Z3 = {p1, p2}. For each F ∈ F we fix an
integer point pF in the relative interior of F in the following way. If F ∈ F and p1, p2 ∈ F let pF be
a point in relint(F ) ∩ Z3 such that the triangle with vertices p1, p2, pF has minimal area. This ensures
[pF , pi] ∩ Z3 = {pF , pi} for i = 1, 2. If F ∈ F and F ∩ {p1, p2} = {pi} for some i = 1, 2, let pF be a point
in relint(F ) ∩ Z3 with [pF , pi] ∩ Z3 = {pF , pi}. If F ∈ F and F ∩ {p1, p2} = ∅, we choose pF to be any
point in relint(F )∩Z3. Let X := {p1, p2}∪{pF : F ∈ F}. By construction, all points in X have different
parity. Hence, |F| = |X | − 2 ≤ |Zd/2Zd| − 2 = 23 − 2 = 6.

Let us now show the second part of the assertion. For that, we first show that each facet of P contains
exactly one integer point in its relative interior. Assume there exists a facet F1 containing at least two
integer points in its relative interior. Choose a vertex v1 of F1 and two integer points p1, p2 ∈ relint(F1)∩Z3

such that the triangle with vertices v1, p1, p2 has minimal area. Let e = [v1, v2] be an edge of P which is
not contained in F1 and let v̄2 be the integer point on the edge e which is closest to v1. Let F2 and F3

be the two facets containing both v1 and v̄2. Let p3 (resp. p4) be an integer point in the relative interior
of F2 (resp. F3) such that [v1, pi] ∩ Z3 = {v1, pi} and [v̄2, pi] ∩ Z3 = {v̄2, pi} for i = 3, 4 (this can again
be achieved by choosing triangles with minimal area). In the remaining three facets choose arbitrary
relative interior integer points p5, p6, p7 such that [v̄2, pi] ∩ Z3 = {v̄2, pi} for i = 5, 6, 7. By construction,
the points v1, v̄2, p1, . . . , p7 must have different parity which is a contradiction.
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Let now F be an arbitrary facet of P . It follows that F is one of the polygons shown in Figure 2. If
F is different from the quadrilateral 2(g) and the triangle 2(c), then it contains four integer points with
different parity. These four integer points together with the five interior integer points of the other five
facets of P are nine points of different parity which is a contradiction.

The next lemma shows that all facets of a polytope P ∈ M3 with six facets are quadrilaterals as
pictured in Figure 2(g) and thus, the shape of P is uniquely determined.

Lemma 5.2. Each P ∈ M3 with six facets is a parallelepiped where each of the six facets is a parallelo-
gram as depicted in Figure 2(g).

Proof. By Lemma 5.1, P has only two types of facets. Since quadrangular facets do not contain edges
with relative interior integer points, it follows that P has an even number of triangular facets and that
these facets are pairwise attached. In [Grü03, Sections 6.2 and 6.3] all possible combinatorial types of
three-dimensional polytopes with six facets are enumerated (there are exactly seven such types). Since all
facets of P are quadrilaterals shown in Figure 2(g) or triangles shown in Figure 2(c), and since triangular
facets occur pairwise, we deduce that P is one of the three combinatorial types in Figure 3.

(a) Type A (b) Type B (c) Type C

Figure 3: Possible combinatorial types of P

First assume that P is of combinatorial type B, having only triangular facets. Since all facets contain
exactly one edge with exactly one relative interior integer point, only two different polytopes P are
possible as depicted in Figure 4(a), where the gray nodes represent integer points on edges. In both
cases, the three integer points represented in gray together with the six relative interior integer points
of the six facets of P are nine points of different parity which is a contradiction. Thus, P cannot be of
combinatorial type B.

(a) Polytope of type B (b) Polytope of
type C

Figure 4: Polytopes P of combinatorial types B and C

Now assume that P is of combinatorial type C, having two quadrangular and four triangular facets.
Then, the location of the two relative interior integer points on its edges is already determined by the
structure of the facets of P as illustrated in Figure 4(b). These two points together with a particular
vertex of P (the gray nodes in Figure 4(b)) and the six relative interior integer points of the six facets of
P are nine points of different parity. Thus, P cannot be of combinatorial type C.

It follows that P must be of combinatorial type A. This implies that all facets of P are quadrangular
and therefore P has the shape depicted in Figure 1(l).

6 Elements in M3 with five facets

By [Grü03, Section 6.1], there are exactly two combinatorial types of three-dimensional polytopes with
five facets. These are quadrangular pyramids (i.e., pyramids having a quadrangular base) and triangular
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prisms (i.e., prisms having triangular bases). We will analyze both combinatorial types separately.

6.1 Quadrangular pyramids

Let P ∈ M3 be a quadrangular pyramid. Using a unimodular transformation, base F and apex a =
(a1, a2, a3) of P can be assumed to satisfy F ⊆ R2 ×{0} and a3 > 0. We can further assume that a3 ≥ 2
since for a3 = 1, P is contained in R2 × [0, 1] which is a contradiction to its maximality.

We first show that there is only one quadrangular pyramid P ∈ M3 with a3 = 2 and a3 = 3,
respectively, up to a unimodular transformation.

Lemma 6.1. Let P ∈ M3 be a quadrangular pyramid with base F ⊆ R2 × {0} and apex a = (a1, a2, a3),
where a3 = 2. Then P is equivalent to the pyramid M8.

Proof. Let F ′ := P ∩ (R2 × {1}). Since each triangular facet of P contains an integer point in its
relative interior, it follows that F ′ is a maximal lattice-free quadrilateral and contains precisely four
integer points, one in the relative interior of each of the edges of F ′. Without loss of generality assume
F ′ ∩ Z3 = {0, 1}2 × {1}. By convexity, vert(F ′) lies in the union of (0, 1)×R× {1} and R× (0, 1)× {1}.
On the other hand vert(F ′) = 1

2a+
1
2vert(F ) ⊆ 1

2Z
3. Hence vert(F ′) lies in the union of { 1

2} × 1
2Z× {1}

and 1
2Z × { 1

2} × {1}. Clearly, vert(F ′) is disjoint with [0, 1]2 × {1}. It follows that F ′ contains the set
B := 1

2e1 +
1
2e2 + e3 + conv({±e1,±e2}). If B were a proper subset of F ′, then one of the points from

the set {0, 1}2 × {1} would be in the relative interior of F ′, a contradiction. Hence F ′ = B. We have
determined that, up to a unimodular transformation, F is a translate of conv({±2e1,±2e2}) and F ′ is a
translate of B by an integer vector. This implies the assertion.

Lemma 6.2. Let P ∈ M3 be a quadrangular pyramid with base F ⊆ R2 × {0} and apex a = (a1, a2, a3),
where a3 = 3. Then P is equivalent to the pyramid M9.

Proof. If p ∈ P ∩ (R2 × {2}) is an integer point in the relative interior of a facet of P , then 2p − a ∈
P ∩ (R2 × {1}) is also an integer point in the relative interior of the same facet of P . Consequently,
F ′ := P ∩ (R2 × {1}) contains precisely four integer points, one in the relative interior of each of its
edges. Without loss of generality assume F ′ ∩ Z3 = {0, 1}2 × {1}. By convexity, vert(F ′) lies in the
union of (0, 1) × R × {1} and R × (0, 1) × {1}. On the other hand vert(F ′) = 1

3a + 2
3vert(F ) ⊆ 1

3Z
3.

Hence vert(F ′) lies in the union of { 1
3 ,

2
3}× 1

3Z×{1} and 1
3Z×{ 1

3 ,
2
3}× {1}. Clearly, vert(F ′) is disjoint

with [0, 1]2 × {1}. A simple analysis of all possible cases reveals that, by a unimodular transformation,
only one F ′ is possible and we can assume that F ′ := 1

3e1 +
1
3e2 + e3 + conv({ 4

3e1,− 2
3e1,

4
3e2,− 2

3e2}).
Thus, up to a unimodular transformation, F is a translate of conv({2e1,−e1, 2e2,−e2}). This implies
the assertion.

In the following we assume that a3 ≥ 4 and show that no further maximal lattice-free quadrangular
pyramid P exists. The proof consists of the following steps. First, we construct all bases which are
possible for such a pyramid P . Second, we argue that only two of them can appear as bases for a3 ≥ 11
and analyze these two separately. Third, the other bases are ruled out by a computer enumeration.

We start with a lemma which shall be used later for simplices in Section 7 as well.

Lemma 6.3. Let P ∈ M3 be a simplex or a quadrangular pyramid with base F ⊆ R2 × {0} and apex
a = (a1, a2, a3), where h := a3 ≥ 4. Then w(F ) = 2 and the following inequalities hold:

2i(F ) + b(F ) ≤
⌊

6h− 4

h− 2

⌋

≤ 10. (5)

In particular, if P is a simplex (resp. a quadrangular pyramid), then (i(F ), b(F )) ∈ ZS (resp. ZQ), where

ZS :={(1, j) : j = 3, . . . , 8} ∪ {(2, j) : j = 3, . . . , 6},
ZQ :={(1, j) : j = 4, . . . , 8} ∪ {(2, j) : j = 4, . . . , 6}.

Proof. Let F ′ := P ∩ (R2 × {1}). Since F contains an integer point in its relative interior we have
w(F ) ≥ 2. Assume that w(F ) ≥ 3. Then h ≥ 4 implies w := w(F ′) = w(F )h−1

h
≥ 9

4 > 1 + 2√
3
. Hence,

by Theorem 4.1, F ′ is not lattice-free which is a contradiction. Thus, we have w(F ) = 2 and it follows
2 > w = w(F )h−1

h
≥ 3

2 . Applying Theorem 4.1 to F ′, we obtain

A(F ) =

(

h

h− 1

)2

A(F ′) ≤
(

h

h− 1

)2
w2

2(w − 1)
=

2h

h− 2
, (6)
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where the last equality follows from w = 2h−1
h

. Consequently, combining (6) and Pick’s formula and

using the fact that
⌊

6h−4
h−2

⌋

is monotonically nonincreasing for h ≥ 4, we arrive at the stated inequalities.

We now show that i(F ) ≤ 2. Assume the contrary, i.e., i(F ) ≥ 3. Performing an appropriate
unimodular transformation to P we can assume that π(F ) = [o, 2e1]. For x ∈ π(P ) let f(x) be the length
of the line segment π−1(x) ∩ P .

The conditions w(F ) = 2 and i(F ) ≥ 3 imply f(e1) ≥ 3. By Lemma 3.7, π(P ) contains an integer
point in its interior. The relative interior of [e1, π(a)] does not contain integer points, since otherwise the
value of f at the integer point in [e1, π(a)]\{e1} closest to e1 would be > 1 yielding a contradiction to the
lattice-freeness of P . Thus, the interior of conv({o, e1, π(a)}) or conv({e1, 2e1, π(a)}) contains an integer
point. By symmetry reasons, we may assume that for T := conv({o, e1, π(a)}) one has int(T ) ∩ Z2 6= ∅.

Let R be an element of R2(e1) contained in T and such that the relative interior of R contains an
interior integer point of T . Note that R is equivalent to one of the polygons R1, . . . , R4 in Remark 4.3.

Case 1: R ≡ R1 (mod Aff(Z2)). Then R = [e1, p] for some p ∈ T ∩ Z2 and such that the point
1
2 (e1 + p) is integer and in the interior of T . By the concavity of f , one has

f

(

1

2
(e1 + p)

)

≥ 1

2
f(e1) +

1

2
f(p) ≥ 1

2
f(e1) ≥

3

2
> 1.

Thus, a contradiction to the lattice-freeness of P .
Case 2: R ≡ R4 (mod Aff(Z2)). Then R = conv{e1, p, q} for some p, q ∈ T ∩ Z2 and 1

3 (e1 + p+ q) is
integer and in the interior of T . By the concavity of f , we have

f

(

1

3
(e1 + p+ q)

)

≥ 1

3

(

f(e1) + f(p) + f(q)
)

≥ 1

3
f(e1) ≥ 1.

It follows that f(p) = f(q) = 0, since otherwise one has f
(

1
3 (e1 + p+ q)

)

> 1 yielding a contradiction
to the lattice-freeness of P . Then, in view of the choice of T , we have p, q ∈ [o, π(a)]. The equality
{p, q} = {o, π(a)} would imply that a3 = 3 contradicting the assumption. Thus, one of the points p, q
(say p) lies in the relative interior of [o, π(a)]. We use the point 2p − q, which is the integer point on
[o, π(a)] \ [p, q] closest to p.

We shall use the following property of R4. Let r1, r2, r3 be the vertices of R4. Then the segment
joining r1 and 2r2 − r3 (the reflection of r3 with respect to r2) contains precisely two integer points in its
relative interior. Consider the subcase that the point 2p− q lies in the relative interior of [o, π(a)]. Then
the relative interior of [e1, 2p − q] is contained in the interior of T . Taking into account the indicated
property of R4 we see that the relative interior of [e1, 2p− q] contains two integer points. Thus, applying
the arguments as in Case 1, we arrive at a contradiction. For the subcase that the point 2p− q coincides
with o or π(a), the fact that the relative interior of [e1, 2p− q] contains two integer points contradicts the
fact that the segments [o, e1] and [e1, π(a)] do not contain integer points in their relative interiors.

Case 3: R ≡ Ri (mod Aff(Z2)) for i ∈ {2, 3}. Then there exists an edge e of R incident to e1 which
contains at least three integer points. Since the edge [o, 2e1] of π(P ) contains three integer points and the
integer point e1 is between the two remaining integer points, it follows that the edge e is not contained
in the boundary of π(P ). Thus, on e we can find an integer point p such that 1

2 (e1 + p) is integer and in
the interior of π(P ). But then, applying the same arguments as in Case 1 we arrive at a contradiction.

So far, we have shown that i(F ) ∈ {1, 2} and 2i(F ) + b(F ) ≤ 10. If P is a simplex, then b(F ) ≥ 3.
Thus, (i(F ), b(F )) ∈ ZS in this case. If P is a quadrangular pyramid, then b(F ) ≥ 4. Thus, we have
(i(F ), b(F )) ∈ ZQ.

In order to analyze quadrangular pyramids P ∈ M3 further we need a list of all integral quadrilaterals
Q in the plane with w(Q) = 2 and (i(Q), b(Q)) ∈ ZQ since these quadrilaterals are candidates for the
base of P . By (5), it follows that 2i(F ) + b(F ) ≤ 6 for a3 ≥ 11 which implies that the base F of such
a pyramid has exactly one integer point in its relative interior and exactly the four vertices as the only
integer points on its boundary. From Figure 2, it follows that only two quadrilaterals qualify as a base
for P in this case (Figure 2(f) and 2(g)). We will analyze these two possible bases separately from the
others. However, we will first prove the following lemma.

Lemma 6.4. Let Q ⊆ R2 be an integral quadrilateral with w(Q) = 2, i(Q) = 2, and b(Q) ∈ {4, 5, 6}.
Then, up to a unimodular transformation, Q is one of the quadrilaterals depicted in Figure 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: All integral quadrilaterals Q with w(Q) = 2, i(Q) = 2, and b(Q) ∈ {4, 5, 6}

Proof. Let Q be an integral quadrilateral in the plane satisfying w(Q) = 2 and i(Q) = 2. We divide the
proof according to the number of integer points on the boundary of Q.

Case 1: i(Q) = 2 and b(Q) = 4. Pick’s formula gives A(Q) = 3 in this case. Without loss of generality
we assume that the two interior integer points are placed at (1, 0) and (2, 0). This implies that for any
u ∈ Z2 \{o,±e2} we have w(Q, u) ≥ 3 and therefore it must hold v2 ∈ {0,±1} for each vertex v = (v1, v2)
of Q. We distinguish three subcases based on the number of vertices of Q that lie on the line y = 0.

Subcase 1a: Two vertices of Q = conv({a, b, c, d}) lie on the line y = 0. Then, one vertex is a = (0, 0)
and the other c = (3, 0). Let the remaining two vertices b and d satisfy d2 = 1 = −b2. We can assume
that d = (0, 1) for if d = (d1, 1) we apply the unimodular transformation (x, y) 7→ (x − d1y, y). For
convexity reasons it follows that b ∈ {(1,−1), (2,−1), (3,−1), (4,−1), (5,−1)}. Choices b = (1,−1) and
b = (5,−1) are equivalent and lead to the quadrilateral shown in Figure 5(a), b = (2,−1) and b = (4,−1)
lead to Figure 5(b) and b = (3,−1) leads to Figure 5(c).

Subcase 1b: One vertex of Q = conv({a, b, c, d}) lies on the line y = 0. Without loss of generality
assume that a = (0, 0) and b, c, and d satisfy b2 = 1 = −c2 = −d2. It follows that c1 = d1 + 1 since
b(Q) = 4, by assumption. Without loss of generality we can place b at (0, 1). By convexity of Q and since
(1, 0) and (2, 0) are the only interior integer points of Q we obtain c = (5,−1) and d = (4,−1) giving the
quadrilateral shown in Figure 5(d).

Subcase 1c: No vertex of Q = conv({a, b, c, d}) lies on the line y = 0. Without loss of generality let
a2 = b2 = 1 = −c2 = −d2. It follows that b1 = a1+1 and c1 = d1+1. Thus, A(Q) = 2 which contradicts
Pick’s formula.

Case 2: i(Q) = 2 and b(Q) = 5. Pick’s formula gives A(Q) = 3.5. Placing the two interior integer
points of Q at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1} for each vertex v = (v1, v2) of
Q. If two vertices of Q lie on the line y = 0, then Q has no edge with a relative interior integer point,
a contradiction to b(Q) = 5. If no vertex of Q lies on the line y = 0, then A(Q) = 3, a contradiction
to Pick’s formula. Thus, precisely one vertex of Q = conv({a, b, c, d}) lies on the line y = 0. Place it
at a = (0, 0). Without loss of generality let b2 = c2 = −1 = −d2. Using an appropriate unimodular
transformation we can assume that d = (0, 1). Thus, either the edge connecting b and c or the edge
connecting c and d has a relative interior integer point which is 1

2 (b+ c) or 1
2 (c+ d), respectively. In the

first case we end up with b = (3,−1) and c = (5,−1) (Figure 5(e)), whereas the latter leads to b = (5,−1)
and c = (6,−1) (Figure 5(f)).

Case 3: i(Q) = 2 and b(Q) = 6. Pick’s formula gives A(Q) = 4. Placing the two interior integer
points of Q at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1} for each vertex v = (v1, v2) of
Q. If two vertices of Q lie on the line y = 0, then Q has no edge with a relative interior integer point, a
contradiction to b(Q) = 6. We consider two subcases.

Subcase 3a: No vertex of Q = conv({a, b, c, d}) lies on the line y = 0. Without loss of generality
assume that a2 = b2 = 1 = −c2 = −d2. We either have b1 = a1 + 2 and c1 = d1 + 2 or b1 = a1 + 1
and c1 = d1 + 3. Using an appropriate unimodular transformation we can assume that a = (0, 1). Then,
the first case leads to b = (2, 1), c = (3,−1), and d = (1,−1) (Figure 5(j)), whereas the latter leads to
b = (1, 1), c = (4,−1), and d = (1,−1) (Figure 5(g)).

Subcase 3b: One vertex of Q = conv({a, b, c, d}) lies on the line y = 0. Without loss of generality
assume that a = (0, 0) and b, c, and d satisfy b2 = 1 = −c2 = −d2. Using an appropriate unimodular
transformation we can assume that b = (0, 1). Then, the edge connecting c and d has either two or one
relative interior integer points. In the first case we obtain c = (5,−1) and d = (2,−1) (Figure 5(h)). In
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the second case both edges, the one connecting c and d and the one connecting b and c have each one
relative interior integer point and it follows c = (6,−1) and d = (4,−1) (Figure 5(i)).

Lemma 6.4 completes the list of the possible bases of a quadrangular pyramid P ∈ M3: precisely the
quadrilaterals shown in Figure 2(f)–2(l) and 5 qualify for a base of P . We will now show that there is no
quadrangular pyramid P ∈ M3 with a3 ≥ 11.

Lemma 6.5. Let P ⊆ R3 be a pyramid with base conv({±e1,±e2}) and apex a = (a1, a2, a3) ∈ Z3, where
a3 ≥ 4. Then P is not maximal lattice-free.

Proof. By an appropriate unimodular transformation we can assume that 0 ≤ ai < a3 for i = 1, 2. We
represent the base by F := conv({±e1,±e2}) = {y ∈ R3 : |y1|+ |y2| ≤ 1, y3 = 0}. Then, P = {x ∈ R3 :
x = (1− λ)y + λa for 0 ≤ λ ≤ 1 and y ∈ F} and therefore

int(P ) = {x ∈ R3 : x = (1 − λ)y + λa for 0 < λ < 1 and y ∈ relint(F )}

= {x ∈ R3 :
1

1− λ
x− λ

1− λ
a ∈ relint(F ) for some 0 < λ < 1}

= {x ∈ R3 : |x1 − λa1|+ |x2 − λa2| < 1− λ and x3 = λa3 for some 0 < λ < 1}.

It follows

Z3 ∩ int(P ) = {x ∈ Z3 : |a3x1 − a1x3|+ |a3x2 − a2x3| < a3 − x3, x3 ∈ {1, . . . , a3 − 1}}. (7)

From (7) we derive the following equivalences:

• (0, 0, 1) ∈ int(P ) if and only if a1 + a2 < a3 − 1;

• (1, 1, 1) ∈ int(P ) if and only if a1 + a2 > a3 + 1;

• (1, 0, 1) ∈ int(P ) if and only if a1 − a2 > 1;

• (0, 1, 1) ∈ int(P ) if and only if a2 − a1 > 1.

If one of the above mentioned conditions is fulfilled, P is not lattice-free. We can therefore assume that
the following two inequalities are satisfied:

|a1 + a2 − a3| ≤ 1, (8)

|a1 − a2| ≤ 1. (9)

It can be verified directly that for a1, a2, a3 satisfying (8) and (9) one has |a3 − 2a1| + |a3 − 2a2| ≤
2. In view of (7), (1, 1, 2) ∈ int(P ) if and only if |a3 − 2a1| + |a3 − 2a2| < a3 − 2. Hence, when
(8) and (9) are fulfilled, (1, 1, 2) is an interior point of P if a3 > 4. It remains to exclude the case
a3 = 4. Integer vectors a = (a1, a2, a3) satisfying (8), (9) and a3 = 4 are precisely vectors from the set
{(2, 2, 4), (2, 1, 4), (3, 2, 4), (1, 2, 4), (2, 3, 4)}. All these vectors do not correspond to maximal lattice-free
pyramids.

Lemma 6.6. Let P ⊆ R3 be a pyramid with base conv({e1, e2,±(e1+e2)}) and apex a = (a1, a2, a3) ∈ Z3,
where a3 ≥ 4. Then P is not maximal lattice-free.

Proof. By an appropriate unimodular transformation we can assume that 0 ≤ ai < a3 for i = 1, 2. The
set conv({e1, e2,±(e1 + e2)}) is the set of all y = (y1, y2, y3) ∈ R3 satisfying

y1 ≤ 1, y1 − 2y2 ≤ 1, y3 = 0,

y2 ≤ 1, y2 − 2y1 ≤ 1.

By this, int(P ) is the set of all x = (x1, x2, x3) ∈ R3 satisfying

x1 − λa1 < 1− λ, x1 − λa1 − 2(x2 − λa2) < 1− λ, x3 = λa3,

x2 − λa2 < 1− λ, x2 − λa2 − 2(x1 − λa1) < 1− λ
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for some 0 < λ < 1. Consequently, Z3 ∩ int(P ) is the set of all x = (x1, x2, x3) ∈ Z3 satisfying

a3x1 + (1− a1)x3 < a3, a3x1 − 2a3x2 + (1 − a1 + 2a2)x3 < a3, x3 ∈ {1, . . . , a3 − 1},
a3x2 + (1− a2)x3 < a3, a3x2 − 2a3x1 + (1 − a2 + 2a1)x3 < a3.

From these inequalities we obtain that (1, 1, 1) ∈ int(P ) if and only if a1 > 1 and a2 > 1. Hence, lattice-
freeness requires that a1 ∈ {0, 1} or a2 ∈ {0, 1}. By symmetry, it suffices to consider the cases a1 = 0
and a1 = 1.

Case 1 : a1 = 0. If a2 > 1, then (0, 1, 1) ∈ int(P ). Otherwise (0, 0, 1) ∈ int(P ).
Case 2 : a1 = 1. If a2 > 3, then (0, 1, 1) ∈ int(P ). Thus, we have a2 ≤ 3. If 2a2 < a3, then (0, 0, 1) ∈

int(P ). So we have 2a2 ≥ a3 and it follows a3 ∈ {4, 5, 6}. Hence, a ∈ {(1, 2, 4), (1, 3, 4), (1, 3, 5), (1, 3, 6)}.
All these vectors do not correspond to maximal lattice-free pyramids.

Lemmas 6.5 and 6.6 restrict potential quadrangular pyramids P ∈ M3 to satisfy 4 ≤ a3 ≤ 10. Since,
in addition, the set of possible bases is known from Figures 2(h)–2(l) and 5 we are left with a finite
list of quadrangular candidate pyramids. Computer enumeration shows that none of them is maximal
lattice-free.

6.2 Triangular prisms

Let P ∈ M3 be a triangular prism. We first show that the two triangular bases of P are translates.

Lemma 6.7. Let P ∈ M3 be combinatorially equivalent to a triangular prism. Then P is a prism, i.e.,
the two bases of P are parallel translates.

Proof. Let H1, H2, and H3 be the hyperplanes containing the quadrilateral facets of P . We show that
H1, H2, and H3 do not share a point. Assume the contrary and choose p ∈ H1 ∩ H2 ∩ H3. Let T2

be the triangular facet of P such that the pyramid S with base T2 and apex p contains P . Let T1 be
the triangular facet of P distinct from T2. Let q be a vertex of T2 closest to aff(T1) and let H be the
hyperplane parallel to aff(T1) and passing through q. If T1 and T2 are not parallel, then the relative
interior of P ∩H is contained in the interior of P . On the other hand T1 + q − r, where r is the integer
point r = T1 ∩ [p, q], is contained in P ∩ H . Hence the relative interior of P ∩ H contains an integer
point, a contradiction. Thus, T1 and T2 are parallel. Then, since T2 is a base of P and T1 is a section of
S parallel to T2, we infer that T1 and T2 are homothetic. By construction, T1 is strictly smaller than T2.
Since T1 is an integral triangle which contains at least one integer point in its relative interior we have
w(T1) ≥ 2. Therefore, since T2 is integer and strictly larger, w(T2) ≥ 3. Without loss of generality we
assume that T2 ⊆ R2 × {0} and T1 ⊆ R2 × {h} with h ≥ 2 (h = 1 do not need to be considered since the
quadrangular facets of P contain integer points in their relative interior). Let now T ′ := P ∩ (R2 × {1}).
It follows that

w(T ′) =
h− 1

h
w(T2) +

1

h
w(T1) ≥

3(h− 1) + 2

h
= 3− 1

h
≥ 5

2
> 1 +

2√
3
,

a contradiction to (2) in Theorem 4.1, since T ′ is a lattice-free polygon in R2 × {1} with respect to the
lattice Z2 × {1}. Hence H1, H2, and H3 do not share a point and P is a prism.

According to Lemma 6.7 it suffices to investigate triangular prisms P ∈ M3 whose triangular facets
are parallel translates. Without loss of generality we assume that the triangular facets T1, T2 of P satisfy
T2 ⊆ R2 × {0} and T1 ⊆ R2 × {h} with h ≥ 2. From Theorem 4.1 and the fact that P is lattice-
free, it follows that the hyperplane H := R2 × {1} satisfies w(P ∩ H) ≤ 1 + 2√

3
. Hence, 1 + 2√

3
≥

w(P ∩ H) = w(T2) ≥ 2 and since w(T2) ∈ Z we obtain 2 = w(T2) = w(P ∩ H). Theorem 4.1 yields
2 ≥ A(P ∩H) = A(T2) and Pick’s formula gives 2i(T2)+ b(T2) ≤ 6 implying i(T2) = 1 and b(T2) ∈ {3, 4}.
Thus, by Figure 2, P has two triangular facets which are either the triangle shown in Figure 2(e) or the
triangle shown in Figure 2(c). We prove that for each of these two cases there exists exactly one maximal
lattice-free triangular prism, up to a unimodular transformation.

Lemma 6.8. Let P ∈ M3 be a triangular prism whose triangular facets are the triangle shown in
Figure 2(e). Then, P is equivalent to M10.
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Proof. Without loss of generality we assume that the two triangular facets of P , denoted F and F ′, are
given by F := conv({e1, e2,−(e1 + e2)}) and F ′ := a + F , where a = (a1, a2, a3) is the integer point in
the relative interior of F ′. By applying an appropriate unimodular transformation we can further assume
that 0 ≤ ai < a3 for i = 1, 2. Since the quadrangular facets of P need to contain integer points in their
relative interior it holds a3 ≥ 2. By symmetry, we assume a1 ≤ a2. In particular, we have a2 ≥ 1,
otherwise (0, 0, 1) ∈ int(P ). We now set up the facet description of P which is only dependent on the
parameters a1, a2, and a3. It follows that Z

3 ∩ int(P ) is the set of all x = (x1, x2, x3) ∈ Z3 satisfying

a3x1 − 2a3x2 + (2a2 − a1)x3 < a3, a3x1 + a3x2 − (a1 + a2)x3 < a3,

a3x2 − 2a3x1 + (2a1 − a2)x3 < a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities we obtain the following equivalences:

• (0, 0, 1) ∈ int(P ) if and only if −a1 + 2a2 < a3;

• (0, 1, 1) ∈ int(P ) if and only if 2a1 < a2;

• (1, 1, 1) ∈ int(P ) if and only if a3 < a1 + a2.

This implies that the following inequalities hold:

a1 + a3 ≤ 2a2, (10)

a2 ≤ 2a1, (11)

a1 + a2 ≤ a3. (12)

Adding (10) and (12) yields 2a1 ≤ a2 and together with (11) we obtain a2 = 2a1. Substituting this into
(10) and (12) leads to a3 ≤ 3a1 and 3a1 ≤ a3 which means that a3 = 3a1. It follows that a = (a1, 2a1, 3a1)
for some a1 ≥ 1. We infer that (1, 2, 3) ∈ int(P ) if a1 ≥ 2. Thus, we have a = (1, 2, 3) and end up with
the triangular prism M10.

Lemma 6.9. Let P ∈ M3 be a triangular prism whose triangular facets are the triangle shown in
Figure 2(c). Then, P is equivalent to M11.

Proof. Without loss of generality we assume that the two triangular facets of P , denoted F and F ′,
are given by F := conv({±e1, 2e2}) and F ′ := a + F , where a = (a1, a2, a3) is the integer point in the
relative interior of F ′. By applying an appropriate unimodular transformation we can further assume
that 0 ≤ ai < a3 for i = 1, 2. Since the quadrangular facets of P need to contain integer points in their
relative interior it holds a3 ≥ 2. We now set up the facet description of P which is only dependent on
the parameters a1, a2, and a3. It follows that Z

3 ∩ int(P ) is the set of all x = (x1, x2, x3) ∈ Z3 satisfying

2a3x1 + a3x2 − (2a1 + a2 − 1)x3 < 2a3, −a3x2 + (a2 − 1)x3 < 0,

−2a3x1 + a3x2 + (2a1 − a2 + 1)x3 < 2a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities we obtain the following equivalences:

• (0, 1, 1) ∈ int(P ) if and only if 2a1 + 1 < a2 + a3;

• (1, 1, 1) ∈ int(P ) if and only if a3 + 1 < 2a1 + a2.

This implies that the following inequalities hold:

a2 + a3 ≤ 2a1 + 1, (13)

2a1 + a2 ≤ a3 + 1. (14)

Adding (13) and (14) yields a2 ≤ 1 and therefore a2 ∈ {0, 1}. We distinguish into two cases.
Case 1 : a2 = 0. If 2a1 > 1, then (1, 0, 1) ∈ int(P ). Thus, we have 2a1 ≤ 1 implying a1 = 0.

Substituting this into (13) leads to a3 ≤ 1 which is a contradiction.
Case 2 : a2 = 1. From (13) and (14), we obtain a3 = 2a1, i.e., a = (a1, 1, 2a1) for some a1 ≥ 1. If

a1 ≥ 2 we have (1, 1, 2) ∈ int(P ). Thus, it holds a = (1, 1, 2) which leads to the triangular prism M11.
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7 Elements in M3 with four facets

Let P ∈ M3 be a simplex and let F be an arbitrary facet of P . Using a unimodular transformation we
can assume that F ⊆ R2 × {0}. Throughout this section we refer to F as the base of P and denote the
vertex a = (a1, a2, a3) of P which is not contained in aff(F ) as the apex of P , where we assume a3 > 0.
We can further assume that a3 ≥ 2 since for a3 = 1, P is contained in the split {x ∈ R3 : 0 ≤ x3 ≤ 1}
which is a contradiction to its maximality.

We first consider simplices P ∈ M3 with a3 = 2 and a3 = 3, respectively. Let F ′ := P ∩ (R2 × {1}).
Since each facet of P contains an integer point in its relative interior, it follows that F ′ is a maximal
lattice-free triangle. Indeed, if a3 = 2, then any integer point w = (w1, w2, w3) in the relative interior of
one of the three facets different from F satisfies w3 = 1. On the other hand, if a3 = 3, then any integer
point w = (w1, w2, w3) in the relative interior of one of the three facets different from F with w3 = 2
guarantees that the point 2w− a ∈ F ′ is also an integer point in the relative interior of the same facet as
w. According to Dey and Wolsey [DW08] the maximal lattice-free triangles can be partitioned into three
types:

• a type 1 triangle, i.e., a triangle with integer vertices and exactly one integer point in the relative
interior of each edge,

• a type 2 triangle, i.e., a triangle with at least one fractional vertex v, exactly one integer point in
the relative interior of the two edges incident to v and at least two integer points on the third edge,

• a type 3 triangle, i.e., a triangle with exactly three integer points on the boundary, one in the
relative interior of each edge.

(a) Type 1 triangle (b) Type 2 triangle (c) Type 3 triangle

Figure 6: All types of maximal lattice-free triangles in dimension two

Lemma 7.1. Let P ∈ M3 be a simplex with base F ⊆ R2 × {0} and apex a = (a1, a2, a3), where
a3 ∈ {2, 3}. Then P is equivalent to one of the simplices M1, M2, M3, M6, or M7.

Proof. We distinguish into three cases according to the type of triangle of F ′ := P ∩ (R2 × {1}).
Case 1 : F ′ is a triangle of type 1. Without loss of generality assume F ′ = conv({e3, 2e1+e3, 2e2+e3}).

Thus, if a3 = 2, F is a translate of conv({o, 4e1, 4e2}) which leads to M2. If a3 = 3, F is a translate of
conv({o, 3e1, 3e2}) which leads to M3.

Case 2 : F ′ is a triangle of type 2. Without loss of generality assume that the edge of F ′ hav-
ing at least two relative interior integer points contains the points (0, 0, 1) and (0, 1, 1) in its rela-
tive interior, and let the vertex w = (w1, w2, 1) of F ′ opposite to this edge satisfy w1 > 1. By an
appropriate unimodular transformation we can assume that the remaining two edges pass through
the points (1, 0, 1) and (1, 1, 1). First assume a3 = 2. Then vert(F ′) = 1

2a + 1
2vert(F ) ⊆ 1

2Z
3.

Hence, the three vertices of F ′ lie in 1
2Z × { 1

2} × {1} and {0} × 1
2Z × {1}. It follows that F ′ =

conv({(0, 3
2 , 1), (0,− 1

2 , 1), (2,
1
2 , 1)}) or F ′ = conv({(0, 2, 1), (0,−1, 1), (32 ,

1
2 , 1)}). Thus, in the former

case, F is a translate of conv({(0, 3, 0), (0,−1, 0), (4, 1, 0)}) leading to M7, whereas in the latter case F is
a translate of conv({(0, 4, 0), (0,−2, 0), (3, 1, 0)}) leading to M1. Now assume a3 = 3. Then vert(F ′) =
1
3a+

2
3vert(F ) ⊆ 1

3Z
3. Hence, two vertices of F ′ lie in {0} × 1

3Z× {1} and the third vertex lies either in
1
3Z×{ 1

3}×{1} or 1
3Z×{ 2

3}×{1}. By symmetry, we can assume that the third vertex lies in 1
3Z×{ 2

3}×{1}.
It follows that F ′ = conv({(0, 2, 1), (0,−2, 1), (43 ,

2
3 , 1)}) or F ′ = conv({(0, 43 , 1), (0,− 2

3 , 1), (2,
2
3 , 1)}).

Thus, in the former case, F is a translate of conv({(0, 3, 0), (0,−3, 0), (2, 1, 0)}) leading to M1, whereas
in the latter case F is a translate of conv({(0, 2, 0), (0,−1, 0), (3, 1, 0)}) leading to M6.

Case 3 : F ′ is a triangle of type 3. Without loss of generality assume that F ′ = conv({u, v, w}) with
u1 < 0, 1 < u2, 1 < v1, 0 < v2 < 1, 0 < w1 < 1, w2 < 0, and u3 = v3 = w3 = 1, see Figure 7. First

18



u

v

w

Figure 7: Triangle of type 3

assume a3 = 2. Then vert(F ′) = 1
2a + 1

2vert(F ) ⊆ 1
2Z

3. Thus, it follows v2 = w1 = 1
2 and hence we

obtain v = (32 ,
1
2 , 1) and w = (12 ,− 1

2 , 1). This implies u = (− 3
2 ,

3
2 , 1). However, the edge connecting u and

w contains the two integer points (0, 0, 1) and (−1, 1, 1) in its relative interior which is a contradiction
to the fact that F ′ is of type 3. Now assume a3 = 3. Then vert(F ′) = 1

3a + 2
3vert(F ) ⊆ 1

3Z
3. Thus, it

follows v2 ∈ { 1
3 ,

2
3} and w1 ∈ { 1

3 ,
2
3}. Since the edge connecting v and w goes through the point (1, 0, 1),

the following cases are possible:

v = (53 ,
1
3 , 1), w = (13 ,− 1

3 , 1) =⇒ u = (− 5
3 ,

5
3 , 1) =⇒ F ′ is of type 2,

v = (73 ,
2
3 , 1), w = (13 ,− 1

3 , 1) =⇒ u = (− 7
6 ,

7
6 , 1) =⇒ u 6∈ 1

3Z
3,

v = (43 ,
1
3 , 1), w = (13 ,− 2

3 , 1) =⇒ u = (− 2
3 ,

4
3 , 1),

v = (53 ,
2
3 , 1), w = (13 ,− 2

3 , 1) =⇒ u = (− 5
9 ,

10
9 , 1) =⇒ u 6∈ 1

3Z
3,

v = (43 ,
2
3 , 1), w = (13 ,− 4

3 , 1) =⇒ u = (− 4
15 ,

16
15 , 1) =⇒ u 6∈ 1

3Z
3,

v = (43 ,
1
3 , 1), w = (23 ,− 1

3 , 1) =⇒ F ′ is no triangle,

v = (53 ,
2
3 , 1), w = (23 ,− 1

3 , 1) =⇒ u = (− 10
3 ,

5
3 , 1) =⇒ (−1, 1, 1) ∈ relint(F ′),

v = (43 ,
2
3 , 1), w = (23 ,− 2

3 , 1) =⇒ u = (− 4
3 ,

4
3 , 1) =⇒ F ′ is of type 2.

In seven of these eight cases, it follows that F ′ is not a valid triangle. In the open case
where v = (43 ,

1
3 , 1), w = (13 ,− 2

3 , 1), and u = (− 2
3 ,

4
3 , 1) we infer that F is a translate of

conv({(2, 1
2 , 0), (

1
2 ,−1, 0), (−1, 2, 0)}). However, such a translate does never have all three vertices in-

teger.

In the following we assume that a3 ≥ 4. Our proof consists of the following steps. Firstly, we construct
all bases which are possible for such a simplex P ∈ M3. Secondly, we argue that all simplices P ∈ M3

satisfy a3 ≤ 12. This gives a finite set of simplices that need to be checked for maximal lattice-freeness.
Finally, the ultimate list of maximal lattice-free simplices is obtained by computer enumeration.

By Lemma 6.3, all integral triangles T in the plane with w(T ) = 2 and (i(T ), b(T )) ∈ ZS are potential
bases for a maximal lattice-free simplex P ∈ M3 with a3 ≥ 4. From (5), it follows that 2i(F )+ b(F ) ≤ 6
for a3 ≥ 11 and therefore (i(F ), b(F )) = (1, 3) or (i(F ), b(F )) = (1, 4). If (i(F ), b(F )) = (1, 3), then F
is, up to a unimodular transformation, the triangle shown in Figure 2(e). In Lemma 7.3 we shall show
that a3 ≤ 12 in this case since otherwise P is not lattice-free. If (i(F ), b(F )) = (1, 4), then F is, up to a
unimodular transformation, the triangle shown in Figure 2(c). In Lemma 7.4 we shall show that a3 ≤ 8
in this case since otherwise P is not lattice-free. Thus, we can use computer enumeration to find all
simplices P ∈ M3.

Lemma 7.2. Let T ⊆ R2 be an integral triangle with w(T ) = 2, i(T ) = 2, and b(T ) ∈ {3, 4, 5, 6}. Then,
up to a unimodular transformation, T is one of the triangles depicted in Figure 8.

Proof. Let T be an integral triangle in the plane satisfying w(T ) = 2 and i(T ) = 2. We divide the proof
according to the number of integer points on the boundary of T .

Case 1: i(T ) = 2 and b(T ) = 3. Without loss of generality we assume that the two interior integer
points are placed at (1, 0) and (2, 0). This implies that for any u ∈ Z2 \ {o,±e2} we have w(T, u) ≥ 3 and
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(a) (b) (c)

Figure 8: All integral triangles T with w(T ) = 2, i(T ) = 2, and b(T ) ∈ {3, 4, 5, 6}

therefore it must hold v2 ∈ {0,±1} for each vertex v = (v1, v2) of T . Observe that exactly one vertex of
T = conv({a, b, c}) lies on the line y = 0, say a = (0, 0). Let the remaining two vertices b and c satisfy
b2 = 1 = −c2. Using an appropriate unimodular transformation we can assume that b = (0, 1). For
convexity reasons it follows that c = (5,−1) which leads to the triangle shown in Figure 8(a).

Case 2: i(T ) = 2 and b(T ) = 4. Pick’s formula gives A(T ) = 3 in this case. Placing the two interior
integer points of T at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1} for each vertex v = (v1, v2)
of T . Let T = conv({a, b, c}). Clearly, we cannot have two vertices on the line y = 0. If none of the
vertices is on the line y = 0, then assume without loss of generality that a2 = b2 = 1 = −c2. It follows
that either b1 = a1+2 with A(T ) = 2, or b1 = a1+1 with A(T ) = 1. In both cases this is a contradiction
to Pick’s formula. Thus, exactly one vertex lies on the line y = 0, say a = (0, 0). Let the remaining two
vertices b and c satisfy b2 = 1 = −c2. As above, we can assume that b = (0, 1) which implies c = (6,−1).
This gives the triangle shown in Figure 8(b).

Case 3: i(T ) = 2 and b(T ) = 5. Pick’s formula gives A(T ) = 3.5. Placing the two interior integer
points of T at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1} for each vertex v = (v1, v2) of T .
Clearly, we cannot have two vertices on the line y = 0. If no vertex of T lies on the line y = 0, then with
similar arguments as above we infer that A(T ) ≤ 3, a contradiction to Pick’s formula. Thus, precisely
one vertex of T = conv({a, b, c}) lies on the line y = 0, say a = (0, 0). Without loss of generality let
b2 = 1 = −c2. Note that the two edges connecting a and b, resp. connecting a and c, do not have integer
points in their relative interior. The edge connecting b and c has at most one relative interior integer
point. Therefore, we have at most four integer points on the boundary of T which is a contradiction to
b(T ) = 5.

Case 4: i(T ) = 2 and b(T ) = 6. Pick’s formula gives A(T ) = 4. Placing the two interior integer
points of T at (1, 0) and (2, 0) as above implies again that v2 ∈ {0,±1} for each vertex v = (v1, v2) of T .
Clearly, we cannot have two vertices on the line y = 0. If exactly one vertex of T lies on the line y = 0,
say a = (0, 0), then using the same arguments as above we infer that T has at most four integer points
on its boundary, a contradiction to b(T ) = 6. Thus, no vertex of T is on the line y = 0. Without loss
of generality let a2 = b2 = 1 = −c2. It follows that b1 = a1 + 4, otherwise Pick’s formula is violated.
Using an appropriate unimodular transformation, we obtain a = (0, 1), b = (4, 1) and c = (1,−1), see
Figure 8(c).

From Lemma 6.3 and Lemma 7.2, it follows that any facet of a simplex P ∈ M3 with a3 ≥ 4 has
the structure shown in Figures 2(a)–2(e) and 8. Furthermore, inequalities (5) imply that only 2(c) and
2(e) are possible if a3 ≥ 11. In the following two lemmas we will show that simplices having those two
bases are not lattice-free for a3 ≥ 13. Thus, by computer enumeration over all potential bases and values
for a3 ranging from 4 to 12, we obtain a finite list of simplices. Screening those which are not maximal
lattice-free we end up with the simplices M4 and M5.

Lemma 7.3. Let P ⊆ R3 be a simplex with one facet being conv({e1, e2,−(e1 + e2)}) and apex a =
(a1, a2, a3) ∈ Z3, where a3 ≥ 13. Then, P is not lattice-free.

Proof. By applying an appropriate unimodular transformation we can assume that 0 ≤ ai < a3 for
i = 1, 2. By symmetry, we assume a1 ≤ a2. We now set up the facet description of P which is only
dependent on the parameters a1, a2, and a3. It follows that Z

3∩int(P ) is the set of all x = (x1, x2, x3) ∈ Z3

satisfying

a3x1 − 2a3x2 + (1 + 2a2 − a1)x3 < a3, a3x1 + a3x2 + (1−a1 − a2)x3 < a3,

a3x2 − 2a3x1 + (1 + 2a1 − a2)x3 < a3, x3 ∈ {1, . . . , a3 − 1}.

From these inequalities, it follows that
a3 + 1 ≥ a1 + a2, (15)
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since otherwise (1, 1, 1) ∈ int(P ). Assume a1 = 0. If a2 ≤ 1, we have (0, 0, 1) ∈ int(P ), otherwise
(0, 1, 1) ∈ int(P ). Therefore, we must have a1 ≥ 1. It follows that

2a1 + 1 ≥ a2, (16)

since otherwise (0, 1, 1) ∈ int(P ). Observe that (0, 0, 1) ∈ int(P ) if and only if a1 + a3 − 2a2 > 1 and

a2 + a3 − 2a1 > 1. Assume a1 ≤ 3. Then (0, 0, 1) ∈ int(P ): a1 + a3 − 2a2
(16)

≥ a3 − 3a1 − 2 ≥ 2 > 1;
a2 + a3 − 2a1 = (a2 − a1) + a3 − a1 ≥ a3 − a1 ≥ 10 > 1. Thus, we have a1 ≥ 4. Using (15) this implies
a3 ≥ a2 + 3 and therefore a2 + a3 − 2a1 ≥ 2(a2 − a1) + 3 > 1. Hence, we have

2a2 + 1 ≥ a1 + a3, (17)

since otherwise (0, 0, 1) ∈ int(P ). However, using inequalities (15)–(17) it can now be shown that
(1, 2, 3) ∈ int(P ):

(1, 2, 3) ∈ int(P ) ⇐⇒ 3a1 + 3a2 − 2a3 > 3,

3a1 − 6a2 + 4a3 > 3,

− 6a1 + 3a2 + a3 > 3.

3a1+3a2−2a3
(17)

≥ 5a1−a2−2
(16)

≥ 3a1−3 = 3(a1−1) > 3; 3a1−6a2+4a3
(15)

≥ 7a1−2a2−4
(16)

≥ 3(a1−2) > 3;

−6a1 + 3a2 + a3
(15)

≥ −5a1 + 4a2 − 1
(17)

≥ 2a3 − 3a1 − 3
(15)

≥ 2a2 − a1 − 5
(17)

≥ a3 − 6 > 3.

Lemma 7.4. Let P ⊆ R3 be a simplex with one facet being conv({±e1, 2e2}) and apex a = (a1, a2, a3) ∈
Z3, where a3 ≥ 9. Then, P is not lattice-free.

Proof. By applying an appropriate unimodular transformation we can assume that 0 ≤ ai < a3 for
i = 1, 2. We now set up the facet description of P which is only dependent on the parameters a1, a2, and
a3. It follows that Z

3 ∩ int(P ) is the set of all x = (x1, x2, x3) ∈ Z3 satisfying

2a3x1 + a3x2 + (2− 2a1 − a2)x3 < 2a3, −a3x2 + a2x3 < 0,

−2a3x1 + a3x2 + (2 + 2a1 − a2)x3 < 2a3, x3 ∈ {1, . . . , a3 − 1}.
From these inequalities we obtain the following equivalences:

• (0, 1, 1) ∈ int(P ) if and only if 2a1 + 2 < a2 + a3;

• (1, 1, 1) ∈ int(P ) if and only if a3 + 2 < 2a1 + a2.

This implies that the following inequalities hold:

2a1 + 2 ≥ a2 + a3, (18)

a3 + 2 ≥ 2a1 + a2. (19)

Adding (18) and (19) yields a2 ≤ 2. Using (18), (19) and a2 ≤ 2 it can be shown that (1, 1, 2) ∈ int(P ):

(1, 1, 2) ∈ int(P ) ⇐⇒ 4a1 + 2a2 − a3 > 4,

− 4a1 + 2a2 + 3a3 > 4,

− 2a2 + a3 > 0.

4a1 + 2a2 − a3
(18)

≥ 4a2 + a3 − 4 > 4; −4a1 + 2a2 + 3a3
(19)

≥ 4a2 + a3 − 4 > 4; −2a2 + a3
a2≤2, a3≥9

> 4.

8 Remarks on the computer enumeration

In view of the results in Sections 4–7 for proving Theorem 2.2 it remains to verify the following.

• The integral quadrangular pyramids with bases as in Figures 2(h)–2(l) and 5 of height h with
4 ≤ h ≤ 10 are not in M3.

• The integral simplices with bases as in Figures 2(a)–2(e) and 8 of height h with 4 ≤ h ≤ 12 belonging
to M3 are equivalent to M4 or M5.

This can be done by a computer enumeration which involves less than 15 000 polytopes.
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