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Abstract

In two-sided matching markets, the concept of stability proposed by Gale and Shapley (1962)
is one of the most important solution concepts. In this paper, we consider a problem related
to the stability of a matching in a two-sided matching market with indifferences (i.e., ties).
The introduction of ties into preference lists dramatically changes the properties of stable
matchings. For example, stable matchings need not have the same size. Furthermore, it is
known that stability do not guarantee Pareto efficiency that is also one of the most important
solution concepts in two-sided matching markets. This fact naturally leads to the concept of
Pareto stability, i.e., both stable and Pareto efficient. Erdil and Ergin (2006, 2008) proved
that there always exists a Pareto stable matching in a one-to-one/many-to-one matching
market with indifferences and gave a polynomial-time algorithm for finding it. Furthermore,
Chen (2012) proved that there always exists a Pareto stable matching in a many-to-many
matching market with indifferences and gave a polynomial-time algorithm for finding it. In
this paper, we propose a new approach to the problem of finding a Pareto stable matching
in a many-to-many matching market with indifferences. Our algorithm is an alternative
proof of the existence of a Pareto stable matching in a many-to-many matching market with
indifferences.

1 Introduction

Since the seminal work of Gale and Shapley [7], two-sided matching markets have been exten-
sively studied in both Economics and Computer Science [8, 21, 15]. In this model, there exist
two groups of agents and each agent has a preference ranking over members of the other group.
The goal is to find a matching between these two groups with some specified properties. In
two-sided matching markets, the concept of stability proposed by Gale and Shapley [7] is one of
the most important solution concepts.

In this paper, we consider a problem related to the stability of a matching in a two-sided
matching market with indifferences (i.e., ties). The introduction of ties into preference lists
dramatically changes the properties of stable matchings [12]. For example, stable matchings
need not have the same size. The problem of finding a maximum-size stable matching is NP-
hard [11, 16], and several approximation algorithms have been proposed [13, 17]. Moreover,
it is known that stability do not guarantee Pareto efficiency, where Pareto efficiency means
that there exists no other matching improving some agent without hurting everyone else (for
its definition, see Section 2). Since the concept of Pareto efficiency is also one of the most
important solution concepts in two-sided matching markets, this fact has received much attention
in Economics [1, 2, 5, 6, 23] and naturally leads to the concept of Pareto stability [23], i.e., both
stable and Pareto efficient. Erdil and Ergin [5, 6] proved that there always exists a Pareto
stable matching in a one-to-one/many-to-one matching market with indifferences and gave a
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polynomial-time algorithm for finding it. Furthermore, Chen [3] proved that there always exists
a Pareto stable matching in a many-to-many matching market with indifferences and gave a
polynomial-time algorithm for finding it.

In this paper, we propose a new approach to the problem of finding a Pareto stable matching
in a many-to-many matching market with indifferences. Compared with the algorithms proposed
in [5, 6, 3], our algorithm is not based on the characterization of a Pareto stable matching using
a Pareto improvement cycle/chain (see Section 2). In our algorithm, we iteratively compute a
rank-maximal matching [10, 14, 18, 9] that is another solution concept in matching markets. Our
algorithm is an alternative proof of the existence of a Pareto stable matching in a many-to-many
matching market with indifferences.

The rest of this paper is organized as follows. In Section 2, we formally define our problem
and review previous results. In Section 3, we propose our algorithm. The next three sections
are preliminaries to the proof of the correctness of our algorithm. In Section 4, we consider a
relationship between Pareto efficiency and rank-maximality. In Section 5, we give a reduction
from the rank-maximal matching problem to the maximum-cost matching problem. In Section 6,
we introduce an auxiliary directed graph. In Section 7, we prove the correctness of our algorithm.

2 Problem formulation

Let N (resp., Z+) be the set of positive integers (reps., non-negative integers).
Throughout this paper, we are given a finite simple undirected bipartite graph G with a

vertex set V and an edge set E. Define n := |V | and m := |E|. Assume that a vertex set V is
partitioned into two disjoint subsets P and Q such that every edge of E connects a vertex of
P and one of Q. For each edge e that connects a vertex v of P and a vertex w of Q, we write
e(v, w). For each vertex v of V and each subset F of E, we denote by F (v) the set of edges
of E that are incident to v. Furthermore, we are given a capacity function c : V → N, and we
are given a preference ranking function πv : E(v) → N for each vertex v of V . If πv(e) > πv(f),
then a vertex v strictly prefers an edge e to an edge f . If πv(e) = πv(f), then v is indifferent
between e and f . We call a bipartite graph G with a capacity function c and preference ranking
functions πv (v ∈ V ) a many-to-many matching market with indifferences.

A subset A of E is said to be feasible with respect to a vertex v of V , if |A(v)| ≤ c(v).
A subset A of E is called an assignment, if A is feasible with respect to every vertex v of V .
Assume that we are given an assignment A. For each edge e of E \A, an endpoint v of e is said
to be free with respect to A, if

1. A ∪ {e} is feasible with respect to v, and/or
2. there exists an edge f of A(v) such that πv(e) > πv(f).

An edge e of E \A is called a blocking edge with respect to A, if both endpoints of e are free
with respect to A. An assignment A is said to be stable, if there exists no blocking edge with
respect to A.

Now we define the concept of Pareto efficiency. For this, we have to define the preference of a
vertex v of V over subsets of E(v). Let F be a subset of E(v) consisting of p edges e1, e2, . . . , ep

such that πv(e1) ≥ πv(e2) ≥ · · · ≥ πv(ep). Furthermore, let F ′ be a subset of E(v) consisting of
q edges f1, f2, . . . , fq such that πv(f1) ≥ πv(f2) ≥ · · · ≥ πv(fq). We say that a vertex v prefers
F to F ′ (denoted by F ≥v F ′), if p ≥ q and πv(ei) ≥ πv(fi) for every positive integer i with
i ≤ q. We say that a vertex v strictly prefers F to F ′ (denoted by F >v F ′), if

1. v prefers F to F ′ (i.e., F ≥v F ′), and
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2. p > q and/or πv(es) > πv(fs) for some positive integer s with s ≤ q.

This preference is said to be responsive in Economics [21].
We say that an assignment A dominates an assignment B, if A(v) ≥v B(v) for every vertex

v of V and there exists a vertex w of V such that A(w) >w B(w). An assignment A is said to
be Pareto efficient, if there exists no assignment B that dominates A. An assignment is said
to be Pareto stable, if it is stable and Pareto efficient.

2.1 Known results

Here we review the known algorithms for finding a Pareto stable matching. We first review
the algorithms proposed by Erdil and Ergin [5, 6]. Their algorithms are based on the charac-
terization of a Pareto stable matching using a Pareto improvement cycle/chain (for the
formal definitions, see [5, 6, 3]). Roughly speaking, we can improve some agent without hurting
everyone else along a Pareto improvement cycle/chain. It is known [5, 6, 3] that an assignment
A is Pareto efficient if and only if there exists no Pareto improvement cycle/chain with respect
to A. Furthermore, it is known [5, 6] that in a one-to-one/many-to-one matching markets (i.e.,
c(v) = 1 for every vertex v of V , or c(v) = 1 for every vertex v of P ), the stability is preserved
even if we improve an assignment along a Pareto improvement cycle/chain. So, we can obtain
the following algorithm. Starting from any stable assignment, keep improving an assignment by
eliminating Pareto improvement cycles/chains until none remain. However, it is also known [3]
that this algorithm does not work in a many-to-many matching market. This is because improv-
ing an assignment along a Pareto improvement cycle/chain need not preserve the stability in a
many-to-many matching market (see Example 1 in [3]). For overcoming this difficulty, Chen [3]
proposed an algorithm based on an alternative to Gale-Shapley algorithm presented by Roth
and Vande Vate [20]. In this algorithm, men “arrive” one by one, and a Pareto improvement
chain is carefully eliminated. Although the author does not explicitly evaluate the time com-
plexity of this algorithm, if we naively evaluate its time complexity, then it becomes O(n6m2∆),
where ∆ denotes the time required to checking and finding a Pareto improvement cycle. We
should remark that Chen and Ghosh [4] also considered Pareto stable solutions in many-to-many
matching markets. However, in the paper [4], every pair of agents can transact any number of
units, which is very different from the present paper in which at most one unit can be assigned.

3 Algorithm

For each vertex v of V , let πv,1 > πv,2 > · · · be the distinct values of πv(e) (e ∈ E(v)). For each
vertex v of V and each edge e of E(v), let rv(e) be the positive integer i such that πv,i = πv(e).
For each subset F of E and each positive integer i, we denote by λi(F ) and γi(F ) the numbers
of edges e(v, w) of F such that rv(e) = i and rw(e) = i, respectively.

3.1 Rank-maximal matchings

For each subsets A,B of E, we write A º B, if one of the following conditions is satisfied.

(R1) For every positive integer i, λi(A) = λi(B) and γi(A) = γi(B).
(R2) There exists a positive integer s such that γs(A) > γs(B) and γi(A) = γi(B) for every

positive integer i with i < s.
(R3) For every positive integer i, γi(A) = γi(B). Moreover, there exists a positive integer s

such that λs(A) > λs(B) and λi(A) = λi(B) for every positive integer i with i < s.
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If (R2) or (R3) holds, then we write A Â B.
Assume that we are a function α : P ×N → Z+. A subset A of E is said to be α-eligible, if

1. λi(A(v)) ≤ α(v, i) for every vertex v of P and every positive integer i, and
2. |A(v)| ≤ c(v) for every vertex v of Q.

Assume that we are given a subset F of E. An α-eligible subset A of F is called a rank-maximal
α-matching on F , if A º B for every α-eligible subset B of F .

3.2 Description of the algorithm

For each vertex v of P and each subset F of E, define

∂F (v) :=


min

{
i ∈ N

∣∣∣ i∑
j=1

λj(F (v)) ≥ c(v)
}

if |F (v)| ≥ c(v)

max{i ∈ N | λi(F (v)) 6= 0} if |F (v)| < c(v).

For each subset F of E, define a function ωF : P × N → Z+ as follows. If |F (v)| < c(v), then
define ωF (v, i) := m+1 for each vertex v of P and each positive integer i. If |F (v)| ≥ c(v), then
define

ωF (v, i) :=


m + 1 if i < ∂F (v)

c(v) −
i−1∑
j=1

λj(F (v)) if i = ∂F (v)

0 if i > ∂F (v)

for each vertex v of P and each positive integer i.
Assume that A,F are subsets of E with A ⊆ F . For each vertex v of P and each positive

integer i, define

κv,i(A; F ) :=

{
{e ∈ F (v) \ A(v) | rv(e) = i} if λi(A(v)) < ωF (v, i)
∅ if λi(A(v)) ≥ ωF (v, i).

Then, define

κ(A; F ) :=
∪
v∈P

∂F (v)∪
i=1

κv,i(A; F ).

We are now ready to propose our algorithm, called ParetoStable.

Step1: Set R0 := ∅ and t := 0
Step2: Repeat the following (2-a) to (2-c) until the algorithm halts.

(2-a) Update t := t + 1, and set Ft := E \ Rt−1.
(2-b) Find a rank-maximal ωFt-matching At on Ft.
(2-c) If κ(At; Ft) = ∅, then output At and halt. Otherwise, set Rt := Rt−1 ∪ κ(At; Ft).

Since R0 ( R1 ( · · · holds, this algorithm halts in finite time. In the sequel, the algorithm halts
when t = T . Notice that T is at most m.
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4 Pareto efficiency and rank-maximality

In this section, we consider a relationship between Pareto efficiency and rank-maximality. For
each subset F of E and each positive integer i, define

Λi(F ) :=
i∑

j=1

λj(F ), Γi(F ) :=
i∑

j=1

γj(F ).

Lemma 1. If an assignment A dominates an assignment B, then

(D1) Λi(A(v)) ≥ Λi(B(v)) for every vertex v of P and every positive integer i, and
(D2) Γi(A(v)) ≥ Γi(B(v)) for every vertex v of Q and every positive integer i.

Furthermore,

(E1) Λs(A(w)) > Λs(B(w)) for some vertex w of P and some positive integer s, and/or
(E2) Γs(A(w)) > Γs(B(w)) for some vertex w of Q and some positive integer s.

Proof. We first prove that (D1) holds. Assume that v is a vertex of P and i is a positive integer.
Moreover, assume that A(v) consists of p edges e1, e2, . . . , ep such that πv(e1) ≥ πv(e2) ≥ · · · ≥
πv(ep) and B(v) consists of of q edges f1, f2, . . . , fq such that πv(f1) ≥ πv(f2) ≥ · · · ≥ πv(fq).
Let j be the maximum positive integer such that j ≤ q and πv(fj) ≥ πv,i. Since A dominates B,
πv(ej′) ≥ πv,i for every positive integer j′ with j′ ≤ j. This implies that Λi(A(v)) ≥ Λi(B(v)).
Similarly, we can prove that (D2) holds.

Next we prove that (E1) and/or (E2) holds. Since A dominates B, there exists a vertex w of
V such that A(w) >w B(w). Now we prove that if w ∈ P , then (E1) holds. Assume that A(w)
consists of p edges e1, e2, . . . , ep such that πw(e1) ≥ πw(e2) ≥ · · · ≥ πw(ep) and B(w) consists of
of q edges f1, f2, . . . , fq such that πw(f1) ≥ πw(f2) ≥ · · · ≥ πw(fq). We first consider the case of
p > q. Let s be a positive integer such that πw,s = πw(eq+1). Then,

Λs(A(w)) ≥ q + 1 > q = |B(w)| ≥ Λs(B(w)).

Next we consider the case where there exists a positive integer j such that j ≤ q and πw(ej) >
πw(fj). Let s be the positive integer with πw,s = πw(ej). Since πw(fj) < πw(ej) = πw,s, we have

Λs(A(w)) ≥ j > j − 1 ≥ Λs(B(w)).

Similarly, we can prove that if w ∈ Q, then (E2) holds.

Lemma 2. If an assignment A dominates an assignment B, then A Â B.

Proof. We first assume that (E2) of Lemma 1 holds. Let s be the minimum positive integer i
such that there exists a vertex w of Q with Γi(A(w)) > Γi(B(w)). For every vertex v of Q and
every positive integer i with i < s, Γi(A(v)) = Γi(B(v)) follows from (D2). By this and (D2),

γi(A(v)) = γi(B(v)), ∀v ∈ Q, ∀i ∈ N with i < s

γs(A(v)) = γs(B(v)), ∀v ∈ Q with Γs(A(v)) = Γs(B(v))
γs(A(v)) > γs(B(v)), ∀v ∈ Q with Γs(A(v)) > Γs(B(v)).

This implies that γs(A) > γs(B) and γi(A) = γi(B) for every positive integer i with i < s, which
implies that (R2) holds.
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Next we consider the case where (E2) does not hold, but (E1) holds. In this case, by (D2),
γi(A(v)) = γi(B(v)) for every vertex v of Q and every positive integer i, i.e., γi(A) = γi(B) for
every positive integer i. Moreover, we can prove that there exists a positive integer s such that
λs(A) > λs(B) and λi(A) = λi(B) for every positive integer i with i < s in the same way as the
first case. This implies that (R3) holds.

5 Maximum-cost matchings

In this section, we consider the reduction from finding a rank-maximal matching to finding a
maximum-cost matching defined as follows. This reduction is a standard technique in the study
of rank-maximal matchings [10, 14, 18, 9].

For each vertex v of V , let φ(v) be the number of the distinct values of πv(e) (e ∈ E(v)).
Define φP := maxv∈P φ(v) and φQ := maxv∈Q φ(v). For each edge e(v, w) of E, define

kP (e) := mφP−rv(e), kQ(e) := mφQ−rw(e)+φP , k(e) := kP (e) + kQ(e).

For each subset F of E, define

kP (F ) :=
∑
e∈F

kP (e), kQ(F ) :=
∑
e∈F

kQ(e), k(F ) := kP (F ) + kQ(F ).

Assume that we are given a subset F of E and a function α : P ×N → Z+. An α-eligible subset
A of F is called a maximum-cost α-matching on F , if k(A) ≥ k(B) for every α-eligible subset
B of F .

Lemma 3. For each subsets A,F of E with A ⊆ F and each function α : P × N → Z+, A is a
rank-maximal α-matching on F if and only if A is a maximum-cost α-matching on F .

Proof. (⇒) Assume that A,B are α-eligible subsets of F with A º B. We prove that k(A) ≥
k(B). If A = ∅, then B = ∅, i.e., k(A) = k(B). So, we can assume that A 6= ∅. If (R1) holds,
then kP (A) = kP (B) and kQ(A) = kQ(B), i.e., k(A) = k(B).

Assume that (R2) holds. In this case, the size of B is clearly at most m− 1. So, since A 6= ∅
and 1 ≤ kP (e) ≤ mφP−1 for every edge e of E,

kP (A) − kP (B) ≥ 1 − (m − 1) · mφP−1 = 1 + mφP−1 − mφP

Let s be a positive integer such that γs(A) > γs(B) and γi(A) = γi(B) for every positive integer
i with i < s. Let B′ be the set of edges e(v, w) of B such that rw(e) ≤ s. It is not difficult to
see that kQ(A) − kQ(B′) ≥ mφQ−s+φP . If s = φQ, then B = B′. So,

k(A) − k(B) = kP (A) − kP (B) + kQ(A) − kQ(B′) ≥ 1 + mφP−1 > 0.

If s < φQ, then

kQ(B \ B′) ≤ (m − 1) · mφQ−(s+1)+φP = mφQ−s+φP − mφQ−s+φP−1.

By this and φQ − s + φP − 1 ≥ φP ,

k(A) − k(B) = kP (A) − kP (B) + kQ(A) − kQ(B′) − kQ(B \ B′)

≥ 1 + mφP−1 − mφP + mφQ−s+φP−1 ≥ 1 + mφP−1 > 0.
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Assume that (R3) holds. In this case, kQ(A) = kQ(B). Let s be a positive integer such that
λs(A) > λs(B) and λi(A) = λi(B) for every positive integer i with i < s. Let B′ be the set of
edges e(v, w) of B such that rv(e) ≤ s. It is not difficult to see that kP (A) − kP (B′) ≥ mφP−s.
If s = φP , then B = B′. So, k(A) − k(B) = kP (A) − kP (B′) ≥ 1. If s < φP , then

kP (B \ B′) ≤ (m − 1) · mφP−(s+1) = mφP−s − mφP−s−1.

By this,
k(A) − k(B) = kP (A) − kP (B′) − kP (B \ B′) ≥ mφP−s−1 > 0

(⇐) Assume that A,B are α-eligible subsets of F with k(A) ≥ k(B). If B Â A, i.e., (R2) or
(R3) holds, then k(B) > k(A) follows from the above discussion. This contradicts k(A) ≥ k(B).
So, A º B holds. This completes the proof.

6 Auxiliary Directed Graph

For each vertex v of P and each positive integer i with i ≤ φ(v), let v(i) be a new vertex. Define

UP := {v(1), v(2), . . . , v(φ(v)) | v ∈ P}, U := UP ∪ Q.

For each edge e(v, w), define v(e) := v(rv(e)). For each edge e(v, w) of E, let e+ be an arc from
v(e) to w, and let e− be an arc from w to v(e). For each subset F of E, define F+ := {e+ | e ∈ F}
and F− := {e− | e ∈ F}. For each vertex u of UP (resp., Q) and each subset L of E+, let L(u)
be the set of arcs of L leaving (resp., entering) u. For each edge e of E, define l(e+) := k(e) and
l(e−) := −k(e). Define l(L) :=

∑
a∈L l(a) for each subset L of E+ ∪ E−.

Assume that we are given a function α : P × N → Z+. A subset K of E+ is said to be
α-good, if |K(v(i))| ≤ α(v, i) for every vertex v(i) of UP and |K(v)| ≤ c(v) for every vertex v of
Q. Assume that L is a subset of E+. An α-good subset K of L is called a maximum-length
α-matching on L, if l(K) ≥ l(M) for every α-good subset M of L. For each subsets A, F of
E with A ⊆ F and each function α : P × N → Z+, it is easy to see that A is a maximum-cost
α-matching on F if and only if A+ is a maximum-length α-matching on F+. So, it follows from
Lemma 3 that A is a rank-maximal α-matching on F if and only if A+ is a maximum-length
α-matching on F+.

Let A,F be subsets of E with A ⊆ F . Define F+/A := (F+ \ A+) ∪ A−. Let D(F )/A be a
directed graph with a vertex set U and an arc set F+/A. Assume that S is a directed path from
a vertex u of U to a vertex w of U on D(F )/A. (In this paper, a directed path may pass through
the same vertex more than once, but we do not allow that a directed path passes through the
same arc more than once. Furthermore, a single vertex is regarded as a directed path with no
arc.) Define the length l(S) of a directed path S by the sum of the lengths of arcs contained
in S. A directed path S is called a circuit, if u = w and S contains at least one arc. Assume
that S is not a circuit. We call S a semi-augmenting path, if (i) w ∈ UP , or (ii) w ∈ Q and
|A+(w)| < c(w). We call a semi-augmenting path S an α-augmenting path, if (i) u ∈ Q, or
(ii) u ∈ UP and |A+(u)| < α(v, i), where u = v(i) for a vertex v of P and a positive integer i.
It is known [22, Theorem 12.1] that A+ is a maximum-length α-matching on F+ if and only if
there exist no circuit C and α-augmenting path S on D(F )/A such that l(C) > 0 and l(S) > 0.

For each positive integer t with t ≤ T , define Dt := D(Ft)/At. For each vertex v of Q
and each positive integer t with t ≤ T , let dt(v) be the maximum-length of a semi-augmenting
path from v on Dt. Notice that since c(v) > 0 for every vertex v of Q, there always exists a
semi-augmenting path from each vertex v of Q on Dt. Furthermore, since A+

t is a maximum-
cost ωFt-matching on F+

t , there exists no circuit C on Dt with l(C) > 0. Thus, there exists a
semi-augmenting path S passing through each vertex at most once such that l(S) = dt(v).
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Lemma 4. For each vertex v of Q and each positive integer t with 2 ≤ t ≤ T , dt(v) ≤ dt−1(v).

Proof. Assume that v is a vertex of Q and t is positive integer with 2 ≤ t ≤ T . Since

At−1 ⊆ Ft−1 At−1 ∩ κ(At−1; Ft−1) = ∅ Ft = Ft−1 \ κ(At−1; Ft−1),

At−1 is a subset of Ft. Define D′ := D(Ft)/At−1. Let d′(v) be the maximum-length of a semi-
augmenting path from v on D′. Since D′ can be obtained from Dt−1 by removing some arcs, we
have d′(v) ≤ dt−1(v). So, it suffices to prove that dt(v) ≤ d′(v).

It is not difficult to see that Dt can be obtained from D′ by reversing the orientation of all
arcs of

{e+ | e ∈ At \ At−1} ∪ {e− | e ∈ At−1 \ At}. (1)

It is known [22, the proof of Theorem 12.1] that (1) can be decomposed into a collection L of
arc-disjoint circuits and ωFt-augmenting paths on D′ such that (i) l(L) ≥ 0 for every member L
of L, and (ii) for each vertex u of UP , there exist ωFt-augmenting paths from u, or there exist
ωFt-augmenting paths to u, or there exists no ωFt-augmenting path from/to u (i.e., exactly one
of these three cases holds).

Assume that d′(v) < dt(v). Let S be a semi-augmenting path from v to v′ on Dt such that
l(S) = dt(v). Without loss of generality, we can assume that S passes through each vertex at
most once. Let Sa be the set of arcs of S contained in D′. Notice that an arc of Sa is not
contained in a member of L. Let Sb be the set of arcs a of S with a /∈ Sa, i.e., the arc obtained
by reversing the orientation of a is contained in D′. Let Sp be the set of arcs of D′ obtained
by reversing the orientation of arcs of Sb. Notice that every arc of Sp are passed through by
exactly one member of L.

We prove that there exists a directed path K from v on D′ satisfying the following.

(P1) K is a directed path to v′ or a vertex u of U such that there exists an ωFt-augmenting
path of L to u.

(P2) Let vco be the vertex of S that K passes through last. Let K ′ (resp., S′) is a subpath of
K (resp., K) from v to vco. Then, we have l(K ′) ≥ l(S′).

Assume that there exists a directed path K from v on D′ satisfying (P1) and (P2). If K is a
directed path to v′, then vco = v′, i.e., K ′ = K and S′ = S. If (i) v′ ∈ UP or (ii) v′ ∈ Q and
|A+

t−1(v
′)| < c(v′), then K is a semi-augmenting path from v on D′. So, d′(v) ≥ l(K) ≥ l(S) =

dt(v), which contradicts d′(v) < dt(v). Since S is a semi-augmenting path to v′ on Dt, if v′ ∈ Q,
then |A+

t (v′)| < c(v′). So, if v′ ∈ Q and |A+
t−1(v

′)| = c(v′), then there exists an ωFt-augmenting
path L of L from v′. Let KL be the directed path obtained by combining K and L. Since
l(L) ≥ 0 and KL is a semi-augmenting path from v on D′,

d′(v) ≥ l(KL) ≥ l(K) ≥ l(S) ≥ dt(v).

This contradicts d′(v) < dt(v). Assume that K is a directed path to a vertex u such that there
exists an ωFt-augmenting path of L to u. In this case, K is a semi-augmenting path from v on
D′. Let K ′′ and S′′ be subpaths of K and S obtained by removing K ′ and S′, respectively. Then,
l(K ′′) < l(S′′) follows from l(K) ≤ d′(v) < dt(v) = l(S). Since there exists an ωFt-augmenting
path of L to u, if u ∈ UP , then |A+

t (u)| < ωFt(w, i), where u = w(i) for a vertex w of P and
a positive integer i. Furthermore, there exists a directed path Kr on Dt obtained by reversing
the orientation of arcs of K ′′. So, a directed path S∗ obtained by combining Kr and S′′ is an
ωFt-augmenting path on Dt such that l(S∗) = l(S′′) − l(L′′) > 0. This contradicts the fact that
A+

t is a maximum cost ωFt-matching on F+
t . This completes the proof.

8



What remains is to prove that there exists a directed path K on D′ satisfying (P1) and
(P2). Such a path can be constructed by the following operation. Starting from a vertex v on
D′, we go along arcs of Sa until we meet the head of an arc of Sp (see Figure 1(a)). Recall
that there exists a unique member L of L that passes through this arc (see Figure 1(b)). So,
we go along L until we meet the tail of an arc a of L with a ∈ Sp (see Figure 1(c)). Then, we
again go along arcs of Sa until we meet the head of an arc of Sp (see Figure 1(d)). During this
operation, if we meet v′ or a vertex u of U such that there exists an ωFt-augmenting path of L
to u, this operation halts. By repeating this operation (see Figure 1(e)-(f)), our path eventually
meet v′ or a vertex u of U such that there exists an ωFt-augmenting path of L to u. Notice
that it is not difficult to see that this operation halts in finite time. (We can prove this by
contradiction. Assuming that Ŝ is the first subpath of S that our path passes through more
than once. However, since members of L are arc-disjoint, there must exist another subpath of
S that our path passes through more than once before passing through Ŝ twice.)

Let K be the directed path obtained by the above operation. Now we prove that (P2) holds.
Assume that the form of K ′ is (S0,K1, S1, . . . ,Kh, Sh), where S0, S1, . . . , Sh are subpaths of
S such that arcs of Si are contained in Sa for every non-negative integer i with i ≤ h and
K1,K2, . . . ,Kh are subpaths of some member of L. For each positive integer i with i ≤ h, let
pi and qi be vertices of S such that Ki is a directed path from pi to qi. Define q0 := v and
ph+1 := vco. Notice that pi 6= qi for every positive integer i with i ≤ h. Furthermore, for each
non-negative integer i with i ≤ h, Si is a subpath of S from qi to pi+1. For each non-negative
integer i with i ≤ h, let S≤i be a directed path whose form is (S0,K1, S1, . . . ,Ki, Si). Notice
that S≤h = K ′. For each positive integer i with i ≤ h, let K≤i be a directed path obtained
by combining S≤i−1 and Ki. For each non-negative integer i with i ≤ h, let S◦

i be a subpath
of S from v to pi+1. Notice that S◦

h = S′. For each positive integer i with i ≤ h, let S•
i be

a subpath of S from v to qi. Since S≤0 = S◦
0 , we have l(S≤0) = l(S◦

0). Now we prove that
l(K≤i) ≥ l(S•

i ) and l(S≤i) ≥ l(S◦
i ) for every positive integer i with i ≤ h, which implies that

l(K ′) ≥ l(S′). Assume that l(S≤i−1) ≥ l(S◦
i−1) for a positive integer i with i ≤ h. We first prove

that l(K≤i) ≥ l(S•
i ). Assume that S passes through pi before qi (see Figure 1(c)). Let Ssub be a

subpath of S from pi to qi. Since A+
t is a maximum-cost ωFt-matching on F+

t (i.e., there exists
no circuit C on Dt with l(C) > 0), we have l(Ssub) − l(Ki) ≤ 0, i.e., l(Ki) ≥ l(Ssub). So,

l(K≤i) = l(S≤i−1) + l(Ki) ≥ l(S◦
i−1) + l(Ssub) = l(S•

i ).

Assume that S passes through qi before pi (see Figure 1(e)). Let Sr
sub be a subpath of S from

qi to pi. Then, l(Sr
sub) ≥ −l(Ki) follows from l(S) = dt(v). So,

l(K≤i) = l(S≤i−1) + l(Ki) ≥ l(S◦
i−1) − l(Sr

sub) = l(S•
i ).

Since S≤i (resp., S◦
i ) is a directed path obtained by combining K≤i (resp., S•

i ) and Si, l(S≤i) ≥
l(S◦

i ) follows from l(K≤i) ≥ l(S•
i ). This completes the proof.

Lemma 5. If e(v, w) is an edge of RT−1, then l(e+) + dT (w) ≤ 0.

Proof. Let e(v, w) be an edge of RT−1. Assume that rv(e) = i and e ∈ κ(At; Ft) for a positive
integer t with t < T . This implies that λi(At(v)) < ωFt(v, i), i.e., |A+

t (v(i))| < ωFt(v, i). Since
A+

t is a maximum-length ωFt-matching on F+
t , there exists no circuit C and ωFt-augmenting

path S on Dt with l(C) > 0 and l(S) > 0, which implies that l(e+) + dt(w) ≤ 0. Since
dT (w) ≤ dt(w) follows from Lemma 4, we have l(e+) + dT (w) ≤ 0.

9



w w
′

S1

(a)

L

(b)

p1 q1

K1

(c)

S2

(d)

L

(e)

p2q2

K2

(f)

Figure 1: Construction of a directed path K.

7 Correctness

We are now ready to prove the correctness of the algorithm ParetoStable. For simplicity. define
A := AT , F := FT , dT (·) := d(·) and R := RT−1. Since A is ωF -eligible, A is an assignment.
Next we prove that A is stable. For this, we need the following lemma.

Lemma 6. If e(v, w) is an edge of R, then |A(w)| = c(w) and πw(e) ≤ πw(f) for every edge f
of A(w).

Proof. If |A(w)| < c(w), then d(w) ≥ 0. By this, l(e+) + d(w) > 0, which contradicts Lemma 5.
Assume that there exists an edge f of A(w) with πw(e) > πw(f). In the same way of the proof
of Lemma 3, we can prove that l(e+) > l(f+). Since f− is a semi-augmenting path from w on
DT , we have d(w) ≥ l(f−) = −l(f+). So, l(e+) + d(w) > 0, which contradicts Lemma 5.

Lemma 7. An assignment A is stable.

Proof. Let e(v, w) be an edge of E \ A. If |A(v)| = c(v) and πv(e) ≤ πv(f) for every edge f of
A(v), then e is not a blocking edge with respect to A. So, we can assume that |A(v)| < c(v)
and/or there exists an edge f of A(v) such that πv(e) > πv(f). If e ∈ R, then it follows from
Lemma 6 that e is not a blocking edge with respect to A. So, it suffices to prove that e ∈ R.
Assume that e /∈ R, i.e., e ∈ F . If |F (v)| < c(v), then ωF (v, i) > m for every positive integer
i. So, e ∈ κ(A; F ), which contradicts κ(A;F ) = ∅. So, we can assume that |F (v)| ≥ c(v). If
|A(v)| < c(v), then κ(A; F ) 6= ∅, which contradicts κ(A; F ) = ∅. If there exists an edge f of A(v)
such that πv(e) > πv(f), then rv(e) < ∂F (v). Hence, e ∈ κ(A; F ) follows from ωF (v, rv(e)) > m,
which contradicts κ(A; F ) = ∅. This completes the proof.

Finally we prove that A is Pareto efficient. For this, we need the following lemma.

Lemma 8. An assignment A is a rank-maximal ωF -matching on E.

Proof. It suffices to prove that there exist no circuit C and ωF -augmenting path S on D(E)/A
such that l(C) > 0 and l(S) > 0. Assume that C is a circuit and S is an ωF -augmenting path
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on D(E)/A. Since A+ is a maximum-length ωF -matching on F+, if every arcs of C and S are
contained in F+/A, we have l(C) ≤ 0 and l(S) ≤ 0. So, we consider the case where C and S
contain an arc e+ for some edge e of E\F . For every edge e(v, w) of E\F such that |F (v)| ≥ c(v)
and rv(e) > ∂F (v), since ωF (v, rv(e)) = 0 and A+(v(e)) = ∅, e+ can not be contains in C and
S. So, if an edge e(v, w) of E \F with |F (v)| ≥ c(v) is contained in S or C, then we can assume
that rv(e) ≤ ∂F (v), i.e., e ∈ R. Notice that every edge e(v, w) of E \ F with |F (v)| < c(v) is
contained in R.

Assume that the form of C is (e+
1 , S1, e

+
2 , S2, . . . , e

+
h , Sh), where e1, e2, . . . , eh are edges of R

and S1, S2, . . . , Sh are semi-augmenting paths on DT . By Lemma 5, l(e+
i ) + l(Si) ≤ 0 for every

positive integer i with i ≤ h. This implies that l(C) ≤ 0.
Assume that the form of S is (S0, e

+
1 , S1, e

+
2 , S2, . . . , e

+
h , Sh), where e1, e2, . . . , eh are edge of

R and S0, S1, . . . , Sh are semi-augmenting paths on DT . Notice that S0 is an ωF -augmenting
path on DT . So, l(S0) ≤ 0. Moreover, by Lemma 5, l(e+

i ) + l(Si) ≤ 0 for every positive integer
i with i ≤ h. This implies that l(S) ≤ 0.

Lemma 9. An assignment A is Pareto efficient.

Proof. Assume that an assignment B dominates A. Since B Â A follows from Lemma 2, if B
is ωF -eligible, then this contradicts Lemma 8. So, we can assume that B is not ωF -eligible. In
this case, there exist a vertex w of P and a positive integer s with |B(w)| > ωF (w, s). From the
definition of ωF , we can see that |F (w)| ≥ c(w) and s ≥ ∂F (w). Notice that |A(w)| = c(w) by
|F (w)| ≥ c(w) and κ(A;F ) = ∅. Since B is assignment, |B(w)| ≤ c(w), i.e., |B(w)| ≤ |A(w)|.
If s = ∂F (w), then λs(A(w)) ≤ ωF (v, s) < λs(B(w)). So, since |B(w)| ≤ |A(w)| and rv(e) ≤ s
for every edge e of A(w), we have Λs−1(A(w)) > Λs−1(B(w)), which contradicts Lemma 1. If
s > ∂F (w), then there exists an edge f of B(w) with rw(f) > ∂F (w). For every edge e of A(w),
πw(e) > πw(f) follows from rw(e) ≤ ∂F (w), which contradicts the fact that B dominates A.

Theorem 10. There always exists a Pareto stable assignment in a many-to-many matching
market with indifferences.

Proof. The theorem immediately follows form Lemmas 7 and 9.

7.1 Time complexity

Here we consider the time complexity of the algorithm ParetoStable. Since the number of itera-
tions of Step 2 is at most m. So, the algorithm ParetoStable can find a Pareto stable assignment
in O(m ·MC) time, where MC represents the time required to find a rank-maximal ωF -matching
on F , i.e., a maximum-length ωF -matching on F+ for one subset F of E. Notice that due to the
definition of ωF , when we find a maximum-length ωF -matching on F+, we need only two vertices
instead of vertices v(1), v(2), . . . , v(φ(v)). We can contract vertices v(1), . . . , v(∂F (v) − 1) into
one vertex, and we can delete vertices v(∂F (v) + 1), . . . , v(φ(v)). So, if we use the algorithm
proposed in [19], then MC becomes O(m3 log n + m2n log2 n), where we assume that arithmetic
on numbers O(m2m) takes O(m) time. Thus, the time complexity of the algorithm ParetoStable
becomes O(m4 log n + m3n log2 n) time.
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