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Abstract

We study disjunctive conic sets involving a general regular(closed, convex, full dimensional, and
pointed) coneK such as the nonnegative orthant, the Lorentz cone or the positive semidefinite cone. In
a unified framework, we introduceK-minimal inequalities and show that under mild assumptions, these
inequalities together with the trivial cone-implied inequalities are sufficient to describe the convex hull.
We study the properties ofK-minimal inequalities by establishing algebraic necessary conditions for an
inequality to beK-minimal. This characterization leads to a broader algebraically defined class ofK-
sublinear inequalities. We establish a close connection betweenK-sublinear inequalities and the support
functions of sets with a particular structure. This connection results in practical ways of showing that a
given inequality isK-sublinear andK-minimal.

Our framework generalizes some of the results from the mixedinteger linear case. It is well known
that the minimal inequalities for mixed integer linear programs are generated by sublinear (positively
homogeneous, subadditive and convex) functions that are also piecewise linear. This result is easily
recovered by our analysis. Whenever possible we highlight the connections to the existing literature.
However, our study unveils that such a cut generating function view treating the data associated with
each individual variable independently is not possible in the case of general cones other than nonnegative
orthant, even when the cone involved is the Lorentz cone.

1 Introduction

A Mixed Integer Conic Program(MICP) is an optimization program of the form

Opt= inf
x∈E

{〈c, x〉 : Ax = b, x ∈ K, x ∈ Z} (MICP )

whereK is a regular (full-dimensional, closed, convex and pointed) cone in a finite dimensional Euclidean
spaceE with an inner product〈·, ·〉, c ∈ E is the objective vector,b ∈ Rm is the right hand side vector,
A : E → Rm is a linear map, andZ is a set imposing certain structural restrictions on the variablesx.
Examples of regular cones include the nonnegative orthantRn

+ := {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n},

the Lorentz coneLn := {x ∈ Rn : xn ≥
√
x21 + . . .+ x2n−1 }, and the positive semidefinite cone

Sn
+ := {x ∈ Rn×n : aTxa ≥ 0 ∀a ∈ Rn, x = xT } and their direct products. WhenE = Rn, the most

common form of structural restrictions is integralityxi ∈ Z for all i ∈ I whereI ⊂ {1, . . . , n} is the index
set of integer variables. We assume that all of the data involved with MICP, i.e.,c, b, A is rational.
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Mixed Integer Linear Programs (MILPs) arise as a special case of MICP whereK is the nonnegative or-
thant. Conic constraints include various specific convex constraints such as linear, convex quadratic, eigen-
value, etc., and hence, offer significant representation power over linear constraints (see [15] for a detailed
introduction to conic programming and its applications in various domains). Allowing discrete decisions in
addition to the conic constraints further enhances the representation power of MICPs. While MILPs offer
an incredible representation power, various optimizationproblems involving risk constraints and discrete
decisions give rise to MICPs. Robust optimization and stochastic programming paradigms, or more broadly
decision making under uncertainty domain, encompasses many examples of MICPs such as portfolio op-
timization with fixed transaction costs in finance [34, 52], and stochastic joint location-inventory models
[4]. Moreover, the most powerful relaxations to many combinatorial optimization problems are based on
conic (in particular semidefinite) relaxations (see [35] for a survey on this topic). Reintroducing the integer
variables back into these relaxations yields exact mixed integer conic programming formulations of these
problems with tighter continuous relaxations. Besides, MILPs have been heavily exploited for approximat-
ing non-convex nonlinear optimization problems arising inseveral important applications in many diverse
fields. For a wide range of these problems, MICPs offer tighter relaxations and thus potentially a better
overall algorithmic performance. Therefore, MICPs have gained considerable interest.

The literature on solving MICPs is growing rapidly. On one hand, clearly, any method for general non-
linear integer programming applies to MICPs as well. A significant body of work has extended known
techniques from MILPs to nonlinear integer programs. Theseinclude the Reformulation Linearization
Technique (see [64, 62] and references therein), Lift-and-Project and Disjunctive Programming methods
[9, 11, 23, 53, 59, 63, 65, 66], and the lattice-free set paradigm [16]. In addition to these, several pa-
pers [50, 51, 61, 60] introduce hierarchies of convex (semidefinite programming) relaxations in higher
dimensional spaces. These relaxations quickly become impractical due their exponentially growing sizes
and the difficulty of projecting them onto the original spaceof variables. Another stream of research
[1, 19, 33, 57, 67, 68, 69, 70] is on the development of linear outer approximation based branch-and-bound
algorithms for nonlinear integer programming. While they have the advantage of fast and easy to solve
relaxations, the bounds from these approximations may not be as strong as desired. Moreover, adding too
many inequalities that are similar to each other may lead to numerical instability.

Exploiting the conic structure when present, as opposed to general convexity, paves the way for devel-
oping algorithms with much better performance. Particularly in the case of MILPs, this has led to very
successful results. Despite the lack of effective warm-start techniques, efficient interior point methods exist
for K = Ln or K = Sn

+ [15]. Therefore, supplying the branch-and-bound tree with thecorresponding
continuous conic relaxation at the nodes and deriving cutting planes to strengthen these relaxations have
gained considerable interest recently. In this vein, Çezik and Iyengar [24] developed valid inequalities for
MICPs with general regular cones by extending Chvatal-Gomory (C-G) integer rounding cuts [56]. In a
recent and fast growing literature, several authors [2, 5, 6, 13, 16, 22, 32, 33, 34, 48, 49, 53, 70, 71] study
MICPs involving Lorentz cones,K = Ln, and suggest valid inequalities.

This growing demand for solving MICPs has led many commercial software packages such as CPLEX
[31], Gurobi [39], and MOSEK [55] to recently expand their features and include technology to solve
MICPs. Nevertheless, the theory and algorithms for solvingMICPs are still in their infancy [5]. Currently,
the most promising approaches to solve MICPs are based on theextension of cutting plane techniques
[5, 6, 17, 18, 21, 24, 33, 46, 65] in combination with conic continuous relaxations and branch-and-bound
algorithms. While numerical performance of these techniques is still under investigation, evidence from
MILPs indicates that adding a small yet essential set of strong cutting planes is key to the success of such
a procedure. Yet, except very specific and simple cases, the strength (redundancy, domination, etc.) of the
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corresponding valid inequalities has not been evaluated inthe case of MICPs. This is in sharp contrast to
the MILP case, where the related questions have been studiedextensively. In particular, the feasible region
of an MILP with rational data is a polyhedron and the facial structure of a polyhedron (its faces, and facets)
is very well understood. Various ways of proving whether or not a given linear inequality is necessary in
the description of the convex hull of the feasible set of MILP, e.g., a facet, are well established [56]. In
addition to this, a new framework to establish minimality and extremality of valid inequalities for certain
generic infinite relaxations of MILPs (see [27] and references therein) as well as their relations to facets in
certain simplified settings [29] are developing rapidly. Thus far, results in this vein are lacking in the MICP
context. Consequently, establishing a theoretical framework to measure the necessity and strength of cutting
planes in the MICP context remains a natural and important question. Our goal in this paper is to address
this question.

In this paper we study the closed convex hull of adisjunctive conic set, that is, the union of finitely or
infinitely many conic sets in the original space of variables. We are mainly motivated by the fact that most
cutting planes used in MILP can be viewed in the context of disjunctive programming and such a general
disjunctive conic programmingframework encompasses MICPs. Our approach is based on identifying an
appropriate dominance concept among valid linear inequalities and then extending the minimality definition
from the MILP context to the disjunctive conic framework. When the underlying coneK is taken as the
nonnegative orthant, the MILP counterparts of our results and further developments for MILPs were studied
extensively in the literature. Despite this extensive literature forK = Rn

+, to the best of our knowledge there
is no literature on this topic in the general conic case with an arbitrary regular coneK. We contribute to the
literature by introducing minimal inequalities for disjunctive conic sets and performing a systemic study of
their properties in a unified manner for all regular conesK. We establish the sufficiency of minimal inequal-
ities along with necessary conditions, sufficient conditions as well as practical tools for testing whether or
not a given inequality is minimal.

Our derivations are based on a finite dimensional problem instance. This is in contrast to much of the
literature on minimal inequalities for MILPs initiated by [37, 38, 43]. In a practical cutting plane procedure
for solving MILPs and/or MICPs, one is indeed faced with a problem in a finite dimensional space. Thus, we
believe that this is not a limitation but rather a contribution to the corresponding MILP literature. Besides, to
the best of our knowledge, the extensions of other well-known regular cones such asLn andSn

+ to the infinite
dimensional spaces are not well defined. Hence, an infinite relaxation seems to be more meaningful when
the associated cone is the nonnegative orthant. Therefore,our study does not rely on and differ substantially
from the majority of previous literature in the MILP contextthat relies on infinite relaxations. Furthermore,
we note that a conic view with a regular polyhedral cone can bevaluable in the MILP context as well.

We demonstrate that some of the results from MILP setup naturally extend to MICPs. In this regard,
our approach ties back to the cornerstone paper of Johnson [44] as well as the recent work of Conforti et
al. [25]. In particular, whenK = Rn

+, our results show that minimal inequalities can be properlyrelated to
support functions that generate cut coefficients1 ), and these functions are sublinear (subadditive, positively
homogeneous, and convex) and piecewise linear. This connection in the case ofK = Rn

+ together with
the sufficiency of minimal inequalities for describing the closed convex hull of disjunctive conic sets high-
lights the roots of functional strong duality results for MILPs. For other regular cones, we show that there
exist extreme inequalities, which cannot be generated fromany cut generating function when we straightfor-
wardly extend the definition of cut generating functions to MICPs. Whenever possible, we highlight these
connections to the existing literature.

1)Informally, these are referred ascut generating functions. A cut generating function generates the coefficient of a variable in a
cut using only information of the instance pertaining to this variable. See [25] and section4.3 for an extended discussion.
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1.1 Preliminaries and Notation

Let (E, 〈·, ·〉) be a finite dimensional Euclidean space with inner product〈·, ·〉. Let K ⊂ E be aregular
(full-dimensional, closed, convex and pointed) cone. Notethat when everyKi ⊂ Ei for i = 1, . . . , k is
a regular cone, then their direct productK̃ = K1 × ... × Kk is also a regular cone in the Euclidean space
Ẽ = E1 × ... × Ek with inner product〈·, ·〉

Ẽ
, which is the sum of the inner products〈·, ·〉Ei

. Therefore,
without loss of generality we only focus on the case with a single regular coneK.

In this paper, given a linear mapA : E → Rm, a regular coneK ⊂ E, and anonemptyset of right hand
side vectorsB ⊆ Rm, we study the followingdisjunctive conic setdefined byA, K, andB:

S(A,K,B) := {x ∈ K : Ax ∈ B}.

We are mainly interested in determining the properties of strong valid linear inequalities describing the
closed convex hull ofS(A,K,B). We would like to emphasize that we do not impose any structural assump-
tions onA andB. In particular,A is an arbitrary linear map fromE toRm andB is an arbitrary set of vectors
in Rm. Note that the setB can be finite or infinite, structured such as lattice points orcompletely unstruc-
tured. In order to avoid trial cases, we assume thatS(A,K,B) 6= K, in particularK 6⊆ {x ∈ E : Ax ∈ B},
andS(A,K,B) 6= ∅, i.e., there existsb ∈ B andxb ∈ K satisfyingAxb = b.

For a given setS, we denote its topological interior with int(S), its closure withS, and its boundary
with ∂S = S \ int(S). We use conv(S) to denote the convex hull ofS, conv(S) for its closed convex hull,
and cone(S) to denote the cone generated by the setS. We denote the kernel of a linear mapA : E → Rm

by Ker(A) = {u ∈ E : Au = 0}, and its image by Im(A) = {Au : u ∈ E}. We useA∗ to denote the
conjugate linear map2 ) given by the identity

yTAx = 〈A∗y, x〉 ∀(x ∈ E, y ∈ Rm).

We use〈·, ·〉 notation for inner product in Euclidean spaceE, and proceed with usual dot product nota-
tion with transpose for the inner product inRm. We assume all vectors inRm are given in column form.

For a given coneK ⊂ E, we let Ext(K) denote the set of its extreme rays, and useK∗ to denote its dual
cone given by

K∗ := {y ∈ E : 〈x, y〉 ≥ 0 ∀x ∈ K} .
Whenever the coneK is regular, so isK∗.

Given a regular coneK, a relationa−b ∈ K (also denoted bya �K b) is calledconic inequalitybetween
a andb. Such a relation indeed preserves the major properties of the usual coordinate-wise vector inequality
≥. We denote the strict conic inequality bya ≻K b to indicate thata − b ∈ int(K). In the sequel, we refer
to a constraint of the formAx− b ∈ K as aconic inequality constraintor simplyconic constraintand also
useAx �K b interchangeably in the same sense.

2) When we consider the standard Euclidean spaceE = Rn, a linear mapA : Rn → Rm is just anm× n real-valued matrix,
and its conjugate is given by its transpose,A∗ = AT .

Also, let us consider the space of symmetricn× n matricesE = Sn. We use Tr(·) to denote the trace of a matrix, i.e., the sum
of its diagonal entries. WhenE = Sn, it is natural to specify a linear mapA : Sn → Rm as a collection{A1, . . . , Am} of m
matrices fromSn such that

AZ = (Tr(ZA
1); . . . ;Tr(ZA

m)) : Sn → R
m
.

In this case, the conjugate linear mapA∗ : Rm → Sn is given by

A
∗
y =

m∑

j=1

yjA
j
, y = (y1; . . . ; ym) ∈ R

m
.
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There are three important regular cones common to most MICPs, namely the nonnegative orthantRn
+,

the Lorentz coneLn, and the positive semidefinite coneSn
+. In the first two cases, the corresponding

Euclidean spaceE is just Rn with dot product as the corresponding inner product. In the last case,E
becomes the space of symmetricn × n matrices with Frobenius inner product〈x, y〉 = Tr(xyT ). These
three regular cones are also self-dual, that is,K∗ = K.

Notationei is used for theith unit vector ofRn, and Id for the identity map inE. WhenE = Rn, Id is
just then× n identity matrixIn.

1.2 Motivation and Connections to MICPs

While thedisjunctive conic setS(A,K,B) can be of interest by itself, here we provide a few examples to
highlight our naming choice and the significance of this framework. In particular, we show that these sets
naturally represent the feasible regions of MICPs as well assome natural relaxations for them.

We start with the following example transformation that generalizes the usualdisjunctive programming
from the polyhedral (linear) case [7, 8, 9, 10] to the one with conic constraints.

Example 1.1 Suppose that we are given a finite collection of convex sets ofthe formCi = {x ∈ K :
Aix �Ki

bi} for i ∈ {1, . . . , ℓ}, whereK ⊂ Rn andKi ⊂ Rmi are regular cones,Ai aremi × n matrices,
andbi ∈ Rmi . Then

⋃
i∈{1,...,ℓ}Ci can be represented in the form ofS(A,K,B) as follows:





x ∈ Rn :




(A1)T

(A2)T

...
(Aℓ)T


x

︸ ︷︷ ︸
:=Ax

∈








{b1}+K1

Rm2

...
Rmℓ




⋃




Rm1

{b2}+K2
...

Rmℓ




⋃




Rm1

Rm2

...
{bm}+Km








︸ ︷︷ ︸
:=B

, x ∈ K





.

WhenK = Rn
+ andKi = R

mi
+ for all i = 1, . . . , ℓ, then

⋃
i∈{1,...,ℓ}Ci is the well-known disjunctive set

representing the union of polyhedra [7, 8, 9, 10].
Moreover, whenK is a general regular cone butKi = R+ for all i = 1, . . . , ℓ, then the setS(A,K,B)

models multi-term disjunctions on the coneK. ♦

In fact, the multi-term disjunction structure of Example1.1 allows us to model removal of any polyhedral
lattice-free set such as triangle, quadrilateral or cross disjunction from a regular cone (or its cross-section) by
appropriately selecting the conesKi, the matricesAi, and the vectorsbi. Besides, every convex setQ ∈ E
can be regarded as the cross-section of a convex cone inE×R given byKQ := cone({(x, 1) ∈ E×R : x ∈
Q}) and the hyperplaneH = {(x, λ) ∈ E × R : λ = 1}. Yet, the resulting coneK may not be regular in
general.

Our next set of examples highlight the connection ofS(A,K,B) with the feasible sets of MICPs and
their relaxations.

Example 1.2 Suppose that we are given the following conic optimization problem with integer variables

Opt= inf
x∈Rn

{
cTx : Ãx = b, x ∈ K, xi ∈ Z for all i = 1, . . . , ℓ

}
. (1)
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By defining

A =

[
Ã
In

]
, and B =








b
Zℓ

Rn−ℓ





 ,

whereIn is then× n identity matrix, we can convert this problem into optimizing the same linear function
overS(A,K,B), i.e.,Opt= infx∈Rn

{
cTx : Ax ∈ B, x ∈ K

}
. ♦

Example 1.3 Let us also consider another MICP of form

Opt := inf
y∈Rn

{
c̃T y : Ãy − b ∈ K̃, yi ∈ Z for all i = 1, . . . , ℓ

}
, (2)

whereK̃ is a regular cone in the Euclidean spaceE. Then, by introducing new variablesy+, y−, and setting

x =

(
y+

y−

)
, K = Rn

+×Rn
+, c =

(
c̃
−c̃

)
, A =

[
Ã − Ã
In − In

]
, and B =








b+ K̃
Zℓ

Rn−ℓ





 ,

whereIn is then × n identity matrix, once again we can precisely represent thisproblem into disjunctive
conic form. ♦

There is an important structural difference between the disjunctive conic sets arising in Examples1.2
and1.3: The coneK of S(A,K,B) in Example1.2 is rather general, in particular it can be any regular
cone. On the other hand, the resulting cone used in Example1.3 after the transformation is a very specific
one, it is the nonnegative orthant. There are two important distinctions between a general regular cone and
the specific case of nonnegative orthant that will appear in our discussions later on in section3. These are,
first, the nonnegative orthant is decomposable, i.e., it does not introduce correlations among variables, and
second, all of its extreme rays are orthogonal to each other.

Example 1.4 Let us revisit Example1.3 and investigate the following alternative disjunctive conic form
given in a lifted space by a single additional variable,t ∈ R, as follows

x =

(
y
t

)
, K =

{
(y; t) ∈ Rn × R : Ãy − bt ∈ K̃

}
,

together with

c =

(
c̃
0

)
, A =

[
Iℓ 0
0 1

]
, and B =

{(
Zℓ

1

)}
,

whereIℓ is theℓ × ℓ identity matrix. The resulting optimization problem over this disjunctive conic set is
also exactly equivalent to(2).

Analogous transformations are possible for Examples1.1and1.2as well. ♦

Remark 1.1 The transformation given in Example1.3 may seem more attractive in comparison to that
of Example1.4 because the final disjunctive conic formS(A,K,B) in Example1.3 possesses very simple
conic structureK = R2n

+ . On the other hand, the transformation used in Example1.4not only gets us to a
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disjunctive conic form with fewer additional variables butalso the new coneK encodes important structural
information about the problem such as the linear mapÃ and the vectorb.

As we detail in section2, the coneK plays a critical role in identifying dominance relations among valid
inequalities forS(A,K,B). In particular, our minimality notion is explicitly based on the ordering defined
by the dual coneK∗. As a result of this, any structural information encoded inK is quite useful in identifying
the properties of extremal inequalities. In fact, this opens up new possibilities even for the well-studied case
of MILPs, which we discuss in Remark2.4. ♦

In Examples1.2-1.4, we provide disjunctive conic setsS(A,K,B) to exactly represent the correspond-
ing feasible sets of MICPs. This indicates that the explicitdescription of the resultingconv(S(A,K,B))
is often not easy to characterize. An alternative use of our disjunctive conic framework in the context of
MICPs is to obtain and study disjunctive conic form relaxations that are practical, yet still nontrivial and
useful. One possibility for obtaining such relaxations in the form ofS(A,K,B) is to iteratively add the
integrality requirements by changingR to Z in the description of the setB corresponding to a variablexi.

Another option for developing relaxations in disjunctive conic form is based on a more practical sep-
aration problem. Suppose that in Example1.2 we have obtained a feasible solutionx̂ to the continuous
relaxation of MICP, yet̂x /∈ conv(S(A,K,B)). For this example, the following disjunctive conic set
S(A,K,B) can be exploited to identify valid inequalities that cut offx̂. Considerd ∈ Zn andr0 ∈ Z

such thatdi = 0 for all i = ℓ+ 1, . . . , n andr0 <
∑ℓ

i=1 dix̂i < r0 + 1. Then the split disjunction induced
by

∑ℓ
i=1 dixi ≤ r0 ∨ ∑ℓ

i=1 dixi ≥ r0 + 1 is valid for the feasible set of the optimization problem (1),
whereas the current solution̂x violates it. Given such a split disjunction, the question ofobtaining cuts
separatinĝx is equivalent to studyingconv(S(A,K,B)) where

A =

[
Ã
dT

]
, and B =

{(
b

r0 − R+

)⋃(
b

r0 + 1 + R+

)}
.

In particular, the inequality description of thisconv(S(A,K,B)) will contain cuts for the original MICP
separatinĝx. The same reasoning also applies in the case of Example1.3, e.g., such a split disjunction in
this case can be represented by definingS(A,K,B) with

x =

(
y+

y−

)
, K = Rn

+×Rn
+, A =

[
Ã − Ã
dT − dT

]
, andB =

{(
b+ K̃
r0 − R+

)⋃(
b+ K̃

r0 + 1 + R+

)}
.

We stress that in our discussion abovex̂ is not restricted to be an extreme point solution. In many
cases in MICPs,̂x will be obtained by solving a continuous relaxation of MICP via interior point methods.
Therefore, it will not necessarily be an extreme point solution. Nevertheless, our framework is flexible
enough as it allows us to study the separation of an arbitrarypoint x̂ /∈ conv(S(A,K,B)). In contrast,
most of the MILP literature, and almost all of the so-called cut-generating function literature, focuses on
separating extreme point solutions. This main focus on the separation of extreme point solutions in theory
and practice of MILPs is because the overwhelming choice forsolving the linear programming relaxations
is the simplex algorithm and it leads to extreme point solutions x̂. In the MILP literature, by translation of
the associated point̂x and the feasible set, this separation problem is often cast as separating the origin from
the convex hull of a set of points.

Nonetheless, the theoretical framework of disjunctive programming in MILP does provide general tech-
niques to separate non-extreme-point solutions in the samemanner as discussed above. Thus, exact repre-
sentations and relaxations of the above forms have been studied in a number of other contexts in the specific
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case ofK = Rn
+. In particular, when we additionally assume thatB is finite, we immediately arrive at thedis-

junctive programmingframework of Balas [9]. Furthermore, Johnson [44] has studied the setS(A,Rn
+,B)

whenB is a finite list under the name oflinear programs with multiple right hand side choice. In another
closely related recent work, Conforti et al. [25] studyS(A,K,B) with K = Rn

+ and possibly an infinite set
B such thatB 6= ∅, is closed and0 /∈ B, and demonstrate that Gomory’scorner polyhedron[36] as well
as some other problems such aslinear programs with complementarity restrictions[45] can be viewed in
this framework. In contrast to [9], Johnson [44] studies the characterizations of minimal inequalities, and
Conforti et al. [25] study minimal cut generating functions. We discuss connections of these and our study
in section4.3.

Finally, we emphasize that we are not making any particular assumption onA andB beyond the ba-
sic ones to avoid trivial cases such asS(A,K,B) = ∅ or conv(S(A,K,B)) = K. BecauseB can be
completely arbitrary, the setS(A,K,B) offers great flexibility, which can be much beyond the relax-
ations/representations related to MICPs. Specifically, a good understanding of disjunctive conic sets will
be particularly relevant to conic complementarity problems as well.

1.3 Classes of Valid Inequalities and Our Goal

Recall that we are interested in the closed convex hull characterization of the disjunctive conic set

S(A,K,B) = {x ∈ K : Ax ∈ B}.

This naturally amounts to the study of valid linear inequalities forS(A,K,B). Without loss of generality
we assume that all of the linearvalid inequalitiesfor S(A,K,B) are of the form

〈µ, x〉 ≥ η0,

whereµ ∈ E andη0 ∈ R. We denote the resulting inequality with(µ; η0) for short hand notation. For any
µ ∈ E, we define

ϑ(µ) := inf
x
{〈µ, x〉 : x ∈ S(A,K,B)} , (3)

as the best possible right hand side value for an inequality(µ; η0) to be valid forS(A,K,B). We say that
a valid inequality(µ; η0) is tight if η0 = ϑ(µ). If both (µ; η0) and(−µ;−η0) are valid inequalities, then
〈µ, x〉 = η0 holds for allx ∈ S(A,K,B), and in this case, we refer to(µ; η0) as avalid equationfor
S(A,K,B). We letΠ(A,K,B) ⊂ E be the set of all nonzero vectorsµ ∈ E such thatϑ(µ) is finite. This
setΠ(A,K,B) is precisely the subset ofE leading to nontrivial valid inequalities forS(A,K,B).

LetC(A,K,B) ⊂ E × R denote the convex cone of all valid inequalities given by(µ; η0). Identifying
valid linear inequalities that are necessary in the description of conv(S(A,K,B)) is equivalent to studying
C(A,K,B) and its generators. BecauseC(A,K,B) is a convex cone inE × R, it can be written as the
sum of a linear subspaceL of E × R and a pointed coneC, i.e., C(A,K,B) = L + C. GivenL, the
largest linear subspace contained inC(A,K,B), let L⊥ denote the orthogonal complement ofL. Then a
unique representation for the pointed coneC in C(A,K,B) = L + C is given byC = C(A,K,B) ∩ L⊥.
A generating set(GL, GC) for a coneC(A,K,B) is a minimal set of elements(µ; η0) ∈ C(A,K,B) such
thatGL ⊆ L,GC ⊆ C, and

C(A,K,B) =





∑

w∈GL

αww +
∑

v∈GC

λvv : λv ≥ 0



 .
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Remark 1.2 From this definition, it is clear that in a generating set(GL, GC) of C(A,K,B), without loss
of generality, we can assume that each vector fromGC is orthogonal to every vector inGL, and all vectors
in GL are orthogonal to each other. ♦

Our study ofC(A,K,B) will be based on characterizing the properties of the elements of its generating
sets. We will refer to the vectors inGL asgenerating equalitiesand the vectors inGC asgenerating inequal-
ities of C(A,K,B). An inequality(µ; η0) ∈ C(A,K,B) is called anextreme inequalityof C(A,K,B), if
there exists a generating set forC(A,K,B) including (µ; η0) as a generating inequality either inGL or in
GC . When the coneC(A,K,B) is pointed, we haveGL is trivial andGC is uniquely defined up to positive
scalings. Then, our definition of extreme inequalities based on generating inequalities matches precisely
with the usual definition of extreme inequalities stated as “an inequality is extreme if it cannot be written
as average of two other distinct valid inequalities.” Note that any non-tight valid inequality(µ; η0) with
η0 < ϑ(µ) does not belong to a generating set ofC(A,K,B).

Clearly, the inequalities in generating set(GL, GC) of the coneC(A,K,B) are of great importance;
they are necessary and sufficient for the description ofconv(S(A,K,B)). It is easy to note thatGL is finite,
as a basis of the subspaceL can be taken asGL. For nonpolyhedral (nonlinear) cones such asLn with
n ≥ 3,GC need not be finite. In fact we provide an example demonstrating this in section3.

1.4 Outline

The main body of this paper is organized as follows. In section 2, we introduce the class ofK-minimal
inequalities and show that under a mild assumption, this class of inequalities together with the constraint
x ∈ K is sufficient to describeconv(S(A,K,B)). We follow this by establishing a number of necessary
conditions forK-minimality. In particular, we show thatK-minimal inequalities are tight in many cases.
Nonetheless, we highlight that depending on the structure of S(A,K,B), K-minimality does not necessarily
imply tightness of the inequality. In addition to this, one of our necessary conditions forK-minimality leads
us to our next class of valid inequalities,K-sublinear inequalities. We studyK-sublinear inequalities in
section3 and establish a precise relation betweenK-sublinearity andK-minimality and show that the set of
extreme inequalities in the cone ofK-sublinear inequalities contains all of the extreme inequalities from the
cone ofK-minimal inequalities. In section4, we show that everyK-sublinear inequality is associated with
a convex set of particular structure, which we refer to as acut generating set. Moreover, we show that any
nonempty cut generating set leads to a valid inequality. Through this connection with structured convex sets,
we provide necessary conditions forK-sublinearity, as well as sufficient conditions for a valid inequality to
beK-sublinear andK-minimal. In the case ofK = Rn

+, our necessary condition and sufficient condition
for K-sublinearity match precisely establishing a strong relation betweenK-sublinear inequalities and the
support functions of cut generating sets. This relation provides nice connections to the existing literature,
which we highlight in section4.3. We close section4 by examining the conic Mixed Integer Rounding
(MIR) inequality from [5] in our framework. We provide some characterizations of thelineality space of
C(A,K,B) in section5, and finish by stating a few further research questions.

2 K-Minimal Inequalities

In this section, based on the ordering induced by the regularconeK∗, we first introduce a domination notion
among valid linear inequalities forS(A,K,B). Based on this domination notion, we identify a relatively
small class of valid linear inequalities,K-minimal inequalities, and show that this class is nonempty under
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a mild technical assumption. This technical assumption is satisfied, for example, when conv(S(A,K,B)) is
full dimensional. Under this assumption, we establish thatK-minimal inequalities along with the constraint
x ∈ K is sufficient to describeconv(S(A,K,B)). We then study the properties of inequalities from this
class.

We start by pointing out a trivial class of valid linear inequalities forS(A,K,B), which we refer ascone-
implied inequalities. These inequalities stem from the observation thatS(A,K,B) ⊆ K. The definition of
dual cone immediately implies that for anyδ ∈ K∗, the inequality〈δ, x〉 ≥ 0 is valid for K, and thus, it
is also valid forS(A,K,B). Therefore,(δ; 0) ∈ C(A,K,B) for any δ ∈ K∗. Note that all cone-implied
inequalities are readily captured by the constraintx ∈ K. Hence, they are not of great interest. In particular,
unless conv(S(A,K,B)) = K, the family of cone-implied inequalities will not be sufficient to fully describe
conv(S(A,K,B)). Because we have already assumedconv(S(A,K,B)) 6= K, from now on, we focus on the
characterization of valid linear inequalities that are non-cone-implied and are needed to obtain a complete
description ofconv(S(A,K,B)). This leads us to our definition ofK-minimal inequalities.

Definition 2.1 A valid linear inequality(µ; η0) with µ 6= 0 andη0 ∈ R is K-minimal (for S(A,K,B)) if
for all valid inequalities(ρ; ρ0) for S(A,K,B) satisfyingρ 6= µ, andρ �K∗ µ, we haveρ0 < η0.

We next observe that the coneK, indeed, induces a natural dominance relation among the valid linear
inequalities, andK-minimality definition is a result of this dominance relation. Let us consider a valid
inequality (µ; η0) which is notK-minimal. Thus, there exists another valid inequality(ρ; ρ0) such that
ρ 6= µ, ρ �K∗ µ, andρ0 ≥ η0. But then the inequality(ρ; ρ0) together with the constraintx ∈ K implies
the inequality(µ; η0) because

〈µ, x〉 = 〈ρ+ (µ− ρ), x〉 = 〈ρ, x〉︸ ︷︷ ︸
≥ρ0

+ 〈µ− ρ, x〉︸ ︷︷ ︸
≥0

≥ ρ0 ≥ η0,

where the first inequality follows fromx ∈ K andµ − ρ ∈ K∗. The above relation indicates that when
the constraintx ∈ K and the linear inequality(ρ; ρ0) are included, the non-K-minimal inequality(µ; η0) is
not necessary in the description ofconv(S(A,K,B)). The definition ofK-minimality simply requires an in-
equality not to be dominated in this fashion: aK-minimal inequality(µ; η0) cannot be dominated by another
inequality, which is the sum of a cone-implied inequality and another valid inequality forS(A,K,B).

In general, there areK-minimal inequalities that are not extreme. In particular,the definition ofK-
minimality allows for aK-minimal inequality to be implied by the sum of two other non-cone-implied
valid inequalities. That said, under a technical assumption, we will show that all non-cone-implied extreme
inequalities areK-minimal. Because characterization of extreme inequalities in general is known to be a
much more difficult task, in this paper, we limit our focus on the characterization ofK-minimal inequalities.

Remark 2.1 None of the cone-implied inequalities(µ; η0) = (δ; 0) with δ ∈ K∗\{0} isK-minimal because
we can always write them as the sum of a valid inequality(ρ; ρ0) = (12δ; 0) with ρ0 = η0 and a cone-implied
inequality (12δ; 0). Nevertheless, a cone-implied inequality can be extreme3 ), and thus, necessary in the
description ofconv(S(A,K,B)). ♦

Remark 2.2 In the case of MILP,K = Rn
+, a minimal inequalityis defined as a valid linear inequality

(µ; η0) such that ifρ ≤ µ (where the≤ is interpreted in the component-wise sense) andρ 6= µ, then(ρ; η0)

3)See section1.3and the definition of extreme inequalities based on generating inequalities.
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is not valid, i.e., reducing anyµi for i ∈ {1, . . . , n} will lead to a strict reduction in the right hand side
value of the inequality (cf. [44]). Considering thatRn

+ is a regular and also self-dual cone, we conclude
thatK-minimality definition is indeed a natural extension of theminimality definition of valid inequalities
studied in the context of MILPs to more general disjunctive conic sets with regular conesK. ♦

Remark 2.3 Whether a valid inequality is necessary for the descriptionof conv(S(A,K,B)) depends on
S(A,K,B) and it can very well be independent of the choice ofA,B andK. In particular, if there exists
A′,B′ andK′ such thatconv(S(A′,K′,B′)) = conv(S(A,K,B)), then the extreme inequalities for these
will be the same. Additionally, as long as the setS(A,K,B) remains the sameK-minimality definition is
independent ofA andB but depends onK explicitly, that is theK-minimal inequalities for bothS(A,K,B)
andS(A′,K,B′) are the same as long asconv(S(A′,K,B′)) = conv(S(A,K,B)). However, whenK′ 6= K,
K-minimal inequalities forS(A,K,B) might differ fromK′-minimal inequalities forS(A′,K′,B′) even
whenconv(S(A′,K′,B′)) = conv(S(A,K,B)). We comment more on the choice of the coneK and its
impact on identifying dominance relations and our minimality notion in Remark2.4. ♦

In the light of this remark, from now on we will emphasize the classification of valid inequalities based
on the coneK explicitly.

We letCm(A,K,B) denote the set ofK-minimal valid inequalities forS(A,K,B). Note thatCm(A,K,B)
is closed under positive scalar multiplication and is thus acone (but it is not necessarily a convex cone).

The following simple example shows a setS(A,K,B) together with theK-minimal inequalities describ-
ing its convex hull.

Example 2.1 LetS(A,K,B) be defined withK = L3 = K∗,A = [−1, 0, 1] 4 ) andB = {0, 2}, i.e.,

S(A,K,B) = {x ∈ K : − x1 + x3 = 0}
⋃

{x ∈ K : − x1 + x3 = 2}.
Then

conv(S(A,K,B)) = {x ∈ R3 : x ∈ K, 0 ≤ −x1 + x3 ≤ 2}
= {x ∈ R3 : 〈x, δ〉 ≥ 0 ∀δ ∈ Ext(K∗), x1 − x3 ≥ −2},

is closed, and thus, the cone of valid inequalities is given by

C(A,K,B) = cone(K∗ × {0}, ([1; 0;−1];−2)) .

The only non-cone-implied extreme inequality in this description is given byµ = [1; 0;−1] with η0 =
−2 = ϑ(µ). It is easy to see that this inequality is valid and also necessary for the description of the convex
hull. In order to verify that it is in factK-minimal, consider anyδ ∈ K∗ \ {0}, and setρ = µ− δ. Then the
best possible right hand side valueρ0 for which〈ρ, x〉 ≥ ρ0 is valid, is given by

ρ0 := inf
x
{〈ρ, x〉 : x ∈ S(A,K,B)}

≤ inf
x
{〈ρ, x〉 : x ∈ K, − x1 + x3 = 2}

= inf
x
{x1 − x3 − 〈δ, x〉 : x ∈ K, − x1 + x3 = 2}

= inf
x
{−2− 〈δ, x〉 : x ∈ K, − x1 + x3 = 2}

= −2− sup
x
{〈δ, x〉 : x ∈ K, − x1 + x3 = 2}

< −2 = ϑ(µ),

4)Throughout this paper, we use Matlab notation with brackets[·] to denote explicit vectors and matrices.
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where the strict inequality follows from the fact thatu = [0; 1; 2] is in the interior ofK and satisfies−u1 +
u3 = 2 (and thus is feasible to the last optimization problem in theabove chain), and also for anyδ ∈
K∗ \ {0}, 〈δ, u〉 > 0. Clearly, all of the other inequalities involved in the description of conv(S(A,K,B))
are of the form〈δ, x〉 ≥ 0 with δ ∈ Ext(K∗), and hence, are notK-minimal. ♦

Our goal is to generalize Example2.1and establish thatK-minimal inequalities along with the constraint
x ∈ K are sufficient to describeconv(S(A,K,B)). However, we need a structural assumption for this result.
This assumption is a result of the important fact that there can be situations where none of the inequalities
describingconv(S(A,K,B)) isK-minimal even whenconv(S(A,K,B)) ( K. To emphasize this technical
difficulty and motivate our assumption, let us consider a slightly modified version of Example2.1 with a
different setB:

Example 2.2 LetS(A,K,B) be defined withK = L3,A = [−1, 0, 1] andB = {0}. Then

conv(S(A,K,B)) = {x ∈ R3 : x ∈ K, − x1 + x3 = 0} = {x ∈ R3 : x1 = x3, x2 = 0, x1, x3 ≥ 0}.

We claim and prove that none of the inequalities in the description ofconv(S(A,K,B)) is K-minimal.
To observe this, let us fix a particular generating set(GL, GC) for the coneC(A,K,B). Based on the above
representation ofconv(S(A,K,B)), we can take for exampleGC = L3 × {0} andGL = (µ; 0) where
µ = [−1; 0; 1] with η0 = 0 = ϑ(µ). Note that all of the inequalities inGC as well as one side of the
valid equation given by(µ; 0) are cone-implied (becauseµ ∈ L3), and thus are notK-minimal. Moreover,
the inequality given by(−µ; 0), e.g., the other side of the valid equation also cannot beK-minimal since
ρ = [1.5; 0;−1.5] satisfiesδ = −µ − ρ = [−0.5; 0; 0.5] ∈ Ext(K∗) and (ρ; η0) is also valid. In fact, for
any valid inequality(µ; η0) that is in the description ofconv(S(A,K,B)), there existsτ > 0 such that we
can subtract the vectorδ = τ [−1; 0; 1] ∈ Ext(K∗) fromµ, and still obtain(µ− δ; η0) as a valid inequality.
Finally, note that the generators ofC(A,K,B) are uniquely defined up to shifts by the vector(µ; 0) defining
the valid equation. But these shifts do not change theK-minimality properties of the inequalities. ♦

The peculiar situation of Example2.2is a result of the fact thatS(A,K,B) ⊂ {x ∈ K : −x1+x3 = 0},
i.e.,S(A,K,B) is contained in a subspace defined by a cone-implied valid equation. The next proposition
formally states that this is precisely the situation in which none of the valid linear inequalities, including the
extreme ones, isK-minimal.

Proposition 2.1 Suppose that there existsδ ∈ K∗ \ {0} such that〈δ, x〉 = 0 for all x ∈ S(A,K,B), i.e.,
(δ; 0) is a valid equation. ThenCm(A,K,B) = ∅.

Proof. Let δ ∈ K∗ \ {0} be such that(δ; 0) is a valid equation. Consider any valid inequality(µ; η0).
Because(−δ; 0) is also valid, we get(µ− δ; η0) is valid as well. But then(µ; η0) is notK-minimal because
δ ∈ K∗ \{0}. Given that(µ; η0) was arbitrary, this implies that there is noK-minimal valid inequality under
the hypothesis of the proposition. �

Based on Proposition2.1, in the remainder of this paper, we make the following assumption:

Assumption 1: For eachδ ∈ K∗\{0}, there exists somexδ ∈ S(A,K,B) such that〈δ, xδ〉 > 0.

Note thatAssumption 1is indeed not very restrictive, and is trivially satisfied, for example, whenconv(S(A,K,B)) 6=
K and is full-dimensional, e.g., when Ker(A) ∩ int(K) 6= ∅ (see Proposition2.4).
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Our main result in this section shows that underAssumption 1, K-minimal inequalities, along with the
constraintx ∈ K, are sufficient to describeconv(S(A,K,B)). In particular, we prove that underAssump-
tion 1, all extreme inequalities areK-minimal. Due to the previous discussion on the dominance relation
among inequalities andK-minimality, this result is expected. However, to formalize this, we need the fol-
lowing definition: Given two vectors,u, v ∈ C whereC is a cone with lineality spaceL, u is said to be an
L-multiple of v if u = τv + ℓ for someτ > 0, andℓ ∈ L. From this definition, it is clear that ifu is an
L-multiple ofv, thenv is also anL-multiple ofu. Also, we need the following lemma from [44]:

Lemma 2.1 Supposev is in a generating set for coneC and there existv1, v2 ∈ C such thatv = v1 + v2,
thenv1, v2 areL-multiples ofv.

Let (GL, GC) be a generating set for the coneC(A,K,B). Note that whenever the lineality spaceL of
the coneC(A,K,B) is nontrivial, the generating valid inequalities are only defined uniquely up to theL-
multiples. We defineG+

C to be the vectors fromGC that are notL-multiples of any cone-implied inequality
(δ; 0) with δ ∈ K∗ \ {0}. ThenG+

C is again only uniquely defined up toL-multiples.
The following result is a straightforward extension of the associated result from [44] given in the linear

case to our conic case.

Proposition 2.2 Let (GL, GC) be a generating set for the coneC(A,K,B). UnderAssumption 1, every
valid equation inGL and every generating valid inequality inG+

C isK-minimal.

Proof. Suppose(µ; η0) ∈ GL ∪ G+
C is notK-minimal. Then there exists a nonzeroδ ∈ K∗ such that

(µ − δ; η0) ∈ C(A,K,B). Note that(δ; 0) ∈ C(A,K,B), therefore,(µ + δ; η0) is valid as well. Then
Lemma2.1implies that(δ; 0) is anL-multiple of (µ; η0). Using the definition ofG+

C , we get(µ; η0) ∈ GL.
Given that(δ; 0) is anL-multiple of (µ; η0) andGL is uniquely defined up toL-multiples, we get that
(δ; 0) ∈ GL. Hence,〈δ, x〉 = 0 is a valid equation, which contradicts toAssumption 1. �

Based on Proposition2.2, Assumption 1ensures thatCm(A,K,B) 6= ∅. In particular, Proposition2.2
immediately implies the following result.

Corollary 2.1 Suppose thatAssumption 1 holds. Then, for any generating set(GL, GC) of C(A,K,B),
(GL, G

+
C) generatesCm(A,K,B). In particular, all non-cone-implied extreme inequalities areK-minimal.

Thus,K-minimal inequalities along with the original conic constraint x ∈ K are sufficient to describe
conv(S(A,K,B)).

UnderAssumption 1, in the light of Proposition2.2and Corollary2.1, we arrive at

conv(S(A,K,B)) = {x ∈ E : x ∈ K, 〈µ, x〉 = η0 ∀(µ; η0) ∈ GL, 〈µ, x〉 ≥ η0 ∀(µ; η0) ∈ G+
C}

= {x ∈ E : x ∈ K, 〈µ, x〉 ≥ η0 ∀(µ; η0) ∈ Cm(A,K,B)}.

Therefore, underAssumption 1, any valid inequality(µ; η0) for S(A,K,B) is dominated by a set ofK-
sublinear inequalities(µi; ηi0) wherei ∈ I is a set indices and a cone-implied inequality(δ; 0) with δ ∈ K∗

(note that the cone of cone-implied inequalities is convex). That is,µ =
∑

i∈I µ
i + δ andη0 ≤ ∑

i∈I η
i
0.

WhenCm(A,K,B) is convex, the set of indicesI can be taken as a singleton.
Next, we deliberate on the importance of the coneK in establishing dominance relations and in our

K-minimality definition.

Remark 2.4 Based on Remark2.3and ourK-minimality notion, the structural information encoded inthe
coneK is rather important in identifying smaller classes of validinequalities that are sufficient to describe
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the closed convex hulls of disjunctive conic sets. To emphasize this, let us consider a situation where we are
givenA andB, and we have several options for the coneK to encodeS(A,K,B). Suppose that we are given
two conesK1 ⊂ K2 such thatS(A,K1,B) = S(A,K2,B). ThenC(A,K1,B) = C(A,K2,B). In such a
case, the smaller coneK1 encodes the structural information of the disjunctive conic setS(A,K1,B) better
thanK2. In order to avoid technical difficulties let us assume thatS(A,K1,B) satisfiesAssumption 1 with
respect toK1 andconv(S(A,K1,B)) 6= K1, thusCm(A,K1,B) is nonempty. The definition ofK-minimality
together with the relationK∗

1 ⊃ K∗
2 automatically implies thatK1-minimal inequalities forS(A,K1,B) are

also K2-minimal for S(A,K1,B), but not vice versa becauseK1 6= K2. Therefore,Cm(A,K1,B) (

Cm(A,K2,B). Let (GL, GC) be a generating set forC(A,K1,B). Let us defineG1,+
C to be the vectors

from GC that are notL-multiples of any cone-implied inequality(δ; 0) with δ ∈ K∗
1 \ {0}, andG2,+

C

analogously with respect toK∗
2. Then by Corollary2.1, we have(GL, G

1,+
C ) generatesCm(A,K1,B) and

(GL, G
2,+
C ) generatesCm(A,K2,B). BecauseCm(A,K1,B) ( Cm(A,K2,B), we conclude thatG1,+

C (

G2,+
C . Then, all extremeK2-minimal inequalities are alsoK1-minimal, but someK2-minimal inequalities,

namelyG2,+
C \G1,+

C , will not be extreme, and

conv(S(A,K,B)) = {x ∈ E : x ∈ K1, 〈µ, x〉 = η0 ∀(µ; η0) ∈ GL, 〈µ, x〉 ≥ η0 ∀(µ; η0) ∈ G1,+
C }

= {x ∈ E : x ∈ K2, 〈µ, x〉 = η0 ∀(µ; η0) ∈ GL, 〈µ, x〉 ≥ η0 ∀(µ; η0) ∈ G2,+
C }.

Hence, we conclude that whenever we have a choice betweenK1 ⊂ K2, minimality defined with respect
to the smaller coneK1 results in a stronger dominance notion among valid linear inequalities defining
conv(S(A,K,B)).

As a consequence of this, we highlight the importance of encoding structural information inK as much
as possible. For example, among different choices of disjunctive conic representations of the same set
suggested in Examples1.3 and 1.4, the one in Example1.4 is superior. This is so, even when the coneK̃
is as simple asRn

+. Therefore, even in the case of MILPs, whenever such structural information, e.g., a
polyhedral relaxation, is present, there is benefit in defining minimality notion based on a regular coneK
defined in a lifted space as described in Example1.4as opposed to the usual choice of nonnegative orthant
from the MILP literature. ♦

These results motivate us to further study the properties ofK-minimal inequalities in the next section.

2.1 Necessary Conditions forK-Minimality

Our first proposition states that in certain cases, allK-minimal inequalities are tight. This also gives us our
first necessary condition forK-minimality.

Proposition 2.3 Let (µ; η0) ∈ Cm(A,K,B). Then, wheneverµ ∈ K∗ or µ ∈ −K∗, the valid inequality
(µ; η0) is tight, i.e.,η0 = ϑ(µ) (cf. (3)). Furthermore,(µ; η0) ∈ Cm(A,K,B) andµ ∈ K∗ (respectively
µ ∈ −K∗) impliesϑ(µ) > 0 (respectivelyϑ(µ) < 0).

Proof. Consider(µ; η0) ∈ Cm(A,K,B) with µ 6= 0. Note thatµ = 0 leads to trivial valid inequalities
which are not of interest. The validity of(µ; η0) immediately impliesη0 ≤ ϑ(µ). Assume for contradiction
thatη0 < ϑ(µ). We need to consider only two cases:

(i) µ ∈ K∗ \ {0}: Thenϑ(µ) ≥ η0 > 0, because otherwise(µ; η0) is either a cone-implied inequality
or is dominated by a cone-implied inequality, both of which are not possible. Letβ = η0

ϑ(µ) , and
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considerρ = β · µ. Then(ρ; η0) is a valid inequality because0 < β < 1, (µ;ϑ(µ)) ∈ C(A,K,B)
andC(A,K,B) is a cone. Butµ − ρ = (1 − β)µ ∈ K∗ \ {0} sinceµ 6= 0 andβ < 1. This is a
contradiction, thus, we concludeη0 = ϑ(µ) > 0.

(ii) −µ ∈ K∗ \ {0}: Because(−µ; 0) is trivially valid and we cannot satisfy both(−µ; 0) and(µ;ϑ(µ))
whenϑ(µ) > 0 unlessS(A,K,B) = ∅. But this is not possible due to our assumptions onS(A,K,B),
thus, we conclude thatϑ(µ) ≤ 0. Moreover, ifϑ(µ) = 0, thenS(A,K,B) ⊂ {x ∈ K : 〈µ, x〉 = 0},
which contradictsAssumption 1. Hence, we conclude thatη0 < ϑ(µ) < 0. Once again letβ = η0

ϑ(µ) ,
and considerρ = β · µ. Then(ρ; η0) is a valid inequality sinceβ > 1, (µ;ϑ(µ)) ∈ C(A,K,B) and
C(A,K,B) is a cone. Butµ− ρ = (1− β)µ ∈ K∗ \ {0} sinceµ ∈ −K∗ \ {0} andβ > 1. But, this
is a contradiction to theK-minimality of (µ; η0). Thus, we conclude thatη0 = ϑ(µ) < 0.

�

Clearly, Proposition2.3does not cover all possible cases forµ. As a matter of fact, it is possible to have
µ 6∈ ±K∗ leading to aK-minimal inequality. While one is naturally inclined to believe that aK-minimal
inequality(µ; η0) is always tight, i.e.,η0 = ϑ(µ), we have the following counter-example.

Example 2.3 Consider the disjunctive conic setS(A,K,B) defined withA = [−1, 1], B = {−2, 1} and
K = R2

+. First, note thatAssumption 1 holds because{[0; 1], [2; 0]} ∈ S(A,K,B), andconv(S(A,K,B)) =
conv(S(A,K,B)) 6= R2

+. Thus,K-minimal inequalities exist, and together with nonnegativity restrictions
they are sufficient to describeconv(S(A,K,B)). In fact,

conv(S(A,K,B)) = {x ∈ R2 : − x1 + x2 ≥ −2, x1 − x2 ≥ −1, x1 + 2x2 ≥ 2, x1, x2 ≥ 0},

and one can easily show that each of the nontrivial inequalities in this description is in factK-minimal.

x 1
−
x 2

≥
−
2

x2

x1(0, 0)

(0, 1)

(0, 2)

(−2, 0) (−1, 0) (1, 0) (2, 0)

Figure 1: Convex hull ofS(A,K,B) for Example2.3

Now, let us consider the valid inequality given by(µ; η0) = ([1;−1];−2). Note thatϑ(µ) = −1,
therefore,(µ; η0) is not tight and is dominated by the valid inequalityx1 − x2 ≥ −1. We will show that
(µ; η0) isK-minimal regardless of the fact that it is not tight. We note that, in this example,K-minimality is
the same as the usual minimality used in the usual MILP literature.

Suppose that(µ; η0) is notK-minimal, then there existsρ = µ − δ with 0 6= δ ∈ K∗ = R2
+ such that
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(ρ; η0) is a valid inequality. This implies

−2 = η0 ≤ inf
x
{〈ρ, x〉 : x ∈ S(A,K,B)} = min

x
{〈ρ, x〉 : x ∈ conv(S(A,K,B))}

= min
x

{〈ρ, x〉 : − x1 + x2 ≥ −2, x1 − x2 ≥ −1, x1 + 2x2 ≥ 2, x1, x2 ≥ 0}

= max
λ

{−2λ1 − λ2 + 2λ3 : − λ1 + λ2 + λ3 ≤ ρ1, λ1 − λ2 + 2λ3 ≤ ρ2, λ ∈ R3
+}

= max
λ

{−2λ1 − λ2 + 2λ3 : − λ1 + λ2 + λ3 ≤ 1− δ1, λ1 − λ2 + 2λ3 ≤ −1− δ2, λ ∈ R3
+},

where the third equation follows from strong duality (the primal problem is feasible), and the fourth equation
follows from the definition ofρ = µ− δ. On the other hand, the following system

λ ≥ 0

λ1 − λ2 − λ3 ≥ δ1 − 1

−λ1 + λ2 − 2λ3 ≥ 1 + δ2,

implies that0 ≥ −3λ3 ≥ δ1 + δ2. Considering thatδ ∈ R2
+, this leads toδ1 = δ2 = 0, which is a

contradiction toδ 6= 0. Therefore, we conclude that(µ; η0) = ([1;−1];−2) ∈ Cm(A,K,B) yetη0 6= ϑ(µ).
♦

Remark 2.5 This issue of non-tightness of someK-minimal inequalities is independent of whether theK-
minimal inequality separates the origin or not. When we consider a variation of Example2.3 given by
A = [−1, 1], B = {−2,−1} andK = R2

+, we have the valid inequality given by(µ; η0) = ([1;−1]; 12) is
K-minimal due to the same reasoning, yet, it hasϑ(µ) = 1 and hence(µ; η0) is not tight. Note also that this
inequality separates the origin from the closed convex hull. ♦

In fact, we can generalize the situation of Example2.3, and prove the following proposition, which
states that under a special condition, Ker(A) ∩ int(K) 6= ∅, any valid inequality(µ; η0) with µ ∈ Im(A∗)
and−η0 ≤ ϑ(µ) (cf. (3)) is aK-minimal inequality.

Proposition 2.4 SupposeKer(A) ∩ int(K) 6= ∅. Then, for anyµ ∈ Im(A∗) and any−∞ < η0 ≤ ϑ(µ), we
have(µ; η0) ∈ Cm(A,K,B).
Proof. Considerd ∈ Ker(A) ∩ int(K) 6= ∅, note thatd 6= 0. For anyb ∈ B, define the setSb := {x ∈
E : Ax = b, x ∈ K}, and letB̂ := {b ∈ B : Sb 6= ∅}. BecauseS(A,K,B) 6= ∅, we haveB̂ 6= ∅. For
any b ∈ B̂, let xb ∈ Sb, thenPb := {xb + τd : τ ≥ 0} ⊆ Sb holds. Moreover,Pb ∩ int(K) 6= ∅ for any
b ∈ B̂ 6= ∅, and thus,Assumption 1holds here.

Assume for contradiction that the statement is not true, i.e., there existsµ ∈ Im(A∗) together withη0 ≤
ϑ(µ), such that(µ; η0) 6∈ Cm(A,K,B). Then there existsδ ∈ K∗ \ {0} such that(µ− δ; η0) ∈ C(A,K,B),
which implies

−∞ < η0 ≤ inf
x
{〈µ − δ, x〉 : x ∈ S(A,K,B)}

≤ inf
b∈B

inf
x
{〈µ− δ, x〉 : Ax = b, x ∈ K}

≤ inf
b∈B̂

inf
x
{〈µ− δ, x〉 : x ∈ Pb}

≤ inf
b∈B̂


〈µ− δ, xb〉︸ ︷︷ ︸

∈R

+ inf
τ
{〈µ − δ, τd〉 : τ ≥ 0}


 .
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Also, note thatinfτ{〈µ − δ, τd〉 : τ ≥ 0} = −∞ when〈µ − δ, d〉 < 0. But 〈µ − δ, d〉 < 0 is impossible
since it would have implied−∞ < η0 ≤ −∞. Therefore, we conclude that〈µ − δ, d〉 ≥ 0.

Finally, becauseµ ∈ Im(A∗), there existsλ such thatµ = A∗λ. Taking this into account, we arrive at

0 ≤ 〈µ − δ, d〉 = 〈A∗λ, d〉 − 〈δ, d〉 = λT (Ad)︸︷︷︸
=0

−〈δ, d〉 = −〈δ, d〉,

where we used the fact thatd ∈ Ker(A). But d ∈ int(K) andδ ∈ K∗ \ {0} implies that〈δ, d〉 > 0, which is
a contradiction. �

Example2.3 and Proposition2.4 indicate a weakness of theK-minimality definition. To address this,
we should focus on onlytight K-minimal inequalities, that is,(µ; η0) ∈ Cm(A,K,B) whereη0 = ϑ(µ)
(η0 cannot be increased without making the current inequality invalid). While we can include a tightness
requirement in ourK-minimality definition, we note that tightness has a direct characterization through
ϑ(µ), and also to remain consistent with the original minimalitydefinition forK = Rn

+, we opt to work with
our originalK-minimality definition. As will be clear from the rest of the paper, tightness considerations
will make minimal change in our analysis.

We next state a proposition which identifies a key necessary condition forK-minimality via a certain
non-expansiveness property. The following set of linear maps will be of importance for this result.

FK := {(Z : E → E) : Z is linear, andZ∗v ∈ K ∀v ∈ K},

whereZ∗ denotes the conjugate linear map ofZ.5 )

Proposition 2.5 Let (µ; η0) ∈ C(A,K,B) and suppose that there exists a linear mapZ ∈ FK such that
AZ∗ = A, andµ− Zµ ∈ K∗ \ {0}. Then(µ; η0) 6∈ Cm(A,K,B).

Proof. Let (µ; η0) ∈ C(A,K,B) andZ be a linear map as described in the proposition. SinceZ ∈ FK, for
anyx ∈ K, we haveZ∗x ∈ K. Moreover,AZ∗x = Ax due toAZ∗ = A, and thus for anyx ∈ S(A,K,B),
AZ∗x = Ax ∈ B. Therefore, we haveZ∗x ∈ S(A,K,B) for anyx ∈ S(A,K,B). Now, letδ = µ − Zµ,
thenδ ∈ K∗ \ {0} by the premise of the proposition. Defineρ := µ − δ, then for anyx ∈ S(A,K,B) we
have

〈ρ, x〉 = 〈µ− δ, x〉 = 〈Zµ, x〉 = 〈µ,Z∗x〉 ≥ η0,

where the last inequality follows from the fact thatZ∗x ∈ S(A,K,B) and(µ; η0) ∈ C(A,K,B). Hence,
we get

inf
x
{〈ρ, x〉 : Ax ∈ B, x ∈ K} ≥ η0,

which implies that(µ; η0) 6∈ Cm(A,K,B) because(µ; η0) = (ρ; η0) + (δ; 0) with (ρ; η0) ∈ C(A,K,B)
and0 6= δ ∈ K∗. �

Proposition2.5 states an involved necessary condition for a valid inequality to beK-minimal. It states
that(µ; η0) is aK-minimal inequality only if the following holds:

(Id − Z)µ 6∈ K∗ \ {0} ∀Z ∈ FK such thatAZ∗ = A.

5) Here, for a linear mapZ : E → E, we useZ∗ to denote its conjugate map given by the identity

〈x,Zv〉 = 〈Z∗
x, v〉 ∀(x ∈ E, v ∈ E).
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Based on this result, the setFK has certain importance. In factFK is the cone ofK∗−K∗ positive maps,
which also appear in applications of robust optimization, quantum physics, etc. (see [14]). WhenK = Rn

+,
FK = {Z ∈ Rn×n : Zij ≥ 0 ∀i, j}. However, in general, the description ofFK can be rather nontrivial
for different conesK. In fact, in [14], it is shown that deciding whether a given linear map takesSn

+ to
itself is an NP-Hard optimization problem. In another particular case of interest, whenK = Ln, a quite
nontrivial explicit description ofFK via linear matrix inequalities is given by Hildebrand in [40, 41]. Due to
the general difficulty of characterizingFK, and thus, testing the necessary condition ofK-minimality given
in Proposition2.5, in the next section, we study a relaxed version of the condition from Proposition2.5.
This leads to a larger class of valid inequalities, namelysublinear inequalities, which subsumes the class of
K-minimal inequalities.

3 K-Sublinear Inequalities

Definition 3.1 An inequality(µ; η0) with µ 6= 0 andη0 ∈ R is K-sublinear(for S(A,K,B)) if it satisfies
the conditions (A.1(α)) for all α ∈ Ext(K∗) and (A.2) where

(A.1(α)) 0 ≤ 〈µ, u〉 for all u ∈ E s.t.Au = 0 and〈α, v〉u + v ∈ K ∀v ∈ Ext(K),

(A.2) µ0 ≤ 〈µ, x〉 for all x ∈ S(A,K,B).

When an inequality satisfies (A.1(α)) for all α ∈ Ext(K∗) we say that it satisfies condition (A.1).
It can be easily verified that the set of(µ; η0) satisfying conditions (A.1)-(A.2) in fact leads to a convex

cone in the spaceE × R. We denote this cone ofK-sublinear inequalities withCs(A,K,B).
Condition (A.2) is simply included to ensure the validity of a given inequality, and thus, it is satisfied by

every valid inequality. On the other hand, condition (A.1) is not very intuitive. The main role of condition
(A.1) is to ensure the necessary non-expansivity condition forK-minimality established in Proposition2.5.

There is a particular and simple case of (A.1) that is of interest and deserves a separate treatment:
Let (µ; η0) satisfy (A.1), then(µ; η0) also satisfies the following condition:

(A.0) 0 ≤ 〈µ, u〉 for all u ∈ K such thatAu = 0.

In order to see that in fact (A.0) is a special case of (A.1), consider anyu ∈ K ∩ Ker(A). Then, for any
α ∈ Ext(K∗), we have〈α, v〉 ≥ 0 for all v ∈ Ext(K), and becauseu ∈ K andK is a cone, the requirement
of condition (A.1) onu, is automatically satisfied for any suchu ∈ K ∩ Ker(A).

While condition (A.1) immediately implies (A.0), treating (A.0) separately seems to be handy as some
of our results depend solely on conditions (A.0) and (A.2). Note also that condition (A.0) is precisely
equivalent to

(A.0) µ ∈ (K ∩ Ker(A))∗ = K∗ + (Ker(A))∗ = K∗ + Im(A∗),

where the last equation follows from the facts that Ker(A)∗ = Ker(A)⊥ = Im(A∗) andK∗ + Im(A∗) is
closed wheneverK is closed [58, Corollary 16.4.2].

Condition (A.0) is not as strong as (A.1). Nevertheless, condition (A.0) is necessary for any non-trivial
valid inequality, which we prove next. Recall thatΠ(A,K,B) = {µ ∈ E : µ 6= 0, ϑ(µ) ∈ R}.

Proposition 3.1 Supposeµ ∈ Π(A,K,B), thenµ satisfies condition (A.0).
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Proof. Suppose condition (A.0) is violated by someµ ∈ Π(A,K,B). Then there existsu ∈ K such that
Au = 0 and〈µ, u〉 < 0. Note that for anyβ > 0 andx ∈ S(A,K,B), x+βu ∈ K andA(x+βu) = Ax ∈ B,
hencex+ βu ∈ S(A,K,B). On the other hand, the term,

〈µ, x+ βu〉 = 〈µ, x〉+ β〈µ, u〉,

can be made arbitrarily small by increasingβ, which impliesϑ(µ) = −∞ whereϑ(µ) is as defined in (3).
However, this is a contradiction because we started withµ ∈ Π(A,K,B), and soϑ(µ) 6= −∞. �

As a consequence of Proposition3.1, we conclude that in order to obtainconv(S(A,K,B)) one is
required to add only an appropriate subset of valid inequalities (µ;ϑ(µ)) with µ ∈ K∗ + Im(A∗).

Our next theorem states that everyK-minimal inequality is alsoK-sublinear.

Theorem 3.1 If (µ; η0) ∈ Cm(A,K,B), then(µ; η0) ∈ Cs(A,K,B).
Proof. Consider anyK-minimal inequality(µ; η0). Because(µ; η0) ∈ Cm(A,K,B), (µ; η0) is valid for
S(A,K,B), and hence, condition (A.2) for K-sublinearity is automatically satisfied.

Assume for contradiction that(µ; η0) violates condition (A.1(α)) for someα ∈ Ext(K∗), i.e., there
existsu such that〈µ, u〉 < 0, Au = 0, and〈α, v〉u + v ∈ K ∀v ∈ Ext(K). Based onu andα, let us define
a linear mapZ : E → E as

Zx = 〈x, u〉α + x for anyx ∈ E.

Note thatA : E → Rm and thus its conjugateA∗ : Rm → E. We letA∗ei =: Ai ∈ E for i = 1, . . . ,m,
whereei is theith unit vector inRm. This way, for alli = 1, . . . ,m, we haveZA∗ei = 〈Ai, u〉 +Ai = Ai

becauseu ∈ Ker(A) implies 〈Ai, u〉 = 0. Therefore, we haveZA∗ = A∗. Also, sinceA : E → Rm and
Z : E → E are linear maps, we haveZA∗ is a linear map and its conjugate is given byAZ∗ = A as desired.

Moreover, for allw ∈ K∗ andv ∈ Ext(K), we note that

〈Zw, v〉 = 〈(〈w, u〉α + w), v〉 = 〈w, u〉〈α, v〉 + 〈w, v〉 = 〈w, 〈α, v〉u + v︸ ︷︷ ︸
∈K

〉 ≥ 0.

Because anyv ∈ K can be written as a convex combination of points from Ext(K), we conclude that
Z ∈ FK. Finally by recalling thatα ∈ K∗ and is nonzero, we get

µ− Zµ = −〈µ, u〉︸ ︷︷ ︸
<0

α ∈ K∗ \ {0},

which is a contradiction to the necessary condition forK-minimality given in Proposition2.5. �

The proof of Theorem3.1 reveals the importance of condition (A.1) and its implications in terms of
K-minimality. Next, we show that condition (A.1) further simplifies in the case ofK = Rn

+, and conditions
(A.0)-(A.2) underlie the definition ofsubadditive inequalitiesfrom [44] in the MILP case.

Remark 3.1 When the coneK has a simple structure, in particular, when it has finitely many and orthogonal
to each other extreme rays, the interesting cases of condition (A.1) that are not covered by condition (A.0)
can be simplified. When in addition the coneK is assumed to be regular, we can assume thatK = Rn

+

without loss of generality.
SupposeK = Rn

+, then the extreme rays ofK as well asK∗ are just the unit vectors,ei. Let us consider
(A.1(α)) for the case ofα = ei. Then the vectorsu considered in the condition (A.1(ei)) are required to
satisfy

viu+ v ∈ K ∀v ∈ Ext(K) = {e1, . . . , en}.
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Because all of the extreme rays ofK are unit vectors, this requirement affects only the extremeraysv with
a nonzerovi value, which is just the case ofv = ei. Hence, fori = 1, . . . , n, we can equivalently rewrite
condition (A.1(ei)) as follows:

(A.1i) 0 ≤ 〈µ, u〉 for all u such thatAu = 0 andu+ ei ∈ Rn
+.

Letai denote theith column of the matrixA. By a change of variables, this requirement is equivalent tothe
following relation for alli = 1, . . . , n:

(A.1i) µi ≤ 〈µ,w〉 for all w ∈ Rn
+ such thatAw = ai.

WhenK = Rn
+ and B is a finite set, Johnson [44] defines the class of so calledsubadditive valid

inequalitiesprecisely as the inequalities that satisfy the collection of conditions (A.1i) for i = 1, . . . , n,
along with the conditions (A.0) and (A.2). In this specific setup, Johnson [44] shows further thatRn

+-
sublinearity of an inequality can be verified by checking requirements (A.0), (A.1i) for i = 1, . . . , n, and
(A.2) on only a finite set of vectors (those satisfying a minimal linear dependence condition).

Moreover, let us for a moment assume that there exists a function σ(·) underlying theK-sublinear
inequality (µ; η0). That is, given the data associated with variablexi, namelyai, σ(·) generates the cor-
responding coefficient in the valid inequality, i.e.,µi = σ(ai) for all i = 1, . . . , n. Then, condition (A.1i)
above precisely represents the subadditivity property of the functionσ(·) over the columns ofA. In fact, in
section4 for general disjunctive conic setsS(A,K,B) with K = Rn

+, we show that for everyK-sublinear
inequality(µ; η0), such a functionσ(·) generatingµ always exists. In the specific case ofK = Rn

+ and a
finite setB, this connection was previously established in [44]. We discuss the implications of these with
regard to existing MILP literature in detail in section4.3. ♦

UnderAssumption 1, there is a precise relation between the generators of the cones ofK-sublinear
inequalities andK-minimal inequalities. We state this below in Theorem3.2, which is a generalization of
the corresponding result from [44] to the conic case. For completeness, we include the following proof,
which simultaneously simplifies and generalizes the approach of [44].

Theorem 3.2 Suppose thatAssumption 1 holds. Then, any generating set ofCs(A,K,B) is of form
(GL, Gs) whereGs ⊇ G+

C and(GL, GC) is a generating set ofC(A,K,B). Moreover, if(µ; η0) ∈ Gs\G+
C ,

then(µ; η0) is notK-minimal.

Proof. Based on Remark1.2, let (GL, GC) be a generating set ofC(A,K,B) such that each vector in
GC is orthogonal to every vector inGL, and all vectors inGL are orthogonal to each other. Let(Gℓ, Gs) be
a generating set ofCs(A,K,B) in which each vector inGs is orthogonal to every vector inGℓ. Note that by
Theorem3.1, we haveCm(A,K,B) ⊆ Cs(A,K,B) ⊆ C(A,K,B).

Under Assumption 1, using Corollary2.1, we haveCm(A,K,B) has a generating set of the form
(GL, G

+
C). Hence, we conclude that the subspace spanned byGℓ both simultaneously contains, and is

contained in, the subspace generated byGL. Therefore, we can takeGℓ = GL.
LetQ be the orthogonal complement to the subspace generated byGL and defineC ′ = C(A,K,B)∩Q,

C ′
m = Cm(A,K,B) ∩ Q andC ′

s = Cs(A,K,B) ∩ Q. ThenC ′ = cone(GC), and underAssumption 1,
C ′
m = cone(G+

C). Also, C ′, C ′
m andC ′

s are pointed cones and satisfyC ′
m ⊆ C ′

s ⊆ C ′. Given that the
elements ofG+

C are extreme in bothC ′ andC ′
m, they remain extreme inC ′

s as well. Therefore,G+
C ⊆ Gs.

Finally, consider any(µ; η0) ∈ Gs \ G+
C . We need to show that(µ; η0) 6∈ Cm(A,K,B). Suppose

not, then(µ; η0) ∈ Cm(A,K,B) but not inG+
C , which implies that(µ; η0) is not extreme inCm(A,K,B).
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NotingCm(A,K,B) ⊆ Cs(A,K,B), we conclude that(µ; η0) is not extreme inCs(A,K,B) as well. But
this is a contradiction to the fact that(µ; η0) ∈ Gs and (GL, Gs) is a generating set forCs(A,K,B).
Therefore, for any(µ; η0) ∈ Gs \G+

C , (µ; η0) 6∈ Cm(A,K,B). �

Theorem3.2 implicitly describes a way of obtaining all of the nontrivial extreme valid inequalities
of C(A,K,B): first identify a generating set(GL, Gs) for Cs(A,K,B) and then test its elements forK-
minimality to identifyG+

C . On one hand, this is good news, as we seem to have a better algebraic handle on
Cs(A,K,B) via the conditions given by(A.0)-(A.2). On the other hand, testing these conditions as stated
in (A.0)-(A.2), is a nontrivial task. Moreover, we need to establish further algebraic ways of characterizing
K-minimality. Both of these tasks are tackled in the next section.

4 Relations to Support Functions and Cut Generating Sets

In this section, we first relateK-sublinear inequalities to the support functions of sets with certain structure.
Recall that asupport functionof a nonempty setD ⊆ Rm is defined as

σD(z) := sup
λ

{zTλ : λ ∈ D} for anyz ∈ Rm.

For any nonempty setD, it is well known that its support function,σD(·), satisfies the following prop-
erties:

(S.1) σD(0) = 0,

(S.2) σD(z1 + z2) ≤ σD(z
1) + σD(z

2), (subadditive),

(S.3) σD(βz) = βσD(z) ∀β > 0 and for allz ∈ Rm (positively homogeneous).

In particular, support functions are positively homogeneous and subadditive, and thus, sublinear and convex.
We refer the reader to [42, 58] for an extended exposure to the topic.

K-sublinear inequalities are closely related to support functions of convex sets with certain structure.
This connection leads the way to acut generating setpoint of view as well as a number of necessary
conditions forK-sublinearity. We state this connection in a series of results as follows:

Theorem 4.1 Consider anyµ ∈ E satisfying condition (A.0), and define

Dµ = {λ ∈ Rm : A∗λ �K∗ µ}. (4)

Then,Dµ 6= ∅, σDµ(0) = 0 andσDµ(Az) ≤ 〈µ, z〉 for all z ∈ K.

Proof. Sinceµ satisfies condition (A.0), we haveµ ∈ K∗ + Im(A∗), which trivially implies the non-
emptiness ofDµ. Given thatσDµ(·) is the support function ofDµ andDµ 6= ∅, we haveσDµ(0) = 0.

Finally, for anyz ∈ K, we have

σDµ(Az) = sup
λ

{λTAz : λ ∈ Dµ} = sup
λ

{〈z,A∗λ〉 : A∗λ �K∗ µ}

≤ sup
λ

{〈z, µ〉 : A∗λ �K∗ µ} = 〈z, µ〉,

where the last inequality follows from the fact thatz ∈ K and for anyλ ∈ Dµ, we haveµ − A∗λ ∈ K∗,
implying 〈µ−A∗λ, z〉 ≥ 0. Therefore,σDµ(Az) ≤ 〈µ, z〉. �
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We note that every non-trivial valid linear inequality satisfiesµ ∈ Im(A∗) + K∗ (see Proposition3.1).
Thus, anyµ such thatµ 6∈ Im(A∗) +K∗ is redundant in the description ofconv(S(A,K,B)). Furthermore,
given a vectorµ ∈ Im(A∗)+K∗, based on Theorem4.1, we can use the support function of the correspond-
ing setDµ, and easily establish a condition on the right hand side value, η0 that will ensure the validity of
the inequality(µ; η0). We state this result next.

Proposition 4.1 Supposeµ ∈ E satisfies condition (A.0). Then,infb∈B σDµ(b) ≤ ϑ(µ), and thus, the
inequality given by(µ; η0) with η0 ≤ infb∈B σDµ(b) is valid forS(A,K,B).

Proof. From the condition onµ and by Theorem4.1, we immediately haveDµ 6= ∅ andσDµ(Az) ≤
〈µ, z〉. Let B̂ := {b ∈ B : ∃x s.t.Ax = b, x ∈ K}. Then

η0 ≤ inf
b∈B

σDµ(b) ≤ inf
b∈B̂

σDµ(b) = inf
b∈Rm,x∈E

{
σDµ(Ax) : Ax = b, b ∈ B̂

}

≤ inf
x

{
σDµ(Ax) : x ∈ K, Ax ∈ B̂

}

≤ inf
x

{
〈µ, x〉 : x ∈ K, Ax ∈ B̂

}

= inf
x
{〈µ, x〉 : x ∈ K, Ax ∈ B} = ϑ(µ),

where the last inequality follows from the fact that for allz ∈ K, we haveσDµ(Az) ≤ 〈µ, z〉, and the last

two equations follow fromB̂ ⊆ B and the definition ofϑ(µ) (cf. (3)). Then the validity of the inequality
(µ; η0) with η0 ≤ infb∈B σDµ(b) follows right away becauseinfb∈B σDµ(b) ≤ ϑ(µ). �

In addition to this, under a structural assumption onS(A,K,B), we show thatϑ(µ) for anyµ ∈ E
leading to a nontrivial inequality is exactly equal toinfb∈B σDµ(b).

Corollary 4.1 SupposeKer(A) ∩ int(K) 6= ∅. Then, for anyµ ∈ E satisfing condition (A.0), we have
ϑ(µ) = infb∈B σDµ(b).

Proof. By Proposition4.1, we already haveinfb∈B σDµ(b) ≤ ϑ(µ). Moreover,

inf
b∈B

σDµ(b) = inf
b∈B

sup
λ∈Rm

{bTλ : A∗λ �K∗ µ}

= inf
b∈B

inf
x
{〈µ, x〉 : x ∈ K, Ax = b}

︸ ︷︷ ︸
≥ϑ(µ)

≥ ϑ(µ),

where the last equation follows from strong conic duality due to Ker(A)∩ int(K) 6= ∅, and the last inequality
follows from b ∈ B, and the definition ofϑ(µ) in (3). Thus, we obtaininfb∈B σDµ(b) = ϑ(µ). �

Given µ satisfying condition (A.0), there is a uniqueDµ set associated with it, and Proposition4.1
highlights that one can use the support functionsσDµ(·) of these setsDµ to obtain a valid inequality based
on µ. Note that it is possible to have two distinct vectorsµ′ 6= µ such thatDµ = Dµ′ (cf. Example4.1).
These setsDµ have a particular importance in our discussion in section4.3. Due to the common structure
of these setsDµ, we refer to the sets of this form ascut generating sets.
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4.1 Necessary Conditions forK-Sublinearity

We next establish a number of necessary conditions forK-sublinearity via cut generating sets and their
support functions.

Proposition 4.2 Supposeµ ∈ E satisfies condition (A.0). For any givenz ∈ K, define

⊥z:= {γ ∈ K∗ : 〈γ, z〉 = 0}. (5)

Then, for allz ∈ K such that⊥z ∩(µ − Im(A∗)) 6= ∅, we haveσDµ(Az) = 〈µ, z〉 whereDµ is defined by
(4).

Proof. Consider anyz ∈ K, then we have

σDµ(Az) = sup
λ∈Rm

{λTAz : λ ∈ Dµ}

= sup
γ∈E, λ∈Rm

{〈z,A∗λ〉 : A∗λ = µ− γ, γ ∈ K∗}

= 〈z, µ〉 − inf
γ∈E

{〈z, γ〉 : γ ∈ µ− Im(A∗), γ ∈ K∗} = 〈z, µ〉

where the last equation follows from the fact that〈z, γ〉 ≥ 0 for all z ∈ K andγ ∈ K∗, and there exists
γ̄ ∈⊥z ∩(µ− Im(A∗)), i.e.,γ̄ ∈ K∗ ∩ (µ − Im(A∗)) and〈µ, γ̄〉 = 0. �

Note that forµ ∈ ∂(K∗) + Im(A∗), we immediately have∂(K∗) ∩ (µ − Im(A∗)) 6= ∅, and thus,
there existsz ∈ ∂K such that⊥z ∩(µ − Im(A∗)) 6= ∅. In particular, forµ ∈ Im(A∗), we have0 ∈
K∗∩ (µ− Im(A∗)). Therefore, taking into account condition (A.0) and Theorem4.1, we have the following
corollary of Proposition4.2:

Corollary 4.2 For anyµ ∈ ∂(K∗) + Im(A∗), we haveDµ 6= ∅ andσDµ(Az) = 〈µ, z〉 holds for at least
onez ∈ Ext(K) whereDµ is defined as in(4). Moreover, for anyµ ∈ Im(A∗), we haveσDµ(Az) = 〈µ, z〉
for all z ∈ K.

In the case ofK = Rn
+, using Remark3.1 the relationship betweenK-sublinearity and the support

functions of cut generating sets can be further enhanced.

Proposition 4.3 Consider a disjunctive conic setS(A,K,B) whereK = Rn
+, and aK-sublinear inequality

(µ; η0) for it. Then,⊥ei ∩(µ − Im(A∗)) 6= ∅, and thus,σDµ(a
i) = µi for all i = 1, . . . , n whereai is the

ith column of the matrixA. Moreover, infb∈B σDµ(b) = ϑ(µ).

Proof. Because(µ; η0) is K-sublinear whereK = Rn
+, µ ∈ E = Rn satisfies conditions(A.0)-(A.1i) for

all i = 1, . . . , n, andη0 ≤ ϑ(µ). Assume for contradiction that the statement is not true. Then there existi
such that⊥ei ∩(µ−Im(A∗)) = ∅. Note that⊥ei= {γ ∈ Rn

+ : γi = 0} = cone{e1, . . . , ei−1, ei+1, . . . , en}.
Therefore, we arrive at the following system of linear inequalities inγ, λ being infeasible:

γ +A∗λ = µ,

γj ≥ 0 ∀j 6= i,

γi = 0.

Using Farkas’ Lemma, we conclude that∃u, v such thatu + v = 0, vj ≥ 0 for all j 6= i, Au = 0 and
〈u, µ〉 ≥ 1. By eliminatingu, this implies that∃v such thatvj ≥ 0 for all j 6= i, Av = 0 and〈v, µ〉 ≤ −1.
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Hence, ifvi < −1, we can scalev so thatvi ≥ −1, and arrive at the conclusion that there existsv such that
v + ei ∈ Rn

+ = K, Av = 0 and〈v, µ〉 < 0, which is a contradiction to the condition(A.1i).
Because the conditions(A.0)-(A.1i) are necessary for theK-sublinearity (and alsoK-minimality) of

(µ; η0), using Proposition4.2, we conclude that for alli = 1, . . . , n, we have⊥ei ∩(µ− Im(A∗)) 6= ∅, and
σDµ(a

i) = µi.
Finally, note that

inf
b∈B

σDµ(b) = inf
b∈B

sup
λ∈Rm

{
bTλ : A∗λ ≤ µ

}

= inf
b∈B

inf
x

{
µTx : Ax = b, x ∈ Rn

+

}
= ϑ(µ),

where the second equation follows because condition(A.0) impliesµ ∈ Rn
+ + Im(A∗), and thus, the inner

linear optimization problem is feasible, and so strong linear programming duality holds. Thus, we have
equality relations throughout implyinginfb∈B σDµ(b) = ϑ(µ). �

Proposition4.3has an important consequence that we point out next.

Remark 4.1 Let(µ; η0) be aRn
+-sublinear inequality forS(A,Rn

+,B). Given linear mapA ∈ Rm×n, letai

denote theith column ofA. Then Proposition4.3guarantees that for alli = 1, . . . , n the support function
σDµ(·) evaluated at the vectorai, namely the data corresponding to variablexi, precisely matches with
the corresponding coefficient ofxi in the inequality(µ; η0), i.e.,µi = σDµ(a

i). Besides,σDµ(·) generates
the tightest possible right hand side value,infb∈B σDµ(b) = ϑ(µ) ≥ η0. Another way to state this is that
every tightRn

+-sublinear inequality (its coefficient vector, and the corresponding best possible right hand
side value) is generated by the support functionσDµ(·), a very specific sublinear function. Furthermore, in
the case ofK = Rn

+, the cut generating setsDµ defined in(4) are polyhedral. Precisely, they are of the form

Dµ = {λ ∈ Rm : A∗λ ≤ µ}.

Thus, the support functions of these sets are automaticallysublinear (subadditive and positively homo-
geneous), and in fact piecewise linear and convex. This relates nicely with the lattice-free sets, and cut
generating functions. We discuss these in detail in section4.3.

Moreover, given any valid inequality(µ; η0) for S(A,Rn
+,B), if it is notRn

+-sublinear, using the support
functionσDµ(·), one can immediately obtain anRn

+-sublinear inequality dominating it (cf. [47, Proposition
2]. ♦

Motivated by the positive result of Proposition4.3given in the specific case ofK = Rn
+, one is inclined

to think that a similar result will hold for general regular conesK. We address this question in Proposition
4.4, and prove that in the case of general regular conesK, for anyK-sublinear inequality(µ; η0), there exists
at least onez ∈ Ext(K) such thatσDµ(Az) = 〈µ, z〉. Unfortunately, in the case of general regular conesK,
the result of Proposition4.4 is not as strong as that of Proposition4.3. Before we proceed with Proposition
4.4, we need a few technical lemmas.

Lemma 4.1 For any two setsU andV that are independent of each other, we have

inf
u∈U

inf
v∈V

〈u, v〉 = inf
v∈V

inf
u∈U

〈u, v〉.
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Proof. Let us consider a given̄u ∈ U . Then for anyv ∈ V , we haveinfu∈U 〈u, v〉 ≤ 〈ū, v〉, and by taking
the infimum of both sides of this inequality overv ∈ V , we obtaininfv∈V infu∈U 〈u, v〉 ≤ infv∈V 〈ū, v〉
holds for anȳu ∈ U . Now, by taking the infimum of this inequality overū ∈ U , and noting that the left hand
side is simply a constant, we arrive atinfv∈V infu∈U 〈u, v〉 ≤ inf ū∈U infv∈V 〈ū, v〉 = infu∈U infv∈V 〈u, v〉.
To see that the reverse inequality also holds, we can start byconsidering a given̄v ∈ V , and repeat the same
reasoning by interchanging roles ofu andv. �

Lemma 4.2 Suppose thatµ ∈ E satisfies condition (A.0), and ⊥z ∩(µ − Im(A∗)) = ∅ holds for all
z ∈ Ext(K) where⊥z is as defined by(5). Then, there exists̄γ ∈ int(K∗) ∩ (µ − Im(A∗)). Moreover,
infb∈B σDµ(b) = ϑ(µ).

Proof. First, note that becauseµ satisfies condition (A.0), by Theorem4.1, Dµ 6= ∅, which implies that
{γ ∈ E : ∃λ ∈ Rm s.t.γ +A∗λ = µ, γ ∈ K∗} 6= ∅.

In addition to this,0 ∈ ⋂
z∈Ext(K) ⊥z, and therefore, together with the premise of the lemma that

⊥z ∩(µ − Im(A∗)) = ∅, we conclude0 6∈ µ − Im(A∗). Moreover, by rephrasing the statement of lemma
and definition of⊥z, we get

0 < inf
z∈Ext(K)

inf
γ∈E, λ∈Rm

{〈γ, z〉 : γ +A∗λ = µ, γ ∈ K∗}

= inf
γ∈E, λ∈Rm

{
inf
z
{〈γ, z〉 : z ∈ Ext(K)} : γ +A∗λ = µ, γ ∈ K∗

}
,

in which the last equation follows from Lemma4.1 where we takeU = Ext(K) × 0 ⊆ E × Rm and
V = {(γ, λ) ∈ E × Rm : γ +A∗λ = µ, γ ∈ K∗}.

Now assume for contradiction that the set{γ : ∃λ ∈ Rm s.t.γ + A∗λ = µ, γ ∈ K∗} ⊆ ∂K∗. This
together with the above inequality implies that there exists γ̄ ∈ ∂K∗ such that〈γ̄, z〉 > 0 for all z ∈ Ext(K).
Hence,〈γ̄, z〉 > 0 for all z ∈ K \ {0}. SinceK∗ is a closed convex cone,〈γ̄, z〉 > 0 for all z ∈ K \ {0}
implies thatγ̄ ∈ int(K∗), which is a contradiction. Thus, we conclude that there exists γ̄ 6= 0 such that
γ̄ ∈ int(K∗) ∩ (µ− Im(A∗)).

To finish the proof note that

ϑ(µ) := inf
x
{〈µ, x〉 : x ∈ S(A,K,B)}

= inf
b∈B

inf
x
{〈µ, x〉 : Ax = b, x ∈ K}

= inf
b∈B

sup
λ∈Rm,γ∈E

{bTλ : A∗λ+ γ = µ, γ ∈ K∗} = inf
b∈B

σDµ(b),

where the third equality follows from strong conic duality,which holds due to the existence of a strictly
feasible solution̄γ ∈ int(K∗). Therefore, we haveϑ(µ) = infb∈B σDµ(b). �

We are now ready to state and prove Proposition4.4.

Proposition 4.4 Suppose thatµ ∈ Π(A,K,B), and⊥z ∩(µ− Im(A∗)) = ∅ holds for allz ∈ Ext(K) where
⊥z is as defined by(5). Then, there exists at least onez ∈ Ext(K) such thatσDµ(Az) = 〈µ, z〉.
Proof. Assume for contradiction thatσDµ(Az) < 〈µ, z〉 for all z ∈ Ext(K). Then by Lemma4.2, there
existsγ̄ ∈ int(K∗)∩ (µ− Im(A∗)) andinfb∈B σDµ(b) = ϑ(µ). Note that due to weak conic duality and the
existence of such̄γ, we have for allb

inf
x
{〈µ, x〉 : Ax = b, x ∈ K} ≥ σDµ(b) = sup

λ∈Rm, γ∈E
{bTλ : A∗λ+ γ = µ, γ ∈ K∗} > −∞.
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For anyb ∈ B, defineSb := {x ∈ K : Ax = b}, and letB̂ := {b ∈ B : Sb 6= ∅}. Because
S(A,K,B) 6= ∅, B̂ 6= ∅. Then for anyb ∈ B̂, xb ∈ Sb leads to an upper bound onσDµ(b), i.e.,σDµ(b) ≤
〈µ, xb〉. Therefore, for anyb ∈ B̂, the conic optimization problem definingσDµ(b) is bounded above
and is strictly feasible, and so we have strong conic dualityand the dual problem given by theinfx above
is solvable. Consider anyb ∈ B̂, let x̄b be the corresponding optimal dual solution, i.e.,x̄b ∈ Sb and
〈µ, x̄b〉 = σDµ(b). Becausēxb ∈ K, there existsz1, . . . , zℓ ∈ Ext(K) with ℓ ≤ n such that̄xb =

∑ℓ
i=1 z

i,
which leads to

〈µ, x̄b〉 = σDµ(b) = σDµ(Ax̄b) ≤︸︷︷︸
(∗)

ℓ∑

i=1

σDµ(Az
i) <︸︷︷︸

(∗∗)

ℓ∑

i=1

〈µ, zi〉 = 〈µ, x̄b〉,

where the inequality(∗) follows becauseσDµ(·) is a support function, and thus is subadditive, and(∗∗)
follows from the assumption thatσDµ(Az) < 〈µ, z〉 for all z ∈ Ext(K). But this is a contradiction. Thus,
there existsz ∈ Ext(K) such thatσDµ(Az) = 〈µ, z〉. �

To summarize wheneverµ ∈ Π(A,K,B), Propositions4.2and4.4together cover all possible cases and
indicate that for aK-sublinear inequality, there exists at least onez ∈ Ext(K) such thatσDµ(Az) = 〈µ, z〉.

We illustrate the necessary conditions forK-sublinearity established so far via the following example.

Example 4.1 Consider the setS(A,K,B) with K = L3, A = [1, 0, 0] andB = {−1, 1} . In this case,
conv(S(A,K,B)) = {x ∈ R3 : x ∈ K, x3 ≥

√
1 + x22, − 1 ≤ x1 ≤ 1} (see Figure2).

x1

(0, 0)

x2

x3

Figure 2: Convex hull ofS(A,K,B) corresponding to Example4.1

Note that this description of the convex hull ofS(A,K,B) involves the following inequalities:

(a) µ(+) = [1; 0; 0] with η(+)
0 = −1 andµ(−) = [−1; 0; 0] with η(−)

0 = −1;

(b) µ(t) = [0; t;
√
t2 + 1] with η(t)0 = 1 for all t ∈ R.

Here, we show that these inequalities satisfy the necessaryconditions forK-sublinear inequalities; later on
we will in fact show that all of these inequalities areK-minimal.

In case (a), it is easily seen that the corresponding sets associated with these inequalitiesµ(+), µ(−) are
given by

Dµ(+) = {λ : ∃γ ∈ K∗ s.t.λ+ γ1 = 1; γ2 = 0; γ3 = 0} = {λ : λ = 1},
Dµ(−) = {λ : λ = −1}.
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Also, bothµ(+), µ(−) ∈ Im(A∗), and thus, Corollary4.2 implies,σD
µ(i)

(Az) = σD
µ(i)

(z1) = 〈µ(i), z〉 for

all z ∈ K for i ∈ {+,−}. In addition to this,infb∈B σD
µ(i)

(b) = −1 = η
(i)
0 for i ∈ {+,−}.

In case (b), for any givent ∈ R, we have the associated setsDµ(t) given by

Dµ(t) = {λ : ∃γ ∈ K∗ s.t.λ+ γ1 = 0; γ2 = t; γ3 =
√
t2 + 1} = {λ : − 1 ≤ λ ≤ 1}.

Moreover, for allt, by consideringzt ∈ {[1;−t;
√
t2 + 1], [−1;−t;

√
t2 + 1]} ⊂ Ext(K), we have〈µ(t), zt〉 =

1 and σD
µ(t)

(Azt) = σD
µ(t)

(zt1) = σD
µ(t)

(1) = 1, proving 〈µ(t), zt〉 = σD
µ(t)

(Azt). Additionally,

σD
µ(t)

(1) = 1 = σD
µ(t)

(−1) implying infb∈B σD
µ(t)

(b) = 1 = η
(t)
0 for all t.

We highlight thatDµ(t) is common for all distinct vectorsµ(t) corresponding to the valid inequalities

(µ(t); 1). Nevertheless, each of these inequalities(µ(t); 1) are required for the description ofconv(S(A,K,B)).
Let us also consider another valid inequality(ν; ν0) given byν = [0; 1; 2] andν0 = 1. Note that the

associatedDν set is given by

Dν =
{
λ : −

√
3 ≤ λ ≤

√
3
}
.

Furthermore, for anyzν ∈
{
[ 1√

3
;−1

3 ;
2
3 ], [− 1√

3
;−1

3 ;
2
3 ]
}

⊂ Ext(K) we haveσDν (Azν) = σDν (± 1√
3
) =

1 = 〈ν, zν〉. Also, infb∈B σDν (b) =
√
3 > 1 = ν0. Therefore, in terms of the necessary conditions

established so far forK-sublinearity, there seems to be no difference between(ν; ν0) and the previous
inequalities from above. When we revisit this example in thenext section, we will show that while(ν; ν0)
is K-sublinear,(ν; ν0) is notK-minimal. In fact, we can easily show that(ν; ν0) is dominated byµ(1) =
[0; 1;

√
2] andη(1) = 1. Becauseδ = ν − µ(1) = [0; 0; 2 −

√
2] ∈ K∗ \ {0}, we conclude that(ν; ν0) 6∈

Cm(A,K,B). ♦

4.2 Sufficient Conditions forK-Sublinearity and K-Minimality

Given any valid inequality(µ; η0) satisfying condition (A.0), we can easily test(µ; η0) for K-sublinearity
with the help of the following proposition.

Proposition 4.5 Let (µ; η0) be such thatµ satisfies condition (A.0) andη0 ≤ infb∈B σDµ(b) (or it is known
that (µ; η0) ∈ C(A,K,B)). Then, whenever there existsxi ∈ Ext(K) such thatσDµ(Ax

i) = 〈µ, xi〉 for all
i ∈ I and

∑
i∈I x

i ∈ int(K), then the inequality(µ; η0) isK-sublinear.

Proof. If we are given thatη0 ≤ infb∈B σDµ(b), then using Proposition4.1, we have(µ; η0) ∈ C(A,K,B),
which automatically implies that condition (A.2) is satisfied.

Next, given anyα ∈ Ext(K∗), we will verify condition (A.1(α)). Consider anyu such thatAu = 0 and
〈α, v〉u + v ∈ K ∀v ∈ Ext(K). LetVα = {v ∈ Ext(K) : 〈α, v〉 = 1}, it is clear that〈u + v, γ〉 ≥ 0 holds
for all v ∈ Vα andγ ∈ K∗. Also, there exists̄λ and γ̄ ∈ K∗ satisfyingA∗λ̄ + γ̄ = µ becauseµ satisfies
condition (A.0), and hence,µ ∈ K∗ + Im(A∗). In fact, for any such̄λ, γ̄, we have

〈µ, u〉 = 〈A∗λ̄+ γ̄, u〉 = 〈λ̄, Au︸︷︷︸
=0

〉+ 〈γ̄, u〉 ≥ 〈γ̄,−v〉 ∀v ∈ Vα.

Note that〈γ,−v〉 ≤ 0 for all γ ∈ K∗ andv ∈ Vα ⊂ K. In order to finish the proof, all we need to show is
that there exists̄v ∈ Vα such that〈γ̄, v̄〉 = 0. Clearly, whenµ ∈ Im(A∗), we can takēγ = 0, and hence

27



conclude that〈µ, u〉 ≥ −〈γ̄, v̄〉 = 0 holds for all suchu. In the more general case, we have

inf
γ,λ

{
inf
v
{〈γ, v〉 : v ∈ Vα} : A∗λ+ γ = µ, γ ∈ K∗

}

= inf
v

{
inf
γ,λ

{〈µ−A∗λ, v〉 : A∗λ+ γ = µ, γ ∈ K∗} : v ∈ Vα

}

= inf
v




〈µ, v〉 − sup

γ,λ

{λT (Av) : A∗λ+ γ = µ, γ ∈ K∗}
︸ ︷︷ ︸

=σDµ(Av)

: v ∈ Vα





Because there existsxi ∈ Ext(K) such thatσDµ(Ax
i) = 〈µ, xi〉 for all i ∈ I and

∑
i∈I x

i ∈ int(K), for any
α ∈ Ext(K∗), at least one of thesexi’s will be in Vα. Otherwise, we have〈α, xi〉 = 0 for all i ∈ I, and thus
〈α,∑i∈I x

i〉 = 0, which is not possible since
∑

i∈I x
i ∈ int(K) andα ∈ Ext(K∗). Thus, we conclude that

the above infimum is zero. This gives us the desired conclusion that〈µ, u〉 ≥ 0, which proves that condition
(A.1(α)) is satisfied for anyα ∈ Ext(K∗). Hence, condition (A.1) is satisfied. �

WhenK = Rn
+, Proposition4.3 together with Theorem4.1 implies that the conditions stated in Propo-

sition 4.5are necessary and sufficient forK-sublinearity. For general regular conesK, based on the results
from Theorem4.1, and Propositions4.2 and4.4, we conclude that the conditions stated in Proposition4.5
are almost necessary. This is up to the fact that forK-sublinear inequalitis(µ; η0), we can prove the exis-
tence of at least onex ∈ Ext(K) satisfyingσDµ(Ax) = 〈µ, x〉, yet the sufficient condition in Proposition
4.5 requires a number of such extreme rays summing up to an interior point ofK. We next provide an ex-
ample highlighting that for general regular conesK other than the nonnegative orthant, we cannot close this
gap between the sufficient condition and the necessary conditions, i.e., there existsK-sublinear inequalities
that satisfy only the necessary conditions from Propositions 4.2 and4.4 but not the sufficient condition of
Proposition4.5.

Example 4.2 Consider disjunctive conic setS(A,K,B) with K = L3, A = [0, 1, 1] andB = {−1, 1} . In
this case,conv(S(A,K,B)) = {x ∈ L3 : x2 + x3 = 1}. Let us examine the valid inequality(µ; η0) given
by µ = [0; 0; 1] andη0 = ϑ(µ) = 1

2 . Here, we first show that there is precisely a single rayx̄ ∈ Ext(K)
such thatσDµ(Ax̄) = 〈µ, x̄〉, yet the inequality(µ; η0) is aK-sublinear inequality.

The cut generating set associated withµ isDµ = {λ ∈ R : |λ|+ λ ≤ 1}. Consider anyz ∈ Ext(K) =
Ext(L3), without loss of generality let us assume thatz is normalized to havez3 = 1. Then

〈µ, z〉 = σDµ(Az) ⇔ z3 = sup
λ∈R

{ (z2 + z3)︸ ︷︷ ︸
≥0 sincez∈L3

λ : |λ|+ λ ≤ 1} ⇔ z3 =
1

2
(z2 + z3).

Therefore,z2 = z3 = 1, and by notingz ∈ Ext(L3), we getz1 = 0. Thus, we conclude that there is a unique
extreme ray ofL3, in particular z = [0; 1; 1] that satisfies〈µ, z〉 = σDµ(Az).

Let us now prove that(µ; η0) is indeedK-sublinear. The conditions (A.0) and (A.2) are easily verified.
In order to verify condition (A.1), we need to verify that for anyα ∈ Ext(K∗),

0 ≤ 〈µ, u〉 for all u ∈ E such thatAu = 0 and〈α, v〉u + v ∈ K ∀v ∈ Ext(K),

holds. Letα ∈ Ext(K∗) be given. For anyv ∈ Ext(K) if 〈α, v〉 = 0, then we automatically have〈α, v〉u +
v ∈ K. And if 〈α, v〉 ≥ 0, then we can normalizev to assume that〈α, v〉 = 1. So, by definingVα := {v ∈
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Ext(K) : 〈α, v〉 = 1}, we can state the above requirement as

0 ≤ 〈µ, u〉 for all u ∈ E such thatAu = 0 andu+ v ∈ K ∀v ∈ Vα,

which, in our particular case, becomes

0 ≤ u3 for all u ∈ R3 such thatu3 = −u2 andu+ v ∈ L3 ∀v ∈ Vα.

Now notice thatu3 = −u2, u+v ∈ L3 andv ∈ Ext(L3) impliesu3+v3 ≥ 0 andu23+(v21 +v
2
2)+2u3v3 ≥

u23 + v22 − 2u3v2 + u21 + v21 + 2u1v1, which is equivalent to2u3(v2 + v3) ≥ u21 + 2u1v1. Now suppose
that α1 = 0, then v̄ = [ 1

α3
; 0; 1

α3
] ∈ Vα and ṽ = [−1

α3
; 0; 1

α3
] ∈ Vα. In this case, using these particular

v̄ and ṽ, we concludeu3 ≥ max
{

u2
1+2u1v̄1
2(v̄2+v̄3)

,
u2
1+2u1ṽ1
2(ṽ2+ṽ3)

}
=

u2
1+2|u1v̄1|

2v̄3
≥ 0. Moreover, whenα1 6= 0, we

haveα2 + α3 > 0 (sinceα ∈ Ext(L3)) and considerinĝv =
[
0; 1

2(α2+α3)
; 1
2(α2+α3)

]
∈ Vα, we once again

conclude thatu3 ≥ 0. Note that this is precisely what was needed to prove that(µ; η0) is K-sublinear. ♦

In addition to Proposition4.5, underAssumption 1, we can state a sufficient condition forK-minimality
as follows:

Proposition 4.6 Suppose thatAssumption 1 holds and we are given aK-sublinear inequality(µ; η0) sat-
isfying−∞ < η0 = infb∈B σDµ(b). Let B̂ = {b ∈ B : σDµ(b) ≤ η0}. Then, if there existsbi ∈ B̂ and
xi ∈ K such that

∑
i x

i ∈ int(K), Axi = bi and〈µ, xi〉 = η0, then(µ; η0) is K-minimal.

Proof. Consider any(µ; η0) ∈ Cs(A,K,B) satisfyingη0 = infb∈B σDµ(b). Assume for contradiction
that(µ; η0) 6∈ Cm(A,K,B), i.e.,∃δ ∈ K∗ \ {0} such that(µ− δ; η0) ∈ C(A,K,B).

Suppose the premise of the proposition holds for somebi ∈ B̂ andxi ∈ K such that
∑

i x
i ∈ int(K),

Axi = bi and 〈µ, xi〉 = η0. Note that forβi > 0 with
∑

i βi = 1, we havex̄ :=
∑

i βix
i ∈ int(K)

and moreover, by definition,̄x ∈ conv(S(A,K,B)), and〈µ, x̄〉 = η0. Because any valid inequality for
S(A,K,B), in particular(µ− δ; η0), is valid for conv(S(A,K,B)) as well, we arrive at the contradiction

η0 ≤ 〈µ − δ, x̄〉 < η0,

where the last inequality follows from̄x ∈ int(K) andδ ∈ K∗ \ {0} implying 〈δ, x̄〉 > 0 together with
〈µ, x̄〉 = η0. �

Proposition4.6, in particular, states that aK-sublinear inequality is alsoK-minimal whenever the in-
equality is tight at a point at the intersection of int(K) and conv(S(A,K,B)). In the MILP case, this
resembles a sufficient condition for an inequality to be facet defining. Nonetheless, our minimality notion in
general is much weaker. In the MILP case, all of the facets arenecessary and sufficient for the description
of conv(S(A,K,B)); yet in general, one does not need all of theK-minimal inequalities, only a generating
set forCm(A,K,B) together along with the constraintx ∈ K is needed.

Moreover, an immediate implication of Proposition4.5and Corollary4.2 is as follows:

Corollary 4.3 For anyµ ∈ Im(A∗) andη0 ≤ ϑ(µ), the inequality(µ; η0) is K-sublinear.

We have already seen in Proposition2.4 that when Ker(A) ∩ int(K) 6= ∅, then anyµ ∈ Im(A∗)
and any−∞ < η0 ≤ ϑ(µ) leads to aK-minimal inequality(µ; η0). Corollary 4.3 complements this
result by showing that valid inequalities(µ; η0) with µ ∈ Im(A∗) are alwaysK-sublinear regardless of the
requirement Ker(A) ∩ int(K) 6= ∅. Indeed, when Ker(A) ∩ int(K) 6= ∅, it is easy to see that the additional
K-minimality requirements of Proposition4.6are trivially satisfied by(µ;ϑ(µ)).

29



Proposition 4.7 Let (µ; η0) be a K-minimal inequality such thatµ ∈ int(K∗). Thenη0 = ϑ(µ) =
infb∈B σDµ(b).

Proof. Because(µ; η0) ∈ Cm(A,K,B) andµ ∈ K∗, by Proposition2.3, we have

η0 = ϑ(µ) = inf
x
{〈µ, x〉 : x ∈ S(A,K,B)}.

Moreover, because(µ; η0) is K-minimal, it is alsoK-sublinear, and thereforeDµ as defined in (4) is
nonempty. Besides, by Proposition4.1, µ ∈ K∗ implies thatinfb∈B σDµ(b) ≤ ϑ(µ). Assume for con-
tradiction thatϑ(µ) > infb∈B σDµ(b), which implies

ϑ(µ) > inf
b∈B

σDµ(b) = inf
b∈B

sup
λ,γ

{bTλ : A∗λ+ γ = µ, γ ∈ K∗}

= inf
b∈B

inf
x
{〈µ, x〉 : Ax = b, x ∈ K}

︸ ︷︷ ︸
≥ϑ(µ) sinceb∈B

≥ ϑ(µ),

where the last equality follows from strong conic duality, which holds due to the fact thatµ ∈ int(K∗), and
the last inequality follows from the definition ofϑ(µ) and the fact that infimum is overb ∈ B. But, this is a
contradiction. Therefore,η0 = ϑ(µ) = infb∈B σDµ(b). �

To demonstrate the proper uses of Propositions4.5, 4.6and4.7, let us return to our previous example.

Example 4.1 (cont.) First note that the convex hull ofS(A,K,B) is full dimensional. To see this, one can
demonstrate the existence ofn+ 1 affinely independent points fromS(A,K,B) ⊆ Rn wheren = 3. Thus,
there is no valid equation forS(A,K,B) implying that the lineality space ofC(A,K,B) is just the zero
vector. Moreover,̂z = [1; 0; 2] ∈ int(K) ∩ S(A,K,B) and henceAssumption 1 is satisfied.

We claim that

(a) µ(+) = [1; 0; 0] with η(+)
0 = −1 andµ(−) = [−1; 0; 0] with η(−)

0 = −1;

(b) µ(t) = [0; t;
√
t2 + 1] with η(t)0 = 1 for all t ∈ R.

are allK-minimal inequalities. We have already seen that the associated setsDµ(i) are nonempty,infb∈B σD
µ(i)

(b) =

η
(i)
0 holds and there are tight extreme points, i.e.,σD

µ(i)
(Az(i)) = 〈µ(i), z(i)〉 satisfying the requirement of

Proposition4.5, and hence, all of them are inCs(A,K,B) by Proposition4.5. Moreover, in case(a), by con-
sidering the pointsz(+) = [1; 0; 2] ∈ int(K)∩S(A,K,B) andz(−) = [−1; 0; 2] ∈ int(K)∩ S(A,K,B), we

get〈µ(i), z(i)〉 = η
(i)
0 holds for alli ∈ {+,−}. Therefore, using Proposition4.6, we conclude that these in-

equalities are alsoK-minimal. In case(b), for anyt ∈ R, considerz(t)+ = [1;−t;
√
t2 + 1] ∈ K∩S(A,K,B)

andz(t)− = [−1;−t;
√
t2 + 1] ∈ K ∩ S(A,K,B). Note that we have〈µ(t), z(t)+ 〉 = η

(t)
0 = 〈µ(t), z(t)− 〉 for

all t ∈ R, and hencez(t) := 1
2(z

(t)
+ + z

(t)
− ) = [0;−t;

√
t2 + 1] ∈ int(K) ∩ conv(S(A,K,B)). Thus, by

Proposition4.6, we conclude that(µ(t); η(t)0 ) ∈ Cm(A,K,B) for all t ∈ R.

We proceed by showing that the system of infinitely many linear inequalities corresponding to(µ(t); η(t)0 ) =
([0; t;

√
t2 + 1]; 1) for all t ∈ R indeed has a compact conic representation as follows: For all x ∈
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S(A,K,B), we have

1 ≤ 0x1 + tx2 +
√
t2 + 1x3 ∀t ∈ R

⇐⇒ 1 ≤ inf
t
{0x1 + tx2 +

√
t2 + 1x3 : t ∈ R}

⇐⇒ 1 ≤ inf
t,τ

{tx2 + τx3 : t ∈ R, τ ≥
√
t2 + 1}

⇐⇒ 1 ≤ inf
t,τ

{tx2 + τx3 : t ∈ R, τ ≥
√
t2 + 1}

⇐⇒ 1 ≤ inf
t,τ

{tx2 + τx3 : t ∈ R, (1; t; τ) ∈ L3}

⇐⇒ 1 ≤ sup
α

{−α1 : α2 = x2, α3 = x3, [α1;α2;α3] ∈ L3} due to(∗)

⇐⇒ [−1;x2;x3] ∈ L3,

where(∗) is due to the fact that the primal conic optimization problemis strictly feasible, and hence, strong
duality applies here. Note that we have arrived at the constraint x3 ≥

√
1 + x22, which a cylinder inR3,

hence a particular conic quadratic inequality[1;x2;x3] ∈ L3. The validity of x3 ≥
√

1 + x22 for all
x ∈ S(A,K,B) follows from its derivation. Moreover, this conic quadratic inequality exactly implies all of

theK-minimal inequalities(µ(t); η(t)0 ) for all t ∈ R. Thus, in this example, the constraintx3 ≥
√

1 + x22
along with the constraintx ∈ L3, completely describes conv(S(A,K,B)).

Finally, recall that we have seen the valid inequality(ν; ν0) given byν = [0; 1; 2] andν0 = 1 has
an associatedDν set which is nonempty and there are tight extreme points, i.e., σDν (Az

(i)) = 〈ν, z(i)〉
satisfying the requirement of Proposition4.5 and ν0 = 1 <

√
3 = infb∈B σDν (b), hence by Propo-

sition 4.5 (ν; ν0) ∈ Cs(A,K,B). While σDν (Azν) = 〈ν, zν〉 = ν0 = 1 holds for any (and only)

zν ∈
{
[ 1√

3
;−1

3 ;
2
3 ], [− 1√

3
;−1

3 ;
2
3 ]
}

⊂ Ext(K) and the mid point of these two points is in the interior of

K, this mid point is not in conv(S(A,K,B)), i.e., the sufficiency condition forK-minimality stated in
Proposition4.6 fails. In fact,ν ∈ int(K∗) and(ν; ν0) fails the necessary condition forK-minimality given
in Proposition4.7, that is,infb∈B σDν (b) = σDν (1) = σDν (−1) =

√
3 > 1 = ν0. Hence, we conclude that

(ν; ν0) is notK-minimal. ♦
This example also suggests a technique to derive closed formexpressions for convex valid inequalities by

grouping all of the tightK-minimal inequalities associated with the same cut generating set. This approach is
further exploited in [48, 49] in analyzing specific disjunctive conic sets obtained froma two-term disjunction
on a regular coneK. In particular, in [48, 49] a characterization of tightK-minimal inequalities for this
specific disjunctive conic set is given, and in the case ofK = Ln, using conic duality, it is shown that these
tight K-minimal inequalities can be grouped appropriately leading to a class of convex inequalities.

4.3 Connections to Lattice-free Sets and Cut Generating Functions

In this section, we relate our results to the existing literature on lattice-free sets and cut-generating functions
in the case ofK = Rn

+ and discuss some implications for general conesK.
In the case ofK = Rn

+, Proposition4.3and Remark4.1together with the basic facts on support functions
conjoin nicely with the views based on cut generating functions and lattice-free sets. To summarize, we have
shown that in the case of disjunctive conic setsS(A,Rn

+,B), all tight Rn
+-sublinear inequalities(µ;ϑ(µ))

are generated by the support functionsσDµ(·) of cut generating setsDµ = {λ ∈ Rm : A∗λ ≤ µ}.
That is,σDµ(·) take as inputai, the ith column of the linear mapA, compute the corresponding cut coef-
ficient of the variablexi, µi = σDµ(a

i) for all i = 1, . . . , n, and the best possible right hand side value
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ϑ(µ) = infb∈B σDµ(b). Note that these support functions are automatically sublinear (subadditive and pos-
itively homogeneous), and in fact piecewise linear and convex. Moreover, underAssumption 1, using the
sufficiency ofK-minimal inequalities (Proposition2.2) and Theorem3.1, we conclude that all non-cone-
implied inequalities for disjunctive conic setsS(A,Rn

+,B) are generated by piecewise-linear, subadditive,
and convex functions. In addition to this, recently, it is shown in [47, Proposition 4.1] that without mak-
ing any assumptions such asAssumption 1, Rn

+-sublinear inequalities always exist, and along with the
nonnegativity restrictionsx ∈ Rn

+, they are always sufficient to describeconv(S(A,Rn
+,B)).

These observations on the structure and sufficiency ofRn
+-sublinear inequalities forS(A,Rn

+,B) pro-
vide a simple and intuitive explanation of the well-known strong functional dual for MILPs, e.g., all cutting
planes for MILPs are generated by nondecreasing subadditive convex functions (cf. [56]).

The literature on cutting plane theory for MILP is extensive, we refer the reader to the recent survey
[28]. A particular stream of research initiated by Gomory and Johnson [37, 38] and followed up by Johnson
[43] studies an infinite relaxation of an MILP, i.e., themixed-integer group problemof [37], and introduces
cut generating functions, that is, functionsψ : Rm → R such that the inequality

n∑

i=1

ψ(ai)xi ≥ 1

holds for all feasible solutionsx ∈ Rn
+ for any possible number of variablesn and any choice of columns,ai,

corresponding to these variables and a fixed setS = Zm and a pointf /∈ S (leading toB = −f+S = −f+
Zm in our context).6 ) The interest in these infinite models originates from deriving cuts from multiple rows
of a simplex tableau and its various relaxations that are obtained by imposing further structural restrictions
on the setS, and thus onB. These models have been investigated extensively (see [27] for a recent survey
in this area). In this framework,extreme functionsandminimal functionsare used as convenient ways of
creating a hierarchy of functions that are sufficient to generate all cuts. A valid functionψ is said to be
extremeif there are no two distinct valid functionsψ1, ψ2 such thatψ = 1

2ψ1 +
1
2ψ2. Extreme functions are

sufficient to generate all valid inequalities. Furthermore, all extreme functions are minimal. A valid function
ψ is minimalif there is no valid functionψ′ distinct fromψ such thatψ′ ≤ ψ (the inequality relation between
functions is stated as a pointwise relation).

This literature is closely connected to theS-free (lattice-free) cutting planetheory for MILPs. AnS-free
convex set is a convex set that does not contain any point fromthe given setS in its interior. WhenS = Zm

anS-free set is called alattice-freeset. Usually, one is interested in finding anS-free set to generate a valid
inequality that cuts off a given pointf 6∈ S. Thus, one seeks anS-free convex set that containsf in its
interior. These results are particularly related to theintersection cutsof Balas [7, 8]. In his seminal work
[7, 8] Balas initiated the use ofgauge functions of lattice-free setsto generate cuts. This view continues to
attract a lot of attention in the MILP context because the gauge functions have the advantage that they can be
evaluated using simpler formulas in comparison to cut generating functions from Gomory-Johnson’s infinite
group problem. Several papers in this literature [3, 20, 26, 27] establish an intimate connection between
minimal functions and maximal (with respect to inclusion)S-free convex sets for various different models
of S. For example, Borozan and Cornuéjols [20] showed that minimal valid inequalities for the infinite
relaxation withB = −f + Zm correspond to maximal lattice-free convex sets, and thus, they arise from
nonnegative, piecewise linear, positively homogeneous, convex functions. In many cases, e.g., when the
sufficiency of nonnegative cut generating functions is known, it is known that every minimal cut generating

6)Note that the cut generating functions studied in these infinite models are independent of the problem dataai, and thus, they
work for all problem instances of arbitrary dimensionn and problem dataA but for a given setB. We refer the reader to the survey
[27] and references therein.
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functionψ(·), the corresponding set{r ∈ Rm : ψ(r) ≤ 1} is a maximal lattice-free set, and vice-versa. We
refer the interested reader to [25, 26, 27] for further details and recent results.

For finite dimensional problem instancesS(A,Rn
+,B) our study provides an alternative view on the

same topic based on support functions. We underline that thefinite dimensional setup is indeed more
relevant in obtaining strong cuts from the simplex tableau because it does not further relaxes the problem
to an infinite model. Besides, it is well known that not all extreme inequalities in an infinite model remain
extreme in the underlying finite dimensional model (cf. [29]).

Let us consider a givenRn
+-sublinear inequality(µ; η0). Without loss of generality we assume that

η0 ∈ {0,±1}. First, note that the sets underlying gauge functions and support functions are nicely related
via polarity. To observe this, let us consider the polar set of Dµ given by

Do
µ := {r ∈ Rm : λT r ≤ 1 ∀λ ∈ Dµ}.

Clearly,Do
µ is a closed convex set containing the origin, and the (Minkowski) gauge function ofDo

µ, γDo
µ
(·),

is given by
γDo

µ
(r) = inf

t
{t > 0 : r ∈ tDo

µ}.

Note thatγDo
µ
(·) is a nonnegative, closed, and sublinear function, and when0 6∈ int(Do

µ), γDo
µ
(·) can take

the value of+∞. Moreover, by [42, Theorem C.1.2.5], we haveDo
µ = {r ∈ Rm : γDo

µ
(r) ≤ 1}, i.e., the

gauge functionγDo
µ
(·) represents the setDo

µ. For a given sublinear function there is a unique set associated
with it in this manner. However, there can be other sublinearfunctionsψ(·) representing the same setDo

µ,
i.e., Do

µ = {r ∈ Rm : ψ(r) ≤ 1}. Because sublinear functions are positively homogeneous,for any
sublinear functionψ(·) such thatDo

µ = {r ∈ Rm : ψ(r) ≤ 1}, we haveγDo
µ
(r) = ψ(r) for everyr

satisfyingψ(r) > 0. In order to obtain strong valid inequalities, one is interested in the smallest possible
such sublinear functionψ(·) representingDo

µ. It is also well-known [42, Corollary C.3.2.5] that whenever
Q is a closed convex set containing the origin, the support function ofQ is precisely the gauge function
γQo. For anyµ ∈ Π(A,K,B), the setDµ is always closed and convex, yet, we are not always guaranteed
to have0 ∈ Dµ. That said, whenµ ∈ K∗, we always have0 ∈ Dµ. Furthermore, whenever0 ∈ Dµ, we
conclude the support function ofDµ studied here is precisely the gauge function of the polar setDo

µ, that is
σDµ = γDo

µ
. Next, we make this connection more explicit and comment on whenDo

µ isB-free.
Based on the givenRn

+-sublinear inequality(µ; η0), let us also define the set

Vµ := {r ∈ Rm : σDµ(r) ≤ η0}.

Note thatVµ is a closed convex set sinceσDµ(·) is a sublinear function. WhenK = Rn
+, Proposition4.3

impliesϑ(µ) = infb∈B σDµ(b) ≥ η0, and thus,B∩int(Vµ) = ∅ (in fact, we have something slightly stronger,
that is, the relative interior ofVµ does not contain any points fromB). Also, wheneverη0 > 0, the inequality
(µ; η0) separates the origin fromconv(S(A,Rn

+,B)), and0 ∈ Vµ. Let us for a moment focus on the case
of η0 > 0, and without loss of generality assume thatη0 = 1. For example, whenµ ∈ K∗, and(µ; η0) is a
K-minimal inequality, by Proposition2.3without loss of generality we can assumeη0 = 1. Then under the
assumption that0 ∈ Dµ, we immediately observe thatVµ = Do

µ, and conclude thatDo
µ, the polar of the set

Dµ, is aB-free set. Thus, we arrive at the following result:

Proposition 4.8 SupposeK = Rn
+ and let(µ; η0) with 0 ∈ Dµ andη0 > 0 be anRn

+-sublinear inequality
for S(A,Rn

+,B). Then, the support functionσDµ(·) ofDµ is exactly the gauge function of its polarDo
µ, i.e.,

σDµ = γDo
µ
. Thus,σDµ(·) is nonnegative implyingϑ(µ) = infb∈B σDµ(b) ≥ 0 and also,Do

µ is aB-free set.

33



Valid inequalities(µ; η0) with η0 > 0 for disjunctive sets of formS(A,Rn
+,B) have attracted specific

attention in the MILP literature. For example, when we fix thedimensionn in the framework of [25], the
set of interest is exactly a disjunctive conic set withK = Rn

+. Specifically, in [25], the authors consider
disjunctive sets of formS(A,Rn

+,B) with K = Rn
+ for an arbitrary dimensionn (and thusA is also arbi-

trary), but under the additional assumption thatB is a given nonempty, closed set satisfying0 6∈ B. In this
framework, the main focus is on cutsµTx ≥ η0 that separate the origin fromconv(S(A,Rn

+,B)), and the
properties of cut generating functions, that isψ : Rm → R, which takes as inputai, the data pertaining
to the variablexi, and maps it to the corresponding cut coefficientµi. Starting from a dominance relation
among such functions, [25] establishes a minimality notion for cut generating functions and studies various
structural properties of minimal finite-valued cut generating functions and their relations withB-free sets.

Let us examine the connection between our results and those from [25] by assuming that the dimension
n is fixed in advance in [25]. Under the assumption0 /∈ B of [25], it is easily seen that0 /∈ S(A,Rn

+,B)
(see [25, Lemma 2.1]), and therefore, without loss of generality we can assume that the cuts separating the
origin from conv(S(A,Rn

+,B)) have the form(µ; 1), i.e., their right hand side valueη0 is 1. When the
dimensionn is fixed, the main set of interest in [25] is exactly our setS(A,Rn

+,B) and the corresponding
cuts separating the origin are a subset of inequalities fromC(A,Rn

+,B). Furthermore, because these cuts
have positive right hand sides, they are non-cone-implied,and thus, are allRn

+-sublinear [47, Proposition
4.1 and Corollary 4.2]. Hence, the support functions of the corresponding setsDµ do have a direct relation
with the corresponding cut generating functions of interest from [25].

We note that whenever the function used to generate a valid inequality is finite-valued everywhere, it
can be used for any data matrixA. This underlies the cut generating function point of view. On the other
hand, the support functionsσDµ(·) associated withRn

+-sublinear inequalities are not always guaranteed to
be finite-valued. This indicates a distinction between our results and the ones from [25]. We believe that it
is not necessary to require a function to be finite-valued everywhere in order to use it to generate cuts for a
given problem instance with data matrixA. In particular, the functions that are not finite-valued everywhere,
such as the support functions we are considering here, can still be meaningful and interesting in terms of
generating valid inequalities. Furthermore, given a problem instanceA, B andK = Rn

+, under further
assumptions onA andB, it may be possible to obtain an appropriate, nonempty, bounded set∅ 6= D̃ ⊆ Dµ

ensuringinfb∈B σD̃(b) ≥ η0 and σ
D̃
(ai) = µi for all i = 1, . . . , n. That is, the support function of

D̃ is finite-valued everywhere and generates the same inequality (µ; η0). Thus, under further technical
assumptions we can in addition ensure the finite-valuednessof the support functionsσDµ(·), and then, they
will lead to valid inequalities for an arbitrary selection of the columnsai. That is, they will indeed be cut
generating functions for the given setB. Let us for example consider Example 6.1 of [25].

Example 4.3 SupposeA is the2× 2 identity matrix,B = {[0; 1]} ∪ {Z;−1} andK = R2
+, which leads to

S(A,R2
+,B) = conv(S(A,R2

+,B)) = {[0; 1]}. This particular disjunctive conic set violates ourAssump-
tion 1, and therefore, none of the valid inequalities isR2

+-minimal. Nevertheless, existence ofR2
+-sublinear

inequalities is not based onAssumption 1 (see [47, Proposition 4.1]). Indeed, we next show that the partic-
ular inequality(µ; η0) = ([−1; 1]; 1) considered in [25] is R2

+-sublinear. It is easy to see that the sufficiency
conditions forK-sublinearity established in Proposition4.5 are satisfied for this inequality. Actually, the
correspondingDµ = {(λ1;λ2) ∈ R2 : λ1 ≤ −1, λ2 ≤ 1}, andσDµ(Ae

1) = σDµ([1; 0]) = −1 = µ1 =
µT e1 and σDµ(Ae

2) = σDµ([0; 1]) = 1 = µ2 = µT e2 and clearlye1 + e2 ∈ int(R2
+). Furthermore,

infb∈B σDµ(b) = 1 = η0, proving that(µ; η0) = ([−1; 1]; 1) is a tightR2
+-sublinear inequality for this

particular conv(S(A,R2
+,B)). On the other hand, the support function corresponding to this inequality

is not finite valued everywhere. As a matter of fact, when we try to boundDµ to obtain D̃ ⊆ Dµ and
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useD̃ to generate a valid inequality, then we cannot ensureσ
D̃
(A ei) = µT ei = µi for i = 1, 2, and

ϑ(µ) = infB σD̃(b) = 1 simultaneously. ♦

It was conjectured in [25] and later on proved in [30], that in addition to their earlier assumption0 /∈ B,
if we further suppose the following “containment” assumption, cone({a1, . . . , an}) ⊇ B, we can ensure
the existence of finite-valued cut generating functions corresponding to every extreme inequality separating
the origin fromS(A,Rn

+,B). Furthermore, it is shown in [47, Proposition 4.3] that in the same setup and
under the same containment assumption of [25, 30], one can ensure that the support functions associated
with all Rn

+-sublinear inequalities are finite-valued. Actually, there is a natural duality relation between
the support functions we study here and the value functions used in the sufficiency proof of cut generating
functions in [30]. We finish our discussion by examining a slight variant of Example4.3 obtained from
settingB̄ = {[0; 1]} ∪ {(Z−;−1)}. Note that in this variant we still haveS(A,R2

+,B) = S(A,R2
+, B̄),

andS(A,R2
+, B̄) still violates the containment assumption of [25, 30]. Nevertheless, we can show that

(µ; η0) = ([−1; 1]; 1) is generated by a finite-valued cut generating function. Indeed, one can easily check
that the support function of the set̃D := {(λ1;λ2) ∈ R2 : λ1 = −1, −1 ≤ λ2 ≤ 1} obtained from
boundingDµ will do the job. This indicates the possibility for weakening the containment assumption of
[25, 30].

Next, we comment on the fact that0 ∈ Dµ is not always guaranteed. While0 ∈ Dµ for all µ ∈ K∗, the
other cases ofµ ∈ Im(A∗) + K∗ are also of interest. In such cases, by taking the polar ofDo

µ, we obtain
Doo

µ := (Do
µ)

o, a closed convex set containing the origin. In addition to this, we always haveDµ ⊆ Doo
µ and

soσDµ(r) ≤ σDoo
µ
(r) = γDo

µ
(r), where the last equation follows from [42, Proposition C.3.2.4]. In general

σDµ(·) andγDo
µ
(·) may differ quite significantly, i.e., a support function cantake negative values while a

gauge function cannot. To address this issue of generating negative coefficients in cuts, in [12] the following
subset of the relative boundary ofDoo

µ was considered:

D̂oo
µ := {λ ∈ Doo

µ : ∃r ∈ Do
µ s.t. λT r = 1}.

Under the assumption0 ∈ int(Do
µ) (which does not necessarily hold in our setup), it was shown in [12] that

among the sublinear functionsψ(·) satisfyingDo
µ = {r ∈ Rm : ψ(r) ≤ 1}, we have the following relation

σ
D̂oo

µ
(r) ≤ ψ(r) ≤ γDo

µ
(r). Note thatσ

D̂µ
(r) ≤ σ

D̂oo
µ
(r) holds for allr. Studying the cases when we have

σ
D̂µ

(r) = σ
D̂oo

µ
(r) andσDµ(r) = σ

D̂µ
(r) with or without the assumption0 ∈ int(Do

µ) is of independent

interest for understanding the minimality of these supportfunctionsσDµ(·).

Remark 4.2 In the case ofK = Rn
+, as discussed above, there are strong connections betweenK-sublinear

inequalities, cut generating functions [27], and the strong functional dual for MILPs [56].
Moving forward, one may be interested in extending the definition of a cut generating function from

MILPs to MICPs. However, the situation seems to be much more complex for general regular conesK
other than the nonnegative orthant. In the MILP context, oneof the main properties of a cut generating
function is that the function actslocally on each variable. Namely, the cut generating function takesas input
solely the data associated with an individual variablexi, i.e., the corresponding columnai, and based on
this input, it generates the individual cut coefficientµi associated withxi. Imposing such a local view on
cut generating functions is acceptable in the case of the nonnegative orthant because such cut generating
functions are sufficient in the case ofK = Rn

+. This, we believe, is strongly correlated with the fact thatthe
underlying coneK = Rn

+ is decomposable in terms of individual variables. However,for general regular
conesK imposing the same local view requirement on cut generating functions turns out to be problematic,
especially when the coneK encodes non-trivial dependences among variables.
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In particular, Example4.1 reveals an important fact in this discussion: Unlike the case withK = Rn
+,

unless we make further structural assumptions, for generalS(A,K,B) with a regular coneK, even when
the coneK is as simple asL3, there are extreme (and also tight,K-minimal) valid linear inequalities such
that there is no function acting locally on individual variables that can generate precisely the vector defining
the extreme inequality. Specifically, in Example4.1, the linear map is given byA = [1, 0, 0], and the class

of valid inequalities(µ(t); η(t)0 ) = ([0; t;
√
t2 + 1]; 1) parametrized byt ∈ R are all extreme, and thus,

necessary in the description ofconv(S(A,K,B)). If one considers cut generating functions of the form
that take as input the individual columns ofA and output the corresponding cut coefficient, then no such
functionψ(·) will precisely generate the vector defining the inequality(µ(t); η

(t)
0 ) = ([0; t;

√
t2 + 1]; 1) for

anyt ∈ R. This is because such a functionψ(·) will inevitably need to satisfyt = µ
(t)
2 = ψ(a2) = ψ(0) =

ψ(a3) = µ
(t)
3 =

√
t2 + 1, which is impossible.

Therefore, this example demonstrates that for regular cones K other than the nonnegative orthant, if
we were to straightforwardly extend the notion of cut generating functions based on a local view from the
MILP literature and rely only on such functions, we may completely miss large classes of nontrivial extreme
inequalities necessary for the description ofconv(S(A,K,B)). On the other hand, it may be possible to
introduce and studycut generating mapsΓ(·), which take aglobal view and consider the entire dataA
and generate the cut coefficient vectorµ at once, i.e.,µ = Γ(A). We leave the questions around such cut
generating maps, such as their existence, structural properties, sufficiency, etc., for future work.

On a positive note, for specific MICPs of form(2) discussed in Example1.3, Moran et al. [54] show
that a strong functional dual exists under a technical condition. Existence of strong MICP dual for these
specific MICPs is equivalent to the sufficiency of (indeed, very specific classes of) finite-valued functions that
generate the cut coefficients of all cuts for these sets. In fact, these functions from [54] indeed act locally on
each individual variable, and thus, naturally extend the standard cut generating function framework used
in the MILP literature to specific MICPs of form(2). Thus, in spite of the fact that Moran et al. [54] do
not refer to these functions as cut generating functions, they are indeed so. However, we highlight that
the natural disjunctive conic representationS(A,K,B) for the specific class of MICPs from [54] discussed
in Example1.3 impose further structure. In particular, the underlying coneK in the resulting equivalent
disjunctive conic form representationS(A,R2n

+ ,B) of MICP given in(2) is simplyR2n
+ . On the other hand,

the cone involved in Example4.1 is L3. On a related note, we do not know of the existence of a similar
strong functional MICP dual result for MICPs of form(1) discussed in Example1.2. Example4.1suggests
that such a result is not likely. ♦

4.4 Connections to Conic Mixed Integer Rounding Cuts

We start with the following simple remark.

Remark 4.3 In the simple case of the polyhedral coneK = L2 = {x ∈ R2 : x2 ≥ |x1|}, there are only
two extreme raysα(1) = [1; 1] andα(2) = [−1; 1]. These extreme rays are orthogonal to each other, and
thus condition(A.1) reduces to

(A.1(i)) 0 ≤
n∑

i=1

µ(ai)ui for all u such thatAu = 0 andu+ α(i) ∈ L2 for i = 1, 2,

whereai denotes theith column ofA. Following the same reasoning as in Proposition4.3, one can eas-
ily deduce that for anyK-minimal valid inequality(µ; η0) and any extreme rayz of K = L2, we have
σDµ(Az) = 〈µ, z〉. ♦

36



Using Proposition4.3 and Remark4.3, we are ready to analyze the conic mixed integer rounding cuts
introduced in [5] for the following simple mixed integer set

S0 := {(x, y, w, t) ∈ Z× R3
+ : |x+ y − w − b| ≤ t}. (6)

In [5], it is shown that whenb = ⌊b⌋+ f with f ∈ (0, 1), the valid inequality given by

(1− 2f)(x− ⌊b⌋) + f ≤ t+ y + w, (7)

together with the original conic inequality inS0 givesconv(S0).
Here we will prove that (7) is in fact aK-minimal inequality. The first step in this analysis is to transform

S0 into our normal form as

S :=

{
(y,w, t, γ) ∈ R3

+ × L2 :

[
y − w
t

]
− γ =

[
b− x
0

]}
, (8)

which leads toK = R3
+ × L2, which is a closed convex pointed cone with nonempty interior, and

A =

[
1 −1 0 −1 0
0 0 1 0 −1

]
andB =





[
f
0

]

︸ ︷︷ ︸
:=b+1

,

[
1 + f
0

]

︸ ︷︷ ︸
:=b+2

, . . . ,

[
f − 1
0

]

︸ ︷︷ ︸
:=b−1

,

[
f − 2
0

]

︸ ︷︷ ︸
:=b−2

, . . .




.

Before we proceed first note thatAssumption 1 is satisfied, i.e., for anyǫ1, ǫ2 > 0, (y;w; t; γ1; γ2) =
(f + ǫ1; ǫ1; ǫ2; 0; ǫ2) ∈ int(K) and also inS(A,K,B), thereforeK-minimal inequalities exist. However,
S(A,K,B) is not full dimensional,t − γ2 = 0 is a valid equation. The setDe corresponding to this valid
equation is simplyDe = {(λ1, λ2) : λ1 = 1, λ2 = 0} = {(1, 0)}. The pointz̄ defined in the rest of this
example works for this valid equation as well. Thus, the valid equationt − γ2 = 0 satisfies the necessary
condition forK-minimality.

We can use the results of section4 to verify that the inequality (7) satisfiesK-minimality conditions.
Using the first equation in (8), we gety−w− γ1 = b− x, which implies thatx−⌊b⌋ = −y+w+ γ1 + f .
By substitutingx − ⌊b⌋ with −y + w + γ1 + f , in (7), we can rewrite it in terms of the variables in our
representation as follows:

(1− 2f)(−y + w + γ1 + f) + f ≤ t+ y + w

(2− 2f)y + 2fw + t+ (2f − 1)γ1 + 0γ2 ≥ f(2− 2f).

This means,η0 = f(2−2f), µ1 = 2−2f , µ2 = 2f , µ3 = 1, µ4 = 2f −1 andµ5 = 0 in our usual notation.
The necessary conditions forK-sublinearity state that forDµ given by (4), we should haveDµ 6= ∅, and
σDµ(Az) = 〈µ, z〉 for all z ∈ Ext(K) (since all of the extreme rays ofK are orthogonal to each other).

In our specific case, we have

Dµ = {λ ∈ R2 : ∃γ ∈ K∗ such thatA∗λ+ γ = µ}

=

{
λ ∈ R2 : λ1 ≤ µ1, − λ1 ≤ µ2, λ2 ≤ µ3,

[
−λ1
−λ2

]
�L2

[
µ4
µ5

]}

=
{
λ ∈ R2 : λ1 ≤ 2− 2f, − λ1 ≤ 2f, λ2 ≤ 1, |2f − 1 + λ1| ≤ λ2

}
.
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λ2

λ1
(0, 0)

(0, 1)

(1, 0) (2, 0)

Figure 3: Feasible region corresponding toDµ for f = 0.25 in conic mixed integer rounding cut of [5].

The setDµ is plotted in Figure3.
Becausef ∈ (0, 1), we haveDµ 6= ∅, proving that(µ; η0) isK-sublinear. Also the extreme rays ofK are

precisely Ext(K) = {e1, e2, e3,−e4 + e5, e4 + e5} whereei stands for theith unit vector inR5. Moreover,

σDµ(Ae
1) = σDµ(a

1) = 2− 2f = µ1 = 〈µ, e1〉,

whereai denotes theith column of the matrixA. Similarly we can show thatσDµ(Ae
i) = µi = 〈µ, ei〉

for i = 1, . . . , 3. Moreover, we haveσDµ(A(−e4 + e5)) = σDµ([1;−1]) = 1 − 2f = −µ4 + µ5 =
〈µ, (−e4 + e5)〉 andσDµ(A(e

4 + e5)) = σDµ([−1;−1]) = 2f − 1 = µ4 + µ5 = 〈µ, (e4 + e5)〉.
Note thatσDµ(b

+
1 ) = f · σDµ(e

1) = f(2− 2f), and fori = 1, 2, . . ., we haveσDµ(b
+
i+1) = (f + i)(2−

2f) = (2 − 2f)i + 2f − 2f2. Consideringf ∈ (0, 1), we concludeσDµ(b
+
1 ) < σDµ(b

+
2 ) < . . . holds.

Similarly σDµ(b
−
1 ) = (1 − f)σDµ(−e1) = (1 − f)(−2f) = 2f(f − 1), and fori = 1, 2, . . ., we have

σDµ(b
−
i ) = (f − i)(−2f) = 2fi− 2f2, which impliesσDµ(b

−
1 ) < σDµ(b

−
2 ) < . . ., and hence,

inf
b∈B

σDµ(b) = min
{
σDµ(b

+
1 ), σDµ(b

−
1 )

}
= f(2− 2f) = η0.

Finally, consider the following set of points

{
z1 := [f ; 0; 0; 0; 0], z2 := [0; 1 − f ; 0; 0; 0], z3 := [0; 0; f ;−f ; f ], z4 := [0; 0; 1 − f ; 1− f ; 1− f ]

}
.

Givenf ∈ (0, 1), one can easily see that fori = 1, . . . , 4, we havezi ∈ S(A,K,B) and〈µ, zi〉 = η0 =
2f − 2f2. Moreover,z̄ := 1

4

∑4
i=1 z

i is in the interior ofK = R3
+ × L2. Therefore, using Proposition4.6,

we have shown that the valid inequality given by(µ; η0) = ([2 − 2f ; 2f ; 1; 2f − 1; 0]; 2f − 2f2), which is
equivalent to (7), is aK-minimal inequality.

5 Characterization of Valid Equations

Our results with regard to the existence ofK-minimal inequalities was based onAssumption 1, i.e., we
assume that for allδ ∈ K∗ \ {0}, there existszδ ∈ S(A,K,B) such that〈δ, zδ〉 > 0. Under a stronger
assumption, namelyAssumption 2 stated below, we can show that all valid equations(µ; η0) satisfyµ ∈
Im(A∗).

Assumption 2: There existŝz ∈ S(A,K,B) such that̂z ∈ int(K) andAẑ = b̂ for somêb ∈ B.

UnderAssumption 2, we can provide the following precise characterization of the valid equations.
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Theorem 5.1 Suppose thatAssumption 2 holds. Then(µ; η0) is a valid equation if and only if there exists
somēλ ∈ Rm such that

A∗λ̄ = µ and bT λ̄ = η0 = ϑ(µ) for all b ∈ B.

Proof.

(⇐) It is easy to see that the condition in Theorem5.1is sufficient. Suppose there existsλ̄ ∈ Rm such that

A∗λ̄ = µ and bT λ̄ = η0,

for all b ∈ B. Then for anyz ∈ S(A,K,B) we have

〈µ, z〉 = 〈A∗λ̄, z〉 = λ̄TAz = λ̄T b = η0 = ϑ(µ),

where the third equation follows becausez ∈ S(A,K,B), and henceAx = b ∈ B. This proves that
(µ; η0) is a valid equation.

(⇒) To prove the necessity of the condition, suppose that(µ; η0) is a valid equation. Then clearlyη0 =
ϑ(µ). Let b̂ andẑ be as described inAssumption 2preceding the theorem, and consider

inf
z
{〈µ, z〉 : Az = b̂, z ∈ K}.

This problem is strictly feasible because there existsẑ ∈ int(K) satisfyingAẑ = b̂. Moreover, the
solution set of this problem is contained inS(A,K,B). Thus, the fact that(µ;ϑ(µ)) is a valid equation
implies that its optimum value is equal toϑ(µ). By strong conic duality we arrive at

ϑ(µ) = sup
λ∈Rm

{b̂Tλ : A∗λ �K∗ µ},

which implies the existence of an optimal solutionλ̄ satisfying

A∗λ̄ �K∗ µ and b̂T λ̄ = ϑ(µ).

Note that any feasible solution to the primal problem is optimal including the strictly feasible solution
ẑ. Therefore, using the complementary slackness condition,we have

〈ẑ, µ −A∗λ̄〉 = 0.

Becausêz ∈ int(K), the above equation is possible if and only ifA∗λ̄ = µ. Thus, we have established
that there exists̄λ satisfyingA∗λ̄ = µ andb̂T λ̄ = ϑ(µ). Now, for anyb ∈ B, we have

ϑ(µ) = 〈µ, zb〉 ≥ inf
z
{〈µ, z〉 : Az = b, z ∈ K} ≥ sup

λ∈Rm

{b̂Tλ : A∗λ �K∗ µ} ≥ b̂T λ̄. (9)

Moreover,

− ϑ(µ) = 〈−µ, zb〉 ≥ inf
z
{〈−µ, z〉 : Az = b, z ∈ K} ≥ sup

λ∈Rm

{b̂Tλ : A∗λ �K∗ −µ} ≥ −b̂T λ̄,
(10)

where the second inequality follows from weak duality and the last inequality follows because−λ̄ is
a feasible solution to the dual. By combining (9) and (10), we getϑ(µ) = b̂T λ̄, which completes the
proof.
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WheneverAssumption 2 holds, from Theorem5.1 we haveµ ∈ Im(A∗), and using the sufficient
condition forK-minimality stated in Proposition4.6, we arrive at the following immediate corollary of
Theorem5.1.

Corollary 5.1 Suppose thatAssumption 2 holds. Then, any valid equation(µ;ϑ(µ)) isK-minimal.

In addition to the characterization of Theorem5.1, we can relate each valid equation with its correspond-
ing cut generating setDµ given by (4) as follows:

Corollary 5.2 Suppose thatAssumption 2 holds. Then, for any valid equation(µ;ϑ(µ)), there existsλµ
satisfyingDµ = {λ : A∗λ �K∗ µ} = λµ+{λ : A∗λ �K∗ 0} andϑ(µ) = infb∈B σDµ(b) = supb∈B σDµ(b).

Proof. Suppose(µ;ϑ(µ)) is a valid equation. Then by Theorem5.1 there exists̄λ =: λµ such that
µ = A∗λ̄ andϑ(µ) = bT λ̄ for all b ∈ B. Thus, we have

Dµ = {λ : A∗λ �K∗ A∗λ̄} = {λ̄+ λ : A∗λ �K∗ 0},

and

inf
b∈B

σDµ(b) = inf
b∈B

sup
λ∈Rm

{bT (λ̄+ λ) : A∗λ �K∗ 0} = inf
b∈B


b

T λ̄︸︷︷︸
=η0

+sup
λ

{bTλ : A∗λ �K∗ 0}
︸ ︷︷ ︸

∈{0,+∞}


 = ϑ(µ),

where the last equation follows from the fact thatϑ(µ) ∈ R. Similarly, we can show thatϑ(µ) =
supb∈B σDµ(b). �

WhenK = Rn
+ (or any cone where each pair of its extreme rays is orthogonal), Corollary5.2 gives a

complete characterization of valid equations.

6 Conclusions and Further Research

We introduce the class ofK-minimal valid inequalities in the general disjunctive conic programming con-
text and show that this class is a natural result of the dominance notion among valid inequalities, and thus,
contains a small yet essential set of nonredundant inequalities. In particular, under a mild technical assump-
tion, we establish that the class ofK-minimal inequalities together with the original constraint x ∈ K are
sufficient to describeconv(S(A,K,B)). This prompts an interest inK-minimal inequalities suggesting that
an efficient cutting plane procedure for solving MICPs should at the least aim at separating inequalities
from this class. Nevertheless, the definition ofK-minimality reveals little about the structure ofK-minimal
inequalities. In particular, testingK-minimality based on its definition is a non-trivial task. Toaddress this
issue, we show that the class ofK-minimal inequalities is contained in a slightly larger class of so-calledK-
sublinear inequalities defined by algebraic conditions. Weestablish a close connection betweenK-sublinear
inequalities for disjunctive conic sets and the support functions of convex sets with certain structure. Us-
ing this connection, we show that whenK = Rn

+, all K-sublinear inequalities are generated by sublinear
(positively homogeneous, subadditive and convex) functions that are also piecewise linear. Thus, our re-
sults naturally capture some of the earlier results from MILP setup, and generalize them to the conic case.
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Furthermore, this connection with support functions has led to practical ways of showingK-minimality
and/orK-sublinearity properties of inequalities. To the best of our knowledge, these sufficient conditions
for K-minimality and/orK-sublinearity of the valid inequalities are new even in the MILP setup.

Our work has shed some light on the structure ofK-minimal andK-sublinear inequalities for disjunctive
conic setsS(A,K,B) involving a regular coneK. However, many questions remain open when we start
considering regular cones other thanRn

+. In particular, we find the following questions of interest:

• [Characterization of extreme valid inequalities]Under a mild technical assumption, e.g., Assumption
1, we have shown that all extreme inequalities areK-minimal. However, not everyK-minimal in-
equality is extreme (see e.g., Example2.3and Proposition2.4). Further characterizations of extreme
inequalities beyondK-minimality are of great interest and importance.

• [Finiteness of theK-minimal conic inequalities]WhenK = Rn
+ andB is finite, Johnson [44] proved

that the cone ofK-minimal inequalities is finitely generated, i.e.,GC is finite. Note thatGL is al-
ways finite. For non-polyhedral regular cones, e.g.,Ln,Sn

+, in general, expectingconv(S(A,K,B))
to be given by finitely many linear inequalities is too much, and against the inherent nonlinear na-
ture of these cones. Example4.1 shows that this is not possible even forL3, i.e., the resulting
conv(S(A,K,B)) requires infinitely many extreme linear inequalities. On the other hand, in that
example, it is clear that the description ofconv(S(A,K,B)) only involves two linear inequalities and
two conic inequalities involvingL3. While theK-minimality notion is seemingly defined for linear in-
equalities, we can immediately extend it to a conic inequality by saying that a conic quadratic inequal-
ity is K-minimal if the associated (possibly infinite) set of linearinequalities are allK-minimal. We
believe that instead of focusing on the finiteness of linear inequalities describingconv(S(A,K,B)),
it is more natural and relevant to focus on the finiteness of conic inequalities (of the same type of
K) describingconv(S(A,K,B)). Therefore, we wonder what can be said in terms of the number of
K-minimal conic inequalities required in the description ofconv(S(A,K,B)). Is it a finite number
whenB is finite? Is it finite regardless of the size ofB? Or, can we at least identify the cases where it
is finite? In the very specific case of a two-term disjunctionsonLn, recent work of [48, 49] provide
partial answers to some of these questions.

• [Relations with valid inequalities for other nonconvex sets] We showed that conic MIR inequali-
ties introduced in [5] can be interpreted in this framework. Moreover, in a recentseries of papers
[48, 49, 71], the characterization of tightK-minimal inequalities have played a critical role in the
derivation of explicit expressions for convex valid inequalities for disjunctive conic sets associated
with a two-term disjunction onLn and/or its cross-sections. These derivations relate back nicely
to other recently developed valid inequalities for MICPs based on split or disjunctive arguments in
[2, 13, 32, 53]. Connecting our framework to other recent literature [16, 22, 53] covering more gen-
eral setups involving nonconvex quadratic sets, and extending our framework to cover these setups
are also of interest.
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[71] S. Yıldız and G. Cornuéjols. Disjunctive cuts for cross-
sections of the second-order cone. Technical report, June 2014.
http://www.optimization-online.org/DB_FILE/2014/06/4390.pdf.

46

http://www.optimization-online.org/DB_FILE/2014/06/4390.pdf

	1 Introduction
	1.1 Preliminaries and Notation
	1.2 Motivation and Connections to MICPs
	1.3 Classes of Valid Inequalities and Our Goal
	1.4 Outline

	2 K-Minimal Inequalities
	2.1 Necessary Conditions for K-Minimality

	3 K-Sublinear Inequalities
	4 Relations to Support Functions and Cut Generating Sets
	4.1 Necessary Conditions for K-Sublinearity
	4.2 Sufficient Conditions for K-Sublinearity and K-Minimality
	4.3 Connections to Lattice-free Sets and Cut Generating Functions
	4.4 Connections to Conic Mixed Integer Rounding Cuts

	5 Characterization of Valid Equations
	6 Conclusions and Further Research

