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Abstract

We study disjunctive conic sets involving a general reg(@@éosed, convex, full dimensional, and
pointed) congC such as the nonnegative orthant, the Lorentz cone or théygoseémidefinite cone. In
a unified framework, we introdudé-minimal inequalities and show that under mild assumptitnsse
inequalities together with the trivial cone-implied inadjties are sufficient to describe the convex hull.
We study the properties d@-minimal inequalities by establishing algebraic necessanditions for an
inequality to befC-minimal. This characterization leads to a broader algehlig defined class ok -
sublinear inequalities. We establish a close connectibmden/C-sublinear inequalities and the support
functions of sets with a particular structure. This conimectesults in practical ways of showing that a
given inequality isiC-sublinear andC-minimal.

Our framework generalizes some of the results from the mixtedjer linear case. It is well known
that the minimal inequalities for mixed integer linear prams are generated by sublinear (positively
homogeneous, subadditive and convex) functions that acemécewise linear. This result is easily
recovered by our analysis. Whenever possible we highliglnttbnnections to the existing literature.
However, our study unveils that such a cut generating fanctiew treating the data associated with
each individual variable independently is not possibl&endase of general cones other than nonnegative
orthant, even when the cone involved is the Lorentz cone.

1 Introduction
A Mixed Integer Conic ProgrartMICP) is an optimization program of the form

Opt= in%{(c,:n):A:U:b, rek, zeZ} (MICP)
TE

wherelC is aregular (full-dimensional, closed, convex and pointed) cone in &didimensional Euclidean
spaceFE with an inner product:,-), ¢ € E is the objective vector; € R™ is the right hand side vector,
A : F — R™is alinear map, an& is a set imposing certain structural restrictions on théaldesx.
Examples of regular cones include the nonnegative ortRgnt= {x € R" : z; > 0Vi = 1,...,n},

the Lorentz conef” := {z € R" : =z, > \/azf +...+x2_; }, and the positive semidefinite cone

St :={z e R : aza > 0Va € R", = 2T} and their direct products. Wheli = R", the most
common form of structural restrictions is integrality € Z for all i € I wherel C {1,...,n} is the index
set of integer variables. We assume that all of the datavedolith MICP, i.e.c, b, A is rational.
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Mixed Integer Linear Programs (MILPS) arise as a specia cA#ICP wherek is the nonnegative or-
thant. Conic constraints include various specific convexstraints such as linear, convex quadratic, eigen-
value, etc., and hence, offer significant representatiavepover linear constraints (se&j for a detailed
introduction to conic programming and its applications @amious domains). Allowing discrete decisions in
addition to the conic constraints further enhances theesgmtation power of MICPs. While MILPs offer
an incredible representation power, various optimizapasblems involving risk constraints and discrete
decisions give rise to MICPs. Robust optimization and sastibh programming paradigms, or more broadly
decision making under uncertainty domain, encompassey mamples of MICPs such as portfolio op-
timization with fixed transaction costs in finan@4] 52, and stochastic joint location-inventory models
[4]. Moreover, the most powerful relaxations to many comlmriat optimization problems are based on
conic (in particular semidefinite) relaxations (s88][for a survey on this topic). Reintroducing the integer
variables back into these relaxations yields exact mixéshir conic programming formulations of these
problems with tighter continuous relaxations. Besided,.RH have been heavily exploited for approximat-
ing nhon-convex nonlinear optimization problems arising@veral important applications in many diverse
fields. For a wide range of these problems, MICPs offer tightéaxations and thus potentially a better
overall algorithmic performance. Therefore, MICPs haveeg@ considerable interest.

The literature on solving MICPs is growing rapidly. On onadthaclearly, any method for general non-
linear integer programming applies to MICPs as well. A digant body of work has extended known
techniques from MILPs to nonlinear integer programs. Thaskide the Reformulation Linearization
Technique (see6l, 62] and references therein), Lift-and-Project and DisjurectProgramming methods
[9, 11, 23, 53, 59, 63, 65, 66], and the lattice-free set paradigrhg]. In addition to these, several pa-
pers B0, 51, 61, 60] introduce hierarchies of convex (semidefinite programghirelaxations in higher
dimensional spaces. These relaxations quickly becomeartipal due their exponentially growing sizes
and the difficulty of projecting them onto the original spasfevariables. Another stream of research
[1, 19, 33,57, 67, 68, 69, 70] is on the development of linear outer approximation baseddh-and-bound
algorithms for nonlinear integer programming. While theywé the advantage of fast and easy to solve
relaxations, the bounds from these approximations may @atststrong as desired. Moreover, adding too
many inequalities that are similar to each other may leaditoarical instability.

Exploiting the conic structure when present, as oppose@nergl convexity, paves the way for devel-
oping algorithms with much better performance. Partidylar the case of MILPs, this has led to very
successful results. Despite the lack of effective warmt-ggghniques, efficient interior point methods exist
for € = L£" or K = St [15]. Therefore, supplying the branch-and-bound tree withdbesponding
continuous conic relaxation at the nodes and deriving rayiftilanes to strengthen these relaxations have
gained considerable interest recently. In this vein, Cand lyengar 24] developed valid inequalities for
MICPs with general regular cones by extending Chvatal-Ggn(G-G) integer rounding cutsbf]. In a
recent and fast growing literature, several auth@r$[ 6, 13, 16, 22, 32, 33, 34, 48, 49, 53, 70, 71] study
MICPs involving Lorentz conedC = L™, and suggest valid inequalities.

This growing demand for solving MICPs has led many commeésttiware packages such as CPLEX
[31], Gurobi [39], and MOSEK p5] to recently expand their features and include technolaggdive
MICPs. Nevertheless, the theory and algorithms for solWH@Ps are still in their infancyd]. Currently,
the most promising approaches to solve MICPs are based oexthasion of cutting plane techniques
[5, 6, 17, 18, 21, 24, 33, 46, 65] in combination with conic continuous relaxations and lotaand-bound
algorithms. While numerical performance of these techesqis still under investigation, evidence from
MILPs indicates that adding a small yet essential set ohgtiutting planes is key to the success of such
a procedure. Yet, except very specific and simple casestriérgth (redundancy, domination, etc.) of the



corresponding valid inequalities has not been evaluatédercase of MICPs. This is in sharp contrast to
the MILP case, where the related questions have been stediedsively. In particular, the feasible region
of an MILP with rational data is a polyhedron and the facialicture of a polyhedron (its faces, and facets)
is very well understood. Various ways of proving whether ot a given linear inequality is necessary in
the description of the convex hull of the feasible set of MIER)., a facet, are well establishesb]. In
addition to this, a new framework to establish minimalitydaxtremality of valid inequalities for certain
generic infinite relaxations of MILPs (se27] and references therein) as well as their relations to faicet
certain simplified settings2P] are developing rapidly. Thus far, results in this vein @eking in the MICP
context. Consequently, establishing a theoretical fraonktwo measure the necessity and strength of cutting
planes in the MICP context remains a natural and importaastipn. Our goal in this paper is to address
this question.

In this paper we study the closed convex hull afigjunctive conic sethat is, the union of finitely or
infinitely many conic sets in the original space of variabM& are mainly motivated by the fact that most
cutting planes used in MILP can be viewed in the context gudive programming and such a general
disjunctive conic programminframework encompasses MICPs. Our approach is based orifyifenian
appropriate dominance concept among valid linear inefgsind then extending the minimality definition
from the MILP context to the disjunctive conic framework. ®&hthe underlying conf is taken as the
nonnegative orthant, the MILP counterparts of our resultsfarther developments for MILPs were studied
extensively in the literature. Despite this extensiveditere forkC = R}, to the best of our knowledge there
is no literature on this topic in the general conic case witladitrary regular conf&. We contribute to the
literature by introducing minimal inequalities for disptive conic sets and performing a systemic study of
their properties in a unified manner for all regular coliedNe establish the sufficiency of minimal inequal-
ities along with necessary conditions, sufficient condgi@as well as practical tools for testing whether or
not a given inequality is minimal.

Our derivations are based on a finite dimensional probletamee. This is in contrast to much of the
literature on minimal inequalities for MILPs initiated b$7, 38, 43]. In a practical cutting plane procedure
for solving MILPs and/or MICPs, one is indeed faced with dyem in a finite dimensional space. Thus, we
believe that this is not a limitation but rather a contribatto the corresponding MILP literature. Besides, to
the best of our knowledge, the extensions of other well-kmagular cones such &% andS?’ to the infinite
dimensional spaces are not well defined. Hence, an infirlation seems to be more meaningful when
the associated cone is the nonnegative orthant. Thereforsiudy does not rely on and differ substantially
from the majority of previous literature in the MILP conteiat relies on infinite relaxations. Furthermore,
we note that a conic view with a regular polyhedral cone cavabgable in the MILP context as well.

We demonstrate that some of the results from MILP setup alifuextend to MICPs. In this regard,
our approach ties back to the cornerstone paper of Johdgprag well as the recent work of Conforti et
al. [25). In particular, wheniC = R, our results show that minimal inequalities can be propesisted to
support functions that generate cut coefficiéntsaind these functions are sublinear (subadditive, pokitive
homogeneous, and convex) and piecewise linear. This cooneo the case okl = R’} together with
the sufficiency of minimal inequalities for describing tHesed convex hull of disjunctive conic sets high-
lights the roots of functional strong duality results forl\s. For other regular cones, we show that there
exist extreme inequalities, which cannot be generated &oyrcut generating function when we straightfor-
wardly extend the definition of cut generating functions ttCH¥s. Whenever possible, we highlight these
connections to the existing literature.

Informally, these are referred ast generating functionsA cut generating function generates the coefficient of &t in a
cut using only information of the instance pertaining tethariable. See2b] and sectiont.3for an extended discussion.



1.1 Preliminaries and Notation

Let (E, (-,-)) be a finite dimensional Euclidean space with inner produet. Let  C E be aregular
(full-dimensional, closed, convex and pointed) cone. Nb# when even; C FE; fori = 1,...,kis
a regular cone, then their direct produ\Nﬁt: K1 x ... x K is also a regular cone in the Euclidean space
E = Fy x ... x Ej, with inner product(-, -) & which is the sum of the inner producs-)g,. Therefore,
without loss of generality we only focus on the case with glsimegular conéC.

In this paper, given a linear map: £ — R™, a regular conéC C E, and anonemptyset of right hand
side vectord3 C R, we study the followinglisjunctive conic setefined byA, K, andB:

S(A,K,B) :={x € K: Az € B}.

We are mainly interested in determining the properties gt valid linear inequalities describing the
closed convex hull of (A, IC, B). We would like to emphasize that we do not impose any stratagsump-
tions onA andB. In particular,A is an arbitrary linear map frorf to R”* and is an arbitrary set of vectors
in R™. Note that the seB can be finite or infinite, structured such as lattice pointsampletely unstruc-
tured. In order to avoid trial cases, we assume &at, IC, B) # K, in particularK € {z € E : Az € B},
andS(A, K, B) # 0, i.e., there exists € B andx;, € K satisfying Ax;, = b.

For a given selS, we denote its topological interior with iff), its closure withS, and its boundary
with S = S\ int(S). We use con{S) to denote the convex hull of, tonu(S) for its closed convex hull,
and conéS) to denote the cone generated by the$ete denote the kernel of a linear madp: £ — R™
by Ker(4) = {u € E : Au = 0}, and its image by Irtd) = {Au : u € E}. We useA* to denote the
conjugate linear map’ given by the identity

ylT Az = (A*y,2) V(z € E,y € R™).

We use(-, -) notation for inner product in Euclidean spaEeand proceed with usual dot product nota-
tion with transpose for the inner product®i*. We assume all vectors IR are given in column form.
For a given conéC C E, we let Ex{K) denote the set of its extreme rays, and ki$d¢o denote its dual
cone given by
K*={yeE: (z,y) >0 Vz e K}.

Whenever the conk is regular, so i9C*.

Given aregular conk, arelationa —b € K (also denoted by =« b) is calledconic inequalitybetween
a andb. Such a relation indeed preserves the major propertieeafdhal coordinate-wise vector inequality
>. We denote the strict conic inequality by-x b to indicate that: — b € int(K). In the sequel, we refer
to a constraint of the formlaz — b € K as aconic inequality constrairgr simply conic constrainand also
useAx =i binterchangeably in the same sense.

3 When we consider the standard Euclidean sgace R”, a linear map4 : R — R™ is just anm x n real-valued matrix,
and its conjugate is given by its transpodé, = A7
Also, let us consider the space of symmetrie n matricesE = S™. We use T¢-) to denote the trace of a matrix, i.e., the sum
of its diagonal entries. WheE = S™, it is natural to specify a linear map : S™ — R™ as a collection{A*, ..., A™} of m
matrices fromS™ such that
AZ = (TH(ZAY);. . ;Tr(ZA™)) : 8™ — R™.

In this case, the conjugate linear map : R™ — S™ is given by

m
A*y = ZyJAJ7 Y= (yla .. ';y'm) S R’m.
Jj=1



There are three important regular cones common to most MIG#sely the nonnegative orthaRt ,
the Lorentz conel”, and the positive semidefinite cod® . In the first two cases, the corresponding
Euclidean spacé’ is just R™ with dot product as the corresponding inner product. In Het tase
becomes the space of symmetric< n matrices with Frobenius inner produgt, y) = Tr(zy”). These
three regular cones are also self-dual, thaklis= K.

Notatione! is used for the'” unit vector ofR”, and Id for the identity map i¥. WhenE = R", Id is
just then x n identity matrix,,.

1.2 Motivation and Connections to MICPs

While thedisjunctive conic sef (A, I, B) can be of interest by itself, here we provide a few examples to
highlight our naming choice and the significance of this fearark. In particular, we show that these sets
naturally represent the feasible regions of MICPs as wedbase natural relaxations for them.

We start with the following example transformation that gi@tizes the usualisjunctive programming
from the polyhedral (linear) cas&,[8, 9, 10] to the one with conic constraints.

Example 1.1 Suppose that we are given a finite collection of convex setseoformC; = {z € K :
Atz =i, b} fori € {1,...,¢}, whereK C R™ andK; C R™ are regular conesA® are m; x n matrices,
andb’ € R™. ThenU,cq,.. ¢y Ci can be represented in the form&fA, K, B) as follows:

(Al)T {bl} + ’Cl R™1 R™1
AT R™2 b2} + Ko R™2
zeR": (,) = _ U { }_ U _ Lz e
(AHT R™e R™e {ovm} + K,
=Ax =B Y,
WhenK = R%} andC; = R forall i = 1,... ¢, then;cqy,._ ¢y Ci is the well-known disjunctive set
representing the union of polyhedrd, [8, 9, 10].
Moreover, wherk is a general regular cone but; = R, forall i = 1,...,¢, then the seS(A, K, B)
models multi-term disjunctions on the cofie &

In fact, the multi-term disjunction structure of Examgdld allows us to model removal of any polyhedral
lattice-free set such as triangle, quadrilateral or cragamtction from a regular cone (or its cross-section) by
appropriately selecting the conks, the matricesA?, and the vectors’. Besides, every convex st c E
can be regarded as the cross-section of a convex cdieiR given byKq := con€{(z,1) € ExR: z €
Q@}) and the hyperplanél = {(z,A\) € E x R: X = 1}. Yet, the resulting con& may not be regular in
general.

Our next set of examples highlight the connectionS¢f4, K, B) with the feasible sets of MICPs and
their relaxations.

Example 1.2 Suppose that we are given the following conic optimizatimilem with integer variables

Opt= inf {ch: Az =b, z €K, xieroraIIizl,...,é}. 1)
zeR™



By defining

~ b
A:[A}, and =4 z |},

In Rn—@
wherel, is then x n identity matrix, we can convert this problem into optimigthe same linear function
overS(A, K, B), i.e.,Opt= inf,cpn {c'z: Az € B, z € K}. %
Example 1.3 Let us also consider another MICP of form

Opt:= inf {ETy: Ay—bek, y; e Zforalli= 1,...,@}, @)
yeR”

whereK is a regular cone in the Euclidean spagée Then, by introducing new variables , y—, and setting

~ ~ N b+ K
+ fe—
x:<y_>, K =R? xR", c:< C~>, A:[A A], and B= 7t :
Yy —C [n _In Rn—@

wherel, is then x n identity matrix, once again we can precisely represent pingblem into disjunctive
conic form. &

There is an important structural difference between thgigiisive conic sets arising in Examplés?
and 1.3 The conek of S(A, K, B) in Examplel.2is rather general, in particular it can be any regular
cone. On the other hand, the resulting cone used in Exainplafter the transformation is a very specific
one, it is the nonnegative orthant. There are two importestindtions between a general regular cone and
the specific case of nonnegative orthant that will appeaumdescussions later on in secti@ These are,
first, the nonnegative orthant is decomposable, i.e., it st introduce correlations among variables, and
second, all of its extreme rays are orthogonal to each other.

Example 1.4 Let us revisit Exampld.3 and investigate the following alternative disjunctive icoform
given in a lifted space by a single additional variables R, as follows

x:<?>, lCz{(y;t)ER"x]R: gy—btelz},

=(5) =i 1] e s (7))

wherel, is the/ x ¢ identity matrix. The resulting optimization problem ovbistdisjunctive conic set is
also exactly equivalent t®).
Analogous transformations are possible for Exampldsand 1.2 as well. &

together with

Remark 1.1 The transformation given in Example3 may seem more attractive in comparison to that
of Examplel.4 because the final disjunctive conic foiiA, K, B) in Examplel.3 possesses very simple
conic structurelC = Ri". On the other hand, the transformation used in Examiplienot only gets us to a



disjunctive conic form with fewer additional variables lalgo the new con& encodes important structural
information about the problem such as the linear m@and the vectob.

As we detail in sectiof, the congC plays a critical role in identifying dominance relations ang valid
inequalities forS(A, K, B). In particular, our minimality notion is explicitly baseddhe ordering defined
by the dual conéC*. As a result of this, any structural information encodediis quite useful in identifying
the properties of extremal inequalities. In fact, this apep new possibilities even for the well-studied case
of MILPs, which we discuss in Remdtld. &

In Examplesl.2-1.4, we provide disjunctive conic sef{ A, I, B) to exactly represent the correspond-
ing feasible sets of MICPs. This indicates that the exptieiscription of the resultingonuS (A4, K, B))
is often not easy to characterize. An alternative use of @junttive conic framework in the context of
MICPs is to obtain and study disjunctive conic form relasias that are practical, yet still nontrivial and
useful. One possibility for obtaining such relaxations hie form of S(A, K, B) is to iteratively add the
integrality requirements by changifyto Z in the description of the sé corresponding to a variable.

Another option for developing relaxations in disjunctivenic form is based on a more practical sep-
aration problem. Suppose that in Exampl@ we have obtained a feasible solutiérto the continuous
relaxation of MICP, yeti ¢ tomS(A, K, B)). For this example, the following disjunctive conic set
S(A, K, B) can be exploited to identify valid inequalities that cut off Considerd € Z™ andry € Z
suchthatl; =0foralli =¢+1,...,nandry < Zle d;Z; < ro + 1. Then the split disjunction induced
by Ele dix; <19 V Zle d;z; > ro + 1is valid for the feasible set of the optimization problef), (
whereas the current solutici violates it. Given such a split disjunction, the questionobfaining cuts
separatinge is equivalent to studyingomnvS (A, K, B)) where

a=[ ] o s {( 2 Ui, )}

In particular, the inequality description of thi®nvS(A, K, B)) will contain cuts for the original MICP
separatingz. The same reasoning also applies in the case of Exain@le.g., such a split disjunction in
this case can be represented by defirstidl, K, B) with

oy o TA A B b+ K b+ K
w-(y_),lC—R+XR+7A_|:dT _dT:|7andB—{<TO_R+>U<TO+1+R+>}.

We stress that in our discussion abokés not restricted to be an extreme point solution. In many
cases in MICPsz will be obtained by solving a continuous relaxation of MICR interior point methods.
Therefore, it will not necessarily be an extreme point sotut Nevertheless, our framework is flexible
enough as it allows us to study the separation of an arbipamt & ¢ TonS(A, K, B)). In contrast,
most of the MILP literature, and almost all of the so-called-generating function literature, focuses on
separating extreme point solutions. This main focus on ¢pastion of extreme point solutions in theory
and practice of MILPs is because the overwhelming choicadbring the linear programming relaxations
is the simplex algorithm and it leads to extreme point sohgiz. In the MILP literature, by translation of
the associated poirtand the feasible set, this separation problem is often sastarating the origin from
the convex hull of a set of points.

Nonetheless, the theoretical framework of disjunctivegpreming in MILP does provide general tech-
niques to separate non-extreme-point solutions in the saammer as discussed above. Thus, exact repre-
sentations and relaxations of the above forms have beergtuda number of other contexts in the specific



case ofC = R’}.. In particular, when we additionally assume thas finite, we immediately arrive at ths-
junctive programmindramework of Balasq]. Furthermore, Johnsod{] has studied the se&¥(A, R’ , B)
when B is a finite list under the name d¢ihear programs with multiple right hand side choick another
closely related recent work, Conforti et &2 study S(A, K, B) with I = R’} and possibly an infinite set
B such thatB # (), is closed and) ¢ B, and demonstrate that Gomorgsrner polyhedror{36] as well
as some other problems suchliagar programs with complementarity restrictiof@5] can be viewed in
this framework. In contrast t®], Johnson 44] studies the characterizations of minimal inequalitie®] a
Conforti et al. R5] study minimal cut generating functions. We discuss cotioes of these and our study
in section4.3.

Finally, we emphasize that we are not making any particidauption ond and B beyond the ba-
sic ones to avoid trivial cases such 864, K, B) = () or con(S(A,K,B)) = K. Because3 can be
completely arbitrary, the se$(A, K, B) offers great flexibility, which can be much beyond the relax-
ations/representations related to MICPs. Specificallyp@dgunderstanding of disjunctive conic sets will
be particularly relevant to conic complementarity prolbdesms well.

1.3 Classes of Valid Inequalities and Our Goal

Recall that we are interested in the closed convex hull cieiaation of the disjunctive conic set
S(AK,B) ={z e K: Ax € B}.

This naturally amounts to the study of valid linear ineqtiesi for S(A, I, B). Without loss of generality
we assume that all of the linewalid inequalitiesfor S(A, I, B) are of the form

<:“’7 $> > Mo,

wherep € E andny € R. We denote the resulting inequality with; 7o) for short hand notation. For any
u € E, we define
9(u) = inf {(p,7) : = € S(A,K,B)}, @3)

as the best possible right hand side value for an inequility) to be valid forS(A, K, B). We say that
a valid inequality(u; no) is tight if 79 = 9(u). If both (u;m0) and (—u; —np) are valid inequalities, then
(u,z) = mp holds for allx € S(A,K,B), and in this case, we refer 1q:; ) as avalid equationfor
S(A,K,B). We letIl(A, K, B) C E be the set of all nonzero vectguse E such that)(u) is finite. This
setll(A, IC, B) is precisely the subset df leading to nontrivial valid inequalities fa& (A, IC, B).

Let C(A,K,B) C E x R denote the convex cone of all valid inequalities givenbyn,). Identifying
valid linear inequalities that are necessary in the dessoripf conv(S(A, K, B)) is equivalent to studying
C(A, K, B) and its generators. BecauS&A, K, B) is a convex cone it x R, it can be written as the
sum of a linear subspack of E x R and a pointed coné€, i.e., C(A,K,B) = L + C. GivenL, the
largest linear subspace contained(nA, K, B), let L denote the orthogonal complementiof Then a
unique representation for the pointed cafién C(A,KC, B) = L + C is given byC = C(A,K,B) N L+,
A generating setG,G¢) for a coneC(A, K, B) is a minimal set of elemeni{g:; n9) € C(A, K, B) such
thatGy, C L, G € C, and

C(A,K,B) {Zaww+ZAu Ao >o}

wedGy, veGeo



Remark 1.2 From this definition, it is clear that in a generating $€t;, G¢) of C(A, K, B), without loss
of generality, we can assume that each vector fégmis orthogonal to every vector iy, and all vectors
in G, are orthogonal to each other. &

Our study ofC'(A, K, B) will be based on characterizing the properties of the elesnafrits generating
sets. We will refer to the vectors (#;, asgenerating equalitieand the vectors i’ asgenerating inequal-
ities of C'(A, K, B). An inequality (u;m9) € C(A, K, B) is called anextreme inequalitypf C (A, K, B), if
there exists a generating set f0f A, IC, B) including (u; 19) as a generating inequality either @y, or in
G¢. When the con€’(A, K, B) is pointed, we havér, is trivial andG¢ is uniquely defined up to positive
scalings. Then, our definition of extreme inequalities Hase generating inequalities matches precisely
with the usual definition of extreme inequalities stated as ihequality is extreme if it cannot be written
as average of two other distinct valid inequalities.” Ndiattany non-tight valid inequalityu; n) with
1o < Y¥(n) does not belong to a generating settfA, K, B).

Clearly, the inequalities in generating €t;, G) of the coneC(A, K, B) are of great importance;
they are necessary and sufficient for the descriptiatoof(S(A, I, B)). Itis easy to note that's, is finite,
as a basis of the subspagecan be taken a&';. For nonpolyhedral (nonlinear) cones suchZ&swith
n > 3, Go need not be finite. In fact we provide an example demonstyétiis in sectiorS.

1.4 Outline

The main body of this paper is organized as follows. In seciowe introduce the class @f-minimal
inequalities and show that under a mild assumption, thissctd inequalities together with the constraint
x € K is sufficient to describeonvS(A, K, B)). We follow this by establishing a number of necessary
conditions for/C-minimality. In particular, we show tha€-minimal inequalities are tight in many cases.
Nonetheless, we highlight that depending on the structi 4, I, B), X-minimality does not necessarily
imply tightness of the inequality. In addition to this, orfeoar necessary conditions fé&-minimality leads

us to our next class of valid inequalities;-sublinear inequalities. We studg-sublinear inequalities in
section3 and establish a precise relation betwé&&sublinearity andC-minimality and show that the set of
extreme inequalities in the cone Kfsublinear inequalities contains all of the extreme inditjea from the
cone of C-minimal inequalities. In sectiod, we show that everyC-sublinear inequality is associated with
a convex set of particular structure, which we refer to astagenerating setMoreover, we show that any
nonempty cut generating set leads to a valid inequalityoiliin this connection with structured convex sets,
we provide necessary conditions fiérsublinearity, as well as sufficient conditions for a vahéguality to

be KC-sublinear andC-minimal. In the case ok = R}, our necessary condition and sufficient condition
for IC-sublinearity match precisely establishing a strong i@tabetweenC-sublinear inequalities and the
support functions of cut generating sets. This relatiorviples nice connections to the existing literature,
which we highlight in sectiort.3. We close sectiod by examining the conic Mixed Integer Rounding
(MIR) inequality from [5] in our framework. We provide some characterizations ofliheality space of
C(A, K, B) in section5, and finish by stating a few further research questions.

2 K-Minimal Inequalities

In this section, based on the ordering induced by the regolae/C*, we first introduce a domination notion
among valid linear inequalities f&¥ (A, IC, B). Based on this domination notion, we identify a relatively
small class of valid linear inequalitie&;-minimal inequalitiesand show that this class is nonempty under



a mild technical assumption. This technical assumptioatisféed, for example, when cof§(A, K, B)) is

full dimensional. Under this assumption, we establish iahinimal inequalities along with the constraint
x € K is sufficient to describ€omv(S(A, I, B)). We then study the properties of inequalities from this
class.

We start by pointing out a trivial class of valid linear in@djties forS(A, IC, B), which we refer asone-
implied inequalities These inequalities stem from the observation $@&t, K, 5) C K. The definition of
dual cone immediately implies that for adye K*, the inequality(é, ) > 0 is valid for K, and thus, it
is also valid forS(A, K, B). Therefore,(6;0) € C(A, K, B) for anyé € K£*. Note that all cone-implied
inequalities are readily captured by the constraimt /C. Hence, they are not of great interest. In particular,
unless conS (A, K, B)) = K, the family of cone-implied inequalities will not be suftit to fully describe
CONV(S(A, K, B)). Because we have already assuceavS(A, K, B)) # K, from now on, we focus on the
characterization of valid linear inequalities that are 4sone-implied and are needed to obtain a complete
description ofcon(S(A, K, B)). This leads us to our definition &-minimal inequalities.

Definition 2.1 A valid linear inequality(u; no) with © # 0 andny € R is K-minimal (for S(A4, K, B)) if
for all valid inequalities(p; po) for S(A, K, B) satisfyingp # u, andp <x+ 1, we havepy < np.

We next observe that the coi& indeed, induces a natural dominance relation among the Na¢ar
inequalities, andC-minimality definition is a result of this dominance relatio Let us consider a valid
inequality (x; mp) which is not/C-minimal. Thus, there exists another valid inequalipy pg) such that
p # w, p K+ 1, andpy > no. But then the inequalityp; po) together with the constraint € I implies
the inequality(u; n9) because

() = (p+ (n—p),x) = (p,x) + {1 — p,z) > po > no,
S~ N——
> po >0

where the first inequality follows from € K andu — p € K*. The above relation indicates that when
the constraintz € I and the linear inequalityp; py) are included, the nok:-minimal inequality(u; n9) is
not necessary in the descriptionanv(S(A, K, B)). The definition oflC-minimality simply requires an in-
equality not to be dominated in this fashionCaminimal inequality(u; 770) cannot be dominated by another
inequality, which is the sum of a cone-implied inequalityglamother valid inequality faf (A, IC, B).

In general, there ar&-minimal inequalities that are not extreme. In particutée definition ofKC-
minimality allows for a/C-minimal inequality to be implied by the sum of two other ncome-implied
valid inequalities. That said, under a technical assumptie will show that all non-cone-implied extreme
inequalities aréC-minimal. Because characterization of extreme ineqgealith general is known to be a
much more difficult task, in this paper, we limit our focus be tharacterization df-minimal inequalities.

Remark 2.1 None of the cone-implied inequalitiés; o) = (J;0) withd € £*\ {0} is £-minimal because
we can always write them as the sum of a valid inequélityy) = (%5; 0) with py = 19 and a cone-implied
inequality(%d; 0). Nevertheless, a cone-implied inequality can be extfelnand thus, necessary in the
description ofcon(S(A, K, B)). &

Remark 2.2 In the case of MILPIC = R’, a minimal inequalityis defined as a valid linear inequality
(1;m0) such that ifp < p (where the< is interpreted in the component-wise sense) asé 1, then(p; ng)

ISee sectiorl.3and the definition of extreme inequalities based on gemeyatiequalities.
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is not valid, i.e., reducing any; for i € {1,...,n} will lead to a strict reduction in the right hand side
value of the inequality (cf.44]). Considering thatR’; is a regular and also self-dual cone, we conclude
that C-minimality definition is indeed a natural extension of thaimality definition of valid inequalities
studied in the context of MILPs to more general disjunctioeic sets with regular cones. &

Remark 2.3 Whether a valid inequality is necessary for the descriptibBonv(S(A, K, B)) depends on
S(A, K, B) and it can very well be independent of the choicedoB and K. In particular, if there exists
A’ B and K’ such thatconS(A’, K, B')) = com(S(4, K, B)), then the extreme inequalities for these
will be the same. Additionally, as long as the $¢t4, IC, B) remains the sam&-minimality definition is
independent oft and B but depends oft explicitly, that is thelC-minimal inequalities for botls (A, I, B)
andS(A’, K, B') are the same as long @mv(S (A, K, B’)) = comu S (4, K, B)). However, wheill’ # K,
K-minimal inequalities forS(A, K, B) might differ fromX’-minimal inequalities forS(A4’, K, B’) even
whentomv(S(A’, K, B')) = com(S(4, K, B)). We comment more on the choice of the cthand its
impact on identifying dominance relations and our minityatiotion in Remari2.4. &

In the light of this remark, from now on we will emphasize thassification of valid inequalities based
on the coneC explicitly.

We letC,,, (A, K, B) denote the set df-minimal valid inequalities foS(A, I, B). Note thatC,,, (A, K, B)
is closed under positive scalar multiplication and is thesrme (but it is not necessarily a convex cone).

The following simple example shows a s8tA, K, B) together with théC-minimal inequalities describ-
ing its convex hull.

Example 2.1 LetS(A, K, B) be defined withC = £3 = K*, A = [~1,0,1] ) and B = {0,2}, i.e.,
SAKB ={zck: —a1+a3=0}J{zek: —a +25=2}.
Then

coM(S(A,K,B)) = {zeR®: zeK,0< —x; +x3 <2}
= {zecR®: (2,6) >0V € Ext(K*), z1 —x3 > —2},

is closed, and thus, the cone of valid inequalities is giwen b
C(A, K, B) = cone(K* x {0}, ([1;0; —1]; -2)) .

The only non-cone-implied extreme inequality in this desion is given by = [1;0; —1] with iy =
—2 =9(u). Itis easy to see that this inequality is valid and also nsagsfor the description of the convex
hull. In order to verify that it is in factC-minimal, consider any € £* \ {0}, and setp = u — ¢. Then the
best possible right hand side valpg for which (p, z) > p is valid, is given by

po = f{{p,z): =€ S(AK,B)}
< igf{(p,x% rek, —x1+x3=2}
= iImlf{$1—l’3—<5,l’>lfL'€K, —x1 +x3 =2}
= igf{—2—<5,x>: rek, —x+x3=2}
= —2-—sup{(f,z): x €K, —x1+x3=2}
< -2 Zﬁm(u),

3Throughout this paper, we use Matlab notation with brackgte denote explicit vectors and matrices.
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where the strict inequality follows from the fact that= [0; 1; 2] is in the interior ofIC and satisfies-u; +
uz = 2 (and thus is feasible to the last optimization problem in &beve chain), and also for any <
KC*\ {0}, (6,u) > 0. Clearly, all of the other inequalities involved in the degtion of con\(S(A4, K, B))
are of the form{¢, z) > 0 with § € Ext(C*), and hence, are nd€-minimal. O

Our goal is to generalize Exam#el and establish thaf-minimal inequalities along with the constraint
x € K are sufficient to describednv(S(A, I, B)). However, we need a structural assumption for this result.
This assumption is a result of the important fact that tharele situations where none of the inequalities
describingcon(S(A, K, B)) is K-minimal even whemonv(S (A, K, B)) € K. To emphasize this technical
difficulty and motivate our assumption, let us consider ghgly modified version of Exampl2.1 with a
different sets:

Example 2.2 LetS(4, K, B) be defined withC = £3, A = [-1,0,1] andB = {0}. Then
COMV(S(A, K, B)) ={zeR>: 2 €K, —x1+x3=0} ={z cR®: ) =3, 29 =0, x1,23 > 0}.

We claim and prove that none of the inequalities in the dption ofcon\S(A4, K, B)) is K-minimal.

To observe this, let us fix a particular generating &8t , G¢) for the coneC'(A, I, B). Based on the above
representation otonv(S(A, K, B)), we can take for exampléc = £3 x {0} and G, = (u;0) where
w = [—1;0;1] withny = 0 = J(u). Note that all of the inequalities it as well as one side of the
valid equation given byy; 0) are cone-implied (because € £3), and thus are nokC-minimal. Moreover,
the inequality given by—p;0), e.g., the other side of the valid equation also cannofJainimal since
p = [1.5;0; —1.5] satisfiesy = —p — p = [—0.5;0;0.5] € Ext(K*) and (p;no) is also valid. In fact, for
any valid inequality(y; 70) that is in the description afon(S(A, K, B)), there exists > 0 such that we
can subtract the vectar = 7[—1;0; 1] € Ext(X*) from y, and still obtain( — ;n0) as a valid inequality.
Finally, note that the generators 6f( A, IC, B) are uniquely defined up to shifts by the vedier0) defining
the valid equation. But these shifts do not changefthainimality properties of the inequalities. &

The peculiar situation of Examp2is a result of the fact tha# (A, K, B) C {z € K : —x1 + 23 = 0},
i.e.,S(A, K, B) is contained in a subspace defined by a cone-implied validtegu The next proposition
formally states that this is precisely the situation in vihione of the valid linear inequalities, including the
extreme ones, i£-minimal.

Proposition 2.1 Suppose that there exisise £* \ {0} such that(é,z) = 0 for all z € S(4,K,B), i.e.,
(0;0) is a valid equation. Thety,,(A, K, B) = 0.

Proof. Leté € K*\ {0} be such thats;0) is a valid equation. Consider any valid inequalfgy; 7).
Because —4; 0) is also valid, we gety — d; 1) is valid as well. But theriy; no) is not/C-minimal because
d € K*\{0}. Given that(u; 0) was arbitrary, this implies that there is fisminimal valid inequality under
the hypothesis of the proposition. O

Based on PropositioR.1, in the remainder of this paper, we make the following asdionp
Assumption 1 For eachy € K£*\ {0}, there exists some; € S(A, K, B) such thatd, zs5) > 0.
Note thatAssumption lis indeed not very restrictive, and is trivially satisfieok €&xample, whenonv(S (A, K, B)) #

K and is full-dimensional, e.g., when Ket) Nint(K) # () (see Propositio2.4).
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Our main result in this section shows that undssumption 1, X’-minimal inequalities, along with the
constraintr € I, are sufficient to describBomnv(S(A, I, B)). In particular, we prove that undé&ssump-
tion 1, all extreme inequalities ar€-minimal. Due to the previous discussion on the dominantzioa
among inequalities anll-minimality, this result is expected. However, to formalithis, we need the fol-
lowing definition: Given two vectorsy, v € C' where(C'is a cone with lineality spacg, « is said to be an
L-multipleof v if u = v + £ for somer > 0, and/ € L. From this definition, it is clear that if is an
L-multiple of v, thenv is also anL-multiple of u. Also, we need the following lemma frord4]:

Lemma 2.1 Suppose is in a generating set for con€ and there exist!, v? € C such thaty = v! + 2,
thenv!, v? are L-multiples ofv.

Let (G, G¢) be a generating set for the co6&A, I, B). Note that whenever the lineality spateof
the coneC (A, KC, B) is nontrivial, the generating valid inequalities are ongfided uniquely up to thé-
multiples. We defin€7/, to be the vectors fron that are not.-multiples of any cone-implied inequality
(6;0) with 6 € K* \ {0}. ThenGY{, is again only uniquely defined up fo-multiples.

The following result is a straightforward extension of tlss@ciated result fron¥f] given in the linear
case to our conic case.

Proposition 2.2 Let (G, G¢) be a generating set for the cold& A, K, B). Under Assumption 1, every
valid equation inGG;, and every generating valid inequality (EFCF is KC-minimal.

Proof.  Suppose€u;n) € Gr, U Gg is not C-minimal. Then there exists a nonzefoc K* such that
(n—d;m0) € C(A,K,B). Note that(s;0) € C(A, K, B), therefore,(u + d;n0) is valid as well. Then
Lemma2.1limplies that(s; 0) is anL-multiple of (1;10). Using the definition o, we get(u;n0) € G
Given that(d;0) is an L-multiple of (u;79) and G, is uniquely defined up td.-multiples, we get that
(0;0) € Gr. Hence,(d,z) = 0 is a valid equation, which contradicts Assumption 1 O

Based on Propositio.2, Assumption 1ensures that’,, (A, K, B) # (). In particular, Propositio2.2
immediately implies the following result.

Corollary 2.1 Suppose thafssumption 1 holds. Then, for any generating sg¥;, G¢) of C(A, K, B),
(Gr,G{) generate<,,, (A, K, B). In particular, all non-cone-implied extreme inequalitiere C-minimal.
Thus, K-minimal inequalities along with the original conic coraitnt x € X are sufficient to describe
conv(S(A4, K, B)).

UnderAssumption 1, in the light of Propositior2.2and Corollary2.1, we arrive at

COMV(S(A,K,B)) = {zeE: zek, () =mnV(un) € Gr, (ma) >no¥(um) € GE}
= {(L’ ceb:xe K:, </L,.Z'> > UOV(/% 770) € Cm(A7IC7B)}

Therefore, undeAssumption 1, any valid inequality(y; 7o) for S(A, KC, B) is dominated by a set df-
sublinear inequalitie$u’; ) wherei € I is a set indices and a cone-implied inequalify0) with § € £*
(note that the cone of cone-implied inequalities is conv@at is, . = >, ., u* + 6 andmny < >,/ 70
WhenC,,, (A4, K, B) is convex, the set of indicelscan be taken as a singleton.

Next, we deliberate on the importance of the cdhén establishing dominance relations and in our
K-minimality definition.

Remark 2.4 Based on Remark.3and our/C-minimality notion, the structural information encodedtive
conel is rather important in identifying smaller classes of valqualities that are sufficient to describe
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the closed convex hulls of disjunctive conic sets. To enga#ss, let us consider a situation where we are
givenA and 3, and we have several options for the cdté encodeS (A, K, B). Suppose that we are given
two conesiC; C Ky such thatS(A, Ky, B) = S(A, K3, B). ThenC(A, Ky, B) = C(A, K2, B). Insuch a
case, the smaller corn€; encodes the structural information of the disjunctive ca@tS (A, K1, B) better
than /C,. In order to avoid technical difficulties let us assume tBa#, Iy, B) satisfiesAssumption 1 with
respect tdC; andconv(S (A, K1, B)) # Ky, thusC,, (A, K1, B) is nonempty. The definition &Fminimality
together with the relatiorlC; D K3 automatically implies thak’;-minimal inequalities foiS(A, Ky, B) are
also Ko-minimal for S(A, K4, B), but not vice versa becaugé, # K,. Therefore,C,,(A,K1,B) C
Cn(A, Ko, B). Let(Gr,Gc) be a generating set fof'(A, K1, B). Let us define.Glc:Jr to be the vectors
from G¢ that are notL-multiples of any cone-implied inequality; 0) with 6 € K \ {0}, and Gé+
analogously with respect t85. Then by Corollary2.1, we have(Gy, Glc:+) generates”,, (A, K1, B) and
(G, G%T) generatesC,, (A, Ko, B). Because,,,(A, K1,B) € Cp(A, K2, B), we conclude thatiyt ¢
C%Jr. Then, all extreméC,-minimal inequalities are alséC;-minimal, but soméC,-minimal inequalities,
namelyG "\ G5T, will not be extreme, and

COHV(S(A,’C,B)) = {l’ €E: zeky, (/L»x> =To v(:“';TIO) € Gy, <:“’7$> 210 V(,u, 770) € Gé—’_}
= {z€E: xeky () =mnY(wmn) € G, (u,z) >noV(m) € Gt}

Hence, we conclude that whenever we have a choice betivgen K5, minimality defined with respect
to the smaller coneC; results in a stronger dominance notion among valid lineaqgualities defining
con(S(A, K, B)).

As a consequence of this, we highlight the importance ofdéngatructural information infC as much
as possible. For example, among different choices of diium conic representations of the same set
suggested in Examplds3 and 1.4, the one in Examplé.4 is superior. This is so, even when the cdde
is as simple aRR’}. Therefore, even in the case of MILPs, whenever such stalahformation, e.g., a
polyhedral relaxation, is present, there is benefit in dafinminimality notion based on a regular coié
defined in a lifted space as described in Exanipfeas opposed to the usual choice of nonnegative orthant
from the MILP literature. &

These results motivate us to further study the propertiéS-ofinimal inequalities in the next section.

2.1 Necessary Conditions fokC-Minimality

Our first proposition states that in certain casesKathinimal inequalities are tight. This also gives us our
first necessary condition fa€-minimality.

Proposition 2.3 Let (u;1m9) € Cin (A, K, B). Then, whenever € K£* or u € —K*, the valid inequality
(u5m0) is tight, i.e.,mo = ¥(u) (cf. (3)). Furthermore,(u;n0) € C (A, K, B) andu € K* (respectively
w e —K*)impliesd(u) > 0 (respectively(u) < 0).

Proof.  Consider(u;n) € Cpn (A, K, B) with u # 0. Note thaty = 0 leads to trivial valid inequalities
which are not of interest. The validity ¢f:; 7o) immediately implies)y < 9(u). Assume for contradiction
thatn, < ¥(u). We need to consider only two cases:

(i) u € K\ {0}: Thend(u) > no > 0, because otherwisg:; 7o) is either a cone-implied inequality

or is dominated by a cone-implied inequality, both of whick aot possible. LeB = %, and
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considerp = 5 - u. Then(p;no) is a valid inequality because < g < 1, (u;9(n)) € C(A, K, B)
andC(A,K,B)isacone. Bupu —p = (1 — f)u € K*\ {0} sincep # 0 andf < 1. Thisis a
contradiction, thus, we concludg = 9(u) > 0.

(i) —p € K£*\ {0}: Because—y; 0) is trivially valid and we cannot satisfy both-; 0) and (1; (1))
whend(u) > 0 unlessS(A, K, B) = (. But this is not possible due to our assumptionsS¢A, K, 13),
thus, we conclude thalt(x.) < 0. Moreover, ifd(u) = 0, thenS(A, K, B) € {x € K : (u,z) = 0},
which contradict?Assumption 1 Hence, we conclude thag < ¥(u) < 0. Once again leb = %,
and considep = - u. Then(p;no) is a valid inequality since > 1, (u;9(un)) € C(A, K, B) and
C(A,K,B)isacone. Bup— p= (1 —3)u € £*\ {0} sincepx € —K*\ {0} and5 > 1. But, this
is a contradiction to th&-minimality of (u;n9). Thus, we conclude thay = ¥(u) < 0. -

Clearly, Propositior2.3does not cover all possible cases forAs a matter of fact, it is possible to have
u ¢ +K* leading to akC-minimal inequality. While one is naturally inclined to ale that akC-minimal
inequality (u; np) is always tight, i.e.5o = ¥(1), we have the following counter-example.

Example 2.3 Consider the disjunctive conic s8( A, K, B) defined withA = [-1,1], B = {-2,1} and
KC = R2.. First, note thatAssumption 1 holds becaus€[0; 1], [2; 0]} € S(4, K, B), andcon(S(A, K, B)) =
com(S(A4, K, B)) # R%. Thus,KC-minimal inequalities exist, and together with nonnegstivestrictions
they are sufficient to descrilmnv(S (A, I, B)). In fact,

COMV(S(A,K,B)) ={z €R?: —x1+x9> -2, 21 — a9 > —1, 1 + 229 > 2, 21,29 > 0},

and one can easily show that each of the nontrivial ineqgealiin this description is in fadC-minimal.

Figure 1: Convex hull o8 (A4, K, B) for Example2.3

Now, let us consider the valid inequality given Qy.n0) = ([1;—1];—2). Note thatd(n) = —1,
therefore,(u; 19) is not tight and is dominated by the valid inequality — o > —1. We will show that
(1;mo) 1s KC-minimal regardless of the fact that it is not tight. We ndtatt in this examplelC-minimality is
the same as the usual minimality used in the usual MILP liteea

Suppose thatu; o) is not C-minimal, then there exists = © — d with 0 # § € K* = Ri such that
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(p;mo) is a valid inequality. This implies
—2=ny < inf{(p,z): x€S(AK,B)} =min{(p,z) : x € con(S(A4,K,B))}
= min{(p,x): —x1+x2> -2, 1 —x9 > —1, 1+ 229 > 2, 11,29 > 0}
= m)z\ix{—Z)\l — Ao+ 2X3: =AM+ A+ A3 < p1, A= Ao+ 223 < po, A€ RY}
= m}z\ix{—2)\1—)\2+2)\3: A XA <1 =01, A=A+ 203 < —1— 85, A e R},

where the third equation follows from strong duality (thépell problem is feasible), and the fourth equation
follows from the definition g = i — 6. On the other hand, the following system

A >0
A —X—A3 > 6 —1
A1+ Ay —2A3 > 1+ 6o,

implies that0 > —3)\3 > §; + d». Considering thaty € R2, this leads toj; = 6, = 0, which is a
contradiction toj # 0. Therefore, we conclude thét; ng) = ([1; —1]; —2) € C (A, K, B) yetny # 9(p).
¢

Remark 2.5 This issue of non-tightness of soieminimal inequalities is independent of whether tte
minimal inequality separates the origin or not. When we @®rsa variation of Exampl&.3 given by
A =[-1,1], B={-2,-1} andK = R?, we have the valid inequality given By;no) = ([1;—-1]; ) is
K-minimal due to the same reasoning, yet, it #§8) = 1 and hence ;7o) is not tight. Note also that this
inequality separates the origin from the closed convex hull &

In fact, we can generalize the situation of Exampld, and prove the following proposition, which
states that under a special condition, &&r N int(K) # 0, any valid inequality(; o) with p € Im(A*)
and—ny < ¥(p) (cf. (3)) is ak-minimal inequality.

Proposition 2.4 Suppose&er(A) Nint(KC) # 0. Then, for any € Im(A*) and any—oco < 19 < J(u), we
have(u;no) € Cm (A, K, B).

Proof. Considerd € Ker(A) Nint(K) # 0, note thatd # 0. For anyb € B, define the sef;, := {x €
E: Az =0b, z €K}, and letB := {b € B: S, # 0}. BecauseS(4, K, B) # (), we haveB # (. For
anyb € B, let xp € Sy, thenPy, := {x, + 7d : 7 > 0} C S, holds. Moreoverp, Nint(K) # ) for any
beB # (0, and thusAssumption 1holds here.

Assume for contradiction that the statement is not true,there existg. € Im(A*) together withy, <
I(u), such tha(y; no)  Cr (A, K, B). Then there exists € £* \ {0} such thaty — d;19) € C(A, K, B),
which implies

—oco<ny < inf{{u—d,z): xeSAK,B)}
< infinf{(p—4,z): Az =0b, x € K}
beB =
< infinf{(p—6,z): v € B}
beB T
< inf |(u— 0, zp) +inf{{(u —0,7d) : 7> 0} .
—_—— T

beB
€R

16



Also, note thainf {(ux — d,7d) : 7 > 0} = —oco when(u — ¢,d) < 0. But (1 — 9,d) < 0is impossible
since it would have implied-oo < 79 < —oo. Therefore, we conclude thgt — o, d) > 0.
Finally, because: € Im(A*), there exists\ such thatu = A*\. Taking this into account, we arrive at

0 < (u—06,d) = (A*\,d) — (6,d) = AT (Ad) —(5,d) = —(6,d),
~—

=0

where we used the fact thétc Ker(A). Butd € int(K) andé € £* \ {0} implies that(s, d) > 0, which is
a contradiction. O

Example2.3 and Propositior?.4 indicate a weakness of thié-minimality definition. To address this,
we should focus on onlyight -minimal inequalities, that is(u;n) € Ci (A, K, B) whereny = 9(u)
(no cannot be increased without making the current inequalitglid). While we can include a tightness
requirement in ouC-minimality definition, we note that tightness has a dirdearacterization through
¥(u), and also to remain consistent with the original minimatigfinition forC = R, we opt to work with
our original K-minimality definition. As will be clear from the rest of theyper, tightness considerations
will make minimal change in our analysis.

We next state a proposition which identifies a key necessamgitton for JC-minimality via a certain
non-expansiveness property. The following set of lineapsnaill be of importance for this result.

Fi:={(Z:E— FE): Zislinear,andZ*v € L Vv € K},
whereZ* denotes the conjugate linear mapsmP)

Proposition 2.5 Let (u;19) € C(A, K, B) and suppose that there exists a linear mape Fx such that
AZ* = A,andp — Zp € K*\ {0}. Then(u;ng) & Ch(A, K, B).

Proof. Let(u;n) € C(A,K,B)andZ be alinear map as described in the proposition. SieeFj, for
anyz € K, we haveZ*z € K. Moreover,AZ*z = Az due toAZ* = A, and thus for any: € S(A, K, B),
AZ*x = Ax € B. Therefore, we hav&*x € S(A, K, B) foranyx € S(A, K, B). Now, leté = p — Zp,
thend € K£* \ {0} by the premise of the proposition. Defipe= p — ¢, then for anyz € S(A4, K, B) we
have

<p,1’> = <N - (5,1’> = <ZN795> = <N7 Z*$> 2 10,

where the last inequality follows from the fact thétx € S(A, K, B) and(u;n9) € C(A, K, B). Hence,
we get
inf{(p,x) : Az € B, z € K} > np,

which implies that(u; no) ¢ Cm (A, K, B) becausep;no) = (p;no) + (6;0) with (p;n0) € C(A, K, B)
and0 # 6 € K*. 0

Proposition2.5 states an involved necessary condition for a valid inegutdi be IC-minimal. It states
that (u; o) is alC-minimal inequality only if the following holds:

(Id—Z)u & K*\ {0} VZ € Fi suchthatAZ* = A.

9 Here, for a linear mag : E — E, we useZ* to denote its conjugate map given by the identity

(z, Zv) = (Z"z,v) Y(x € E,v € E).
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Based on this result, the sék has certain importance. In fa&j is the cone ofC* — KC* positive maps,
which also appear in applications of robust optimizatiamrum physics, etc. (se&4]). WhenK = R”,
Fx ={Z € R™*" . Z;; > 0Vi,j}. However, in general, the description Bk can be rather nontrivial
for different conesC. In fact, in [14], it is shown that deciding whether a given linear map takésto
itself is an NP-Hard optimization problem. In another marér case of interest, wheG = L™, a quite
nontrivial explicit description ofFx via linear matrix inequalities is given by Hildebrand #0[ 41]. Due to
the general difficulty of characterizingi, and thus, testing the necessary conditioiCahinimality given
in Proposition2.5, in the next section, we study a relaxed version of the candirom Proposition2.5.
This leads to a larger class of valid inequalities, nanselylinear inequalitieswhich subsumes the class of
K-minimal inequalities.

3 K-Sublinear Inequalities

Definition 3.1 An inequality(x; 7o) with u # 0 andny € R is K-sublinear(for S(A, K, B)) if it satisfies
the conditions A.1(«)) for all « € Ext(K*) and (A.2) where

(Al(e) 0<{p,u)yforallue Est Au=0and{a,v)u+ve K Vv e Ext(K),
(A2) o < {u,x)forall z € S(A K, B).

When an inequality satisfied\(1(«)) for all « € Ext(K*) we say that it satisfies conditioA(1).

It can be easily verified that the set(@f; n) satisfying conditionsA.1)-(A.2) in fact leads to a convex
cone in the spac& x R. We denote this cone df-sublinear inequalities with's(A, I, B).

Condition @A.2) is simply included to ensure the validity of a given inedfyabnd thus, it is satisfied by
every valid inequality. On the other hand, conditign) is not very intuitive. The main role of condition
(A.1) is to ensure the necessary non-expansivity conditioiCfoninimality established in Propositidh5.

There is a particular and simple case AfX) that is of interest and deserves a separate treatment:

Let (u;no) satisfy A.1), then(u; ng) also satisfies the following condition:

(A.0) 0 < {(u,u)forallu e K such thatdu = 0.

In order to see that in facA(O) is a special case ofA(1), consider any. € K N Ker(A). Then, for any
a € Ext(K*), we have(a, v) > 0 for all v € Ext(K), and because € K andK is a cone, the requirement
of condition A.1) onw, is automatically satisfied for any suehe K N Ker(A).

While condition A.1) immediately impliesA.0), treating A.0) separately seems to be handy as some
of our results depend solely on conditiors.@) and A.2). Note also that conditionA(0) is precisely
equivalent to

(A0)  pe (KNKer(A) =K* + (Ker(A)* = K* + Im(A%),

where the last equation follows from the facts that Br = Ker(4)* = Im(A*) andK* + Im(A*) is
closed wheneveX is closed §8, Corollary 16.4.2].

Condition @A.0) is not as strong a\(1). Nevertheless, conditiorA(0) is necessary for any non-trivial
valid inequality, which we prove next. Recall tH&fA, IC,B) = {p € E: u # 0, ¥(u) € R}.

Proposition 3.1 Suppose: € T1(A, K, B), theny satisfies conditionA.0).
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Proof.  Suppose conditionA.0) is violated by some: € II(A, IC, B). Then there exista € K such that
Au = 0and(u, u) < 0. Note thatforany > 0andz € S(A, K, B), z+pfu € K andA(z+pu) = Az € B,
hencer + pu € S(A, K, B). On the other hand, the term,

(1, + Bu) = (u,z) + B, u),

can be made arbitrarily small by increasifigwhich impliesd(u) = —oco whered(u) is as defined in3).
However, this is a contradiction because we started wighII(A, K, B), and sod(u) # —oo. O

As a consequence of Propositi@nl, we conclude that in order to obtaddon\(S(A, K, B)) one is
required to add only an appropriate subset of valid ineti@aliz; (1)) with € * + Im(A*).
Our next theorem states that evéfyminimal inequality is alsdC-sublinear.

Theorem 3.1 If (u;m9) € Ci (A, K, B), then(u;no) € Cs(A, K, B).

Proof.  Consider anyC-minimal inequality(u; no). Becausdp;ng) € Chn(A, K, B), (1;no) is valid for
S(A, K, B), and hence, conditiorA(2) for X-sublinearity is automatically satisfied.

Assume for contradiction thdi; 7o) violates condition A.1(«)) for somea € Ext(K*), i.e., there
existsu such that(y, u) < 0, Au = 0, and(a, v)u + v € K Vv € Ext(K). Based on: anda, let us define
alinearmap? : £ — F as

Zzr = (z,u)a +z foranyz € E.

Note thatA : £ — R™ and thus its conjugatd* : R™ — E. We letA*e’ =: A’ ¢ Efori=1,...,m,

wheree! is theit” unit vector inR™. This way, for alli = 1,...,m, we haveZA*e! = (A%, u) + A* = A’

because: € Ker(A) implies (A%, u) = 0. Therefore, we hav& A* = A*. Also, sinced : E — R™ and

7 . E — E are linear maps, we haveA* is a linear map and its conjugate is givensy* = A as desired.
Moreover, for allw € K£* andv € Ext(K), we note that

(Zw,v) = (((w,u)ya + w),v) = (w,u)(a,v) + (w,v) = (w, (@, v)u +v) > 0.
ek

Because any € K can be written as a convex combination of points from(Ext we conclude that
7 € Fx. Finally by recalling thaty € X* and is nonzero, we get

p—Zp=—{p,u)a €\ {0},
0
<

which is a contradiction to the necessary conditionffeminimality given in Propositior2.5. O

The proof of TheorenB.1 reveals the importance of conditioA.() and its implications in terms of
K-minimality. Next, we show that conditioA(1) further simplifies in the case & = R'', and conditions
(A.0)-(A.2) underlie the definition ofubadditive inequalitiefom [44] in the MILP case.

Remark 3.1 When the con& has a simple structure, in particular, when it has finitelynpand orthogonal
to each other extreme rays, the interesting cases of condifi.1) that are not covered by conditior\ (0)
can be simplified. When in addition the cokiels assumed to be regular, we can assume foat R’
without loss of generality.

SupposeC = R, then the extreme rays &f as well asKC* are just the unit vectors;’. Let us consider
(A.1(c)) for the case ofv = ¢'. Then the vectors considered in the conditiomA(1(e?)) are required to
satisfy

viu+v €K Yo € Ext(K) = {e',...,e"}.
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Because all of the extreme rays/Gfare unit vectors, this requirement affects only the extreays v with
a nonzerov; value, which is just the case of= e’. Hence, fori = 1,...,n, we can equivalently rewrite
condition @.1(¢*)) as follows:

(Adi) 0 < (p,u) forall uwsuch thatAu = 0 andu + e’ € R}

Leta’ denote the'” column of the matrixd. By a change of variables, this requirement is equivalethéo
following relation for alli = 1,...,n:

Ali i < (u,w) for all w € R? such that Aw = a'.
K K +

WhenK = R’ and B is a finite set, Johnsor4fl] defines the class of so calleslbadditive valid
inequalitiesprecisely as the inequalities that satisfy the collectidrcanditions A.1i) for i = 1,...,n,
along with the conditionsA.0) and (A.2). In this specific setup, Johnson4] shows further thatR?; -
sublinearity of an inequality can be verified by checkinguiegments A.0), (A.1i) fori = 1,...,n, and
(A.2) on only a finite set of vectors (those satisfying a mininmeddir dependence condition).

Moreover, let us for a moment assume that there exists aifumet-) underlying the/C-sublinear
inequality (u;m0). That is, given the data associated with variablg namelya’, o(-) generates the cor-
responding coefficient in the valid inequality, i.g;,= o(a’) for all i = 1,...,n. Then, condition 4.1i)
above precisely represents the subadditivity properthefftinctions(-) over the columns aofl. In fact, in
section4 for general disjunctive conic set$(A, K, B) with £ = R}, we show that for everjC-sublinear
inequality (125 10), such a functiorv(-) generatingu always exists. In the specific casetof= R’} and a
finite setB, this connection was previously established 4d][ We discuss the implications of these with
regard to existing MILP literature in detail in sectioh3. &

Under Assumption 1, there is a precise relation between the generators of thescofC-sublinear
inequalities andC-minimal inequalities. We state this below in Theor8t@, which is a generalization of
the corresponding result fromd4] to the conic case. For completeness, we include the fatigupiroof,
which simultaneously simplifies and generalizes the apmbrad [44].

Theorem 3.2 Suppose thafAssumption 1 holds. Then, any generating set 6f(A, K, B) is of form
(G, Gs) whereG, D G} and(Gr, Ge) is a generating set af' (A4, K, B). Moreover, if(u; n9) € G5\ G¢,
then(u; no) is notC-minimal.

Proof. Based on Remark.2, let (G, G¢) be a generating set @f (A, K, B) such that each vector in
G is orthogonal to every vector i1, and all vectors irz;, are orthogonal to each other. L&k, G;) be
a generating set a@f(A, I, B) in which each vector iidz is orthogonal to every vector ifi,. Note that by
Theorem3.1, we haveC,, (A, K, B) C Cs(A,K,B) C C(A, K, B).

Under Assumption 1, using Corollary2.1, we haveC,,(A, K, ) has a generating set of the form
(GL,GJCC). Hence, we conclude that the subspace spanned/ blyoth simultaneously contains, and is
contained in, the subspace generated-hy Therefore, we can také, = Gr..

Let @ be the orthogonal complement to the subspace generat@d byd define”’ = C(A4, K, B)NQ,
Cl, = Cn(AK,B)NQandC’ = Cs(A,K,B) N Q. ThenC” = condG(), and underAssumption 1,
C!, = condG{,). Also, C’,C}, andC! are pointed cones and satisfyj, C C. C C’. Given that the
elements of7, are extreme in bott” andC},, they remain extreme 6", as well. Therefore(7}, C G..

Finally, consider any(z;;7m0) € G, \ G¢. We need to show that;ng) ¢ Cim(A,K,B). Suppose
not, then(u; o) € Cin (A, K, B) but not inGY;, which implies thaf(z1; o) is not extreme irC,,, (4, K, B).
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Noting C,,,(A, KC, B) C Cs(A, K, B), we conclude thafu; no) is not extreme irCs(A, K, B) as well. But
this is a contradiction to the fact that;ny) € G5 and (G, Gs) is a generating set fof's(A, K, B).
Therefore, for any; o) € Gs \ GE, (15m0) & Cin(A, K, B). O

Theorem3.2 implicitly describes a way of obtaining all of the nontriviextreme valid inequalities
of C(A, K, B): first identify a generating s€tG,, G) for Cs(A, K, B) and then test its elements féi-
minimality to identifng. On one hand, this is good news, as we seem to have a bettbraitgkandle on
Cs(A, K, B) via the conditions given byA.0)-(A.2). On the other hand, testing these conditions as stated
in (A.0)-(A.2), is a nontrivial task. Moreover, we need to establish furdigebraic ways of characterizing
K-minimality. Both of these tasks are tackled in the nextisect

4 Relations to Support Functions and Cut Generating Sets

In this section, we first relatE€-sublinear inequalities to the support functions of setk wertain structure.
Recall that ssupport functiorof a nonempty seb C R™ is defined as

op(z) = SI;\p{zT)\ : Ae D} foranyz € R™.
For any nonempty sdb, it is well known that its support functiom;(-), satisfies the following prop-
erties:
(S.9) op(0) =0,
(S.2 op(z' + 22) < op(2!) + op(2?), (subadditive),
(S.:3 op(Bz) = Bop(z) VB > 0and for allz € R™ (positively homogeneous).

In particular, support functions are positively homogerseand subadditive, and thus, sublinear and convex.
We refer the reader talR, 58] for an extended exposure to the topic.

KC-sublinear inequalities are closely related to supporttions of convex sets with certain structure.
This connection leads the way tocait generating sepoint of view as well as a number of necessary
conditions forkC-sublinearity. We state this connection in a series of tead follows:

Theorem 4.1 Consider any, € FE satisfying condition4.0), and define
D, ={NeR™: A"\ Z= pu}. 4)
Then,D, #0,0p,(0) = 0andop, (Az) < (u,z) forall z € K.

Proof.  Sincey satisfies conditionA.0), we haven € K£* + Im(A*), which trivially implies the non-
emptiness oD,,. Given thatop,, (-) is the support function ab,, andD,, # ), we havesp, (0) = 0.
Finally, for anyz € K, we have

op,(Az) = sup{\TAz: A€ D,} = sup{(z, A*\) : A"\ < pu}
A A

< Sgp{(z,m P ATA Ry = (2),

where the last inequality follows from the fact thatc K and for anyA € D, we havey — A*\ € K*,
implying (¢ — A*A, z) > 0. Thereforepp, (Az) < (i, 2). O
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We note that every non-trivial valid linear inequality séigsy € Im(A*) + K* (see Propositior.1).
Thus, anyu such thaf, € Im(A*) 4+ K£* is redundant in the description 6dnv(S (A, K, B)). Furthermore,
given a vectop: € Im(A*) 4+ K*, based on Theorerh 1, we can use the support function of the correspond-
ing setD,,, and easily establish a condition on the right hand sideeyaiuthat will ensure the validity of
the inequality(x; np). We state this result next.

Proposition 4.1 Suppose: € E satisfies conditionA.0). Then,infyesop,(b) < ¥(p), and thus, the
inequality given by(y; o) withng < infycs op, (b) is valid for S(A, IC, B).

Proof.  From the condition onu and by Theorem.1, we immediately haveD,, # 0 andop,(Az) <
(u,2). LetB:={be B: Jwst. Az =b, z € K}. Then

< <i = i . Az = B
Ny < glellfg op,(b) < ;IellgO'DH (b) beRgl’f;eE {UDH(Aw) Az =b, be B}

< igf{apu(Aa:): ek, Axeg}

< inf{(u,x> sz ek, Aweg}

xT

= inf{(p,z): z €K, Az € B} =9(n),

where the last inequality follows from the fact that for ale IC, we havesp, (Az) < (u, z), and the last

two equations follow fronB C B and the definition of}(u) (cf. (3)). Then the validity of the inequality
(3 m0) With g < infye op, (b) follows right away becausefycs op, (b) < V(u). O

In addition to this, under a structural assumption&(, I, B), we show that)(u) for anyu € E
leading to a nontrivial inequality is exactly equalitdycs op,, (b).

Corollary 4.1 SupposeKer(A) Nint(C) # (. Then, for anyu € FE satisfing condition 4.0), we have
() = infpep op, (b).

Proof. By Propositior4.1, we already havenfyec op, (b) < 9(1). Moreover,

i = i T : * <jx
A
= gnginf{(u,@ cx e K, Ax =b} > I(n),
cB T
>9(n)

where the last equation follows from strong conic dualite tuKer A)Nint(XC) # (), and the last inequality
follows fromb € B, and the definition of) (1) in (3). Thus, we obtaifnfycs op, (b) = V(1) O

Given ;. satisfying condition £.0), there is a uniqueD,, set associated with it, and Propositidri
highlights that one can use the support functiops (-) of these setd),, to obtain a valid inequality based
on u. Note that it is possible to have two distinct vectpfs# 1 such thatD,, = D,/ (cf. Example4.1).
These setd),, have a particular importance in our discussion in secfi@ Due to the common structure
of these setd),,, we refer to the sets of this form ast generating sets

22



4.1 Necessary Conditions fokC-Sublinearity

We next establish a number of necessary conditionsCf@ublinearity via cut generating sets and their
support functions.

Proposition 4.2 Suppose: € F satisfies conditionA.0). For any givenz € K, define
La={yeK": (v,2) =0} (5)

Then, for allz € K such thatl, N(x — Im(A*)) # 0, we haverp, (Az) = (u, z) whereD,, is defined by
(4).

Proof. Consider any € K, then we have

op,(Az) = )\selllR[:n{)\TAz A€ D}
= sup  {(z,A"\): AA=pu—~, ye K"}
VEE, AeR™

= (zm) — nf{(z,7) 1 v € p—IM(A"), v € K7} = (1)
~E

where the last equation follows from the fact tiaty) > 0 for all z € £ and~ € K*, and there exists
v €L, N(p—Im(A%)),i.e.,y € K*N(n—Im(A*)) and(u,7) = 0. O

Note that fory € 9(K*) + Im(A*), we immediately havé)(K*) N (u — Im(A*)) # 0, and thus,
there existsz: € 0K such thatL, N(u — Im(A4*)) # 0. In particular, forp € Im(A*), we have0 €
K*N(p—1Im(A*)). Therefore, taking into account conditioA.Q) and Theorend.1, we have the following
corollary of Propositior.2

Corollary 4.2 For anyu € 0(K*) 4+ Im(A*), we haveD,, # () andop, (Az) = (u, z) holds for at least
onez € Ext(K) whereD,, is defined as irf4). Moreover, for any. € Im(A*), we haverp, (Az) = (u, 2)
forall z € K.

In the case ofC = R, using Remark3.1 the relationship betweek-sublinearity and the support
functions of cut generating sets can be further enhanced.

Proposition 4.3 Consider a disjunctive conic s8{ A, IC, B) where/C = R’} , and aK’-sublinear inequality
(;mo) for it. Then, L.i N(p — Im(A*)) # 0, and thuspp, (a*) = p; for all i = 1,...,n whered' is the
i*h column of the matrixA. Moreover, inf,e5 op, (b) = 9(n).

Proof.  Becaus€y:;no) is K-sublinear wherdC = R, u € E = R" satisfies conditiongA.0)-(A.1i) for
alli =1,...,n,andny < J(u). Assume for contradiction that the statement is not trueenthere exist
such thatl,; N(u—Im(A*)) = 0. Note thatL .= {y € R? : 7; = 0} = congle!,... e 1 e, ... e}
Therefore, we arrive at the following system of linear inglifies in, A being infeasible:

T+ AA=p,
v = 0.

Using Farkas’ Lemma, we conclude that, v such thatu + v = 0, v; > 0 for all j # i, Au = 0 and
(u, w) > 1. By eliminatingu, this implies thatv such that; > 0 for all j # i, Av = 0 and(v, ) < —1.

23



Hence, ifv; < —1, we can scale so thatv; > —1, and arrive at the conclusion that there exissich that
v+e € R? =K, Av =0and(v, u) < 0, which is a contradiction to the conditigA. 1i).

Because the condition@\.0)-(A.1li) are necessary for thE-sublinearity (and alsd@C-minimality) of
(15m0), using Propositiod.2, we conclude that for all = 1,...,n, we havel .: N(x — Im(A*)) # (), and

op,(a’) = pi.
Finally, note that

inf = inf A AN <
b @) = jaf e VA AR

= gnlfginf {,uTx : Az =b, z € R} =9(n),
cB T

where the second equation follows because cond{#of) implies . € R’} + Im(A*), and thus, the inner

linear optimization problem is feasible, and so strongdmprogramming duality holds. Thus, we have

equality relations throughout implyingfycs op, (b) = 9 (u). O
Propositior4.3 has an important consequence that we point out next.

Remark 4.1 Let(y;70) be aR” -sublinear inequality folS(A, R™, B). Given linear mapA € R™*", leta’
denote the'” column ofA. Then Propositiort.3 guarantees that for all = 1, ..., n the support function
op,(-) evaluated at the vectar’, namely the data corresponding to variabig, precisely matches with
the corresponding coefficient of in the inequality(y; o), i.e., u; = op,(a*). Besidesgp,(-) generates
the tightest possible right hand side valief,cs op, (b) = (1) > no. Another way to state this is that
every tightR’; -sublinear inequality (its coefficient vector, and the esponding best possible right hand
side value) is generated by the support functig) (-), a very specific sublinear function. Furthermore, in
the case ofC = R"}, the cut generating set9,, defined in(4) are polyhedral. Precisely, they are of the form

D,={AeR™: A"\ < pu}.

Thus, the support functions of these sets are automatisalyinear (subadditive and positively homo-
geneous), and in fact piecewise linear and convex. Thigaglaicely with the lattice-free sets, and cut
generating functions. We discuss these in detail in sedtian

Moreover, given any valid inequality:; ) for S(A, R, B), if itis not R’} -sublinear, using the support
functionop,, (-), one can immediately obtain &; -sublinear inequality dominating it (cf4[7, Proposition

2]. &

Motivated by the positive result of PropositidrB given in the specific case & = R, one is inclined
to think that a similar result will hold for general regulanes/C. We address this question in Proposition
4.4, and prove that in the case of general regular céhder any/C-sublinear inequality; 1), there exists
at least oner € Ext(K) such thatp, (Az) = (i, z). Unfortunately, in the case of general regular cokigs
the result of Propositiod.4is not as strong as that of Propositiér8. Before we proceed with Proposition
4.4, we need a few technical lemmas.

Lemma 4.1 For any two set$/ and V' that are independent of each other, we have

inf inf (u,v) = inf inf (u,v).
uelU veV veV uelU
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Proof. Letus consider agiven € U. Then for any € V, we havenf,cy(u,v) < (@,v), and by taking
the infimum of both sides of this inequality overe V', we obtaininf,cy inf,cp (u,v) < inf,ey (@, v)
holds for anyz € U. Now, by taking the infimum of this inequality overe U, and noting that the left hand
side is simply a constant, we arriveiaf ,cy inf, e (u, v) < infgzey infyey (@, v) = inf,ep infyey (u, v).
To see that the reverse inequality also holds, we can stanthisidering a givem € V, and repeat the same
reasoning by interchanging roleswfindwv. O

Lemma 4.2 Suppose that: € E satisfies conditionA.0), and L, N(x — Im(A4*)) = 0 holds for all
z € Ext(K) where L, is as defined by5). Then, there exists € int(K*) N (u — Im(A*)). Moreover,

infbeg 0D, (b) = 19(#)

Proof.  First, note that becaugesatisfies conditionA.0), by Theorem4.1, D,, # (), which implies that
{yeE: INeR"st.y+ A N=p, ye L} #0.

In addition to this,0 € (1,cgq) L2 and therefore, together with the premise of the lemma that
1, N —Im(A*)) = (), we conclude) ¢ . — Im(A*). Moreover, by rephrasing the statement of lemma
and definition ofl,, we get

0 < inf inf ,2) AN =pu, yeK*
zelligt(IC)veEl,Ig\e]Rm{<7 z) v H }

= yeEi,kaeRm {igf{(y,z) 2z e EXU)} v+ AT A=, vy € IC*} ,
in which the last equation follows from Lemm#al where we takd/ = Ext() x 0 C E x R™ and
V={(,A)€EXR": v+ A*\=pu, vy L}

Now assume for contradiction that the get: I\ € R™ s.t.y + A*\ = pu, v € K*} C 9K*. This
together with the above inequality implies that there exjst 0K* such that7, z) > 0 for all z € Ext(K).
Hence,(y,z) > 0 forall z € K\ {0}. SinceK* is a closed convex conéy, z) > 0forall z € K\ {0}
implies thaty € int(X*), which is a contradiction. Thus, we conclude that theretexis# 0 such that
y € int(K*) N (u — Im(A*)).

To finish the proof note that

9 = wi{{ne) € S(AKB))
= glellfglr%f{(u,@ : Az =0b, x € K}

— inf bIXN: A*A = *1 = inf b
glelB,\G]R?EEeE{ ty=p ek’ égBUD“()’

where the third equality follows from strong conic dualityhich holds due to the existence of a strictly
feasible solutiory € int(X*). Therefore, we havé(u) = infyep op,, (b). O
We are now ready to state and prove Proposiich

Proposition 4.4 Suppose that € II(A, K, B), and L, N(x—Im(A*)) = 0 holds for allz € Ext(K) where
1. is as defined by5). Then, there exists at least one= Ext(K) such thatrp, (Az) = (u, 2).

Proof.  Assume for contradiction thatp, (Az) < (u, z) for all z € Ext(KC). Then by Lemmat.2, there
existsy € int(K*) N (1 — Im(A*)) andinfyes op, (b) = 9(1). Note that due to weak conic duality and the
existence of suchk, we have for alb

inf{(u,z): Ar =0, x € K} >0p,(b)= sup (X ANty =p, v €K} > —oo0.
z AER™ yeE
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For anyb € B, defineS, := {x € K : Az = b}, and letB := {b € B : S, # (}. Because
S(AK,B) # 10, B # (0. Then for anyb € B, 7, € Sy leads to an upper bound e, (b), i.e.,op, (b) <
(u, xp). Therefore, for any € B, the conic optimization problem definingp, (b) is bounded above
and is strictly feasible, and so we have strong conic duality the dual problem given by thef, above
is solvable. Consider any < B, let Zp be the corresponding optimal dual solution, i®, € S, and
(u, Tp) = op, (b). Becauser, € K, there exists!, ..., 2* € Ext(K) with ¢ < n such thatz, = Zle 2t
which leads to

¢
<u,§cb> = O'DM(b) =0D, Awb Z
( ) =1 (**) i=1
where the inequality+) follows becauserp,(-) is a support function, and thus is subadditive, @)
follows from the assumption thatp, (Az) < (u, z) for all z € Ext(KC). But this is a contradiction. Thus,
there exists € Ext(K) such thavp, (Az) = (u, z). O

To summarize whenever € 11( A, KC, B), Propositionst.2 and4.4together cover all possible cases and
indicate that for aC-sublinear inequality, there exists at least ene Ext(K) such thatrp, (Az) = (, 2).

We illustrate the necessary conditions foisublinearity established so far via the following example

'MN

(1, 2") = (u, Tp),

Example 4.1 Consider the sef(A, K, B) with = £3, A = [1,0,0] andB = {—1,1}. In this case,
coM(S(A,K,B)) ={z e R3: z € K, 23> +/1+123, —1<z <1} (see Figure).

T2

Figure 2: Convex hull o8 (A, K, B) corresponding to Example 1

Note that this description of the convex hullfA, I, B) involves the following inequalities:
@ u) =[1;0;0] with "~ = —1 and (™) = [~1:0; 0] with 5§~ = —1;

(b) u® = [0;; V12 + 1] with n(()t) = 1forall t € R.
Here, we show that these inequalities satisfy the necessaugitions for/C-sublinear inequalities; later on
we will in fact show that all of these inequalities aéeminimal.
In case (a), it is easily seen that the corresponding setscised with these inequalitigs ™), ;.(~) are
given by
Dy = {A: e stA+mn=11=0y3=0}={A: A=1}
D, = {A: A=-1}
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Also, bothu*), (=) € Im(A*), and thus, Corollarys.2implies,op , (Az) = op (1) = (u?, z) for
w w

all z € K fori € {+,—}. In addition to thisjnfyegop , (b) =—1= n((f) fori e {+,—}.
"
In case (b), for any given € R, we have the associated Seéig) given by

Dywy={ : WeEK st A+m=0; 2=t y3=Vt2+1} ={A: —1<A<1}

Moreover, for allt, by considering? € {[1; —t; V12 + 1], [-1; —t; V12 + 1]} € Ext(K), we havep(*), 2t) =
landop , (Az") = op , (1) = op , (1) = 1, proving (u, 2*) = op , (Az'). Additionally,
Iz w w W

on (1) =1=0p , (~1)implyinginfyesop , (b) =1 =ng for all ¢
We highlight thatD ;) is common for all distinct vectorg*) corresponding to the valid inequalities

(1®: 1). Nevertheless, each of these inequalitig®); 1) are required for the description @GbMV(S(A4, K, B)).
Let us also consider another valid inequality; 1) given byr = [0;1;2] andvy, = 1. Note that the
associatedD,, set is given by

p,={x: -V3<a<Va}.

Furthermore, for any, € {[%;—%; 2], [—%;—%; %]} C Ext(K) we haveop, (Az,) = aDy(i%) =

1 = (v,2,). Also,infepop,(b) = V3 > 1 = 1. Therefore, in terms of the necessary conditions
established so far fokC-sublinearity, there seems to be no difference between,) and the previous
inequalities from above. When we revisit this example imiit section, we will show that while; )

is KC-sublinear, (v; ) is not KC-minimal. In fact, we can easily show th@t; 1) is dominated by.(")
[0;1;v/2] andn™) = 1. Becaused = v — uM) = [0;0;2 — /2] € K*\ {0}, we conclude thatv; )
Cn (A, K, B).

<A

4.2 Sufficient Conditions for K-Sublinearity and /C-Minimality

Given any valid inequality 11; ng) satisfying condition £.0), we can easily tesiu; ny) for K-sublinearity
with the help of the following proposition.

Proposition 4.5 Let (u;70) be such thaj satisfies conditionA.0) andny < infyep op,, (b) (or it is known
that (11;m0) € C(A, K, B)). Then, whenever there existse Ext(K) such thatrp, (Az") = (u, «*) for all
i€land), 2’ € int(K), then the inequalitys; 1) is K-sublinear.

Proof.  Ifwe are given thatyy < infycs op, (b), then using Propositiof.1, we have(u; o) € C(A, K, B),
which automatically implies that conditior\(2) is satisfied.

Next, given anyr € Ext(K*), we will verify condition (A.1(«)). Consider any: such thatAw = 0 and
(a,v)u +v € KVv € Ext(K). LetV, = {v € Ext(K) : (a,v) = 1}, itis clear that(u + v,y) > 0 holds
for all v € V, andy € K*. Also, there exists\ andy € K* satisfyingA*\ + 5 = u because: satisfies
condition @.0), and hencey € K* + Im(A*). In fact, for any such\, ¥, we have

() = (AA+5u) =\ Au) + (Fu) = (3,-v) Ve Va.
=0

Note that(vy, —v) < 0forall v € K* andv € V, C K. In order to finish the proof, all we need to show is
that there exists € V, such that(7,v) = 0. Clearly, wheru € Im(A*), we can takey = 0, and hence

27



conclude thatu, u) > —(¥,v) = 0 holds for all such.. In the more general case, we have

inf {inf{(y,v) V€V AN+ y=p, v € IC*}
AL

= inf {inf{(,u—A*/\,v} c AN+ y=p, yEK i ve Va}
v ’y7

= inf { (,0) —sup{AT(Av) : AA4y=p, Y€K} : veEV,
v ,\/7>\

=op,, (Av)

Because there exisi$ € Ext(K) such thatrp, (Az") = (u,2") foralli € I and)",.; z* € int(K), for any
a € Ext(K*), at least one of thesé’s will be in V,,. Otherwise, we havéy, z*) = 0 for all i € I, and thus
(a, 3,7 2"y = 0, which is not possible sincg,.; z* € int(K) anda € Ext(K*). Thus, we conclude that
the above infimum is zero. This gives us the desired coneiusiat (.., u) > 0, which proves that condition
(A.1(w)) is satisfied for anyx € Ext(K*). Hence, conditionA.1) is satisfied. O

WhenC = R}, Propositior4.3 together with Theorem.1implies that the conditions stated in Propo-
sition 4.5 are necessary and sufficient fGrsublinearity. For general regular con€sbased on the results
from Theorem4.1, and Propositiong.2 and4.4, we conclude that the conditions stated in Proposiich
are almost necessary. This is up to the fact thakfesublinear inequaliti; 1), we can prove the exis-
tence of at least one € Ext(K) satisfyingop,(Ar) = (u, ), yet the sufficient condition in Proposition
4.5requires a number of such extreme rays summing up to andnfaoint of . We next provide an ex-
ample highlighting that for general regular coriésther than the nonnegative orthant, we cannot close this
gap between the sufficient condition and the necessary timmglii.e., there exist§-sublinear inequalities
that satisfy only the necessary conditions from Propasstib2 and4.4 but not the sufficient condition of
Propositior4.5.

Example 4.2 Consider disjunctive conic s&(A, IC, B) with £ = £3, A =[0,1,1] andB = {—1,1} . In
this casecon(S(A, K, B)) = {x € L3 : x3 + x3 = 1}. Let us examine the valid inequality; o) given
by n = [0;0;1] andny = ¥(u) = % Here, we first show that there is precisely a single fay Ext(K)
such thatop, (Az) = (u, ), yet the inequalityz1; 70) is a K-sublinear inequality.

The cut generating set associated witis D, = {\ € R: [A\] + X < 1}. Consider any: € Ext(K) =
Ext(£3), without loss of generality let us assume thas normalized to have; = 1. Then

1
(m,z) =0p,(Az) & z3=sup{ (z2+23) A: A +A<1} & 23 = (204 23).
AR S——~ 2
>0 sincezeL3

Thereforezy = 23 = 1, and by noting: € Ext(£?), we getz; = 0. Thus, we conclude that there is a unique
extreme ray ofZ3, in particular z = [0; 1; 1] that satisfiesy, z) = op, (4z).

Let us now prove thatu; ng) is indeedC-sublinear. The conditionsA(0) and (A.2) are easily verified.
In order to verify conditionA.1), we need to verify that for any € Ext(*),

0 < (p,u) forall uw € E such thatdu = 0 and (o, v)u + v € K Vv € Ext(K),

holds. Leta € Ext(K*) be given. For any € Ext(K) if (a,v) = 0, then we automatically havey, v)u +
v € K. And if (o, v) > 0, then we can normalize to assume thata, v) = 1. So, by defining/, := {v €
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Ext(K) : (o, v) = 1}, we can state the above requirement as

0 < (u,u) forall u € E such thatdu = 0 andu + v € K Vv € V,,
which, in our particular case, becomes

0 < ug for all u € R3 such thatus = —us andu + v € £3 Vo € V,,.

Now notice thati; = —us, u+v € £3 andv € Ext(£3) impliesus +vs > 0 andu3 + (v? +v3) + 2uzvg >
u3 + v3 — 2uzve + uf + v} + 2uyvq, which is equivalent tQus(ve + v3) > u? + 2ujv;. Now suppose

thata; = 0, thens = [-;0; 2] € V, and¥ = [53;0; =] € Va. In this case, using these particular
_ ’ 2 = 2 = 02 =
v and v, We COﬂCludeLg 2 max{gl(;ngé:;, 1;1(%_22_:217:)1} = %ﬁlvl‘ 2 0. Moreover’ Wheml 7§ 0’ we

haveas + a3 > 0 (sincea € Ext(£3)) and considering) = {O; 2(a21+a3); 2(a21+a3)] € V,, we once again
conclude thatis > 0. Note that this is precisely what was needed to prove (thaf) is K-sublinear.

In addition to Propositiod.5, underAssumption 1, we can state a sufficient condition farminimality
as follows:

Proposition 4.6 Suppose thafssumption 1 holds and we are given K-sublinear inequality(y:; 7o) sat-
isfying —co < 19 = infyegop,(b). LetB = {b € B: op,(b) < no}. Then, if there exists' € 5 and
z' € K suchthaty, 2* € int(K), Az® = b* and (i, z*) = o, then(u; no) is K-minimal.

Proof.  Consider any(u;m0) € Cs(A, K, B) satisfyingny = infyep op, (b). Assume for contradiction
that (u;m0) & Cin(A, K, B), i.e.,36 € K£* \ {0} such thatu — §;m0) € C(A, K, B).

Suppose the premise of the proposition holds for séime B andz € K such thaty", z* € int(K),
Az" = b and (u,z') = no. Note that fors; > 0 with >°. 8, = 1, we havez := Y, iz’ € int(K)
and moreover, by definition € conM(S(A, K, B)), and(u,z) = ny. Because any valid inequality for
S(A, K, B), in particular(u — d;m0), is valid for con(S(A4, K, B)) as well, we arrive at the contradiction

no < (1 —6,Z) < o,

where the last inequality follows from € int() andd € £* \ {0} implying (6, z) > 0 together with
<:u7 j> =To- 0

Proposition4.6, in particular, states that/&-sublinear inequality is alsé&C-minimal whenever the in-
equality is tight at a point at the intersection of () and conyS(A, KC, B)). In the MILP case, this
resembles a sufficient condition for an inequality to be ffaedining. Nonetheless, our minimality notion in
general is much weaker. In the MILP case, all of the facetxacessary and sufficient for the description
of tcomuS(A, K, B)); yet in general, one does not need all of feninimal inequalities, only a generating
set forC,, (A, IC, B) together along with the constraintc K is needed.

Moreover, an immediate implication of Propositiérb and Corollary4.2is as follows:

Corollary 4.3 For anyu € Im(A*) andng < 9(u), the inequality(y:; 70) is KC-sublinear.

We have already seen in Propositigid that when KefA) N int(K) # 0, then anyu € Im(A*)
and any—oo < 19 < ¥(u) leads to akC-minimal inequality (x;10). Corollary 4.3 complements this
result by showing that valid inequalitiégs; 7o) with © € Im(A*) are alwaysC-sublinear regardless of the
requirement Kerd) N int(K) # (. Indeed, when Kérd) Nint(K) # 0, it is easy to see that the additional
K-minimality requirements of Propositich6 are trivially satisfied by ; 9(u)).
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Proposition 4.7 Let (u;70) be aC-minimal inequality such that € int(K*). Thenny, = J(u) =
infyes op, (b).

Proof. Becausdu;ny) € C, (A, K, B) andu € K*, by Propositior2.3, we have

= 0(u) = inf{{u,z) : = € S(A,K,B)}.

Moreover, becauséy;n) is K-minimal, it is also/C-sublinear, and therefor®, as defined in4) is
nonempty. Besides, by Propositidnl, 1 € K* implies thatinf,cs op, (b) < 9(u). Assume for con-
tradiction that) () > infyep op, (b), which implies

) > glellfgap (b) = 1228;1${bT)\ AXN+y=p, ye K}

= gnf inf{(u,x): Az =0b, z € K}
eB

>9(u) sincebeB
> I(p),

where the last equality follows from strong conic dualitjieh holds due to the fact thate int(X*), and
the last inequality follows from the definition df() and the fact that infimum is ovére 5. But, this is a
contradiction. Thereforey, = J(u) = infyep op, (b). O

To demonstrate the proper uses of PropositibBs4.6 and4.7, let us return to our previous example.

Example 4.1 (cont.) First note that the convex hull &(A, IC, B) is full dimensional. To see this, one can
demonstrate the existenceroft 1 affinely independent points froi( A, I, B) C R™ wheren = 3. Thus,
there is no valid equation faf (A, IC, B) implying that the lineality space af'(4, K, B) is just the zero
vector. Moreover; = [1;0;2] € int(K) N S(A, K, B) and hencéssumption 1is satisfied.

We claim that

@) ) = [1:0;0] with n{") = —1 andp) = [=1;0;0] with §~) = —1;

(b) u® = [0;; vV + 1] with ) = 1 for all ¢ € .
are all’lC-minimal inequalities. We have already seen that the aamtisetsDum are nonemptyinfycp op @ (b) =
1

n$” holds and there are tight extreme points, e, (Az) = (1@ 2()) satisfying the requirement of
Proposition4.5, and hence, all of them are @\ (A, IC, B) by Propositiord.5. Moreover, in caséa), by con-
sidering the points*) = [1;0;2] € int(K) NS(4, K, B) andz(~) = [~1;0;2] € int(K) N S(A, K, B), we
get(u®, 2®) = n{Y holds for alli € {+, —}. Therefore, using Propositich6, we conclude that these in-
equalities are alsk-minimal. In cas€b), for anyt € R, considersz) =[1;-t; V2 + 1] € KNS(A, K, B)

and2" = [—1;—#; V& 1] € KN S(4,K, B). Note that we havén®, 2"y = i = (u® ) for
all t € R, and hence:® = 1(z1 + z()) = [0;—t; V2 £ 1] € int(K) N conMS(A, K, B)). Thus, by

Proposition4.6, we conclude tha([;N )) € Crn(A,K,B) forall t € R.

We proceed by showing that the system of infinitely many lineaqualities corresponding ta(*); (t)) =
([0;¢;+/t2 +1];1) for all ¢t € R indeed has a compact conic representation as follows: Faor at
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S(A, K, B), we have

1 <0z +tes+Vt2+123 VEtER
1< irtlf{Owl +tro+ V24 1zs: t € R}

1< itnf{twg +7Ta3: teER, 7> V12 +1}
sT

1< itnf{txg +7Txs: tER, 7> V12 + 1}

1< itnf{twg +ras: t€R, (1;t;7) € £3}
sT

1 <sup{—aq: ay =x9, ag = x3, [a1;02;03] € £3} due to(x)
(0%

[ S

[—1; 295 23] € L7,

where(x) is due to the fact that the primal conic optimization probierstrictly feasible, and hence, strong
duality applies here. Note that we have arrived at the caimste; > /1 + 23, which a cylinder inR?,
hence a particular conic quadratic inequalityxo; x3] € £3. The validity of z3 > /1 + 22 for all
x € S(A, K, B) follows from its derivation. Moreover, this conic quadcaitiequality exactly implies all of
the KC-minimal inequalities(p(t);nét)) for all t € R. Thus, in this example, the constrairy > /1 + 23
along with the constraint € £3, completely describes cof®(A, K, B)).

Finally, recall that we have seen the valid inequality o) given byrv = [0;1;2] andvy = 1 has
an associated),, set which is nonempty and there are tight extreme points,d;g (4z%) = (v, 2(9)
satisfying the requirement of Propositign5 andvy = 1 < /3 = inf,cgop, (b), hence by Propo-
sition 4.5 (v;1y) € Cs(A,K,B). While op,(Az,) = (v,z,) = vy = 1 holds for any (and only)
2, € {[%; —3:2], [—%; -3 %]} C Ext(K) and the mid point of these two points is in the interior of
IC, this mid point is not in con{S(A, K, B)), i.e., the sufficiency condition fok-minimality stated in
Propositiond.6fails. In fact,v € int(K*) and(v; 1) fails the necessary condition f&-minimality given
in Propositiond.7, that is,inf,c5 op, (b) = op, (1) = op,(—1) = v/3 > 1 = 1. Hence, we conclude that
(v;vp) is notC-minimal. &

This example also suggests a technique to derive closedggpnessions for convex valid inequalities by
grouping all of the tightC-minimal inequalities associated with the same cut geimgraet. This approach is
further exploited in48, 49] in analyzing specific disjunctive conic sets obtained fl@two-term disjunction
on a regular condC. In particular, in f8, 49] a characterization of tightC-minimal inequalities for this
specific disjunctive conic set is given, and in the cask of £", using conic duality, it is shown that these
tight JC-minimal inequalities can be grouped appropriately legdma class of convex inequalities.

4.3 Connections to Lattice-free Sets and Cut Generating Fuations

In this section, we relate our results to the existing lti@mon lattice-free sets and cut-generating functions
in the case ol = R”} and discuss some implications for general cofies

Inthe case ok’ = R’!, Propositior.3and Remarkt.1together with the basic facts on support functions
conjoin nicely with the views based on cut generating flomgiand lattice-free sets. To summarize, we have
shown that in the case of disjunctive conic s&tsl, R"}, ), all tight R} -sublinear inequalitie$:; J(u))
are generated by the support functians,, (-) of cut generating set®,, = {A € R™ : A*X < u}.
Thatis,op, (-) take as input?, thei* column of the linear mapl, compute the corresponding cut coef-
ficient of the variabler;, u; = op,(a*) foralli = 1,...,n, and the best possible right hand side value
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Y(p) = infrep op, (b). Note that these support functions are automatically sahli (subadditive and pos-
itively homogeneous), and in fact piecewise linear and eenWoreover, undeAssumption 1, using the
sufficiency of C-minimal inequalities (Propositio8.2) and Theoren8.1, we conclude that all non-cone-
implied inequalities for disjunctive conic sef§ A, R’} , B) are generated by piecewise-linear, subadditive,
and convex functions. In addition to this, recently, it i®ws in [47, Proposition 4.1] that without mak-
ing any assumptions such assumption 1, R’ -sublinear inequalities always exist, and along with the
nonnegativity restrictions € R’;, they are always sufficient to descricenv(S(A4,R", B)).

These observations on the structure and sufficiend’oublinear inequalities faf(A, R’ , B) pro-
vide a simple and intuitive explanation of the well-knowrosg functional dual for MILPs, e.g., all cutting
planes for MILPs are generated by nondecreasing subagldibnvex functions (cf.H6]).

The literature on cutting plane theory for MILP is extensiwe refer the reader to the recent survey
[28]. A particular stream of research initiated by Gomory andndmn B7, 38] and followed up by Johnson
[43] studies an infinite relaxation of an MILP, i.e., thexed-integer group problemf [37], and introduces
cut generating functionghat is, functionsg) : R” — R such that the inequality

holds for all feasible solutions € R} for any possible number of variablesand any choice of columns?,
corresponding to these variables and a fixedbsetZ™ and a pointf ¢ S (leadingtoB = —f+S5 = —f+
Z™ in our contextf ) The interest in these infinite models originates from dagwiuts from multiple rows
of a simplex tableau and its various relaxations that araibtl by imposing further structural restrictions
on the setS, and thus or3. These models have been investigated extensively 25&édf a recent survey
in this area). In this frameworlextreme functionand minimal functionsare used as convenient ways of
creating a hierarchy of functions that are sufficient to geteeall cuts. A valid function) is said to be
extremef there are no two distinct valid functions;, 1> such thaty = 14 + 24,. Extreme functions are
sufficient to generate all valid inequalities. Furthermaleextreme functions are minimal. A valid function
1 is minimalif there is no valid function)’ distinct froms such that)’ < + (the inequality relation between
functions is stated as a pointwise relation).

This literature is closely connected to theree (lattice-free) cutting plantheory for MILPs. AnS-free
convex set is a convex set that does not contain any pointtiergiven seft in its interior. WhenS = 7™
anS-free set is called kttice-freeset. Usually, one is interested in finding 8¢free set to generate a valid
inequality that cuts off a given point ¢ S. Thus, one seeks ast-free convex set that containfsin its
interior. These results are particularly related toititersection cut®of Balas [7, 8]. In his seminal work
[7, 8] Balas initiated the use a@jauge functions of lattice-free sdtsgenerate cuts. This view continues to
attract a lot of attention in the MILP context because theggdunctions have the advantage that they can be
evaluated using simpler formulas in comparison to cut geimay functions from Gomory-Johnson'’s infinite
group problem. Several papers in this literatued0, 26, 27] establish an intimate connection between
minimal functions and maximal (with respect to inclusidfifree convex sets for various different models
of S. For example, Borozan and Cornuéjo] showed that minimal valid inequalities for the infinite
relaxation withB = — f + Z™ correspond to maximal lattice-free convex sets, and thney; arise from
nonnegative, piecewise linear, positively homogeneoasyex functions. In many cases, e.g., when the
sufficiency of nonnegative cut generating functions is knoivis known that every minimal cut generating

9Note that the cut generating functions studied in theseitafinodels are independent of the problem detaand thus, they
work for all problem instances of arbitrary dimensie@nd problem datal but for a given se3. We refer the reader to the survey
[27] and references therein.
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function(-), the corresponding sét € R™ : +(r) < 1} is a maximal lattice-free set, and vice-versa. We
refer the interested reader 2 26, 27] for further details and recent results.

For finite dimensional problem instancé&$A, R" , B) our study provides an alternative view on the
same topic based on support functions. We underline thafitite dimensional setup is indeed more
relevant in obtaining strong cuts from the simplex tableacaoise it does not further relaxes the problem
to an infinite model. Besides, it is well known that not allrexte inequalities in an infinite model remain
extreme in the underlying finite dimensional model (20]).

Let us consider a giveRR” -sublinear inequality(;;79). Without loss of generality we assume that
no € {0,+1}. First, note that the sets underlying gauge functions apgat functions are nicely related
via polarity. To observe this, let us consider the polar $€Dp given by

Dy, = {r e R™: Mr<1vaeD,}.

Clearly, Dy, is a closed convex set containing the origin, and the (Mirséajgauge function oDy, ype (-),
is given by
Ypg (1) = iItlf{t >0: retDy}.

Note thatyp. (-) is @ nonnegative, closed, and sublinear function, and whgrint(Dy), vp, (-) can take
the value of+-co. Moreover, by 2, Theorem C.1.2.5], we haw@g ={reRm: ’)/Dﬁ(T‘) < 1}, i.e., the
gauge functionyDZ(-) represents the sét;. For a given sublinear function there is a unique set asgatia
with it in this manner. However, there can be other sublirfieactionsy(-) representing the same sef,
i.e, Dy = {r € R™ : 9(r) < 1}. Because sublinear functions are positively homogenefousany
sublinear function)(-) such thatDy, = {r € R™ : 4(r) < 1}, we haveyp(r) = ¢ (r) for everyr
satisfying#(r) > 0. In order to obtain strong valid inequalities, one is instee in the smallest possible
such sublinear functiog(-) representingD;,. It is also well-known #2, Corollary C.3.2.5] that whenever
Q is a closed convex set containing the origin, the supporttfon of Q) is precisely the gauge function
vqe. Foranyu € II(A, K, B), the setD,, is always closed and convex, yet, we are not always guathntee
to have0 € D,. That said, when. € K*, we always hav® < D,. Furthermore, whenevéx c D, we
conclude the support function @1, studied here is precisely the gauge function of the polabgethat is
0D, =YDy Next, we make this connection more explicit and comment bemDZ is B-free.

Based on the giveR’} -sublinear inequality.; o), let us also define the set

Vi = {reR™: apu(r) <o}

Note thatV/, is a closed convex set sineg, (-) is a sublinear function. Wheki = R’}, Proposition4.3
implies(u) = infyep op, (b) > no, and thusBnint(V,) = @ (in fact, we have something slightly stronger,
that is, the relative interior df,, does not contain any points froff). Also, whenever), > 0, the inequality
(3 m0) separates the origin fromdnY(S(A, R’ , B)), and0 € V,,. Let us for a moment focus on the case
of np > 0, and without loss of generality assume thagt= 1. For example, whep € £*, and(u;no) is a
K-minimal inequality, by Propositio8.3without loss of generality we can assume= 1. Then under the
assumption thatt € D,,, we immediately observe thaf, = Dj, and conclude thaby,, the polar of the set
D, is aB-free set. Thus, we arrive at the following result:

Proposition 4.8 SupposeC = R’} and let(yu;n9) with0 € D, andny > 0 be anR’ -sublinear inequality

for S(A, R, B). Then, the support functionp,, (-) of D,, is exactly the gauge function of its pol&x;, i.e.,
oD, =D Thus,op, (-) is nonnegative implying(u:) = infyes op, (b) > 0 and also,Dy, is a B-free set.
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Valid inequalities(u; no) with ng > 0 for disjunctive sets of forns (A, R’} , B) have attracted specific
attention in the MILP literature. For example, when we fix th@ensionn in the framework of 25], the
set of interest is exactly a disjunctive conic set with= R’;. Specifically, in R5], the authors consider
disjunctive sets of forn&(A, R’ , B) with £ = R’} for an arbitrary dimension (and thusA is also arbi-
trary), but under the additional assumption tBats a given nonempty, closed set satisfyihg 5. In this
framework, the main focus is on cuts = > 7, that separate the origin frooomv(S(A4,R", B)), and the
properties of cut generating functions, that/is R™ — R, which takes as inpui’, the data pertaining
to the variabler;, and maps it to the corresponding cut coefficignt Starting from a dominance relation
among such functions2p] establishes a minimality notion for cut generating fuoct and studies various
structural properties of minimal finite-valued cut genieigfunctions and their relations witB-free sets.

Let us examine the connection between our results and thase[25] by assuming that the dimension
n is fixed in advance ind5]. Under the assumptiof ¢ B of [25], it is easily seen that ¢ S(A,R%, B)
(see p5, Lemma 2.1]), and therefore, without loss of generality we assume that the cuts separating the
origin from com(S(A, R, B)) have the form(y; 1), i.e., their right hand side valug, is 1. When the
dimensionn is fixed, the main set of interest i29] is exactly our setS(A,R", B) and the corresponding
cuts separating the origin are a subset of inequalities 6 R” , ). Furthermore, because these cuts
have positive right hand sides, they are non-cone-imphed, thus, are alR’; -sublinear #7, Proposition
4.1 and Corollary 4.2]. Hence, the support functions of theesponding set®,, do have a direct relation
with the corresponding cut generating functions of intefiesn [25].

We note that whenever the function used to generate a valiladity is finite-valued everywhere, it
can be used for any data matrik This underlies the cut generating function point of viewn e other
hand, the support functionsp, (-) associated witR’} -sublinear inequalities are not always guaranteed to
be finite-valued. This indicates a distinction between esults and the ones fror29]. We believe that it
is not necessary to require a function to be finite-valuedysvigere in order to use it to generate cuts for a
given problem instance with data matex In particular, the functions that are not finite-valuedrgwehere,
such as the support functions we are considering here, tahesmeaningful and interesting in terms of
generating valid inequalities. Furthermore, given a mobinstanced, B andC = R’;, under further
assumptions om andB, it may be possible to obtain an appropriate, nonempty, tedset) -~ DC D,
ensuringinfyeg o5(b) > no and Uﬁ(ai) = u; foralli = 1,... n. Thatis, the support function of
D is finite-valued everywhere and generates the same inggyaling). Thus, under further technical
assumptions we can in addition ensure the finite-valuedofets® support functionsp , (-), and then, they
will lead to valid inequalities for an arbitrary selectiohtbe columnsa®. That is, they will indeed be cut
generating functions for the given 98t Let us for example consider Example 6.1 23]

Example 4.3 Supposed is the2 x 2 identity matrix,B = {[0; 1]} U {Z; —1} and K = R?, which leads to
S(A,R%, B) = conS(4,R%, B)) = {[0;1]}. This particular disjunctive conic set violates assump-
tion 1, and therefore, none of the valid inequalitieé@iﬁ-minimal. Nevertheless, existencd&if-sublinear
inequalities is not based oissumption 1 (see |7, Proposition 4.1]). Indeed, we next show that the partic-
ular inequality (1;m0) = ([—1;1]; 1) considered in 5] is R% -sublinear. It is easy to see that the sufficiency
conditions for/C-sublinearity established in Propositioh5 are satisfied for this inequality. Actually, the
correspondingD,, = {(A1;A2) € R? : A\; < —1, Ay < 1}, andop, (Ae') = 0p,([1;0]) = =1 = py =
pre! andop, (Ae?) = op,([0;1]) = 1 = pp = p’e? and clearlye® + ¢? € int(R%). Furthermore,
infyegop, (b) = 1 = no, proving that(u;m) = ([—1;1];1) is a tight R3 -sublinear inequality for this
particular conv(S(A,R%r,B)). On the other hand, the support function corresponding te ithequality

is not finite valued everywhere. As a matter of fact, when weattboundD,, to obtain D ¢ D, and
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useD to generate a valid inequality, then we cannot ensuiff A ey = plel = p; fori = 1,2, and
Y(p) = infg o 5(b) = 1 simultaneously. O

It was conjectured ing5] and later on proved in0], that in addition to their earlier assumptiorg B,
if we further suppose the following “containment” assurapticoné{a',...,a"}) D B, we can ensure
the existence of finite-valued cut generating functionsesponding to every extreme inequality separating
the origin fromS(A, R, B). Furthermore, it is shown i/, Proposition 4.3] that in the same setup and
under the same containment assumption2& B0], one can ensure that the support functions associated
with all R -sublinear inequalities are finite-valued. Actually, #hés a natural duality relation between
the support functions we study here and the value functigesd in the sufficiency proof of cut generating
functions in B0]. We finish our discussion by examining a slight variant ofEwle 4.3 obtained from
settingB = {[0;1]} U {(Z~;—1)}. Note that in this variant we still haw§(4,R?,B) = S(4,R%, B),
and S(A,R%F,B) still violates the containment assumption @b] 30]. Nevertheless, we can show that
(#3m0) = ([=1;1];1) is generated by a finite-valued cut generating functioneéat one can easily check
that the support function of the sét := {(A\1;A2) € R? : A\; = —1, =1 < Xy < 1} obtained from
boundingD,, will do the job. This indicates the possibility for weakegithe containment assumption of
[25, 30].

Next, we comment on the fact thatc D,, is not always guaranteed. Whilec D, for all © € K*, the
other cases of € Im(A*) + K* are also of interest. In such cases, by taking the poldpjpfwe obtain
Dy? = (Dy,)°, aclosed convex set containing the origin. In addition ts, tve always havé,, C D{? and
s00p,(r) < opee(r) = vpg (1), where the last equation follows from3, Proposition C.3.2.4]. In general
op, (") andyDZ(-) may differ quite significantly, i.e., a support function dake negative values while a
gauge function cannot. To address this issue of generagiggtive coefficients in cuts, il ?] the following
subset of the relative boundary b;* was considered:

Noo . oo . o T.
Dei={reD¥: FreDs st Ay =1},

Under the assumptioh € int(Dy,) (which does not necessarily hold in our setup), it was shownd] that

among the sublinear functions(-) satisfyingD;, = {r € R™ : ¢(r) < 1}, we have the following relation

O poo(r) < (1) < ypg (r). Note thataﬁu (r) < 05, (r) holds for allr. Studying the cases when we have
K I

TB, (r) = Jﬁﬁo(r) andop,(r) = Jﬁu(r) with or without the assumptiofi € int(D})) is of independent
interest for understanding the minimality of these supperttionsop, ().

Remark 4.2 In the case ok = R}, as discussed above, there are strong connections betii«seimblinear
inequalities, cut generating function®7], and the strong functional dual for MILP$p.

Moving forward, one may be interested in extending the digfiniof a cut generating function from
MILPs to MICPs. However, the situation seems to be much mamgplex for general regular congs
other than the nonnegative orthant. In the MILP context, ohéhe main properties of a cut generating
function is that the function actecally on each variable. Namely, the cut generating function talsasput
solely the data associated with an individual variabig i.e., the corresponding columi, and based on
this input, it generates the individual cut coefficigntassociated withr;. Imposing such a local view on
cut generating functions is acceptable in the case of thenegative orthant because such cut generating
functions are sufficient in the case/6f= R”}. This, we believe, is strongly correlated with the fact thnat
underlying coneC = R”} is decomposable in terms of individual variables. Howefegrgeneral regular
conesk imposing the same local view requirement on cut generatingtions turns out to be problematic,
especially when the corié encodes non-trivial dependences among variables.
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In particular, Example4.1reveals an important fact in this discussion: Unlike theecasth C = R”},
unless we make further structural assumptions, for geng(al, X, 3) with a regular conelC, even when
the conek is as simple ag?, there are extreme (and also tigit-minimal) valid linear inequalities such
that there is no function acting locally on individual vabias that can generate precisely the vector defining
the extreme inequality. Specifically, in Exampl& the linear map is given byl = [1,0, 0], and the class
of valid inequalities(p(t);nét)) = ([0;¢; V12 + 1];1) parametrized by € R are all extreme, and thus,
necessary in the description 00nv(S (A, K, B)). If one considers cut generating functions of the form
that take as input the individual columns dfand output the corresponding cut coefficient, then no such
functiont)(-) will precisely generate the vector defining the inequaljty?); n((]t)) = ([0;t; V2 + 1];1) for
anyt € R. This is because such a functigr-) will inevitably need to satisfy = pg) = (a?®) = ¥(0) =
P(a®) = u{ = VA2 + 1, which is impossible.

Therefore, this example demonstrates that for regular sdb@ther than the nonnegative orthant, if
we were to straightforwardly extend the notion of cut getiegafunctions based on a local view from the
MILP literature and rely only on such functions, we may cogtgdly miss large classes of nontrivial extreme
inequalities necessary for the descriptionc@ivS (A, I, B)). On the other hand, it may be possible to
introduce and studygut generating mapB(-), which take aglobal view and consider the entire data
and generate the cut coefficient vectort once, i.e.u. = T'(A). We leave the questions around such cut
generating maps, such as their existence, structural ptase sufficiency, etc., for future work.

On a positive note, for specific MICPs of foi(2) discussed in Exampl&.3, Moran et al. p4] show
that a strong functional dual exists under a technical ctindi Existence of strong MICP dual for these
specific MICPs is equivalent to the sufficiency of (indeeq, sigecific classes of) finite-valued functions that
generate the cut coefficients of all cuts for these sets.cln tlaese functions fronbfl] indeed act locally on
each individual variable, and thus, naturally extend thenstard cut generating function framework used
in the MILP literature to specific MICPs of fortf2). Thus, in spite of the fact that Moran et ab4] do
not refer to these functions as cut generating functionsy #re indeed so. However, we highlight that
the natural disjunctive conic representatioif A, K, B) for the specific class of MICPs frorb4] discussed
in Examplel.3 impose further structure. In particular, the underlyingneC in the resulting equivalent
disjunctive conic form representatia( 4, R?", B) of MICP given in(2) is simplyR?". On the other hand,
the cone involved in Examplelis £2. On a related note, we do not know of the existence of a similar
strong functional MICP dual result for MICPs of for(i) discussed in Example2 Example4.1suggests
that such a result is not likely. &

4.4 Connections to Conic Mixed Integer Rounding Cuts
We start with the following simple remark.

Remark 4.3 In the simple case of the polyhedral coie= £? = {z € R? : x5 > |z1|}, there are only
two extreme raya!) = [1;1] anda(® = [~1;1]. These extreme rays are orthogonal to each other, and
thus condition(A.1) reduces to

(ALG)  0< ) p(a')u; forall usuchthatdu = 0 andu + ol € £ fori=1,2,
=1

wherea’ denotes the'” column ofA. Following the same reasoning as in Propositiér8, one can eas-
ily deduce that for anyC-minimal valid inequality(u;70) and any extreme ray of £ = £2, we have

0D, (A2) = (1, 2). o
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Using Propositiort.3 and Remarld.3, we are ready to analyze the conic mixed integer rounding cut
introduced in ] for the following simple mixed integer set

SO::{(a:,y,w,t)GZxRi: |l +y—w—>b <t} (6)
In [5], it is shown that whem = [b] + f with f € (0, 1), the valid inequality given by
(I=2f)z—- b))+ f<t+y+w, ()

together with the original conic inequality ) givesconuSy).
Here we will prove that?) is in fact a)C-minimal inequality. The first step in this analysis is taiséorm
So into our normal form as
b—=x
-["3 | ®)

which leads toC = }Ri x L2, which is a closed convex pointed cone with nonempty inteand

1 -10 -1 0 T 1+ f f-1 f—2
T I ) PR N YA BN Et N S

~——
—pt —pt —p —p
=b] =b3 i=b] =b,

S::{(vaytaly)eRiX£2i |:y_tw:|—

Before we proceed first note thassumption 1is satisfied, i.e., for any;, e2 > 0, (y; w;t;v1;92) =
(f + e1;€15€2;0;€2) € int(K) and also inS(A, K, B), thereforeC-minimal inequalities exist. However,
S(A, K, B) is not full dimensional{ — v, = 0 is a valid equation. The sé?. corresponding to this valid
equation is simplyD. = {(A1,A2) : A1 = 1, A2 = 0} = {(1,0)}. The pointz defined in the rest of this
example works for this valid equation as well. Thus, thedvalijuatiornt — v, = 0 satisfies the necessary
condition for C-minimality.

We can use the results of sectidrio verify that the inequalityq) satisfiesiC-minimality conditions.
Using the first equation ir8§, we gety — w — v; = b — x, which implies thatt — |b] = —y+w+y + f.
By substitutingz — |b] with —y + w + 1 + f, in (7), we can rewrite it in terms of the variables in our
representation as follows:

A=-2f)(—y+w+m+f)+f<t+y+w
(2—=2f)y+2fw+t+ (2f — 1)y + 0y > f(2 —2f).

Thismeansyy = f(2—2f), u1 =2—2f, po = 2f, us = 1, ug = 2f — 1 andus = 0 in our usual notation.
The necessary conditions fai-sublinearity state that fab,, given by @), we should haveD,, # ), and
op, (Az) = (u,z) for all z € Ext(KC) (since all of the extreme rays &f are orthogonal to each other).

In our specific case, we have

D, = {AeR?: Iye K" suchthatd*\ + v = u}
= {A6R2: A<ty — A< oy de < s, {‘Al]m[“‘*”
—A2 s
= {AeR*: A <2-2f, =X\ <2f, o<1 2f —1+N| < X}
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Figure 3: Feasible region corresponding2g for f = 0.25 in conic mixed integer rounding cut o]

The setD,, is plotted in Figures.
Becausef € (0, 1), we haveD,, # (), proving that(y; 779) is K-sublinear. Also the extreme rays/Gfare
precisely ExK) = {e!,e2,e?, —e* + €5, e* + €} wheree' stands for thé!” unit vector inR5. Moreover,

op,(Ae') =op,(a') =2 =2f = 1 = (p,€"),

wherea’ denotes the' column of the matrix4. Similarly we can show thatp, (Ae’) = p; = (u, ')
fori = 1,...,3. Moreover, we haverp, (A(—¢* + ¢°)) = op,([1;-1]) = 1 —2f = —ps + ps =
(u, (—e* +€%)) andop, (A(e* + €%)) = op, (=1, =1]) = 2f =1 = pa + p5 = (s, (e* + ¢€7)).

Note thatop, (b)) = f-op,(e') = f(2—2f),and fori = 1,2,..., we haverp,, (b, ) = (f +)(2 —
2f) = (2 —2f)i 4+ 2f — 2f2. Consideringf € (0,1), we concluderp, (bf) < op,(b5) < ... holds.
Similarly op, (b7) = (1 — f)op,(—e') = (1 — f)(=2f) = 2f(f — 1), and fori = 1,2,..., we have
op,(b;7) = (f —i)(—2f) = 2fi — 2f?, which impliesop, (b)) < op, (b3 ) < ..., and hence,

inf o, (b) = min {op, (b7), op,(b1)} = f(2 = 2f) = no.

Finally, consider the following set of points
{z' == 1£;0;0;0;0], 2% := [0;1 — f;0;0;0], 2% := [0;0; f; — f; £, 2* := [0; 051 — f;1 — f51— f]}.

Given f € (0,1), one can easily see that for= 1, ..., 4, we havez’ € S(A,K,B) and{u,2") = gy =
2f — 2f2. Moreover,z := 1 71 | 2% isin the interior ofKC = R3. x £2. Therefore, using Propositich6,
we have shown that the valid inequality given(py o) = ([2 — 2f;2f;1;2f — 1;0];2f — 2f2), which is
equivalent to 7), is aX’-minimal inequality.

5 Characterization of Valid Equations

Our results with regard to the existence/&fminimal inequalities was based @&ssumption 1, i.e., we
assume that for ab € K£* \ {0}, there exists:s € S(A, K, B) such that(d, z;) > 0. Under a stronger
assumption, nameljssumption 2 stated below, we can show that all valid equatifnasn) satisfy . €
Im(A*).

Assumption 2 There existss € S(4, K, B) such that ¢ int(K) and A% = b for someb € B.

UnderAssumption 2, we can provide the following precise characterizatiorhefvalid equations.
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Theorem 5.1 Suppose that\ssumption 2 holds. Ther(y; 7o) is a valid equation if and only if there exists
some\ € R™ such that

A*x=p and b'A=ny=19(u) forallbeB.

Proof.

(<)

It is easy to see that the condition in TheorBrhis sufficient. Suppose there existss R™ such that
A*X = p and bT X = g,
forall b € B. Then for anyz € S(A, K, B) we have
(1, 2) = (A*A, 2) = AT Az = ATb = 1o = 9(n),

where the third equation follows because S(A, K, B), and hencedxz = b € B. This proves that
(15m0) is a valid equation.

To prove the necessity of the condition, suppose thaty) is a valid equation. Then clearlyy =
Y(u). Letb andz be as described iAssumption 2 preceding the theorem, and consider

inf{(u,z): Az=b, z € K}.

This problem is strictly feasible because there exists int(K) satisfying Az = b. Moreover, the
solution set of this problem is containedSA, IC, B). Thus, the fact thafu; J(x)) is a valid equation
implies that its optimum value is equal @d.). By strong conic duality we arrive at

O(p) = sup {BTA: A*X < pl,
AER™

which implies the existence of an optimal solutidsatisfying
A*X =i o and BT\ = 9(p).

Note that any feasible solution to the primal problem isropfiincluding the strictly feasible solution
Z. Therefore, using the complementary slackness conditierhave

(2,0 — A" Xy = 0.
Because ¢ int(K), the above equation is possible if and onlylifA = . Thus, we have established

that there exists. satisfyingA*\ = x andb” X = 9(;1). Now, for anyb € B, we have

D) = (,z) > inf{(u,2): Az=0b, ze K} > sup {bTA: A\ <= u} >b7X (9)
z AER™

Moreover,

— () = (—p, ) > inf{(—p,z): Az=b, z€ K} > sup {b'N: AN\ <per —p} > —bTA,

AER™

(10)
where the second inequality follows from weak duality arelldst inequality follows because) is
a feasible solution to the dual. By combinir@) and (L0), we getd(x) = b* \, which completes the
proof.
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WheneverAssumption 2 holds, from Theorenb.1 we haveny € Im(A*), and using the sufficient
condition for KC-minimality stated in Propositiod.6, we arrive at the following immediate corollary of
Theoremb.1

Corollary 5.1 Suppose thaAssumption 2 holds. Then, any valid equatidm; 9(x)) is K-minimal.

In addition to the characterization of Theorém, we can relate each valid equation with its correspond-
ing cut generating seb,, given by @) as follows:

Corollary 5.2 Suppose thaf\sssumption 2 holds. Then, for any valid equatioip; ¥(u)), there exists\,
satisfyingD,, = {\ : A"\ =g pu} = A +H{\: A*A =g+ 0} andd(p) = infpep op, (b) = supyep op, (b).

Proof.  Suppose(u;J(p)) is a valid equation. Then by TheoreBnl there exists\ =: A, such that
pu= A*Xxandd(u) = b X for all b € B. Thus, we have

Dy ={\: A*X =2 A*A}={ A+ X1 A"\ <+ 0},
and
inf op,(b) = gnf sup {bT (A4 A) 1 A*X =g+ 0} = gng bIX +sup{bT X : A*X =i« 0} | = I(p),
€ M A

beB €B xeR™
=10

€{0,+o00}

where the last equation follows from the fact thfu) € R. Similarly, we can show that(u)
Suppes oD, (0)-

WhenC = R” (or any cone where each pair of its extreme rays is orthogo@alollary 5.2 gives a
complete characterization of valid equations.

ol

6 Conclusions and Further Research

We introduce the class @f-minimal valid inequalities in the general disjunctive @mprogramming con-
text and show that this class is a natural result of the domsmaotion among valid inequalities, and thus,
contains a small yet essential set of nonredundant indigsalln particular, under a mild technical assump-
tion, we establish that the class /6fminimal inequalities together with the original constitai € C are
sufficient to describ€omv(S (A, K, B)). This prompts an interest ik-minimal inequalities suggesting that
an efficient cutting plane procedure for solving MICPs sHaail the least aim at separating inequalities
from this class. Nevertheless, the definitionfGiminimality reveals little about the structure Afminimal
inequalities. In particular, testing-minimality based on its definition is a non-trivial task. dddress this
issue, we show that the class/éfminimal inequalities is contained in a slightly largersdaof so-calledC-
sublinear inequalities defined by algebraic conditions.edtablish a close connection betwéesublinear
inequalities for disjunctive conic sets and the supportfioms of convex sets with certain structure. Us-
ing this connection, we show that whé& = R, all K-sublinear inequalities are generated by sublinear
(positively homogeneous, subadditive and convex) funstithat are also piecewise linear. Thus, our re-
sults naturally capture some of the earlier results from Rifletup, and generalize them to the conic case.
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Furthermore, this connection with support functions hatstée practical ways of showing’-minimality
and/or C-sublinearity properties of inequalities. To the best of koowledge, these sufficient conditions
for C-minimality and/orkC-sublinearity of the valid inequalities are new even in thie Risetup.

Our work has shed some light on the structuré&ehinimal and/C-sublinear inequalities for disjunctive
conic setsS(A, IC, B) involving a regular conéC. However, many questions remain open when we start
considering regular cones other thHaf. In particular, we find the following questions of interest:

e [Characterization of extreme valid inequalitieslnder a mild technical assumption, e.g., Assumption
1, we have shown that all extreme inequalities Areninimal. However, not everyC-minimal in-
equality is extreme (see e.g., Examl8and Propositior2.4). Further characterizations of extreme
inequalities beyond’-minimality are of great interest and importance.

e [Finiteness of theéC-minimal conic inequalitiesWWhenXC = R’} and23 is finite, Johnson44] proved
that the cone ofC-minimal inequalities is finitely generated, i.€& . is finite. Note thatG, is al-
ways finite. For non-polyhedral regular cones, e{.,S”, in general, expectingonuS(A4, K, B))
to be given by finitely many linear inequalities is too muchg against the inherent nonlinear na-
ture of these cones. Examplel shows that this is not possible even 6?, i.e., the resulting
conv(S(A, K, B)) requires infinitely many extreme linear inequalities. Oa tither hand, in that
example, it is clear that the descriptiona@V(S (A4, K, B)) only involves two linear inequalities and
two conic inequalities involving’?. While the/XC-minimality notion is seemingly defined for linear in-
equalities, we can immediately extend it to a conic inedualy saying that a conic quadratic inequal-
ity is K-minimal if the associated (possibly infinite) set of liné@equalities are alkC-minimal. We
believe that instead of focusing on the finiteness of lineagualities describingonS(A4, K, B)),
it is more natural and relevant to focus on the finiteness afccmequalities (of the same type of
K) describingcor(S(A, K, B)). Therefore, we wonder what can be said in terms of the number o
K-minimal conic inequalities required in the descriptioncofv(S (A, K, B)). Is it a finite number
whenB is finite? Is it finite regardless of the size 8P Or, can we at least identify the cases where it
is finite? In the very specific case of a two-term disjunctionsC™, recent work of 48, 49] provide
partial answers to some of these questions.

¢ [Relations with valid inequalities for other nonconvexs3etVe showed that conic MIR inequali-
ties introduced in%] can be interpreted in this framework. Moreover, in a recartes of papers
[48, 49, 71], the characterization of tightt-minimal inequalities have played a critical role in the
derivation of explicit expressions for convex valid inelifigs for disjunctive conic sets associated
with a two-term disjunction orC™ and/or its cross-sections. These derivations relate baeityn
to other recently developed valid inequalities for MICPsdxhon split or disjunctive arguments in
[2, 13, 32, 53]. Connecting our framework to other recent literatuté, [22, 53] covering more gen-
eral setups involving nonconvex quadratic sets, and ekigrmlr framework to cover these setups
are also of interest.
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