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Abstract

This paper deals with the computational complexity of some yes/no
problems associated with sequential elimination of strategies using three
domination relations: strong domination (strict inequalities), weak
domination (weak inequalities), and domination (the asymmetric part of weak
domination). Classification of various problems as polynomial or NP-
Complete seems to suggest that strong domination is a simple notion, whereas

weak domination and domination are complicated ones.



1. Introduction

The notion of rationality, being central as it is to game theory, has
naturally been interpreted in many ways, ranging from a relatively mild
condition of "rationalizability" in the sense of Bernheim (1984) and Pearce
(1984) to almost-omniscience in Binmore (1987, 1988). It seems, however,
that whatever we mean by "rationality" would have to exclude the possibility
of a player choosing a dominated strategy, thus allowing us to eliminate
such strategies as a first-step towards "solving" a game. Moreover,
assuming that this type of rationality is known to a certain degree among
the players--let us say for simplicity that it is common knowledge--we may
iteratively eliminate dominated strategies as new domination relationships
appear when some of the original strategies have already been deleted.

The validity of this procedure depends, of course, on the precise
definition of "domination." At least three notions of domination seem to be
natural and have indeed appeared in the literature: a strategy x strongly
dominates another strategy y if for whatever strategy combination of the
other players x guarantees a strictly higher payoff than does y. It weakly
dominates y if the inequality is weak (which allows for the possibility of y
weakly dominating x). Finally, x dominates y if it weakly dominates it but
the converse is false.

The extent to which game theorists seem to "believe" in these
domination relations as analytical tools varies. While strong domination
may have a claim to the status of "canon of rationality," domination
certainly does not enjoy that status (note that there are Nash equilibria in
dominated strategies), and weak domination may be dismissed as rather

arbitrary (mainly on account of its failing to be antisymmetric).
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In Gilboa-Kalai-Zemel (1989) we studied various properties of abstract
domination relations that may guarantee the existence and uniqueness of a
reduced game, i.e., a game that is obtained from an original one by
iterative elimination of dominated strategies, and in which no further
eliminations are possible. It turns out that for finite games, it suffices
to require that such a domination relation would be a partial order (when
restricted to every subgame of the original one) and hereditary in the
following sense: if a strategy x dominates y in a given game, it will also
dominate it in any subgame.

Obviously, strong domination is a hereditary partial order; domination
is a partial order that is not hereditary; and weak domination is hereditary
but is not a partial order. Indeed, the uniqueness of the reduced game is
guaranteed only for strong domination, while it is not difficult to show
that the other two relations may yield non-unique reduced games. (Note that
the reduced game existence is immediate for finite games.)

In this paper we study these three relations from a computational
complexity point of view. In a nutshell, the results show that
computational problems relating to strong domination tend to be easy (i.e.,
polynomial), while those involving either domination or weak domination tend
to be difficult (namely, NPC). It therefore turns out to be the case that
strong domination, which is the most intuitive and most widely accepted
relation, and the only one for which the reduced game uniqueness is
guaranteed, is also a reasonable notion if one assumes that the players are
rational but may have computational restrictions. As for the other two
relations (on top of the conceptual objections one may raise and the

theoretical flaw of non-uniqueness) one cannot adopt them as viable solution
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concepts (in general) without implicitly making extremely demanding
assumptions on the players' computational abilities.

In a way, this paper may be viewed as another contribution to the
literature on classification of game theoretic solution concepts on basis of
computational complexity. Works of this nature are by Sahni (1974) (on the
existence of Nash equilibrium in pure strategies where the utilities are
given as polynomials), Gilboa (1988), Ben-Porath (1988), and Papadimitriou
(1989) (on computation of best response automata in repeated games), Knuth-
Papadimitriou-Tsitsiklis (1988) (on elimination of dominated strategies from
a different viewpoint than ours), and Gilboa-Zemel (1989) (on Nash and
correlated equilibria in mixed strategies for general games). The strategy
we adopt here is closest to Gilboa-Zemel (1989): we formulate several
ves/no problems that try to capture the notion of "solving"” the game, and we
analyze its complexity with respect to each one of the "competing" solution
concepts (domination relations in the case at hand). The analysis stops
when we get the impression that there is a certain principle underlying the
results, preferably one saying that some notions are intrinsically difficult
to compute and other are simple.

The problems we have used in this paper are, loosely, the following:

i

1. Given a game G = (N'(Sl)ieN’ (h™) ) and a number ki for each

ieN
- | ~i i,
player i, can G be reduced to a game G = (N, (S )1eN' (h )ieN) with |S7| =
k.?
i

2. Given two games, G and G, is G a reduction of G?

3. Given a game G and a subset of strategies Ti for each player i, can
G be reduced to its subgame G defined by these subsets? (Problem 2 is more

difficult than Problem 3 since the identities of strategies in G are not



given.)

We note here that other YES/NO problems of this type can also be
analyzed-in a similar way, and it seems that slight modifications of our
proofs will establish slightly modified results. 1In particular, one may ask
whether a given strategy (or a subset of strategies) may be eliminated in
some legitimate reduction path, and for this case similar results hold.

As mentioned above, the classification of these problems (and some
variants) seems to imply that strong domination is an intrinsically simple
notion, while domination and weak domination are complex ones.

This paper is organized as follows. 1In Section 2 we provide formal
definitions of the concept of games and the problems discussed. In Section
3 we present the results and some comments on possible extensions and
interpretations. The proofs are given in Section 4, and Section 5 contains
some remarks regarding the robustness of our results with respect to the way
in which a game is presented.

2. Notations and Definitions

We will assume that the description of the game contains a linear order
on each player's strategy set. W.l.o.g. (without loss of generality) we may

assume that the strategies are natural numbers with the natural order. We
_ i i

therefore define a game to be a triple G = (N, (S )ieN'(h )ieN) where

N ={1,2,...,n} is the set of players, s! is a finite and nonempty set of

integers denoting player i's strategies, and hl: s = I1 Sl - R is player

ieN

i's payoff function.

P i “i . _ i i
A game G = (N, (S )ieN'(h )ieN) is a subgame of G = (N, (S )ieN’(h )ieN)

if for every i € N there is a (strictly) increasing function £l. Si - st

such that



i i 1 n
h ((Sl""'sn)) = h ((f (Sl)""’f (sn))

1 and all i € N.

for all (Sl""‘sn) € nieN S

Thus, if we consider a one-player game G and identify it with the
payoff vector (1,2,3), the vectors (1,2) and (1,3) will correspond to
subgames of G, but (3,1) will not.

Two games, G and G, are said to be almost identical if G is a subgame

~

of G and vice versa. Note that "almost identity" is an equivalence relation
and that, given two games, one can determine in linear time whether they are
almost identical, so that almost identical games may be considered

identical.

(hl)

) and a collection T = (Tl) of

. i
Given a game G = (N, (S
g (N, (s7) ieN

ieN’ ieN

strategy subsets @ # Tt c Si, we denote by G(T) the subgame of G

corresponding to T, i.e., G = (N,(Tl)iGN.(hl). ) where h' is the

ieN
.. i i
restriction of h™ to T .

For every game G = (N,(Si)ieN,(hl) ) and every i € N we define three

ieN
binary (domination) relations, which are strict dominations (>>), domination
(>), and weak domination (2). Since these relations were informally defined
in the introduction, we omit their obvious (and tedious) definition.

We now turn to the definition of reduction. Given two games,

G = (N.(Si) (hi)ieN) and G, and a domination relation dom (which may be

ieN’
>>, >, or 2), we say that G is a one-step dom-reduction of G if there exists
i

T = (Tl)ieN with @ # ' ¢ s! (for i € N) such that:
(i) Por every i and every x € Sl\Ti there is a y € Ti such that

y dom x;
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(ii) G is almost identical to G(T).
Thus, one-step dom-reduction is a binary relation on games, and it is

meaningful to define dom-reduction as its transitive closure. We will also

use verbal variations such as "G dom-reduces to G" with their obvious
meaning.

A game is said to be dom-irreducible if it is almost identical to every

~

dom-reduction of itself. A game G is a maximal dom-reduction of G if it is

a dom-irreducible dom-reduction of it.

We may finally turn to the definition of the computational problems.
Each of the problems stated above can be posed in two variants: for a
general subgame and for a subgame that is restricted to be irreducible.
Thus we have six problems, each of them parameterized by the domination
relation; since we consider three domination relations we end up with
eighteen problems. Formally, the parameterized problems are:

1. SIZE (dom): Given a game G = (N,(Si) ) and positive

i
ien' (M) jen

) with |ST] = k.

is there a game G = (N,(Si). i

. “i
integers (ki)ieN' ien' (M) jen

such that G dom-reduces to G?

. . . _ i i .
2. SIZE' (dom): Given a game G (N, (S )1EN’(h )ieN) and positive

. . S i ~i
integers (ki)ieN' is there a dom-irreducible game G = (N, (S )ieN'(h )ieN)

-~

with |Si| = k1 such that G dom-reduces to G?

. N i i
3. SUBGAME (dom): Given a game G = (N, (S )ieN'(h )ieN) and a game
- ~3 ~4 . -
G = (N,(S )ieN’(h )ieN)’ does G dom-reduce to G?
' . = i i -
4, SUBGAME' (dom): Given a game G (N, (S )ieN'(h )ieN) and a dom

-~

), does G dom-reduce to G?

(nl)

irreducible game 6 = (N,(Si) (hi)

ieN
5. SUBSETS (dom): Given a game G = (N, (s))

ieN’

ieN’ ieN) and subsets
(T1 c Si), does G dom-reduce to G(T)?
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ieN) and subsets

6. SUBSETS' (dom): Given a game G = (N,(si)ieN,(hi)
T = (Tl)ieN (T1 c Sl) such that G(T) is dom-irreducible, does G dom-reduce
to G(T)?

3. Results

The results are summarized by the following

Theorem: The problems SIZE (2), SIZE'(2), SUBGAME(2), SUBGAME'(2>),

SUBSETS(>), SUBSETS'(2), SIZE(>), SIZE'(>), SUBGAME(>), SUBGAME'(>),

SUBSETS(>), SUBSETS'(>), SIZE(>>) and SUBGAME(>>) are NPC,
problems SIZE'(>>), SUBGAME'(>>), SUBSETS(>>) and SUBSETS' (

polynomial.

These results may be presented by the following table

for "polynomial"):

PROBLEM 2 > >>
SIZE NPC (1) NPC (7) NPC
SIZE' NPC (2) NPC (8) P
SUBGAME NPC (3) NPC (9) NPC
SUBGAME' NPC (4) NPC (10) P
SUBSETS NPC (5) NPC (11) P
SUBSETS' NPC (6) NPC (12) P

(The numbers in parentheses enumerate the facts we have to

referred to in the sequel.)

while the

>>) are

(where "P" stand

(13)
(14)
(15)
(16)
(17)
(18)

prove and will be

Before continuing to prove the theorem, we should make the following



comments:

1. In fact, the theorem may be stated in a more general form. We may
define each of these problems without a reference to a specific domination
relation dom, but rather with the domination relation given as part of the
input data. In general, such a domination relation is simply a sequence of
lists of ordered pairs of strategies, but the number of lists we need is as
large as the number of subgames of G, which is, of course, exponential in
the size of the original game G. Hence a polynomial algorithm in the size
of the input may still be exponential in the size of the game.

Trying to circumvent this problem we may assume that the relation dom
is indeed given as input, but to compute the complexity with respect to
invocations of an "oracle", that is, a procedure which, when invoked,
provides an answer regarding the existence of domination between each pair
of strategies. Thus we may assume that the dom relation is still a part of
the problem's input, but the size of the latter is no more than the size of
the game description (and the other data of the specific problem.) We may
now wonder whether there exists an algorithm solving any of the problems
discussed above in a number of operations which is bounded by a polynomial
of the size of the input data, where each oracle invocation is considered to
be a single operation.

In this framework we may generalize our results to say that in general
the six problems are NPC, though SIZE', SUBGAME', SUBSETS and SUBSETS' are
polynomial if the dom relation given as input is restricted to be a
hereditary partial order as defined in Gilboa, Kalai and Zemel (1989).
Furthermore, the first and second columns of the table above show that all

these problems are still NPC if the dom relation is only restricted to be
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hereditary (but not a partial order, as 2> ) or only a partial order (but
not hereditary, as > .) Indeed, the results quoted above are sufficient to
prove thét the more general problems (with dom given as a part of the input)
are difficult. From the proof of facts 14,16-18 in the next subsection it
will be clear that the corresponding more general problems are still
polynomial, as the uniqueness of the maximal reduction is all that one needs
to rely on in these proofs.

2. Coming to interpret the results, it seems to us that reduction
problems related to the relations 2> and > are intrinsically difficult,
whereas the same problems are easy if we only consider >> as a legitimate
domination relation. True, there are two "NPC"'s on strict domination's
grade sheet, but they are both referring to "untagged" problems, that is, to
problems where the reduced game é is not required to be irreducible.

Indeed, the proofs of these results (facts 13 and 15) will probably give the
reader a feeling of "unfairness", as the difficulty of these problems is not
related at all to elimination of dominated strategies. One may even claim
that these problems are rather artificial and only the "tagged" problems

should be considered for game theoretic applications.

4. Proofs

The time has come to admit that the number of facts stated above
exceeds the number of proofs given below by a large margin. As a matter of
fact, facts 1-12 all have the same proof which is given in the next sub-

section, and so do facts 14,16 and 18.
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4.1 Proof of Facts 1-12

We first introduce the satisfiability problem, which will be shown to
be reducible to any of the six problems with either 2 or >.

A Boolean variable x is a variable assuming values in {0,1}. A Boolean
function of s variables is a function f: {0,1}° --> {0,1}. For each
variable xi we define two Boolean functions, denoted by X4 (with an obvious

abuse of notation) and ii' These functions are called Basic functions. The

function X4 assumes the value 1 iff the i-th component of its argument is 1.
(In other words, it is the projection function with respect to the i-th

component.) The function ii equals 1 iff X equals 0. Boolean expressions

are generated from Boolean functions using the operations + (for logical OR)
and * (for AND), and brackets understood in the obvious way. A factor is an
expression which is the sum of basic functions. W.l.o.g. (Without Loss of

Generality) we will assume that in each factor and for every i no more than

one of {xi, §i} is present (otherwise the factor is identically 1). The

product of factors is called a conjunctive normal form (CNF) of the function

to which it equals. A CNF expression in which every factor has no more than
three basic functions is called a 3-CNF expression. W.l.o.g we may assume
that in a 3-CNF expression each factor has exactly 3 basic functions (if the
need arises, one may always writé a certain basic function twice since x+x=x
for every Boolean expression x.) It is well known that every Boolean
function has a CNF representation and even a 3-CNF one.

The SATISFIABILITY PROBLEM is the following: given a Boolean function

f of s variables in a 3-CNF, is there a point (xl,...,xs) in its domain for
which f assumes the value 1 ? (That is, can the expression be satisfied? Or,

equivalently, is it false that f is identically zero?)
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The satisfiability problem is known to be NPC. Thus, to prove that a
certain problem is NPC it suffices to show that it at least as hard as the
satisfiability problem, in the following sense: one should provide an
algorithm which translates every input of the satisfiability problem to an
input of the problem under consideration, such that: (i) The algorithm
completes the translation within a number of operations which is bounded by
a polynomial in the size of the satisfiability problem's input; and (ii) The
answer to the new problem for the input constructed by the algorithm is
"YES" iff that is the answer to the satisfiability problem with its original
input (Of course, this is a general procedure for problem reduction and,
indeed, we will later on use the same procedure for reducing other problems
which are known to be NPC to new problems, thus proving the latter are also
NPC.)

Let us define é to be the two-players game where each player has a
single strategy and the payoff to both of the players is 7. (This seemingly
idiosyncratic choice is, naturally, rather arbitrary, and will be clarified
in the course of the proof.)

We may finally write:

Lemma: There exists a polynomial algorithm which, given a 3-CNF expression
f constructs a two-player game G(f) such that G(f) is 2 -reducible to G

iff G(f) is > -reducible to G iff f is satisfiable.

Proof: Let there be given a 3-CNF expression f. We will describe the game
G(f) and it will (hopefully) be clear from this description that it can be

constructed in a polynomial time (as a function of the size of f's
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description.)

Assume that f = fl*fz*...*fm where fj is a factor with exactly three

basic functions in the variables KyveoooXg. For each j (1<j<m) let ilj' i2j
and iSj be the indices of the variables appearing in fj' I.e., 1 £ ilj <

s < . < - 3 3 K3 . . s

12j < 13j < s and X, or x, appear in fj iff i € {llj'12j'13j)' Next let ytj

in (0,1} (t=1,2,3) denote which of the two basic functions, X; or X, is in

fj. (Which is a well defined question since we assumed that both of them

cannot appear in the same factor.) Suppose, then, that ytj equals 1 iff X5
tj
(rather than ii ) appears in fj‘
tj
In G(f) player 1 will have 2s + 3m + 1 strategies and player 2 will

have 3s + 4m + 1 strategies. According to our definition of a game, the
strategy sets are thus uniquely defined, but it will prove convenient to
provide them with nicknames. Thus we wish to call the first 2s strategies

of player 1 by the names (xl,i D 4 .is) (henceforth - "the set X"), the

g0 Xg

next 3m strategies - (f_',f '',f ''' .., f ', f "' Ff '"'') ("the set F'") and

1 1 1 m m m

the last one - B. In a similar way we will use nicknames for player 2's
strategies. (The same nickname may refer to different numbers for the two

players. Hopefully, this will avoid confusion rather than generate it.) The

first 3s strategies of player 2 will be called (al,xl,il,...,as,xs,is) ("the
set AX"). The next m strategies will be named (fl,...,fm) ("the set F"),

- 1 1t 1t 1 tt tr " e
and the next 3m (f1 ,f1 ,f1 ""’fn 'fn 'fn ) ("the set F'").

Player 2's last strategy will be called R.

We are now about to define the payoff functions hl and h2. Let us
agree that payoffs which we do not specify are zero. To simplify matters we
will describe the payoff by submatrices (at any rate, the reader is

encouraged to consult figure 1):



X x AX : for each i<s, let
1 2
h (xi,ai) = h (xi,a )y =5
1 - _ w2 _
h (xi,ai) = h (xi,a ) =56
h' (x;.x,) = h® (x.,x,) =1
1 - 2 = o
h (xl,xi) = h (xi,xi) = -1
1 - - 2 - -

h (xi,xl) = h (xi,xi) =1
1 - 2 -

h (xi,xl) = h (xi,xj) = -1

F' x AX : -- (Both h1 and h2 are identically zero in this submatrix.)

(B} XAX : h, = 6 (i.e., for all 1 € AX hi(B,1) = 6.)

XxF :Fori<s, j€mand t £ 3,
if 1tj = i, then if ytj =1,
then h2(x.,f,) = 4 ;
1 ]
else (that is, ytj = 0),
2_
h (xi'fj) =4
(Otherwise, i.e., if neither x, nor ;i appears in fj' h? is
zero.)
. 2 2 2
F' x F : For <m, h™(f,',f,) = f.,'',f.) = h"(f,'''",f.) = 2
J ( J J) h J J) ( J J)
(B} x F : ht = -1
XxF' : For i £ s and j < m,
if i = itj for some t in (1,2,3}
. . 2 'y o n2gzC 'y =
then if i # 11j then h (xi'fj ) = h (xi'fj ) 4
. . 2 ') = 2, - [ =
and if i # 12j then h (xi'fj ) h (xi,fj ) 4
: 5 2 N - 2. t -
and 1if i # 13j then h (xi'fj ) h (xi’fj ) 4
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F' x F': For j <m,

hl(fj',fj') - hz(fj',fj') -3
hl(fj'.fj") - hz(fj‘,fj") -2
hl(fj'.fj"') - h2(fj‘,fj"') =2
hl(fj".fj') - h2(fj",fj') -2
hl(fj",fj") - hz(fj",fj") - 3
hl(fj".fj"') - hz(fj".fj"') = 2
hl(fj"',fj') - hz(fj"'.fj') =2
hl(fj"',fj") - hz(fj"'.fj") =2

R R LPTRLNY MR I

{(B} x F' : h- =5

X x {R} : —-

F' x {R} : -—-

B x {R) : h'(B,R) = h®(B,R) = 7.

We claim that G(f) is reducible (using either 2 or >) to é iff £ is
satisfiable. Let us first prove the "if" part. It suffices to prove this
part for the relation >, since any legitimate >-reduction is also a
legitimate 2 -reduction. Suppose, then, that f is satisfiable. Let {bi}
in {0,1} (i £ s) be the values of Xg for which f(bl""’bs) = 1. We shall
now describe elimination of strategies from G:

1. For each i < s, if b, = 1 let player 2 eliminate the strategy X,

i

which is dominated by a If, on the other hand, bi = 0, let player 2

i
delete the strategy ii' which is also dominated by a,.
2. For each i £ s, let player 1 eliminate the strategy corresponding

to the one eliminated by player 2. Note that in the absence of player 2's

is dominated by x, and vice versa.

strategy Xy player 1's strategy x i

i
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3. For each j £ m, consider player 2's strategy fj’ Since the values
{bi} satisfy the function f, in particular they also satisfy fj' which means
that (at least) one of the basic functions in fj equals 1. Suppose it is
the function with the minimal index. This means that the first row in which
h2 = 4 (in this column) was eliminated by player 1, and now player 2's
strategy fj' dominates fj' Similarly, if it were the second row - fj"
would now dominate fj and the same argument applies to the last case, in
which it is the third row.

4. By now all player 2's strategies in the set F are eliminated.

Hence player 1's strategy B dominates all others. Let, then, player 1
eliminate all other strategies and be left with B.

5. Finally, when only B is left for player 1, the strategy R dominates
all other strategies of player 2 and we are left with &.

We now wish to show the converse, i.e., that if G(f) is >-reducible or
> -reducible to & then the function f is satisfiable. This time it would
suffice to prove the implication for 2> -reducibility. Assume, then that
there is a legitimate sequence of eliminations of 2 -dominated strategies
which results in é. Let us consider the last time player 1 has eliminated a
strategy. The eliminated strategy must have been dominated by B, which is
the only one left. But this is ﬁossible only if at this point all player
2's strategies in P had already been eliminated. Let us go back even
further and consider the point at which the last of player 2's strategies
was still in the game. At this point player 1's strategy B cannot dominate
any other strategy, nor could it dominate any prior to this stage. We can

therefore conclude that at this stage (when the last of player 2's

strategies in F is about to be eliminated) player 1 still has all strategies
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in F', hence so does player 2. Moreover, since player 1's strategy B cannot
dominate any other strategy, out of each pair of player 1's strategies in X
(i.e., x; and ii) at least one is still in the game. Let us now define the
values {bi} which will satisfy the function f: If at this stage in the
iterative elimination of strategies player 1 has only the strategy Xy -
define bi = 0; If s/he only has ii - define bi = 1; If both are present the
definition of bi is arbitrary, say 1.

We claim that f(bl""'bs) = 1. All we have to show is that for each j
< m the factor fj is satisfied. We know that at the critical stage when the
last of all the fj's was about to be deleted by player 2, all of them have
been either already eliminated or dominated by other strategies of player 2.
We also reached the conclusion that at this point all of player 1's
strategies in F' were present, hence player 2's strategies in AX could not
have dominated fj' Moreover, because of the structure of the submatrix F' x

F', fj could be dominated only by one of {fj',f.".f ''*'} (which were all

J J

present at this stage.) Let us assume that f_,' dominated fj' This implies

J
that the first row in which the column of fj has h2 = 4 has been deleted
earlier. But this means that fj is satisfied by (bl""'bs) which were
defined by the rows deleted by player 1 up to this stage. A similar
argument applies to f} and f&", and this completes the proof of the

lemma. //

To see that facts 1-12 are indeed proved one needs only notice that the
question whether G(f) is reducible to G may be presented as any one of the
twelve problems: it may be presented as a SIZE problem, asking whether G(f)

can be reduced to a game of size 1 x 1 (where there is only one candidate
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for a reduced game of this size); this question is itself a SUBGAME
question; and finally, one may ask whether G(f) can be reduced to {B} x {R},
thus disguising it as a SUBSETS problem. Furthermore, in all three problems
the game é is irreducible, hence the lemma also proves that the "tagged"

problems are NPC.

4.2 Proof of Fact 13

To prove that SIZE(>>) is NPC we will prove that the following problem,

which is known to be NPC, is reducible to it:

SET COVER PROBLEM: Given a set S={1,2,...,s}, m subsets of S, Sl,...Sm and

a number k < m, is there a cover of S consisting of no more than k subsets

out of {Sl,...,sm}? (I.e., are there indices jl""'j such that U1

k <1z=

S, = 8?)
k 3y
Given input data for the set cover problem, let us construct a game

G(S,S "'Sm) as follows: first, for each i € S, let M1={jl 1<j<m and

1’

ie Sj}‘ Define m, = |Mi], and let M be 2? m.. G(S'Sl""’sm) is a two-

=1 i

player game in which player 1 has s+M strategies and player 2 has s+m+1
strategies. Let us nickname player 1's strategies as follows: the first s

strategies will be called x e X and we will refer to them together as S.

1’°

The next m, strategies will be named {xlj} for j in Ml, and X1 as a set.

2
forth. The symbol X

The next m,_, strategies will be {xzj} for j in Mz, and X2 as a set, and so

i's will refer to the union of Xl""’xs' Player 2's

strategies will be named as follows: the first s strategies, like those of

player 1, are x S Xg and together they will be referred to as S. The

17"

next m strategies will be called S_,S ""'Sm’ and Sj's as a set. The last

1’72
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one will be called R.
We will now define the payoff functions. As in the previous proof, we
will not mention zero values. As above, we describe each submatrix

separately for clarity of exposition, though figure 2 will probably be more

helpful:
Insert Figure 2 About Here
S x 8§ : For every i,k € S,
if i=k, then hl(x,,x ) = h%(x,.x ) = 4
i’k i'7k
. 1 _ .2 _
else (i#k) h (xi,xk) = h (xi,xk) = -1
Xi's xS : For every i € S and j € Mi'
1 _ .2 _
h (xij’xi) = h (xij’xi) =5
S x Sj's : For every i € S and j < m,
if 1 €S,, then h'(x,,S.) = 2
J 1 ]
(otherwise hl(xi,Sj) =0 .)
xi's x sj's : For every i € S and j € Mi and for every 1 < m,
1
If i € S1 and j#1, then h (xij'sl) =3
. 1 _
otherwise (i ¢ S1 or j=1), h (xij’sl) =1
S x {R} : For all i € S, hz(xi,R) -3
. . 1 a
xi's x {R} : For all i € S and j € Mi' h (xij'R) =1,
né(x, .R) = 3.

1)

To show that SIZE(>>) is NPC it suffices to prove the following:

Claim: For every input to the set cover problem (S,S ,Sm,k), the game

10
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G(S'Sl""'sn) is >>-reducible to a game in which player 1 has M strategies
and player 2 has (m - k + n + 1) iff there is a cover of S involving no more

than k sets out of {Sl""'sm}'

Proof: Let us first note the following facts about the game
GzG(S'Sl""'Sm): for player 2, the strategy R >>-dominates all the
strategies in sj's’ while there are no other dominations. For player 1
there are no dominations. Furthermore, none of player 1's strategies in
Xi's nor any of player 2's strategies in S could ever (i.e., in any reduced
game of G) be dominated by any other strategy (since both h1 and hz attain
their maximal payoff on the entries (xij’xi) for i € S and j € Mi') Hence we
also conclude that there could be no dominations within player 1's set of
strategies S. (In the eternal presence of the S strategies of player 2.)
Similarly, since none of player 1's strategies in xi's can ever be
eliminated, player 2's strategy R will never be dominated by any other.
Taking all these considerations into account we conclude that any reduced
game é is obtained from G by elimination of player 2's strategies in Sj's
{dominated by R) and elimination of player 1's strategies in S (dominated by

corresponding strategies in X Moreover, since R dominates all players

i's)'
2's strategies in Sj's from the very beginning, we could assume w.l.o.g.
that first player 2 deletes all strategies not appearing in G, and then
player 1 deletes his.

Indeed, player 2 may delete all of S and then player 1 can delete

Jj's
all of S. The (unique) maximal reduction is Xi's x (S U {R}). In this
maximal reduction player 1 indeed has exactly M strategies. However, player

2 has only s+1 strategies. The question of whether G can be reduced to a
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game of size M¥*(m - k + s + 1) is therefore equivalent to the question: Are
there k strategies of player 2 in Sj's such that it suffices that they be
deleted by player 2 so that player 1 will be able to eliminate all his
strategies in S? It is readily observed that this is so if and only if
there are k (or less than k) subsets in {Sl,...,Sm} which cover S.
To conclude the proof we only mention that the construction of the game

G(S'Sl""'sm) can be done in a polynomial time. //

4.3 Proof of Facts 14,16,18

We note that for a given game G, an >>-irreducible >>-reduction of it
can be computed in a polynomial time. Indeed, the straightforward algorithm
which compares every pair of strategies, eliminates the first dominated one
and continues with the reduced game must end up with an >>-irreducible

subgame after at most |S|4 operations. (Recall that S was defined to be

Il s', and the size of the input data is at least |S|.) Furthermore, if

ieN
we count an "oracle" invocation as a single operation, this trivial upper
bound reduces to |S|3. (Note that this is true for any domination relation
dom.) Using the uniqueness result of Gilboa-Kalai-Zemel (1989) it is obvious
that SIZE'(>>), SUBGAME' (>>) and>SUBSETS'(>>) can be solved in polynomial

time.

4.4 Proof of Fact 15

We now wish to show that SUBGAME(>>) is NPC. This time we use the

following problem, which is also known to be NPC:
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THE CLIQUE PROBLEM: Given an undirected graph Gr(V,E) and a positive

integer k, is there a clique of size k € Gr ? (I.e., is there a subset V' of
V such that |V'|=k and for all i,j € V', i#j, {i,j}) € E ?)

Let there be given a graph Gr(V,E) and a number k. W.l.o.g. assume
that v={1,2,...,v} (with v 2 1). Define a game G(Gr) as follows: G(Gr) is
a two-player game where each of the players has a strategy set

{1,2,...,v,v+1}. Define the payoff functions by:

For i,j < v

2 if i=j
hl(ivj) = hz(i.j) = 1 if i#j and {i,j} € E
(4] if i#j and {i,j} ¢ E
For i < v
hl(i.v+1) = hz(i.v+1) =3
For j £ v
h'(v+1,3) = h¥(v+1,5) = 3
and hl(v+1,v+1) = ha(v+1,v+1) = 4

Next define G(Gr) to be a two-person game where each player has k+1
strategies and the payoff functions are

For i,j £ k

2 if i=j
hlei, g = w3 -
1 if i#j
For i € k
h'l(i,k+1) = h'2(i k+1) = 3
For j <k
h'l(k+1,j) = h'2(k+1,5) = 3
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1 2

and h'~(k+1,k+1) = h'“(k+1,k+1) = 4

Observe that in G(Gr), for both players the strategy v+1 >>-dominates
all others, but there are no other dominations. Furthermore, whatever
dominated strategies are eliminated, no new dominations can be generated.
Hence G(Gr) can be reduced to G(Gr) iff the latter is a subgame of the
former, and that is true iff Gr has a clique of size k. As G(Gr) and G(Gr)

can be constructed in polynomial time, the proof is complete. //

4.5 Proof of Fact 17

We now have to prove that SUBSETS(>>) is polynomial. Suppose, then,
that we are given a game G = (N.(Si)ieN,(hi)ieN) and a subset T of si for
each i € N. Define a new domination relation dom on G, as follows: dom is
identical to >> when the strategies in Ti are not involved or when they
dominate other strategies. However, in all subgames of G (including G
itself) no strategy in Ti is dominated by any other.

It is easy to see that dom is a hereditary partial order and that it
can be computed in polynomial time. We therefore conclude (again, by
Gilboa-Kalai-Zemel (1989)) that G has a unique maximal dom-reduction, and
this reduction can be computed in a polynomial time as in 4.3 above.

It only remains to note that G(T) is a reduction of G iff G(T) is the

maximal dom-reduction of G, which completes the proof. //

5. Concluding Remarks

The introduction of computational complexity considerations entails
some complications which are generally avoided in game theory. In

particular, the question of the game representation becomes much more
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important than it generally is. For instance, two normal-form games which
are equivalent up to a renaming of the strategies cannot be assumed to be
equivalent for our purposes. Indeed, it may be very hard to determine
whether two given games are equivalent in this sense. (Obviously, this
problem is at least as hard as the graph equivalence problem, and it is not
known whether the latter is polynomial, NPC, neither or both.) For this
reason we did not assume that a player's strategies are given as a set;
rather, they constitute a sequence, with a well defined linear order. We
wish to stress this point which means that those problems which were proved
difficult in the sequel have some intrinsic difficulty, unrelated to the
complexity of the game-equivalence problem; On the other hand, problems
which were proved to be "easy" are easy exactly as stated, and may become
difficult if the game data is presented to us in a different form.

Another important presentational question is whether the game is given
in its normal or extensive form. We recall that the normal form of a given
game can be "easily" (i.e., in polynomial time) translated into an extensive
form, but the converse is false. For simplicity, we choose to deal with the
normal form and note that those problems which are "difficult" (i.e., NPH or
NPC) even with respect to this "wasteful" representation will also be
difficult in the extensive form. On the other hand, problems which are
proved to be polynomial as a function of the normal form input size are not
necessarily polynomial in the size of the more succinct extensive form. We
therefore note that regarding both presentational issues our conclusions are
similar: those problems which are proved to be NPC may indeed be considered
difficult; however, one should be cautious when interpreting the results

concerning "easy" problems.
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