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ABSTRACT

Recently [MaS92] it was shown that every nonlinear complementarity problem (NCP) is equiv-
alent to the unconstrained minimization of a certain implicit Lagrangian. In particular, it was
shown that this implicit Lagrangian is nonnegative everywhere and its set of zeros coincides with
the solution set of the original NCP. In this paper, we consider the linear complementarity problem
(LCP), and show that the distance to the solution set of the LCP from any point sufficiently close
to the set can be bounded above by the square root of the implicit Lagrangian for the LCP. In
other words, the square root of the implicit Lagrangian is a local error bound for the LCP. We also
show that this new local error bound is equivalent to a known local error bound [Rob81, LuT92b].
When the matrix associated with the LCP is nondegenerate, the new error bound is in fact global.
This extends the error bound result [MaP90] for the LCP with a P-matrix.
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1 Introduction

Consider the following nonlinear complementarity problem (NCP)
Fz)>0, >0, (z,F(z))=0, (1.1)

where F' : ®” — R is a continuous mapping, (-,-) denotes the usual Euclidean inner product. We
assume throughout that the solution set of the above NCP, denoted by P, is nonempty. Recently
[MaS92] an interesting relation between the NCP (1.1) and the following implicit Lagrangian for
(1.1) was established

M(z,0) := 20z, F(2)) + (I(—aF(z) + 2)4|I* = lle]* + I(-oz + F(2)4[* = [F()II7) . (1.2)

Here (+); denotes the orthogonal projection operator onto the nonnegative orthant [0, 00)", || - ||
denotes the standard Euclidean 2-norm, and a > 0 is a penalty parameter. Specifically, for each
a > 1, it was proven that the implicit Lagrangian M (z,a) is nonnegative for all z, and a point
z € R" solves the NCP (1.1) if and only if M(z,a) = 0.

When F(z) is an affine mapping, that is,
F(z) = Qz +4q,

for some n X n matrix  and some n-vector ¢, then (1.1) is called a linear complementarity problem
(LCP). In this paper, we show that the distance to the solution set of the LCP from any point
sufficiently close to the solution set can be bounded above by the square root of the implicit
Lagrangian M (2, «) for the LCP. More precisely, for each a > 1, we show that there exists some
positive constants x, § such that

dist(z, P) < k(M(z,a))"?, (1.3)

for all 2 with M(z,a) < §, where dist(-,) denotes the distance between two sets, and P denotes
the solution set of the LCP. Clearly, (1.3) implies that € P whenever M(z,a) = 0. The error
bound (1.3) is local in the sense that it holds only for those 2 close enough to P (i.e., M(z,a) is
sufficiently small). An error bound is global if it holds for all z.

Error bounds for LCP and related problems have been well studied (see [LuT92c], [Man85],
[MaS87] and [MaP90]) and have found many important applications in the convergence analysis
of some well known algorithms (see [Pan87], [LuT92a], [LuT92b]). These error bounds provide
effective termination criteria for iterative algorithms and can be used for sensitivity analysis when
the problem data is subject to perturbation.

The paper is organized as follows. In Section 2, we discuss some basic properties of the implicit
Lagrangian M(z,a). Section 3 contains the proof of some error bounds (such as (1.3)) and an



example which shows that (1.3) cannot hold globally in general. Section 4 is devoted to the com-
parison of the new error bounds with some known error bounds. The principal tool in establishing
this comparison is given in Theorem 4.1 which shows the equivalence of M (z, @)'/? with the natural
residual 7(z) given in (2.3) for the NCP. In Section 5, we globalize the new error bounds and show
in Theorem 5.2 that for each LCP with a nondegenerate matrix and a nonempty solution set the
error bound (1.3) holds globally for all z € ®". The latter result extends the error bound result
of Mathias and Pang [MaP90]. In Section 6, we indicate some possible extensions. Concluding
remarks are given in Section 7.

We briefly describe our notation. For a k X m matrix A, we will denote by A; the i~th row of
A and, for any nonempty I C {1,...,k}, by A; the submatrix of A obtained by removing all rows
i of A such that i ¢ I. Analogously, for any k-vector # and any nonempty subset J C {1,...,k},
we denote by z; the vector with components z;, 2 € J. Also, for any J C {1,...,n}, we denote by
J the complement of J with respect to {1,...,n}. Finally, we use the short notation M'(z,a) to
denote the partial derivative of M (z,a) with respect to the parameter a.

2 Some Basic Properties of M(z,«)

In this section, we shall derive some useful properties of the implicit Lagrangian M (z, ). These
properties will be used later in Sections 3-5 to prove the desired error bound results.

Lemma 2.1. For all z in ®*: M(z,1) = 0.

Proof. Let
I={i|z; > Fy(z)}.

Then, it follows from (1.2) that

M(z,1) = 2(e,F(2)) = [ll® = [F@)* + ller = Fr(2)* + | Fi(2) — 2])*
= 2(e, F(2)) = llzl® = |1F @) + (lz:l* = 2(wr, Fr(2)) + |Fr(2)]I)
+ (lle:l1* = 2(zz, Fr(2)) + |1 F(2)11)
= 0.
The proof is complete. Q.E.D.

Before stating the next lemma, we need to fix some notation. For any (z,a) € 8" x (0, c0), we
let
E={i|1<i<n, > aF(), Ji={il1<j<n K2 oz} (2.1)

and let ‘ )
ri(z) = &; — (2 — Fi(z))+ = min{z;, Fi(z)} (2.2)



be a component of the natural residual [Pan86, Lemma 2]

r(z) = llz = (2 = F(2))4]- (2.3)

Lemma 2.2. Suppose that a > 1 and = € R*. Then

z; >0, Fi(z)>0, ifielonJz; (2.4)
; <0, Fi(z)<0, ifielZnJZ; (2.5)
ri(z) = Fy(z), ifielznJs; (2.6)
ri(z)==z;, ifielznJz. (2.7)

Proof. By the definition of IZ and JZ, we have
o’z; > aFy(z) > z; and o*Fy(z) > az; > Fi(z)

so that (o — 1)z; > 0 and (a? — 1)Fj(z) > 0. Since o > 1, it follows z; > 0 and I;(z) > 0, as
desired. Similarly, we can show that z; < 0 and F;(2) <0 for all i € IZ N JZ.

It remains to show (2.6) and (2.7). If i € IZ N JZ, then z; > aF;(z) and az; > Fi(z). Thus,
z; + az; > aFy(z) + Fi(z), so x; > F;(z). This implies that r;(z) = F;(z). The relation (2.7) can
be established similarly. Q.E.D.

The next lemma summarizes some elementary properties of M’'(z, a).
Lemma 2.3. For each (z,a) € " X (0,00), there holds
M'(z,@) = 2(2fn7, Fins(2)) + 20| F1(2)])? + 20|25 |1 — 2{2107, Fins(2)), (2.8)
where I = I? and J = JZ. Moreover, if @ > 1, then
M(z,0) 2+ (el + [ Fms @) + o (sl + 1FEP . (2.9)
Finally, M'(z,a) = 0 for some o > 1 if and only if z € P.
Proof. By definition (cf. (1.2)), we have

M(z,a) = 2a(z,F(2))+ (I(-aF(z) + 2)4]* - [lo]* + (a2 + F(2))4|* = | F()]P)
= 2a(e, F(2)) + (lzr — aFr(@)|]* - l|l2])* + [|1Fs (&) - aas|* = | F()I)

where the second step follows from the definition of I (= I2) and J (= JZ). Thus, taking the
derivative of both sides of the above equation with respect to o yields

M'(z,0) = 2a,F(a)) - 2er, Fi(a)) + 20| Fr(@)|]* - 2(es, Fi(a)) + 2alfzs |
= 2agnss Fins(@)) + 20l F1(@)]12 + 2alles 12 - 2{@1ns, Frns(a)),
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which proves (2.8).

Suppose that & > 1 and ¢ € I'nJ. Then, by Lemma 2.2, we have z; > 0 and Fi(z) > 0.
Moreover, since aF;(z) > z; for all ¢ € I , it follows that

lzzasll? € alerng, Fins(2))-
Similarly, we have
[ Frns(@)I” < ez, Fini(2))-
Combining the above two relations with (2.8) yields
1
M'(z,0) 2 — (lesmsll* + | Frns(@)I?) + 2allzsl® + 20| Fr(2)))* — 2(z 107, Fras(2)).  (2.10)

We now bound the last term in the above expression. Using Lemma 2.2 and the definition of I and
J ,wehaveforanyieInJ

0>z > aF(z) and 02> Fi(2) 2 az;.
Thus, we can bound this term as follows
(2105, Fros(2)) < el Fins ()| < af| Fr(2)|?

and
(fEInJ,FmJ(fE)) < a‘lwanuz < 04||93J||2-

Combining above two relations with (2.10) yields
1
M'(z,0) 2 = (lognil® + 1 Fzas(@)1°) + a (les|* + 1 F(2)I) -

Finally, if M'(z,@) = 0 with @ > 1, then we have from (2.9) that
Ting = Fiai(z) =0, 25 =0, Fi(z)=0.
Thus, we have (z, F(z)) = 0. Also, we have from the definitions of I (= I) and J (= J3) that
z; > aFi(z), zj<aFj(z), Fj(z)>oaz;, Fj(z)<azy.

Combining the above two relations yields > 0, F(z) > 0. This, together with (2, F(z)) = 0,
implies that z € P. Conversely, if € P, then z > 0, F(z) > 0 and (2, F(z)) = 0. Let I = I3 and
J = JZ. By (2.8), it can be easily verified that M’'(z,a) = 0, as desired. Q.E.D.

We remark that Lemmas 2.1-2.3 hold not just for LCP, but also for NCP, since we have not
used the linearity of F' in the proof of these lemmas. From these lemmas, we can easily infer the
result of [MaS92]. In particular, for each a > 1, we have from Lemma 2.1

M(z,0) = Mcgcc,a)—-—M(:v,l)
= [ M@paszo,
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where the last step follows from M'(z,8) > 0 (cf. Lemma 2.3). Therefore, M(z,a) = 0 if and only
if M'(z,B) = 0 for all § € [1,a]. By Lemma 2.3, the latter condition is further equivalent to z € P.
Thus, the zero set of M(z, @) coincides with the solution set P of the NCP. This recovers Theorem
2.1 of [MaS92].

3 A New Local Error Bound

In this section, we shall use the properties developed in Section 2 to show the desired local error
bound (1.3). Our proof makes use of the following well known error bound by A.J. Hoffman [Hof52]
for linear systems.

Lemma 3.1 (Hoffman’s error bound for linear systems). Let B be any k X n matrix and A" be
any polyhedral set. Then, there exists a constant § > 0 depending on B only such that, for any
Z € X and any d € R* such that the linear system By = d, y € X is consistent, there is a point
satisfying By = d, y € X, with

|z -3l < 6||Bz - d]|.

Before proving our main results, we need the following lemma.

Lemma 3.2. Let F(z) = Qz + ¢ and let a > 1. There exists some positive constant 6; such that
if M'(z,a) < 6, then there exists some 2* such that

2> aFi(@"),  Fi(a®) > ah, (3.1)
e} < aFp(z*), Fj(z") < o}, (3.2)
Fi(z*) =0, z5 =0, 2.5 = Fia(z*) =0, (3.3)

where I = I? and J = J3.

Proof. Suppose the lemma is not true, so there exists some sequence {z"} such that M’'(z",a) — 0,
and there does not exist any z* satisfying (3.1)~(3.3) with I = IZ" and J = JZ . By passing onto
a subsequence if necessary, we can assume " =1,J% = J for some fixed I and J. Consider the
following linear system in z

ey —aQrzr > aqr, Qiz—oz; 2 —q, (3.4)
aQir — x5 > —agp, ary-—QFr 2 qj, (3.5)
Tini = Tiagr Qini® = Qfasz”, 2y =25, Qrz=Qua". (3.6)

Using F(z) = Qz-+g and the definition of IZ" and JZ", we see that each z” is a solution of the above
linear system. By Hoffman’s error bound (Lemma 3.1), there exists some 2" satisfying (3.4)—(3.6)



such that

12"

O(lQzse™l| + 2%zl + 251 + 1Qr2"ll + llgl})
= O(lFras(a") + 127051l + 12511 + 1 E: (@I + llalD), (3.7)

where the constant in the big “O” notation is independent of r. By Lemma 2.3, we have
1 r r r r r
0 < = (ll2Fa71I” + s (aNI) + @ (251 + | F2(a")]”) < M'(a”, @) - 0.
Therefore, we have
lz7asll = 0, llz5ll = 0, [IFr(e)| =0, [|Ffs(27)l] — 0. (3.8)

This together with (3.7) shows that {Z"} is bounded. Let Z be a cluster point of {Z"}. Since
M'(z",a) = M'(z", a) (cf. (2.8) and (3.4)—(3.6)), we have

M'(Z,a)= Jim M'(z",a) = Jim M'(z2",a) = 0.

It then follows from Lemma 2.3 that Z € P. Since each Z" satisfies (3.4)~(3.5), we see that Z, as
a cluster point of {Z"}, also satisfies (3.4)—(83.5), or equivalently (3.1)-(3.2). Moreover, since &"
satisfies (3.6) and a certain subsequence of {Z"} converges to Z, it follows from (3.8) that  satisfies
(3.3). This contradicts the hypothesis that no vector in P can satisfy (3.1)—(3.3). Q.E.D.

Using Lemmas 2.3 and 3.1-3.2, we prove below that (M'($,C¥))1/2 can be used as an upper
bound for dist(z, P) locally around the solution set P.

Theorem 3.1. For each a > 1, there exist some positive constant x; such that
dist(z, P) < Kk (M'(z,))/?, (3.9)
for all z with M'(z,a) < 6;, where §; is given by Lemma 3.2.

Proof. Since M'(z,a) < §,, it follows from Lemma 3.2 that there exists some z* satisfying the
following linear system

Zr Z OéF[(Z), F_](Z) 2 azy, (310)
25 < aFi(z), F;(z) < azj, (3.11)
Fi(2)=0, 2;=0, 2ing = Finj(2) =0, (3.12)

where I = I? and J = JZ. Also, it can be verified that each 2* satisfying the above linear system
must be in P (we only need to verify that M(z*, ) = 0). Using the definition of I and J3, we see
that = satisfies the relations (3.10)~(3.11). Thus, by Hoffman’s error bound (cf. Lemma 3.1), there
exists some constant k' > 0 (independent of &) such that

le —a*| < & (IF@)) + lesll + |zl + 1 Fras(@)1)
< 2 (IF @2 + Nesll? + Nzl + | Fras(2)]2) 7,
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for some z* satisfying (3.10)-(3.12), where the last step follows from Cauchy-Schwarz inequality.
By Lemma 2.3, we have

= (sl + | Frs@)?) + & (1F(@)IE + llesl1?) < M'(e, ).

Combining this with the previous relation yields
1 1/2
lo=all <2 (a4 ) (M(e,a)).

Now let k; = 2k'va? + 1/ /a. Q.E.D.
Using Theorem 3.1, we are now ready to prove the following main error bound result.
Theorem 3.2. For each a > 1, there exist some positive constants x, § such that
dist(z, P) < k(M(z, a))'/?, (3.13)
for all 2 with M(z,a) < 6.

Proof. Let § = (a — 1)é,, where §; is given by Lemma 3.2, and let = be such that M(z,a) < 6.
Since, by Lemma 2.1,

M(z,0) = M(z,0) — M(z,1) = /1 " M'(z, 8)d8,
it follows from the Mean Value Theorem that there exists some § € (1, @) such that
M'(z,p)= M(z,0)/(a—1) < §;. (3.14)
By Theorem 3.1, there exists some constant «; > 0 such that
dist(z, P) < ry (M'(z,8))"/%.

Combining this with (3.14) yields

dist(z, P) < —2— (M(z, a))'*
a~1
Now let k = k;/+/a — 1 and the proof is complete. Q.E.D.

It turns out that the error bound (3.13) cannot hold globally in general. To this effect, we have
the following example.

Example 3.1. Let



Let F(z) = Qx4 q. It can be easily verified that the corresponding LCP (1.1) has a unique solution
z* = (0,0)T. Let z* = (0,t)7, where ¢ > 0 is a parameter. Simple algebra yields

F(a") = Qa' 4+ ¢ = { , ]
and
l(—aF(a) + el = (- ), [l(-aot+ P2 =1, W >1/a

Thus, we have M(2!, @) = a® ~ 1, which remains bounded as ¢ — co. On the other hand, we have
dist(2?, P) = ||z*|| = ¢, which tends to infinity as ¢ — co. Thus, the error bound (1.3) cannot hold
for the sequence {z'}. In other words, (1.3) is not a global error bound in general. When is this
error bound global? We answer this question in Section 5.

4 Comparison with a Known Local Error Bound

In this section, we compare our new local error bound (1.3) with the following known local error
bound (see [Rob81, LuT92b])
dist(z, P) < kr(z) (4.1)

when 7(z) < 6. Here, r(z) := ||z — (z — F(z))4|| denotes the natural residual [Pan86], and 6, x are
two positive constants independent of 2. We show below that, in fact, the new local error bound
(1.3) is equivalent to the local error bound (4.1). More precisely, we have the following.

Theorem 4.1. For each a > 1, the following holds

2(a — 1)r¥(z) < M(z,a) < 2a(a - 1)r*(z), Ve € ™. (4.2)

Proof. For each z € R", let
M(z,q) = 20z, F(z) + (—aFi(z) + 37:,):2,~ -z + (~az; + F,(:L))fL - Fy(z)%.
Then, we have
M(z,a) = iMi(m,a).
i=1
Also, it follows from (2.2) that i
ri(z) = Zl (ri(e))".
So, in order to prove (4.2), it is sufficient to sho;v that

A — 1) (r:(2))* < Mi(z, @) < 2a(a — 1) (r:(2))?. (4.3)



The following simple observation is very useful.

max{z;, Fi(z)} min{z;, F;(z)} = =, Fi(z). (4.4)

We consider the following four cases.

Case 1: i € I n J2. Tt follows from Lemma 2.2 that Fi(z) > 0, z; > 0. Also, we have from the
definition of I and JJ that

z; Fy(z) € amin{2?, Fi(z)?}, max{z;, Fi(z)} < amin{z;, Fi(2)}. (4.5)

Since i € IZ N JZ, we have from the definition of M;(z, ) that

Mi(z,@) = 20z;F(z)~a? - F(z)?

202 Fi(z) — 2z, F;(z) — (z; — Fy(2))?
20z, F;(z) — 2z, F;(2)

2(a — D)z Fy(z).

IN

Combining this with (4.5) yields

Mi(z,0) < 20(a—1)min{z?, F(z)?}
= 2a(a - 1)(min{z;, Fi(z)})?
= 2a(a~—1) (r;(z))z ,

where the second step follows from z; > 0 and Fi(z) > 0. We next bound M;(z, o) from below by
(r;(z))?. Similar to the preceding argument, we have

Mi(z,a) =

Y%

201 Fy(2) — 22 — Fi(z)?

20 (2:Fi(z) — (min{z;, Fi()})’) + 20 (min{e;, F(2)})’ - o - Fi(a)?
2amin{z;, Fi(z)} (max{z;, F;(z)} — min{z;, Fi(z)})

—z? — Fy(z)? + 2o (min{z;, Fi(z)})’

2 max{z;, F;(z)} (max{z;, F;(z)} — min{z;, Fi(z)})

—~a? ~ Fy(e)’ + 2a(ri(2))”

2 (max{z:, Fi(2)})’ = 22:Fi(z) — o} — Fi(2)* + 2a (ri(e))’,

where the third and the last step follow from (4.4) and the inequality is due to (4.5). Further
simplifying and rearranging the terms, we obtain

.Ali(iL‘, CB)

> (max{as, ()}’ - 20:F(2) — (min{a:, Fi(2)))* + 20 (r(2))
(2 — Fi(2))? — 2(min{e;, Fi(2)})* + 2a (ri(2))’

—2(min{z;, Fi(z)})? + 2 ('r',~(:1:))2

2(a - 1) (ri(=))’,

v



as desired.

Case 2: i € IZN JZ. It follows Lemma 2.2 that z; < 0 and F;(z) < 0. By the definition of I? and
JZ, we also have that

az; Fi(z) > (min{z;, Fi(z)})?, min{z;, F;(z)} > amax{z;, Fi(z)}. (4.6)
Since ¢ € IZ N JZ, we have from the definition of M;(z, o) that

Mi(z,0) = —2az;F(z)+ (az;)’+ (aF(2))?
= —2a(2;F(2) - (minf{z;, Fi(2)})") - 20 (min{e;, Fi(z)})’
+(az:)” + (aF(2))*
= —2amin{z;, Fi(2)} (max{z;, F;(z)} — min{z;, F;(2)})
—2a(ry())’ + (a:)’ + (aFi(2))’
—2a” max{z;, F;(z)} (max{z;, Fi(z)} — min{z;, F;(z)})
~2a(ri())’ + o’} + &’ Fi(2),

IN

where the third equality follows from (4.4) and the last step is due to (4.6). Using z; < 0 and
F;(z) < 0 and (4.4) once again to further simplify the above relation, we obtain

Mi(z,0) = -2(amax{z;,F(2)})’ + 2%z F(e) — 20 (ri(z))

+a’a? + o’ F ()

— (amax{z;, Fi(2)})” + 20°x; Fy(z) — 20 (r;(2))* + (amin{z;, Fi(z)})*
—a? (z; — Fi(e))” + 2 (amin{z;, F(2)})’ - 2a (ri(2))’

2(ari(2))” - 2a(ri(2))”

2a(a - 1) (r:(2))’,

IA 0l

i

as desired. To bound M;(z,a) in the other direction, we use the definition of M;(z, o) to obtain
(cf.ieIZnJ?)

i

M;(z, ) —2az; Fy(z) + o’z + o*F2(z)

—2az; Fy(z) + 20z Fy(x) + o (z; — Fy(z))’
2(a — Naz; Fi(z)

2(a — 1) (min{z;, Fi(z)})’

2(a - 1) (n(2))",

where the second inequality follows from (4.6).

i

AVARAY

Il

Case 3: i € I N J2. Then, by Lemma 2.2, there holds 7;(¢) = Fi(z). Therefore, we have

Mi(z, @) = (aFi(2))’ ~ Fi(z)’ = (a® = 1) (ri(2))".
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Since o > 1, it follows that
2(a — 1) (r:(2))* < My(2, @) < 2a(a — 1) (r;(2))*.
Case 4: i € IZ N JZ. Then, it follows from Lemma 2.2 that r,(z) = z;. Therefore, we have
Mi(z,0) = (az;)* — 2 = (a® ~ 1) (ri())°.
Since a > 1, it follows that

200 — 1) (r:(2))* < Mi(z,a) < 20(a - 1) (ri(z))°.

From the four cases above we conclude that (4.3) holds. Summing (4.3) for all ¢ yields the
desired bound (4.2). Q.E.D.

There are several consequences of Theorem 4.1. One consequence is that (M(z,a))!/? can
be used as a local upper bound for dist(z, P). This is because, by Theorem 4.1, (M(z,a))!/? is
equivalent (up to a constant factor) to (), which, by (4.1), is a local upper bound for dist(z, P).
This gives an indirect proof of Theorem 3.1. [The direct proof given in Section 3 contains more
information. For example, Lemma 3.2 says that with each point z sufficiently close to the solution
set P we can associate a point z* in P with identifiable active constraints, that is F<(2*) = 0 and

Tys = 0.]

Another consequence of Theorem 4.1 has to do with the globalization of the error bound (1.3).
In particular, in [Man92] it has recently been shown that, for the class of nondegenerate monotone
LCPs (i.e., @ is positive semi-definite and there exists some z* € P such that «* + Qz* + ¢ > 0),
(1+4]|z]|)r(), or by a slight change of the argument max{1, ||z||}r(z), can be used as a global upper
bound for dist(z, P). In other words, even though r(z) cannot be a global upper bound by itself,
it becomes so if the extra factor max{1,||z||} is added. Since 7(z) is equivalent to (M(z,a))?, it
follows that max{1,||z||} (M(z,))"/* is also a global upper bound for dist(z, P).

Corollary 4.1. For each monotone nondegenerate LCP, there exists some constant « > 0 such
that
dist(z, P) < kmax{l,||z||} (M (z,a))"*,  Vz e R"

Proof. Use the equivalence of r(z) and (M(ar:,oz))l/2 (Theorem 4.1). Q.E.D.

In Section 5, we shall strengthen Corollary 4.1 by removing monotonicity and nondegeneracy

1/2

assumption (see Theorem 5.1). In other words, max{1,||z||} (M(z,a))" is a global upper bound

for dist(z, P) as long as the LCP has a solution (i.e., P is nonempty).
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5 Global Error Bounds

In this section we shall study the question of when the error bound (1.3) becomes global. Such
question is of interest since the global error bound often leads to global linear rate of convergence
when applied to the analysis of iterative algorithms (see [LuT92c]). We start with a globalization
result which says that if an extra factor max{1,||z||} is added to the right hand side of the error
bounds (3.9) and (3.13), then they become global.

Theorem 5.1. Suppose P is nonempty. Then, there exists some positive constant = such that
dist(z, P) < rmax{1, |jz||} (M(z,a))'/*,  Vz e R, (5.1)

dist(z, P) < rmax{1, ||z||} (M'(z,a))"/?, Ve e R". (5.2)

Proof. We shall only prove (5.1), the proof of (5.2) is similar. Fix z* € P. Let § and  be the
positive constants given by Theorem 3.2 and let € R* be any vector. We consider two cases.

Case 1: M(z,a) < 6. It follows from Theorem 3.2 that

dist(z, P) < k(M(z,@))"'* < kmax{1, ||z||} (M(z,))"/*.

Case 2: M(z,a) > 6. Then, we have

dist(z,P) < ||z =z
< flell + llo”]
< (14 llo* ) max{1, o]}
< LI g, 2y (e, )2,

V6

Combining this with the relation in Case 1 yields the desired global error bound (5.1). Q.E.D.

Compared to Corollary 4.1, Theorem 5.1 is stronger since it requires neither monotonicity nor
nondegeneracy. As indicated by Example 3.1, the error bound (1.3) cannot be global in general,
if the extra factor max{1,||z||} is not added. Can the error bound (1.3) hold globally for some
restricted class of LCPs? What is the most general class of LCPs for which (1.3) holds globally? In
the remainder of this section we shall show that the error bound (1.3) holds globally for the class
of LCPs with a nondegenerate matrix. We need to make a definition.

Definition 5.1. An nXxn matrix @ is called nondegenerate if all of its principal minors are nonzero.

For a discussion of such matrices see the recent book by Cottle, Pang and Stone [CPS92]. Recall
that the class of P-matrices consists of those square matrices with positive principal minors. Thus,
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the class of nondegenerate matrices contains the class of P-matrices and hence the class of positive
definite matrices.

We now state and prove our global error bound result.

Theorem 5.2. Let F(z) = Qz + q where @ is a nondegenerate matrix. Then for each & > 1 there
exists a positive constant p such that

dist(z, P) < p(M(z,a))/? (5.3)
for all z € R".

Proof. We first note that (5.3) holds for any gz > « and all z € {2 | M(2,a) < §} where x and §
are defined in Theorem 3.2. Also, by Theorem 5.1, it is easy to see that (5.3) holds for any bounded
set, provided p is chosen appropriately. Hence it is enough to consider z € S where

5= 1o M@0 2 6ol 21} and r=mac{ ey 1} 500 G

Here z* is any solution of the LCP and constant ¢ will be defined later.

Let I = I and J = J§. By (2.9) and (3.14), there exists some 8 € (1, ) such that

2 a; = (lornsll? + 1 Fras(@)IP) + Bla = 1) (o 12 + 1 (@)]1)

Making use of the Cauchy-Schwarz and triangle inequalities and monotonicity of the 2-norm, we

M(z,a)=

further obtain

JaT
27 = (l25asll + 1 Fas (@)D + —5—

> "3‘\73’“(||AI szl = llgll), (5.5)

Quiind
AI,J = (EI?({OJ)
(Fafyua

Consider the following three possible cases.

v

(M(z, )2 VI (o + 1B @)

where

with F denoting the identity matrix.

Case 1. Either I = {1,...,n} or J = 0. Then TU (I nJ) = {1,...,n} and nonsingularity of Q
implies that Ay jz # 0.

Case 2. Either I =@ or J = {1,...,n}. Then (InJ)UJ = {1,...,n} and Ex = ¢ # 0 implies
that AI,J(L‘ 7£ 0.



Case 3. Neither of the two previous cases occur. Then neither of the sets I, I, J, J is empty.
Suppose first that 7N J # 0. Then by Lemma 2.2, 2,7 > 0. Hence A; ;2 # 0. Suppose now
InJ =0. Then we have J C I . Suppose Ap gz = 0. This is equivalent to

Qrz=0 and z; = 0.

Since J € I we have Qjjzj = 0. But the later contradicts the fact that all the principal
submatrices of ) are nonsingular. Therefore A; ;z # 0.

Combining the above three cases we conclude that A; ; has full column rank. Thus we have

: ”AI .133” . )
inf === = inf |A;sz|l = |A; 5] =¢; 5 > 0
zER™ ”:1:” llz[l=1 ” I.J ” ” 1.7 ” 17

where infimum is attained at some point Z by the compactness of the unit sphere. Hence
lArszl| 2 ersllel] Vo e R°. (5.6)
Let
ec=min{er; |VI,JCA{L,...,n}}>0. (5.7)
Then from (5.5)-(5.7) we have

Va1

1/2 1
(M(z,a))'? > 578 (cllell = llall) -

Combining this with
dist(z, P) < [lz — 2*|| < [lz]| + [l=*]I,

we obtain
(M) Va—Telja] |l
dist(z, P) =  2/B |z + [|z"]]
Va—1 c—|lqll/[l=]|
2B 1+ |l==|I/li=|l
> - awlﬂg=1/u>0,
2B 2
where the last step is a consequence of (5.4). This establishes the theorem. Q.E.D.

As an important corollary of Theorem 4.1 and Theorem 5.2, we have the following global error
bound result.

Theorem 5.3. Suppose @ is a nondegenerate matrix. Then, there exists some positive constant

7 such that
dist(z, P) < 7r(z), Ve € R". (5.8)
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Proof. Use Theorem 5.2 and the equivalence of 7(z) and (M(z,a))"/? (see Theorem 4.1).
Q.E.D.

Theorem 5.3 strengthens the global error bound result by Mathias and Pang [MaP90] who
showed that (5.8) holds when @ is a P-matrix. [Recall that any P-matrix is necessarily nondegen-
erate, but the converse is not true.] We remark that our proof of the global error bound result (5.8)
is by way of the equivalence of r(z) and (M(:z:,oz))ll2 and then using the global error bound (5.3).
It is not clear whether one can prove (5.8) directly.

6 Extensions

In this section we describe some extensions of the new error bound results given in the previous
sections. For simplicity, the proofs are omitted since they are for the most part analogous to the
ones given before.

6.1 Error Bounds Using the Restricted Implicit Lagrangian

In Theorem 2.5 of [MaS92] it was also shown that, for positive a, the zeros in the nonnegative
orthant of the following restricted implicit Lagrangian

N(z,0) = 20(z, F(z)) + (|(-aF(z) + o)+ [I* - [|z]%) (6.1)

coincide with the solutions of the NCP. Using entirely different arguments, Fukushima [Fuk92] also
showed the same result for @ = 1. Similar to (2.1), we let

II={i|1<i<n, &; > aF(z)}.
It is possible to prove the following basic properties of N(z, a).

(i) For any a > 0, N(z,a) is nonnegative on the nonnegative orthant, and is zero if and only if
z € P.

(if) N(z,0) =0 for all z € RN7}.
(iii) For any o > 0 and = € R}, we have
2
N'(z,0) = 22y, Fi(2)) + 22| Fy(2)[* 2 =lz;]* + 2| Fr(2)], (6.2)
where [ = IZ.

(iv) For any o > 0 and z € R}, N'(z,a) = 0 if and only if z € P.
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Using these properties and following an argument similar to that used in Section 3, we can
establish the following local error bound results.

Theorem 6.1. For each a > 0 there exist positive constants v and 5 such that
dist(z, P) < v(N(z,a))/?, dist(z,P) < v(N'(z,a))/? (6.3)
for all z € R} with either N(z,a) < nor N'(z,a) < 7.

Moreover, we can establish global error bound results similar to those in Section 5. We need to
malke a definition.

Definition 6.1. An n X n matrix @) is said to be nondegenerate with respect to the nonnegative
orthant if the system @2y = 0, 2y > 0 has no nonzero solution for any I C {1,...,n}, where Q;;
denotes the principal submatrix indexed by I.

The class of matrices which are nondegenerate with respect to the nonnegative orthant is quite
large and contains many well known classes of matrices. For example, it contains the class of
nondegenerate matrices, the class of P-matrices and the class of positive definite matrices. It
also contains the class of strictly semimonotone matrices (see Theorem 3.9.11 of [CPS92] for the
characterizations of such matrices).

Our result is the following.

Theorem 6.2. Let F(z) = Qz + q and o > 0. Then the following hold.
(a) There exists some positive constant 7 such that

dist(z, P) < rmax{l, ||z||} (N (z,a))"*,  VeeRI.

(b) Suppose @ is a nondegenerate matrix with respect to the nonnegative orthant . Then there
exists a positive constant « such that

dist(z, P) <« (N(:I:,oz))l/2 , Vr € %7

6.2 Comparisons of Different Error Bounds

In this subsection, we make some further comparisons of various new/known error bounds. We
start with the following equivalence result (compare with Theorem 4.1).

Theorem 6.3. For each a > 1, there holds

2r%(z) < M'(z,a) < 2ar(z), Vz € R".

The proof of Theorem 6.3 is analogous to that of Theorem 4.1, and is thus omitted. By
Theorems 4.1 and 6.3, the quantities r(z), (M'(z, oz))l/2 and (M (z, oz))l/2 are all equivalent. Several
consequences of this equivalence follow.

16



(1) These three quantities can all be used as upper bounds for dist(z, P) locally around the solution
set.

(2) These quantities are global upper bounds for dist(z, P) if and only if any one of them is. For
any LCP with a nondegenerate matrix and nonempty solution set P, each of the three quantities is
a global upper bound for dist(z, P). In particular, there exists some positive constant 7 such that

dist(z, P) < 7 (M'(z,))"?,  Vze®"

(3) If an extra term max{1, ||z||} multiplies to each of these three quantities, then they each become
a global upper bound for dist(z, P).

7 Concluding Remarks

In this paper, we have established some new local/global error bounds for linear complementarity
problem. These new error bounds are based on the implicit Lagrangian M (z, o) recently introduced
and studied in [MaS92]. It is interesting to note that these error bounds hold for all choices of the
penalty parameter a, so long as o > 1. Although we have not tried to find an « that gives the
tightest error bound, it is possible, with some careful re-examination of the proofs, to determine
such optimal «. Finally, it remains to be seen if this new error bound can be used to devise
new iterative algorithms for solving LCP, or be used to analyze the convergence of the existing
algorithms.
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