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Abstract

This paper describes sufficient conditions for the existence of optimal policies for Partially Observ-

able Markov Decision Processes (POMDPs) with Borel state, observation, and action sets and with the

expected total costs. Action sets may not be compact and one-step cost functions may be unbounded.

The introduced conditions are also sufficient for the validity of optimality equations, semi-continuity of

value functions, and convergence of value iterations to optimal values. Since POMDPs can be reduced

to Completely Observable Markov Decision Processes (COMDPs), whose states are posterior state dis-

tributions, this paper focuses on the validity of the above mentioned optimality properties for COMDPs.

The central question is whether transition probabilities for a COMDP are weakly continuous. We intro-

duce sufficient conditions for this and show that the transition probabilities for a COMDP are weakly

continuous, if transition probabilities of the underlyingMarkov Decision Process are weakly continuous

and observation probabilities for the POMDP are continuousin the total variation. Moreover, the con-

tinuity in the total variation of the observation probabilities cannot be weakened to setwise continuity.

The results are illustrated with counterexamples and examples.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) play an important role in operations research,

electrical engineering, and computer science. They have a broad range of applications to various areas in-

cluding sensor networks, artificial intelligence, target tracking, control and maintenance of complex systems,

finance, and medical decision making. In principle, it is known how to solve POMDPs. A POMDP can be

reduced to a Completely Observable Markov Decision Process(COMDP) with the state space being the

set of belief (posterior state) probabilities for the POMDP; see Hinderer [21, Section 7.1] and Sawarigi and
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Yoshikawa [27] for countable state spaces and Rhenius [24],Yushkevich [34], Dynkin and Yushkevich [12,

Chapter 8], Bertsekas and Shreve [8, Chapter 10], and Hernández-Lerma [18, Chapter 4] for Borel state

spaces. After an optimal policy for the COMDP is found, it canbe used to compute an optimal policy for

the POMDP. However, except finite state and action POMDPs (Sondik [31]), problems with a continuous

filtering transition probabilityH (Hernández-Lerma [18, Chapter 4], Hernández-Lerma and Romera [20]),

and a large variety of particular problems considered in theliterature, little is known regarding the existence

and properties of optimal policies for COMDPs and POMDPs with expected total costs.

This paper investigates the existence of optimal policies for COMDPs and therefore for POMDPs with

the expected total discounted costs and, if the one-step costs are nonnegative, with the expected total costs.

We provide conditions for the existence of optimal policiesand for the validity of other properties of optimal

values and optimal policies: they satisfy optimality equations, optimal values are lower semi-continuous

functions, and value iterations converge to optimal infinite-horizon values.

Since a COMDP is a Markov Decision Process (MDP) with Borel state and action sets, it is natural to

apply results on the existence of optimal policies for MDPs to COMDPs. Feinberg et al. [14] introduced

a mild assumption, called Assumption(W∗), for the existence of stationary optimal policies for infinite

horizon MDPs, lower semi-continuity of value functions, characterization of the sets of optimal actions via

optimality equations, and convergence of value iterationsto optimal values for the expected total discounted

costs, if one-step costs are bounded below, and for the expected total costs, if the one-step costs are nonneg-

ative (according to the main result in [14], if another mild assumption is added to Assumption(W∗), then

there exist stationary optimal policies for average costs per unit time). Assumption(W∗) consists of two

conditions: transition probabilities are weakly continuous and one-step cost functions areK-inf-compact.

The notion ofK-inf-compactness (see the definition below) was introducedin Feinberg et al. [15], and it is

slightly stronger than the lower semi-continuity of the cost function and its inf-compactness in the action

parameter. In operations research applications, one-stepcost functions are usuallyK-inf-compact. Here we

consider a POMDP whose underlying MDP satisfies Assumption(W∗). According to Theorem 3.4, this

implies theK-inf-compactness of the cost function for the COMDP and it remains to prove the weak conti-

nuity of transition probabilities for the COMDP to verify Assumption(W∗) for the COMDP and therefore

the existence of optimal policies and the validity of additional optimality properties for the COMDP and

POMDP.

For problems with incomplete information, the filtering equation zt+1 = H(zt, at, yt+1) presented in

equation (3.4) below, that links the posterior state probabilities zt, zt+1, the selected actionat, and the ob-

servationyt+1, plays an important role. This equation presents a general form of Bayes’s rule. Hernández-

Lerma [18, Chapter 4] showed that the weak continuity ofH in all three variables and the weak continuity of

transition and observation probabilities imply the weak continuity of transition probabilities for the COMDP.

In this paper we introduce another condition, Assumption(H), which is weaker than the weak continuity of

the filtering kernelH in (zt, at, yt+1). We prove that this condition and setwise continuity of the stochastic

kernel on the observation set, given a posterior state probability and prior action, imply the weak continuity

of the transition probability for the COMDP; Theorem 3.5. Inparticular, if either these assumptions or the

weak continuity ofH and observation probabilities are added to Assumption(W∗) for the underlying MDP

of the POMDP, the COMDP satisfies Assumption(W∗) and therefore various optimality properties, includ-
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ing the existence of stationary optimal policies and convergence of value iterations hold; see Theorem 3.2.

By using Assumption(H) this paper answers the following question: which conditions on transition

and observation probabilities are sufficient for weak continuity of transition probabilities for the COMDP?

Theorem 3.7 states that weak continuity of transition probabilities and continuity of observation probabilities

in the total variation imply weak continuity of transition probabilities for COMDPs. Thus, Assumption

(W∗) and continuity of observation probabilities in the total variation imply that the COMDP satisfies

Assumption(W∗) and therefore optimal policies exist for the COMDP and for the POMDP, value iterations

converge to the optimal value, and other optimality properties hold; Theorem 3.6. Example 4.1 demonstrates

that continuity of observation probabilities in the total variation cannot be relaxed to setwise continuity.

If the observation set is countable and it is endowed with thediscrete topology, convergence in the total

variation and weak convergence are equivalent. Thus, Theorem 3.7 implies weak continuity of the transition

probability for the COMDP with a countable observation set endowed with the discrete topology and with

weakly continuous transition and observation kernels; Hernández-Lerma [18, p. 93]. However, as Exam-

ple 4.2 demonstrates, under these conditions the filtering transition probabilityH may not be continuous.

This example motivated us to introduce Assumption(H).

The main results of this paper are presented in Section 3. Section 4 contains three counterexamples.

In addition to the two examples described above, Example 4.3demonstrates that setwise continuity of the

stochastic kernel on the observation set, given a posteriorstate probability and prior action, is essential

to ensure that Assumption(H) implies continuity of the transition probability for the COMDP. Section 5

describes properties of stochastic kernels used in the proofs of main results presented in Section 6. Section 7

introduces a sufficient condition for the weak continuity oftransition probabilities for the COMDP that

combines Assumption(H) and the weak continuity ofH. Combining these properties together is important

because Assumption(H) may hold for some observations and continuity ofH may hold for others. Section 8

contains three illustrative examples: (i) a model defined bystochastic equations including Kalman’s filter,

(ii) a model for inventory control with incomplete records (for particular inventory control problems of

such type see Bensoussan et al. [4]–[7] and references therein), and (iii) the classic Markov decision model

with incomplete information studied by Aoki [1], Dynkin [11], Shiryaev [30], Hinderer [21, Section 7.1],

Sawarigi and Yoshikawa [27], Rhenius [24], Yushkevich [34], Dynkin and Yushkevich [12, Chapter 8], for

which we provide a sufficient condition for the existence of optimal policies, convergence of value iterations

to optimal values, and other optimality properties formulated in Theorems 3.2.

2 Model Description

For a metric spaceS, let B(S) be its Borelσ-field, that is, theσ-field generated by all open subsets of the

metric spaceS. For a Borel setE ∈ B(S), we denote byB(E) theσ-field whose elements are intersections

of E with elements ofB(S). Observe thatE is a metric space with the same metric as onS, andB(E) is

its Borelσ-field. For a metric spaceS, we denote byP(S) theset of probability measureson (S,B(S)). A

sequence of probability measures{µ(n)}n=1,2,... from P(S) converges weakly (setwise)to µ ∈ P(S) if for
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any bounded continuous (bounded Borel-measurable) function f onS

∫

S

f(s)µ(n)(ds) →

∫

S

f(s)µ(ds) as n→ ∞.

A sequence of probability measures{µ(n)}n=1,2,... from P(S) converges in the total variationto µ ∈ P(S)

if

sup

{
∫

S

f(s)µ(n)(ds)−

∫

S

f(s)µ(ds) : f : S → [−1, 1] is Borel-measurable

}

→ 0 as n→ ∞.

Weak convergence, setwise convergence, and convergence inthe total variation are used in Yüksel and

Linder [33] to describe convergence of observation channels. Note thatP(S) is a separable metric space

with respect to the weak convergence topology for probability measures, whenS is a separable metric space;

Parthasarathy [23, Chapter II]. For separable metric spacesS1 andS2, a (Borel-measurable)stochastic kernel

R(ds1|s2) on S1 givenS2 is a mappingR( · | · ) : B(S1) × S2 → [0, 1], such thatR( · |s2) is a probability

measure onS1 for anys2 ∈ S2, andR(B| · ) is a Borel-measurable function onS2 for any Borel setB ∈

B(S1). A stochastic kernelR(ds1|s2) on S1 givenS2 defines a Borel measurable mappings2 → R( · |s2)

of S2 to the metric spaceP(S1) endowed with the topology of weak convergence. A stochastickernel

R(ds1|s2) onS1 givenS2 is calledweakly continuous (setwise continuous, continuous in the total variation),

if R( · |x(n)) converges weakly (setwise, in the total variation) toR( · |x) wheneverx(n) converges tox in

S2. For one-point sets{s1} ⊂ S1, we sometimes writeR(s1|s2) instead ofR({s1}|s2).

For a Borel subsetS of a metric space(S, ρ), whereρ is a metric, consider the metric space(S, ρ). A set

B is called open (closed, compact) inS if B ⊆ S andB is open (closed, compact, respectively) in(S, ρ).

Of course, ifS = S, we omit “in S”. Observe that, in general, an open (closed, compact) set inS may not

be open (closed, compact, respectively).

LetX, Y, andA be Borel subsets of Polish spaces (a Polish space is a complete separable metric space),

P (dx′|x, a) be a stochastic kernel onX givenX× A,Q(dy|a, x) be a stochastic kernel onY givenA× X,

Q0(dy|x) be a stochastic kernel onY givenX, p be a probability distribution onX, c : X × A → R =

R ∪ {+∞} be a bounded below Borel function onX× A, whereR is a real line.

A POMDPis specified by a tuple(X,Y,A, P,Q, c), whereX is thestate space, Y is theobservation set,

A is theaction set, P (dx′|x, a) is thestate transition law,Q(dy|a, x) is theobservation kernel, c : X×A →

R is theone-step cost.

The partially observable Markov decision process evolves as follows:

• at timet = 0, the initial unobservable statex0 has a given prior distributionp;

• the initial observationy0 is generated according to the initial observation kernelQ0( · |x0);

• at each time epocht = 0, 1, . . . , if the state of the system isxt ∈ X and the decision-maker chooses

an actionat ∈ A, then the costc(xt, at) is incurred;

• the system moves to a statext+1 according to the transition lawP ( · |xt, at), t = 0, 1, . . .;

• an observationyt+1 ∈ Y is generated by the observation kernelQ( · |at, xt+1), t = 0, 1, . . . .
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Define theobservable histories: h0 := (p, y0) ∈ H0 andht := (p, y0, a0, . . . , yt−1, at−1, yt) ∈ Ht

for all t = 1, 2, . . . , whereH0 := P(X) × Y andHt := Ht−1 × A × Y if t = 1, 2, . . . . A policy π

for the POMDP is defined as a sequenceπ = {πt}t=0,1,... of stochastic kernelsπt on A given Ht. A

policy π is callednonrandomized, if each probability measureπt( · |ht) is concentrated at one point. The

set of all policiesis denoted byΠ. The Ionescu Tulcea theorem (Bertsekas and Shreve [8, pp. 140-141] or

Hernández-Lerma and Lasserre [19, p.178]) implies that a policy π ∈ Π and an initial distributionp ∈ P(X),

together with the stochastic kernelsP ,Q andQ0, determine a unique probability measureP π
p on the set of

all trajectories(X × Y × A)∞ endowed with theσ-field defined by the products of Borelσ-fieldsB(X),

B(Y), andB(A). The expectation with respect to this probability measure is denoted byEπ
p .

For a finite horizonT = 0, 1, ..., theexpected total discounted costsare

V π
T,α(p) := E

π
p

T−1
∑

t=0

αtc(xt, at), p ∈ P(X), π ∈ Π, (2.1)

whereα ≥ 0 is the discount factor,V π
0,α(p) = 0. Consider the following assumptions.

Assumption (D). c is bounded below onX× A andα ∈ [0, 1).

Assumption (P). c is nonnegative onX×A andα ∈ [0, 1].

WhenT = ∞, formula (2.1) defines theinfinite horizon expected total discounted cost, and we denote

it by V π
α (p). We use the notations(D) and(P) following Bertsekas and Shreve [8, p. 214], where cases(D),

(N), and (P) are considered. However, Assumption(D) here is weaker than the conditions assumed in

case(D) in [8, p. 214], where one-step costs are assumed to be bounded.

Since the functionc is bounded below onX × A, a discounted model can be converted into a model

with nonnegative costs by shifting the cost function. In particular, letc(x, a) ≥ −K for all (x, a) ∈ X× A.

Consider a new cost function̂c(x, a) := c(x, a) +K for all (x, a) ∈ X × A. Then the corresponding total

discounted reward is equal to

V̂ π
α (p) := V π

α (p) +
K

1− α
, π ∈ Π, p ∈ P(X).

Thus, optimizingV π
α and V̂ π

α are equivalent problems, and̂V π
α is the objective function for a model with

nonnegative costs. Though Assumption(P) is more general, Assumption(D) is met in a wide range of

applications. Thus we formulate the results for either of these Assumptions.

For any functiongπ(p), includinggπ(p) = V π
T,α(p) andgπ(p) = V π

α (p), define theoptimal values

g(p) := inf
π∈Π

gπ(p), p ∈ P(X).

A policy π is calledoptimal for the respective criterion, ifgπ(p) = g(p) for all p ∈ P(X). For gπ = V π
T,α,

the optimal policy is calledT -horizon discount-optimal; for gπ = V π
α , it is calleddiscount-optimal.

In this paper, for the expected total costs and objective values we use similar notations for POMDPs,

MDPs, and COMDPs. However, we reserve the symbolV for POMDPs, the symbolv for MDPs, and the

notationv̄ for COMDPs. So, in addition to the notationsV π
T,α, V

π
α , VT,α, andVα introduced for POMDPs,

we shall use the notationsvπT,α, v
π
α, vT,α, vα and v̄πT,α, v̄

π
α, v̄T,α, v̄α for the similar objects for MDPs and

COMDPs, respectively.
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We recall that a functionc defined onX×A with values inR is inf-compact if the set{(x, a) ∈ X×A :

c(x, a) ≤ λ} is compact for any finite numberλ. A function c defined onX × A with values inR is

calledK-inf-compact onX × A, if for any compact setK ⊆ X, the functionc : K × A → R defined on

K × A is inf-compact; Feinberg et al. [13, 15, Definition 1.1]. According to Feinberg et al. [15, Lemma

2.5], a bounded below functionc isK-inf-compact on the product of metric spacesX andA if and only if it

satisfies the following two conditions:

(a) c is lower semi-continuous;

(b) if a sequence{x(n)}n=1,2,... with values inX converges and its limitx belongs toX then any sequence

{a(n)}n=1,2,... with a(n) ∈ A,n = 1, 2, . . . , satisfying the condition that the sequence{c(x(n), a(n))}n=1,2,...

is bounded above, has a limit pointa ∈ A.

For a POMDP(X,Y,A, P,Q, c), consider the MDP(X,A, P, c), in which all the states are observable.

An MDP can be viewed as a particular POMDP withY = X andQ(B|a, x) = Q(B|x) = I{x ∈ B} for all

x ∈ X, a ∈ A, andB ∈ B(X). In addition, for an MDP an initial state is observable. Thusfor an MDP an

initial statex is considered instead of the initial distributionp. In fact, this MDP possesses a special property

that action sets at all the states are equal. For MDPs, Feinberg et al. [14] provides general conditions for the

existence of optimal policies, validity of optimality equations, and convergence of value iterations. Here we

formulate these conditions for an MDP whose action sets in all states are equal.

Assumption (W∗) (cf. Feinberg et al. [14] and Lemma 2.5 in [15]).

(i) the functionc is K-inf-compact onX× A;

(ii) the transition probabilityP ( · |x, a) is weakly continuous in(x, a) ∈ X× A.

For an MDP, a nonrandomized policy is calledMarkov, if all decisions depend only on the current state

and time. A Markov policy is calledstationary, if all decisions depend only on current states.

Theorem 2.1. (cf. Feinberg et al. [14, Theorem 2]).Let MDP (X,A, P, c) satisfy Assumption(W∗). Let

either Assumption(P) or Assumption(D) hold. Then:

(i) the functionsvt,α, t = 0, 1, . . ., andvα are lower semi-continuous onX, andvt,α(x) → vα(x) as

t→ ∞ for all x ∈ X;

(ii) for eachx ∈ X andt = 0, 1, . . . ,

vt+1,α(x) = min
a∈A

{

c(x, a) + α

∫

X

vt,α(y)P (dy|x, a)

}

, (2.2)

wherev0,α(x) = 0 for all x ∈ X, and the nonempty sets

At,α(x) :=

{

a ∈ A : vt+1,α(x) = c(x, a) + α

∫

X

vt,α(y)P (dy|x, a)

}

, x ∈ X, t = 0, 1, . . . ,

satisfy the following properties: (a) the graphGr(At,α) = {(x, a) : x ∈ X, a ∈ At,α(x)}, t = 0, 1, . . . ,

is a Borel subset ofX × A, and (b) ifvt+1,α(x) = +∞, thenAt,α(x) = A and, ifvt+1,α(x) < +∞, then

At,α(x) is compact;

(iii) for eachT = 1, 2, . . ., there exists an optimal MarkovT -horizon policy(φ0, . . . , φT−1), and if for

a T -horizon Markov policy(φ0, . . . , φT−1) the inclusionsφT−1−t(x) ∈ At,α(x), x ∈ X, t = 0, . . . , T − 1,

hold, then this policy isT -horizon optimal;
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(iv) for eachx ∈ X

vα(x) = min
a∈A

{

c(x, a) + α

∫

X

vα(y)P (dy|x, a)

}

, (2.3)

and the nonempty sets

Aα(x) :=

{

a ∈ A : vα(x) = c(x, a) + α

∫

X

vα(y)P (dy|x, a)

}

, x ∈ X,

satisfy the following properties: (a) the graphGr(Aα) = {(x, a) : x ∈ X, a ∈ Aα(x)} is a Borel subset of

X× A, and (b) ifvα(x) = +∞, thenAα(x) = A and, ifvα(x) < +∞, thenAα(x) is compact;

(v) for infinite-horizon problems there exists a stationarydiscount-optimal policyφα, and a stationary

policyφ∗α is optimal if and only ifφ∗α(x) ∈ Aα(x) for all x ∈ X;

(vi) (Feinberg and Lewis [17, Proposition 3.1(iv)])if c is inf-compact onX×A, then the functionsvt,α,

t = 1, 2, . . ., andvα are inf-compact onX.

3 Reduction of POMDPs to COMDPs and Main Results

In this section we formulate the main results of the paper, Theorems 3.2, 3.6, and the relevant statements.

These theorems provide sufficient conditions for the existence of optimal policies for COMDPs and therefore

for POMDPs with expected total costs, as well as optimality equations and convergence of value iterations

for COMDPs. These conditions consist of two major components: the conditions for the existence of

optimal policies for MDPs and additional conditions on the POMDP. Theorem 3.6 states that the continuity

of the observation kernelQ in the total variation is the additional sufficient condition under which there is

a stationary optimal policy for the COMDP, and this policy satisfies the optimality equations and can be

found by value iterations. In particular, the continuity ofQ in the total variation and the weak continuity of

P imply the setwise continuity of the stochastic kernelR′ defined in (3.2) and the validity of Assumption

(H) introduced in this section; Theorem 3.7. These two additional properties imply the weak continuity

of the transition probabilityq for the COMDP (Theorem 3.5) and eventually the desired properties of the

COMDP; Theorem 3.2.

This section starts with the description of known results onthe general reduction of a POMDP to the

COMDP; Bertsekas and Shreve [8, Section 10.3], Dynkin and Yushkevich [12, Chapter 8], Hernández-

Lerma [18, Chapter 4], Rhenius [24], and Yushkevich [34]. Tosimplify notations, we sometimes drop the

time parameter. Given a posterior distributionz of the statex at time epocht = 0, 1, . . . and given an action

a selected at epocht, denote byR(B ×C|z, a) the joint probability that the state at time(t+ 1) belongs to

the setB ∈ B(X) and the observation at timet+ 1 belongs to the setC ∈ B(Y),

R(B × C|z, a) :=

∫

X

∫

B

Q(C|a, x′)P (dx′|x, a)z(dx), B ∈ B(X), C ∈ B(Y), z ∈ P(X), a ∈ A. (3.1)

Observe thatR is a stochastic kernel onX×Y givenP(X)×A; see Bertsekas and Shreve [8, Section 10.3],

Dynkin and Yushkevich [12, Chapter 8], Hernández-Lerma [18, p. 87], Yushkevich [34] or Rhenius [24] for

details. The probability that the observationy at timet+ 1 belongs to the setC ∈ B(Y), given that at time
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t the posterior state probability isz and selected action isa, is

R′(C|z, a) :=

∫

X

∫

X

Q(C|a, x′)P (dx′|x, a)z(dx), C ∈ B(Y), z ∈ P(X), a ∈ A. (3.2)

Observe thatR′ is a stochastic kernel onY givenP(X)×A. By Bertsekas and Shreve [8, Proposition 7.27],

there exist a stochastic kernelH onX givenP(X)× A×Y such that

R(B × C|z, a) =

∫

C

H(B|z, a, y)R′(dy|z, a), B ∈ B(X), C ∈ B(Y), z ∈ P(X), a ∈ A. (3.3)

The stochastic kernelH( · |z, a, y) defines a measurable mappingH : P(X) × A × Y → P(X), where

H(z, a, y)( · ) = H( · |z, a, y). For each pair(z, a) ∈ P(X)× A, the mappingH(z, a, ·) : Y → P(X) is de-

finedR′( · |z, a)-almost surely uniquely iny ∈ Y; Bertsekas and Shreve [8, Corollary 7.27.1] or Dynkin and

Yushkevich [12, Appendix 4.4]. For a posterior distribution zt ∈ P(X), actionat ∈ A, and an observation

yt+1 ∈ Y, the posterior distributionzt+1 ∈ P(X) is

zt+1 = H(zt, at, yt+1). (3.4)

However, the observationyt+1 is not available in the COMDP model, and thereforeyt+1 is a random variable

with the distributionR′( · |zt, at), and the right-hand side of (3.4) maps(zt, at) ∈ P(X) × A to P(P(X)).

Thus,zt+1 is a random variable with values inP(X) whose distribution is defined uniquely by the stochastic

kernel

q(D|z, a) :=

∫

Y

I{H(z, a, y) ∈ D}R′(dy|z, a), D ∈ B(P(X)), z ∈ P(X), a ∈ A; (3.5)

Hernández-Lerma [18, p. 87]. The particular choice of a stochastic kernelH satisfying (3.3) does not effect

the definition ofq from (3.5), since for each pair(z, a) ∈ P(X) × A, the mappingH(z, a, ·) : Y → P(X)

is definedR′( · |z, a)-almost surely uniquely iny ∈ Y; Bertsekas and Shreve [8, Corollary 7.27.1], Dynkin

and Yushkevich [12, Appendix 4.4].

Similar to the stochastic kernelR, consider a stochastic kernelR0 onX× Y givenP(X) defined by

R0(B × C|p) :=

∫

B

Q0(C|x)p(dx), B ∈ B(X), C ∈ B(Y), p ∈ P(X).

This kernel can be decomposed as

R0(B × C|p) =

∫

C

H0(B|p, y)R′
0(dy|p), B ∈ B(X), C ∈ B(Y), p ∈ P(X), (3.6)

whereR′
0(C|p) = R0(X × C|p), C ∈ B(Y), p ∈ P(X), is a stochastic kernel onY given P(X) and

H0(dx|p, y) is a stochastic kernel onX givenP(X) × Y. Any initial prior distributionp ∈ P(X) and any

initial observationy0 define the initial posterior distributionz0 = H0(p, y0) on (X,B(X)). Similar to (3.4),

the observationy0 is not available in the COMDP and this equation is stochastic. In addition,H0(p, y) is

definedR′
0(dy|p)-almost surely uniquely iny ∈ Y for eachp ∈ P(X).

Similar to (3.5), the stochastic kernel

q0(D|p) :=

∫

Y

I{H0(p, y) ∈ D}R′
0(dy|p), D ∈ B(P(X)) andp ∈ P(X), (3.7)
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onP(X) givenP(X) defines the the initial distribution on the set of posterior probabilities. Defineq0(p)(D) =

q0(D|p), whereD ∈ B(P(X)). Thenq0(p) is the initial distribution ofz0 = H0(p, y0) corresponding to the

initial state distributionp.

The COMDP is defined as an MDP with parameters (P(X),A,q,c̄), where

(i) P(X) is the state space;

(ii) A is the action set available at all statesz ∈ P(X);

(iii) the one-step cost function̄c : P(X)× A → R, defined as

c̄(z, a) :=

∫

X

c(x, a)z(dx), z ∈ P(X), a ∈ A; (3.8)

(iv) transition probabilitiesq onP(X) givenP(X)× A defined in (3.5).

Denote byit, t = 0, 1, . . ., a t-horizon history for the COMDP, also called aninformation vector,

it := (z0, a0, . . . , zt−1, at−1, zt) ∈ It, t = 0, 1, . . . ,

wherez0 is the initial posterior distribution andzt ∈ P(X) are recursively defined by equation (3.4),It :=

P(X)× (A× P(X))t for all t = 0, 1, . . ., with I0 := P(X). An information policy(I-policy) is a policy in a

COMDP, i.e.I-policy is a sequenceδ = {δt : t = 0, 1, . . . } such thatδt( · |it) is a stochastic kernel onA

givenIt for all t = 0, 1, . . . ; Bertsekas and Shreve [8, Chapter 10], Hernández-Lerma [18, p. 88]. Denote

by △ the set of allI -policies. We also consider MarkovI-policies and stationaryI-policies.

For anI-policy δ = {δt : t = 0, 1, . . . }, define a policyπδ = {πδt : t = 0, 1, . . . } in Π as

πδt ( · |ht) := δt( · |it(ht)) for all ht ∈ Ht andt = 0, 1, . . . , (3.9)

whereit(ht) ∈ It is the information vector determined by the observable history ht via (3.4). Thusδ andπδ

are equivalent in the sense thatπδt assigns the same conditional probability onA given the observed history

ht asδt for the historyit(ht). If δ is an optimal policy for the COMDP thenπδ is an optimal policy for

the POMDP. This follows from the facts thatVt,α(p) = v̄t,α(q0(p)), t = 0, 1, . . . , andVα(p) = v̄α(q0(p));

Hernández-Lerma [18, p. 89] and references therein. Letzt(ht) be the last element of the information vector

it(ht). With a slight abuse of notations, by using the same notationsfor a measure concentrated at a point

and a function at this point, ifδ is Markov then (3.9) becomesπδt (ht) = δt(zt(ht)) and ifδ is stationary then

πδt (ht) = δ(zt(ht)), t = 0, 1, . . . .

Thus, an optimal policy for a COMDP defines an optimal policy for the POMDP. However, very little

is known for the conditions on POMDPs that lead to the existence of optimal policies for the corresponding

COMDPs. For the COMDP, Assumption(W∗) has the following form:

(i) c̄ isK-inf-compact onP(X)× A;

(ii) the transition probabilityq( · |z, a) is weakly continuous in(z, a) ∈ P(X)× A.

Recall that the notation̄v has been reserved for the expected total costs for COMDPs. The following

theorem follows directly from Theorem 2.1 applied to the COMDP (P(X),A, q, c̄).
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Theorem 3.1. Let either Assumption(D) or Assumption(P) hold. If the COMDP(P(X),A, q, c̄) satisfies

Assumption(W∗), then:

(i) the functions̄vt,α, t = 0, 1, . . ., andv̄α are lower semi-continuous onP(X), and v̄t,α(z) → v̄α(z) as

t→ ∞ for all z ∈ P(X);

(ii) for eachz ∈ P(X) andt = 0, 1, ...,

v̄t+1,α(z) = min
a∈A

{

c̄(z, a) + α

∫

P(X)
v̄t,α(z

′)q(dz′|z, a)

}

=

min
a∈A

{
∫

X

c(x, a)z(dx) + α

∫

X

∫

X

∫

Y

v̄t,α(H(z, a, y))Q(dy|a, x′)P (dx′|x, a)z(dx)

}

,

(3.10)

wherev̄0,α(z) = 0 for all z ∈ P(X), and the nonempty sets

At,α(z) :=

{

a ∈ A : v̄t+1,α(z) = c̄(z, a) + α

∫

P(X)
v̄t,α(z

′)q(dz′|z, a)

}

, z ∈ P(X), t = 0, 1, . . . ,

satisfy the following properties: (a) the graphGr(At,α) = {(z, a) : z ∈ P(X), a ∈ At,α(z)}, t = 0, 1, . . . ,

is a Borel subset ofP(X)×A, and (b) ifv̄t+1,α(z) = +∞, thenAt,α(z) = A and, if v̄t+1,α(z) < +∞, then

At,α(z) is compact;

(iii) for each T = 1, 2, . . ., there exists an optimal MarkovT -horizon I-policy (φ0, . . . , φT−1), and

if for a T -horizon MarkovI-policy (φ0, . . . , φT−1) the inclusionsφT−1−t(z) ∈ At,α(z), z ∈ P(X), t =

0, . . . , T − 1, hold, then thisI-policy isT -horizon optimal;

(iv) for eachz ∈ P(X)

v̄α(z) = min
a∈A

{

c̄(z, a) + α

∫

P(X)
v̄α(z

′)q(dz′|z, a)

}

=

min
a∈A

{
∫

X

c(x, a)z(dx) + α

∫

X

∫

X

∫

Y

v̄α(H(z, a, y))Q(dy|a, x′)P (dx′|x, a)z(dx)

}

,

(3.11)

and the nonempty sets

Aα(z) :=

{

a ∈ A : v̄α(z) = c̄(z, a) + α

∫

P(X)
v̄α(z

′)q(dz′|z, a)

}

, z ∈ P(X),

satisfy the following properties: (a) the graphGr(Aα) = {(z, a) : z ∈ P(X), a ∈ Aα(z)} is a Borel subset

of P(X)×A, and (b) ifv̄α(z) = +∞, thenAα(z) = A and, if v̄α(z) < +∞, thenAα(z) is compact.

(v) for infinite horizon problems there exists a stationary discount-optimalI-policyφα, and a stationary

I-policyφ∗α is optimal if and only ifφ∗α(z) ∈ Aα(z) for all z ∈ P(X).

(vi) if c̄ is inf-compact onP(X) × A, then the functions̄vt,α, t = 1, 2, . . ., and v̄α are inf-compact on

P(X).

Thus, in view of Theorem 3.1, the important question is underwhich conditions on the original POMDP,

the COMDP satisfies the conditions under which there are optimal policies for MDPs. Hernández-Lerma [18,

p. 90] provides the following conditions for this: (a)A is compact, (b) the cost functionc is bounded and

10



D
R

A
FT

continuous, (c) the transition probabilityP (dx′|x, a) and the observation kernelQ(dy|a, x) are weakly con-

tinuous stochastic kernels; (d) there exists a weakly continuous stochastic kernelH onX givenP(X)×A×Y

satisfying (3.3). Consider the following relaxed version of assumption (d) that does not require thatH is

continuous iny. We introduce this assumption, called Assumption(H), because it holds in many important

situations when a weakly continuous stochastic kernelH satisfying (3.3) does not exist; see Example 4.2

and Theorem 3.7.

Assumption (H). There exists a stochastic kernelH onX givenP(X)×A×Y satisfying (3.3) such that: if

a sequence{z(n)}n=1,2,... ⊆ P(X) converges weakly toz ∈ P(X), and a sequence{a(n)}n=1,2,... ⊆ A con-

verges toa ∈ A asn→ ∞, then there exists a subsequence{(z(nk), a(nk))}k=1,2,... ⊆ {(z(n), a(n))}n=1,2,...

and a measurable subsetC of Y such thatR′(C|z, a) = 1 and for ally ∈ C

H(z(nk), a(nk), y) converges weakly toH(z, a, y). (3.12)

In other words, (3.12) holdsR′( · |z, a)-almost surely

Theorem 3.2. If the following assumptions hold:

(a) either Assumption(D) or Assumption(P) holds;

(b) the functionc isK-inf-compact onX× A;

(c) either

(i) the stochastic kernelR′(dy|z, a) on Y givenP(X) × A is setwise continuous and Assumption(H)

holds,

or

(ii) the stochastic kernelsP (dx′|x, a) onX givenX× A andQ(dy|a, x) onY givenA× X are weakly

continuous and there exists a weakly continuous stochastickernelH(dx|z, a, y) onX givenP(X)×A×Y

satisfying (3.3),

then the COMDP(P(X),A, q, c̄) satisfies Assumption(W∗) and therefore statements (i)–(vi) of Theorem 3.1

hold.

Remark 3.3. Throughout this paper we follow the terminology according to which finite sets are countable.

If Y is countable, then equation (3.10) transforms into

v̄t+1,α(z) = min
a∈A







∫

X

c(x, a)z(dx) + α
∑

y∈Y
v̄t,α(H(z, a, y))R′(y|z, a)







, z ∈ P(X), t = 0, 1, ...,

and equation (3.11) transforms into

v̄α(z) = min
a∈A







∫

X

c(x, a)z(dx) + α
∑

y∈Y
v̄α(H(z, a, y))R′(y|z, a)







, z ∈ P(X).
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Theorem 3.2 follows from Theorems 3.1, 3.4, and 3.5. In particular, Theorem 3.4 implies that if As-

sumption (D) or (P) holds for a POMDP, then it also holds for the corresponding COMDP.

Theorem 3.4. If the functionc : X×A → R is bounded below andK-inf-compact onX×A, then the cost

functionc̄ : P(X)×A → R defined for the COMDP in (3.8) is bounded from below by the sameconstant as

c andK-inf-compact onP(X)× A.

Theorem 3.5. The stochastic kernelq(dz′|z, a) onP(X) givenP(X)× A is weakly continuous if condition

(c) from Theorem 3.2 holds.

The following theorem provides sufficient conditions for the existence of optimal policies for the COMDP

and therefore for the POMDP in terms of the initial parameters of the POMDP.

Theorem 3.6. Let assumptions (a) and (b) of Theorem 3.2 hold, the stochastic kernelP (dx′|x, a) on X

givenX × A be weakly continuous, and the stochastic kernelQ(dy|a, x) onY givenA × X be continuous

in the total variation. Then the COMDP(P(X),A, q, c̄) satisfies Assumption(W∗) and therefore statements

(i)–(vi) of Theorem 3.1 hold.

Theorem 3.6 follows from Theorem 3.4 and from the following statement.

Theorem 3.7. The weak continuity of the stochastic kernelP (dx′|x, a) onX givenX × A and continuity

in the total variation of the stochastic kernelQ(dy|a, x) on Y givenA × X imply that condition (i) from

Theorem 3.2 holds (that is,R′ is setwise continuous and Assumption(H) holds) and therefore the stochastic

kernelq(dz′|z, a) onP(X) givenP(X)× A is weakly continuous.

Example 4.1 demonstrates that, if the stochastic kernelQ(dy|a, x) onY givenA× X is setwise contin-

uous, then the transition probabilityq for the COMDP may not be weakly continuous in(z, a) ∈ P(X)×A.

In this example the state set consists of two points. Therefore, if the stochastic kernelP (dx′|x, a) on X

givenX × A is setwise continuous (even if it is continuous in the total variation) in(x, a) ∈ X × A then

the setwise continuity of the stochastic kernelQ(dy|a, x) onY givenA × X is not sufficient for the weak

continuity ofq.

Corollary 3.8. (cp. Hernández-Lerma [18, p. 93])If the stochastic kernelP (dx′|x, a) onX givenX×A is

weakly continuous,Y is countable, and for eachy ∈ Y the functionQ(y|a, x) is continuous onA×X, then

the following statements hold:

(a) for eachy ∈ Y the functionR′(y|z, a) is continuous onP(X) × A with respect to the topology of

weak convergence onP(X), and Assumption(H) holds;

(b) the stochastic kernelq(dz′|z, a) onP(X) givenP(X)× A is weakly continuous;

(c) if, in addition to the above conditions, assumptions (a)and (b) from Theorem 3.2 hold, then the

COMDP(P(X),A, q, c̄) satisfies Assumption(W∗) and therefore statements (i)–(vi) of Theorem 3.1 hold.

Proof. For a countableY, the continuity in the total variation of the stochastic kernelQ(dy|x, a) onY given

A×X follows from the continuity ofQ(y|a, x) for eachy ∈ Y in (a, x) ∈ A×X and fromQ(Y|a, x) = 1 for

all (a, x) ∈ A × X. Indeed, let(a(n), x(n)) → (a, x) asn → ∞. SinceQ(y|a, x) is continuous in(a, x) ∈
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A× X for eachy ∈ Y andQ(Y|a, x) = 1 for all (a, x) ∈ A× X, then for anyǫ > 0 there exists a finite set

Yǫ ⊆ Y and a natural numberNǫ such that
∑

y∈Y\Yǫ
Q( y |z, a) ≤ ǫ and

∑

y∈Y\Yǫ
Q( y |z(n), a(n)) ≤ 2ǫ,

whenn ≥ Nǫ. This and the continuity ofQ imply

∑

y∈Y
|Q(y|a(n), x(n))−Q(y|a, x)| → 0 as n→ ∞.

Thus, sup
C∈B(Y)

|Q(C|a(n), x(n)) − Q(C|a, x)| ≤
∑

y∈Y |Q(y|a(n), x(n)) − Q(y|a, x)| → 0 asn → ∞, and

continuity in the total variation takes place. Statements (a) and (b) follow from Theorem 3.7, and statement

(c) follows from Theorem 3.6.

4 Counterexamples

In this section we provide three counterexamples. Example 4.1 demonstrates that the assumption in The-

orems 3.6 and 3.7, that the stochastic kernelQ is continuous in the total variation, cannot be weakened to

the assumption thatQ is setwise continuous. Example 4.2 shows that, under conditions of Corollary 3.8, a

weakly continuous mappingH satisfying (3.4) may not exist. The existence of such a mapping is mentioned

in Hernández-Lerma [18, p. 93]. Example 4.3 illustrates that the setwise continuity of the the stochastic ker-

nelR′(dy|z, a) onY givenP(X)× A is essential in condition (i) of Theorem 3.2. Without this assumption,

Assumption(H) alone is not sufficient for the weak continuity of the stochastic kernelq(dz′|z, a) onP(X)

givenP(X)× A and therefore for the correctness of Theorems 3.2 and 3.5.

We would like to mention that before the authors constructedExample 4.1, Huizhen Janey Yu provided

them with an example when the weak continuity of the observation kernelQ is not sufficient for the weak

continuity of the stochastic probabilityq( · |z, a). In her example,X = {1, 2}, the system does not move,

Y = A = [0, 1], at state 1 the observation is 0 for any actiona and at state 2, under an actiona ∈ A, the

observation is uniformly distributed on[0, a]. The initial belief distribution isz = (0.5, 0.5).

Example 4.1. Continuity ofQ in the total variation cannot be relaxed to setwise continuity in Theorems 3.6

and 3.7. Let X = {1, 2}, Y = [0, 1], andA = {0} ∪ { 1
n

: n = 1, 2, . . . }. The system does not move.

This means thatP (x|x, a) = 1 for all x = 1, 2 anda ∈ A. This stochastic kernelP is weakly continuous

and, sinceX is finite, it is setwise continuous and continuous in the total variation. The observation kernel

Q is Q(dy|a, 1) = Q(dy|0, 2) = m(dy), a ∈ A, with m being the Lebesgue measure onY = [0, 1] and

Q(dy|1/n, 2) = m(n)(dy), n = 1, 2, ..., wherem(n) is the absolutely continuous measure onY = [0, 1]

with the densityf (n),

f (n)(y) =







0, if 2k/2n < y < (2k + 1)/2n for k = 0, 1, . . . , 2n−1 − 1;

2, otherwise.
(4.1)

First we show thatQ(dy|a, x) onY givenA×X is setwise continuous in(a, x). In our case, this means

that the probability distributionsQ(dy|1/n, i) converge setwise toQ(dy|0, i) asn→ ∞, wherei = 1, 2. For

i = 1 this statement is trivial, becauseQ(dy|a, 1) = m(dy) for all a ∈ A. For i = 2 we need to verify that

m(n) converge setwise tom asn→ ∞. According to Bogachev [10, Theorem 8.10.56], which is Pflanzagl’s
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generalization of the Fichtengolz-Dieudonné-Grothendiek theorem, measuresm(n) converge setwise to the

measurem, if m(n)(C) → m(C) for each open setC in [0, 1]. Sincem(n)(0) = m(0) = m(n)(1) = m(1),

n = 1, 2, . . . , thenm(n)(C) → m(C) for each open setC in [0, 1] if and only if m(n)(C) → m(C) for

each open setC in (0, 1). Choose an arbitrary open setC in (0, 1). ThenC is a union of a countable set

of open disjoint intervals(ai, bi). Therefore, for anyε > 0 there is a finite numbernε of open intervals

{(ai, bi) : i = 1, . . . , nε} such thatm(C \ Cε) ≤ ε, whereCε = ∪nε

i=1(ai, bi). Sincef (n) ≤ 2, this

implies thatm(n)(C \ Cε) ≤ 2ε for any n = 1, 2, . . . . Since |m(n)((a, b)) − m((a, b))| ≤ 1/2n−1,

n = 1, 2, . . . , for any interval(a, b) ⊂ [0, 1], this implies that|m(Cε) − m(n)(Cε)| ≤ ε if n ≥ Nε,

whereNε is any natural number satisfying1/2Nε−1 ≤ ε. Therefore, ifn ≥ Nε then|m(n)(C)−m(C)| ≤

|m(n)(Cε)−m(Cε)|+m(C \Cε) +m(n)(C \Cε) ≤ 4ε. This implies thatm(n)(C) → m(C) asn→ ∞.

Thusm(n) converge setwise tom asn→ ∞.

Second, we verify that the transition kernelq does not satisfy the weak continuity property. Consider

the posterior probability distributionz = (z(1), z(2)) = (0.5, 0.5) of the state at the current step. Since the

system does not move, this is the prior probability distribution at the next step. If the action0 is selected at

the current step then nothing new can be learned about the state during the next step. Thusq(z|z, 0) = 1.

Let y be an observation at the next step, and letD be the event that the state is 2. At the next step, the

prior probability of the eventD is 0.5, becausez(2) = 0.5. Now let an action1/n be selected at the

current step. The new posterior state probabilities dependon the eventA = {f (n)(y) = 2}. If the event

D takes place (the state is 2), then the probability of the event A is 1 and the probability of the event

Ā = {f (n)(y) = 0} is 0. If the eventD̄ takes place (the new state is 1), then the probabilities of the events

A andĀ are 0.5. Bayes’s formula implies that the posterior probabilities are(1/3, 2/3), if f (n)(y) = 2,

and(1, 0), if f (n)(y) = 0. Sincef (n)(2) = 2 with probability 3/4 andf (n)(y) = 0 with probability 1/4,

thenq((1/3, 2/3)|z, 1/n) = 3/4 andq((1, 0)|z, 1/n) = 1/4. So, all the measuresq( · |z, 1/n) are constants

and they are not equal to the measureq( · |z, 0), which is concentrated at the pointz = (0.5, 0.5). Thus the

transition kernelq onP(X) givenP(X)× A is not weakly continuous. �

Example 4.2.Under conditions of Corollary 3.8 there is no weakly continuous stochastic kernelH( · |z, a, y)

onX givenP(X)×A×Y satisfying(3.4). Let the state and observation spacesX = Y = {1, 2}; the action

spaceA = [−1, 1]; the system do not move, that isP (1|1, a) = P (2|2, a) = 1 for all a ∈ A; for eachy ∈ Y

the observation kernelQ(y|a, x) be continuous ina ∈ A,

Q(1|a, 1) =

{

|a|, a ∈ [−1, 0),

a2, a ∈ [0, 1],
Q(1|a, 2) =

{

a2, a ∈ [−1, 0),

|a|, a ∈ [0, 1],

Q(2|a, 1) =

{

1− |a|, a ∈ [−1, 0),

1− a2, a ∈ [0, 1],
Q(2|a, 2) =

{

1− a2, a ∈ [−1, 0),

1− |a|, a ∈ [0, 1];

andz = (z(1), z(2)) =
(

1
2 ,

1
2

)

be the probability measure onX = {1, 2}.

Formula (3.1) withB = {1} andC = {1} implies

R((1, 1)|z, a) =
1

2
Q(1|a, 1) =

{ |a|
2 , a ∈ [−1, 0),
a2

2 , a ∈ [0, 1].
(4.2)
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SettingC = {1} in (3.2), we obtain

R′(1|z, a) =
1

2
Q(1|a, 1) +

1

2
Q(1|a, 2) =

|a|+ a2

2
, a ∈ [−1, 1]. (4.3)

Formulas (4.2) and (4.3) imply that, ifH satisfies (3.3), then

H(1|z, a, 1) =
R((1, 1)|z, a)

R′(1|z, a)
=

{ |a|
|a|+a2

, a ∈ [−1, 0),
a2

|a|+a2
, a ∈ (0, 1].

Therefore,

lim
a↑0

H(1|z, a, 1) = 1 and lim
a↓0

H(1|z, a, 1) = 0.

Thus, the stochastic kernelH on X given P(X) × A × Y is not weakly continuous ina, that is,H :

P(X)× A× Y → P(X) is not a continuous mapping. In view of Corollary 3.8, Assumption (H) holds. �

Example 4.3. Stochastic kernelsP on X givenX × A andQ on Y givenA × X are weakly continuous,

the stochastic kernelR′ onY givenP(X) × A, defined by formula (3.2), is weakly continuous, but it is not

setwise continuous. Though Assumption(H) holds, the stochastic kernelq onP(X) givenP(X)×A, defined

by formula (3.5), is not weakly continuous.

Let X = {1, 2}, Y = A = {1, 12 ,
1
3 , . . . } ∪ {0} with the metricρ(a, b) = |a − b|, a, b ∈ Y, and

P (x|x, a) = 1, x ∈ X, a ∈ A. Let alsoQ(0|0, x) = 1, Q(0| 1
m
, x) = Q( 1

n
|0, x) = 0, x ∈ X, and

Q( 1
n
| 1
m
, 1) = am,n sin

2( πn2m ),Q( 1
n
| 1
m
, 2) = am,n cos

2( πn2m ),m,n = 1, 2, . . . , wheream,2mk+ℓ =
1

2k+1m
for

k = 0, 1, . . . , ℓ = 1, 2, . . . , 2m. Since
2m
∑

ℓ=1

sin2( πℓ
2m ) =

2m
∑

ℓ=1

cos2( πℓ
2m ) =

m
∑

ℓ=1

(sin2( πℓ
2m ) + cos2( πℓ

2m )) = m,

then
∞
∑

n=1
Q( 1

n
| 1
m
, x) =

∞
∑

k=0

2m
∑

ℓ=1

Q( 1
2mk+ℓ

| 1
m
, x) =

∞
∑

k=0

1
2k+1 = 1, x ∈ X, andQ is a stochastic kernel

on Y givenA × X. The stochastic kernelsP on X given X × A andQ on Y given A × X are weakly

continuous. The former is true because of the same reasons asin Example 4.1. The latter is true because

lim supm→∞Q(C|am, x) ≤ Q(C|0, x) for any closed setC inY. Indeed, a setC is closed inY if and only if

either (i)0 ∈ C or (ii) 0 /∈ C andC is finite. LetC ⊆ Y be closed. In case (i),lim supm→∞Q(C|am, x) ≤

1 = Q(C|0, x) asam → 0, x ∈ X. In case (ii),limm→∞Q(C|am, x) = 0 = Q(C|0, x) asam → 0, since

limm→∞Q( 1
n
|am, x) = 0 = Q( 1

n
|0, x) for n = 1, 2, . . . and forx ∈ X.

Formula (3.1) implies thatR(1, 1
n
|z, 1

m
) = z(1)am,n sin

2( πn2m ), R(2, 1
n
|z, 1

m
) = z(2)am,n cos

2( πn2m ),

R(1, 0|z, 1
m
) = 0, R(2, 0|z, 1

m
) = 0, andR(1, 1

n
|z, 0) = 0, R(2, 1

n
|z, 0) = 0, R(1, 0|z, 0) = z(1),

R(2, 0|z, 0) = z(2) for m,n = 1, 2, . . ., z = (z(1), z(2)) ∈ P(X). Formula (3.2) yieldsR′(0|z, 1
m
) = 0,

R′( 1
n
|z, 1

m
) = z(1)am,n sin

2( πn2m ) + z(2)am,n cos
2( πn2m ), andR′(0|z, 0) = 1, R′( 1

n
|z, 0) = 0 for m,n =

1, 2, . . . , z = (z(1), z(2)) ∈ P(X). Therefore,R′(0|z, 1
m
) 6→ R′(0|z, 0) asm → ∞. Thus the stochas-

tic kernelR′ on Y givenP(X) × A is not setwise continuous. However, stochastic kernelR′ on Y given

P(X)× A is weakly continuous.

Observe thatP(X) = {(z(1), z(2)) : z(1), z(2) ≥ 0, z(1) + z(2) = 1} ⊂ R
2. Let z = (z(1), z(2)) ∈

P(X). If R′(y|z, a) > 0, in view of (3.3),H(x′|z, a, y) = R((x′, y)|z, a)/R′(y|z, a) for all x′ ∈ X, a ∈ A,
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andy ∈ Y. Thus, ifR′(y|z, a) > 0 then

H(z, a, y) =







(

z(1) sin2( πn
2m

)

z(1) sin2( πn
2m

)+z(2) cos2( πn
2m

)
,

z(2) cos2( πn
2m

)

z(1) sin2( πn
2m

)+z(2) cos2( πn
2m

)

)

, if a = 1
m
, y = 1

n
, m, n = 1, 2, . . . ,

(z(1), z(2)), if a = y = 0.

If R′(y|z, a) = 0, we setH(z, a, y) = z = (z(1), z(2)). In particular,H(z, 1
m
, 0) = z for all m = 1, 2, . . . .

Observe thatAssumption(H) holdsbecause, ifR′(y|z, a) > 0 and if sequences{z(N)}N=1,2,... ⊆ P(X)

and{a(N)}N=1,2,... ⊆ A converge toz ∈ P(X) anda ∈ A respectively asN → ∞, thenH(z(N), a(N), y) →

H(z, a, y) asN → ∞. Indeed, it is sufficient to verify this property only for the following two cases: (i)

y = 1
n

, a = 1
m

, andR′( 1
n
|z, 1

m
) > 0, wherem,n = 1, 2, . . ., and (ii) y = a = 0. In case (i),a(N) = 1

m
,

whenN is large enough, andH(z(N), 1
m
, 1
n
) → H(z, 1

m
, 1
n
) asN → ∞ because the functionH(z, 1

m
, 1
n
)

is continuous inz, whenR′( 1
n
|z, 1

m
) > 0. For case (ii),H(z(N), a(N), 0) = z(N) → z asN → ∞.

Fix z = (12 ,
1
2). According to the above formulae,H(z, 1

m
, 1
n
) = (sin2( πn2m ), cos2( πn2m )) and

R′( 1
n
|z, 1

m
) =

am,n

2 . Consider a closed subsetD = {(z′(1), z′(2)) ∈ P(X) : z′(1) ≥ 3
4} in P(X). Then

q(D|z, 1
m
) =

∑

n=1,2,...
I{sin2( πn2m ) ≥ 3

4}
am,n

2 =
∞
∑

k=0

2m
∑

ℓ=1

I{sin( πℓ
2m ) ≥

√
3
2 }

am,2mk+ℓ

2 =
2m
∑

ℓ=1

I{sin( πℓ
2m ) ≥

√
3
2 } 1

2m

∞
∑

k=0

1
2k+1 → 1

3 > 0 asm → ∞, where the limit takes place because|[2m3 ] −
2m
∑

ℓ=1

I{sin( πℓ
2m ) ≥

√
3
2 }| ≤ 1, where[·] is an integer part of a number, and

∞
∑

k=0

1
2k+1 = 1. In addition,q(D|z, 0) = 0 since

z /∈ D andq(z|z, 0) = I{H(z, 0, 0) = z}R′(0|z, 0) = 1. Thus, lim
m→∞

q(D|z, 1
m
) = 1

3 > 0 = q(D|z, 0)

for a closed setD in P(X). This implies that the stochastic kernelq onP(X) givenP(X)× A is not weakly

continuous. �

5 Continuity of Transition Kernels for Posterior Probabili ties

This section contains the proofs of Theorems 3.5 and 3.7. Thefollowing two versions of Fatou’s lemma for

a sequence of measures{µ(n)}n=1,2,... are used in the proofs provided below.

Lemma 5.1. (Generalized Fatou’s Lemma).LetS be an arbitrary metric space,{µ(n)}n=1,2,... ⊂ P(S), and

{f (n)}n=1,2,... be a sequence of measurable nonnegativeR-valued functions onS. Then:

(i) (Royden [26, p. 231])if {µ(n)}n=1,2,... ⊂ P(S) converges setwise toµ ∈ P(S), then

∫

S

lim inf
n→∞

f (n)(s)µ(ds) ≤ lim inf
n→∞

∫

S

f (n)(s)µ(n)(ds); (5.1)

(ii) (Schäl [28, Lemma 2.3(ii)], Jaskiewicz and Nowak [22, Lemma 3.2], Feinberg et al. [14, Lemma 4],

[16, Theorem 1.1])if {µ(n)}n=1,2,... ⊂ P(S) converges weakly toµ ∈ P(S), then

∫

S

lim inf
n→∞, s′→s

f (n)(s′)µ(ds) ≤ lim inf
n→∞

∫

S

f (n)(s)µ(n)(ds). (5.2)
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Proof of Theorem 3.5.According to Parthasarathy [23, Theorem 6.1, p. 40], Shiryaev [30, p. 311], Billings-

ley [9, Theorem 2.1], the stochastic kernelq(dz′|z, a) onP(X) givenP(X)×A is weakly continuous if and

only if q(D|z, a) is lower semi-continuous in(z, a) ∈ (P(X)× X) for every open setD in P(X), that is,

lim inf
n→∞

q(D|z(n), a(n)) ≥ q(D|z, a), (5.3)

for all z, z(n) ∈ P(X), anda, a(n) ∈ A, n = 1, 2, . . . , such thatz(n) → z weakly anda(n) → a.

To prove (5.3), suppose that

lim inf
n→∞

q(D|z(n), a(n)) < q(D|z, a).

Then there existsε∗ > 0 and a subsequence{z(n,1), a(n,1)}n=1,2,... ⊆ {z(n), a(n)}n=1,2,... such that

q(D|z(n,1), a(n,1)) ≤ q(D|z, a)− ε∗, n = 1, 2, . . . . (5.4)

If condition (ii) of Theorem 3.2 holds, then formula (3.5), the weak continuity of the stochastic kernelR′

onY givenP(X)× A (this weak continuity is proved in Hernández-Lerma [18, p.92]), and Lemma 5.1(ii)

contradict (5.4). If condition (i) of Theorem 3.2 holds, then there exists a subsequence{z(n,2), a(n,2)}n=1,2,...

⊆ {z(n,1), a(n,1)}n=1,2,... such thatH(z(n,2), a(n,2), y) → H(z, a, y) weakly asn → ∞, R′( · |z, a)-almost

surely iny ∈ Y. Therefore, sinceD is an open set inP(X),

lim inf
n→∞

I{H(z(n,2), a(n,2), y) ∈ D} ≥ I{H(z, a, y) ∈ D}, R′( · |z, a)-almost surely iny ∈ Y. (5.5)

Formulas (3.5), (5.5), the setwise continuity of the stochastic kernelR′ onY givenP(X)×A, and Lemma 5.1(i)

imply lim infn→∞ q(D|z(n,2), a(n,2)) ≥ q(D|z, a), which contradicts (5.4). Thus (5.3) holds.

In order to prove Theorem 3.7, we need to formulate and prove several auxiliary facts. LetS be a metric

space,F(S) andC(S) be respectively the spaces of all real-valued functions andall bounded continuous

functions defined onS. A subsetA0 ⊆ F(S) is said to beequicontinuous at a points ∈ S, if sup
f∈A0

|f(s′)−

f(s)| → 0 ass′ → s. A subsetA0 ⊆ F(S) is said to beuniformly bounded, if there exists a constant constant

M < +∞ such that|f(s)| ≤ M, for all s ∈ S and for allf ∈ A0. Obviously, if a subsetA0 ⊆ F(S) is

equicontinuous at all the pointss ∈ S and uniformly bounded, thenA0 ⊆ C(S).

Theorem 5.2. LetS1, S2, andS3 be arbitrary metric spaces,Ψ(ds2|s1) be a weakly continuous stochastic

kernel onS2 givenS1, and a subsetA0 ⊆ C(S2×S3) be equicontinuous at all the points(s2, s3) ∈ S2×S3

and uniformly bounded. IfS2 is separable, then for every open setO in S2 the family of functions defined

onS1 × S3,

AO =

{

(s1, s3) →

∫

O
f(s2, s3)Ψ(ds2|s1) : f ∈ A0

}

,

is equicontinuous at all the points(s1, s3) ∈ S1 × S3 and uniformly bounded.

Proof. The familyA∅ consists of a single function, which is identically equal to0. Thus, the statement of

the theorem holds whenO = ∅. LetO 6= ∅. SinceA0 ⊆ C(S2 × S3) is uniformly bounded, then

M = sup
f∈A0

sup
s2∈S2

sup
s3∈S3

|f(s2, s3)| <∞, (5.6)
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and, sinceΨ(ds2|s1) is a stochastic kernel, the family of functionsAO is uniformly bounded byM.

Let us fix an arbitrary nonempty open setO ∈ S2 and an arbitrary point(s1, s3) ∈ S1 × S3. We shall

prove thatAO ⊂ F(S1 × S3) is equicontinuous at the point(s1, s3). For anys ∈ S2 andδ > 0 denote by

Bδ(s) andB̄δ(s) respectively the open and closed balls in the metric spaceS2 of the radiusδ with the center

s and bySδ(s) the sphere inS2 of the radiusδ with the centers. Note thatSδ(s) = B̄δ(s) \ Bδ(s) is the

boundary ofBδ(s). Every ballBδ(s) contains a ballBδ′(s), 0 < δ′ ≤ δ, such that

Ψ(B̄δ′(s) \Bδ′(s)|s1) = Ψ(Sδ′(s)|s1) = 0,

that is,Bδ′(s) is a continuity set for the probability measureΨ( · |s1); Parthasarathy [23, p. 50]. Since

O is an open set inS2, for any s ∈ O there existsδs > 0 such thatBδs(s) is a continuity set for a

probability measureΨ( · |s1) andBδs(s) ⊆ O. The family {Bδs(s) : s ∈ O} is a cover ofO. Since

S2 is a separable metric space, by Lindelöf’s lemma, there exists a sequence{s(j)}j=1,2,... ⊂ O such that

{Bδ
s(j)

(s(j)) : j = 1, 2, . . . } is a cover ofO. The sets

A(1) := Bδ
s(1)

(s(1)), A(2) := Bδ
s(2)

(s(2))\Bδ
s(1)

(s(1)), . . . , A(j) := Bδ
s(j)

(s(j))\
(

∪j−1
i=1Bδ

s(i)
(s(i))

)

, . . .

are continuity sets for the probability measureΨ( · |s1). In view of Parthasarathy [23, Theorem 6.1(e),

p. 40],

Ψ(A(j)|s′1) → Ψ(A(j)|s1) as s′1 → s1, j = 1, 2, . . . . (5.7)

Moreover,

∪j=1,2,... A
(j) = O and A(i) ∩A(j) = ∅ for all i 6= j. (5.8)

The next step of the proof is to show that for eachj = 1, 2, . . .

sup
f∈A0

∣

∣

∣

∣

∫

A(j)

f(s2, s
′
3)Ψ(ds2|s

′
1)−

∫

A(j)

f(s2, s3)Ψ(ds2|s1)

∣

∣

∣

∣

→ 0 as (s′1, s
′
3) → (s1, s3). (5.9)

Fix an arbitraryj = 1, 2, . . . . If Ψ(A(j)|s1) = 0, then formula (5.9) directly follows from (5.7) and

(5.6). Now letΨ(A(j)|s1) > 0. Formula (5.7) implies the existence of suchδ > 0 thatΨ(A(j)|s′1) > 0 for

all s′1 ∈ Bδ(s1). We endowA(j) with the induced topology fromS2 and set

Ψj(C|s′1) :=
Ψ(C|s′1)
Ψ(A(j)|s′1)

, s′1 ∈ Bδ(s1), C ∈ B(A(j)).

Formula (5.7) yields

Ψj(ds2|s
′
1) converges weakly toΨj(ds2|s1) in P(A(j)) as s′1 → s1. (5.10)

According to Parthasarathy [23, Theorem 6.8, p. 51],

sup
f∈A0

∣

∣

∣

∣

∫

A(j)

f(s2, s3)Ψ(ds2|s
′
1)−

∫

A(j)

f(s2, s3)Ψ(ds2|s1)

∣

∣

∣

∣

→ 0 as s′1 → s1. (5.11)

Equicontinuity ofA0 ⊆ C(S2 × S3) at all the points(s2, s3) ∈ S2 × S3 and the inequality|f(s′2, s
′
3) −

f(s′2, s3)| ≤ |f(s′2, s
′
3)− f(s2, s3)|+ |f(s′2, s3)− f(s2, s3)| imply

lim sup
(s′2,s

′

3)→(s2,s3)

sup
f∈A0

|f(s′2, s
′
3)− f(s′2, s3)| = 0 for all s2 ∈ S2. (5.12)
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Thus, formulas (5.12), (5.10) and Lemma 5.1(ii) imply

lim sup
(s′1,s

′

3)→(s1,s3)

sup
f∈A0

∣

∣

∣

∣

∫

A(j)

(

f(s2, s
′
3)− f(s2, s3)

)

Ψ(ds2|s
′
1)

∣

∣

∣

∣

≤

∫

A(j)

lim sup
(s′2,s

′

3)→(s2,s3)
sup
f∈A0

∣

∣f(s′2, s
′
3)− f(s′2, s3)

∣

∣Ψ(ds2|s1) = 0.

(5.13)

Formula (5.9) follows from (5.11) and (5.13).

Since, for allj = 1, 2, . . . and for all(s′1, s
′
3) ∈ S1 × S3,

sup
f∈A0

∣

∣

∣

∣

∫

A(j)

f(s2, s
′
3)Ψ(ds2|s

′
1)−

∫

A(j)

f(s2, s3)Ψ(ds2|s1)

∣

∣

∣

∣

≤ 2MΨ(A(j)|s1),

and
∞
∑

j=1
Ψ(A(j)|s1) = Ψ(O|s1) ≤ 1, then equicontinuity ofAO at the point(s1, s3) follows from (5.8) and

(5.9). Indeed,

sup
f∈A0

∣

∣

∣

∣

∫

O
f(s2, s

′
3)Ψ(ds2|s

′
1)−

∫

O
f(s2, s3)Ψ(ds2|s1)

∣

∣

∣

∣

≤
∑

j=1,2,...

sup
f∈A0

∣

∣

∣

∣

∫

A(j)

f(s2, s
′
3)Ψ(ds2|s

′
1)−

∫

A(j)

f(s2, s3)Ψ(ds2|s1)

∣

∣

∣

∣

→ 0 as (s′1, s
′
3) → (s1, s3).

As (s1, s3) ∈ S1 × S3 is arbitrary, the above inequality implies thatAO is equicontinuous at all the

points(s1, s3) ∈ S1 × S3. In particular,AO ⊆ C(S1 × S3).

For a setB ∈ B(X), letRB be the following family of functions defined onP(X)× A:

RB = {(z, a) → R(B × C|z, a) : C ∈ B(Y)} . (5.14)

Lemma 5.3. Let the stochastic kernelP (dx′|x, a) onX givenX×A be weakly continuous and the stochastic

kernelQ(dy|a, x) on Y givenA × X be continuous in the total variation. Consider the stochastic kernel

R( · |z, a) onX × Y givenP(X)× A defined in formula (3.1). Then, for every pair of open setsO1 andO2

in X, the family of functionsRO1\O2
defined onP(X)×A is uniformly bounded and is equicontinuous at all

the points(z, a) ∈ P(X)× A, that is, for allz, z(n) ∈ P(X), a, a(n) ∈ A, n = 1, 2, . . ., such thatz(n) → z

weakly anda(n) → a,

sup
C∈B(Y)

|R((O1 \ O2)× C|z(n), a(n))−R((O1 \ O2)× C|z, a)| → 0. (5.15)

Proof. SinceR is a stochastic kernel, all the functions in the familyRO1\O2
are nonnegative and bounded

above by 1. Thus, this family is uniformly bounded. The remaining proof establishes the equicontinuity

of RO1\O2
at all the points(z, a) ∈ P(X) × A. First we show thatRO is equicontinuous at all the points

(z, a) whenO is an open set inX. Theorem 5.2, withS1 = X × A, S2 = X, S3 = A, O = O, Ψ = P,

andA0 = {(a, x) → Q(C|a, x) : C ∈ B(Y)} ⊆ C(A×X), implies that the the family of functionsA1
O =

{

(x, a) →
∫

O Q(C|a, x′)P (dx′|x, a) : C ∈ B(Y)
}

is equicontinuous at all the points(x, a) ∈ X × A.

In particular,A1
O ⊆ C(A × X). Thus, Theorem 5.2, withS1 = P(X), S2 = X, S3 = A, O = X,

Ψ(B|z) = z(B), B ∈ B(X), z ∈ P(X), andA0 = A1
O, implies that the familyRO is equicontinuous at
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all the points(z, a) ∈ P(X) × A. Second, letO1 andO2 be arbitrary open sets inX. Then the families

of functionsRO1 , RO2 , andRO1∪O2 are equicontinuous at all the points(z, a) ∈ P(X) × A. Thus, for all

z, z(n) ∈ P(X), a, a(n) ∈ A, n = 1, 2, . . ., such thatz(n) → z weakly anda(n) → a,

sup
C∈B(Y)

|R((O1 \ O2)× C|z(n), a(n))−R((O1 \ O2)× C|z, a)|

≤ sup
C∈B(Y)

|R((O1 ∪ O2)× C|z(n), a(n))−R((O1 ∪ O2)× C|z, a)|

+ sup
C∈B(Y)

|R(O2 × C|z(n), a(n))−R(O2 × C|z, a)| → 0,

(5.16)

that is, the family of functionsRO1\O2
is equicontinuous at all the points(z, a) ∈ P(X)× A.

Corollary 5.4. Let assumptions of Lemma 5.3 hold. Then the stochastic kernel R′(dy|z, a) on Y given

P(X)× A, defined in formula (3.2), is continuous in the total variation.

Proof. This corollary follows from Lemma 5.3 applied toO1 = X andO2 = ∅.

Theorem 5.5.LetS be an arbitrary metric space,{h, h(n)}n=1,2,... be Borel-measurable uniformly bounded

real-valued functions onS, {µ(n)}n=1,2,... ⊂ P(S) converges in the total variation toµ ∈ P(S), and

sup
S∈B(S)

∣

∣

∣

∣

∫

S

h(n)(s)µ(n)(ds)−

∫

S

h(s)µ(ds)

∣

∣

∣

∣

→ 0 as n→ ∞. (5.17)

Then{h(n)}n=1,2,... converges in probabilityµ to h, and therefore there is a subsequence{nk}k=1,2,... such

that{h(nk)}k=1,2,... convergesµ-almost surely toh.

Proof. Fix an arbitraryε > 0 and set

S(n,+) := {s ∈ S : h(n)(s)− h(s) ≥ ε}, S(n,−) := {s ∈ S : h(s)− h(n)(s) ≥ ε},

S(n) := {s ∈ S : |h(n)(s)− h(s)| ≥ ε} = S(n,+) ∪ S(n,−), n = 1, 2, . . . .

Note that for alln = 1, 2, . . .

εµ(n)(S(n,+)) ≤

∫

S(n,+)

h(n)(s)µ(n)(ds)−

∫

S(n,+)

h(s)µ(n)(ds)

≤

∣

∣

∣

∣

∫

S(n,+)

h(n)(s)µ(n)(ds)−

∫

S(n,+)

h(s)µ(ds)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

S(n,+)

h(s)µ(n)(ds)−

∫

S(n,+)

h(s)µ(ds)

∣

∣

∣

∣

.

(5.18)

The convergence in the total variation ofµ(n) to µ ∈ P(S) implies that
∣

∣

∣

∣

∫

S(n,+)

h(s)µ(n)(ds)−

∫

S(n,+)

h(s)µ(ds)

∣

∣

∣

∣

→ 0 and |µ(n)(S(n,+))−µ(S(n,+))| → 0 as n→ ∞. (5.19)

Formulas (5.17)–(5.19) yield
∣

∣

∫

S(n,+) h(n)(s)µ(n)(ds)−
∫

S(n,+) h(s)µ(ds)
∣

∣ → 0 asn → ∞, and, in view

of (5.18),

µ(n)(S(n,+)) → 0 as n→ ∞. (5.20)
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Being applied to the functions{−h,−h(n)}n=1,2,..., formula (5.20) implies thatµ(n)(S(n,−)) → 0 asn →

∞. This fact, (5.20) and the convergence in the total variationof µ(n) to µ in P(S) imply

µ(S(n)) = µ(S(n,+)) + µ(S(n,−))

≤ |µ(S(n,+))− µ(n)(S(n,+))|+ |µ(S(n,−))− µ(n)(S(n,−))|+ µ(n)(S(n,+)) + µ(n)(S(n,−)) → 0 as n→ ∞.

Sinceε > 0 is arbitrary,{h(n)}n=1,2,... converges toh in probabilityµ and, therefore,{h(n)}n=1,2,... contains

a subsequence{h(nk)}k=1,2,... that convergesµ-almost surely toh.

Lemma 5.6. If the topology onX has a countable baseτb = {O(j)}j=1,2,... such that, for each finite

intersectionO = ∩N
i=1O

(ji) of its elementsO(ji) ∈ τb, i = 1, 2, . . . , N , the family of functionsRO defined

in (5.14)is equicontinuous at all the points(z, a) ∈ P(X)×A, then for any sequence{(z(n), a(n))}n=1,2,...,

such that{z(n)}n=1,2,... ⊆ P(X) converges weakly toz ∈ P(X) and {a(n)}n=1,2,... ⊆ A converges toa,

there exists a subsequence{(z(nk), a(nk))}k=1,2,... and a setC∗ ∈ B(Y) such that

R′(C∗|z, a) = 1 andH( · |z(nk), a(nk), y) converges weakly toH( · |z, a, y) for all y ∈ C∗, (5.21)

and, therefore, Assumption(H) holds.

As clear from the proof of Lemma 5.6, the intersection assumption is equivalent to the similar assump-

tion for finite unions. However, in this paper we use the intersection assumption.

Proof. According to Billingsley [9, Theorem 2.1] or Shiryaev [30, p. 311], (5.21) holds if there exists a

subsequence{(z(nk), a(nk))}k=1,2,... of the sequence{(z(n), a(n))}n=1,2,... and a setC∗ ∈ B(Y) such that

R′(C∗|z, a) = 1 and lim inf
k→∞

H(O|z(nk), a(nk), y) ≥ H(O|z, a, y) for all y ∈ C∗, (5.22)

for all open setsO inX. The rest of the proof establishes the existence of a subsequence{(z(nk), a(nk))}k=1,2,...

of the sequence{(z(n), a(n))}n=1,2,... and a setC∗ ∈ B(Y) such that (5.22) holds for all open setsO in X.

LetA1 be a family of all the subsets ofX that are finite unions of sets fromτb, and letA2 be a family of

all subsetsB of X such thatB = Õ \ O′ with Õ ∈ τb andO′ ∈ A1. Observe that: (i) bothA1 andA2 are

countable, (ii) any open setO in X can be represented as

O =
⋃

j=1,2,...

O(j,1) =
⋃

j=1,2,...

B(j,1), for some O(j,1) ∈ τb, j = 1, 2, . . . , (5.23)

whereB(j,1) = O(j,1)\
(

⋃j−1
i=1 O

(i,1)
)

are disjoint elements ofA2 (it is allowed thatO(j,1) = ∅ orB(j,1) = ∅

for somej = 1, 2, . . .).

To prove (5.22) for all open setsO inX, we first show that there exists a subsequence{(z(nk), a(nk))}k=1,2,...

of the sequence{(z(n), a(n))}n=1,2,... and a setC∗ ∈ B(Y) such that (5.22) holds for allO ∈ A2.

Consider an arbitraryO∗ ∈ A1. ThenO∗ = ∪n
i=1O

(ji) for somen = 1, 2, . . . , whereO(ji) ∈ τb,

i = 1, . . . , n. Let A(n) =
{

∩k
m=1O

(im) : {i1, i2, . . . , ik} ⊆ {j1, j2, . . . , jn}
}

be the finite set of possible

intersections ofO(j1), . . . ,O(jn). The principle of inclusion-exclusion implies that forO∗ = ∪n
i=1O

(ji),

C ∈ B(Y), z, z′ ∈ P(X), anda, a′ ∈ A,

|R(O∗ × C|z, a)−R(O∗ × C|z′, a′)| ≤
∑

B∈A(n)

|R(B × C|z, a)−R(B × C|z′, a′)|. (5.24)
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In view of the assumption of the lemma regarding finite intersections of the elements of the baseτb, for each

O∗ ∈ A1 the familyRO∗ is equicontinuous at all the points(z, a) ∈ P(X) × A. Inequality (5.16) implies

that for eachB ∈ A2 the familyRB is equicontinuous at all the points(z, a) ∈ P(X) × A, that is, (5.15)

holds with arbitraryO1 ∈ τb andO2 ∈ A1. This fact along with the definition ofH (see (3.3)) means that

lim
n→∞

sup
C∈B(Y)

∣

∣

∣

∣

∫

C

H(B|z(n), a(n), y)R′(dy|z(n), a(n))−
∫

C

H(B|z, a, y)R′(dy|z, a)

∣

∣

∣

∣

= 0, (5.25)

for anyB ∈ A2.

Since the setA2 is countable, letA2 := {B(j) : j = 1, 2, . . .}. Denotez(n,0) = z(n), a(n,0) = a(n)

for all n = 1, 2, . . . . For j = 1, 2, . . ., from (5.25) and Theorem 5.5 withS = Y, s = y, h(n)(s) =

H(B(j)|z(n,j−1), a(n,j−1), y), µ(n)(·) = R′( · |z(n,j−1), a(n,j−1)), h(s) = H(B(j)|z, a, y), andµ( · ) =

R′( · |z, a), there exists a subsequence{(z(n,j), a(n,j))}n=1,2,... of the sequence{(z(n,j−1), a(n,j−1))}n=1,2,...

and a setC(∗,j) ∈ B(Y) such that

R′(C(∗,j) | z, a) = 1 and lim
n→∞

H(B(j) | z(n,j), a(n,j), y) = H(B(j) | z, a, y) for all y ∈ C(∗,j). (5.26)

Let C∗ :=
⋂∞

j=1C
(∗,j). Observe thatR′(C∗|z, a) = 1. Let z(nk) = z(k,k) anda(nk) = a(k,k), k =

1, 2, . . . . As follows from Cantor’s diagonal argument, (5.22) holds withO = B(j) for all j = 1, 2, . . . . In

other words, (5.22) holds for allO ∈ A2.

Let O be an arbitrary open set inX andB(1,1), B(2,1), . . . be disjoint elements ofA2 satisfying (5.23).

Countable additivity of probability measuresH(·|·, ·) implies that for ally ∈ C∗

lim inf
k→∞

H(O|z(nk), a(nk), y) = lim inf
k→∞

∞
∑

j=1

H(B(j,1)|z(nk), a(nk), y)

≥
∞
∑

j=1

lim inf
k→∞

H(B(j,1)|z(nk), a(nk), y) =

∞
∑

j=1

H(B(j,1)|z, a, y) = H(O|z, a, y),

where the inequality follows from Fatou’s lemma. SinceR′(C∗|z, a) = 1, (5.22) holds.

Proof of Theorem 3.7.The setwise continuity of the stochastic kernelR′ follows from Corollary 5.4 that

states the continuity ofR′ in the total variation. The validity of Assumption (H) follows from Lemma 5.3

and Lemma 5.6. In particular,τb is any countable base of the state spaceX, and, in view of Lemma 5.3, the

family RO is equicontinuous at all the points(z, a) ∈ P(X) × A for each open setO in X, which implies

that the assumptions of Lemma 5.6 hold.

6 Preservation of Properties of One-Step Costs and Proof of Theorem 3.4

As shown in this section, the reduction of a POMDP to the COMDPpreserves properties of one-step cost

functions that are needed for the existence of optimal policies. These properties include inf-compactness

andK-inf-compactness. In particular, in this section we prove Theorem 3.4 and thus complete the proof of

Theorem 3.2.
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We recall that anR-valued functionf, defined on a nonempty subsetU of a metric spaceU, is called

inf-compact onU if all the level sets{y ∈ U : f(y) ≤ λ}, λ ∈ R, are compact. A functionf is called

lower semi-continuous, if all the level sets are closed.

The notion of aK-inf-compact functionc(x, a), defined in Section 2 for a functionc : X × A → R, is

also applicable to a functionf : S1 × S2 → R, whereS1 andS2 are metric spaces, or certain more general

toplogical spaces; see Feinberg et al. [15, 13] for details,where the properties ofK-inf-compact functions

are described. In particular, according to Feinberg et al. [15, Lemma 2.1], if a functionf is inf-compact on

S1 × S2 then it isK-inf-compact onS1 × S2. According to Feinberg et al. [15, Lemmas 2.2, 2.3], aK-inf-

compact functionf onS1 × S2 is lower semi-continuous onS1 × S2, and, in addition, for eachs1 ∈ S1, the

functionf(s1, ·) is inf-compcat onS2.

Lemma 6.1. If the functionc : X × A → R is bounded below and lower semi-continuous onX × A, then

the function̄c : P(X)×A → R defined in (3.8) is bounded below and lower semi-continuous on P(X)×A.

Proof. The statement of this lemma directly follows from generalized Fatou’s Lemma 5.1(ii).

The inf-compactness ofc onX × A implies the inf-compactness of̄c onP(X) × A. We recall that an

inf-compact function onX× A with values inR = R ∪ {+∞} is bounded below onX× A.

Theorem 6.2. If c : X×A → R is an inf-compact function onX×A, then the function̄c : P(X)×A → R

defined in (3.8) is inf-compact onP(X)× A.

Proof. Let c : X × A → R be an inf-compact function onX × A. Fix an arbitraryλ ∈ R. To prove that

the level setDc̄(λ;P(X) × A) = {(z, a) ∈ P(X) × A : c̄(z, a) ≤ λ} is compact, consider an arbitrary

sequence{z(n), a(n)}n=1,2,... ⊂ Dc̄(λ;P(X) × A). It is enough to show that{z(n), a(n)}n=1,2,... has a limit

point (z, a) ∈ Dc̄(λ;P(X)× A).

Let us show that the sequence of probability measures{z(n)}n=1,2,... has a limit pointz ∈ P(X). Define

X<+∞ := X \ X+∞, whereX+∞ := {x ∈ X : c(x, a) = +∞ for all a ∈ A}.

The inequalities
∫

X

c(x, a(n))z(n)(dx) ≤ λ, n = 1, 2, . . . , (6.1)

imply thatz(n)(X+∞) = 0 for anyn = 1, 2, . . . . Thus (6.1) transforms into
∫

X<+∞

c(x, a(n))z(n)(dx) ≤ λ, n = 1, 2, . . . . (6.2)

By definition of inf-compactness, the functionc : X × A → R is inf-compact onX<+∞ × A. According

to Feinberg et al. [14, Corollary 3.2], the real-valued function ψ(x) = inf
a∈A

c(x, a), x ∈ X<+∞, with values

in R, is inf-compact onX<+∞. Furthermore, (6.2) implies that
∫

X<+∞

ψ(x)z(n)(dx) ≤ λ, n = 1, 2, . . . .

Thus, Hernández-Lerma and Lasserre [19, Proposition E.8]and Prohorov’s Theorem [19, Theorem E.7],

yield relative compactness of the sequence{z(n)}n=1,2,... in P(X<+∞). Thus there exists a subsequence

{z(nk)}k=1,2,... ⊆ {z(n)}n=1,2,... and a probability measurez ∈ P(X<+∞) such thatz(nk) converges toz

in P(X<+∞). Let us setz(X+∞) = 0. As z(n)(X+∞) = 0 for all n = 1, 2, . . . , then the sequence of

probability measures{z(nk)}k=1,2,... converges weakly and its limit pointz belongs toP(X).
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The sequence{a(nk)}k=1,2,... has a limit pointa ∈ A. Indeed, inequality (6.1) implies that for any

k = 1, 2, . . . there exists at least onex(k) ∈ X such thatc(x(k), a(nk)) ≤ λ. The inf-compactness of

c : X × A → R onX × A implies that{a(k)}k=1,2,... has a limit pointa ∈ A. To finish the proof note that

Lemma 6.1, generalized Fatou’s Lemma 5.1(ii), and (6.1) imply that
∫

X
c(x, a)z(dx) ≤ λ.

Proof of Theorem 3.4.If c is bounded below onX× A, then formula (3.8) implies that̄c is bounded below

on P(X) × A by the same lower bound asc. Thus, it is enough to prove theK-inf-compactness of̄c on

P(X)× A.

Let a sequence of probability measures{z(n)}n=1,2,... onX weakly converges toz ∈ P(X). Consider

an arbitrary sequence{a(n)}n=1,2,... ⊂ A satisfying the condition that the sequence{c̄(z(n), a(n))}n=1,2,...

is bounded above. Observe that{a(n)}n=1,2,... has a limit pointa ∈ A. Indeed, boundedness below of the

R-valued functionc onX× A and generalized Fatou’s Lemma 5.1(ii) imply that for someλ < +∞
∫

X

c(x)z(dx) ≤ lim inf
n→∞

∫

X

c(x, a(n))z(n)(dx) ≤ λ, (6.3)

where

c(x) := lim inf
y→x, n→∞

c(y, a(n)). (6.4)

Inequality (6.3) implies the existence ofx(0) ∈ X such thatc(x(0)) ≤ λ. Therefore, formula (6.4) implies

the existence of a subsequence{a(nk)}k=1,2,... ⊆ {a(n)}n=1,2,... and a sequence{y(k)}k=1,2,... ⊂ X such

that y(k) → x(0) ask → ∞ and c(y(k), a(nk)) ≤ λ + 1 for k = 1, 2, . . . . Sincec : X × A → R is

K-inf-compact onX × A, the sequence{a(nk)}k=1,2,... has a limit pointa ∈ A, which is the limit point of

the initial sequence{a(n)}n=1,2,.... Thus, the function̄c isK-inf-compact onP(X)× A.

Arguments similar to the proof of Theorem 3.4 imply the inf-compactness of̄c(z, a) in a ∈ A for any

z ∈ P(X), if c(x, a) is inf-compact ina ∈ A for anyx ∈ X.

Theorem 6.3. If the functionc(x, a) is inf-compact ina ∈ A for eachx ∈ X and bounded below onX×A,

then the function̄c(z, a) is inf-compact ina ∈ A for eachz ∈ P(X) and bounded below onP(X)× A.

Proof. Fix z ∈ P(X) and consider a sequence{a(n)}n=1,2,... in A such thatc(z, a(n)) ≤ λ for someλ <∞,

n = 1, 2, . . . . The classic Fatou’s lemma implies that (6.3) holds withz(n) = z, n = 1, 2, . . ., andc(x) =

lim infn→∞ c(x, a(n)), x ∈ X. Thus, there existsx(0) ∈ X such thatlim infn→∞ c(x(0), a(n)) ≤ λ. This

together with the inf-compactness ofc(x(0), a) in a ∈ A implies that the sequence{a(n)}n=1,2,... has a limit

point inA.

Proof of Theorem 3.2.Theorem 3.2 follows from Theorems 3.1, 3.4, and 3.5.

7 Combining Assumption (H) and the Weak Continuity ofH

Theorem 3.2 assumes either the weak continuity ofH or Assumption(H) together with the setwise conti-

nuity of R′. For some applications, see e.g., Subsection 8.2 that dealswith inventory control, the filtering

kernelH satisfies Assumption(H) for some observations and it is weakly continuous for other observations.

The following theorem is applicable to such situations.
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Theorem 7.1. Let the observation spaceY be partitioned into two disjoint subsetsY1 andY2 such thatY1

is open inY. If the following assumptions hold:

(a) the stochastic kernelsP onX givenX× A andQ onY givenA× X are weakly continuous;

(b) the measureR′( · |z, a) on (Y2,B(Y2)) is setwise continuous in(z, a) ∈ P(X) × A, that is, for every

sequence{(z(n), a(n))}n=1,2,... in P(X)×A converging to(z, a) ∈ P(X)×A and for everyC ∈ B(Y2),

we haveR′(C|z(n), a(n)) → R′(C|z, a);

(c) there exists a stochastic kernelH onX givenP(X)× A× Y satisfying (3.3) such that:

(i) the stochastic kernelH onX givenP(X)× A× Y1 is weakly continuous;

(ii) Assumption(H) holds onY2, that is, if a sequence{z(n)}n=1,2,... ⊆ P(X) converges weakly to

z ∈ P(X) and a sequence{a(n)}n=1,2,... ⊆ A converges toa ∈ A, then there exists a subsequence

{(z(nk), a(nk))}k=1,2,... ⊆ {(z(n), a(n))}n=1,2,... and a measurable subsetC of Y2 such thatR′(Y2 \

C|z, a) = 0 andH(z(nk), a(nk), y) converges weakly toH(z, a, y) for all y ∈ C;

then the stochastic kernelq onP(X) givenP(X)×A is weakly continuous. If, in addition to the above condi-

tions, assumptions (a) and (b) from Theorem 3.2 hold, then the COMDP(P(X),A, q, c̄) satisfies Assumption

(W∗) and therefore statements (i)–(vi) of Theorem 3.1 hold.

Proof. The stochastic kernelq(dz′|z, a) on P(X) givenP(X) × A is weakly continuous if and only if for

every open setD in P(X) the functionq(D|z, a) is lower semi-continuous in(z, a) ∈ P(X)×A; Billingsley

[9, Theorem 2.1]. Thus, ifq is not weakly continuous, there exist an open setD in P(X) and sequences

z(n) → z weakly anda(n) → a, wherez, z(n) ∈ P(X) anda, a(n) ∈ A, n = 1, 2, . . . , such that

lim inf
n→∞

q(D|z(n), a(n)) < q(D|z, a).

Then there existsε∗ > 0 and a subsequence{z(n,1), a(n,1)}n=1,2,... ⊆ {z(n), a(n)}n=1,2,... such that for all

n = 1, 2, . . .

∫

Y1

I{H(z(n,1), a(n,1), y) ∈ D}R′(dy|z(n,1), a(n,1))+
∫

Y2

I{H(z(n,1), a(n,1), y) ∈ D}R′(dy|z(n,1), a(n,1))

= q(D|z(n,1), a(n,1)) ≤ q(D|z, a) − ε∗ (7.1)

=

∫

Y1

I{H(z, a, y) ∈ D}R′(dy|z, a) +
∫

Y2

I{H(z, a, y) ∈ D}R′(dy|z, a) − ε∗,

where the stochastic kernelH onX givenP(X)×A×Y satisfies (3.3) and assumption (c) of Theorem 7.1.

SinceY1 is an open set inY and the stochastic kernelH onX givenP(X)×A×Y1 is weakly continuous,

for all y ∈ Y1

lim inf
n→∞
y′→y

I{H(z(n,1), a(n,1), y′) ∈ D} = lim inf
n→∞

y′→y, y′∈Y1

I{H(z(n,1), a(n,1), y′) ∈ D} ≥ I{H(z, a, y) ∈ D}.

(7.2)
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The weak continuity of the stochastic kernelsP andQ on X given X × A and onY given A × X

respectively imply the weak continuity of the stochastic kernelR′ onY givenP(X)×A; Hernández-Lerma

[18, p. 92]. Therefore,

lim inf
n→∞

∫

Y1

I{H(z(n,1), a(n,1), y) ∈ D}R′(dy|z(n,1), a(n,1))

≥

∫

Y1

lim inf
n→∞, y′→y

I{H(z(n,1), a(n,1), y′) ∈ D}R′(dy|z(n,1), a(n,1))

≥

∫

Y1

I{H(z, a, y) ∈ D}R′(dy|z, a),

(7.3)

where the first inequality follows from Lemma 5.1(ii) and thesecond one follows from formula (7.2).

The inequality

lim sup
n→∞

∫

Y2

I{H(z(n,1), a(n,1), y) ∈ D}R′(dy|z(n,1), a(n,1)) ≥
∫

Y2

I{H(z, a, y) ∈ D}R′(dy|z, a) (7.4)

together with (7.3) contradicts (7.1). This contradictionimplies thatq( · |z, a) is a weakly continuous

stochastic kernel onP(X) givenP(X)× A.

To complete the proof of Theorem 7.1, we prove inequality (7.4). If R′(Y2|z, a) = 0, then inequality

(7.4) holds. Now letR′(Y2|z, a) > 0. SinceR′(Y2|z
(n,1), a(n,1)) → R′(Y2|z, a) asn → ∞, there exists

N = 1, 2, . . . such thatR′(Y2|z
(n,1), a(n,1)) > 0 for anyn ≥ N . We endowY2 with the same metric as in

Y and set

R′
1(C|z′, a′) :=

R′(C|z′, a′)
R′(Y2|z′, a′)

, z′ = z, z(n,1), a′ = a, a(n,1), n ≥ N, C ∈ B(Y2).

Assumption (b) of Theorem 7.1 means that the stochastic kernelR′
1(dy|z, a) onY2 givenP(X)×A is setwise

continuous. Assumption (ii) of Theorem 7.1 implies the existence of a subsequence{z(n,2), a(n,2)}n=1,2,... ⊆

{z(n,1), a(n,1)}n=1,2,... and a measurable subsetC ofY2 such thatR′
1(Y2\C|z, a) = 0 andH(z(n,2), a(n,2), y)

converges weakly toH(z, a, y) asn → ∞ for all y ∈ C. Therefore, sinceD is an open set inP(X), we

have

lim inf
k→∞

I{H(z(n,2), a(n,2), y) ∈ D} ≥ I{H(z, a, y) ∈ D}, y ∈ C. (7.5)

Formulas (3.5), (7.5), the setwise continuity of the stochastic kernelR′
1 on Y2 given P(X) × A, and

Lemma 5.1(i) imply

1

R′(Y2|z, a)
lim inf
k→∞

∫

Y2

I{H(z(n,2), a(n,2), y) ∈ D}R′(dy|z(n,2), a(n,2))

≥ lim inf
k→∞

∫

Y2
I{H(z(n,2), a(n,2), y) ∈ D}R′(dy|z(n,2), a(n,2))

R′(Y2|z(n,2), a(n,2))
≥

∫

Y2
I{H(z, a, y) ∈ D}R′(dy|z, a)

R′(Y2|z, a)
,

and thus (7.4) holds.

Corollary 7.2. Let the observation spaceY be partitioned into two disjoint subsetsY1 andY2 such thatY1

is open inY andY2 is countable. If the following assumptions hold:
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(a) the stochastic kernelsP onX givenX× A andQ onY givenA× X are weakly continuous;

(b) Q(y|a, x) is a continuous function onA× X for eachy ∈ Y2;

(c) there exists a stochastic kernelH on X givenP(X) × A × Y satisfying (3.3) such that the stochastic

kernelH onX givenP(X)× A× Y1 is weakly continuous;

then assumptions (b) and (ii) of Theorem 7.1 hold, and the stochastic kernelq onP(X) givenP(X) × A is

weakly continuous. If, in addition to the above conditions,assumptions (a) and (b) from Theorem 3.2 hold,

then the COMDP(P(X),A, q, c̄) satisfies Assumption(W∗) and therefore statements (i)–(vi) of Theorem 3.1

hold.

Proof. To prove the corollary, it is sufficient to verify conditions(b) and (ii) of Theorem 7.1. For each

B ∈ B(X) and for eachy ∈ Y2, Hernández-Lerma [18, Proposition C.2(b), Appendix C], being repeatedly

applied to formula (3.1) withC = {y}, implies the continuity ofR(B × {y}|z, a) in (z, a) ∈ P(X) × A.

In particular, the functionR′(y| · , · ) is continuous onP(X) × A. If R′( y |z, a) > 0 then, in view of (3.3),

H(B|z, a, y) = R(B × {y}|z, a)/R′( y |z, a), and, if y is fixed, this function is continuous at the point

(z, a). Thus, condition (ii) of Theorem 7.1 holds. Since the setY2 is closed inY, the functionQ(Y2|a, x) is

upper semi-continuous in(a, x) ∈ A×X.Generalized Fatou’s Lemma 5.1, being repeatedly applied to(3.2)

with C = Y2, implies thatR′(Y2|z, a) is upper semi-continuous in(z, a) ∈ P(X) × A. This implies that,

for everyY ⊆ Y2 and for every sequence{z(n), a(n)}n=1,2,... ⊂ P(X)×A converging to(z, a) ∈ P(X)×A,

|R′(Y |z(n), a(n))−R′(Y |z, a)| ≤
∑

y∈Y2

|R′(y|z(n), a(n))−R′(y|z, a)| → 0 as n→ ∞,

where the convergence takes place because of the same arguments as in the proof of Corollary 3.8. Thus,

condition (b) of Theorem 7.1 holds.

8 Examples of Applications

To illustrate theoretical results, they are applied in thissection to three particular models: (i) problems

defined by stochastic equations; see Striebel [32], Bensoussan [3], and Hernández-Lerma [18, p. 83], (ii)

inventory control, and (iii) Markov Decision Model with incomplete information.

8.1 Problems Defined by Stochastic Equations

Let {ξt}t=0,1,... be a sequence of identically distributed finite random variables with values inR and with the

distributionµ. Let {ηt}t=0,1,... be a sequence of random variables uniformly distributed on(0, 1). An initial

statex0 is a random variable with values inR. It is assumed that the random variablesx0, ξ0, η0, ξ1, η1, . . .

are defined on the same probability space and mutually independent.

Consider a stochastic partially observable control system

xt+1 = F (xt, at, ξt), t = 0, 1, . . . , (8.1)

yt+1 = G(at, xt+1, ηt+1), t = 0, 1, . . . , (8.2)
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whereF andG are given measurable functions fromR × R × R to R and fromR × R × (0, 1) to R

respectively. The initial observation isy0 = G0(x0, η0), whereG0 is a measurable function fromR× (0, 1)

to R. The statesxt are not observable, while the statesyt are observable. The goal is to minimize the

expected total discounted costs.

Instead of presenting formal definitions of functionsat, we describe the above problem as a POMDP

with the state spaceX = R, observation spaceY = R, and action spaceA = R. The transition law is

P (B|x, a) =

∫

R

I{F (x, a, s) ∈ B}µ(ds), B ∈ B(R), x ∈ R, a ∈ R. (8.3)

The observation kernel is

Q(C|a, x) =

∫

(0,1)
I{G(a, x, s) ∈ C}λ(ds), C ∈ B(R), a ∈ R, x ∈ R,

whereλ ∈ P((0, 1)) is the Lebesgue measure on(0, 1). The initial state distributionp is the distribution of

the random variablex0, and the initial observation kenelQ0(C|x) =
∫

(0,1) I{G0(x, s) ∈ C}λ(ds) for all

C ∈ B(R) and for allx ∈ X.

Assume that(x, a) → F (x, a, s) is a continuous mapping onR×R for µ-a.e.s ∈ R. Then the stochastic

kernelP (dx′|x, a) onR givenR× R is weakly continuous; Hernández-Lerma [18, p. 92].

Assume that: (i)G is a continuous mapping onR × R × (0, 1), (ii) the partial derivativeg(x, y, s) =
∂G(x,y,s)

∂s
exists everywhere and is continuous, and (iii) there existsa constantβ > 0 such that|g(a, x, s)| ≥

β for all a ∈ R, x ∈ R, ands ∈ (0, 1). Denote byG the inverse function forG with respect the last variable.

Assume thatG is continuous.

Let us prove that under these assumptions the observation kernelQ onR givenR × R is continuous in

the total variation. For eachε ∈ (0, 12), for each Borel setC ∈ B(R), and for all(a′, x′), (a, x) ∈ R×R

∣

∣Q(C|a′, x′)−Q(C|a, x)
∣

∣ =

∣

∣

∣

∣

∫ 1

0
I{G(a′, x′, s) ∈ C}λ(ds)−

∫ 1

0
I{G(a, x, s) ∈ C}λ(ds)

∣

∣

∣

∣

≤ 4ε+

∣

∣

∣

∣

∫ 1−ε

ε

I{G(a′, x′, s) ∈ C}λ(ds)−

∫ 1−ε

ε

I{G(a, x, s) ∈ C}λ(ds)

∣

∣

∣

∣

= 4ε+

∣

∣

∣

∣

∣

∫

G(a′,x′,[ε,1−ε])

I{s̃ ∈ C}

g(a′, x′,G(a′, x′, s̃))
λ̃(ds̃)−

∫

G(a,x,[ε,1−ε])

I{s̃ ∈ C}

g(a, x,G(a, x, s̃))
λ̃(ds̃)

∣

∣

∣

∣

∣

≤ 4ε+
|G(a′, x′, ε) −G(a, x, ε)| + |G(a′, x′, 1− ε)−G(a, x, 1 − ε)|

β

+
1

β2

∫

G(a,x,[ε,1−ε])∩G(a′,x′,[ε,1−ε])

∣

∣g(a′, x′,G(a′, x′, s̃))− g(a, x,G(a, x, s̃))
∣

∣ λ̃(ds̃),

whereλ̃ is the Lebesgue measure onR, the second equality holds because of the changess̃ = G(a′, x′, s)

ands̃ = G(a, x, s) in the corresponding integrals, and the second inequality follows from direct estimations.

Since, the functionG is continuous,G(a′, x′, ε) → G(a, x, ε) andG(a′, x′, 1 − ε) → G(a, x, 1 − ε) as

(a′, x′) → (a, x), for any(a, x, ε) ∈ R× R× (0, 12). Thus, if

∫

R

D(a, x, a′, x′, ε, s̃)λ̃(ds̃) → 0 as (a′, x′) → (x, a), (8.4)

28



D
R

A
FT

whereD(a, x, a′, x′, ε, s̃) := |g(a′, x′,G(a′, x′, s̃))− g(a, x,G(a, x, s̃))|, when s̃ ∈ G(a, x, [ε, 1 − ε]) ∩

G(a′, x′, [ε, 1 − ε]), andD(a, x, a′, x′, ε, s̃) = 0 otherwise, then

lim
(a′,x′)→(a,x)

sup
C∈B(R)

∣

∣Q(C|a′, x′)−Q(C|a, x)
∣

∣ = 0.

So, to complete the proof of the continuity in the total variation of the observation kernelQ onR given

R × R, it is sufficient to verify (8.4). We fix an arbitrary vector(a, x, ε) ∈ R × R × (0, 12) and consider

arbitrary converging sequencesa(n) → a andx(n) → x. Let (a′, x′) = (a(n), x(n)), n = 1, 2, . . . . Since

the setsK := {(a(n), x(n)) : n = 1, 2, . . .} ∪ {(a, x)} and [ε, 1 − ε] are compact and the functiong is

continuous onR×R×(0, 1), the function|g| is bounded above on the compact setK×[ε, 1−ε] by a positive

constantM . Thus, the integrand in (8.4) is bounded above by2M on the compact setG(K × [ε, 1− ε]) and

is equal to0 on its complement. SinceG, g, andG are continuous functions, for eachs̃ ∈ R the integrand in

(8.4) converges to 0 as(a′, x′) → (a, x). Therefore, (8.4) follows from the dominated convergence theorem,

because the Lebeasgue measure of the setG(K × [ε, 1 − ε]) is finite since this set is compact.

Finally, we assume that the one-period cost functionc : R × R → R is bounded below andK-inf-

compact. Thus, the assumptions of Theorem 3.6 are satisfied.Therefore, for this COMDP there exists a

stationary optimal policy, the optimality equations hold,and value iterations converge to the optimal value.

We remark that the one-dimensional Kalman filter in discretetime satisfies the above assumptions. In

this case,F (xt, at, ξt) = d∗xt + b∗at + ξt andG(at, xt+1, ηt+1) = h∗xt+1 + c∗Φ−1(ηt+1), wherec∗ 6= 0

andΦ−1 is the inverse to the cumulative distribution function of a standard normal distribution (Φ−1(ηt+1)

is a standard normal random variable). In particular,|g(a, x, s)| = |c∗|(2π)
1
2 e

Φ−1(s)2

2 ≥ |c∗|(2π)
1
2 > 0

for all s ∈ [0, 1]. Thus, if the cost functionc(x, a) is K-inf-compact, then the conclusions of Theorem 3.6

hold for the Kalman filter. In particular, the quadratic costfunctionc(x, a) = c1x
2 + c2a

2 isK-inf-compact

if c1 ≥ 0 and c2 > 0. Thus, the linear quadratic Gaussian control problem is a particular case of this

model. The one-step cost functionsc(x, a) = (a− x)2 andc(x, a) = |x − a|, which are typically used for

identification problems, are alsoK-inf-compact. However, these two functions are not inf-compact. This

illustrates the usefulness of the notion ofK-inf-compactness.

8.2 Inventory Control with Incomplete Records

This example is motivated by Bensoussan et al. [4]–[7], where several inventory control problems for peri-

odic review systems, when the Inventory Manager (IM) may nothave complete information about inventory

levels, are studied. In Bensoussan et al. [4], [7], a problemwith backorders is considered. In the model

considered in [4], the IM does not know the inventory level, if it is nonnegative, and the IM knows the

inventory level, if it is negative. In the model considered in [7], the IM only knows whether the inventory

level is negative or nonnegative. In [5] a problem with lost sales is studied, when the IM only knows whether

a lost sale took place or not. The underlying mathematical analysis is summarized in [6], where additional

references can be found. The analysis includes transformations of density functions of demand distributions.

The current example studies periodic review systems with backorders and lost sales, when some inven-

tory levels are observable and some are not. The goal is to minimize the expected total costs. Demand

distribution may not have densities.
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In the case of full observations, we model the problem as an MDP with a state spaceX = R (the current

inventory level), action spaceA = R (the ordered amount of inventory), and action setsA(x) = A available

at statesx ∈ X. If in a statex the amount of inventorya is ordered, then the holding/backordering cost

h(x), ordering costC(a), and lost sale costG(x, a) are incurred, where it is assumed thath, C, andG are

nonnegative lower semi-continuous functions with values in R andC(a) → +∞ as |a| → ∞. Observe

that the one-step cost functionc(x, a) = h(x) + C(a) + G(x, a) is K-inf-compact onX × A. Typically

G(x, a) = 0 for x ≥ 0.

Let Dt, t = 0, 1, . . . , be i.i.d. random variables with the distribution functionFD, whereDt is the

demand at epocht = 0, 1, . . . . The dynamics of the system is defined byxt+1 = F (xt, at,Dt), where

xt is the current inventory level andat is the ordered (or scrapped) inventory at epocht = 0, 1, . . . . For

problems with backordersF (xt, at,Dt) = xt + at −Dt and for problems with lost salesF (xt, at,Dt) =

|xt + at − Dt|
+. In both cases,F is a continuous function defined onR3. To simplify and unify the

presentation, we do not follow the common agreement thatX = [0,∞) for models with lost sales. However,

for problems with lost sales it is assumed that the initial state distributionp is concentrated on[0,∞), and

this implies that statesx < 0 will never be visited. We assume that the distribution function FD is atomless

(an equivalent assumption is that the functionFD is continuous). The state transition lawP on X given

X× A is

P (B|x, a) =

∫

R

I{F (x, a, s) ∈ B}dFD(s), B ∈ B(X), x ∈ X, a ∈ A. (8.5)

Since we do not assume that demands are nonnegative, this model also covers cash balancing problems

and problems with returns; see Feinberg and Lewis [17] and references therein. In a particular case, when

C(a) = +∞ for a < 0, orders with negative sizes are infeasible, and, if an orderis placed, the ordered

amount of inventory should be positive.

As mentioned above, some states (inventory levels)x ∈ X = R are observable and some are not. Let

inventory be stored in containers. From a mathematical prospective, containers are elements of a finite or

countably infinite partition ofX = R into disjoint convex sets, and each of these sets is not a singleton.

In other words, each containerBi+1 is an interval (possibly open, closed, or semi-open) with endsdi and

di+1 such that−∞ ≤ di < di+1 ≤ +∞, and the union of these disjoint intervals isR. In addition, we

assume thatdi+1 − di ≥ γ for some constantγ > 0 for all containers, that is, the sizes of all the containers

are uniformly bounded below by a positive number. We also follow an agreement that the 0-inventory level

belongs to a container with end pointsd0 andd1, and a container with end pointsdi anddi+1 is labeled

as the(i + 1)-th containerBi+1. Thus, containerB1 is the interval in the partition containing point 0.

Containers’ labels can be nonpositive. If there is a container with the smallest (or largest) finite labeln then

dn−1 = −∞ (or dn = +∞, respectively). If there are containers with labelsi andj then there are containers

with all the labels betweeni andj. In addition each container is either transparent or nontransparent. If the

inventory levelxt belongs to a nontransparent container, the IM only knows which container the inventory

level belongs to. If an inventory levelxt belongs to a transparent container, the IM knows that the amount

of inventory is exactlyxt.

For each nontransparent container with end pointsdi anddi+1, we fix an arbitrary pointbi+1 satisfying

di < bi+1 < di+1. For example, it is possible to setbi+1 = 0.5di + 0.5di+1, whenmax{|di|, |di+1|} <∞.
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If an inventory level belongs to a nontransparent containerBi, the IM observesyt = bi. Let L be the set

of labels of the nontransparent containers. We setYL = {bi : i ∈ L} and define the observation set

Y = T ∪ YL, whereT is the union of all transparent containersBi (transparent elements of the partition).

If the observationyt belongs to a transparent container (in this case,yt ∈ T), then the IM knows that the

inventory levelxt = yt. If yt ∈ YL (in this case,yt = bi for somei), then the IM knows that the inventory

level belongs to the containerBi, and this container is nontransparent. Of course, the distribution of this

level can be computed.

Let ρ be the Euclidean distance onR : ρ(a, b) = |a − b| for a, b ∈ Y. On the state spaceX = R we

consider the metricρX(a, b) = |a − b|, if a andb belong to the same container, andρX(a, b) = |a− b| + 1

otherwise, wherea, b ∈ X. The space(X, ρX) is a Borel subset of a Polish space (consisting of closed

containers, that is, each finite pointdi is represented by two points: one belonging to the containerBi and

another one to the containerBi+1). We notice thatρX(x(n), x) → 0 asn→ ∞ if and only if |x(n)−x| → 0

asn→ ∞ and the sequence{x(n)}n=N,N+1,... belongs to the same container asx for a sufficiently largeN .

Thus, convergence onX in the metricρX implies convergence in the Euclidean metric. In addition, if x 6= di

for all containersi, thenρX(x(n), x) → 0 asn → ∞ if and only if |x(n) − x| → 0 asn → ∞. Therefore,

for any open setB in (X, ρX), the setB \ (∪i{di}) is open in(X, ρ). We notice that each containerBi is an

open and closed set in(X, ρX).

Observe that the state transition lawP given by (8.5) is weakly continuous in(x, a) ∈ X × A. Indeed,

let B be an open set in(X, ρX) andρX(x(n), x) → 0 and |a(n) − a| → 0 asn → ∞. The setB◦ :=

B \ (∪i{di}) = B ∩ (∪i(di, di+1)) is open in(X, ρ). SinceF (as a function from(X, ρX)× (A, ρ)× (R, ρ)

into (X, ρX)) is a continuous function in the both models, with backorders and lost sales, Fatou’s lemma

yields

lim inf
n→∞

P (B◦|x(n), a(n)) = lim inf
n→∞

∫

R

I{F (x(n), a(n), s) ∈ B◦}dFD(s)

≥

∫

R

lim inf
n→∞

I{F (x(n), a(n), s) ∈ B◦}dFD(s) ≥

∫

R

I{F (x, a, s) ∈ B◦}dFD(s) = P (B◦|x, a).

Therefore,lim infn→∞ P (B|x(n), a(n)) ≥ P (B|x, a) because for the model with backordersP (x∗|x′, a′) =

0 for all x∗, x′, a′ ∈ R in view of the continuity of the distribution functionFD, and, for the model with lost

sales,P (x∗|x′, a′) = 0 for anyx′, a′ ∈ R andx∗ 6= 0, andP (0|x′, a′) = 1 − FD(x
′ + a′) is continuous

in (x′, a′) ∈ X × A. SinceB is an arbitrary open set in(X, ρX), the stochastic kernelP on X given

X×A is weakly continuous. Therefore,lim supn→∞ P (B|x(n), a(n)) ≤ P (B|x, a), for any closed setB in

(X, ρX). Since any containerBi is simultaneously open and closed in(X, ρX), we haveP (Bi|x
(n), a(n)) →

P (Bi|x, a) asn→ ∞.

SetΨ(x) = x, if the inventory levelx belongs to a transparent container, andΨ(x) = bi, if the inventory

level belongs to a nontransparent containerBi with a labeli. As follows from the definition of the metric

ρX, the functionΨ : (X, ρX) → (Y, ρ) is continuous. Therefore, the observation kernelsQ0 onY givenX

andQ onY givenA× X,Q0(C|x) := Q(C|a, x) := I{Ψ(x) ∈ C}, C ∈ B(Y), a ∈ A, x ∈ X, are weakly

continuous.

If all the containers are nontransparent, the observation set Y = YL is countable, and conditions of

Corollary 3.8 hold. In particular, the functionQ(bi|a, x) = I{x ∈ Bi} is continuous, if the metricρX
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is considered onX. If some containers are transparent and some are not, the conditions of Corollary 7.2

hold. To verify this, we setY1 := T andY2 := YL and note thatY2 is countable and the function

Q(bi|x) = I{x ∈ Bi} is continuous for eachbi ∈ YL becauseBi is open and closed in(X, ρX). Note

thatH(B|z, a, y) = P (B|y, a) for anyB ∈ B(X), C ∈ B(Y), z ∈ P(X), a ∈ A, andy ∈ T. The kernel

H is weakly continuous onP(X) × A × Y1. In addition,T = ∪iB
t
i , whereBt

i are transparent containers,

is an open set in(X, ρX). Thus, if either Assumption (D) or Assumption (P) holds, then POMDP (X, Y,

A, P , Q, c) satisfies the assumptions of Corollary 7.2. Thus, for the corresponding COMDP, there are

stationary optimal policies, optimal policies satisfy theoptimality equations, and value iterations converge

to the optimal value.

The models studied in Bensoussan et al. [4, 5, 7] correspond to the partitionB1 = (−∞, 0] and

B2 = (0,+∞) with the containerB2 being nontransparent and with the containerB1 being either non-

transparent (backordered amounts are not known [7]) or transparent (models with lost sales [5], backorders

are observable [4]). Note that, sinceFD is atomless, the probability thatxt+at−Dt = 0 is 0, t = 1, 2, . . . .

The model provided in this subsection is applicable to otherinventory control problems, and the con-

clusions of Corollary 7.2 hold for them too. For example, forproblems with backorders, a nontransparent

containerB0 = (−∞, 0) and a transparent containerB1 = [0,+∞) model a periodic review inventory

control system for which nonnegative inventory levels are known, and, when the inventory level is negative,

it is known that they are backorders, but their values are unknown.

8.3 Markov Decision Model with Incomplete Information (MDM II)

An MDMII is a particular version of a POMDP studied primarilybefore the POMDP model was introduced

in its current formulation. The reduction of MDMIIs with Borel state and action sets to MDPs was described

by Rhenius [24] and Yushkevich [34]; see also Dynkin and Yushkevich [12, Chapter 8]. MDMIIs with

transition probabilities having densities were studied byRieder [25]; see also Bäuerle and Rieder [2, Part

II]. An MDMII is defined by anobserved state spaceY, anunobserved state spaceW, anaction spaceA,

nonemptysets of available actionsA(y), wherey ∈ Y, a stochastic kernelP onY×W givenY×W×A,

and a one-step cost functionc : G→ R, whereG = {(y,w, a) ∈ Y×W× A : a ∈ A(y)} is the graph of

the mappingA(y,w) = A(y), (y,w) ∈ Y×W. Assume that:

(i) Y, W andA are Borel subsets of Polish spaces. For ally ∈ Y a nonempty Borel subsetA(y) of A

represents theset of actionsavailable aty;

(ii) the graph of the mappingA : Y → 2A, defined asGr(A) = {(y, a) : y ∈ Y, a ∈ A(y)} is

measurable, that is,Gr(A) ∈ B(Y×A), and this graph allows a measurable selection, that is, there exists a

measurable mappingφ : Y → A such thatφ(y) ∈ A(y) for all y ∈ Y;

(iii) the transition kernelP onX givenY×W× A is weakly continuous in(y,w, a) ∈ Y×W× A;

(iv) the one-step costc is K-inf-compact onG, that is, for each compact setK ⊆ Y ×W and for each

λ ∈ R, the setDK,c(λ) = {(y,w, a) ∈ G : c(y,w, a) ≤ λ} is compact.

Let us defineX = Y × W, and forx = (y,w) ∈ X let us defineQ(C|x) = I{y ∈ C} for all

C ∈ B(Y). Observe that thisQ corresponds to the continuous functiony = F (x), whereF (y,w) = y for

all x = (y,w) ∈ X (hereF is a projection ofX = Y × W on Y). Thus, as explained in Example 4.1,
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the stochastic kernelQ(dy|x) is weakly continuous inx ∈ X. Then by definition, an MDMII is a POMDP

with the state spaceX, observation setY, action spaceA, available action setsA(y), transition kernelP ,

observation kernelQ(dy|a, x) := Q(dy|x), and one-step cost functionc. However, this model differs

from our basic definition of a POMDP because action setsA(y) depend on observations and one-step costs

c(x, a) = c(y,w, a) are not defined whena /∈ A(y). To avoid this difficulty, we setc(y,w, a) = +∞ when

a /∈ A(y). The extended functionc isK-inf-compact onX×A because the setDK,c(λ) remains unchanged

for eachK ⊆ Y×W and for eachλ ∈ R.

Thus, an MDMII is a special case of a POMDP(X,Y,A, P,Q, c), whenX = Y ×W and observation

kernelsQ andQ0 are defined by the projection ofX onY. The observation kernelQ( · |x) is weakly con-

tinuous inx ∈ X. As Example 4.1 demonstrates, in general this is not sufficient for the weak continuity of

q and therefore for the existence of optimal policies. The following example confirms this conclusion for

MDMIIs by demonstrating even the stronger assumption, thatP is setwise continuous, is not sufficient for

the weak continuity of the transition probabilityq.

Example 8.1. Setwise continuity of a transition probabilityP on X givenX × A for an MDMII is not

sufficient for the weak continuity of the transition probability q for the corresponding COMDP.SetW =

{1, 2}, Y = [0, 1], X = Y × W, andA = {0} ∪ { 1
n
: n = 1, 2, . . .}. Letm be the Lebesgue measure on

Y = [0, 1] andm(n) be an absolutely continuous measure onY = [0, 1] with the densityf (n) defined in

(4.1). As shown in Example 4.1, the sequence of probability measures{m(n)}n=1,2,... converges setwise

to the Lebesgue measurem on Y = [0, 1]. Recall thatQ(C|a, y, w) = I{y ∈ C} for C ∈ B(Y). In

this example, the setwise continuous transition probability P is chosen to satisfy the following properties:

P (B|y,w, a) = P (B|w, a) for all B ∈ B(X), y ∈ Y, w ∈ W, a ∈ A, that is, the transition probabilities do

not depend on observable states, andP (Y × {w′}|w, a) = 0, whenw′ 6= w for all w,w′ ∈ W, a ∈ A, that

is, the unobservable states do not change. ForC ∈ B(Y), w ∈ W, anda ∈ A, we set

P (C × {w}|w, a) =

{

m(n)(C), w = 2, a = 1
n
, n = 1, 2, . . . ;

m(C), otherwise.

Fix z ∈ P(X) defined by

z(C × {w}) = 0.5(I{w = 1}+ I{w = 2})m(C), w ∈ W, C ∈ B(Y).

Direct calculations according to formulas (3.1)–(3.5) imply that forC,C ′ ∈ B(Y) andw ∈ W

R(C × {w} × C ′|z, a) =

{

0.5m(n)(C ∩C ′), if w = 2 anda = 1
n
;

0.5m(C ∩C ′), otherwise:

which impliesR′(C ′|z, 1
n
) = 0.5(m(C ′) +m(n)(C ′)), R′(C ′|z, 0) = m(C ′), and therefore we can choose

H(C × {w}|z, a, y) =



















0.5 I{y ∈ C}, if a = 0;

I{y ∈ C, f (n)(y) = 0}+ 1
3I{y ∈ C, f (n)(y) = 2}, if w = 1, a = 1

n
;

2
3I{y ∈ C, f (n)(y) = 2}, if w = 2, a = 1

n
;
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wherey ∈ Y andn = 1, 2, . . . . The subset of atomic probability measures onX

D :=

{

z(y) ∈ P(X) : z(y)(y, 1) =
1

3
, z(y)(y, 2) =

2

3
, y ∈ Y

}

is closed inP(X). Indeed, an integral of any bounded continuous functiong onX with respect to a measure

z(y) ∈ D equals1
3g(y, 1) +

2
3g(y, 2), y ∈ Y. Therefore, a sequence{z(y

(n))}n=1,2,... of measures from

D weakly converges toz′ ∈ P(X) if and only if y(n) → y ∈ Y asn → ∞ for somey ∈ Y, and thus

z′ = z(y) ∈ D. SinceD is a closed set inP(X), if the stochastic kernelq on P(X) given P(X) × A is

weakly continuous thenlim supn→∞ q(D|z, 1
n
) ≤ q(D|z, 0); Billingsley [9, Theorem 2.1(iii)]. However,

q(D|z, 1
n
) = z(f (n)(y) = 2) = 0.5[m(f (n)(y) = 2) + m(n)(f (n)(y) = 2)] = 3

4 , n = 1, 2, . . . , and

q(D|z, 0) = 0. Thus, the stochastic kernelq onP(X) givenP(X)× A is not weakly continuous. �

Thus, the natural question is which conditions are needed for the existence of optimal policies for

the COMDP corresponding to an MDMII? The first author of this paper learned about this question from

Alexander A. Yushkevich around the time when Yushkevich wasworking on [34]. The following theorem

provides such a condition. For each open setO in W and for anyC ∈ B(Y), consider a family of functions

P∗
O = {(x, a) → P (C ×O|x, a) : C ∈ B(Y)} mappingX × A into [0, 1]. Observe that equicontinuity at

all the points(x, a) ∈ X × A of the family of functionsP∗
O is a weaker assumption, than the continuity of

the stochastic kernelP onX givenX× A in the total variation.

Theorem 8.2. Consider the expected discounted cost criterion with the discount factorα ∈ [0, 1) and, if

the cost functionc is nonnegative, thenα = 1 is also allowed. If for each nonempty open setO in W the

family of functionsP∗
O is equicontinuous at all the points(x, a) ∈ X×A, then the POMDP (X,Y,A,P ,Q,c)

satisfies assumptions (a), (b), and (i) of Theorem 3.2, and therefore the conclusions of that theorem hold.

Proof. Assumptions (a) and (b) of Theorem 3.2 are obviously held, and the rest of the proof verifies as-

sumption (i). From (3.1) and (3.2),

R(C1×B×C2|z, a) =

∫

X

P ((C1∩C2)×B|x, a)z(dx), B ∈ B(W), C1, C2 ∈ B(Y), z ∈ P(X), a ∈ A,

R′(C|z, a) =

∫

X

P (C ×W|x, a)z(dx), C ∈ B(Y), z ∈ P(X), a ∈ A.

For any nonempty open setsO1 in Y andO2 in W respectively, Theorem 5.2, withS1 = P(X), S2 = X,

S3 = A, O = X, Ψ(B|z) = z(B), andA0 = {(x, a) → P ((O1 ∩ C) × O2)|x, a) : C ∈ B(Y)}, implies

the equicontinuity of the family of functions

RO1×O2 = {(z, a) → R(O1 ×O2 × C|z, a) : C ∈ B(Y)} ,

defined onP(X)× A, at all the points(z, a) ∈ P(X)× A. Being applied toO1 = Y andO2 = W, this fact

implies that the stochastic kernelR′ onY givenP(X)× A is continuous in the total variation. In particular,

the stochastic kernelR′ is setwise continuous.

Now, we show that Assumption(H) holds. Since the metric spacesY andW are separable, there exist

countable basesτYb andτWb of the topologies for the separable metric spacesY andW, respectively. Then
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τb = {OY × OW : OY ∈ τYb , O
W ∈ τWb } is a countable base of the topology of the separable metric

spaceX = Y ×W. Therefore, Assumption(H) follows from Lemma 5.6, the equicontinuity of the family

of functionsRO1×O2 for any open setsO1 in Y andO2 in W, and the property that, for any finite subsetN

of {1, 2, . . .},

⋂

j∈N
(OY

j ×OW
j ) = (

⋂

j∈N
OY

j )× (
⋂

j∈N
OW

j ) = O1 ×O2, OY
j ∈ τYb ,O

W
j ∈ τWb for all j ∈ N,

whereO1 = ∩j∈NOY
j andO2 = ∩j∈NOW

j are open subsets ofY andW, respectively.
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