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Approximations for Monotone and Non-monotone Submodular
Maximization with Knapsack Constraints*
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Abstract

Submodular maximization generalizes many fundamental problems in discrete opti-
mization, including Max-Cut in directed /undirected graphs, maximum coverage, maximum
facility location and marketing over social networks.

In this paper we consider the problem of maximizing any submodular function subject
to d knapsack constraints, where d is a fixed constant. We establish a strong relation
between the discrete problem and its continuous relaxation, obtained through extension
by expectation of the submodular function. Formally, we show that, for any non-negative
submodular function, an a-approximation algorithm for the continuous relaxation implies a
randomized (o —e)-approximation algorithm for the discrete problem. We use this relation
to improve the best known approximation ratio for the problem to 1/4 — e, for any € > 0,
and to obtain a nearly optimal (1—e~! —¢)—approximation ratio for the monotone case, for
any € > 0. We further show that the probabilistic domain defined by a continuous solution
can be reduced to yield a polynomial size domain, given an oracle for the extension by
expectation. This leads to a deterministic version of our technique.

1 Introduction

A real-valued function f, whose domain is all the subsets of a universe U, is called submodular
if, for any S, T C U,
fO)+ A(T) = f(SUT)+ f(SNT).

The concept of submodularity, which can be viewed as a discrete analog of convexity, plays a
central role in combinatorial theorems and algorithms (see, e.g., [11] and the references therein,
and the comprehensive surveys in [10} 24, 19]). Submodular maximization generalizes many
fundamental problems in discrete optimization, including Max-Cut in directed/undirected
graphs, maximum coverage, maximum facility location and marketing over social networks
(see, e.g., [13]).

In many settings, including set covering or matroid optimization, the underlying submodu-
lar functions are monotone, meaning that f(S) < f(T') whenever S C T'. In other settings, the
function f(S) is not necessarily monotone. A classic example of such a submodular function
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is f(S) = Xces(s) wle), where §(S5) is a cut in a graph (or hypergraph) G' = (V, E) induced
by a set of vertices S C V, and w(e) is the weight of an edge e C E. An example for a
monotone submodular function is fgj : 2L 5 R, defined on a subset of vertices in bipartite
graph G = (L, R, E). For any S CV, fap(S) = >_,cn(s) Pvs Where N(S) is the neighborhood
function (i.e., N(S) is the set of neighbors of S), and p, > 0 is the profit of v, for any v € R.
The problem max{fg 5(S)||S| < k} is classical maximum coverage.

In this paper we consider the following problem of maximizing a non-negative submodular
set function subject to d knapsack constraints (SUB). Given a d-dimensional budget vector L,
for some d > 1, and an oracle for a non-negative submodular set function f over a universe U,
where each element ¢ € U is associated with a d-dimensional cost vector ¢(i), we seek a subset
of elements S C U whose total cost is at most L, such that f(9) is maximized.

There has been extensive work on maximizing submodular monotone functions subject to
matroid constraint For the special case of uniform matroid, i.e., the problem {max f(S5) :
|S| < k}, for some k > 1, Nemhauser et. al showed in [21] that a greedy algorithm yields a
ratio of 1 — e™! to the optimum. Later works presented greedy algorithms that achieve this
ratio for other special matroids or for variants of maximum coverage (see, e.g., [1l, 15, 23] [5]).
For a general matroid constraint, Calinescu et al. showed in [4] that a scheme based on solving
a continuous relaxation of the problem followed by pipage rounding (a technique introduced by
Ageev and Sviridenko [I]) achieves the ratio of 1 — e~! for maximizing submodular monotone
functions that can be expressed as a sum of weighted rank functions of matroids. Subsequently,
this result was extended by Vondrék [24] to general monotone submodular functions.

The bound of 1 — e~ ! is the best possible for all of the above problems. This follows from
the lower bound of Nemhauser and Wolsey [20] in the oracle model, and the later result of
Feige [9] for the specific case of maximum coverage, under the assumption that P # NP.

Other variants of monotone submodular optimization were also considered. In [2], Bansal et
al. studied the problem of maximizing a monotone submodular function subject to n knapsack
constraints, for arbitrary n > 1, where each element appears in up to k£ constraints, and k is
fixed. The paper presents a % and % +o(k) approximations for this problem. Demaine and
Zadimoghaddam [§] studied bi-criteria approximations for monotone submodular set function
optimization.

The problem of maximizing a non-monotone submodular function has been studied as
well. Feige et al. [I0] considered (unconstrained) maximization of a general non-monotone
submodular function. The paper gives several (randomized and deterministic) approximation
algorithms, as well as hardness results, also for the special case where the function is symmetric.

Lee et al. [I9] studied the problem of maximizing a general submodular function under
linear and matroid constraints. They proposed algorithms that achieve approximation ratio
of 1/5 — ¢ for the problem with d linear constraints and a ratio of 1/(d + 2+ 1/d + ¢) for d
matroid constraints, for any fixed integer d > 1.

Improved lower and upper bounds for non-constrained and constrained submodular max-
imization were recently derived by Gharan and Vondrék [12]. However, this paper does not
consider knapsack constraints.

Several fundamental algorithms for submodular maximization (see, e.g., [1, 4, 24], 19]) use
a continuous extension of submodular function, to which we refer as extension by expectation.
Given a submodular function f : 2V — R, we define F : [0,1]Y — R. For any 7 € [0,1]Y, let

A (weighted) matroid is a system of ‘independent subsets’ of a universe, which satisfies certain hereditary
and ezchange properties [22].



R C U be a random variable such that i € R with probability y; (we say that R ~ g). Then

F(y) = E[f(R)] =) <f(R)Hyz-H<1 —y») :

RCU i€eR  i¢R

The general framework of these algorithms is to obtain first a fractional solution for the con-
tinuous extension, followed by rounding which yields a solution for the discrete problem.

Using the definition of F', we define the continuous relaxation of our problem called con-
tinuous SUB. Let P = {5 € [0,1]Y| Y icu Yic(i) < L} be the polytope of the instance, then
the problem is to find y§ € P for which F(y) is maximized. For o € (0,1], an algorithm A
yields a-approximation for the continuous problem with respect to a submodular function f,
if for any assignment of non-negative costs to the elements, and for any non-negative budget,
A finds a feasible solution for continuous SUB of value at least @, where O is the value of an
optimal (integral) solution for SUB with the given costs and budget.

For some specific families of submodular functions, linear programming can be used to
derive such approximation algorithms (see e.g [1, [4]). For monotone submodular functions,
Vondrak presented in [24] a (1 —e~! — o(1))-approximation algorithm for the continuous prob-
lem. Subsequently, Lee et al. [19] considered the problem of maximizing any submodular
function with multiple knapsack constraints and developed a (i — o(1))-approximation algo-
rithm for the continuous problem; however, noting that the rounding method of [18]9 which
proved useful for monotone functions, cannot be applied in the non-monotone case, a (% —€)-
approximation was obtained for the discrete problem, by using simple randomized rounding.
This gap of approximation ratio between the continuous and the discrete case led us to further
develop the technique in [18], so that it can be applied also for non-monotone functions.

1.1 Owur Results

In this paper we establish a strong relation between the problem of maximizing any submodular
function subject to d knapsack constraints and its continuous relaxation. Formally, we show (in
Theorem [2.6]) that for any non-negative submodular function, an a-approximation algorithm
for the continuous relaxation implies a randomized (o — ¢)-approximation algorithm for the
discrete problem. We use this relation to obtain approximation ratio of 1/4 — e for SUB, for
any £ > 0, thus improving the best known result for the problem, due to Lee et al. [19]. For the
case where the objective function is monotone, we use this relation to obtain a nearly optimal
(1— el — e) approximation, for any € > 0. An important consequence of the above relation is
that for any class of submodular functions, a future improvement of the approximation ratio
for the continuous problem, to a factor of «, immediately implies an approximation ratio of
(a — €) for the original instance.

Our technique applies random sampling on the solution space, using a distribution defined
by the fractional solution for the problem. In Section Bl we show how to convert a feasible
solution for the continuous problem to another feasible solution with up to O(log|U]|) frac-
tional entries, given an oracle to the extension by expectation. This facilitates the usage
of exhaustive search instead of sampling, which leads to a deterministic version of our tech-
nique. Specifically, we obtain a deterministic (1/4 — ¢)-approximation for general instances
and (1 — e~! — ¢)-approximation for instances where the submodular function is monotone.
For the special case of maximum coverage with d knapsack constraints, that is, SUB where

2 The paper [18] is a preliminary version of this paper.



the objective function is f = fq 5 for a given bipartite graph G' and profits p, this result leads
to a deterministic (1 — e~ — ¢)—approximation algorithm, since the extension by expectation
of fap can be deterministically evaluated. Some basic properties of submodular functions are
given in Appendix [Al

1.2 Recent Developments

Subsequent to our study of maximizing monotone submodular functions subject to multiple
knapsack constraints [18], Chekuri et al. [6] showed that, by using a more sophisticated round-
ing technique, the algorithm in [I8] can be applied to derive a (1 — e~! — ¢)-approximation for
maximizing a submodular function subject to d knapsack constraints and a matroid constraint.
Specifically, given a fractional solution for the problem, the authors define a probability dis-
tribution over the solution space, such that all of elements in the domain of the distribution
are inside the matroid; these elements also satisfy Chernoff-type concentration bounds, which
can be used to prove some of the probabilistic claims in [I§]. The desired approximation ratio
is obtained by using the algorithm of [18] with sampling replaced by the above distribution in
the rounding step. Recently, the same set of authors improved in [7] the bound of (1/4 — ¢)
presented here to 0.325.

2 Maximizing Submodular Functions

In this section we describe our framework for maximizing a submodular set function subject
to multiple linear constraints. For short, we call this problem SUB.

2.1 Preliminaries

Notation: An essential component in our framework is the distinction between elements by
their costs. We say that an element i is small if &(i) < e3L; otherwise, the element is big.

Given a universe U, we call a subset of elements S C U feasible if the total cost of elements
in S is bounded by L. We say that S is e-nearly feasible (or nearly feasible, if € is known from
the context) if the total cost of the elements in S is bounded by (1 +¢)L. We refer to f(9) as
the value of S. Similar to the discrete case, 5 € [0, 1]V is feasible if § € P.

For any subset 7' C U, we define fr: 2V — Ry by fr(S) = f(SUT) — f(T). It is easy to
verify that if f is a submodular set function then fr is also a submodular set function. Finally,
for any set S C U, we define c.(S) = >_,cq ¢ (i), where 1 <r < d, and ¢(S) = > ;g ¢(i). For
a fractional solution 7 € [0,1]Y, we define ¢,(§) = Y,y ¢ (1) - yi and (y) = >,y €(0) - ys.

Overview: Our algorithm consists of two phases, to which we refer as rounding procedure
and profit enumeration. The rounding procedure yields an (o — O(e))-approximation for in-
stances in which there are no big elements, using an a-approximate solution for the continuous
problem. It relies heavily on Theorem 2.1] that gives some conditions on the probabilistic do-
main of solutions; these conditions guarantee that the expected profit of the resulting nearly
feasible solution is high. This solution is then converted to a feasible one, by using a fixing
procedure. We first present a randomized version and later show how to derandomize the
rounding procedure.

The profit enumeration phase uses enumeration over the most profitable elements in an
optimal solution; then it reduces a general instance to another instance with no big elements,



on which we apply the rounding procedure.
Finally, we combine the above results with an algorithm for the continuous problem (e.g.,
the algorithm of [24], or [I9]) to obtain approximation algorithm for SUB.

2.2 A Probabilistic Theorem

We first prove a general probabilistic theorem which refers to a slight generalization of our
problem (called generalized SUB). In addition to the standard input for the problem, there is
also a collection of subsets M C 2V such that if T € M and S C T then S € M. The goal is
to find a subset S C M, such that ¢(S) < L and f(S) is maximized.

Theorem 2.1 For a given input of generalized SUB, let x be a distribution over M and D a
random variable D ~ x, such that

1. E[f(D)] > O/5, where O is an optimal solution for the given instance.
2. For any 1 <r <d, Elc,(D)] < L,

3. For any 1 <r <d, ¢;,(D)=>}", ¢;(Dy), where Dy, ~ xi and D1, ..., Dy, are indepen-
dent random variables.

4. For any1 <k <m and 1 <r <d, it holds that either c,(Dy,) < 3L, or ¢,(Dy) is fized.

Let D' = D if D is e-nearly feasible, and D' = () otherwise. Then D' is always e-nearly feasible,
D' e M, and E[f(D')] = (1 - O(e))E[f(D)].

To prove the results in this section, it suffices to use a special case of Theorem 2] (for-
mulated as our next result). We use this theorem in its full generality in [17], in developing
approximation algorithms for variants of maximum coverage and GAP.

Lemma 2.2 Let T € [0,1]Y be a feasible fractional solution such that F(z) > O/5, where O
is the optimal solution for generalized SUB. Let D C U be a random set such that D ~ %
(i.e., for all i € U, i € R with probability x;), and let D' be a random set such that D' = D
if D is e-nearly feasible, and D' = () otherwise. Then D' is always e-nearly feasible, and
E[f(D)] = (1= 0(e)) F().

Proof of Theorem [2.1k Define an indicator random variable F' such that F' = 1 if D is
e-nearly feasible, and F' = 0 otherwise.

Claim 2.1 Pr[F =0] < de.

Proof: For any dimension 1 < r < d, it holds that Elc,.(D)] = ;" El¢,(Dy)] < Ly. Define
V, = {k|e,.(Dy) is not fixed}. Then,

Varle,(D)] =Y Vare.(Dp)] < > E[c}(Dy)]

k=1 keVy
< > Eley(Dy)] -’ Ly <L > Elen(Dy)] < €211
keV, k=1

The first inequality holds since Var[X] < E[X?], and the second inequality follows from the
fact that c.(Dy) < 3L, for k € V,.. Recall that, by the Chebyshev-Cantelli inequality, for any
t > 0 and a random variable Z,

Var[Z]
Pr(Z—-E[Z] >t < VarlZ + &



Thus,

Prc.(D) > (1+¢)L,] = Prie(D)— Ele,(D)] > (1+¢)L, — El[c,(D)]]
e3L2
< Prie(D) ~ Ble(D)] 2 ¢ L] < St =
By the union bound, we have that
d
PrlF =0 <Y Prle,(D) > (1+¢)L,] < de.
r=1

d

For any dimension 1 < r < d, let R, = %f)), and define R = max, R,, then R denotes

the maximal relative deviation of the cost from the r-th entry in the budget vector, where the
maximum is taken over 1 <r < d.

Claim 2.2 For any ¢ > 1,

de3
P (| < ——.
r[R > /] < =1
Proof: By the Chebyshev-Cantelli inequality we have that, for any dimension 1 < r < d,
PriR, > (] = Pric,(D)>1{-L,]
< Prie(D)—Eler(D)] > —1)L,] <
312 &3
S I

(¢—1)2L2 — (¢ —1)%

and by the union bound, we get that

Claim 2.3 For any integer £ > 1, if R < { then
f(D) <2dl-0.

Proof: The set D can be partitioned to 2d¢ sets D1, ... Dogy such that each of these sets is
a feasible solution. Hence, f(D;) < O. By Lemma [A] we have that f(D) < f(D1) + ...+
f(Dagp) < 2dLO. O

Combining the above results we have
Claim 2.4 E[f(D")] > (1 —O(¢e))E[f(D)].



Proof: By Claims 2.1l and 2.2 we have that

E[f(D)] = E[f(D)|F=1-Pr[F=1+E[f(D)| F=0A(R<2)]-Pr[F=0A(R<?2)
+ Y E[DIF=0AQ <R<2%| Pr|F=0n(2 <R <2
0>1

{42
< Bf(D)| F=1]Pr[F =1] +4d% - O + d253-0-z(22é_71)2.
>1

Since the last summation is a constant, and E[f(D)] > O/2, we have that
E[F(D)] < E[f(D)|[F =1]Pr[F =1] +¢-c- E[F(D)],
where ¢ > 0 is some constant. It follows that
(1-0()E[f(D)] < E[f(D)|F =1]- Pr[F =1].
Finally, since D' = D if F =1 and D’ = 0 otherwise, we have that
E[f(D)] = E[f(D)|F =1]- Pr[F =1] = (1 - O(c)) E[f(D)].
O

By definition, D’ is always e-nearly feasible, and D’ € M. This completes the proof of the
theorem. g

2.3 Rounding Instances with No Big Elements

In this section we present an (o — O(g))-approximation algorithm for SUB inputs with no
big elements, given an ca-approximate solution for the continuous problem. Inputs with no
big elements are easier to tackle. Indeed, any nearly feasible solution for such input can be
converted to a feasible one, with only a small harm to the total value.

Lemma 2.3 Let S C U be an e-nearly feasible solution with no big elements, then S can be
converted in polynomial time to a feasible solution S’ C S, such that f(S’) > (1 — O(e)) f(S).
Proof: In fixing the solution S we handle each dimension separately. For any dimension
1 <r <d, if ¢(5) < L, then no modification is needed; otherwise, ¢.(S) > L,. Since all
elements in S are small, we can partition S into ¢ disjoint subsets Si,.59,...,5y such that
eL, < ¢ (S;) < (e + %)L, for any 1 < j < £, where £ = Q(e71). Since the function f is
submodular, by Lemma[A.3] we have that f(S) > Z§:1 fs\s;(5;). Hence, there exists a value
J €{1,2..., 4} such that fs\s,(S5;) < # = [(5)-O(e) (note that fs\s,(S;) may be negative).
Now, ¢,(S'\ S;) < Ly, and f(S\Sj) > (1 —0(e))f(S). We repeat this step for all 1 <r < d
to obtain a feasible set S’ satisfying f(S") > (1 — O(e))f(5). O

Combined with Theorem 2] we have the following rounding algorithm.

Randomized Rounding Algorithm for SUB with No Big Elements
Input: A SUB instance, a feasible solution & for the continuous problem, with F(z) > O/5.

1. Define a random set D ~ z. Let D’ = D if D is e-nearly feasible, and D’ = ) otherwise.

7



2. Convert D’ to a feasible set D" as in the proof of Lemma 2.3 and return D”.

Clearly, the algorithm returns a feasible solution for the problem. By Theorem 2]
E[f(D")] > (1 —-0(¢))F(z). By Lemma 23] E[f(D")] > (1 — O(¢))F(z). Hence, we have
Lemma 2.4 For any instance of SUB with no big elements, any feasible solution T for the con-
tinuous problem with F(z) > O/5 can be converted to a feasible solution for SUB in polynomial
running time with expected profit at least (1 — O(e)) - F(Z).

2.4 A Randomized Approximation Algorithm

Given an instance of SUB and a subset T' C U, define another instance of SUB, to which we
refer as the residual problem with respect to T, with f remaining the objective function. The
budget for the residual problem is L' = L — &(T'), and the universe U’ consists of all elements
i € U\ T such that &(i) < 3L/, and all elements in 7. Formally,

U'=Tu{icU\T|e(i)<eL'}.

The new cost of element ¢ is /(i) = ¢(i) for any ¢ € U'\ T, and /(i) = 0 for any ¢ € T. It
follows that there are no big elements in the residual problem. Let S be a feasible solution for
the residual problem with respect to 7. Then &(S) < &(S) +¢&(T) < L' +&(T) = L. Thus, any
feasible solution for the residual problem is also feasible for the original instance.

Consider the following algorithm.

A Randomized Approximation Algorithm for SUB
Input: A SUB instance and an a-approximation algorithm A for continuous SUB with respect
to the function f.

1. For any T C U such that |T| < h = [d-e™*]

(a) Use A to obtain an a-approximate solution Z for the continuous residual problem
with respect to T'.

(b) Use the Randomized Rounding Algorithm of Section 23] to convert & to a feasible
solution S for the residual problem.

2. Return the best solution found.

Lemma 2.5 The above approzimation algorithm returns an (o — O(g))-approzimate solution
for SUB and uses a polynomial number of calls to algorithm A.

Proof: By Lemma [24] in each iteration the algorithm finds a feasible solution S for the
residual problem. Hence, the algorithm always returns a feasible solution for the given SUB
instance.

Let O = {i1,...,ir} be an optimal solution for the input I (we use O to denote both an op-
timal sub-collection of elements and the optimal value). For ¢ > 1, let Ky = {i1,... 4z}, and as-
sume that the elements are ordered by their residual profits, i.e., iy = argmax;co\ g, , fr,_, ({i})-

Consider the iteration in which T' = K}, and define O’ = O NU’. The set O is clearly a
feasible solution for the residual problem with respect to 7. We show a lower bound for f(O’).
The set R = O\ O’ consists of elements in O \ T that are big with respect to the residual
instance. The total cost of elements in R is bounded by L’ (since O is a feasible solution), and
thus |R| < e73 - d.



Since T' = Ky, for any j € O\ T it holds that fp(j) < % and we get fr(R) <

Yjenfr({i}) < e?-afd = ef(T) < 0. Thus, fo(R) < fr(R) < €O. Since f(0) =
F(O) + fo(R) < f(O') +f(O), we have that f(O') > (1 —¢)f(O).
Thus, in this iteration we get a solution Z for the residual problem with F(z) > «a(1 —
) f(O), and the solution S obtained after the rounding satisfies f(S) > (1 — O(e))af(O).
U

We summarize in the next result.

Theorem 2.6 Let f be a submodular function, and suppose there is a polynomial time «-
approzimation algorithm for the continuous problem with respect to f. Then there is a poly-
nomial time randomized (o — €)-approximation algorithm for SUB with respect to f, for any
e>0.

Since there is a (1/4 — o(1))-approximation algorithm for general instances of continuous SUB
[19], we have

Theorem 2.7 There is a polynomial time randomized (1/4 — €)-approximation algorithm for
SUB, for any e > 0.

Since there is a (1 — e™! — o(1)) approximation algorithm for SUB with monotone objective
function [24] we have

Theorem 2.8 There is a polynomial time randomized (1 — e~ — €)-approzimation algorithm
for SUB with monotone objective function, for any € > 0.

3 A Deterministic Approximation Algorithm

In this section we show how the algorithm of Section 23] can be derandomized, assuming we
have an oracle for F', the extension by expectation of f. For some families of submodular
functions, F' can be directly evaluated; for a general function f, F' can be evaluated with high
accuracy by sampling f, as in [24].

The main idea is to reduce the number of fractional entries in the fractional solution Z, so
that the number of values a random set D ~ Z can get is polynomial in the input size (for a
fixed value of ). Then, we go over all the possible values, and we are promised to obtain a
solution of high value.

A key tool in our derandomization is the pipage rounding technique of Ageev and Sviridenko
[1]. We give below a brief overview of the technique. For any element i € U, define the unit
vector i € {0,1}Y, in which ij = 0 for any j # 7, and 4; = 1. Given a fractional solution ¥
for the problem and two elements ¢, j, such that x; and x; are both fractional, consider the
vector function z; j(0) =z + i — &j (Note that z; j(d) is equal to Z in all entries except i, j).
Let (5; ;; and 6, . (for short, 5" and §7) be the maximal and minimal value of § for which
7;;(0) € [0,1)Y. In both Z; ;(§7),Z; ;(67), the entry of either i or j is integral.

Define F7;(6) = F(;,;(9)) over the domain [6~,6F]. The function F}; is convex (see [3]
for a detailed proof), thus 7’ = argmaxz, (s+)z, (5-)} & (%) has fewer fractional entries than z,
and F(z') > F(z). By appropriate selection of 4, j, such that ' maintains feasibility (in some
sense), we can repeat the above step to gradually decrease the number of fractional entries.
We use the technique to prove the next result.

Lemma 3.1 Let Z € [0,1]Y be a solution having k or less fractional entries (i.e., |{i | 0 <
x; < 1} < k), and &(x) < L for some L. Then T can be converted to a vector T with at



d _
most k' = (81“7(%)) fractional entries, such that ¢(z') < (1+¢)L, and F(z') > F(Z), in time
polynomial in k.

Proof: Let U' = {i | 0 < 2; < 1} be the set of all fractional entries. We define a new cost
function & over the elements in U.

cr (1) ig U’ .
a@ = {0 Cr(i)ggékr
£ Lry 4 ooy S Lriy 4 ooy < (i) < 2T (1 4 2 j2pit

2k 2k 2k

Note that for any i € U’, & (i) < (i), and
€ - Ly

) )+

(i) < (14
for all 1 <r < d. The number of different values ¢/.(i) can get for i € U’ is bounded by SIHT(%)
(since all elements are small, and In(1 + x) > 2:/2). Hence the number of different values & (7)

d
can get for i € U’ is bounded by & = (22 lne(%)

We start with #' = #, and while there are 4, j € U’ such that x; and z’; are both fractional
and & (i) = @(j), define 6+ =47, . jand 67 =4, .. Since i and j have the same cost (by &),
it holds that & (z; ;(61)) = € (xw(d )) =& (2). If F7;(07) > F(z), then set " = &; j(67),
otherwise ’ = Z; j(67). In both cases F(z") > F(&') and & (z") = &(&’). Now, repeat this
step with z’ = Z”. Since in each iteration the number of fractional entries in Z’ decreases, the
process will terminate (after at most k iterations) with a vector #’ such that F(z') > F (_)
&(z') = &(z) < L, and there are no two elements i,j € U" with & (i) = &(j), where z;j and
are both fractional. Also, for any ¢ ¢ U’, the entry =} is integral (since z; was integral and the
entry was not modified by the process). Thus, the number of fractional entries in Z’ is at most
k'. Now, for any dimension 1 < r < d,

(@) = > wje (i) + Y wie(d)

igu’ ey’
e-L
< (1 . I, r
< (1+¢/2) Zm +y <1+a/2 ' (1) + %)
i¢u’ icy’
= (1+¢/2)-) aj-¢ +Z‘El < (1+¢)L,.
€U €U’
This completes the proof. O

Using the above lemma, we can reduce the number of fractional entries in & to a number
that is poly-logarithmic in k. However, the number of values D ~ Z remains super-polynomial.
To reduce further the number of fractional entries, we apply the above step twice, that is, we
convert Z with at most |U| fractional entries to Z with at most k' = (81n(2|U|)/2)%. We can
then apply the conversion again, to obtain Z” with at most £” = O(log |U|) fractional entries.

Lemma 3.2 Given a vector L and a constant ¢ > 0, let & € [0,1]Y be a vector satisfying
é(x) < L. Then T can be converted in time polynomial in |U| to a vector T with at most
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k" = O(log |U|) fractional entries, such that &(z') < (1 +¢)%L, and F(z') > F(z),

The next result follows immediately from Lemma[2.2] (O is the value of an optimal solution
for SUB).

Lemma 3.3 Given 7 € [0,1]Y such that T is a feasible fractional solution with F(z) > O/5,
there exists a realization of the random wvariable D ~ T, such that the solution D is nearly
feasible, and F(D) > (1 — O(e))F ().

Consider the following rounding algorithm.

Deterministic Rounding Algorithm for SUB with No Big Elements
Input: A SUB instance, a feasible solution Z for the continuous problem, with F'(z) > O/5.

1. Define ' = (1 +¢)72 - Z (note that F(z') > (1+¢)72- F(z)).

2. Convert &’ to " such that z” is fractionally feasible, the number of fractional entries in

7" is O(log |U|), and F(z) > (1 +¢)72F(z") > (1 — e ! — O(¢€))O, as in Lemma 3.2

3. Enumerate over all possible realizations of D ~ Z”. For each such realization, if the
solution D is e-nearly feasible convert it to a feasible solution D’ (see Lemma [2:3)).
Return the solution with maximum value among the feasible solutions found.

By Theorem 2], the algorithm returns a feasible solution of value at least (1 — O(¢))F(Z).
Also, the running time of the algorithm is polynomial when ¢ is a fixed constant. Replacing
the randomized rounding step in the algorithm of Section 2.4 with the above Deterministic
Rounding Algorithm, we get the following result.

Theorem 3.4 Let f be a submodular function, and assume we have an oracle for F. If there
s a deterministic polynomial time a-approximation algorithm for the continuous problem with
respect to f, then there is a polynomial time deterministic (o — €)-approximation algorithm for
SUB with respect to f, for any e > 0.

We note that, given an oracle to F', both the algorithms of [24] and [19] for the continuous
problem are deterministic, thus we get the following.

Theorem 3.5 Given an oracle for F, there is a polynomial time deterministic (1 — e~ —¢)-
approximation algorithm for SUB with a monotone function, for any & > 0.

Theorem 3.6 Given an oracle for F, there is a polynomial time deterministic (1/4 — €)-
approximation algorithm for SUB for any € > 0.

For the problem of maximum coverage with d knapsack constraints, i.e., SUB where the
objective function is f = fg p, for a given bipartite graph G and profits p, the function F' can
be evaluated deterministically (see [1]). This yields the following result.

Theorem 3.7 There is a polynomial time deterministic (1—e~! —¢)-approzimation algorithm
for mazrimum coverage with d knapsack constraints.

4 Discussion

In this paper we established a strong relation between the continuous relaxation of SUB and
the discrete problem. This relation is nearly optimal and suggests that future research should
focus on deriving better approximation ratios for the continuous problem.

11



The question whether better rounding exists remains open; namely, is it possible to obtain
an a—approximation algorithm for SUB, given an a < 1 approximation algorithm for the con-
tinuous problem? And more specifically, is there a polynomial time (1 — e~!)—approximation
for SUB with monotone objective function?

Finally, the running times of our algorithms are exponential in 1/¢, thus rendering them
impractical. Yet, the hardness results for d-dimensional Knapsack (see, e.g., [14, 7, [16]), a
special case of SUB, hint that significant improvements over these running times may be
impossible.
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Basic Properties of Submodular Functions

In this section we give some simple properties of submodular functions. Recall that f : 2V — R
is a submodular function if f(S)+ f(T) > f(SUT)+ f(T'NS) for any S, T C U. We define

fr(

S)=fSUT) = f(T).

Lemma A.1 Let f: 2V — R be a submodular function with f(0) >0, and let S = S U Sy U
... U S, where S; are disjoint sets. Then

fF(S) = f(S1) + f(S2) + ... f(Sk)-

Proof: By induction on k. For k = 2, since f is a submodular function, we have that

f(S1) + f(S2) = f(S1US2) + f(S1nS2) = f(S) + f(0),

and since f(0) > 0, we get that f(S) < f(S1) + f(S2).

For k > 2, using the induction hypothesis twice, we have

f(S) < f(S1) + f(S2) + ... f(Sk—2) + f(Sk—1U Sk) < f(S1) + f(S2) + ... f(Sk)-
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Lemma A.2 Let f : 2V — R, be a submodular function, and let S, T\, To C U such that
Ty CTy and SNTy, = 0. Then, fr,(S) < fr,(S).

Proof: Since f is submodular,
fSUTY) + f(T2) = f(SUTHUTR) + f(SUT) NT) = f(SUTs) + f(T1).
Hence, fTQ(S) < fT1(S) O

Lemma A.3 Let f: 2V — R, be a submodular function, and let S = S;USyU. ..U Sy, where
S; are disjoint sets. Then,
k
22 Sas

Proof: We note that i
S) = Z fslu---usi—l (S
i=1

By Lemma[A.2] for each i > 1, fs,u..us,_,(Si) > fs\g,(5i). Hence,

k
Z 5\8; (
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