
ar
X

iv
:1

20
5.

01
75

v1
 [

cs
.D

S]
 1

 M
ay

 2
01

2

Approximating Sparse Covering Integer Programs Online

Anupam Gupta∗ Viswanath Nagarajan†

Abstract

A covering integer program (CIP) is a mathematical program of the form:

min{c⊤x | Ax ≥ 1, 0 ≤ x ≤ u, x ∈ Z
n},

where A ∈ Rm×n
≥0 , c, u ∈ R

n
≥0. In the online setting, the constraints (i.e., the rows of the

constraint matrix A) arrive over time, and the algorithm can only increase the coordinates of x
to maintain feasibility. As an intermediate step, we consider solving the covering linear program
(CLP) online, where the requirement x ∈ Z

n is replaced by x ∈ R
n.

Our main results are (a) an O(log k)-competitive online algorithm for solving the CLP, and
(b) an O(log k · log ℓ)-competitive randomized online algorithm for solving the CIP. Here k ≤ n
and ℓ ≤ m respectively denote the maximum number of non-zero entries in any row and column
of the constraint matrix A. By a result of Feige and Korman, this is the best possible for
polynomial-time online algorithms, even in the special case of set cover (where A ∈ {0, 1}m×n

and c, u ∈ {0, 1}n).

The novel ingredient of our approach is to allow the dual variables to increase and decrease
throughout the course of the algorithm. We show that the previous approaches, which either
only raise dual variables, or lower duals only within a guess-and-double framework, cannot give
a performance better than O(log n), even when each constraint only has a single variable (i.e.,
k = 1).

1 Introduction

Covering Integer Programs (CIPs) have long been studied, giving a very general framework which
captures a wide variety of natural problems. CIPs are mathematical programs of the following form:

min
∑n

i=1 cixi (IP1)

subject to:
∑n

i=1 aijxi ≥ 1 ∀j ∈ [m], (1.1)

0 ≤ xi ≤ ui ∀i ∈ [n], (1.2)

x ∈ Z
n. (1.3)

Above, all the entries aij , ci, and ui are non-negative. The constraint matrix is denoted A =
(aij)i∈[n],j∈[m]. We define k to be the row sparsity of A, i.e., the maximum number of non-zeroes in
any constraint j ∈ [m]. For each row j ∈ [m] let Tj ⊆ [n] denote its non-zero columns; we say that
the variables indexed by Tj “appear in” constraint j. Let ℓ denote the column sparsity of A, i.e.,
the maximum number of constraints that any variable i ∈ [n] appears in. Dropping the integrality
constraint (1.3) gives us a covering linear program (CLP).

∗Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Supported in part by
NSF awards CCF-0964474 and CCF-1016799.

†IBM T.J. Watson Research Center.

1

http://arxiv.org/abs/1205.0175v1

In this paper we study the online version of these problems, where the constraints j ∈ [m] arrive
over time, and we are required to maintain a monotone (i.e., non-decreasing) feasible solution x at
each point in time. Our main results are (a) an O(log k)-competitive algorithm for solving CLPs
online, and (b) an O(log k · log ℓ)-competitive randomized online algorithm for CIPs. In settings
where k ≪ n or ℓ≪ m our results give a significant improvement over the previous best bounds of
O(log n) for CLPs [8], and O(log n · logm) for CIPs that can be inferred from rounding these LP
solutions. Analyzing performance guarantees for covering/packing integer programs in terms of row
(k) and column (ℓ) sparsity has received much attention in the offline setting, e.g. [15, 17, 11, 14, 6].
This paper obtains tight bounds in terms of these parameters for online covering integer programs.

Our Techniques. Our algorithms use online primal-dual framework of Buchbinder and Naor [7]. To
solve the covering LP, we give an algorithm that monotonically raises the primal. However, we both
raise and lower the dual variables over the course of the algorithm; this is unlike typical applications
of the online primal-dual approach, where both primal and dual variables are only increased (except
possibly within a “guess and double” framework—see the discussion in the related work section).
This approach of lowering duals is crucial for our bound of O(log k), since we show a primal-dual
gap of Ω(log n) for algorithms that lower duals only within the guess-and-double framework, even
when k = 1.

The algorithm for covering IP solves the LP relaxation and then rounds it. It is well-known that the
natural LP relaxation is too weak: so we extend our online CLP algorithm to also handle Knapsack
Cover (KC) inequalities from [9]. This step has an O(log k)-competitive ratio. Then, to obtain an
integer solution, we adapt the method of randomized rounding with alterations to the online setting.
Direct randomized rounding as in [1] results in a worse O(logm) overhead, so to get the O(log ℓ)
loss we use this different approach.

Related Work. The powerful online primal-dual framework has been used to give algorithms for
set cover [1], graph connectivity and cut problems [2], caching [18, 4, 5], packing/covering IPs [8],
and many more problems. This framework usually consists of two steps: obtaining a fractional
solution (to an LP relaxation) online, and rounding the fractional solution online to an integral
solution. (See the monograph of Buchbinder and Naor [7] for a lucid survey.)

In most applications of this framework, the fractional online algorithm raises both primal and dual
variables monotonically, and the competitive ratio is given by the primal to dual ratio. For CLPs,
Buchbinder and Naor [8] showed that if we increase dual variables monotonically, the primal-dual
gap can be Ω(log amax

amin
). In order to obtain an O(log n)-competitive ratio, they used a guess-and-

double framework [8, Theorem 4.1] that changes duals in a partly non-monotone manner as follows:

The algorithm proceeds in phases, where each phase r corresponds to the primal value
being roughly 2r. Within a phase the primal and dual are raised monotonically. But the
algorithm resets duals to zero at the beginning of each phase—this is the only form of
dual reduction.

For the special case of fractional set cover (where A ∈ {0, 1}m×n), they get an improved O(log k)-
competitive ratio using this guess-and-double framework [8, Section 5.1]. However, we show in
Appendix A that such dual update processes do not extend to obtain an o(log n) ratio for general
CLPs. So our algorithm reduces the dual variables more continuously throughout the algorithm,
giving an O(log k)-competitive ratio for general CLPs.

Other online algorithms: Koufogiannakis and Young [13] gave a k-competitive deterministic online
algorithm for CIPs based on a greedy approach; their result holds for a more general class of
constraints and for submodular objectives. Our O(log k log ℓ) approximation is incomparable to

2

this result. Feige and Korman [12] show that no randomized polynomial-time online algorithm can
achieve a competitive ratio better than O(log k log ℓ).

Offline algorithms. CLPs can be solved optimally offline in polynomial time. For CIPs in the
absence of variable upper bounds, randomized rounding gives an O(logm)-approximation ratio.
Srinivasan [15] gave an improved algorithm using the FKG inequality (where the approximation ratio
depends on the optimal LP value). Srinivasan [16] also used the method of alterations in context of
CIPs and gave an RNC algorithm achieving the bounds of [15]. AnO(log ℓ)-approximation algorithm
for CIPs (no upper bounds) was obtained in [17] using the Lovász Local Lemma. Using KC-
inequalities and the algorithm from [17], Kolliopoulos and Young [11] gave anO(log ℓ)-approximation
algorithm for CIPs with variable upper bounds. Our algorithm matches this O(log ℓ) loss in the
online setting. Finally, the knapsack-cover (KC) inequalities were introduced by Carr et al. [9] to
reduce the integrality gap for CIPs. These were used in [11, 10], and also in an online context by [5]
for the generalized caching problem.

2 An Algorithm for a Special Class for Covering LPs

In this section, we consider CLPs without upper bounds on the variables:

min
∑n

i=1 cixi

subject to:
∑n

i=1 aijxi ≥ 1 ∀j ∈ [m],

x ≥ 0

and give an O(log k)-competitive deterministic online algorithm for solving such LPs, where k is an
(upper bound) on the row-sparsity of A = (aij). The dual is the packing linear program:

max
∑m

j=1 yj

subject to:
∑m

j=1 aijyj ≤ ci ∀i ∈ [n],

y ≥ 0

We assume that ci’s are strictly positive for all i, else we can drop all constraints containing variable
i.

Algorithm I. In the online algorithm, we want a solution pair (x, y), where we monotonically
increase the value of x, but the dual variables can move up or down as needed. We want a feasible
primal, and an approximately feasible dual. The primal update step is the following:

When constraint h (i.e.,
∑

i aihxi ≥ 1) arrives,

(a) define dih = ci
aih

for all i ∈ [n], and dm(h) = mini dih = mini∈Th
dih.

(b) while
∑

i aihxi < 1, update the x’s by

xnewi ←

(

1 +
dm(h)

dih

)

xoldi +
1

k · aih

dm(h)

dih
, ∀i ∈ Th.

Let th be the number of times this update step is performed for constraint h.

As stated, the algorithm assumes we know k, but this is not required. We can start with the estimate
k = 2 and increase it any time we see a constraint with more variables than our current estimate.
Since this estimate for k only increases over time, the analysis below will go through unchanged.
(We can assume that k is a power of 2—which makes log k an integer; we will need that k ≥ 2.)

3

Lemma 2.1 For any constraint h, the number of primal updates th ≤ 2 log k.

Proof. Fix some h, and consider the value i∗ for which di∗h = dm(h). In each round the variable
xi∗ ← 2xi∗ + 1/(k · ai∗h); hence after t rounds its value will be at least (2t − 1)/(k · ai∗h). So if we
do 2 log k updates, this variable alone will satisfy the hth constraint.

Lemma 2.2 The total increase in the value of the primal is at most 2 th dm(h).

Proof. Consider a single update step that modifies primal variables from xold to xnew. In this step,

the increase in each variable i ∈ Th is
dm(h)

dih
·xoldi + 1

k·aih

dm(h)

dih
. So the increase in the primal objective

is:
∑

i∈Th

ci ·

[

dm(h)

dih
· xoldi +

1

k · aih

dm(h)

dih

]

= dm(h)

∑

i∈Th

aih · x
old
i + dm(h) ·

|Th|

k
≤ 2 · dm(h)

The inequality uses |Th| ≤ k and
∑

i∈Th
aih · x

old
i ≤ 1 which is the reason an update was performed.

The lemma now follows since th is the number of update steps.

To show approximate optimality, we want to change the dual variables so that the dual increase
is (approximately) the primal increase, and so that the dual remains (approximately) feasible. To
achieve the first goal, we raise the newly arriving dual variable, and to achieve the second we also
decrease the “first few” dual variables in each dual constraint where the new dual variable appears.

For the hth primal constraint, let dih, dm(h), th be given by the primal update process.

(a) Set yh ← dm(h) · th.
(b) For each i ∈ Th, do the following for dual constraint

∑

j aijyj ≤ ci:
(i) If

∑

j<h aijyj ≤ (10 log k) ci, do nothing; else
(ii) Let ki < h be the largest index such that

∑

j≤ki
aijyj ≤ (5 log k) ci; let Pi =

{j ≤ ki | i ∈ Tj} be the indices of these first few dual variables that are active
in the ith dual constraint. For all j ∈ Pi,

ynewj ←

(

1−
dm(h)

dih

)

· yoldj .

Observe that the dual update process starts each dual variable yj off at some value dm(j)tj and
subsequently only decreases this dual variable, and that the dual variables remain non-negative.

Lemma 2.3 When primal constraint h arrives, the left-hand-side of each dual constraint i increases
due to the variable yh by aih · dm(h) · th ≤ (2 log k) ci.

Proof. We set the initial value of the dual variable yh to dm(h) · th. By Lemma 2.1, th ≤ 2 log k. By
definition, dm(h) ≤ ci/aih. Hence, for any i ∈ Th, the increase in the left-hand-side of dual constraint
i is at most aih · (2 log k) (ci/aih) = (2 log k) ci. This proves the lemma.

Lemma 2.4 When primal constraint h arrives, if the dual update reaches step b(ii) for some i ∈ Th,

then ki is well-defined and the set Pi is non-empty; moreover,

∑
j∈Pi

aijyj

ci log k ∈ [3, 5].

Proof. For each j < h we have yj ≤ 2 log k ·dm(j), since dual variable yj was initialized to tjdm(j) ≤
2 log k · dm(j) (by Lemma 2.1) and subsequently never increased—so aij · yj ≤ 2 log k · dm(j) · aij ≤
2 log k·ci, using dm(j) ≤ dij = ci/aij . If the dual update reaches step b(ii) then we have

∑

j<h aijyj >
(10 log k) ci, but each j < h contributes at most 2 log k · ci, so ki is well-defined, and Pi is non-
empty. Moreover, by the choice of ki, we have

∑

j≤ki+1 aijyj > (5 log k) ci, so
∑

j≤ki
aijyj >

(5 log k) ci − ai,ki+1 · yki+1 ≥ (3 log k) · ci, as claimed.

4

Lemma 2.5 After each dual update step, each dual constraint i satisfies
∑

j aijyj ≤ (12 log k) ci.
Hence the dual is (12 log k)-feasible.

Proof. Consider the dual update process when the primal constraint h arrives, and look at any
dual constraint i ∈ Th (the other dual constraints are unaffected). If case b(i) happens, then
by Lemma 2.3 the left-hand-side of the constraint will be at most (12 log k) ci. Else, case b(ii)
happens. Each yj for j ∈ Pi decreases by yj · dm(h)/dih, and so the decrease in

∑

j∈Pi
aijyj is at

least
∑

j∈Pi
aijyj · (dm(h)/dih). Using Lemma 2.4, this is at least

dm(h)

dih
· ci (3 log k) =

dm(h)

ci/aih
· ci (3 log k) = dm(h) · aih · (3 log k).

But since the increase due to yh is at most aih · dm(h) th ≤ aih · dm(h) · (2 log k), there is no net
increase in the LHS, so it remains at most (12 log k) ci.

Lemma 2.6 The net increase in the dual value due to handling primal constraint h is at least
1
2 dm(h) · th.

Proof. The increase in the dual value due to yh itself is dm(h) · th. What about the decrease in the
other yj’s? These decreases could happen due to any of the k dual constraints i ∈ Th, so let us focus
on one such dual constraint i, which reads

∑

j:i∈Tj
aijyj ≤ ci. Now for j < h, define γij :=

yj
tj dij

.

Since yj was initially set to tj dm(j) ≤ tj dij and subsequently never increased, we know that at this
point in time,

γij ≤
dm(j)

dij
≤ 1. (2.4)

The following claim, whose proof appears after this lemma, helps us bound the total dual decrease.

Claim 1 If we are in case b(ii) of the dual update, then
∑

j∈Pi

γijtj
aij
≤ 1

2k ·
1
aih

.

Using this claim, we bound the loss in dual value caused by dual constraint i:

∑

j∈Pi

dm(h)

dih
· yj =

dm(h)

dih
·
∑

j∈Pi

γij · tj dij =
dm(h)

ci/aih
·
∑

j∈Pi

γij · tj (ci/aij)

= dm(h) aih ·
∑

j∈Pi

γij ·
tj
aij
≤(Claim 1) dm(h) aih ·

1

2k
·

1

aih
=

dm(h)

2k
.

Summing over the |Tj | ≤ k dual constraints affected, the total decrease is at most 1
2dm(h) ≤

1
2dm(h)th

(since there is no decrease when th = 0). Subtracting from the increase of dm(h) · th gives a net

increase of at least 1
2dm(h)th, proving the lemma.

Proof of Claim 1: Consider the primal constraints j such that i ∈ Tj: when they arrived, the
value of primal variable xi may have increased. (In fact, if some primal constraint j does not cause
the primal variables to increase, yj is set to 0 and never plays a role in the subsequent algorithm,
so we will assume that for each primal constraint j there is some increase and hence tj > 0.)

The first few among the constraints j such that i ∈ Tj lie in the set Pi: when j ∈ Pi arrived, we

added at least 1
k·aij

dm(j)

dij
to xi’s value

1, and did so tj times. Hence the value of xi after seeing the

constraints in Pi is at least
∑

j∈Pi

dm(j)tj

k·aij ·dij
≥
∑

j∈Pi

γijtj
k·aij

, using (2.4).

1More precisely, xi increased by at least 1
kj ·aij

dm(j)

dij
where kj ≤ k was the estimate of the row-sparsity at the

arrival of constraint j, and k is the current row-sparsity estimate.

5

If χi is the value of xi after seeing the constraints in Pi, and χ′
i is its value after seeing the rest of

the constraints in Qi := ({j < h | i ∈ Tj} \ Pi). Then

χ′
i

χi

≥
∏

j∈Qi

(

1 +
dm(j)

dij

)tj

≥(2.4)

∏

j∈Qi

(1 + γij)
tj ≥(γij≤1) e

1
2

∑
j∈Qi

γijtj ≥ 2k2. (2.5)

The last inequality uses the fact that k ≥ 2, and that:

∑

j∈Qi

γijtj =
∑

j∈Qi

yj/dij =
∑

j∈Qi

yj · aij
ci

=
1

ci

∑

j<h

aijyj −
∑

j∈Pi

aijyj

 > 5 log k,

where the inequality is because we are in case b(ii) and
∑

j∈Pi
aijyj ≤ (5 log k) · ci by Lemma 2.4.

Finally, when doing the primal/dual update steps for constraint h, the value of xi just before this
must have been χ′

i < 1/aih (otherwise constraint h would have already been satisfied just by variable

xi). And χi is at least
∑

j∈Pi

γijtj
k·aij

, by the first calculations. And χ′
i/χi ≥ 2k2 by (2.5). Putting

these together gives
∑

j∈Pi

γijtj
k · aij

≤
1

2k2
·

1

aih
,

and hence the claim.

Lemma 2.6 and Lemma 2.2 imply that the dual increase is at least 1/4 the primal increase, and
Lemma 2.5 implies we have an O(log k)-feasible dual, implying the following theorem:

Theorem 2.7 Algorithm I is an O(log k)-competitive online algorithm for covering linear programs
without upper-bound constraints, where k is the row-sparsity of the constraint matrix.

3 The Online Algorithm for CIPs

We now want to solve CLPs with variable upper bounds, en route to solving general CIPs of the form
(IP1). However, it is well-known that when we have variable upper-bounds, the natural relaxation
has a large integrality gap even with a single constraint.2 Hence, Carr et al. [9] suggested adding the
knapsack cover (KC) inequalities—defined below—to reduce the integrality gap significantly. In this
section, we first show how to extend Algorithm I to get an O(log k)-competitive algorithm for the
natural CLP relaxation (with upper bounds) where we also satisfy some suitable KC inequalities.
Next, we round (in an online fashion) such a fractional solution to get a randomized O(log ℓ · log k)-
competitive online algorithm for general k-row-sparse and ℓ-column-sparse CIPs.

Knapsack Cover Inequalities. Given a CIP of the form (IP1), the KC-inequalities for a particular
covering constraint

∑

i∈[n] aijxi ≥ 1 are defined as follows: for any subset H ⊆ [n] of variables, the
maximum possible contribution of the variables in H to the constraint is aj(H) :=

∑

i∈H aijui, and
if aj(H) < 1 then at least a contribution of 1− aj(H) must come from variables [n] \H. Moreover,
in any integral solution x, since each positive variable xi is at least one, we get the inequality:

∑

i∈[n]\H min{aij , 1− aj(H)} · xi ≥ 1− aj(H) (3.6)

Since (3.6) is not be true for an arbitrary fractional solution satisfying
∑

i∈[n] aijxi ≥ 1, we add this additional constraint to the LP, for each original constraint j and

2The trivial CIP min{x1 | Mx1 ≥ 1} has integrality gap M , no upper bounds needed. However, if we truncate the
aijs to be at most 1 (which is the right-hand-side value), and we have no upper bound constraints, this gap disappears.
Introducing upper bounds brings back large integrality gaps, as the example min{x1|x1+(1−ǫ)x2 ≥ 1, x2 ≤ 1} shows,
which has an integrality gap of 1/ǫ.

6

H ⊆ [n] where aj(H) < 1. There are exponentially many such KC-inequalities, and it is not known
how to separate exactly over these in poly-time3. But as in previous works [9, 11, 5], the randomized
rounding algorithm just needs us to enforce one specific KC-inequality for each constraint j—namely
for the set Hj := {i ∈ [n] | xi ≥ τ ·ui} with some suitable threshold τ > 0. We call this the “special”
KC-inequality for constraint j.

3.1 Fractional Solution with Upper Bounds and KC-inequalities

In extending Algorithm I from the previous section to also handle “box constraints” (those of
the form 0 ≤ xi ≤ ui), and the associated KC-inequalities, the high-level idea is to create a
“wrapper” procedure around Algorithm I which ensures these new inequalities: when a constraint
∑

i∈Tj
aijxi ≥ 1 arrives, we start to apply the primal update step from Algorithm I. Now if some

variable xp gets “close” to its upper bound up, we could then consider setting xp = up, and feeding
the new inequality

∑

i∈Tj\p
aijxi ≥ 1−apjup (or rather, a knapsack cover version of it) to Algorithm I,

and continuing. Implementing this idea needs a little more work. For the rest of the discussion,
τ ∈ (0, 12) is a threshold fixed later.

Suppose we want a solution to:

(IP) min

∑

i

cixi |
∑

i∈Sj

aijxi ≥ 1 ∀j ∈ [m], 0 ≤ xi ≤ ui, xi ∈ Z ∀i ∈ [n],

where constraint j has |Sj| ≤ k non-zero entries. The natural LP relaxation is:

(P) min

∑

i

cixi |
∑

i∈Sj

aijxi ≥ 1 ∀j ∈ [m], 0 ≤ xi ≤ ui ∀i ∈ [n]

Algorithm 3.1 finds online a feasible fractional solution to this LP relaxation (P), along with some
additional KC-inequalities. This algorithm maintains a vector x ∈ R

n that need not be feasible for
the covering constraints in (P). However x implicitly defines the “real solution” x ∈ R

n as follows:

xi =

{

xi if xi < τui
ui otherwise

, ∀i ∈ [n]

Let x(j) and x(j) denote the vectors immediately after the jth constraint to (IP) has been satisfied.

Theorem 3.1 Algorithm 3.1, given the constraints of the CIP (IP) online, produces x (and hence
x) satisfying the following:

(i) The solution x is feasible for (P).
(ii) The cost

∑n
i=1 ci · xi = O(log k) · optIP .

(iii) For each j ∈ [m] let Hj = {i ∈ [n] | x
(j)
i ≥ τ · ui} and aj(Hj) =

∑

r∈Hj
arjur. Then the

solution x(j) satisfies the KC-inequality corresponding to constraint j with the set Hj , i.e., if
aj(Hj) < 1 then:

∑

i∈Sj\Hj
min {aij , 1− aj(Hj)} · x

(j)
i ≥ 1− aj(Hj).

Furthermore, the vectors x and x are non-decreasing over time.

3KC-inequalities can be separated in pseudo-polynomial time via a dynamic program for the knapsack problem.

7

Again, the value of row-sparsity k is not required in advance—the algorithm just uses the current
estimate as before.

The solution x to (P) is constructed by solving the (related) covering LP without upper-bounds—the
constraints here are defined by Algorithm 3.1.

(P ′) min

∑

i

cixi |
∑

i∈Th

αihxi ≥ 1 ∀h ∈ [m′], xi ≥ 0 ∀i ∈ [n]

At the beginning of the algorithm, h = 0. When the jth constraint for (IP), namely
∑

i∈Sj
aijxi ≥ 1,

arrives online, the algorithm generates (potentially several) constraints for (P ′) based on it. Claim 2
shows these are all valid for (IP), so the optimal solution to (P ′) is at most optIP .

Algorithm 3.1 Online covering with box constraints

When constraint j (i.e.,
∑

i∈Sj
aij · xi ≥ 1) arrives for (P),

1: set h← h+ 1, th ← 0, Fj ← {i ∈ Sj : xi ≥ τui}, Th ← Sj \ Fj .
2: set b← 1−

∑

i∈Fj
aijui, and αih ← min

{

1,
aij
b

}

, ∀i ∈ Th, and αih = 0, ∀i 6∈ Th.

3: if b > 0 then generate constraint
∑

i∈Th
αihxi ≥ 1 for (P ′) else halt.

// If b ≤ 0 then constraint j to (P) satisfied
4: while (

∑

i∈Th
αih · xi < 1) do

5: // start primal-update process for hth constraint (
∑

i∈Th
αih · xi ≥ 1) to (P ′).

6: if Th = ∅, return infeasible.
7: define dih := ci

αih
for all i ∈ [n], and dm(h) := mini dih := mini∈Th

dih.
8: define δ ≤ 1 to the maximum value in (0, 1] so that:

max
i∈Th

{

1

ui

[(

1 + δ ·
dm(h)

dih

)

xoldi +
δ

k · αih

dm(h)

dih

]}

≤ τ

9: perform an update step for constraint h as:

xnewi ←

(

1 + δ ·
dm(h)

dih

)

xoldi +
δ

k · αih

dm(h)

dih
, ∀i ∈ Th.

10: set th ← th + δ.
11: let F ′

h ← {i ∈ Th : xi = τui} and Fj ← Fj

⋃

F ′
h. //xi = ui ⇐⇒ i ∈ Fj .

12: if (F ′
h 6= ∅) then

13: // constraint h to (P ′) is deemed to be satisfied and new constraint h+ 1 is generated.
14: set h← h+ 1, th ← 0, and Th ← Sj \ Fj .
15: set b← 1−

∑

i∈Fj
aijui, αih = min

{

1,
aij
b

}

, ∀i ∈ Th and αih = 0, ∀i 6∈ Th.

16: if b > 0 generate constraint
∑

i∈Th
αihxi ≥ 1 for (P ′); else halt.

// If b ≤ 0 then constraint j to (P) satisfied
17: end if

18: end while // constraint j to (P) is now satisfied.

Clearly x ∈ [0,u]; it is feasible for (P) because (a) we increase variables until the condition in line 4
is satisfied, and (b) if h denotes the current constraint to (P ′) at any point in the while-loop, the
following invariant holds:

Solution X satisfies constraint h to (P ′), i.e.
∑

i αih ·Xi ≥ 1,
=⇒ X satisfies constraint j to (P), i.e.

∑

i aij ·Xi ≥ 1.

8

By construction x and x are non-decreasing over the run of the algorithm. Finally, for property (iii),
note that the condition of the while loop captures this very KC inequality since Th = {i ∈ Sj : xi <
τ · ui} at all times.

To show property (ii), we use a primal-dual analysis as in Section 2: we will show how to maintain
an O(log k)-feasible dual y for (P ′), so that c ·x is at most O(1) times the dual objective

∑

h∈[m′] yh.
This means c ·x ≤ O(log k)optP ′ ≤ O(log k) · optIP , with the last inequality following from Claim 2
below.

Claim 2 The optimal value for the LP (P ′) is at most optIP , the optimum integer solution to (IP).

Proof. We claim that every inequality in (P ′) can be obtained as a KC-inequality generated for
(IP). Indeed, consider the hth constraint

∑

i∈Th
αihxi ≥ 1 added to (P ′), say due to the jth

constraint
∑

i∈Sj
aij · xi ≥ 1 of (IP). Here Th = Sj \ Fj for some Fj ⊆ Sj, and αih = min

{

1,
aij
b

}

for i ∈ Th with b = 1−
∑

r∈Fj
arj · ur > 0. In other words, the hth constraint to (P ′) reads

∑

i∈Sj\Fj

min

1−
∑

r∈Fj

arj · ur, aij

· xi ≥ 1−
∑

r∈Fj

arj · ur,

which is the KC-inequality from the jth constraint of (IP) with fixed set Fj . Now since all KC-
inequalities are valid for any integral solution to (IP), the original claim follows.

Now to show how to maintain the approximate dual solution for (P ′), and bound the cost of the
primal update in terms of this dual cost. The dual of (P ′) is:

(D′) max

m′
∑

h=1

yh |
∑

h:i∈Th

αih · yh ≤ ci ∀i ∈ [n], yh ≥ 0 ∀j ∈ [m′]

The dual update process is similar to that in Section 2. When constraint h to (P ′) is deemed
satisfied in line 13, update dual y as follows:

Let dih, dm(h), th be as defined in Algorithm 3.1.

(a) Set yh ← dm(h) · th.
(b) For each dual constraint i s.t. i ∈ Th (i.e.,

∑

l:i∈Tl
αilyl ≤ ci), do the following:

(i) If
∑

l<h αilyl ≤ (10 log k) ci, do nothing; else
(ii) Let ki < h be the largest index such that

∑

l≤ki
αilyl ≤ (5 log k) ci; let Pi =

{l ≤ ki | i ∈ Tl} be the indices of these first few dual variables active in dual
constraint i. For all l ∈ Pi, set

ynewl ←

(

1−min{1, th} ·
dm(h)

dih

)

· yoldl .

The only difference from Section 2 is to change
(

1−
dm(h)

dih

)

to
(

1−min{1, th}
dm(h)

dih

)

; this is because maintaining xi ≤ τui required us to be cautious and introduce

the damping factor of δ ∈ (0, 1] in the primal update, hence th could be much smaller than one.
Here too, each yh starts off at dm(j)th, and only decreases thereafter. Similar to Lemmas 2.1 and 2.2,
we get:

Lemma 3.2 For any constraint h to (P ′), the value th ≤ 2 log k.

9

Proof. (Sketch) Each time th increases by 1, the process behaves as before, so if we perform a
primal increase step then th is an integer strictly less than 2 log k (itself an integer since we assumed
k is a power of 2). Also, the first time that th increases by δ < 1, the algorithm adds at least one
variable to F ′

h, fixes th and moves on to a new constraint h+ 1.

In the rest of the proof, we omit details that are repeated from Section 2, and only point out
differences, if any.

Lemma 3.3 The total increase in
∑

i∈[n] ci ·xi due to updates for constraint h is at most 2 th dm(h).

Lemma 3.4 In the dual update for constraint h to (P ′), variable yh increases the left-hand-side of
each dual constraint i by αih · dm(h) · th ≤ (2 log k) · ci.

Lemma 3.5 If the dual update for constraint h to (P ′) reaches step b(ii), then ki is well-defined

and the set Pi is non-empty; moreover,

∑
l∈Pi

αilyl

ci log k ∈ [3 . . . 5].

Lemma 3.6 After each dual update step, the dual is (12 log k)-feasible; i.e. each dual constraint
∑

l αilyl ≤ (12 log k) ci.

Proof. As in the proof of Lemma 2.5, consider the update due to constraint h to (P ′) and the
ith dual constraint for some i ∈ Th. If we are in case b(i), Lemma 3.4 implies that

∑

l αilyl ≤
(10 log k)ci + (2 log k)ci. For case b(ii), the decrease in the left-hand-side

∑

l∈Pi
αilyl of constraint

i is at least min{1, th} ·
∑

l∈Pi
αilyl · (dm(h)/dih). By Lemma 3.5 the sum

∑

l∈Pi
αilyl ≥ ci (3 log k)

and hence the reduction in the left-hand-side of dual constraint i is at least

min{3 log k, th} ·
dm(h)

dih
· ci = dm(h) · αih ·min{3 log k, th} ≥ dm(h) · αih · th.

The inequality uses Lemma 3.2. Combined with Lemma 3.4 it follows that there is no net increase
in the left-hand-side. Hence we can maintain the invariant that it is at most (12 log k) ci.

Lemma 3.7 The net increase in dual value due to handling constraint h to (P ′) is at least 1
2 dm(h) ·

th.

Proof. The increase in the dual value due to yh is dm(h) · th. As in Lemma 2.6, let us bound the
decrease in the other yl’s. Consider any of the k dual constraints i ∈ Th. Again define γil :=

yl
tl dil

for l < h; since yl started off at tl · dm(l) and never increased, we have γil ≤ dm(l)/dil ≤ 1. Again, as
in Claim 1:

Claim 3 If we are in case b(ii) of the dual update, then
∑

l∈Pi

γiltl
αil
≤ 1

2k ·
1

αih
.

Using calculations as in Lemma 2.6, the decrease in dual objective due to dual constraint i is:

min{1, th} ·
∑

l∈Pi

dm(h)

dih
· yl ≤

1

2k
dm(h) ·min{1, th} ≤

1

2k
dm(h) · th.

Since there are |Th| ≤ k dual constraints we have to consider, the total decrease is at most 1
2dm(h) th.

Subtracting this from the total increase of dm(h) · th gives the lemma.

Comparing Lemma 3.7 with Lemma 3.3, while handling the hth constraint in (P ′) the increase in
the dual objective function is at least 1/4 of the increase in the primal objective function c ·x. And
Lemma 3.6 tells us that y is an O(log k)-feasible dual to (P ′). Hence:

c · x ≤ 4(1 · y) ≤weak duality O(log k) · optP ′ ≤Claim 2 O(log k) · optIP .

This completes the proof of property (iii) in Theorem 3.1.

10

3.2 Online Rounding

We now complete the algorithm for CIPs by showing how to round the online fractional solution
generated by Theorem 3.1 also in an online fashion. This rounding algorithm also does randomized
rounding on the incremental change like in [1], but to get a loss of O(log ℓ) instead O(logm), we use
the method of randomized rounding with alterations [3, 16]. Recall ℓ ≤ m is the column-sparsity
of the constraint matrix A—the maximum number of constraints any variable xi participates in.
(The O(log ℓ) bound for offline CIPs given by [17, 11] uses a derandomization of the Lovász Local
Lemma via pessimistic estimators, and is not applicable in the online setting.)

Given that the constraints of a CIP arrive online, we run Algorithm 3.1 to maintain vectors x and
x with properties guaranteed by Theorem 3.1. For this section, we set the threshold τ to 1

8 ·
1

log ℓ .
Before any constraints arrive, pick a uniformly random value ρi ∈ [0, 1] for each variable i ∈ [n]—
this is the only randomness used by the algorithm. We will maintain an integer solution X ∈ Z

n
≥0;

again let X(j) denote this solution right after primal constraint j has been satisfied. We start off
with X(0) = 0. When the jth constraint arrives and the (fractional) xi values have been increased
in response to this constraint, we do the following.

1. Define the “rounded unaltered” solution:

Zi =

0 if xi < τρi
⌈xi/τ⌉ if τρi ≤ xi < τui
ui if xi ≥ τui

, ∀i ∈ [n].

2. Maintain monotonicity. Define:

Xnew
i = max{X

(j−1)
i , Zi}, ∀i ∈ [n].

Observe that this rounding ensures that Xi ∈ {0, 1, . . . , ui} for all i ∈ [n].

3. Perform potential alterations. If we are unlucky and the arriving constraint j is not satisfied by

Xnew, we increase Xnew to cover this constraint j as follows. Let Hj := {i ∈ [n] | x
(j)
i ≥ τ ·ui}

be the frozen variables in the fractional solution; note that Zi = ui for all i ∈ Hj, so these
variables cannot be increased. Recall that aj(Hj) :=

∑

r∈Hj
arj · ur. Since constraint j is

not satisfied, aj(Hj) < 1 and the algorithm performs the following alteration for constraint j.
Consider the residual constraint on variables [n] \Hj after applying the KC-inequality on Hj,
i.e.

∑

i∈[n]\Hj

min{aij , 1− aj(Hj)} · wi ≥ 1− aj(Hj).

Set aij = min
{

1,
aij

1−aj(Hj)

}

for all i ∈ [n] \ Hj. Consider the following covering knapsack

problem:

min
∑

i∈[n]\Hj
ci · wi (IPK)

subject to:
∑

i∈[n]\Hj
aij · wi ≥ 1

0 ≤ wi ≤ ui, ∀i ∈ [n] \Hj

wi ∈ Z, ∀i ∈ [n] \Hj

Note that there is only one covering constraint in this problem. Let W denote an approxi-
mately optimal integral solution obtained by the natural greedy algorithm. It is clear that W
satisfies the residual constraint j on variables [n] \Hj. Define X(j) as follows.

X
(j)
i =

{

Xnew
i for i ∈ Hi

max {Xnew
i , Wi} for i ∈ [n] \Hj

11

This completes the description of the algorithm. By construction, it outputs a feasible integral
solution to the constraints so far, so it remains to bound its expected cost.

Remark: This algorithm does not require knowledge of the final column-sparsity ℓ in advance. At
each step, we use the current value of ℓ. Notice that this only affects τ and the definition of Z.
However, for fixed values of xi and ρi (any i ∈ [n]) the value of Zi is non-decreasing with ℓ: so
vector Z is monotone over time (since ℓ is non-decreasing). We also require a slightly more general
version of Theorem 3.1 where we have multiple thresholds τ1 ≤ τ2 ≤ · · · ≤ τm and replace τ by τj
in condition (iii). This extension is straightforward and details are omitted.

Cost of Z. Consider the rounding algorithm immediately after all m constraints have been satisfied.
If xi/τ ∈ [0, 1], then E[Zi] = Pr[ρi ≤ xi/τ] = xi/τ ; if xi/τ ≥ 1, then Zi ≤ ⌈xi/τ⌉ ≤ 2xi/τ with
probability 1. Hence:

E

[

n
∑

i=1

ci · Zi

]

≤ (2/τ)
∑

cixi = O(log k · log ℓ) · optIP ,

where we use 1/τ = O(log ℓ), and Theorem 3.1(ii) to bound
∑

i cixi.

Cost of X− Z. To account for X− Z, we need to bound the expected cost of any alterations. In
the sequel, let ℓj, kj and τj denote the respective values of ℓ, k and τ at the arrival of constraint j.
When j is clear from context we will drop the subscript.

Recall that Hj := {i ∈ [n] | x
(j)
i ≥ τj · ui} are the frozen variables in the fractional solution after

handling constraint j, and note Zi = ui for i ∈ Hj. Define Aj := {i ∈ [n] | x
(j)
i < τj}. Note

that the randomness only plays a role in the values of {Zi | i ∈ Aj}, since all variables in [n] \ Aj

deterministically are set to Zi = min
{

⌈x
(j)
i /τj⌉, ui

}

. Let Ej denote the event that an alteration was

performed for constraint j. The event Ej occurs exactly when
∑

i∈[n] aij ·X
new
i < 1. Since variables

r ∈ Hj have Xnew
r = Zr = ur with probability 1, event Ej is the same as aj(Hj) < 1 (which is a

deterministic condition) and
∑

i∈[n]\Hj
aij ·X

new
i < 1− aj(Hj).

Lemma 3.8 The probability of an alteration for constraint j is Pr[Ej] ≤
1
ℓ2j
.

Proof. Let b = 1− aj(Hj), for Ej to occur we have b > 0. Set aij = min{aij/b, 1} for i ∈ [n] \Hj.
Now since Z ≤ X and both are integer-valued, Pr[Ej]

= Pr

∑

i∈[n]\Hj

aij ·X
new
i < b

 ≤ Pr

∑

i∈[n]\Hj

aij · Zi < b

 = Pr

∑

i∈[n]\Hj

aij · Zi < 1

 .

Theorem 3.1(iii) guarantees that
∑

i∈[n]\Hj
aij · x

(j)
i ≥ 1. Among i ∈ [n] \Hj,

• Zi = ⌈x
(j)
i /τ⌉ deterministically for i ∈ [n] \ (Hj ∪Aj), and

• Zi ∈ {0, 1} with E[Zi] = x
(j)
i /τ independently for i ∈ Aj.

So E

[

∑

i∈[n]\Hj
aij · Zi

]

≥ 1
τ
. Now Chernoff bound implies for a collection of [0, 1]-valued indepen-

dent random variables, that the probability of their sum being less than τ = 1/(8 log ℓj) times their
expectation is at most 1/ℓ2j .

Lemma 3.9 Conditioned on Ej , the cost of incrementing X
new to X

(j) is at most 36
∑

i∈Sj
ci ·x

(j)
i ;

here Sj ⊆ [n] are the non-zero columns in constraint j.

12

Proof. The fractional solution x(j) satisfies the KC inequality for set Hj, by Theorem 3.1(iv). In

particular, setting w′
i = x

(j)
i for i ∈ Sj \Hj (and zero otherwise) gives a feasible fractional solution to

the LP relaxation of the covering knapsack subproblem (IPK). It suffices to show that the greedy
integral solution W to (IPK) costs 36

∑

i∈Sj
ci · w

′
i. It is crucial that w′

i ≤ τ · ui < ui/2 for all

i ∈ [n] \Hj, as in general the integrality gap due to relaxing (IPK) is unbounded.

The greedy algorithm orders columns i ∈ [n] \Hj in non-decreasing ci/aij order, and increases Wi

variables integrally (up to their uis) until
∑

i aij ·Wi ≥ 1. Since all aij ≤ 1, it is easy to show that
this algorithm achieves a 2-approximation for covering knapsack (IPK).

To complete the proof, we show the optimal integral solution to (IPK) costs at most 18
∑

i∈Sj
ci ·w

′
i:

we give a rounding algorithm to obtain an integral solution W ′ from w′ with only a factor 18 increase
in cost. Set W ′

i ∼ Binom(ui, 2w
′
i/ui) for all i ∈ [n] \ Hj—this definition is valid since w′

i ≤ ui/2.
ClearlyW ′ always satisfies the upper bounds ui and has expected cost 2 c·w’. Moreover, each W ′

i is a
binomial r.v. and aij ≤ 1, so

∑

i aij ·W
′
i can be viewed as a sum of independent [0, 1]-valued random

variables. The expectation E [
∑

i aij ·W
′
i] ≥ 2, so a Chernoff bound gives Pr [

∑

i aij ·W
′
i < 1] ≤

8/9. Using Markov’s inequality, Pr [c ·W’ > 18 c ·w’] < 1/9. So with positive probability, W ′

satisfies (IPK) and costs at most 18 c ·w’, showing that Opt(IPK) is at most this cost.

Thus the total expected cost of alterations after m constraints is:

m
∑

j=1

Pr[Ej] · 36
∑

i∈Sj

ci · x
(j)
i ≤ 36

m
∑

j=1

1

ℓ2j
·
∑

i∈Sj

ci · x
(j)
i ≤ 36

n
∑

i=1

ci · x
(m)
i

∑

j:i∈Sj

1

ℓ2j

≤ 36

n
∑

i=1

ci · x
(m)
i

(

1

12
+

1

22
+ · · ·+

1

ℓ2j

)

≤ 9π2
n
∑

i=1

ci · x
(m)
i .

The second inequality uses the monotonicity of the fractional solution x, and the third inequality
uses that for any i ∈ [n], the value ℓj is at least q upon arrival of the qth constraint containing
variable i.

Combining the expected cost of O(c ·x) for the alterations with the expected cost of O(log ℓ) · (c ·x)
for the initial rounding, and Theorem 3.1(ii), we get the main result for this section:

Theorem 3.10 There is an O(log k · log ℓ)-competitive randomized online algorithm for covering
integer programs with row-sparsity k and column-sparsity ℓ.

Again, we note that the algorithm does not assume knowledge of the eventual k or ℓ values; it works
with the current values after each constraint. Furthermore, the algorithm clearly does not need the
entire cost function in advance: it suffices to know the cost coefficient ci of each variable i at the
arrival time of the first constraint that contains i.

References

[1] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph (Seffi) Naor. The
online set cover problem. In STOC, pages 100–105, 2003.

[2] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph (Seffi) Naor. A general
approach to online network optimization problems. ACM Trans. Algorithms, 2(4):640–660,
2006.

[3] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley-Interscience, New York, 2008.

13

[4] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A primal-dual randomized algorithm for
weighted paging. In FOCS, pages 507–517, 2007.

[5] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Randomized competitive algorithms
for generalized caching. In STOC’08, pages 235–244. ACM, New York, 2008.

[6] Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. On k-column
sparse packing programs. In IPCO, pages 369–382, 2010.

[7] Niv Buchbinder and Joseph (Seffi) Naor. The design of competitive online algorithms via a
primal-dual approach. Found. Trends Theor. Comput. Sci., 3(2-3):93–263, 2007.

[8] Niv Buchbinder and Joseph (Seffi) Naor. Online primal-dual algorithms for covering and pack-
ing. Math. Oper. Res., 34(2):270–286, 2009.

[9] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening
integrality gaps for capacitated network design and covering problems. In SODA, pages 106–
115, 2000.

[10] Deeparnab Chakrabarty, Elyot Grant, and Jochen Könemann. On column-restricted and pri-
ority covering integer programs. In IPCO, pages 355–368, 2010.

[11] Stavros G. Kolliopoulos and Neal E. Young. Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci., 71(4):495–505, 2005.

[12] Simon Korman. On the use of randomness in the online set cover problem. M.Sc. thesis,
Weizmann Institute of Science, 2005.

[13] Christos Koufogiannakis and Neal E. Young. Greedy δ-approximation algorithm for covering
with arbitrary constraints and submodular cost. In ICALP (1), pages 634–652, 2009.

[14] David Pritchard and Deeparnab Chakrabarty. Approximability of sparse integer programs.
Algorithmica, 61(1):75–93, 2011.

[15] Aravind Srinivasan. Improved approximation guarantees for packing and covering integer pro-
grams. SIAM J. Comput., 29(2):648–670, 1999.

[16] Aravind Srinivasan. New approaches to covering and packing problems. In SODA, pages
567–576, 2001.

[17] Aravind Srinivasan. An extension of the lovász local lemma, and its applications to integer
programming. SIAM J. Comput., 36(3):609–634, 2006.

[18] Neal E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, 1994.

A Limitations of the Guess-and-Double Approach

We observe here that previously used primal-dual updates (to the best of our knowledge) are insuf-
ficient to prove a competitive ratio that depends only on k. A large number of online algorithms are
based on monotone primal-dual updates. Buchbinder and Naor [8, Lemma 3.1] showed that if we
maintain monotone duals then the primal-dual gap may be as large as Ω(log amax

amin
). In order to get

around this issue and obtain an O(log n) competitive ratio for general covering LPs, [8, Theorem 4.1]

14

used a guess-and-double framework which uses duals in a partly non-monotone manner. However,
as we show below, this scheme does not suffice to obtain a primal-dual gap independent of n, even
when k = 1.

The guess-and-double scheme proceeds in phases, and within each phase it maintains monotone
primal as well as duals. But when the phase changes, the scheme resets all dual values to zero and
starts afresh; this is the only allowed dual reduction. To maintain an approximately feasible dual,
this scheme is allowed to change phases (and reset duals) only when the primal cost increases by
(say) a factor of two. Upon arrival of the first constraint (

∑

i∈T1
ai1xi ≥ 1), the scheme produces a

lower bound α1 = mini∈T1 ci/ai1 on the optimal value and begins its first phase. In the rth phase it
is assumed that αr is the optimal value until the primal cost exceeds αr; at this point the scheme
sets αr+1 = 2 · αr and enters phase r + 1. A competitive ratio of O(β) is proven via this scheme
by showing that after each phase r, the total primal cost is at most β times the total dual value
(added over all phases up to r).

Lemma A.1 Any online algorithm using the guess-and-double framework for covering LPs (even
with k = 1) incurs an unbounded primal to dual ratio.

Proof. It suffices to show that for every ρ > 2, there exist instances of the online covering LP with
k = 1 where any algorithm using the guess-and-double framework incurs a primal to dual ratio of
at least Ω(ρ). Our instances will have all costs being one, so the primal objective is just

∑n
i=1 xi.

Since k = 1, all constraints will be of the form xi ≥ b for some i ∈ [n] and b > 0. The first constraint
is x1 ≥ ρρ+2. So α1 = ρρ+2 in the guess-and-double scheme. In each phase r, constraints appear
for a completely new set of variables xr,1, xr,2, . . . as follows. Initialize j ← 1.

Sequence I(r, j) : Constraints of the form xr,j ≥ ρh with dual variable yr,j(h) appear
for h = 0, 1, . . ., until the first time that algorithm sets dual value yr,j(h) < ρh−1.

At this point we move on to the next variable xr,j+1, i.e. set j ← j + 1 and repeat the sequence
I(r, j). Also, the entire phase r ends when the sum of variables in this phase exceeds αr, at which
point we abort the current sequence I(r, j) and enter phase r + 1.

Suppose q variables are used in phase r. Let h1, . . . , hq denote the number of constraints produced in
I(r, 1), . . . , I(r, q) respectively. Note that the dual variables in this phase are

⋃

j∈[q]{yr,j(h) : 1 ≤ h ≤

hj}, dual constraints are
∑

h yr,j(h)/ρ
h ≤ 1 for all j ∈ [q], and dual objective is

∑

j∈[q]

∑

h yr,j(h).

Claim 4 For all j ∈ [q], hj ≤ ρ+ 1.

Proof. Fix any j ∈ [q]; the dual constraint corresponding to variable xr,j reads
∑

h yr,j(h)/ρ
h ≤ 1.

By definition of the sequence I(r, j), for all 1 ≤ h < hj the dual value yr,j(h) ≥ ρh−1. Note that
duals in a single phase are monotone– so at the end of sequence I(r, j) we have:

1 ≥
∑

h

yr,j(h)/ρ
h ≥

hj−1
∑

h=1

ρh−1/ρh =
hj − 1

ρ

The first inequality is the dual constraint for xr,j and the second uses the dual values.

From this claim it follows that the primal increase of each xr,j is at most ρρ+1 ≤ α1/ρ ≤ αr/ρ. This
implies that q ≥ 2 variables are used in this phase. Note that the primal increase in phase r is:

P (r) =
∑

j∈[q]

ρhj ≥ αr (A.7)

The next claim shows that the dual increase can only be a small fraction of the primal.

15

Claim 5 The total dual increase in phase r is at most 4
ρ
· P (r).

Proof. Consider any primal variable xr,j, and its dual constraint
∑hj

h=1 yr,j(h)/ρ
h ≤ 1. Clearly the maximum dual value achievable from these dual variables

∑hj

h=1 yr,j(h) ≤ ρhj .

Now consider j ≤ q − 1; the sequence I(r, j) was ended due to yr,j(hj) < ρhj−1. Also by the dual
constraint, yr,j(h) ≤ ρh for all 1 ≤ h ≤ hj − 1. Thus:

hj
∑

h=1

yr,j(h) ≤ ρhj−1 +

hj−1
∑

h=1

ρh ≤ ρhj−1 ·

(

1 +
1

1− 1/ρ

)

≤ 3 · ρhj−1,

where the last inequality uses ρ ≥ 2. We now obtain that the total dual value in phase r:

q
∑

j=1

hj
∑

h=1

yr,j(h) ≤ ρhq +

q−1
∑

j=1

hj
∑

h=1

yr,j(h) ≤ ρhq +

q−1
∑

j=1

3 · ρhj−1

≤(A.7) ρhq +
3

ρ
· P (r) ≤Claim 4 ρρ+1 +

3

ρ
· P (r)

≤
αr

ρ
+

3

ρ
· P (r) ≤(A.7)

4

ρ
· P (r).

This proves the claim.

Using Claim 5 and (A.7) it follows that for the input sequence constructed above, the total dual

value accrued
∑

r

(

∑

j,h yr,j(h)
)

is at most 4/ρ times the primal cost
∑

r P (r).

This lemma shows that using just the dual reductions allowed within a guess-and-double framework
is insufficient to prove a primal-dual ratio independent of n. Instead our online algorithm performs
more sophisticated dual reduction that is used to prove O(log k)-competitiveness.

16

