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Attainability in Repeated Games with Vector Payoffs∗
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Abstract

We introduce the concept of attainable sets of payoffs in two-player repeated games

with vector payoffs. A set of payoff vectors is called attainable by a player if there is

a finite horizon T such that the player can guarantee that after time T the distance

between the set and the cumulative payoff is arbitrarily small, regardless of the strategy

Player 2 is using. We provide a necessary and sufficient condition for the attainability

of a convex set, using the concept of B-sets. We then particularize the condition to the

case in which the set is a singleton, and provide some equivalent conditions. We finally

characterize when all vectors are attainable.
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1 Introduction

In various dynamic situations the stage-payoff is multidimensional, and the goal of the

decision maker is to drive the total vector-payoff as close as possible to a given target set.

One such example is dynamic network models, which include a variety of logistic applications

such as production, distribution and transportation networks. In the literature on dynamic

network flow control [4, 5, 11, 12, 15], the supplier tries to meet a multidimensional demand.

His goal is to ensure that the difference between the total demand and the total supply

converges with time to a desirable target. One can model such a situation as a two-player

repeated game, where Player 1 is the decision maker and Player 2 represents the adversarial

market that controls demand. In the distribution network scenario, for instance, the supplier

has a desirable multidimensional inventory level that he would like to maintain, despite

erratic behavior of the demand side. Having to deal with an adversarial opponent requires

the supplier to cope with the worst possible scenario. This motivates our main objective:

to find conditions that characterize when a specific target set can be attained under any

possible demand pattern exhibited by the market.

A second example is the Capital Adequacy Ratio. The third Basel Accord states that

(a) the bank’s Common Equity Tier 1 must be at least 4.5% of its risk-weighted assets at all

times, (b) the bank’s Tier 1 Capital must be at least 6.0% of its risk-weighted assets at all

times, and (c) the total capital, that is, Tier 1 Capital plus Tier 2 Capital, must be at least

8.0% of the bank’s risk weighted assets at all times. To accommodate this example in our

setup, consider the following 3-dimensional vector. The first coordinate stands for the per-

period difference between the bank’s Common Equity Tier 1 and 4.5% of its risk-weighted

assets; the second coordinate stands for the per-period difference between the bank’s Tier

1 Capital and 6.0% of its risk-weighted assets; and the third stands for the per-period

difference between the total capital and 8.0% of the bank’s risk weighted assets. According

to the Capital Adequacy Ratio the coordinates of this vector should be nonnegative. Here,

Player 1 represents the bank’s managers who control its assets, and Player 2 represents

market behavior, which is unpredictable and thought of as adversarial. Thus, the goal of

Player 1 is to design a strategy that would drive the 3-dimensional total payoff to the target

set – the nonnegative orthant. To ensure that they fulfill the requirements of the Basel

Accord, banks try to hold a capital buffer on top of the regulatory minimum, and they

periodically adjust their assets to be at the top of the buffer [13, 19].

To model such situations we study two-player repeated games with vector-payoffs in

continuous time. We say that a set A in the payoff space is attainable by Player 1 if there is
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a time T such that for every level of proximity, ε > 0, Player 1 has a strategy guaranteeing

that against every possible strategy for Player 2, the distance between A and the cumulative

payoff up to any time t greater than T is smaller than ε. If a set A is attainable by a supplier,

then in order to ensure that the inventory level would converge to A, he can plan his actions

based on historical inventory levels and market data.

The definition of attainability is close in spirit to the concept of approachable sets [9],

which refers to the average stage-payoff rather than to the cumulative one. While a set A

is attainable by Player 1 if he can ensure that the cumulative payoff converges to it, it is

approachable by him if he can ensure that the average payoff converges to the set.

To illustrate the difference between these two notions, suppose that the target set of a

supplier consists of one point, say x. If this set is attainable by him, it implies that the

long-run inventory level is stable around x. On the other hand, if it is approachable, it

merely guarantees that the average inventory level converges to x. This may happen also

when the actual level itself does not converge to x, and even when any fixed running average

does not converge to x. This observation suggests that although the notions of attainability

and approachability are close to each other, the flavor of the results and their proofs are

completely different.

One of our main results characterizes attainable convex sets. It uses the concept of

B-sets (see [9]). It states that a convex set Y is attainable by a player if and only if there

exist two B-sets C and C ′ for that player (or, alternatively, two approachable sets) and

a nonnegative real number α such that αC + Cone(C ′) ⊆ Y . The idea behind this result

lies on two main properties that the cumulative payoff along any possible trajectory of the

game must have. The first is that the cumulative payoff must reach the set Y within a

certain time T , independently of the strategy of the other player. The second property is

that it has to remain close to Y at any time after T . The first property is responsible for

the existence of C and its role while the second property for that of C ′.

In the case where Y is compact then Cone(C ′) is necessarily compact, which may hap-

pen only if C ′ consists only of ~0. Our characterization entails that {~0} must then be

approachable. This observation enables us to provide necessary and sufficient conditions

for a singleton (i.e., a set containing a single vector) to be attainable by Player 1. We

use it to show that every singleton is attainable by Player 1 if and only if the value of all

scalar games obtained from the vector-payoff game by projecting the payoff function on any

direction λ 6= ~0 is positive.

The results presented here apply to games played in continuous time and where players
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are allowed to use a special type of behavior strategies. These strategies are characterized

by an increasing sequence of positive real numbers that divide the time span [0,∞) into

subintervals. The play of a player in each interval depends on the play of the other player

before this interval starts and is independent on the other player’s play during this interval.

This is equivalent to saying that before the game starts, a player sets an alarm clock to

ring at certain pre-specified times, and whenever the clock rings, the player looks at the

historical play path and determines how to play until the next time the clock rings. In

the literature of differential games this type of strategies is called nonanticipating strategies

with delay. We later discuss the interpretation of this type of strategies.

There is a literature on decision problems related to dynamic multiinventory in con-

tinuous time (see for instance, the continuous-time control strategy in [11]). The control

literature up to this point refers to one-person (the controller) decision problems with uncer-

tainty. To the best of our knowledge, this paper is the first that takes a strategic approach

to these problems.

The paper is organized as follows. In Section 2 we provide a motivating example. In

Section 3 we introduce the model and main definitions. In Section 4 we present our results,

and Section 5 is devoted to discussing a few aspects related to the definition of attainability

and to the type of strategies that we are using. Proofs are relegated to Section 6.

2 A motivating example

This section details one motivation of our study: distribution networks. Consider a dis-

tributer of a certain product who has two warehouses A and B in different regions. Every

month the distributer can order products from factories to each of the warehouses, and he

can transport products between the two warehouses, while vendors order products from the

warehouses. This situation is described graphically in Figure 1(a).

fA

fB

fT

wA

wB

A

B

(a) Three distribution flows fA, fT ,

fB and two vendors requests wA, wB .

fA

fB

fT

wA

wB

wC
A

B

C

(b) Factory manager can sell directly to

vendors: node C represents factory.

Figure 1: Distribution network with warehouses A and B.
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In Figure 1(a), fA and fB are the number of products that are sent from factories

to the two warehouses A and B, fT is the number of products that are transported from

warehouse A to warehouse B, and wA and wB are the number of products sent from the two

warehouses to vendors. Negative flows are interpreted as flows in the opposite direction;

e.g., if vendors return products to warehouse A (resp. to warehouse B), then wA (resp.

wB) is negative. If products are transported from warehouse B to warehouse A, then fT

is negative. We analyze this situation in continuous time. The change of stock in the two

warehouses is given by the 2-dimensional vector

u(at1, a
t
2) =

(
1 −1 0

0 1 1

)

︸ ︷︷ ︸
F




f t
A

f t
T

f t
B




︸ ︷︷ ︸
at
1

−
(

wt
A

wt
B

)

︸ ︷︷ ︸
at
2

,

where at1 = (f t
A, f

t
B, f

t
T ) is the decision variable of the distributer, and at2 = (wt

A, w
t
B) is the

uncontrolled market demand at time t.

Suppose that the number of products that can be ordered by vendors at each time

instance is bounded by 2, and the number of products that can be returned by vendors

to each warehouse at every time instance is 3. In other words, wt
A and wt

B are in [−3, 2].

Suppose also that the amount of product that the distributer can order from or return to

the factories and transport between the two warehouses is bounded by 5.

This situation can be described by a two-person game as follows. The distributer (Player

1) has 8 actions

(5, 5, 5), (5, 5,−5), (5,−5, 5), (5,−5,−5), (−5, 5, 5), (−5, 5,−5), (−5,−5, 5), (−5,−5,−5),

while the market demand or nature (Player 2) has 4 actions

(−3,−3), (−3, 2), (2,−3), (2, 2).

The payoffs correspond to the change of stock in the two warehouses, and are given by the

following table:
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(-5,-5,-5)

(-5,-5,5)

(-5,5,-5)

(-5,5,5)

(5,-5,-5)

(5,-5,5)

(5,5,-5)

(5,5,5)

(-3,-3) (-3,2) (2,-3) (2,2)

(3,-7)

(3,3)

(-7,3)

(-7,13)

(13,-7)

(13,3)

(3,3)

(3,13)

(3,-12)

(3,-2)

(-7,-2)

(-7,8)

(13,-12)

(13,-2)

(3,-2)

(3,8)

(-2,-7)

(-2,3)

(-12,3)

(-12,-13)

(8,-7)

(8,3)

(-2,3)

(-2,13)

(-2,-12)

(-2,-2)

(-12,-2)

(-12,8)

(8,-12)

(8,-2)

(-2,-2)

(-2,8)

Figure 2: The strategic-form game corresponding to the situation.

At every time instance the two players choose their actions. Each market behavior translates

into a mixed action of Player 2, and each behavior of the distributer corresponds to a mixed

action of Player 1. The (2-dimensional) total payoff up to time t is the number of products

that are stored in each of the two warehouses. The goal of the distributer is to ensure that

the total number of products in each warehouse does not exceed its capacity, that is, that

the total payoff should not exceed a certain (2-dimensional) bound.

Figure 1(b) describes the case where the factory manager can sell directly to vendors,

bypassing the distribution to warehouses. This situation can be represented by adding an

additional node C modeling the factory, and an edge that represents the market demand.

The stock is now a 3-dimensional vector, as we have to take into account the inventory

available at the factory, and consequently the change in the stock modifies as shown below:

u(at1, a
t
2) =




1 −1 0

0 1 1

−1 0 −1







f t
A

f t
T

f t
B


−




wt
A

wt
B

wt
C


 .

A recurrent question in the network flow control literature [4, 5, 11, 12, 15] is about

conditions that ensure the existence of a control strategy that drives the excess supply

vector to a desired target level in R
m regardless of the unpredictable realization of the

demand. The equivalence between the excess supply and the cumulative payoff in the

dynamic game motivates our study. The rest of the paper is devoted to the analysis of

conditions under which Player 1 has a strategy ensuring the attainability of a convex set,

regardless of the behavior of Player 2.
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Situations where the target is to control the total payoff occur also in production and

transportation networks. Production networks describe production processes and activities

necessary to turn raw materials into intermediate products and eventually into final prod-

ucts. The nodes of the networks represent raw materials and intermediate/final products.

The buffer at each single node i models the amount of material or product of type i stored

or produced up to the current time, and hyper-arcs describe the materials or products con-

sumed (tail nodes) and produced (head nodes) in each activity or process. Transportation

networks model the flow of commodities, information, or traffic; nodes of the networks rep-

resent hubs and the buffers at the nodes describe the quantity of commodities present in

the hubs. The edges describe transportation routes.

2.1 Related control and optimization literature

We highlight two main streams of related literature, one from the control area and the

second from the optimization area. These two bodies of literature have two main elements

in common: i) the interest towards robustness, and ii) the presence of a network dynamic

flow scenario.

Connections between robust control and noncooperative game theory has a long history

(see, e.g., [3]). Robust control is the area of control theory that looks for strategies that

“control” the state of a dynamical system, for instance, drive it to a given set, despite the

effects of disturbances (see the seminal paper [7]). Among the foundations of robust control

we find two main notions that can be related to attainability and are surveyed in [10].

The first notion, robust global attractiveness, refers to the property of a set to “attract”

the state of the system under a proper control strategy, independently of the effects of the

disturbance. The second notion, robustly controlled invariance, describes the property of

a set to bound the state trajectory under a proper control strategy, independently of the

effects of the disturbance. Both notions are widely exploited in a variety of works that

contribute to the use of robust control in dynamic network flow models [4, 5, 11, 12, 15].

A second stream of literature can be identified under the name of “robust optimization”.

This is a relatively recent technique that describes uncertainty via sets and optimizes the

worst-case cost over those sets (see, e.g., the introduction to the special issue [6]). The use

of robust optimization techniques in dynamic network models is the main focus of [1, 2, 8].

There, a main theme is to “adjust” some of the supplier’s decision variables to the uncertain

outcome. More specifically, some variables are determined before the outcome is realized

while the rest are determined after the outcome is realized. Such a problem formulation
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is referred to as “Adjustable Robust Counterpart” (ARC) problem, or “two-stage robust

optimization with recourse” and as it will be clear later it shares striking similarities with

the formulation of attainable strategies presented in the current paper.

This paper focuses on the game theoretic aspects related to attainable sets. A discussion

on applications to network flow control problems is introduced in a companion paper [16].

3 Attainability

In the first part of this section we introduce the mathematical model of repeated game

in continuous time and elaborate on the type of strategies used by the players. In the

remaining part, we provide a formal definition of attainability.

3.1 The model

We study a two-player repeated game with vector payoffs in continuous time Γ. The set of

players is N = {1, 2}, and the finite set of actions of each player i is Ai. The instantaneous

payoff is given by a function u : A1 ×A2 → R
m, where m is a natural number. We assume

w.l.o.g. that payoffs are bounded by 1, so that u : A1 ×A2 → [−1, 1]m. We extend u to the

set of mixed action pairs, ∆(A1)×∆(A2), in a bilinear fashion. The one-shot vector-payoff

game (A1, A2, u) is denoted by G and we will say that the game in continuous time Γ is

based on G. For i ∈ {1, 2}, −i denotes the opponent of i.

The game Γ is played over the time interval [0,∞). We assume that the players use

nonanticipating behavior strategies with delay, which we define below. Roughly, a nonan-

ticipating behavior strategy with delay divides time into intervals. The behavior of a player

in a given interval depends on the behavior of the other player up to the beginning of the

interval. In other words, the way a player plays during a given interval of time does not

affect the way the opponent plays during that interval. Still, it may affect the other player’s

play in subsequent intervals.

Formally, denote by Ci the set of all controls of player i, that is, the set of all measurable

functions from the time space, [0,∞), to player i’s mixed actions. That is,

Ci := {ai : [0,∞) → ∆(Ai), ai is measurable} .

Definition 1 A function σi : C−i → Ci is a behavior strategy with delay (or simply a

strategy) for player i, if there exists an increasing sequence of real numbers (τki )k∈N such

that for every a−i, a
′
−i ∈ C−i,

a−i(t) = a′−i(t) ∀t ∈ [0, τki ) =⇒ (σi(a−i))(t) = (σi(a
′
−i))(t) ∀k ∈ N, ∀t ∈ [τki , τ

k+1
i ),
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where τ0i = 0.

In the sequel we refer to the real numbers (τki )k∈N in Definition 1 as the updating times

related to σi.

Remark 1 In the literature on differential games a strategy as the one defined above is

called a nonanticipating strategy with delay. An equivalent formulation, which may look

more transparent to game theorists, is as follows. A strategy for player i is a list (τki , σ
k
i )k∈N

where (τki )k∈N is an increasing sequence of real numbers, and for each k ∈ N, σk
i is a

function that maps play paths (of both players) on the interval [0, τki ) to plays of player i in

the interval [τki , τ
k+1
i ).

Later on when defining or referring to a strategy we use this formulation.

Remark 2 Models with continuous time are typically used as a tractable version of discrete-

time models, where the gap between two consecutive stages is small. This is the case here

as well. Suppose that time is discrete, and that the time interval between any two suc-

cessive decisions is extremely small. Suppose moreover, that observing opponent’s actions

is time consuming and possibly costly. Thus, players cannot observe each other’s actions

at every time. Rather, they observe their opponent’s actions relatively rarely compared to

the frequency in which actions are taken. Our continuous-time model captures this aspect:

although time is continuous, players observe historical play and decide how to play in the

next interval in discrete times. Neither updating nor new decision is taken place between

two updating times.

Every pair of strategies σ = (σ1, σ2) uniquely determines a play path (aσ(t))t∈R+
. The

cumulative payoff-vector up to time T associated with the pair of strategies σ is given by

γT (σ) =

∫ T

0
u(aσ(t))dt ∈ R

m. (1)

Sometimes we denote it by γTG when we wish to emphasize that the payoff is in the game

based on G. Note that since the payoffs are bounded by 1, the integral in (1) is well-defined.

3.2 Attainability: the definition

The subject matter of this paper is the concept of attainable sets. A set of vectors is attain-

able by a player if he can guarantee that the distance between the set and the cumulative

payoff converges to 0, regardless of the strategy of the opponent. We provide a definition

here and two alternative ones are discussed later in Section 5.
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Definition 2 A nonempty closed set Y ⊆ R
m is attainable by Player 1 if there is T > 0

such that for every ε > 0 there is a strategy σ1 of Player 1 such that1

d(γt(σ1, σ2), Y ) ≤ ε, ∀t ≥ T, ∀σ2.

A set Y is attainable if there is a finite horizon T such that Player 1 can ensure, against

any possible strategy of Player 2, that the cumulative payoff up to any time t ≥ T is within

ε from Y . Note that the time T is uniform across all levels of precision. That is, in order

for Y to be attainable by Player 1, Player 1 must be able to guarantee that the cumulative

payoff at any time longer than T would be within any ε from Y . However, different ε’s

might require different strategies employed by Player 1. It might therefore happen that

although Y is attainable by Player 1, the cumulative payoff would never touch Y itself. We

say that the strategy σ1 in Definition 2 attains the set Y up to ε.

When Y contains a single vector and it is attainable by Player 1, we say that the vector

x is attainable by him. Denote by W the set of attainable vectors.

Since the notion of attainability is related to that of approachability, we recall the

definition of the later (in a continuous-time framework). Denote the mean vector-payoff

between times 0 and T by

γT (σ1, σ2) =
1

T
γT (σ1, σ2).

Definition 3 A nonempty closed set Y ⊆ R
m is approachable by Player 1 if for every

ǫ > 0 there exist T > 0 and a strategy σ1 of Player 1 such that

d
(
γt(σ1, σ2), Y

)
≤ ǫ, ∀t ≥ T, ∀σ2.

The original definition of approachable sets [9] was given in discrete time repeated games.

A set is approachable in the discrete time model if and only if it is approachable in the

continuous time one (see, [17]).

The definitions of attainability and approachability are close in spirit. There is, however,

a significant difference between the two concepts. A set is approachable if the average payoff

converges to it, while a set is attainable if the cumulative payoff converges to the set. In other

words, approachability refers to the convergence of the average payoff, while attainability

to the convergence of the cumulative payoff.

1The distance referred to throughout the paper is the Euclidean distance and the norm is the L2-norm

‖.‖2. The distance between a point x and a set A is, therefore, d(x,A) = miny∈Y ‖x− y‖2.
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4 Results

This section presents the main results. The first, Theorem 1, characterizes closed and convex

attainable sets. Using this result, we derive a characterization of attainable compact convex

sets and of attainable vectors. Finally, the last result provides a stronger condition that

ensures that any vector x ∈ R
m is attainable.

For every nonempty closed set Y ⊆ R
m and every z ∈ R

m we denote by ΠY (z) := {y ∈
Y | d(z, y) = d(z, Y )} the set of points in Y closest to z. When the set Y is convex, ΠY (z)

contains a single point. Our main theorem characterizes closed convex attainable sets. To

state the result we borrow from [9] the concept of B-set.

Definition 4 A nonempty closed set C ⊆ R
m is a B-set for Player 1 if for every z ∈ R

m

there exists c ∈ ΠC(z) and x ∈ ∆(A1) such that

〈u(x, a2)− c, z − c〉 ≤ 0, ∀a2 ∈ A2.

If a nonempty closed set contains a B-set, then it is approachable [9]. Conversely, every

approachable set contains a B-set [14, 18]. Therefore, a set is approachable if and only if it

contains a B-set.

We show that a closed convex set is attainable if and only if it contains a certain sum

of two B-sets. For every set Y ⊆ R
m we denote the cone spanned by Y by Cone(Y) =

{αy, α ∈ R
+, y ∈ Y}.

Theorem 1 A closed convex set Y ⊆ R
m is attainable by Player 1 if and only if there exist

α > 0 and two B-sets for that player C and C ′ such that

αC +Cone(C ′) ⊆ Y. (2)

The idea behind the theorem is that any trajectory attaining a set Y consists of two

parts. A first sub-trajectory reaches Y in a fixed finite time. This is represented by the αC.

A second sub-trajectory stays close to Y . When Y is unbounded, keeping the trajectory

within Y is equivalent to keeping the direction in which the trajectory progresses within a

proper range. This is represented by the second term Cone(C ′). In the special case where

Y is compact (i.e., also bounded) Player 1 can ensure that the trajectory will remain in

Y only if he can keep the trajectory close to ~0, so that the set Cone({~0}) is attainable.

The inclusion in (2) is justified by the observtion that any superset of an attainable set is

attainable too.
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We deduce now several corollaries. In the first we focus on compact convex sets. When-

ever Y is compact, the characterization of Theorem 1 can be simplified. Indeed, since the

only compact cone is {~0} whenever Y is a compact convex attainable sets we must have

C = {~0}. By Theorem 1 it follows that there exists α > 0 and a B-set C such that C ⊆ 1
αY .

By setting δ = 1
α , we infer that δY is approachable. Since every approachable set contains

a B-set, this yields the following result.

Corollary 1 A compact convex set Y ⊆ R
m is attainable by Player 1 if and only if

B1 The vector ~0 ∈ R
m is approachable by Player 1, and

B2 There exists a scalar δ > 0 such that δY is approachable by Player 1.

The following example, borrowed from [9], shows that the result introduced above does

not hold when Y is not convex.

Example 1 Consider the following payoff repeated game with 2-dimensional payoffs:

B

T

L R

(1, 0)

(0, 0)

(1, 1)

(0, 0)

Figure 3: The payoff function in Example 3.

Define Y := {(1/2, t), t ≤ 1/4} ∪ {(1, t), t ≥ 1/4}. It was shown in Blackwell [9] that

the set Y is not approachable by Player 1. One can verify that none of its dilatations is

approachable by Player 1. Nevertheless, the set Y is attainable by Player 1. Indeed the

following behavior strategy attains it for Player 1:

σ1(t) =





B t ∈ [0, 12),

T t ∈ [12 , 1), γ
1/2
1 ≤ 1

4 ,

B t ∈ [12 , 1), γ
1/2
1 > 1

4 ,

T t ≥ 1.

In the particular case where Y = {x} is a singleton, we can again be more precise. We

seperate the attainability of ~0 and the attainability of x 6= ~0. To state the next result we

need the following notations. Let λ ∈ R
m. Denote2 by 〈λ,G〉 the zero-sum one-shot game

whose set of players and their action sets are as in the game G, and the payoff that Player

2 The inner product is defined by 〈x, y〉 :=
∑m

i=1
xiyi for every x, y ∈ R

m.

12



2 pays to Player 1 is 〈λ, u(a1, a2)〉 for every (a1, a2) ∈ A1 × A2. As a zero-sum one-shot

game, the game 〈λ,G〉 has a value, denoted vλ.

For every mixed action p ∈ ∆(A1) denote

D1(p) = {u(p, q) : q ∈ ∆(A2)}.

D1(p) is the set of all payoffs that might be realized when Player 1 plays the mixed action p.

If vλ ≥ 0 (resp. vλ > 0), then there is a mixed action p ∈ ∆(A1) such that D1(p) is a subset

of the closed half space {x ∈ R
m : 〈λ, x〉 ≥ 0} (resp. half space {x ∈ R

m : 〈λ, x〉 > 0}). Thus
D1(p) and λ are in the same half-space, or, equivalently, D1(p) and −λ are in two different

half-spaces.

Corollary 2 The following three properties are equivalent.

C1 The vector ~0 ∈ R
m is attainable by Player 1

C2 The vector ~0 ∈ R
m is approachable by Player 1.

C3 For every λ ∈ R
m, vλ ≥ 0.

The equivalence between C1 and C2 is an immediate consequence of Corollary 1. Based

on that ~0 is approachable if and only if it is a B-set, the equivalence between C2 and C3

follows from [9].

The following result characterizes when a given vector x 6= ~0 is attainable. For every

y ∈ R
m denote by (G− y) the two-player one-shot game that is identical to G except for its

payoff function. The payoff function of (G−y) is (u−y), where (u−y)(a1, a2) = u(a1, a2)−y

for every a1 ∈ A1 and a2 ∈ A2.

Corollary 3 Let ~0 6= x ∈ R
m. The vector x is attainable by Player 1 if and only if

D1 The vector ~0 ∈ R
m is attainable by Player 1

and either one of the following conditions holds:

D2 There is δ > 0 such that the vector ~0 ∈ R
m is attainable by Player 1 in the game based

on (G− δx).

D3 There is δ > 0 such that, for every λ ∈ R
m, vλ ≥ δ〈x, λ〉.

D4 There is δ0 > 0 such that for every q ∈ ∆(A2) there is p ∈ ∆(A1) and δ > δ0

satisfyingze u(p, q) = δx.
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Conditions D2 and D3 are reformulations of B2. Condition D4 needs additional work

in order to be proven. The proofs are differed to the last section.

Corollary 3 implies that whenever any vector x is attainable, so is the vector ~0. Since

attainability is concerned with the cumulative payoff, once a target level is (almost) reached,

this level should be maintained in the long run. This means that once a neighborhood of

a target level x is reached, from that point in time and on ~0 ought to be attained. This is

the reason why ~0 is attainable when any vector x is attainable, and why ~0 plays a major

role in the theory of attainability. However, Condition B1 alone is not sufficient for the

attainability of other vectors other then ~0 itself.

The previous result naturally leads to a sufficient condition for a vector to be attainable.

Proposition 1 Let x ∈ R
m such that

E1 vλ ≥ 0 for every λ ∈ R
m \ {~0}, and

E2 For every λ ∈ R
m \ {~0}, if 〈λ, x〉 ≥ 0 then vλ > 0.

Then x is attainable.

We deduce the following theorem which deals with the case where all the vectors are

attainable.

Theorem 2 The following statements are equivalent:

F1 Every vector x ∈ R
m is attainable by Player 1;

F2 vλ > 0 for every λ ∈ R
m \ {~0}.

The fact that Condition F2 implies Condition F1 is a consequence of Proposition 1.

Indeed given that F2 is true, then for every x ∈ R
m, Condition E2 is satisfied and thus

every x ∈ R
m is attainable.

The converse implication can be obtained by focusing on Condition D3 in Corollary 3.

Assume that Condition F1 holds. For every λ ∈ R
m \ {~0}, the vector x = λ is attainable

and satisfies 〈x, λ〉 > 0. Therefore, Condition D3 implies that vλ > 0, and Condition F2

holds as well.

Remark 3 If Condition F2 is satisfied, then for every open half space H of Rm there is

a mixed action p ∈ ∆(A1) such that D1(p) ⊆ H. Standard continuity and compactness
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arguments imply that in this case there is δ1 > 0 such that for every half space H there is

p ∈ ∆(A1) satisfying d(D1(p), H) ≥ δ1. Stated differently, there is δ2 > 0 such that for

every vector λ whose ℓ1-norm is 1, 〈λ, u(p, q)〉 > δ2 for every q ∈ ∆(A2).

Note the difference between Condition C3 of Corollary 2 and Condition F2 of Theorem

2. In the former, the value of the scalar-payoff game with payoffs 〈λ, u(p, q)〉 is nonnegative
for every direction λ ∈ R

m \ {~0}, while in the latter it is strictly positive. The former

guarantees attainability of the vector ~0, while the latter guarantees that every vector is

attainable.

5 Discussion

The model and the results described above give rise to a number of additional questions.

(a) What are the analogous results in discrete time repeated game to the ones we obtained?

(b) Are there different notions of attainability that do not impose a uniform time of conver-

gence? (c) What happens if the updating times are not predetermined and can be selected

as a function of the information available up to the updating time?

We next elaborate on these questions and highlight a few open problems left for future

research.

5.1 Continuous time versus discrete time.

The characterization presented in Theorem 1 depends crucially on the continuous time

setting. The following example shows that it is invalid when time is discrete.

Example 2 Consider a game in discrete time where payoffs are one-dimensional and each

player has two actions. Payoffs are given by the following matrix:

B

U

L R

2− 1

−2− 1

2 + 1

−2 + 1
=

B

U

L R

1

−3

3

−1

Figure 3: The payoff function in Example 2.

The payoffs in this game are the sum of two numbers, one determined by Player 1 (-2 if

he plays U , 2 if he plays B), and the other by Player 2 (-1 if she plays L, 1 if she plays R).

Condition C3 is satisfied, and therefore 0 is attainable by Player 1. The following

strategy guarantees that the cumulative payoff is within 9 · 2η from 0 at any t > 2, where
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η > 0 is given; the details of the proof can be found in the proof of Theorem 1. Divide the

time line into countably many blocks, where the length of the k-th block is η
k . In the k-th

block Player 1 plays U if the cumulative payoff at the beginning of the block is positive,

and he plays B otherwise.

We show that 0 is not attainable by Player 1 in the game in discrete time. When time

is discrete, a behavior strategy for a player is a function that assigns a mixed action to each

past history. For every ℓ ∈ N, let pℓ be the mixed action played by Player 1 at stage ℓ.

Note that pℓ depends on past play. Let σ2 be the strategy that at each stage ℓ plays L if

pℓ(U) ≥ 1
2 , and R otherwise. The stage payoff is then at least 2 whenever Player 2 plays R,

and at most −2 whenever Player 2 plays L. In particular, if the total payoff up to stage ℓ

is in the interval [−1
2 ,

1
2 ], then the payoff up to stage ℓ+ 1 lies outside this interval. Thus,

the cumulative payoff does not converge to 0.

Example 2 suggests that the characterization of the set of attainable vectors in games

in discrete time is more challenging than the characterization in continuous time.

5.2 Alternative definitions of attainability

We here provide two alternative definitions of the concept of attainability, which we term

asymptotic attainability and weak asymptotic attainability. We then explore some relations

between the three definitions.

For every set Y ⊆ R
m we denote by B(Y, ε) the set of all points whose distance from at

least one point in Y is less than ε, that is,

B(Y, ε) := {x ∈ R
m : d(x, Y ) < ε}.

When Y contains a single point x, we write B(x, ε) instead of B({x}, ε).

Definition 5 (i) The set Y ⊆ R
m is asymptotically attainable by Player 1 if there is a

strategy σ1 for Player 1 such that for every strategy σ2 of Player 2,

lim
T→∞

d(γT (σ1, σ2), Y ) = 0. (3)

(ii) The set Y is weakly asymptotically attainable by Player 1, if the set B(Y, ε) is asymp-

totically attainable by Player 1 for every ε > 0.

Asymptotic attainability requires that a set is asymptotically reached by the cumulative

payoff without putting any bound on the time it takes to reach the set. Attainability, on the
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other hand, requires that a set is approximately reached in a bounded time, independent of

the degree of approximation. Weak asymptotic attainability relaxes both time boundedness

and the level of the approximation precision. A set Y is weakly asymptotically attainable if

any neighborhood B(Y, ε) of Y can be asymptotically attained, without having a universal

bound on the time at which this neighborhood is reached.

Any attainable set is also weakly asymptotically attainable and any asymptotically

attainable set is weakly asymptotically attainable as well. In addition, observe that the set

of asymptotically attainable vectors and the set of weakly asymptotically attainable vectors

are convex cones. The definition implies that the set of weakly attainable vectors is also

closed.

Using Corollary 3 , we now show that attainability of a vector does not imply its asymp-

totic attainability. This implies in particular that these two concepts are not identical.

Example 3 We provide an example where the vector ~0 is attainable but not asymptotically

attainable. Consider the following game where payoffs are 2-dimensional, each player has 2

actions, and the payoffs are scalar and given by:

B

U

L R

0

1

−1

0

Figure 4: The payoff function in Example 3.

In this game vλ = 0 for every λ ∈ R. Thus, for every λ ∈ R
2 one has vλ ≥ 0, and

therefore corollary 3 implies that the vector ~0 is attainable by Player 1. We argue that ~0 is

not asymptotically attainable by Player 1. Assume that Player 1 implements a strategy σ1.

In an initial time interval the strategy σ1 plays one of the rows with a positive probability.

Consider the strategy σ2 of Player 2 that plays constantly a column that generates a nonzero

vector in that initial interval. For instance, if σ1 plays the action U with positive probability

in the initial time interval, then σ2 play the action L always. The initial period produces

a nonzero payoff and this payoff is not diminishing to zero because Player 2 keeps playing

the same column forever. This example shows that ~0 is attainable by Player 1 but not

asymptotically attainable by him.

We point out that the argument mentioned above shows in fact that ~0 is not attainable

in the corresponding game in discrete time as well.

The following example shows that a weakly attainable vector need not be attainable.
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Example 4 Consider a two-player game where payoffs are 2-dimensional, Player 1 has 3

actions, Player 2 has 2 actions, and the payoff function is given by the left-hand side matrix

in Figure 5.

B

M

U

L R

(0, 0)

(0, 0)

(1, 1)

(0, 0)

(1, 1)

(0, 1)

The game G

Figure 5: The payoff function of the game G in Example 4.

The vector (0, 0) is attainable by Player 1, using the strategy that always plays B. The

vector x := (1, 1) is weakly asymptotically attainable according to Definition 5. Indeed,

given ε > 0 consider the strategy σε
1, with updating times (τk1 )k∈N defined by τk1 = kε for

k ∈ N, that is defined as follows.

• If the total payoff up to time τk1 is not in the set B((1, 1), ε), during the time interval

[τk1 , τ
k+1
1 ) play the mixed action [ε(U), (1− ε)(M)].

• If the total payoff up to time τk1 is in the set B((1, 1), ε), during the time interval

[τk1 , τ
k+1
1 ) play the action B.

For every t ≥ 1
ε one has d(γt(σε

1, σ2), (1, 1)) < ε, so that the vector x is indeed weakly

asymptotically attainable by Player 1.

The vector x, however, is not attainable by Player 1 (according to Definition 2). To show

this claim we use Corollary 3 and prove that Condition D4 does not hold for x. Indeed, fix

δ0 > 0, and set q := [(1− δ0
2 )(L),

δ0
2 (R)]. Let p ∈ ∆(A1) be arbitrary. If u(p, q) = δx = (δ, δ)

for δ > 0, then necessarily p
U
= 0. One can verify that u(p, q) cannot be equal to δx for

δ > δ0, and therefore Condition D4 does not hold for x.

Remark 4 The proof of Theorem 2 shows that every vector x ∈ R
m is attainable by Player

1 if and only if every vector x ∈ R
m is asymptotically attainable by Player 1. Example

3 shows that attainability does not imply asymptotic attainability. We are unable to tell

whether or not asymptotic attainability implies attainability.
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5.3 Alternative strategies in continuous time.

The strategies we use here are nonanticipating strategies with delay. In these strategies the

times (τki )k∈N at which a player observes past play are independent of the play of the other

player. One could consider a broader class of strategies in which (τki )k∈N are stopping times.

In other words, τk+1
i is a time that depends on (that is, it is measurable with respect to)

the information available to player i at time τki , for each k ∈ N. In this type of strategies,

the updating times (τki )k∈N, are not predetermined real numbers, as in Definition 1. Our

results remain valid even if Player 2 is allowed to use a strategy from this broader class of

strategies.

5.4 Additional open problems

The results above refer to attainability of a convex set, and did not discuss attainability,

asymptotic attainability, or weak asymptotic attainability of nonconvex sets. Characterizing

when a set of payoffs is attainable (according to these three definitions) remains open. We

also leave attainability in discrete time and attainability when payoffs are discounted for

future investigations.

6 Proofs

6.1 Proof of Theorem 1

The aim of this section is to prove the characterization of attainable closed convex sets. We

first provide the outline of the proof.

6.1.1 Outline

Continuous approachability and discrete approachability are equivalent [17]. This justifies

the use of the notion of B-sets in the study of games in continuous time.

Given α > 0, a closed convex set Y ⊆ R
m, and two B-sets C,C ′ ⊆ R

m, two B-sets such

that

αC +Cone(C ′) ⊂ Y,

we check that, by convexity of Y , we can replace the B-sets with their convex hull which

are approachable:

αConv(C) + Cone(Conv(C′)) ⊂ Y.
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Then we prove that given two approachable convex sets C and C ′ the set αC+Cone(C ′)

is attainable. Thus Y is attainable.

To show the converse implication, given a set Y , we define the family of sets Y t as

the intersection of [−1, 1]m and 1
tY. We show that the family Y t admits limit values Y ∞.

Moreover, for every t > 0, we have

tY t +Cone(Y∞) ⊂ Y

We prove that there exists T ∈ R+ such that for all t ≥ T , the set Y t is approachable.

This implies that Y T and Y ∞ are approachable and each one contains a B-set [18]. It

follows that (2) holds with C = Y T and C ′ = Y ∞.

6.1.2 The condition is sufficient

Let Y be a closed convex set. Suppose that there exists α > 0 and two B-sets C and C ′

such that

αC +Cone(C ′) ⊂ Y.

We prove that Y is attainable. Since any superset of an approachable set is approachable,

the sets Conv(C) and Conv(C′) are approachable. Since Y is convex, these two sets are

subsets of Y and satisfy

αConv(C) + Cone(Conv(C′)) = Conv(αC+ Cone(C′)) ⊂ Conv(Y) = Y.

We now prove the following.

Proposition 2 Let α > 0 and C,C ′ be two closed convex approachable subsets of Rm. Then

αC +Cone(C ′) is attainable.

The following lemma claims that the distance between a point and a set is a convex

function. For every finite collection (Ci)
n
i=1 of nonempty subsets of Rm and every collection

(λi)
m
i=1 of scalars, denote

n∑

i=1

λiCi := {z ∈ R
m | z =

n∑

i=1

λici, ∀ci ∈ Ci, ∀i = 1, . . . , n}.

Lemma 1 Let n ∈ N, let (xi)
n
i=1 be points in R

m, and let (Ci)
n
i=1 be nonempty closed

subsets of Rm. For every collection of positive real numbers (λi)
n
i=1 one has

d

(
n∑

i=1

λixi,

n∑

i=1

λiCi

)
≤

n∑

i=1

λid(xi, Ci).
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Proof. For every i ∈ {1, 2, . . . , n} let ci be a point in Ci that satisfies d(xi, ci) =

d(xi, Ci). Note that c :=
∑n

i=1 λixi ∈
∑n

i=1 λiCi.

d

(
n∑

i=1

λixi,

n∑

i=1

λiCi

)
≤

∥∥∥∥∥

n∑

i=1

λixi − c

∥∥∥∥∥

≤
n∑

i=1

λi‖xi − ci‖

=

n∑

i=1

λid(xi, Ci).

When C is convex,
∑n

i=1 λiC = (
∑n

i=1 λi)C, and therefore we obtain the following

corollary.

Corollary 4 Let n ∈ N, let (xi)
n
i=1 be points in R

m, and let C be a nonempty closed and

convex subset of Rm. For every collection of positive real numbers (λi)
n
i=1 one has

d

(
n∑

i=1

λixi,

(
n∑

i=1

λi

)
C

)
≤

n∑

i=1

λid(xi, C).

For every strategy σi of Player i let σβ
i be the strategy σi accelerated by a factor β.

That is, (σβ
i (a−i))(t) := (σi(â−i))(βt), where â−i(t) = a−i(βt).

The following result, which holds since time is continuous, states that if the strategy σ1

of Player 1 guarantees that the distance between the average payoff up to time t and a given

set C is less than ε, then the accelerated strategy σβ
1 ensures that the distance between the

average payoff up to time t
β and the set C

β is at most ǫ
β .

Lemma 2 Let C ⊆ R
m, T > 0, and ε > 0. If the strategy σ1 satisfies

d
(
γt(σ1, σ2), C

)
≤ ǫ, ∀t ≥ T, ∀σ2,

then the strategy σβ
1 satisfies

d

(
γt(σβ

1 , σ2),
C

β

)
≤ ǫ

β
, ∀t ≥ T

β
, ∀σ2.

Proof. For every strategy σ2 of Player 2 one has

γt(σβ
1 , σ2) =

∫ t

0
u(as(σβ

1 , σ2))ds

=
1

β

∫ βt

0
u(as(σ1, σ

1/β
2 ))ds (4)

=
1

β
γβt(σ1, σ

1/β
2 ).
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We deduce that

d

(
γt(σβ

1 , σ2),
x

β

)
≤ ε

β
, ∀t ≥ T

β
, ∀σ2,

as desired.

A corollary of this result, which has its own interest but will not be used here, is that

the set of attainable vectors is a convex set.

A second corollary of Lemma 2 is that if C is a set that is approachable by Player 1,

then for every t > 0 he can ensure that the total payoff up to time t is arbitrarily close to

tC.

Corollary 5 Let C be a set that is approachable by Player 1. For every δ > 0 and every

s ∈ (0, 1) there exists a strategy σ∗
1 such that

d (γs(σ∗
1, σ2), sC) ≤ δ, ∀σ2.

Proof. Because the set C is approachable by Player 1, there is a constant K, a strategy

σ1 and T > 0 such that

d
(
γt(σ1, σ2), C

)
≤ K√

t
, ∀σ2, ∀t ≥ T.

W.l.o.g. we can assume that T ≥
(
K
δ

)2
. It follows that

d
(
γt(σ1, σ2), tC

)
≤ t

K√
t
, ∀σ2, ∀t ≥ T,

and by Lemma 2 we have for every β > 0,

d
(
γβt(σβ

1 , σ2), βtC
)
≤ βt

K√
t
, ∀σ2, ∀t ≥ T.

For every s ∈ (0, 1) substitute t := T and β := s
T , to obtain

d
(
γs(σβ

1 , σ2), sC
)
≤ s

K√
T
, ∀σ2.

The result follows since s ≤ 1 and T ≥
(
K
δ

)2
.

We now strengthen Corollary 5 to prove that if a set C is approachable by Player 1,

then he can guarantee that the total payoff remains close to the cone generated by it, for

every s ≥ 0.

Lemma 3 Let C be a closed and convex set that is approachable by Player 1. For every

ε > 0 there exists a strategy σ∗
1 such that

d (γs(σ∗
1, σ2), sC) ≤ ǫ, ∀σ2, ∀s ≥ 0.
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Proof. The strategy σ1 is given by concatenating strategies that satisfy Corollary 5,

with properly chosen s’s and ε’s.

Let us start by fixing ε > 0. For each k ∈ N let σk
1 be a strategy that satisfies Corollary

5 with s = ε
k and δ = ε

2k
. Set t0 := 0 and

tk+1 := tk +
ε

k
, ∀k ≥ 0.

Let σ1 be the strategy of Player 1 that for each k ≥ 0, at time tk forgets past play and

follows the strategy σk
1 until time tk+1.

By construction and by Corollary 4, for each k ≥ 0 we have

d(γtk(σ1, σ2), tkC) ≤
k∑

j=1

ε

2k
≤ ε

2
.

Since tk+1− tk ≤ ε
2 , and since payoffs are bounded by 1, the triangle inequality implies that

d(γt(σ1, σ2), tC) ≤ ε, ∀t ≥ 0,

as desired.

We are now ready to complete the proof of Proposition 2.

Proof of Proposition 2. Let ǫ > 0, we build a strategy σ∗
1 such that

d
(
γt(σ∗

1, σ2), αC +Cone(C′)
)
≤ 2ǫ, ∀t ≥ α, ∀σ2.

We define σ1(C) and σ1(C
′) – two strategies given by the previous lemma applied

respectively to C and C ′. We define a strategy σ∗ of Player 1: follow σ1(C) until time α

and then follow σ1(C
′).

Let t ≥ α and σ2 a strategy of Player 2. By construction, we have

d
(
γt(σ∗

1, σ2), αC + (t− α)(C ′)
)
≤ d (γα(σ∗

1(C), σ2), αC) + d
(
γt−α(σ∗

1(C
′), σ′

2), (t− α)(C ′)
)

≤ 2ǫ,

where σ′
2 being the continuation strategy of Player 2 after time α. The set αC +Cone(C′)

is attainable.

6.1.3 The condition is necessary

In this section we prove that if a closed and convex set Y is attainable by Player 1, then

there exists α > 0 and two B-sets C and C ′ such that

αC +Cone(C ′) ⊂ Y.
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For every t ≥ 0 define

Yt := Y ∩ [−t, t]m

and

Y t :=
1

t
Yt ⊆ [−1, 1]m.

The Hausdorff metric is a metric over closed subsets of Rm, and defined as follows:

dH(X,Y ) := sup
x∈X

inf
y∈Y

‖x− y‖.

It is well known that the set of closed subsets of a compact set is compact in this metric.

This implies that the sequence (Y t)t>0 has an accumulation point, with respect to the

Hausdorff metric.

Lemma 4 Let Y be a nonempty closed convex set and Y ∞ be an accumulation point of the

sequence (Y t)t>0. If ~0 ∈ Y then

Cone(Y ∞) ⊆ Y.

Proof. For each t ≥ 0 the set Y t is a compact subset of [−1, 1]m. The first claim

follows by observing that the collection of compact subsets of [−1, 1]m is itself compact in

the Hausdorff metric.

We now turn to the second claim. To show that Cone(Y ∞) ⊂ Y we fix a point z ∈
Cone(Y ∞) and construct a sequence of points (x′n)n∈N in Y that converges to it. Since Y

is closed, this will prove that z ∈ Y . Because z ∈ Cone(Y ∞), there exist α > 0 and y ∈ Y ∞

such that z = αy.

Since the sequence (Y t)t>0 converges to Y ∞ in the Hausdorff metric, for every n ∈ N

there exists tn ≥ α satisfying

dH(Y tn , Y ∞) ≤ 1

n
.

In particular, there is wn ∈ Y tn such that d(wn, y) ≤ 1
n . Setting xn := tnwn ∈ Ytn we

deduce that d
(

1
tn
xn, y

)
≤ 1

n , or equivalently,

d

(
α

tn
xn, αy

)
≤ α

n
.

Since (i) α ≤ tn, (ii) xn,~0 ∈ Y , and (iii) Y is convex, it follows that x′n := α
tn
xn is in Y , and

the result follows.

Lemma 5 Let Y be a nonempty closed and convex set, and let Y ∞ be an (Hausdorff metric)

accumulation point of the sequence (Y t)t>0. For every t ≥ 1 one has

tY t +Cone(Y ∞) ⊆ Y.
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Proof. For every y ∈ R
m denote by Zy = Y − y. Then limt→∞ d(Zy

t, Y t) = 0, so that

Y ∞ is an accumulation point of the sequence (Zy
t)t>0.

Fix now y ∈ Y . The set Zy is nonempty, closed, convex, and contains ~0, so that by

Lemma 4

Cone(Y ∞) = Cone(Zy
∞) ⊆ Zy = Y − y.

In particular,

y +Cone(Y ∞) ⊆ Y.

The result follows from the fact that this inclusion holds for every y ∈ Y , and because

tY t ⊆ Y for every t > 0.

To conclude the proof that the condition is necessary we show that the sets Y t are

approachable by Player 1, provided t is large enough. This will imply that the set Y ∞, as

an accumulation point of approachable sets, is approachable itself.

We start by finding a condition, lightly weaker than that in the definition of approachable

sets, which is equivalent to it.

Lemma 6 A nonempty closed set Y is approachable by Player 1 if and only if for every

ǫ > 0 there exists a strategy σ1 and T > 0 such that

d
(
γT (σ1, σ2), Y

)
≤ ǫ, ∀σ2.

Proof. The fact that if Y is approachable by Player 1 then it satisfies the condition

in the lemma follows from the definition of approachability. For the converse implication,

fix ε > 0, and let σ1 and T be the strategy of Player 1 and the positive real number that

are given by the condition in the lemma. Let σ′
1 be the strategy of Player 1 that plays in

blocks of length T ; at the beginning of each block the strategy forgets past play and starts

implementing σ1 anew. The reader can verify that σ′
1 approaches Y .

We are finally ready to prove that the condition in Theorem 1 is necessary. Let Y be

a closed and convex set that is attainable by Player 1. Therefore, there exists T > 0 such

that for every ǫ > 0 there exists a strategy σ1 satisfying

d(γt(σ1, σ2), Y ) ≤ ǫ, ∀t ≥ T, ∀σ2.

By Lemma 6 this implies that the set 1
tY is approachable by Player 1, provided that

t ≥ T . Since payoffs are bounded by 1, it follows that the set Y t =
1
tY ∩ [−1, 1]m is also

approachable by Player 1, provided that t ≥ T . Finally, the definition of approachability

implies that the set Y ∞, as the Hausdorff limit of sets which are approachable by Player 1,

is also approachable by Player 1. Since every set that is approachable by Player 1 contains

a B-set for that player ([14, 18]), the proof of the necessity of the condition is complete.
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6.2 Proof of Corollary 3

By Corollary 1, the set {x} is attainable by Player 1 if and only if ~0 is approachable by

Player 1 and there exists δ > 0 such that the vector δx is approachable by Player 1. We

will show that the second property is equivalent to the Conditions D2 and D3. We will

then prove that, given that D1 is satisfied, we can replace any one of these conditions with

D4.

Part 1: δx is approachable by Player 1 if and only if Condition D2 holds.

Note that the vector δx is approachable by Player 1 in the game with matrix payoff G

if and only if the vector ~0 is approachable by him in the game with matrix payoff G− δx.

Since ~0 is approachable by a player if and only if it is attainable by him, the result follows.

Part 2: δx is approachable by Player 1 if and only if Condition D3 holds.

Let us write the B-set condition with respect to the singleton δx. The vector δx is

approachable by Player 1 if and only if it is a B-set for him, that is,

∀z ∈ R
m, ∃x ∈ ∆(A1) ∀y ∈ ∆(A2)〈u(x, y)− δx, z − δx〉 ≤ 0.

Setting λ = δx− z, we obtain

∀λ ∈ R
m, ∃x ∈ ∆(A1) ∀y ∈ ∆(A2)〈u(x, y), λ〉 ≥ 〈δx, λ〉,

〈u(x, y), λ〉 ≥ δ〈x, λ〉,

which is equivalent to vλ ≥ δ〈x, λ〉 for every λ ∈ R
m, which is Condition D3

Part 3: If the vector x is attainable by Player 1, then Condition D4 is satisfied.

Suppose to the contrary that Condition D4 is not satisfied. That is, for every δ0 > 0

there is q ∈ ∆(A2) such that for every p ∈ ∆(A1) one has u(p, q) 6= δx for every δ > δ0. We

divide the argument into two cases.

Case A: There is q ∈ ∆(A2) such that u(p, q) 6= δx for every p ∈ ∆(A1) and every δ > 0.

We show that by playing constantly q (a strategy that we denote by q∗) Player 2 can

prevent Player 1 from attaining x, contradicting the assumption. Let σ1 be any strategy of

Player 1. Denote by pt the average mixed action played by Player 1 up to time t, that is,

pt = 1
t

∫ t
0 σ1(s)ds. Then, γ

t(σ1, q
∗) = tu(pt, q). Thus, γ

t(σ1, q
∗) is in the cone generated by

R1(q) := {u(p, q); p ∈ ∆(A1)}. This cone is closed and by assumption it does not contain x.

Thus, there is a positive distance between x and this cone, implying that γt(σ1, q
∗) cannot

get arbitrarily close to x. This contradicts the fact that the vector x is attainable.

Case B: For every q ∈ ∆(A2) there is p ∈ ∆(A1) and δ > 0 such that u(p, q) = δx, but the

δ’s are not bounded away from zero.
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In this case, for every δ > 0, there is qδ ∈ ∆(A2) such that δ ≥ max{δ′; ∃p such that u(p, qδ) =

δ′x}. We show that for every δ > 0, if Player 2 plays constantly qδ (a strategy that we

denote by q∗δ ), then there is ε > 0 such that for every σ1, ‖γT (σ1, q∗δ ) − x‖ < ε implies

T > 1
4δ .

Fix δ > 0. Denote

δ0 := max{δ′ : ∃p such that u(p, qδ) = δ′x} < δ.

In particular, δ0x ∈ R1(qδ), and δ′x 6∈ R1(qδ) for every δ
′ > δ0. Let E := conv

(
R1(qδ) ∪ {~0}

)

be the convex hull of R1(qδ) and ~0. The set E is convex, compact and it does not contain

δ′x for every δ′ > δ0. In particular, 2δ0x 6∈ E. Thus, there is an open ball F = B(2δ0x, η)

which is disjoint of E. By the hyperplane separation theorem there is a nonzero vector

α ∈ R
m such that 〈e, α〉 ≤ 〈f, α〉 for every e ∈ E and f ∈ F . Since ~0 ∈ E, it follows that

0 = 〈~0, α〉 ≤ 〈f, α〉 for every f ∈ F .

Without loss of generality assume that ‖α‖ = 1. We claim that 0 < 〈x, α〉. Indeed, if

0 = 〈x, α〉, then every f ∈ F can be expressed as f = 2δ0x + v, where v = v(f) ∈ B(~0, η).

In particular, 0 ≤ 〈f, α〉 = 〈v, α〉. It follows that 〈v, α〉 = 0 for every v ∈ B(~0, η), which

implies that α = 0, contradicting the fact that ‖α‖ = 1.

Suppose that e ∈ R1(qδ) and T · e ∈ B(x, ε), with ε = 〈x, α〉/2. Then, T · e = x + z,

where ‖z‖ ≤ ε. Thus, 〈T · e, α〉 = 〈x+ z, α〉. Since e ∈ E and 2δ0x ∈ F ,

〈e, α〉 ≤ 〈2δ0x, α〉 ≤ 〈2δx, α〉.

Hence,

T =
〈x+ z, α〉
〈e, α〉 ≥ 〈x, α〉+ 〈z, α〉

2〈δx, α〉 ≥ 〈x, α〉 − ε

2〈δx, α〉 =
1

4δ
. (5)

Recall that q∗δ is the strategy of Player 2 that constantly plays qδ. To derive a contradic-

tion we will show that the vector x is not attainable; that is, for every T there is ε > 0 such

that for every strategy σ1 of Player 1 there is a strategy σ2 of Player 2 and t ≤ T satisfying

d(γt(σ1, σ2), x) > ε. Fix a strategy σ1 of Player 1, and suppose that the cumulative payoff

up to time T is within ε from x, that is, ‖γT (σ1, q∗δ ) − x‖ ≤ ε. Let pT := 1
T

∫ T
0 σ1(s)ds

be the average mixed action played by σ1 until time T . Thus, Tu(pT , qδ) = x + z, where

‖z‖ ≤ ε. Letting e = u(pT , qδ) we obtain by Eq. (5) that T > 1
4δ . In words, the time it

takes to reach B(x, ε) is at least 1
4δ . This shows that there is no uniform bound on the time

at which the total payoff gets close to x. Thus, x is not attainable, which contradicts the

assumption.

Part 4: If Condition D4 and Condition D1 are satisfied, then Condition D3 is satisfied and

x is attainable.
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We will show that vλ ≥ δ0〈x, λ〉 for every λ ∈ R
m. If 〈x, λ〉 ≤ 0, then by Condition D1

vλ ≥ 0 ≥ δ0〈x, λ〉,

as required. If 〈x, λ〉 > 0 then Condition D3 implies that

vλ = inf
q∈∆(A2)

sup
p∈∆(A1)

〈u(p, q), λ〉 ≥ 〈δ0x, λ〉 = δ0〈x, λ〉,

and the proof is complete.

6.3 Proof of Proposition 1

To prove that Conditions E1 and E2 are sufficient conditions, we prove that they imply

Conditions D1 and D3. By Corollary 2, Condition E1 implies Condition D1. We now

show that Condition D3 holds as well.

It is sufficient to prove that Condition D3 holds for every λ in the unit ball. The set

S≥ := {λ ∈ R
m : ‖λ‖ = 1, 〈x, λ〉 ≥ 0} is compact. Since the function λ → vλ is continuous,

Condition E2 implies that there exists ǫ > 0 such that vλ ≥ ǫ for every λ ∈ S≥. Let δ > 0

such that δ‖x‖ < ǫ. By Cauchy–Schwartz inequality,

vλ ≥ 〈δx, λ〉 = δ〈x, λ〉, ∀λ ∈ S≥.

If 〈λ, x〉 < 0 then Condition E1 implies that

vλ ≥ 0 ≥ δ〈x, λ〉,

and the proof is complete.
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