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ABSTRACT

'For M = {1,...,m} and a supermodular set function f : 2¥ — R, define the poly-
matroid P(M, f) = {x : Zjeij > f(A),A € M;x € R™}. We develop a bound for
the probability P{X € P(M, f)}, where X is a random m—vector. In particular we show
that if X, Xq,...,Xm, are independent and identically distributed non-negative random
variables with new better than used (NBU) distribution function, then P{X € P(M, f)} >
P{X > f(M)}, where M = arg max{f(A): A C M}. We apply this result to transporta-
tion problems with random supply and/or demand. Suppose we have a set K = {1,..., k}
of k supply nodes with a random supply S;, ¢ € K and a set N = {1,...,n} of n de-
mand nodes with a random demand Dj, j € N. Let 8 be the probability that the random
demand can be met by the random supply. If the demand and supply are mutually in-
dependent, Dy, ..., D,, are independent, and Sj,..., Sk, are independent and have NBU
distribution function, then 8 < H;-‘=1P{Zj > D;}, where Z; = } ;e Sirij,j € N and ryj
takes the value one if node i can supply the demand node j and zero otherwise (7 € K and

j € N).

Key Words: Chance constraint; polymatroid; bounds; transportation problem; NBU

distribution; supermodularity.






1. Introduction

Often in the design of stochastic systems one encounters a mathematical program-
ming formulation that has either a constraint or an objective function that relates to
the probability that a collection of random variables X = (Xj,...,X,,) associated with
the stochastic system fall within a constraint set, say V. That is, we are concerned with
the probability P{X € V}. When either the constraint set and/or the parameters of the
random variables are themselves decision variables, it is desirable that one has a simple
(explicit) formula for P{X E.V}. If such a simple formula does not exist, then it is desir-
able to have a tight upper and/or lower bound that has a simple formula. Suppose V is
an upper [lower] set (i.e., for any x € V,x < [>]y — y € V). Then for any feasible x (i.e.,
x € V), we have

(1) P{XeV}>2P{X>x} [P{XeV}2>2P{X<x}].
When X,,...,Xn, are independent random variables, one has
(2) P{XeV}>UL,P{X;>z;} [P{XeV}2IT,P{X; <z}l

Therefore if we can find a feasible x (preferably one that maximizes the right hand side
of (1)) we can use the above bounds. If only the parameters of the random variables are
decision variables and the constraint set V ié fixed then V\-fe~ca~n find a feasible x and fix it
in the bound. On the other hand if the constraint sét VY itself is a function of the decision
variables, then a feasible x that is a simple function of the decision variables must be
chosen. In this paper we consider such a case in which the constraint set is a Polymatroid

where the rank function is a function of the decision variables.

t

In Section 2 we develop a bound for the probability P{X € V}, where V is a Poly-
matroid. Our interest in this bound is based on its applicability to a certain stochastic
transportation problem. Suppose we have a set K = {1,...,k} of k supply nodes and a
set N = {1,...,n} of n demand nodes. Let r;; take the value one if node ¢ can supply

the demand node j and zero otherwise (z € K and j € N). There is a random demand
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DEMAND NODES

SUPPLY NODES

Figure 1A: Independent Supply Sources

of D; units at node j, j € N and a random supply of S; units at node 7, : € K. Let g
be the probability that the random demand can be met by the random supply. Now as is
illustrated in Figure 1A, suppose that each demand node has independent supply sources
so that for each supply node ¢ there is exactly one j with r;j; = 1. Then, if the demands
and supplies are mutually independent, Dy,..., D,, are independent, and S;,..., Sk, are
independent, it follows that 8 = II?_, P{Z; > D;}, where Z; = 3 ;c; Sirij, 5 € N. In
section 3, we use the bound of P{X € V}, developed in Section 2 to derive a bound on S for
the case illustrated in Figure 1B where the demand nodes do not have indépendent supply :
sources, i.e. demand nodes have overlapping sources. Specifically, we show (Corollary 1)
that if, Dy,..., Dy,, are independent, and S, ..., S, are independent and have new better
than used distribution functions, then § < II7_, P{Z; > D;}. That is, when one treats |
the suppiy sources as if they were independent the resulting calculation produces an upper
bound on the actual probability when the supplies have new better than used distribution

functions.



DEMANQO NODES

SUPPLY NODES

Figure 1B: Overlapping Supply Sources

In Ball and Lin 1992, this bound is used within an integer programming model for - -

emergency services vehicle location. Constraints for the location model are generated from
certain stochastic transportation problems illustrated in Figure 2.. The demand nodes,
which have deterministic demand levels, correspond to locations for emergency service
vehicles that can service a particular (new) call within an acceptable time limit. The
supply nodes correspond to geographic locations that can generate other calls for the
emergency service vehicles. If all the vehicles that can service the new call are busy then
there must be a feasible 'solution to the transportation problem. Thus; the probability
that there is a feasible sollution to the transportation problem is an upper bound on the
probability that the new call does not receive immediate service. The upper bound on
this probability is embedded into an integer programming model that chooses emergency
service vehicle locations a‘nd determines the number of vehicles to place at each location.
This upper bound serves as the basis for several constraints since calls arising from locations

scattered throughout a geographic region are modeled simultaneously. The model produces
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a solution that guarantees that the upper bound is less than or equal to a specified limit.
This in turn implies that the probability itself will respect this limitation. The product

form of the upper bound enables the construction of linear constraints using logarithms.

New Call: O
4%

No. of vehicles: 1 2

Stations that can
service new call:

Coll/stétion assignment:

Locations of active calls:

No. of calls: 2 1 1 1 1

[ Demand node O Supply node

Figure 2: Emergency Services Transportation Problem

2. A Probability Measure Over a Polymatroid

For M = {1,...,m}' let 2M = {A: A C M} be the power set of M and f: 2 - R
with f(§) < 0 be a supermodular set function (i.e., for any 4, B € 2™ we have f(AU B) +
f(ANB) > f(A) + f(B)). Now define the polymatroid P(M, f) by
3) POM,f)={x:) =z 2 f(A), A2 xR} |

jEA
Note that we require neither the monotonicity of f nor the non-negativity of f and x in this
definition. We are interested in the probability P{X € P(M, f)} for some non-negative
random vector X = (X1,...,Xm). Since P(M, f) is an upperset, for any x € P(M, f) (i.e.,

feasible x)
(4) P{X e P(M, f)} > P{X > x}.
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Of course the best bound within this class is obtained by maximizing the right hand
side of the above inequality over all x € P(M, f). For example, when X;,...,Xm are
independent and have logconcave survival functions, a marginal allocation algorithm can
be applied to maximize the lower bound. But, in this section, we will only consider a
feasible x which is easy to find. Such an x can be constructed using basic ideas from the
theory of polymatroids (e.g., see Nemhauser and Wolsey 1988, Chapter II1.3). Specifically,
let = be any permutation of {1,...,m} and define Sy = {n(1),...,7(k)},k = 1,...,m.
Set

(5A) z1(r) = f(S51)

(5B) zj(m) = f(S;) = f(8j-1), 7 =2,...,m.
Then x() = (21(x), ..., zm()) is a vertex of P(M, f) and therefore
(6) P{X € P(M, f)} 2 P{X 2 x(m)}.

If X is a vector of independent random variables, then

(7) P{X e P(M, f)} > ], P{X; > z;(m)}.

We now derive a more interesting bound by assuming special structure on the random
variables. A non-negative random variable, X, has the new bettér than used (NBU)
property if for any a,b > 0, we have P{X > a}P{X > b} > P{X > a + b}, e.g., see
Ross 1983. Suppose X, Xl, ..., Xm are non-negative, i.i.d. random variables with an NBU
distribution function. Now since f(M) = Z;’;I z(r), it follows from the NBU property
that if z;(7r) > 0,7 =1,...,m, }then

Y

(8) P{X eP(M, f)} 2 P{X 2 f(M)}.

The non-negativity of x(=) will be guaranteed by the monotonicity or the non-negativity
of f (which we did not require). We will now derive a bound similar to the above even

when f is not monotone. Specifically we will show
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Theorem 1: Suppose X, X;,..., X are non-negative, i.i.d. random variables with NBU

. distribution function. Then

(9 P{X € P(M, )} = P{X > f(M)},
where
(10) M = arg max {f(A): A € 2M}.

Proof: Note that if f is monotone, then f(M) = f(M). Hereafter we will assume that
F(M) > 0, otherwise the above bound is trivially true (from (7), since X is non-negative

and x = 0 is feasible). Now construct a sequence of increasing sets S;,j = 1,...,k such

that So =0 and
where f(Sk) = f(M). Since f(M) > 0 (by assumption) we have k > 1. Set

12) S, fH)=1{x: > z=2f(S)-f(Sim)i=1...,kxeRL}).

iE{Sj—S,’-1}

Then (we will soon see that)

(13) Q(S, f) C P(M, f).
Therefore

(14) P{XeP(M, f)} =z P{Xe€QS,f)}
Since

(15)  P{XeQS,NY=P{ Y Xi=f(S)—f(Sim1)i=1,...,k}

i€{S; —S; -1} )

k
> P{X 2 £(5;) - £(S5-1)},

j=1



(where the last inequality follows from the NBU property), from (14) one sees that
(16) P{X e P(M,f)} 2 P{X > f(M)}
To establish (13) we need to show that for any A € 2™, and x € Q(S, f),

17) >z > f(A).

JEA
For any given set A € 2™, define
(18) B;=ANS;, 3 =0,...,k
Since By C Sk, by the supermodularity of f we have
(19) FU(A = Bi)U Si) = f(Sk) 2 f(A) = F(Br)-
Since f(Sk) > f(A) for any A € 2 we have from (19)
(20) f(Bx) = f(A).

Therefore if ZjEBk zj > f(Bg), then by the positivity of x, one will have Eje/'l r; > f(A).

Next consider

k
(21) f(Bx) =Y _ f(Bj)— f(Bj-1)

k
< Zf((Bj = Bj-1)U S§j-1) — f(Bj-1),
i=1

where the last inequality follows from the supermodularity of f. Observe that (B;—B;_1)U
Sij—1 C S; and therefore (from the construction of these sets) one has f((Bj — Bj-1) U
Si-1)— f(Bj—1) < 0if (B; — Bj_1) U §;_; is strictly a subset of S; and otherwise (from
the definition of Q(S, f)) one has f(S;) — f(S;-1) < Zie{s,-—sj_l} z; ZVZieB,A—Bj_I ;.

Then from (21) and the non-negativity of x one has

k
(22) f(Bx) < Zf((Bj = B;_1)USj-1) — f(Bj-1)

j=1 iE{Bj—Bj-1} 1€ By



Therefore 3, 4 i > ZieBk z; > f(Bx) > f(A). ||
3. Application to Transportation Problems

In this section we will apply the bound developed in Section 2 to transportation
problems with random supply and/or demand. Suppose we have a set K = {1,...,k} of
k su'pply nodes and a set N = {1,...,n} of n demand nodes. Let r;; be the indicator that
node : can supply the demand node j (i € K and j € N). (i.e., i; takes the value 1 if the
supply is possible and 0 otherwise.)

Suppose the demand at node j is d;j,j € N and the supply available at the supply
node ¢ is 54,7 € K. Then the total supply available to the demand nodes in A C N is given
by
(23) s(4) = 3 siri(4),

tEN

where
(24) ri(A) =[1 - Hjea(l — )],

takes the value 1 if supply node ¢ can supply at least one demand node in A and zero

otherwise. Since r : 2V

has

— {0,1} is a submodular set function, it is easily seen that one

Lemma 1: The set function s : 2V — R, is submodular.

A given supply s = (s1,...,sk) is feasible (i.e., there exists a feasible solution to the

associated sparse transportation problem) iff

(25) | s(4) 2 d(A4), AC N,

where

(26) d(A)=) d;, ACN.
JjEA

This condition is essentially a restatement of Hall’s Theorem (see Hall 1935).
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FIXED SUPPLY NODES (K}:

DEMAND NQDES (N} Sf f%

RANDOM SUPPLY NQODES:

SELECTED OEMAND NODES (M)

Figure 3: Transportation Network with Outside Sources

First we will consider a situation, illustrated in Figure 3, where we have a fixed supply
of s; units available at the supply node 7, : € K and a random supply of X; units is available
to the demand node j, j € M for a fixed M C N from sources outside of the k supply
nodes (say from nodes k + j,7 € M such that rx4j); =1, j € M and 0 otherwise). >Then‘
probability that this supply is feasible is then

(27) S aP{X € P(M, )},

where

(28) 5 P(M, f) = {x: gx,- > f(AAC MixeRT}
(29) f(A) = max {d(AUB)—s(AUB): BC N —M}, AC M,
and

(30) . a =I{s(A) >d(A),AC N - M}.



Now suppose we have only one outside supply of a random quantity X that can be
supplied (say from node M) to any of the demand nodes in M (i.e.,, rar,; = 1,7 € M and
zero otherwise). Then the probability that this supply is feasible is

(31) aP{X > f(M)},
where
(32) M = arg max{f(4): A C M}.

We will next compare the above two cases.

Lemma 2: Suppose X, X1,..., X, are non-negative, i.1.d. random variables with NBU
distribution. Then with a fixed supply of s the probability of supplying the demand with
a random supply of X; units to node j, j € M from other sources is greater than or equal
to the probability of supplying the demand with a random supply of X units to the nodes
in M.

Proof: The result will follow from Theorem 2, (27) and (31) by showing that f(.A) defined
by (29) is supermodular. To prove supermodularity, we first note that given a supermodu-
lar [submodular] function g : 2% — R andan M C N, we have § : My oN-M _, R defined
by §(A,B) = f(AUB), AC M; B C N — M is supermodular [submodular]. Theorem 4.3
of Topkis (1978) implies that given such a §(4, B), ¢'(A) = Maz{g(A,B): BC N — M}
is also supermodular [submodular]. Now from (26) it is clear that d(4 U B) is supermod-
ular and from Lemma 1 it is clear that s(A U B) is submodular in AC M; BC N - M.

Therefore, the Max operation in (29) gives a supermodular function. ||
We are now ready to present the main result of this section.

Theorem 2: Suppose we have a fixed demand of d; units at node j, 7 € N and have a
random supply of S; units at node 7,7 € K. Let v be the probability that this random
supply is feasible. If S,..., Sk, are independent and have NBU distribution, then

(33) v <07, P{Z; > d;},
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where

(34) Z;=Y Sirij,j €N.
i€EK

Proof: Suppose node i can supply all and only the nodesin M C N (e, rij =1, € M

and zero otherwise). Then
(35) P{ Supply is feasible |S; = s;,1 = 1,...,k; [ # i} = aP{S;: > f(M)},
where «, f and M are as defined above with s; = 0. Then from Lemma 2 one sees that

(36) P{ Supply is feasible |S; = s;,I =1,..., k1 # i} <
P{ Supply is feasible |S; = s;,1 =1,...,k; [ # ¢ and the demand is d; — Sfj),j € M},

where S;, Sgl) yeon ,Sfm), are 1.1.d. random variables. Now unconditioning (36) with respect

to s one gets,
(37) v < P{ Supply is feasible |S; = 0 and the demand is d; — Sfj),j € M}.
Continuing this for all other supply nodes one gets

(38) v < P{ Supply is feasible |S; = 0,7 € K and the demand is dj_‘z Sfj)rij,j € N}.
icK

Since P{ Supply is feasible |S; = 0,i € K and the demand is d; — D ick S,(j)r,-j,j € N}

=II7_, P{Z; > d;}, the proof is complete. I

Finally, we note that this result can be extended to the case of random supplies.
l

Corollary 1: Theorem 2 is true even when the demands are given by mutually independent

random variables D; for j € N.

Proof: Conditioning Dj = dj, j € N the proof follows immediately from Theorem 2. ||
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