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In the stochastic orienteering problem, we are given a finite metric space, where each node contains a job with some deterministic
reward and a random processing time. The processing time distributions are known and independent across nodes. However the
actual processing time of a job is not known until it is completely processed. The objective is to compute a nonanticipatory
policy to visit nodes (and run the corresponding jobs) so as to maximize the total expected reward, subject to the total distance
traveled plus the total processing time being at most a given budget of B. This problem combines aspects of the stochastic
knapsack problem with uncertain item sizes as well as the deterministic orienteering problem.

In this paper, we consider both nonadaptive and adaptive policies for Stochastic Orienteering. We present a constant-factor
approximation algorithm for the nonadaptive version and an O4log logB5-approximation algorithm for the adaptive version. We
extend both these results to directed metrics and a more general sequence orienteering problem.

Finally, we address the stochastic orienteering problem when the node rewards are also random and possibly correlated with
the processing time and obtain an O4logn logB5-approximation algorithm; here n is the number of nodes in the metric. All our
results for adaptive policies also bound the corresponding “adaptivity gaps”.
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1. Introduction. Consider the following problem: you start your day at home with a set of jobs to run at
various locations (e.g., the bank, the post office, the grocery store), but you only have limited time in which to run
those jobs (say, you have from 9 a.m. until 5 p.m., when all these shops close). Each successfully completed job j
gives you some fixed reward rj . You know the time it takes you to travel between the various job locations: these
distances are deterministic and form a metric 4V 1d5. However, you do not know the amount of time you will spend
processing each job (e.g., standing in the queue, filling out forms). Instead, for each job j , you are only given the
probability distribution �j governing the random amount of time you need to spend performing j . That is, once
you start performing the job j , the job finishes after Sj time units and you get the reward, where Sj is a random
variable denoting the size and distributed according to �j . Before you reach the job, all you know about its size is
what can be gleaned from the distribution �j of Sj ; even having worked on j for t units of time, all you know
about the actual size of j is what you can infer from the conditional distribution 4Sj � Sj > t5. We consider a
nonpreemptive setting, where each job must be run to completion once started (we can also handle a variant where
job cancellations are allowed). The goal is now a natural one: given the metric 4V 1d5, the starting point �, rewards
of jobs, the time budget B, and the probability distributions for all the jobs, give a policy for traveling around and
processing the jobs that maximizes the expected reward accrued. Because of the hard budget constraint, there
might be a partially finished job at the horizon B—such jobs do not contribute to the objective.

The case when all the sizes are zero (i.e., Sj = 0 with probability 1) is the deterministic orienteering problem,
for which we now know a 42 + �5-approximation algorithm (Blum et al. [8], Chekuri et al. [14]). Another special
case, where all the jobs are located at the start node (i.e., the metric is zero), but the sizes are random, is the
stochastic knapsack problem, which also admits a 42 + �5-approximation algorithm (Dean et al. [19], Bhalgat [6]).
However, the stochastic orienteering problem above, which combines aspects of both these problems, seems to
have been hitherto unexplored in the approximation algorithms literature.

Furthermore, it is not known, even for stochastic knapsack, whether an optimal adaptive policy can always be
represented using polynomial space; moreover, certain questions on the optimal policy are PSPACE-hard (Dean
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et al. [19]). This raises the issue of how well we can approximate the optimal adaptive policies, by policies of
polynomially bounded descriptions. Indeed, a natural class of policies that fit this description are the so-called
nonadaptive solutions. A nonadaptive solution for stochastic orienteering is simply a permutation P of points in the
metric space starting at the root �: we visit the points in this fixed order, performing the jobs at the points we
reach, until time runs out. The ratio of the expected reward of the optimal adaptive policy to that of the optimal
nonadaptive policy is called the adaptivity gap of the problem (Dean et al. [19]).

1.1. Our results and techniques. Our main result is the following:

Theorem 1. There is an O4log logB5-approximation algorithm for adaptive stochastic orienteering.

The algorithm also gives a bicriteria approximation guarantee that for any � > 0 finds a solution that spends
time 41 + �5 ·B and whose expected reward is O4log log41/�55 times the expected reward of the optimal policy
using time B.

Our proof proceeds by first showing the following structural result that bounds the adaptivity gap: there exists a
value W ∗ such that the optimal nonadaptive solution, which spends at most W ∗ time in processing jobs and
B−W ∗ time in traveling, gets an ì41/ log logB5 fraction of the optimal reward. Naïvely we would expect only a
logarithmic fraction of the reward by considering log2 B possibilities for W ∗ (all powers of two). However, we
do better, and the underlying structure result (Lemma 4) is the technical heart of the paper. The proof is via
a martingale argument. We then obtain Theorem 1 by combining Lemma 4 with the following result about
nonadaptive stochastic orienteering.

Theorem 2. There is an O415-approximation algorithm for nonadaptive stochastic orienteering.

It turns out that the dependence on O4log logB5 for the adaptivity gap is not just a byproduct of our analysis.
Indeed, very recently, Bansal and Nagarajan [2] have established an ì4

√
log logB5 lower bound on the adaptivity

gap of the stochastic orienteering problem!
Most previous adaptivity gaps in the literature are proved using linear programming relaxations that capture

optimal adaptive policies and then rounding the fractional LP solutions to get nonadaptive policies. However, we
do not know a good relaxation for even the deterministic orienteering problem, so taking this approach seems
difficult. Thus we argue directly about the optimal adaptive policy to prove our adaptivity gap results. In particular,
we use a martingale argument to show the existence of a “path” (i.e., a nonadaptive policy) with large reward
within the optimal “tree” (i.e., the optimal adaptive policy).

Next, we extend our results to a generalization of the basic orienteering problem called sequence orienteering.
In this problem we are given a sequence of k “portal vertices”, and a solution to sequence orienteering must visit
the portals in the given order while not exceeding the budget. (A formal definition appears in §2.) The basic
orienteering problem corresponds to having a single portal, namely, the starting vertex �. Our results for sequence
orienteering also extend to the case of directed metrics.

Theorem 3. The stochastic sequence orienteering problem admits the following guarantees.
• An O4�5-approximation algorithm for the optimal nonadaptive policy.
• An O4� · log logB5-approximation algorithm for the optimal adaptive policy.

Here the quantity � denotes the best approximation ratio for the point-to-point orienteering problem.

The point-to-point orienteering problem (Bansal et al. [3]) is the special case of sequence orienteering with
k= 2: namely, given a metric with rewards at vertices, a length bound B, and starting and ending vertices s
and t, respectively, find an s-t path of length at most B that maximizes the reward on its vertices. The best
approximation ratio known for point-to-point orienteering is �= 2 + � for symmetric metrics (Chekuri et al. [14]),
and �=O4min84log2 n/4log logn551 log2 Opt95 in directed metrics (Nagarajan and Ravi [28], Chekuri et al. [14]).
As far as we know, even the deterministic version of sequence orienteering has not been studied before, and
a central step in proving Theorem 3 is to give an O4�5-approximation algorithm for deterministic sequence
orienteering.

A second generalization is to the setting where both the rewards and job sizes are random and not necessarily
independent of each other. In this setting we show the following result.

Theorem 4. There is a polynomial-time algorithm that outputs a nonadaptive policy for correlated stochastic
orienteering, achieving an O4logn logB5-approximation to the best adaptive policy. Moreover, this problem is
at least as hard as the orienteering-with-deadlines problem.
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The orienteering-with-deadlines problem (Bansal et al. [3]) is one where we are given a metric with deadlines at
vertices and a starting vertex � and want to compute a path starting at � (at time zero) that maximizes the
number of vertices visited before their respective deadlines. The currently best approximation algorithm for the
orienteering-with-deadlines problem achieves an O4logn5 ratio (Bansal et al. [3]).

1.2. Related work. The (deterministic) orienteering problem is known to be APX-hard, and the first
constant-factor approximation algorithm was due to Blum et al. [8]. Their factor of 4 was improved by Bansal
et al. [3] and ultimately by Chekuri et al. [14] to 42 + �5 for every � > 0. There is a PTAS known for the
orienteering problem on low-dimensional Euclidean space (Chen and Har-Peled [16]). The orienteering problem
has also been useful as a subroutine for obtaining approximation algorithms for other vehicle routing problems
such as TSP with deadlines and time windows (Bansal et al. [3], Chekuri and Kumar [12], Chekuri and Pál [13]).

To the best of our knowledge, the stochastic version of the orienteering problem has not been studied before
from the perspective of approximation algorithms. Heuristics and empirical guarantees for a similar problem were
given by Campbell et al. [10].

The stochastic knapsack problem (Dean et al. [19]) is a special case of stochastic orienteering, where all the
jobs are located at the root � itself. Dean et al. [19] gave the first constant factor approximation algorithm for this
basic problem. Recently, Gupta et al. [25] considered an extension with correlated rewards and sizes and obtained
a different O415-approximation algorithm.

Another very related body of work is on budgeted learning with metric costs. Specifically, in the work of Guha
and Munagala [22], there is a collection of Markov chains located in a metric, each state of each chain having an
associated reward. When at a Markov chain at location j , the policy can advance that chain one step every unit of
time. Given a bound of L time units for traveling, and a bound of C time units for advancing Markov chains,
the goal is to maximize some function (say the sum or the max) of rewards of the final states in expectation.
Guha and Munagala [22] gave an elegant constant factor approximation algorithm for this problem (under some
mild conditions on the rewards) via a reduction to classical orienteering using Lagrangean multipliers. Our
algorithm/analysis for the “knapsack orienteering” problem (defined in §2) is inspired by theirs; the analysis
of our algorithm, though, is simpler because the problem itself is deterministic. This can be used to obtain a
constant-factor approximation algorithm for the variant of stochastic orienteering with two separate budgets for
travel time and processing time. However, it is unclear how to use the approach from Guha and Munagala [22] to
obtain an approximation ratio better than O4logB5 for the (single budget) stochastic orienteering problem that we
consider.

Approximation algorithms have been studied for adaptive versions of a number of combinatorial optimization
problems. Many of these results—machine scheduling (Möhring et al. [27]), knapsack (Dean et al. [19]), budgeted
learning (Guha and Munagala [21]), matchings (Bansal et al. [4]) etc.—are based on LP relaxations that capture
certain expected values of the optimal adaptive policy. Such an LP-based approach was also used in earlier
optimality proofs for some stochastic queuing problems (Coffman and Mitrani [18]) and the multiarmed bandit
problem (Bertsimas and Nino-Mora [5]). An LP-based approach is not directly useful for stochastic orienteering
since we do not know good LP relaxations even for deterministic orienteering.

On the other hand, there are also other papers on stochastic matchings (Chen et al. [17]), stochastic
knapsack (Bhalgat et al. [7], Bhalgat [6]), and optimal decision trees (Kosaraju et al. [26], Adler and Heeringa [1],
Gupta et al. [23]) that have had to reason about the optimal adaptive policies directly. We hope that our
martingale-based analysis for stochastic orienteering will add to the set of tools used for adaptive optimization
problems.

1.3. Outline. We begin with some definitions in §2 and then give an algorithm for the deterministic knapsack
orienteering problem in §3, which will be a crucial subroutine in the subsequent algorithms. We then present a
constant-factor approximation algorithm for nonadaptive stochastic orienteering (Theorem 2) in §4. This naturally
leads us to our main result in §5, the O4log logB5-adaptivity gap for stochastic orienteering (Theorem 1). In §6 we
consider the stochastic sequence orienteering problem and extend our results to this general setting (Theorem 3).
Then in §7, we obtain a poly-logarithmic approximation algorithm for the variant of stochastic orienteering where
rewards and sizes are correlated (Theorem 4). Finally, as mentioned earlier, our model is nonpreemptive; i.e., each
job is run to completion once started. In §8 we show that the same results can be obtained in the setting where
jobs can be prematurely canceled.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

2.
92

.1
9]

 o
n 

13
 A

ug
us

t 2
01

5,
 a

t 1
0:

32
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Gupta et al.: Running Errands in Time: Approximation Algorithms for Stochastic Orienteering
Mathematics of Operations Research 40(1), pp. 56–79, © 2015 INFORMS 59

2. Definitions and notation. Stochastic orienteering. An instance of stochastic orienteering (StocOrient)
is defined on an underlying metric space 4V 1d5 with ground set �V � = n and symmetric integer distances
d2 V × V →�+ (satisfying the triangle inequality) that represent travel times. Each vertex v ∈ V is associated with
a stochastic job, which is also referred to as v. For most of the paper (with the exception of §7), each job v has a
fixed reward rv ∈�+ and a random processing time (also called size) Sv, which is distributed according to a known
but arbitrary probability distribution �v2 �

+ → 60117. We are also given a starting “root” vertex � and a budget B
on the total time available.

The only actions allowed to an algorithm are to travel to a vertex v and begin processing the job there: when the
job finishes after its random length Sv of time, we get the reward rv (so long as the total time elapsed, i.e., travel
time plus processing time, is at most B), and we can then move to the next job. Recall that this is a nonpreemptive
model. We show in §8 that all our results extend to a related model that allows cancelations: here we can cancel
any job at any time without receiving its reward, but we are not allowed to attempt this job again in the future.
Furthermore, once we complete a job, we are not allowed to revisit it and process it again. If the application
requires that a job be allowed to run multiple times, then we can place many identical copies of the job at the
vertex where it is located and use our algorithms.

Note that any solution (policy) corresponds to a decision tree where each “state” depends on which previous
jobs were processed and what information we obtained about their sizes. Now the goal is to devise a policy which,
starting at the root �, decides for each possible state the next job to visit and process. Such a policy is called
“nonanticipatory” because its action at any point in time can only depend on already observed information. The
objective is to obtain a policy that maximizes the expected sum of rewards of jobs successfully completed before
the total time (travel and processing) reaches the threshold of B. The approximation ratio of an algorithm is
defined to be the ratio of the expected reward of an optimal policy to that of the algorithm’s policy.

Stochastic sequence orienteering. We also consider (in §6) a substantial generalization of the stochastic
orienteering problem. In the stochastic sequence orienteering problem, the input is a directed metric 4V 1d5,
sequence �s11 : : : 1 sk� of portal vertices, bound B, and at each vertex v ∈ V : reward rv and random size Sv ∼�v. A
solution here is an adaptive path that visits vertices (and processes the respective jobs) such that the portals
s11 : : : 1 sk are necessarily visited and in that order. The objective is to maximize the expected reward obtained such
that the total time taken is at most B. Since any policy must visit all the portals, if it is running some job v when
the residual budget equals the distance from v to the remaining portals, then job v is canceled and the policy
terminates by directly visiting the remaining portals. Note that the basic stochastic orienteering problem is the
special case of k = 1 and a symmetric metric.

Stochastic orienteering with correlated rewards. Another extension that we consider (in §7) is the setting of
correlated rewards and sizes. In correlated stochastic orienteering (CorrOrient), the job sizes and rewards are both
random and correlated with each other. The distributions across different vertices are still independent. (Recall that
the stochastic knapsack version of this problem also admits a constant factor approximation algorithm; Gupta
et al. [25].)

Adaptive and nonadaptive policies. We are interested in both adaptive and nonadaptive policies and in particular
want to bound the ratio between the optimal adaptive and nonadaptive policies. An adaptive policy is a decision tree
where each node is labeled by a job/vertex of V , with the outgoing arcs from a node labeled by j corresponding to
the possible sizes in the support of �j . A nonadaptive policy, on the other hand, is simply given by a path P
starting at �: we just traverse this path, processing the jobs that we encounter, until the total (random) size of the
jobs plus the distance traveled reaches B. A randomized nonadaptive policy may pick a path P at random from
some distribution before it knows any of the size instantiations and then follows this path as above. Note that in a
nonadaptive policy, the order in which jobs are processed is independent of their processing time instantiations.

Finally, for any integer m≥ 0 we use 6m7 to denote the set 80111 : : : 1m9.

3. The (deterministic) knapsack orienteering problem. We now define a variant of the orienteering problem
that will be crucially used in the rest of the paper. Recall that in the basic orienteering problem, the input consists
of a metric 4V 1d5, the root vertex �, rewards rv for each job v, and total budget B. The goal is to find a path P of
length at most B starting at � that maximizes the total reward

∑

v∈P rv of vertices in P .
In the knapsack orienteering problem (KnapOrient), we are given a metric 4V 1d5, root vertex �, and two

budgets: L, which is the “travel” budget, and W , which is the “knapsack” budget. Each job v has a reward r̂v and
also a “size” ŝv. A feasible solution is a path P originating at � having length at most L, such that the total size
ŝ4P5 2=

∑

v∈P ŝv is at most W . The goal is to find a solution P of maximum reward
∑

v∈P r̂v.

Theorem 5. There is an O415-approximation algorithm AlgKO for the KnapOrient problem.
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Proof. The idea of the proof is to consider the Lagrangian relaxation of the knapsack constraint; we remark
that such an approach was also taken in Guha and Munagala [22] for a related problem. This way we alter the
rewards of items while still optimizing over the set of feasible orienteering solutions. For a suitable choice of the
Lagrange parameter, we will show that we can recover a solution with large (unaltered) reward while meeting both
the knapsack (W ) and length (L) constraints.

For a value �≥ 0, define an orienteering instance I4�5 on metric 4V 1d5 with root �, travel budget L, and profits
r�v 2= r̂v −� · ŝv at each v ∈ V . Note that the optimal solution to this orienteering instance has value at least
Opt −� ·W , where Opt is the optimal value of the original KnapOrient instance.

Let Algo4�5 denote an �-approximate solution to I4�5 as well as its profit; we have �= 2 +� via the algorithm
from Chekuri et al. [14]. By exhaustive search, let us find

�∗ 2= max
{

�≥ 02 Algo4�5≥
� ·W

�

}

0 (1)

Observe that by setting � = Opt/42W5, we have Algo4�5 ≥ 4Opt − �W5/� = Opt/42�5 = 4� ·W5/�. Thus
�∗ ≥ Opt/42W5.

Let � denote the path in solution Algo4�
∗5, and let

∑

v∈� ŝv = y ·W for some y ≥ 0. Partition the vertices of �
into c = max811 �2y�9 parts �11 : : : 1 �c with

∑

v∈�j
ŝv ≤W for all j ∈ 811 : : : 1 c9. This partition can be obtained by

greedy aggregation since maxv∈V ŝv ≤W (all vertices with larger size can be safely excluded by the algorithm). Set
� ′ ← �k for k = arg maxc

j=1 r̂ 4�j5. We then output � ′ (which follows path � but only visits vertices in �k) as our
approximate solution to the KnapOrient instance. Clearly � ′ satisfies both the length and knapsack constraints. It
remains to bound the reward we obtain.

r̂ 4� ′5 ≥
r̂ 4�5

c
≥

�∗yW +�∗W/�

c
= �∗W ·

(

y+ 1/�
c

)

≥ �∗W · min
{

y+
1
�
1

1
2

+
1

2�y

}

≥
�∗W

�
0

The second inequality is by r̂ 4�5−�∗ · ŝ4�5= Algo4�
∗5≥ 4�∗W5/� because of the choice (1), which implies that

r̂ 4�5≥ �∗ · ŝ4�5+ 4�∗ ·W5/�= �∗yW + 4�∗W5/� by the definition of y. The third inequality is by c ≤ max8112y9.
The last inequality uses �≥ 2. It follows that r̂ 4� ′5≥ Opt/42�5, giving us the desired approximation ratio. �

As an aside, this Lagrangian approach can be used to obtain a constant-factor approximation algorithm for a
two-budget version of stochastic orienteering (with separate bounds on travel and processing times). But it is
unclear if this can be extended to the single-budget version. In particular, we are not able to show that the
Lagrangian relaxation (of processing times) has objective value ì4Opt5. This is because different decision paths in
the Opt tree might vary a lot in their processing times, implying that there is no reasonable candidate for a
Lagrange multiplier.

In the next subsection we discuss some simple reductions from StocOrient to deterministic orienteering that fail
to achieve a good approximation ratio. This serves as a warm-up for our algorithm, which reduces StocOrient to
KnapOrient; we outline this in §3.2.

3.1. A straw man approach: Reduction to deterministic orienteering. A natural approach for StocOrient is
to replace stochastic jobs by deterministic ones with size equal to the expected size E6Sv7 and find a near-optimal
orienteering solution P to the deterministic instance, which gets reward R. One can then use this path P to get a
nonadaptive policy for the original StocOrient instance with expected reward ì4R5. Indeed, suppose the path P
spends time L traveling and W processing the deterministic jobs such that L+W ≤ B; then picking a random half
of the jobs and visiting them results in a nonadaptive solution for StocOrient, which travels at most L and
processes jobs for time at most W/2 in expectation. Hence, Markov’s inequality says that with probability at least
1/2, all jobs finish processing within W time units, and we get the entire reward of this subpath, which is ì4R5.

However, the problem is in showing that R=ì4Opt5—i.e., that the deterministic instance has a solution with
reward that is comparable to the StocOrient optimum.

The above simplistic reduction of replacing random jobs by deterministic ones with mean size fails even for
stochastic knapsack: suppose the knapsack budget is B, and each of the n jobs has size Bn with probability 1/n
and size 0 otherwise. Note that the expected size of every job is now B. Therefore, a deterministic solution
can pick only one job, whereas the optimal solution would finish ì4n5 jobs with high probability. However,
observe that this problem disappears if we truncate all sizes at the budget, i.e., set the deterministic size to be the
expected “truncated” size Ɛ6min4Sj 1B57 where Sj is the random size of job j . We also have to set the reward to be
rj Pr6Sj ≤ B7 to discount the reward from impossible size realizations. Now Ɛ6min4Wj1B57 reduces to B/n and so
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�1 �2 �logB

B/2 B/4

�

Figure 1. Bad example for replacing by expectations.

the deterministic instance can now get ì4n5 reward. Indeed, this is the approach used by Dean et al. [19] to get an
O415-approximation algorithm and adaptivity gap.

But for StocOrient, is there a good truncation threshold?
Considering Ɛ6min4Sj1B57 fails on the example where all jobs are co-located at a point at distance B− 1 from

the root. Each job v has size B with probability 1/B and 0 otherwise. Truncation by B gives an expected size
ƐSv∼�v

6min4Sv1B57= 1 for every job, so the deterministic instance gets reward from only one job, whereas the
StocOrient optimum can collect ì4B5 jobs. Now noticing that any algorithm has to spend B− 1 time traveling to
reach any vertex that has some job, we can instead truncate each job j’s size at B−d4�1 j5, which is the maximum
amount of time we can possibly spend at j (since we must reach vertex j from �). However, although this fix
works for the aforementioned example, the following example shows that such a deterministic instance might only
get an O44log logB5/logB5 fraction of the optimal stochastic reward.

Consider n= logB jobs on a line as in Figure 1. For i = 1121 : : : 1 logB, the ith job is at distance B41 − 1/2i5
from the root �; job i takes on size B/2i with probability p 2= 1/ logB and size 0 otherwise. Each job has
unit reward. The optimal (adaptive and nonadaptive) solution to this instance is to try all the jobs in order
1121 : : : 1 logB: with probability 41 −p5logB ≈ 1/e, all the jobs instantiate to size 0 and we will accrue reward
ì4logB5.

In the deterministic orienteering instance, each job i has its expected truncated size �i = Ɛ6min8Si1B−d4�1 i597=
B/42i logB5. A feasible solution consists of a subset of jobs where the total travel plus expected sizes is at most B.
Suppose j is the first job we pick along the line; then because of its size being �j we cannot reach any jobs in
the last �j length of the path. The number of these lost jobs is log�j = logB− j − log logB because of the
geometrically decreasing gaps between jobs. Hence we can reach only jobs j , j + 1, j + log logB− 1, giving us a
maximum profit of log logB even if we ignore the space these jobs would take. (Since their sizes decrease
geometrically, we can indeed get all but a constant number of these jobs.)

This shows that replacing jobs in a StocOrient instance by their expected truncated sizes gives a deterministic
instance whose optimal reward is smaller by an ì4logB/4log logB55 factor.

3.2. Our approach: Reduction to knapsack orienteering. The reason why the deterministic techniques
described above worked for stochastic knapsack but failed for stochastic orienteering is the following: the total
sizes of jobs is always roughly B in knapsack (so truncating at B was the right thing to do). But in orienteering, it
depends on the total time spent traveling, which in itself is a random quantity, even for a nonadaptive solution.
One way around this is to guess the amount of time W spent processing jobs (up to a factor of 2), which gets the
largest profit, and use that as the truncation threshold to define a knapsack orienteering instance. It seems that
such an approach should lose an ì4logB5 fraction of the optimal reward, since there are log2 B choices for the
truncation parameter W . Somewhat surprisingly, we show that this algorithm actually gives a much better reward:
it achieves a constant factor approximation relative to a nonadaptive optimum and an O4log logB5-approximation
when compared to the adaptive optimum!

Given an instance Iso of StocOrient with optimal (nonadaptive or adaptive) solution having expected reward
Opt, our algorithm is outlined in Figure 2. However, there are many details to be addressed, and we flesh out the
details of this algorithm over the next two sections. We will prove that �=O415 for nonadaptive StocOrient and
�=O4log logB5 in the adaptive case.

4. Nonadaptive stochastic orienteering. Here we consider the nonadaptive StocOrient problem and present
an O415-approximation algorithm (Theorem 2). This also contains many ideas used in the more involved analysis
of the adaptive setting.

Step 1: Enumerate over all choices for the truncation threshold W . Construct a suitable instance Iko4W5 of knapsack orienteering
(KnapOrient), with the guarantee that the optimal reward from this KnapOrient instance Iko4W5 is at least Opt/�.

Step 2: Use Theorem 5 on Iko to find a path P with reward ì4Opt/�5.
Step 3: Convert this KnapOrient solution P into a nonadaptive policy for StocOrient (Lemma 1).

Figure 2. High level overview.
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Recall that the input consists of metric 4V 1d5 with each vertex v ∈ V representing a stochastic job having a
deterministic reward rv ∈�+ and a random processing time/size Sv distributed according to �v2 �

+ → 60117; we
are also given a root � and budget B. A nonadaptive policy is an ordering � of the vertices (starting with �), which
corresponds to visiting vertices (and processing the respective jobs) in the order � . The goal in the nonadaptive
StocOrient problem is to compute an ordering that maximizes the expected reward, i.e., the total reward of all
items that are completed within the budget of B (travel + processing times). We first perform some preprocessing
on the input instance. Throughout, Opt will denote the optimal nonadaptive solution to the given StocOrient
instance, as well as its expected reward.

Assumption 1. We may assume that
• No single-vertex solution has expected reward more than Opt/8.
• For each vertex u ∈ V , PrSu∼�u

6Su >B−d4�1u57≤ 1/2.
The resulting optimal value remains at least 3

4 · Opt.

Proof. (1) Note that we can enumerate over all single vertex solutions (there are only n of them) and output
the best one—if any such solution has value greater than Opt/8, then we already have an 8-approximate solution,
so the first assumption follows.

(2) For the second assumption, call a vertex u bad if PrSu∼�u
6Su >B−d4�1u57 > 1/2. Notice that if Opt visits a

bad vertex, then the probability that it continues further decreases geometrically by a factor 1/2 because the total
budget is exceeded with probability at least 1/2. Therefore, the total expected reward that Opt collects from all
bad jobs is at most twice the maximum expected reward from any single bad vertex. By the first assumption, the
maximum expected reward from any single vertex is at most Opt/8, so the expected reward obtained by ignoring
bad vertices is at least 3

4 · Opt. �

Definition 1 (Truncated Means). For any vertex u ∈ V and any positive value Z ≥ 0, let �u4Z5 2=
ƐSu∼�u

6min4Su1Z57 denote the expected size truncated at Z. Note that for all Z2 ≥ Z1 ≥ 0, �u4Z15≤�u4Z25 and
�u4Z1 +Z25≤�u4Z15+�u4Z25.

Definition 2 (Valid KnapOrient Instances). Given an instance Iso of StocOrient and value W ≤ B, define
KnapOrient instance Iko4W5 2= KnapOrient4V 1d1 84ŝu1 ru52 ∀u ∈ V 91L1W1�5 where

(i) The travel budget L= B−W and size budget is W .
(ii) For all u ∈ V , its deterministic size ŝu =�u4W5.

Recall that AlgKO is an O415-approximation algorithm for KnapOrient. Algorithm 1 for nonadaptive StocOrient
proceeds in the following manner: it (i) enumerates over all possible powers-of-two for the choice of size budget
W (see the definition of valid KnapOrient instances), (ii) uses AlgKO to find a near-optimal solution for each of
the valid KnapOrient instances, and finally (iii) converts the best of them into a nonadaptive StocOrient solution.
The final part of this procedure is characterized by the following Lemma 1. The proof is similar to that used in
earlier works on stochastic knapsack (Dean et al. [19]).

Lemma 1. Given any solution P to KnapOrient instance Iko4W5 for any W ≤ B, having reward R, we can
obtain in polynomial time a nonadaptive policy for StocOrient of expected reward R/12.

Proof. To reduce notation, let P also denote the set of vertices visited in the solution to Iko4W5.

L 2=

{

u ∈ P2 �u4W5 >
W

4

}

and S 2=

{

u ∈ P2 �u4W5≤
W

4

}

0

Notice that �L�< 4 since
∑

u∈P �u4W5≤W by the size budget in Iko4W5. By averaging, max8ru2 u ∈ L9≥ r4L5/3.
Moreover, by Assumption 1 the best single vertex solution (to StocOrient) among L has expected reward at least
1
2 · max8ru2 u ∈ L9≥ r4L5/6.

Since each v ∈ S has �v4W5≤W/4 and
∑

u∈S �u4W5≤W , we can partition S into three parts such that each part
has total size at most W/2. Again by averaging, one of these parts S ′ ⊆ S satisfies

∑

u∈S′ �u4W5≤W/2 and
r4S ′5≥ r4S5/3. Consider the following nonadaptive policy for StocOrient: visit (and process) vertices in S ′ in the
order of P . By triangle inequality, the travel time is at most that of P , namely B−W . By Markov’s inequality,
with probability at least 1/2, the total processing time of S ′ is at most W . Hence the expected reward of this policy
to StocOrient is at least 1

2 · r4S ′5≥ r4S5/6.
The better of the two policies above (from L and S) has reward at least R/12. �
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Algorithm 1 (Algorithm AlgSO for StocOrient on input Iso = 4V 1d1 84�u1 ru52 ∀u ∈ V 91B1�5)

1: for all v ∈ V do
2: let Rv 2= rv · PrSv∼�v

6Sv ≤ 4B−d4�1 v557 be the expected reward of the single-vertex solution to v.
3: end for
4: with probability 1/2, just visit the vertex v with the highest Rv and exit.
5: delete all vertices u ∈ V with PrSu∼�u

6Su >B−d4�1u57 > 1/2.
6: for i = 0111 : : : 1 �logB� do
7: set W = B/2i

8: let Pi be the path returned by AlgKO on the valid KnapOrient instance Iko4W5.
9: let Ri be the reward of this KnapOrient solution Pi.

10: end for
11: let Pi∗ be the solution among 8Pi9i∈6logB7 with maximum reward Ri.
12: output the nonadaptive StocOrient policy corresponding to Pi∗ , using Lemma 1.

Therefore, to prove a constant approximation ratio, it suffices to show the existence of some W =B/2i for
which the optimal value of Iko4W5 is ì4Opt5. Formally,

Lemma 2. Given any instance Iso of nonadaptive StocOrient satisfying Assumption 1, there exists W = B/2i

for some i ∈ 80111 : : : 1 �logB�9 such that Iko4W5 has optimal value at least Opt/50.

The rest of this section proves this result. We restrict attention to vertices satisfying the condition in Assumption 1;
let Opt′

≥
3
4 · Opt denote the resulting optimal value.

Without loss of generality, let the optimal nonadaptive ordering be 8�= v01 v11 v21 : : : 1 vn9. For any vj ∈ V let
Dj =

∑j
i=1 d4vi−11 vi5 denote the total distance spent before visiting vertex vj . Note that although the total time

(travel plus processing) spent before visiting any vertex is a random quantity, the distance (i.e., travel time) is
deterministic since we deal with nonadaptive policies. Let j∗ be the first index j such that

∑

i<j

�vi
4B−Dj5≥K · 4B−Dj50 (2)

Here K is some constant that we will fix later. Observe that this condition is trivially satisfied when Dj = B; so we
may assume, without loss of generality, that Dj∗−1 ≤ B− 1.

Lemma 3. For index j∗ as in (2), we have
∑

i≤j∗−1 rvi ≥ Opt′/2.

Proof. We first deal with the corner case that Dj∗ = B. In this case, vj∗ is the last possible vertex visited by
the optimal solution. By Assumption 1, the expected reward from vertex vj∗ even if it is visited directly from the
root is at most Opt/8. Thus the expected reward from the first j∗ − 1 vertices is at least Opt′

−
1
8 · Opt ≥ Opt/2,

which implies the lemma. In the following, we assume that Dj∗ ≤ B− 1.

Claim 1. The optimal solution visits a vertex indexed j∗ or higher with probability ≤ e1−K/2−1/42K5.

Proof. If the optimal solution visits vertex vj∗ then we have
∑

i<j∗ Svi
≤ B − Dj∗ . This also implies

that
∑

i<j∗ min4Svi
1B − Dj∗5 ≤ B − Dj∗ . Now, for each i < j∗ let us define a random variable Xi 2=

min4Svi 1B−Dj∗5/4B − Dj∗5. Note that the Xi’s are independent 60117 random variables and that Ɛ6Xi7 =

�vi
4B−Dj∗5/4B −Dj∗5. From this definition, it is also clear that the probability that the optimal solution

visits vj∗ is upper bounded by the probability that
∑

i<j∗ Xi ≤ 1. To this end, we have from Inequality (2) that
∑

i<j∗ Ɛ6Xi7≥K. Therefore we can apply a standard Chernoff bound to conclude that

Pr6Optimal solution visits vertex vj∗ 7≤ Pr
[

∑

i<j∗

Xi ≤ 1
]

≤ e1−K/2−1/42K50

This completes the proof. �

Claim 2. Conditional on reaching vj∗ , the expected reward obtained by the optimal policy from vertices
8vj∗1 vj∗+11 : : : 9 is at most Opt′.

Proof. Consider the alternative policy 8�= v01 vj∗1 vj∗+11 : : : 1 vn9 that skips all vertices before vj∗ . By triangle
inequality, the distance d4�1 vj∗5≤Dj∗ , so the expected reward from this policy is at least the conditional reward of
the optimal policy obtained beyond vertex vj∗ . The claim now follows by optimality. �
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Combining these two claims and setting K = 305, the expected reward from the first j∗ − 1 vertices is at least
Opt′/2, which implies the lemma. �

Recall that Dj∗−1 ≤ B − 1; let ` ∈ �+ be such that B/2` < B − Dj∗−1 ≤ B/2`−1. Set W ∗ = B/2`. We
will show that the KnapOrient instance Iko4W

∗5 has optimal value at least Opt′/48K + 85. Consider path
P ∗ = ��= v01 v11 : : : 1 vj∗−1�. The reward on this path is at least Opt′/2 and it satisfies the travel budget B−W ∗ in
Iko4W

∗5. The total size on this path is
∑

i≤j∗−1

�vi
4W ∗5 ≤

∑

i≤j∗−1

�vi
4B−Dj∗−15=

∑

i<j∗−1

�vi
4B−Dj∗−15+�vj∗−1

4B−Dj∗−15

≤ 4K + 154B−Dj∗−15≤ 24K + 15W ∗0

The second inequality is by choice of j∗ in Equation (2). Although P ∗ may not satisfy the size budget of W ∗,
we obtain a subset P ′ ⊆ P ∗ that does. Since each vertex has size at most W ∗ and the total size of P ∗ is at most
24K + 15W ∗, there is a partition of P ∗ into at most 44K + 15 parts such that each part has size at most W ∗. (Such
a partition can be obtained greedily: starting with the trivial partition with each vertex of P ∗ in a single part,
repeatedly merge any two parts that have combined size at most W ∗. In the final partition, every pair of parts has
combined size more than W ∗; since the total size of P ∗ is at most 24K + 15W ∗, the final number of parts is
at most 4K + 4.) Choosing the maximum reward part among these yields a feasible solution to Iko4W

∗5 of value
at least Opt′/484K + 155≥ Opt/50, setting K = 305. This completes the proof of Lemma 2.

Combining Lemmas 1 and 2, we obtain Theorem 2. The approximation ratio obtained by this approach (after
optimizing parameters) is around 500. We chose not to present the calculations here so as to focus only on the main
ideas. We note however that obtaining a significantly smaller constant factor seems to require additional techniques.

5. Adaptive stochastic orienteering. In this section we consider the adaptive StocOrient problem. We will
show the same algorithm (Algorithm AlgSO) is an O4log�logB�5-approximation algorithm to the best adaptive
solution, thus proving Theorem 1. Note that this also establishes an adaptivity gap of O4log logB5.

Assumption 1 holds in this adaptive setting as well; the proof is almost identical and not repeated here. This
decreases the optimal value by a constant factor: we refer to the resulting optimal adaptive policy (and its expected
reward) by Opt.

Recall the definition of valid KnapOrient instances and Lemma 1. The main result that we need is an analog of
Lemma 2, namely,

Lemma 4. Given any instance Iso of adaptive StocOrient satisfying Assumption 1, there exists W = B/2i for
some i ∈ 80111 : : : 1 �logB�9 such that Iko4W5 has optimal value ì4Opt/ log logB5.

Before we begin, recall the typical instance Iso 2= StocOrient4V 1d1 84�u1 ru52 ∀u ∈ V 91B1�5 of the stochastic
orienteering problem.

Roadmap. We begin by giving a roadmap of the proof. Let us view the optimal adaptive policy Opt as a decision
tree where each node is labeled with a vertex/job and the children correspond to different size instantiations of the
job. For any sample path P in this decision tree, consider the first node xP where the sum of expected sizes of the
jobs processed until xP exceeds the “budget remaining” by some small factor—here, if Lx1P is the total distance
traveled from the root � to this node xP by visiting vertices along P , then the remaining budget is B−Lx1P .
Call such a node a frontier node, and the frontier is the union of all such frontier nodes. To make sense of
this definition, note that if the orienteering instance was nonstochastic (and all the sizes were equal to their
expectations), then we would not get any reward from portions of the decision tree on or below the frontier nodes.
Unfortunately, since job sizes are random for us, this is not necessarily the case. The main idea in the proof is to
show that we do not lose too much reward by truncation: i.e., even if we truncate Opt along this frontier, we still
obtain an expected reward of ì4Opt/ log�logB�5 from the truncated tree. Thus, an averaging argument can be
used to show the existence of some path P ∗ of length L where (i) the total rewards of jobs is ì4Opt/ log�logB�5
and (ii) the sum of expected sizes of the jobs is O4B−L5. This gives us the candidate KnapOrient solution.

Viewing Opt as a discrete time stochastic process. Note that the transitions of the decision tree Opt represent
travel between vertices: if the parent node is labeled with vertex u, and its child is labeled with v, the transition
takes d4u1 v5 time. To simplify notation, we take every such transition and subdivide it into d4u1 v5 unit length
transitions. The intermediate nodes added in are labeled with new dummy vertices, with dummy jobs of
deterministic size 0 and reward 0. We denote this tree as Opt′. Note that the amount of time spent traveling to any
node is exactly the number of edges from the root to this node. Now, if we start a particle at the root, and let it
evolve down the tree based on the random outcomes of job sizes, then the node reached at timestep t corresponds
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to some job with a random size and reward. This naturally gives us a discrete-time stochastic process T, which at
every timestep picks a job of size St ∼Dt and reward Rt . Note that St , Rt and the probability distribution Dt all
are random variables that depend on the outcomes of the previous timesteps 0111 : : : 1 t − 1 (since the actual job
that the particle sees depends on past outcomes). We stop the process T at the first (random) timestep tend such
that

∑tend
t=0 St ≥ 4B− tend5—this is the natural point to stop, since it is precisely the time step when the total

processing plus the total distance traveled exceeds the budget B.
Some notation. Nodes will correspond to states of the decision tree Opt′, whereas vertices are points in the

metric 4V 1d5. The level of a node x in Opt′ is the number of hops in the decision tree from the root to reach
x—this is the timestep when the stochastic process would reach x, or equivalently the travel time to reach the
corresponding vertex in the metric. We denote this by level4x5. Let label4x5 be the vertex labeling x. We abuse
notation and use Sx, rx, �x, and �x4 · 5 to denote the size, reward, size distribution, and truncated mean for node
x—hence, Sx = Slabel4x5, rx = rlabel4x5, �x =�label4x5 and �x4 · 5=�label4x54 · 5. We use x′ � x to denote that x′ is an
ancestor of x.

Now to begin the proof of Lemma 4. We assume that there are no co-located stochastic jobs; i.e., there is only
one job at every vertex. Note that this also implies that we have to travel for a nonzero integral distance between
jobs. This is only to simplify the exposition of the proof: we explain how to discharge this assumption at the end
of this section.

Defining the frontiers. Henceforth, we will focus on the decision tree Opt′ and the induced stochastic process T.
Consider any intermediate node x and the sample path from the root to x in Opt′. We call x a star node if x is the
first node along this sample path for which the following condition is satisfied:

∑

x′≺x

�x′4B− level4x55≥ 8K4B− level4x550 (3)

Above, K is a parameter that will later be set to ä4log logB5. Observe that this condition obviously holds when
level4x5=B and that no star node is an ancestor of another star node. To get a sense of this definition of star
nodes, ignore the truncation for a moment: then x is a star node if the expected sizes of all the level4x5 jobs on the
sample path until x sum to at least 8K4B− level4x55. But since we have spent level4x5 time traveling to reach x,
the process only continues beyond vertex x if the actual sizes of the jobs are at most B− level4x5, i.e., if the sizes
of the jobs are a factor 8K smaller than their expectations. If this were an unlikely event, then pruning Opt′ at the
star nodes would result in little loss of reward. And that is precisely what we show.

Let Opt′′ denote the subtree of Opt′ obtained by pruning it at star nodes. Opt′′ does not include rewards
at star nodes. Note that leaf nodes in Opt′′ are either leaves of Opt′ or parents of star nodes. In particular,
level4s5≤ B− 1 for each leaf node s ∈ Opt′′. We will show that

Lemma 5. The expected reward in Opt′′ is at least Opt/2.

Remark 1. The difference from the analysis of the nonadaptive case is that we set parameter K =O4log logB5
instead of a constant in the definition of the truncated tree Opt′′ (3). The main reason for the larger factor is the
difficulty in directly analyzing the truncated decision tree when the threshold B − level4x5 is changing. Instead, we
prove Lemma 5 by grouping star nodes into logB “bands” according to geometrically decreasing threshold values
and analyze each band separately as a martingale process. For a single band we then use a concentration inequality
to upper bound the loss by factor that is exponentially small in K. Finally, adding the loss over the logB bands
yields Lemma 5. The details now follow.

Before proving Lemma 5, we show how this implies Lemma 4.

Proof of Lemma 4. We start with the following claim that uses the definition of star nodes.

Claim 3. Every leaf node s ∈ Opt′′ satisfies
∑

x�s �x4B− level4s55≤ 9K4B− level4s55.

Proof. By definition of Opt′′, leaf node s is not a star node (nor a descendant of one), so

∑

x�s

�x4B− level4s55=
∑

x≺s

�x4B− level4s55+�s4B− level4s55 < 48K + 15 · 4B− level4s550

The inequality is by (3). This proves the claim. �

For each root-leaf path P in Opt′′ let Pr6P 7 denote the probability that this path is traced, and let r4P5 be the
sum of rewards on P . Then Lemma 5 implies

∑

P Pr6P 7 · r4P5≥ Opt/2, so there exists a sample path P ∗ in Opt′′
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to some leaf node s∗ with total reward at least Opt/2. Moreover, Claim 3 implies that the sum of means (truncated
at B− level4s∗5) of jobs in P ∗ is at most 9K4B− level4s∗55.

Recall that every leaf in Opt′′ has level at most B− 1, so level4s∗5≤ B− 1. Choose ` ∈ 80111 : : : 1 �logB�9 so
that B/2` ≤ B− level4s∗5≤ 2B/2`, and set W ∗ = B/2`. Then we have

∑

x�s∗

�x4W
∗5≤

∑

x�s∗

�x4B− level4s∗55≤ 9K · 4B− level4s∗55≤ 18K ·W ∗0

Consider the KnapOrient instance Iko4W
∗5; we will show that it has optimal value at least ì4Opt/K5, which

would prove Lemma 4. Note that path P ∗ has length level4s∗5≤ B−W ∗. The above calculation shows that the
total size of P ∗ is at most 18K ·W ∗. Using the bin-packing-type argument as in the previous section, we obtain a
subset P ′ ⊆ P ∗ that has total size at most W ∗ and reward at least r4P ∗5/436K5≥ Opt/472K5. Thus we obtain
Lemma 4. �

We now prove Lemma 5. Group the star nodes into �logB� + 1 bands based on the value of B− level4x5. Star
node x is in band i if B− level4x5 ∈ 4B/2i+11B/2i7 for 0 ≤ i ≤ �logB� and in band �logB� + 1 if level4x5= B.

First consider star nodes of band �logB� + 1. Note that the policy terminates after these nodes (since B time
units have already been spent traveling). By Assumption 1, the loss in reward by ignoring star nodes of band
�logB� + 1 is at most Opt/8.

Next we consider bands 801 : : : 1 �logB�9. We use the following key lemma that upper bounds the probability of
reaching star nodes in any particular band i.

Lemma 6. For any i ∈ 801 : : : 1 �logB�9, the probability of reaching band i is at most 1/410�logB�5.

Taking a union bound, the probability of reaching some band 801 : : : 1 �logB�9 is at most 1
10 . Then we have the

following claim (similar to Claim 2 in the nonadaptive case).

Claim 4. Conditional on reaching any node x ∈ Opt′, the expected reward obtained by the optimal policy
from nodes below x is at most Opt.

Proof. Consider the alternative adaptive policy that visits node x directly from the root. Using triangle
inequality, the expected reward from this policy is at least the conditional reward of Opt′ obtained below vertex x.
The claim now follows by optimality. �

Thus we obtain that the loss in reward by truncating at star nodes in bands 801 : : : 1 �logB�9 is at most Opt/10.
Combined with the loss due to band �logB� + 1, it follows that Opt′′ has reward at least Opt/2.

It only remains to prove Lemma 6, which we do in the rest of this section.

Proof of Lemma 6. Fix any i. To bound the probability of reaching band i, consider the following altered
stochastic process Ti: follow T as long as it could lead to a star node in band i. If we reach a node y such that
there is no band i star node as a descendant of y, then we stop the process Ti at y. Otherwise, we stop when we
reach a star node in band i. An illustration of the optimal decision tree, the different bands, and altered processes
is given in Figure 3. By a straightforward coupling argument, the probabilities of reaching a band i star node in T
and in Ti are identical, and hence it suffices to bound the probability of continuing beyond a band i star node
in Ti.

Claim 5. For each i ∈ 80111 : : : 1 �logB�9, and any star node x in band i,

2K
B

2i
≤
∑

x′≺x

�x′4B/2i+15≤ 17K
B

2i
0

Proof. By definition of a star node (3), and since node x is in band i, B/2i+1 ≤ B− level4x5≤ B/2i,

∑

x′≺x

�x′4B/2i+15 ≥
∑

x′≺x

�x′

(

1
2
4B− level4x55

)

≥
1
2

∑

x′≺x

�x′4B− level4x55

≥ 4K4B− level4x55≥ 2K
B

2i
0

The first two inequalities used the monotonicity and subadditivity of �x′4 · 5.
Moreover, since y, the parent node of x, is not a star node, it satisfies

∑

x′≺y

�x′4B− level4y55 < 8K4B− level4y55= 8K4B− level4x5+ 150
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Level(�)

Frontier

Star nodes

�

�1

Figure 3. Optimal decision tree example: Dashed lines indicate the bands, × indicates star nodes.

But since we are not considering band number �logB� + 1 and all distances are at least 1, level4x5≤ B− 1, and
hence B− level4x5+ 1 ≤ 24B− level4x55≤ 2B/2i. Thus, we have

∑

x′≺y �x′4B− level4y55 < 16K ·B/2i. Now,

∑

x′≺x

�x′4B/2i+15 =
∑

x′≺y

�x′4B/2i+15+�y4B/2i+15≤
∑

x′≺y

�x′4B− level4y55+
B

2i+1

≤ 16K ·
B

2i
+

B

2i+1
≤ 17K ·

B

2i
0

The first inequality uses B− level4y5≥ B− level4x5≥ B/2i+1. This completes the proof. �
Claim 6. For any i ∈ 80111 : : : 1 �logB�9 and any star node x in band i, if process Ti reaches x, then

∑

x′≺x

min
(

Sx′ 1
B

2i+1

)

≤
B

2i
0

Proof. Clearly, if process Ti reaches node x, it must mean that
∑

x′≺x Sx′ ≤ 4B− level4x55≤ B/2i, else we
would have run out of budget earlier. And the truncation can only decrease the left-hand side. �

We now finish upper bounding the probability of reaching a star node in band i using a martingale analysis.
Define a sequence of random variables 8Zt1 t = 0111 : : : 9, where

Zt =

t
∑

t′=0

(

min
{

St′ 1
B

2i+1

}

−�t′4B/2i+15

)

0 (4)

Above, �t′4 · 5 denotes the truncated mean (Definition 1) of random variable St′ . Since the subtracted term is
precisely the expectation of the first term, the one-term expected change is zero and the sequence 8Zt9 forms a
martingale. In turn, Ɛ6Z� 7= 0 for any stopping time � . We will define � to be the time when the process Ti

ends—recall that this is the first time when either (a) the process reaches a band i star node or (b) there is no way
to get to a band i star node in the future.

Claim 6 says that when Ti reaches any star node x, the sum over the first terms in (4) is at most B/2i, whereas
Claim 5 says the sums of the means is at least 2K4B/2i5. Because K ≥ 1, we can infer that the Zt ≤ −K4B/2i5 for
any star node (at level t). To bound the probability of reaching a star node in Ti, we appeal to Freedman’s
concentration inequality for martingales.

Theorem 6 (Freedman [20] (Theorem 1.6)). Consider a real-valued martingale sequence 8Xk9k≥0 such
that X0 = 0 and Ɛ6Xk+1 �Xk1Xk−11 : : : 1X07= 0 for all k. Assume that the sequence is uniformly bounded; i.e.,
�Xk� ≤M almost surely for all k. Now define the predictable quadratic variation process of the martingale to be

Wk =

k
∑

j=0

Ɛ6X2
j �Xj−11Xj−21 : : : 1X07

for all k ≥ 1. Then for all l ≥ 0 and �2 > 0 and any stopping time � , we have

Pr
[

∣

∣

∣

∣

�
∑

j=0

Xj

∣

∣

∣

∣

≥ l and W� ≤ �2

]

≤ 2 exp
(

−
l2/2

�2 +Ml/3

)

0
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We apply the above theorem to the martingale difference sequence 8Xt = Zt −Zt−19. Now since each term Xt is just
min4St1B/2i+15−�t4B/2i+15, we get that Ɛ6Xt �Xt−11 : : : 7= 0 by definition of �t4B/2i+15= Ɛ6min4St1B/2i+157.
Moreover, since the sizes and means are both truncated at B/2i+1, we have �Xt� ≤ B/2i+1 with probability 1; hence,
we can set M = B/2i+1. Finally, to bound the variance term Wt we appeal to Claim 5. Indeed, consider a single
random variable Xt = min4St1B/2i+15−�t4B/2i+15 and abbreviate min4St1B/2i+15 by Y . Then

Ɛ6X2
t �Xt−11 : : : 7= Ɛ64Y − Ɛ6Y 7527= Ɛ6Y 27− Ɛ6Y 72

≤ Ymax · Ɛ6Y 7≤
B

2i+1
·�t4B/2i+150

Here, the first inequality uses Y ≥ 0 and Ymax as the maximum value of Y . The last inequality uses the definition
of Y . Hence the term Wt is at most 4B/2i+15

∑

t′≤t �t′4B/2i+15 for the process at time t. Now, from Claim 5 we
have that for any star node (say at level t) in band i, we have

∑

t′≤t �t′4B/2i+15≤ 17K4B/2i5. Therefore, we have
Wt ≤ 9K · 4B/2i52 for star nodes, and we set �2 to be this quantity.

So by setting `=K4B/2i5, �2 = 9K4B/2i52, and M = B/2i+1, we get that

Pr6reaching star node in Ti7≤ Pr6�Z� � ≥K4B/2i5 and W� ≤ 9K4B/2i527≤ 2e−K/200

Setting K =ì4log�logB�5 and performing a simple union bound calculation over the �logB� bands completes the
proof of Lemma 6. �

Handling co-located jobs. To help with the presentation in the above analysis, we assumed that a node x, which
is at depth l in the decision tree for Opt, is actually processed after the adaptive policy has traveled a distance of l.
In particular, this meant that there is at most one stochastic job per node. However, if we define the truncations of
any node (in Equation (3)) by its actual length along the path instead of simply its depth/level in the tree, then we
can handle co-located jobs in exactly the same manner as above. In this situation, there could be several nodes in a
sample path that have the same truncation threshold, but it is not difficult to see that the rest of the analysis would
proceed in an identical fashion. We do not present additional details here—the analysis in the next section handles
this issue in a more general setting.

6. Stochastic sequence orienteering. In this section we consider a general stochastic sequence orienteering
problem. The input is a directed metric 4V 1d5 with integer distances1 where each vertex v ∈ V contains a job
having reward rv and a random processing time (or size) Sv ∼ �v. We are also given a specified sequence
�s11 : : : 1 sk� of portal vertices and a bound B ∈�+. A solution (policy) is an adaptive path originating from s1 that
visits vertices (and processes the respective jobs) such that the total time taken (travel plus processing) is at
most B. An additional constraint here is that the path must visit all the portals s11 : : : 1 sk and in that order; the
policy terminates after visiting vertex sk. The objective is to maximize the expected reward. Since the portal
vertices are always visited, we can assume without loss of generality that they have zero rewards. One can view
the portals as essential jobs that any policy must complete (in the prescribed order), and the remaining vertices as
optional, from which a policy seeks to maximize reward.

A modeling assumption we make is that since any feasible policy must visit each of these portal vertices
in that sequence, it must satisfy the following property. If the policy is running the job at some vertex v
after having visited portals �s11 : : : 1 si� for some i ∈ 811 : : : 1 k− 19 and the remaining time becomes equal to
d4v1 si+15+

∑k−1
j=i+1 d4sj1 sj+15, then this job v is terminated (without accruing reward) and the policy moves

directly to vertices �si+11 : : : 1 sk� and ends—it cannot accrue any reward from any vertex along this shortest path
�v1 si+11 : : : 1 sk�.

Notice that the basic stochastic orienteering problem (studied in the previous sections) is a special case of
stochastic sequence orienteering when k = 1 and the metric is symmetric.

An important subroutine in our algorithm for stochastic sequence orienteering is an approximation algorithm for
its deterministic version. The deterministic sequence orienteering with k = 2 has been studied previously, called
point to point orienteering (Bansal et al. [3], Nagarajan and Ravi [28], Chekuri et al. [14]). Here the input consists
of a metric 4V 1d5 with rewards on vertices, bound B, and specified source (s1) and destination (s2) vertices; the
goal is to compute a path from s1 to s2 of length at most B that maximizes the total reward. A constant-factor
approximation algorithm is known for this problem in symmetric metrics (Bansal et al. [3]), and the directed
setting admits approximation ratios of O4log2 n/ log logn5 (Nagarajan and Ravi [28]) and O4log2 Opt5 (Chekuri
et al. [14]). Our first result is to show that the deterministic sequence orienteering problem for arbitrary k,

1 The distance function d2 V ×V →�+ satisfies the triangle inequality but is not necessarily symmetric.
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admits an O4�5-approximation algorithm, where � is the best known approximation ratio for point to point
orienteering.

Using this we obtain the main result of this section (Theorem 3); i.e., any �-approximation algorithm for
directed point to point orienteering can be used to obtain

• An O4�5-approximation algorithm for nonadaptive stochastic sequence orienteering.
• An O4� · log logB5-approximation algorithm for adaptive stochastic sequence orienteering.
We follow the same framework as for basic stochastic orienteering (i.e., undirected k= 1 case). In §6.1 we

obtain an O4�5-approximation algorithm for knapsack sequence orienteering. Then we use this to obtain an
O4�5-approximation algorithm for nonadaptive sequence orienteering in §6.2 and an O4� · log logB5-approximation
algorithm for adaptive sequence orienteering in §6.3.

6.1. (Deterministic) knapsack sequence orienteering. In the knapsack sequence orienteering problem, we
are given a directed metric 4V 1d5, a sequence of portal vertices to visit �s11 : : : 1 sk�, and two budgets: L, which is
the “travel” budget, and W , which is the “knapsack” budget. Each job v has a reward r̂v and also a “size” ŝv. A
feasible solution is a path P that (i) visits s11 : : : 1 sk in that order and (ii) has total length at most L, and (iii) total
size ŝ4P5 2=

∑

v∈P ŝv is at most W . The goal is to find a feasible solution of maximum reward
∑

v∈P r̂v.
To devise an algorithm for this problem, we first consider the problem without the knapsack constraint and give

an O4�5 approximation, where � is the approximation factor for the point-to-point orienteering problem (i.e.,
k= 2). Using this (and the Lagrangian relaxation à la Theorem 5), we show an O4�5-approximation for the
knapsack sequence orienteering problem.

6.1.1. Approximating sequence orienteering. In this problem, there are no sizes at vertices. The goal is to
find a path visiting �s11 : : : 1 sk� of length at most B with maximum reward. Our main idea is to view this problem
as that of submodular maximization over a (partition) matroid, with an additional knapsack constraint. We first give
a high-level description of the algorithm. Let Ui denote the set of all paths from si to si+1. Then a sequence is
simply a set of paths, one from each Ui, i.e., an independent set in the partition matroid 8U11U21 : : : 1Uk−19 (with
cardinality bound of one on each part). Furthermore, the total reward of any subset of

⋃k−1
i=1 Ui can be represented

by a weighted coverage function, which is submodular. To ensure that the path we find has length bounded by B,
we define an appropriate knapsack constraint. So the overall problem reduces to submodular maximization over the
intersection of a partition matroid and a knapsack constraint. An additional issue is that the groundset

⋃k−1
i=1 Ui is of

exponential size: we deal with this using an implicit reduction from knapsack constraints to partition matroids
(Gupta et al. [24], Chekuri and Khanna [11]). We now present the details.

Theorem 7. There is an O4�5-approximation algorithm for sequence orienteering, where � denotes the best
approximation ratio for directed point-to-point orienteering.

Proof. For this reduction, it will be convenient to define the groundset U =
⋃k−1

i=1 Ui, where

Ui = 8�P1 i�2 P is an si–si+1 path90

Notice that this groundset is exponentially large; however, our algorithm will not use it explicitly. Define a partition
matroid M on U , where subset S ⊆U is independent if and only if �S ∩Ui� ≤ 1 for each index i ∈ 811 : : : 1 k− 19.
Note that any base in M corresponds to a valid �s11 : : : 1 sk� sequence path. Let I4M5⊆ 2U denote the collection
of independent sets in the partition matroid M.

To ensure the length bound of B, we define a knapsack constraint K. For each �P1 i� ∈U define weight
w�P1 i� = d4P5− d4si1 si+15, and set the knapsack capacity to W 2= B −

∑k−1
j=1 d4sj1 sj+15. Let I4K5 = 8S ⊆

U2
∑

e∈S we ≤W9⊆ 2U denote the collection of “independent sets” in knapsack K.

Claim 7. There is an exact correspondence between
1. Subsets S ∈I4M5∩I4K5 that are independent in both M and K.
2. Paths P of length at most B that contain vertices s11 : : : 1 sk in that order.

Proof. In one direction, consider any S ∈I4M5∩I4K5. Note that each i ∈ 811 : : : 1 k− 19 contains a “dummy
element” ei ∈Ui corresponding to the shortest path �si1 si+1� with w4ei5= 0. If S is not a base in the partition
matroid M, then augment it to a base by adding element ei for each part i ∈ 811 : : : 1 k− 19 with S ∩Ui = �. Since
the dummy elements have zero weight, we still have S ∈I4M5∩I4K5. Now S corresponds to a collection P of
si–si+1 paths, exactly one for each i = 11 : : : 1 k− 1. By the definition of weights in the knapsack K, it follows that
the total length of P is at most B. Concatenating the paths in P yields the desired �s11 : : : 1 sk� sequence path.
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In the other direction, consider any �s11 : : : 1 sk� sequence path P . Clearly P is a concatenation of subpaths
8P11 : : : 1 Pk−19, where Pi is an si − si+1 path for each i = 11 : : : 1 k − 1. Consider the set S ′ = 8�Pi1 i�2 i =

11 : : : 1 k− 19⊆U . Clearly S ′ ∈I4M5. Also, the total weight of S ′ in knapsack K is

k−1
∑

i=1

4d4Pi5−d4si1 si+155≤ B−

k−1
∑

i=1

d4si1 si+15=W1

since P has length at most B. Thus S ′ ∈I4K5 as well and hence S ′ ∈I4M5∩I4K5. �
Now define the objective function:

f 4S5 2=
∑

v∈V

rv · min
{

∑

�P1 i�∈S

1v∈P 11
}

1 ∀S ⊆U0

Above r2 V →�+ denotes the rewards at different vertices, and 1v∈P is the indicator of event “v ∈ P .” Note that f
is a weighted coverage function, so it is monotone and submodular on U . Therefore, by Claim 7, the sequence
orienteering problem is precisely:

max8f 4S52 S ∈I4M5∩I4K590 (5)

Submodular maximization over the intersection of matroid and knapsack constraints admits a constant factor
approximation algorithm (Gupta et al. [24], Chekuri et al. [15]), but we need to take some more care since the
groundset is not available explicitly. Below we show that a slight modification of the approach in Gupta et al. [24]
suffices. Specifically, we show that the knapsack K can be approximately simulated by another partition matroid.

Theorem 8 (Gupta et al. [24]). Given any knapsack constraint
∑

e∈U we · xe ≤W and parameter `≤ �U �,
there is a polynomial (in `) time computable collection M11 : : : 1MT of T = `O415 partition matroids such that

1. For every S ∈
⋃T

t=1 I4Mt5 we have
∑

e∈S we ≤ 2 ·W .
2. For every S ⊆U with �S� ≤ ` and

∑

e∈S we ≤W we have S ∈
⋃T

t=1 I4Mt5.

This follows directly from Lemma 3.3 in Gupta et al. [24]. Although that result is only stated for `= �U �, it can
be extended to any ` as follows (our requirement will be for `= k). Here we only mention the changes required to
the proof in Gupta et al. [24]. We partition U into G= �log2 `� + 1 groups according to geometrically increasing
weights. That is, V0 2= 8e ∈U2 we ≤W/`9 and Vj = 8e ∈U2 W/` ·2j−1 <we ≤W/` ·2j9 for all j = 11 : : : 1 �log2 `�.
Then we guess upper bounds 8nj 2 1 ≤ j ≤ �log2 `�9 of the numbers of elements from each part Vj and define a
partition matroid corresponding to this. Although a näive enumeration has a total of `O4log`5 different partition
matroids, it can be made polynomial using an enumeration idea from Chekuri and Khanna [11]. Using this
approach, the number T of partition matroids is polynomial is `.

In our setting, since we know all feasible sets in the intersection I4M5∩I4K5 are of size at most k, we can
use Theorem 8 with ` 2= k. So we can (approximately) reduce the knapsack constraint to a partition matroid M′

that is obtained by enumerating over T = poly4k5 possibilities. Moreover, each part in M′ corresponds to an index
j ∈ 801 : : : 1 log2 k9 such that elements in part j of M′ have weight at most 2j ·W/k. Thus, solving (5) can be
reduced to

max8f 4S52 S ∈I4M5∩I4M′590 (6)

The solution S∗ to this problem does not itself satisfy K, but we have w4S∗5≤ 2 ·W . Thus, a greedy partitioning
can be used to obtain subsets S1, S2 and S3 such that S∗ = S1 ∪ S2 ∪ S3 and w4Sa5≤W for a= 11213. Choosing
the subset with maximum function value gives us S ′ ⊆ S∗ with w4S ′5≤W and f 4S ′5≥ f 4S∗5/3, by subadditivity.
Thus, an approximation algorithm for (6) leads to one for (5), at the loss of an additional factor of three.

To solve (6) we use the natural greedy algorithm: always add element e ∈U that retains independence and
(approximately) maximizes the marginal increase in the objective. This is well known to achieve an approximation
ratio of 41 + 2�5 assuming a �-approximate oracle for the greedy addition step (Călinescu et al. [9]). We observe
below that this greedy step corresponds to the point-to-point orienteering problem: thus, �= �, and we obtain a
41 + 2�5-approximation algorithm for (6) and 43 + 6�5-approximation algorithm for (5).

Recall the greedy step: given S ⊆U find max8f 4S ∪ 8e95− f 4S52 e ∈U1S ∪ 8e9 ∈I4M5∩I4M′59. We first
enumerate over the part i ∈ 811 : : : 1 k − 19 of M and part j ∈ 801 : : : 1 log2 k9 of M′ that correspond to the
candidate element e. If the upper bound on either of these parts is tight, then e cannot be added to S; otherwise
S ∪ 8e9 ∈I4M5∩I4M′5. Assuming the latter, we optimize over all elements corresponding to parts i and j (in M
and M′, respectively); this is just

max
{

∑

v∈P

r̄v2 P is an si − si+1 path1 d4P5≤ d4si1 si+15+ 2j
·
W

k

}

0
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Above r̄v = rv if vertex v is not already covered by S and r̄v = 0 otherwise. Note that the constraint that P is an
si–si+1 path is due to part i of M and the bound on its length is from part j of M′. Observe that this is precisely an
instance of point-to-point orienteering (from si to si+1), and hence we can use the �-approximation algorithm
assumed in the theorem. �

6.1.2. Approximating knapsack sequence orienteering. In the knapsack sequence orienteering problem
(KnapSeqOrient), we are given a directed metric 4V 1d5 with sequence �s11 : : : 1 sk� of portal vertices, rewards and
sizes at each vertex, and separate budgets L and W . The goal is to find a path consistent with the sequence
�s11 : : : 1 sk� that maximizes the reward on it such that its length is at most L and total size of its vertices is
at most W . Using the Lagrangian relaxation approach (exactly as in Theorem 5), we can reduce the knapsack
sequence orienteering problem to an instance of sequence orienteering, while losing a factor 2 in the approximation
ratio.

Theorem 9. There is an O4�5-approximation algorithm for knapsack sequence orienteering, where � denotes
the best approximation ratio for directed point-to-point orienteering.

In the next two subsections, we show how this result can be used within our framework for solving the
stochastic versions. Since most of the details are essentially same as in §§4 and 5, we only point out the changes
required in context of sequence orienteering.

6.2. Nonadaptive sequence orienteering. Here we use the O4�5-approximation algorithm for KnapSeqOrient
to obtain an O4�5-approximation algorithm for nonadaptive sequence orienteering. We define valid KnapSeqOrient
instances Ikso4W5 exactly as in Definition 2, which is parametrized by value W ∈ 80111 : : : 1B9: recall that the
size budget is W and travel budget is B−W . The algorithm remains the same as Algorithm 1. Observe that
Assumption 1 can be enforced for sequence orienteering as well. Furthermore, implementing a KnapSeqOrient
solution as a nonadaptive policy for stochastic sequence orienteering follows directly by Lemma 1. Therefore, it
remains to prove an equivalent of Lemma 2; i.e., for some choice of W the optimal value of KnapSeqOrient
instance Ikso4W5 is ì4Opt5.

As in the proof of Lemma 2, let the nonadaptive optimum P ∗ correspond to ordering v11 : : : 1 vn where the
portal vertices �s11 : : : 1 sk� appear in the prescribed order with v1 = s1 and vn = sk. For any vj ∈ V recall that
Dj =

∑j
`=1 d4v`−11 v`5 is the travel time to visit vj ; also define

D̄j 2=Dj +d4vj1 si5+

k−1
∑

`=i

d4si1 si+151

where i ∈ 811 : : : 1 k− 19 is the index such that vj appears between portals si and si+1. Note that D̄j is the minimum
amount of travel that must be incurred if the policy visits vertex vj ; this is because in sequence orienteering, we
are required to visit all the portal vertices. Note that by triangle inequality, D̄j is nondecreasing in j . Analogous
to (2), let j∗ denote the first index such that

∑

i<j

�vi
4B− D̄j5≥K · 4B− D̄j50 (7)

Here K is some constant. Having defined our “stopping point,” it is easy to see that Lemma 1 continues to hold and
the rest of the proof is completely identical, when we replace D with D̄. Thus we obtain an O4�5-approximation
algorithm for nonadaptive sequence orienteering.

6.3. Adaptive sequence orienteering. Here we use the O4�5-approximation algorithm for KnapSeqOrient to
obtain an O4� · log logB5-approximation algorithm for adaptive sequence orienteering. We enforce Assumption 1,
and it suffices to show an analog of Lemma 4 that there is some choice of parameter W for which instance
Ikso4W5 has value ì4Opt/ log logB5. The proof given in §5 makes use of the metric being undirected, and we
need to generalize that to the directed setting. To this end, we use a different concentration inequality in place of
Freedman’s inequality, which is better suited in the directed setting.

Note that the optimal adaptive policy is a decision tree Opt, with nodes being vertices that are visited and its
branches corresponding to the random instantiation. (Here we do not subdivide Opt as done in §5; we also do not
assume that jobs are not co-located.) For any node x in Opt, we denote by level4x5 the travel time spent until node
x; to reduce notation we will use x to also denote the vertex in the metric that corresponds to x. For node x define
lev4x5 2= level4x5+d4vj1 si5+

∑k−1
`=i d4si1 si+15 where i ∈ 811 : : : 1 k− 19 is the index such that x appears between
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portals si and si+1. Note that lev4x5 is the minimum amount of travel that must be incurred if the policy visits
node x. By triangle inequality, lev4 · 5 is nondecreasing down the Opt tree.

Analogous to (3), node x is called a star node if it is the first node along its sample path for which
∑

x′≺x

�x′4B− lev4x55 > 8K4B− lev4x550 (8)

Here K =ä4log logB5. This condition clearly holds when lev4x5= B, so the parent y of any star node x must
satisfy lev4y5≤ B− 1. We define Opt′′ by pruning Opt at star nodes (again, rewards at star nodes are not included
in Opt′′). Leaf nodes in Opt′′ are either leaves in Opt or parents of star nodes. We will prove Lemma 5; this
would imply an analog of Lemma 4 (with KnapSeqOrient instances) exactly as in §5 (by replacing level by lev).

In proving Lemma 5, we again partition the star nodes x into bands depending on the value B− lev4x5. Star
node x is in band i if B− lev4x5 ∈ 4B/2i+11B/2i7 for 0 ≤ i ≤ �logB� and in band �logB�+ 1 if lev4x5= B. By
Assumption 1, as in §5, the loss in reward by truncating at band �logB�+ 1 is at most Opt/8. Moreover, an
analogue of Claim 4 holds in this setting as well. To bound the loss from other bands, it suffices to prove the
analog of Lemma 6:

For any i ∈ 801 : : : 1 �logB�9, the probability of reaching band i is at most
1

10�logB�
0 (9)

We obtain the first part of Claim 5 (the second part is not true in the directed setting).

For each i ∈ 80111 : : : 1 �logB�9 and star node x in band i2
∑

x′≺x

�x′4B/2i+15≥ 2K ·
B

2i
0 (10)

Claim 6 continues to hold.

For each i ∈ 80111 : : : 1 �logB�9 and star node x in band i2
∑

x′≺x

min
(

Sx′ 1
B

2i+1

)

≤
B

2i
0 (11)

We use these two properties to bound the probability of reaching band i. We also make use of a concentration
inequality due to Zhang [29] that is described below (we use this in place of Freedman’s inequality because its
form suits us better in applying it for directed metrics):

Let I11 I21 : : : be a sequence of possibly dependent random variables; for each k≥ 1, variable Ik depends
only on Ik−11 : : : 1 I1. Consider also a sequence of random functionals �k4I11 : : : 1 Ik5 that lie in 60117. Let
ƐIk

6�k4I11 : : : 1 Ik57 denote expectation of �k with respect to Ik, conditional on I11 : : : 1 Ik−1. Furthermore, let �
denote any stopping time. Then we have

Theorem 10 (Theorem 1 in Zhang [29]).

Pr
[ �
∑

k=1

ƐIk
6�k4I11 : : : 1 Ik57≥

e

e− 1
·

( �
∑

k=1

�k4I11 : : : 1 Ik5+ �

)]

≤ exp4−�51 ∀�≥ 00

We make use of this result by setting Ik to be the kth node seen in Opt, and

�k4I11 : : : 1 Ik5= min
{

SIk
B/2i+1

11
}

0

Recall that for any node x, its instantiated size (i.e., processing time) is denoted Sx. We define the stopping time �
as reaching either a band i star node or a node that has no descendant band i star node. At any band i star node,
we have

(10) =⇒

�
∑

k=1

ƐIk
6�k4I11 : : : 1 Ik57≥ 4K1

(11) =⇒

�
∑

k=1

�k4I11 : : : 1 Ik5≤ 20

Combining these, the probability of reaching a band i star node is at most

Pr
[ �
∑

k=1

ƐIk
6�k4I11 : : : 1 Ik57≥ 4 ·

( �
∑

k=1

�k4I11 : : : 1 Ik5+K − 2
)]

≤ e−4K−251

where we use Theorem 10 with �=K − 2. Using K =ä4log logB5, we obtain that this probability is at most
1/410�logB� + 15, which proves (9).
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7. Stochastic orienteering with correlated rewards. In this section we consider the stochastic orienteering
problem where the reward of each job is a random variable that may be correlated with its processing time (i.e.,
size). The distributions at different vertices are still independent of each other. The input to CorrOrient consists of
a metric 4V 1d5 with root vertex � and a bound B. At each vertex v ∈ V , there is a stochastic job with a given
probability distribution over (size, reward) pairs: for each t ∈ 80111 : : : 1B9, the job at v has size t and reward rv1 t
with probability �v1 t . Again we consider the nonpreemptive setting, so once a job is started it must be run to
completion unless the budget B is exhausted. The goal is to devise a (possibly adaptive) policy that maximizes the
expected reward of completed jobs, subject to the total budget (travel time + processing time) being at most B. The
results of this section apply only to the basic orienteering setting and not sequence orienteering.

When there is no metric in the problem instance, this is precisely the correlated stochastic knapsack problem,
and Gupta et al. [25] gave a nonadaptive algorithm that is a constant-factor approximation to the optimal adaptive
policy; this used an LP relaxation that is quite different from that in the uncorrelated setting. The trouble with
extending that approach to stochastic orienteering is again that we do not know of LP relaxations with good
approximation guarantees even for deterministic orienteering. We circumvented this issue for the uncorrelated case
by using a martingale analysis to bypass the need for an LP relaxation that gave a direct lower bound. We adopt a
similar approach for CorrOrient, but as Theorem 4 says, our approximation ratio is only O4logn logB5: this is
because our algorithm here relies on the “deadline orienteering” problem. Moreover, we show that CorrOrient is
at least as hard to approximate as the deadline orienteering problem, for which the best guarantee known is an
O4logn5 approximation algorithm (Bansal et al. [3]).

7.1. The nonadaptive algorithm for CorrOrient. We now present our approximation algorithm for CorrOrient,
which proceeds via a reduction to suitably constructed instances of the deadline orienteering problem (Bansal
et al. [3]). An instance of deadline orienteering (DeadlineOrient) consists of a metric (denoting travel times) with
a reward and deadline at each vertex and a root vertex. The objective is to compute a path starting from the root
that maximizes the reward obtained from vertices that are visited before their deadlines.

Our high level approach, much like the earlier sections of the paper, is to reduce the stochastic problem to a
deterministic one where there is a travel budget and a size budget, i.e., a knapsack version of a deterministic
orienteering problem. In the uncorrelated stochastic orienteering problem, it did not matter when the tour visited a
vertex as long as the job could finish with reasonable probability within the size budget allocated by the tour
(the rewards are fixed). Hence the deterministic problem was simply the orienteering problem with a knapsack
constraint. In the correlated case, however, the reward could in fact depend on when the job is started with respect
to the budget remaining. For example, if a job has reward 1 when its processing time is B− 1, and 0 otherwise,
and its expected size is 1, then to collect any reward from this job, we’d have to start processing it by a time of 1.
Therefore, we use the deadline orienteering problem as a deterministic subproblem for stochastic orienteering with
correlated rewards.

We solve a knapsack version of deadline orienteering by taking a Lagrangian relaxation of the processing times
and then use an amortized analysis to argue that the reward is high in expectation. (In this it is similar to the ideas
of Guha and Munagala [22].) The crux of our proof is in showing that we can indeed reduce the stochastic
problem to the deadline orienteering problem. Namely, what deadlines do we choose for each job, and if we create
many copies with different deadlines for each job, then how do we ensure that the reward is not over counted?

Notation. Let Opt denote an optimal decision tree. We classify every execution of a job in this decision tree as
belonging to one of 4log2 B+ 15 types. For i ∈ 6log2 B7, a type i job execution occurs when the processing time
spent before running the job lies in the interval 62i − 112i+1 − 15. So if t′ is the distance spent before reaching a
type i job, then its start time lies in 6t′ + 2i − 11 t′ + 2i+1 − 15. Note that the same job might have different
types on different sample paths of Opt, but for a fixed sample path down Opt, it can have at most one type.
If Opt4i5 is the expected reward obtained from job runs of type i, then we have Opt =

∑

i Opt4i5, and hence
maxi∈6log2 B7

Opt4i5≥ì41/logB5 ·Opt. For all v ∈ V and t ∈ 6B7, let Rv1 t 2=
∑B−t

z=0 rv1 z ·�v1 z denote the expected
reward when job v’s size is restricted to being at most B− t. Note that this is the expected reward obtained from
job v if it starts at time t. Recall that for any v ∈ V , Sv denotes its random size, which has distribution 8�v1 t9

B
t=0.

7.1.1. Reducing CorrOrient to (deterministic) DeadlineOrient. The high level idea is the following: for
any fixed i, we create an instance of DeadlineOrient to get an O4logn5 fraction of Opt4i5 as reward; then
choosing the best such setting of i gives us the O4logn logB5-approximation algorithm. To obtain the instance of
DeadlineOrient, for each vertex v we create several copies of it: for each time t, there is a copy corresponding
to starting job v at time t (and hence has reward Rv1 t). However, to prevent the DeadlineOrient solution from
collecting reward from many different copies of the same vertex, we make copies of vertices only when the reward
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changes by a constant factor. The following claim is useful for defining such a minimal set of starting times for
each job.

Claim 8. Given any nonincreasing function f 2 6B7→ R+, we can efficiently find a subset I ⊆ 6B7:

f 4t5

2
≤ max

`∈I 2 `≥t
f 4`5 and

∑

`∈I 2 `≥t

f 4`5≤ 3 · f 4t51 ∀ t ∈ 6B70

Proof. The set I is constructed as follows.

Algorithm 2 (Computing the support I in Claim 8)

1: let h← 0, k0 ← 0, I ← �.
2: while kh ∈ 6B7 and f 4kh5 > 0 do
3: `h ← max8` ∈ 6B72 f 4`5≥ f 4kh5/29.
4: kh+1 ← `h + 1, I ← I ∪ 8`h9.
5: h← h+ 1.
6: end while
7: output set I .

Observe that B is always contained in the set I , and hence for any t ∈ 6B7, min8`≥ t2 ` ∈ I9 is well defined. To
prove the claimed properties, let I = 8`h9

p
h=0. For the first property, given any t ∈ 6B7 let `h = min8`≥ t2 ` ∈ I9. We

must have `h−1 < t, and so kh ≤ t. Hence f 4`h5≥ f 4kh5/2 ≥ f 4t5/2; the first inequality is by the choice `h in
Algorithm 2, and the second inequality uses that f is nonincreasing.

We now show the second property. For any index h, we have kh ≤ `h <kh+1 ≤ `h+1. Moreover, f 4kh+15=

f 4`h + 15 < f 4kh5/2 by the choice of `h. Given any t ∈ 6B7 let q be the index such that `q = min8`≥ t2 ` ∈ I9.
Consider the sum

∑

h≥q

f 4`h5= f 4`q5+
∑

h≥q+1

f 4`h5≤ f 4`q5+
∑

h≥q+1

f 4kh5≤ f 4`q5+ 2 · f 4kq+15≤ 3 · f 4`q50

The first inequality uses f 4`h5≤ f 4kh5, the next uses f 4kh+15 < f 4kh5/2 and a geometric summation, and the last is
by `q ≤ kq+1. Finally observe that t ≤ `q , so

∑

h≥q f 4`h5≤ 3 · f 4t5. This completes the proof. �
Consider any i ∈ 6log2 B7. Now for each v ∈ V , apply Claim 8 to the function f 4t5 2=Rv1 t+2i−1 to obtain a subset

I iv ⊆ 6B7. These subsets define the copies of each job that we will use.
For each i and parameter �≥ 0, we define a deadline orienteering instance as follows.

Definition 3 (Deadline Orienteering Instance Ii4�5). The metric is 4V 1d5 with root vertex �. For
each v ∈ V and ` ∈ I iv there is a job �v1 `� located at vertex v with deadline ` and reward r̂i4v1 `1�5 2=
Rv1 `+2i−1 −� · Ɛ6min4Sv12i57. The objective in Ii4�5 is to find a path originating at � that maximizes the reward
of the jobs visited within their deadlines.

Also define Ni = 8�v1 `�2 ` ∈ I iv1 v ∈ V 9, the set of all jobs in instance Ii4�5. For each job �v1 `� ∈Ni, define its
size si4v1 `5= si4v5 2= Ɛ6min4Sv12i57, and let ri4v1 `5=Rv1 `+2i−1.

The co-located jobs 8�v1 `�2 ` ∈ I iv9 in Ii4�5 are copies of job v in the original CorrOrient instance, where copy
�v1 `� corresponds to running v as a type i job after distance `. The parameter � can be thought of as a Lagrangian
multiplier, and so Ii4�5 is a Lagrangian relaxation of a DeadlineOrient instance with an additional constraint that
the total size is at most 2i. It is immediate by the definition of rewards that Opt4Ii4�55 is a nonincreasing
function of �.

The idea of our algorithm is to argue that for the “right” setting of �, the optimal DeadlineOrient solution for
Ii4�5 has value ì4Opt4i55, which is shown in Lemma 8. Moreover, as shown in Lemma 9, we can recover a valid
solution to CorrOrient from an approximate solution to Ii4�5.

Lemma 7. For any i ∈ 6logB7 and �> 0, the optimal value of the deadline orienteering instance Ii4�5 is
at least Opt4i5/2 −� · 2i+1.

Proof. Consider the optimal decision tree Opt of the CorrOrient instance, and label every node in Opt by a
4dist1 size5 pair, where dist is the total time spent traveling and size the total time spent processing jobs before
visiting that node. Note that both dist and size are nondecreasing as we move down Opt. Also, type i nodes are
those where 2i − 1 ≤ size< 2i+1 − 1. We use Opt4i5 to denote the decision tree obtained by retaining only type i
nodes in Opt; Opt4i5 also denotes the expected reward from this decision tree.
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For any vertex v ∈ V , let X i
v denote the indicator random variable that job v is run as type i in Opt, and Sv be

the random variable denoting its instantiated size. Note that X i
v and Sv are independent: X i

v is determined by the
instantiations at vertices V \8v9, and Sv depends only on vertex v (which is independent of all other vertices). Also
let Y i =

∑

v∈V X
i
v · min4Sv12i5 be the random variable denoting the sum of truncated sizes of type i jobs. By

definition of type i, we have that Y i ≤ 2 · 2i with probability one, and hence Ɛ6Y i7≤ 2i+1. For ease of notation let
qv = Pr6X i

v = 17 for all v ∈ V . We now have,

2i+1
≥ Ɛ6Y i7=

∑

v∈V

qv · Ɛ6min4Sv12i5 �X i
v = 17=

∑

v∈V

qv · Ɛ6min4Sv12i57=
∑

v∈V

qv · si4v50 (12)

Now consider the expected reward Opt4i5. We can write

Opt4i5 =
∑

v∈V

∑

`∈6B7

2i+1−2
∑

k=2i−1

Pr61v1dist=`1 size=k7 ·Rv1 `+k

≤
∑

v∈V

∑

`∈6B7

Pr61v1 type=i1dist=`7 ·Rv1 `+2i−11 (13)

where 1v1dist=`1 size=k is the indicator that Opt visits v with dist = ` and size = k, and 1v1 type=i1dist=` is the indicator
that Opt visits v as type i with dist = `. The inequality uses that Rv1 `+k is nonincreasing in k and that
Pr61v1 type=i1dist=`7=

∑2i+1−2
k=2i−1 Pr61v1dist=`1 size=k7.

Now going back to the metric, let P denote the set of all possible rooted paths traced by Opt4i5 in the metric
4V 1d5. Now for each path P ∈P, define the following quantities.

• �4P5 is the probability that Opt4i5 traces P .
• For each vertex v ∈ P , dv4P5 is the travel time (i.e., dist) incurred in P prior to reaching v. Note that the

actual time at which v is visited is dist + size, which is in general larger than dv4P5.
• w�4P5=

∑

v∈P 6
1
2 ·Rv1dv4P5+2i−1 −� · si4v57.

Moreover, for each v ∈ P , let `v4P5= min8` ∈ I iv � `≥ dv4P59; recall the definition I iv using Claim 8 and that the
quantity `v4P5 is always well-defined.

For any path P ∈P, consider P as a solution to the DeadlineOrient instance Ii4�5 that visits the copies
8�v1 `v4P5�2 v ∈ P9 within their deadlines. It is feasible for the Ii4�5 because for each vertex v ∈ P , the deadline of
its chosen copy `v4P5≥ dv4P5 the time when it is visited by P . Moreover, the objective value of P is precisely

∑

v∈P

r̂i4v1 `v4P51�5=
∑

v∈P

6Rv1 `v4P5+2i−1 −� · si4v57≥
∑

v∈P

[

1
2

·Rv1dv4P5+2i−1 −� · si4v5

]

=w�4P51

where the inequality above uses the definition of `v4P5= min8` ∈ I iv � `≥ dv4P59 and Claim 8. Now,

Opt4Ii4�55 ≥ max
P∈P

w�4P5≥
∑

P∈P

�4P5 ·w�4P5=
∑

P∈P

�4P5 ·
∑

v∈P

[

1
2

·Rv1dv4P5+2i−1 −� · si4v5

]

=
1
2

∑

v∈V

∑

`∈6B7

Pr61v1 type=i1dist=`7 ·Rv1 `+2i−1 −� ·
∑

v∈V

Pr6X i
v7 · si4v5 (14)

≥
Opt4i5

2
−� · 2i+10 (15)

Above, (14) is by interchanging summations and splitting the two terms from the previous expression. The first term
in (15) comes from (13), and the second term comes from (12) and that qv = Pr6X i

v7= Pr6v visited as type i7. �
Now let AlgDO denote an �-approximation algorithm for the DeadlineOrient problem. We abuse notation and

use AlgDO4Ii4�55 to denote both the �-approximate solution on instance Ii4�5 as well as its value. We focus on
the setting of � defined as follows:

�∗

i 2= max
{

�2 AlgDO4Ii4�55≥
2i ·�

�

}

0 (16)

Lemma 8. For any i ∈ 6log2 B7, we get �∗
i ≥ Opt4i5/2i+3, and hence AlgDO4Ii4�

∗
i 55≥ Opt4i5/48�5.

Proof. Consider the setting �̂= Opt4i5/2i+3; by Lemma 7, the optimal solution to the DeadlineOrient instance
Ii4�̂5 has value at least Opt4i5/4 ≥ 2i · �̂. Since AlgDO is an �-approximation algorithm for DeadlineOrient, it
follows that AlgDO4Ii4�̂55≥ Opt4Ii4�̂55/�≥ 2i · �̂/�. So �∗

i ≥ �̂≥ Opt4i5/2i+3. �
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7.1.2. Obtaining CorrOrient solution from AlgDO(�∗
i ). It just remains to show that the solution output by

the approximation algorithm for DeadlineOrient on the instance Ii4�
∗
i 5 yields a good nonadaptive solution to the

original CorrOrient instance. Recall the notation for the deadline orienteering instance from Definition 3. Let
� = AlgDO4�∗

i 5 be this solution—hence � is a rooted path that visits some set P ⊆Ni of nodes within their
respective deadlines. The algorithm below gives a subset Q⊆ P of nodes that we will visit in the nonadaptive
solution; this is similar to the algorithm for KnapOrient in §3.

Algorithm 3 (Algorithm Ai for CorrOrient given a solution for Ii4�
∗
i 5 characterized by a path P )

1: let y = 4
∑

v∈P si4v55/2i.
2: partition vertices of P into c = max411 �2y�5 parts P11 : : : 1 Pc with

∑

�v1 `�∈Pj
si4v5≤ 2i, ∀1 ≤ j ≤ c.

3: set Q ← Pk where k = arg maxc
j=1

∑

�v1 `�∈Pj
ri4v1 `5.

4: for each v ∈ V , define dv 2= min8`2 �v1 `� ∈Q9.
5: let Q̄ 2= 8v ∈ V 2 dv <�9 be the vertices with at least one copy in Q.
6: sample vertices in Q̄ independently w.p. 1/2, and visit these sampled vertices in the order given by P .

At a high level, the algorithm partitions the vertices in P into groups, where each group obeys the size budget of
2i in expectation. It then picks the most profitable group among these. The main issue with Q chosen in step 3
is that it may include multiple copies of the same job: recall that the DeadlineOrient instance contains many
co-located jobs for each job of the CorrOrient instance. But because of the way we constructed the sets I vi (based
on Claim 8), we can simply pick the copy that corresponds to the earliest deadline; by discarding all the other
copies, we only lose out on a constant fraction of the reward ri4Q5. Below, Claim 9 bounds the total (potential)
reward of the set Q we select in step 3. Next, Claim 10 shows that we do not lose much of the total reward
by retaining only one copy (with deadline dv) of each v ∈Q in step 4. Finally, Claim 11 shows that for any
vertex v ∈ Q̄, with constant probability, step 6 reaches v by time dv + 2i − 1 (which corresponds to obtaining
reward ri4v1dv5).

Claim 9. The reward ri4Q5=
∑

�v1 `�∈Q ri4v1 `5 is at least Opt4i5/48�5.

Proof. By the choice of set Q in step 3, ri4Q5≥ 4ri4P55/c and

ri4P5

c
≥

�∗
i · y2i +�∗

i · 2i/�

c
= �∗

i 2
i
·

(

y+ 1/�
c

)

≥ �∗

i 2
i
· min

{

y+
1
�
1

1
2

+
1

2�y

}

≥
�∗
i 2

i

�
0 (17)

The first inequality in (17) is by the choice of �∗
i (16); i.e.,

2i ·�∗
i

�
≤ AlgDO4�∗

i 5=
∑

�v1 `�∈P

6ri4v1 `5−�∗

i · si4v57= ri4P5−�∗

i · si4P5= ri4P5−�∗

i · y2i0

The second inequality in (17) is by c ≤ max8112y9, and the last inequality uses �≥ 2. To conclude we simply use
Lemma 8 in the last expression of (17). �

Claim 10.
∑

v∈Q̄Rv1dv+2i−1 ≥ Opt4i5/416�5.

Proof. For each u ∈ Q̄, let Qu =Q∩ 8�u1 `�2 ` ∈ 6I iu79 denote all copies of u in Q. Now by the definition of
du we have `≥ du for all �u1 `� ∈Qu. So for any u ∈ Q̄,

∑

�u1 `�∈Qu

Ru1 `+2i−1 ≤
∑

`∈I iu2 `≥du

Ru1 `+2i−1 ≤ 2 ·Ru1du+2i−10

Above, the last inequality uses the definition of I iu as given by Claim 8. Adding over all u ∈ Q̄,

∑

u∈Q̄

Ru1du+2i−1 ≥
1
2

∑

u∈Q̄

∑

�u1 `�∈Qu

Ru1 `+2i−1 =
1
2

∑

�v1 `�∈Q

ri4v1 `5≥
Opt4i5

16�
0

Here, the last inequality uses Claim 9. This completes the proof. �

Claim 11. For any vertex v ∈ Q̄, it holds that Pr6Ai reaches job v by time dv + 2i − 17≥ 1
2 .
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Proof. We know that because P is a feasible solution for the DeadlineOrient instance, the distance traveled
before reaching the copy �v1dv� is at most dv. Therefore, in what remains we show that with probability 1/2, the
total size of previous vertices is at most 2i − 1. To this end, let Ū denote the set of vertices sampled in step 6. We
then say that the bad event occurs if

∑

u∈Ū\v min4Su12i5≥ 2i. Indeed if
∑

u∈Ū\v min4Su12i5 < 2i, then we would
reach v by time dv + 2i − 1.

We now bound the probability of the bad event. For this purpose, observe that

Ɛ

[

∑

u∈Ū\v

min4Su12i5

]

≤
1
2

∑

u∈Q̄

Ɛ6min4Su12i57=
1
2

∑

u∈Q̄

si4u5≤ 2i−10

The first inequality is by linearity of expectation and the fact that each u ∈ Q̄ is sampled into Ū with probability
1/2. The last inequality uses the size bound on Q̄ by the partitioning in step 2. Hence, the probability of the bad
event is at most 1/2 by Markov’s inequality. �

Lemma 9. The expected reward of the algorithm Ai is at least Opt4i5/464�5.

Proof. We know from Claim 11 that for each vertex v ∈ Q̄, algorithm Ai reaches v by time dv + 2i − 1 with
probability at least 1/2. Moreover, this event is determined by the outcomes at vertices Q̄\8v9. Thus, conditioned
on this event, v is sampled with probability 1/2. Therefore, the expected reward collected from v is at least
41/45Rv1dv+2i−1. The proof is complete by using linearity of expectation and then Claim 10. �

Since the final algorithm for CorrOrient takes the best solution over all types i ∈ 6log2 B7, Lemma 9 implies an
O4logn · logB5-approximation ratio. This proves the first part of Theorem 4.

7.2. Evidence of hardness for CorrOrient. Our approximation algorithm for CorrOrient can be viewed as
a reduction to DeadlineOrient, at the loss of an O4logB5 factor. We now provide a reduction in the reverse
direction: namely, a �-approximation algorithm for CorrOrient implies a 4�− o4155-approximation algorithm for
DeadlineOrient. In particular this means that a sublogarithmic approximation ratio for CorrOrient would also
improve the best known approximation ratio for DeadlineOrient.

Consider any instance I of DeadlineOrient on metric 4V 1d5 with root � ∈ V and deadlines 8tv9v∈V ; the goal is
to compute a path originating at � that visits the maximum number of vertices before their deadlines. We now
define an instance J of CorrOrient on the same metric 4V 1d5 with root �. Let B 2= 1 + maxv∈V tv. Fix parameter
0 <p � 1/n2. The job at each v ∈ V has the following distribution: size B− tv and reward 1/p with probability p
and size zero and reward 0 with probability 1 − p. To complete the reduction from DeadlineOrient to CorrOrient
we will show that

41 − o4155 · Opt4I5≤ Opt4J5≤ 41 + o4155 · Opt4I50

Let � be any solution to I that visits subset S ⊆ V of vertices within their deadline, so the objective value of �
is �S�. This also corresponds to a (nonadaptive) solution to J. For any vertex v ∈ S, the probability that zero
processing time has been spent prior to v is at least 41 −p5n. In this case, the start time of job v is at most tv
(recall that � visits v ∈ S by time tv) and hence the conditional expected reward from v is p · 41/p5= 1 (since v
has size B− tv and reward 1/p with probability p). It follows that the expected reward of � as a solution to J is
at least

∑

v∈S41 −p5n ≥ �S� · 41 −np5= 41 − o4155 · �S�. Choosing � to be the optimal solution to I, we have
41 − o4155 · Opt4I5≤ Opt4J5.

Consider now any adaptive policy � for J, with expected reward R4�5. Define path �0 as one starting from the
root of � that always follows the branch corresponding to size zero instantiation. Consider �0 as a feasible
solution to the DeadlineOrient instance I. Let S0 ⊆ V denote the vertices on path �0 that are visited prior to their
respective deadlines. Clearly, Opt4I5≥ �S0�. When policy � is run, every size zero instantiation gives zero reward,
so if positive reward is obtained, then the sample path must diverge from �0. Moreover, if there is positive
reward, the sample path must have positive size instantiation at some vertex in S0: this is because a positive size
instantiation at any 4V \S05-vertex along �0 would violate the bound B (by definition of sizes and set S0). Hence,

Pr6� gets positive reward7≤ p · �S0�0 (18)

Moreover, since the reward is always an integral multiple of 1/p,

R4�5 =
1
p

·

n
∑

i=1

Pr6� gets reward at least i/p7

=
1
p

· Pr6� gets positive reward7+
1
p

·

n
∑

i=2

Pr6� gets reward at least i/p70 (19)
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Furthermore, for any i ≥ 2, we have

Pr6� gets reward at least i/p7≤ Pr6at least i jobs instantiate to positive size7≤
(

n

i

)

·pi
≤ 4np5i0

It follows that the second term in (19) can be upper bounded by 41/p5 ·
∑n

i=24np5
i ≤ 2n2p since np < 1

2 . Combining
this with (18) and (19), we obtain that R4�5≤ �S0� + 2n2p = �S0� + o415 since n2p � 1. Since this holds for any
adaptive policy � for J, we get Opt4I5≥ 41 − o4155 · Opt4J5.

This proves the second part of Theorem 4.

8. Stochastic orienteering with cancelations. Throughout the paper, we considered the nonpreemptive model
for processing jobs. In this section, we observe that those results also extend to a different model where a policy
can cancel/abort jobs during processing. However, once a job is aborted, it cannot be attempted again. Even in the
special case of stochastic knapsack, there are instances that demonstrate an arbitrarily large gap in the expected
reward for policies that can cancel and those that cannot (Gupta et al. [25]). Our algorithms for usual StocOrient
extend easily to StocOrient with cancelation with the same guarantees: O4log logB5 for the uncorrelated version
and O4logn logB5 for the correlated version.

The main idea is to modify the deterministic subproblems slightly; i.e., KnapOrient for uncorrelated StocOrient
and DeadlineOrient for the correlated case. Specifically, we create up to B co-located copies of each job v, each
of which corresponds to canceling the job v after a certain time t of processing it (the size and reward of copy
�v1 t� are defined to reflect this). It is easy to see that any adaptive optimal solution, when it visits a vertex, in fact
just plays some copy of it (which copy might depend on the history of the sample path taken to reach this vertex).
So exactly as before, we can find a good deterministic solution with suitably large reward (this is the KnapOrient
problem for the uncorrelated case and the DeadlineOrient problem for the correlated case). Now the only issue is
when we translate back from the deterministic instance to a nonadaptive solution for the StocOrient instance: the
deterministic solution might collect reward from multiple copies of the same job. We can bound this gap by again
using the geometric scaling idea (Claim 8); i.e., if there are two copies of roughly the same reward, we only keep
the one with the earlier cancelation time. This way, we can ensure that for all copies of a particular job, the
rewards are geometrically decreasing. Now, even if the deterministic solution collects reward from multiple copies
of a job, we can simply use the one among them with highest reward.

9. Conclusion. In this paper we studied stochastic variants of the orienteering problem, where jobs with
random processing times are located at vertices in a metric space. We obtained an O4log logB5-approximation
algorithm and adaptivity gap for the basic stochastic orienteering problem. Very recently, Bansal and Nagarajan [2]
showed an ì4

√
log logB5 lower bound on the adaptivity gap for this problem. Closing this gap remains the

main open question. For the correlated stochastic orienteering problem, where job rewards are also random and
correlated with processing times, we obtained an O4logn · logB5-approximation algorithm. We also showed
that this problem is at least as hard to approximate as the deadline orienteering problem, for which the best
approximation ratio known is O4logn5. Improving the approximation ratio for correlated stochastic orienteering is
another interesting open question.
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[9] Călinescu G, Chekuri C, Pál M, Vondrák J (2011) Maximizing a monotone submodular function subject to a matroid constraint. SIAM J.

Comput. 40(6):1740–1766.
[10] Campbell AM, Gendreau M, Thomas BW (2011) The orienteering problem with stochastic travel and service times. Annals OR

186(1):61–81.
[11] Chekuri C, Khanna S (2004) On multidimensional packing problems. SIAM J. Comput. 33(4):837–851.
[12] Chekuri C, Kumar A (2004) Maximum coverage problem with group budget constraints and applications. Workshop on Approximation

Algorithms Combin. Optim. Problems (APPROX) (Springer, Berlin, Heidelberg), 72–83.
[13] Chekuri C, Pál M (2005) A recursive greedy algorithm for walks in directed graphs. IEEE Sympos. Foundations Comput. Sci. (FOCS)

(IEEE Computer Society, Washington, DC), 245–253.
[14] Chekuri C, Korula N, Pál M (2012) Improved algorithms for orienteering and related problems. ACM Trans. Algorithms 8(3):23.
[15] Chekuri C, Vondrák J, Zenklusen R (2010) Dependent randomized rounding via exchange properties of combinatorial structures. IEEE

Sympos. Foundations Comput. Sci. (FOCS) (IEEE Computer Society, Washington, DC), 575–584.
[16] Chen K, Har-Peled S (2008) The Euclidean orienteering problem revisited. SIAM J. Comput. 38(1):385–397.
[17] Chen N, Immorlica N, Karlin AR, Mahdian M, Rudra A (2009) Approximating matches made in heaven. Internat. Colloquium on

Automata, Languages and Programming (ICALP), (Springer, Berlin, Heidelberg), 266–278.
[18] Coffman Jr EG, Mitrani I (1980) A characterization of waiting time performance realizable by single-server queues. Oper. Res.

28(3):810–821.
[19] Dean BC, Goemans MX, Vondrák J (2008) Approximating the stochastic knapsack problem: The benefit of adaptivity. Math. Oper. Res.

33(4):945–964.
[20] Freedman DA (1975) On tail probabilities for martingales. Ann. Probab. 3(1):100–118.
[21] Guha S, Munagala K (2007) Approximation algorithms for budgeted learning problems. ACM Sympos. Theory Comput. (STOC) (ACM,

New York), 104–113.
[22] Guha S, Munagala K (2009) Multi-armed bandits with metric switching costs. Internat. Colloquium on Automata, Languages and

Programming (ICALP) (Springer, Berlin, Heidelberg), 496–507.
[23] Gupta A, Nagarajan V, Ravi R (2010) Approximation algorithms for optimal decision trees and adaptive TSP problems. Internat.

Colloquium on Automata, Languages and Programming (ICALP) (Springer, Berlin, Heidelberg), 690–701.
[24] Gupta A, Nagarajan V, Ravi R (2010) Robust and maxmin optimization under matroid and knapsack uncertainty sets. CoRR abs/1012.4962.
[25] Gupta A, Krishnaswamy R, Molinaro M, Ravi R (2011) Approximation algorithms for correlated knapsacks and nonmartingale bandits.

IEEE Sympos. Foundations Comput. Sci. (FOCS) (IEEE Computer Society, Washington, DC), 827–836.
[26] Kosaraju SR, Przytycka TM, Borgstrom RS (1999) On an optimal split tree problem. Workshop on Algorithms and Data Structures

(WADS) (Springer, Berlin, Heidelberg), 157–168.
[27] Möhring RH, Schulz AS, Uetz M (1999) Approximation in stochastic scheduling: The power of LP-based priority policies. J. ACM

46(6):924–942.
[28] Nagarajan V, Ravi R (2011) The directed orienteering problem. Algorithmica 60(4):1017–1030.
[29] Zhang T (2005) Data dependent concentration bounds for sequential prediction algorithms. Conf. Learn. Theory (COLT) (Springer, Berlin,

Heidelberg), 173–187.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

2.
92

.1
9]

 o
n 

13
 A

ug
us

t 2
01

5,
 a

t 1
0:

32
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 


	Introduction.
	Our results and techniques.
	Related work.
	Outline.

	Definitions and notation.
	The (deterministic) knapsack orienteering problem.
	A straw man approach: Reduction to deterministic orienteering.
	Our approach: Reduction to knapsack orienteering.

	Nonadaptive stochastic orienteering.
	Adaptive stochastic orienteering.
	Stochastic sequence orienteering.
	(Deterministic) knapsack sequence orienteering.
	Approximating sequence orienteering.
	Approximating knapsack sequence orienteering.

	Nonadaptive sequence orienteering.
	Adaptive sequence orienteering.

	Stochastic orienteering with correlated rewards.
	The nonadaptive algorithm for CorrOrient.
	Reducing CorrOrient to (deterministic) DeadlineOrient.
	Obtaining CorrOrient solution from AlgDO($\lambdaˆ* _i$).

	Evidence of hardness for CorrOrient.

	Stochastic orienteering with cancelations.
	Conclusion.

