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Abstract

Motivated by a class of applied problems arising from physical layer based security in a digital com-
munication system, in particular, by a secrecy sum-rate maximization problem, this paper studies a
nonsmooth, difference-of-convex (dc) minimization problem. The contributions of this paper are: (i)
clarify several kinds of stationary solutions and their relations; (ii) develop and establish the conver-
gence of a novel algorithm for computing a d-stationary solution of a problem with a convex feasible set
that is arguably the sharpest kind among the various stationary solutions; (iii) extend the algorithm
in several directions including: a randomized choice of the subproblems that could help the practical
convergence of the algorithm, a distributed penalty approach for problems whose objective functions
are sums of dc functions, and problems with a specially structured (nonconvex) dc constraint. For the
latter class of problems, a pointwise Slater constraint qualification is introduced that facilitates the
verification and computation of a B(ouligand)-stationary point.

1 Introduction

A general difference-of-convex (dc) optimization problem refers to the minimization/maximization of
an objective function that is the difference of two convex functions subject to constraints defined by
functions of the same kind. Such optimization problems form a large class of nonconvex programs and
have been studied extensively for more than three decades in the mathematical programming literature
[21, 11, 13, 24, 26, 25, 44, 32, 45]. In particular, Pham Thinh Tao and Le Thi Hoai An have made
pioneering contributions to this important subfield of contemporary optimization and are responsible for
much of the development of theory, algorithms, and applications of dc programming to date. See the
cited references [21, 17, 18, 13, 22, 32] for a sample of their voluminous writings in this area. In particular,
the DCA (Difference-of-Convex Algorithm) has been a principal algorithm for computing a critical point
of the problem.

Our interest in this class of nonconvex optimization problems stemmed initially from a particular appli-
cation pertaining to physical layer based security in a digital communication system [1, 2] and a related
one of joint base-station assignment and power allocation [38]. A first glance at their formulations does
not immediately reveal that the resulting nonsmooth maximization problem (see (3)) is of the dc type.
Yet, a careful look at the objective function shows that it can be expressed as the difference of two con-
cave functions, one of which is differentiable and the other one is not. Furthermore, via a “lifting” of the
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problem using some auxiliary continuous variables to express a discrete pointwise maximum function as a
value function of an optimization problem over the unit simplex, this applied problem can be formulated
as a smooth, bi-concave (thus nonconcave), linearly constrained maximization problem. This special
problem raises several interesting questions that do not seem to have been adequately addressed in the
existing literature of dc programming. As a linearly constrained dc program, one can speak about the
concept of a d(irectional)-stationary point of the problem, i.e., a point at which the one-sided derivatives
of the objective function along any feasible (equivalently, tangent) direction are nonnegative. Since the
lifted formulation is smooth, one can speak about the standard concept of stationarity, which we call
lifted stationarity, in terms of the gradient of the objective function in the lifted space. The following is
a set of questions that have partially motivated our research: for a dc program with convex constraints,

(a) How are the concepts of a critical point and d-stationarity related to each other?

(b) How is lifted stationarity defined in general? How is it related to criticality and d-stationarity of the
un-lifted problem?

(c) Are there algorithms that can provably compute a d-stationary point?

Providing answers to the first two questions constitute a major part of our study. In so doing, we are led
to the contention that d-stationarity is arguably the sharpest among these stationarity concepts and yet
the computation of such a point by an existing provably convergent algorithm seems to have been elusive
to date. This lack of a computational scheme for obtaining a d-stationary point of a convex-constrained
dc program leads to the other part of our work, namely, to propose a novel iterative algorithm to fill
this gap. The design of the algorithm is interesting in its own right, namely, it contains innovative ideas
that do not seem to have been introduced in the dc literature; in particular, we present a randomized
version of the algorithm to deal with a potential weakness of the algorithm in practical implementation.
Convergence of the algorithms is established.

Also included in our algorithmic development is the extension of the basic algorithm to a multi-agent
context where the objective is the sum of dc functions with each summand being a private objective
function (with coupled variables) of an individual agent. [The applied problem mentioned at the beginning
of this introduction is a problem of this kind.] In such a context, it is desirable to develop a distributed
algorithm wherein the optimization of each agent can be carried out independently of the other agents.
The design of such a distributed algorithm is another major contribution of our work. This is accomplished
via a double iteration wherein the outer loop is a penalty-based scheme and each inner loop applies
the newly developed algorithm for computing a d-stationary point of a penalized subproblem. The
separability into individual agent-based optimization occurs naturally in the latter loop.

Our last contribution is the extension of the basic algorithm to allow for the presence of a non-differentiable
dc constraint, leading what has been called a general dc program [18, 20, 32]. Such a constraint adds
considerable complication to the theory and computation for a convex feasible set, due to the nonsmooth-
ness and nonconvexity of the dc constraint. For such a dc constrained dc program, we formally define the
concept of a B(ouligand)-stationary point and show how it can be characterized by a reasonable number
of convex programs, thus making the verification of such a stationary point practically implementable.
A provably convergent algorithm is then developed for computing such a point.

2 Motivating Applied Problems

In this section, we discuss two applied problems pertaining to power allocation in digital communication
systems that had motivated our research. These problems lead us to a unified class of value functions of
a continuum family of bivariate functions which we show are of the dc type. For more applications of dc
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programs to communication systems and other domains, we refer the readers to [17, 21]. Subsequent to
the completion of the original version of this paper, the authors recognized that many interesting classes
of nonconvex optimization problems are actually of the dc kind and have not been treated as such;
examples include those arising from deviation measures in risk analysis as well as in the regularization
of loss functions in statistical learning. Due to space limitations, we cannot give details of these other
problems. We are hopeful that our work herein opens renewed opportunities for the dc methodology, in
particular the results and algorithms in this paper and those existed in the literature, to be applied to
deal with these nonconvex problems more effectively.

The concept of secrecy capacity is of fundamental importance in information theory [15]. Based on this
concept, a design problem in physical layer based security is to allocate power budget to the network
spectra so that the transmissions between legitimate parties can be kept secure. The problem stated
below pertains to the single-input-single-output (SISO) paradigm where users of the network (consisting
of transmitter-receiver pairs) communicate over multiple non-orthogonal subchannels. There are also
a number of “friendly” jammers and one eavesdropper. Each legitimate user’s transmitter wants to
communicate (in a secure way) with its corresponding receiver over a set of parallel subchannels. The
friendly jammers are entities willing to cooperate with the legitimate parties by introducing judicious
interferences so as to impair the eavesdropper’s ability to decode the messages between intended nodes.
With Hrq(k), Hr0(k) and Ĥj0(k) denoting the channel gains and σ2q(k) the variances of channel noise,
all being constants in the model, and pq(k) and p̂j(k) denoting, respectively, the variable power of user
q and jammer j allocated to channel k, this multi-jammer secrecy-sum-rate maximization problem is
formulated as follows [2]:

maximize
(p,p̂)≥0

Q∑

q=1

N∑

k=1

[Rqqk(p, p̂)−Rq0k(p, p̂) ]
+

subject to:
N∑

k=1

pq(k) ≤ Pmax
q ∀ q = 1, . . . , Q (agents’ private constraints)

and
N∑

k=1

p̂j(k) ≤ P̂max
j ∀ j = 1, . . . , J (coupling constraints) ,

(1)

where p ,

(
(pq(k))

N
k=1

)Q
q=1

, p̂ ,

(
(p̂j(k))

N
k=1

)J
j=1

, [ • ]+ , max(0, •) is the plus-function, and Rqqk(p, p̂)

and Rq0k(p, p̂) are the Shannon information rate functions given by:

Rqqk(p, p̂) , log



1 +

Hqq(k) pq(k)

σ2q (k) +

Q∑

q 6=r=1

Hrq(k) pr(k) +

J∑

j=1

Ĥjq(k) p̂j(k)




Rq0k(p, p̂) , log



1 +

Hq0(k) pq(k)

σ2q (k) +

Q∑

q 6=r=1

Hr0(k) pr(k) +
J∑

j=1

Ĥj0(k) p̂j(k)




;

both Rqqk and Rq0k are clearly differentiable differences of concave functions. Since the pointwise maxi-
mum of a finite number of dc functions is a dc function [13, 32], and so is the sum of a finite number of
dc functions, it follows that the objective function of (1) is a dc function.
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A related problem is that of optimal joint base station assignment and power allocation in a communica-
tion network [38]. Admitting a similar formulation with binary variables subject to a knapsack constraint,
thus with multiple (more than two) discrete choices, this problem is

maximize
xq ,yq

Q∑

q=1

L∑

ℓ=1

yqℓ




N∑

k=1

log


 1 +

Hqℓ(k)xqℓ(k)

σℓ(k)2 +
∑

r 6=q

yrℓHrℓ(k)xrk(f)


 − cqℓ︸︷︷︸

set-up cost




subject to

L∑

ℓ=1

N∑

k=1

xqℓ(k) ≤ Bmax
q

and for all q = 1, · · · , Q,

0 ≤ xqℓ(k) ≤ CAPqℓ(k), ∀ ℓ = 1, · · · , L and k = 1, · · · , N

L∑

ℓ=1

yqℓ = 1, yqℓ ∈ { 0, 1 }, ∀ ℓ = 1, · · · , L,

(2)

where the additional index ℓ = 1, · · · , L labels the base stations. The problem is equivalent to

maximize
xq

θ(x) ,

Q∑

q=1

maximum
yq∈Yq

L∑

ℓ=1

yqℓ




N∑

k=1

log


 1 +

Hqℓ(k)xqℓ(k)

σℓ(k)2 +
∑

r 6=q

yrℓHrℓ(k)xrk(f)


 − cqℓ




︸ ︷︷ ︸
pointwise max of dc functions

subject to for all q = 1, · · · , Q,

L∑

ℓ=1

N∑

k=1

xqℓ(k) ≤ Bmax
q

and 0 ≤ xqℓ(k) ≤ CAPqℓ(k), ∀ ℓ = 1, · · · , L and k = 1, · · · , N,

where Yq ,

{
yq ∈ {0, 1}L |

L∑

ℓ=1

yqℓ = 1

}
remains a discrete set that contains a sum constraint which in

some applications could be generalized to a cardinality constraint of the type: K ≥
L∑

ℓ=1

yqℓ ≥ 1. Since

each Yq is a discrete set, it follows again that the above objective θ(x) is a dc function.

2.1 A digression: Continuum family of dc functions

While it is known that the pointwise maximum of finitely many dc functions is a dc function, it is not
known whether this dc property extends to the pointwise maximum of a continuum family of dc functions.
It turns out that this extension does not hold in general as the example below shows.

Example 1. Let g : Rn → R be a (globally) Lipschitz continuous function that is not directionally
differentiable everywhere. Such a function exists as provided by a component function of the Euclidean
projector onto a specially constructed compact convex set (see [43] for n = 2 and [16] and [9, Exercise 4.8.5]
for n = 3). Let L > 0 be a Lipschitz constant of g in the ℓ1-norm; i.e.,

| g(x) − g(y) | ≤ L ‖x− y ‖1, ∀x, y ∈ R
n.
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Define f(x, y) , g(y) − L ‖x − y‖1. Obviously, g(x) = maximum
y∈Rn

f(x, y). It is clear that f(•, y) is a

concave, thus dc, function. Yet g cannot be a dc function as every dc function must be directionally
differentiable but g is not. �

In what follows, we present a class of value functions of bivariate functions that preserves the dc property;
it turns out the structure of the component functions is important; such a structure includes the case
of finitely many dc functions, and in particular the two problems (1) and (2). Specifically, consider the
following non-convex, non-differentiable multi-agent optimization problem:

maximize
x∈X

θ(x) ,

I∑

i=1


maximum

λi∈Λi

J∑

j=1

hi,j(λ
i)fi,j(x)


 , (3)

where the set X ⊆ R
n is closed and convex, and for each i = 1, · · · , I (denoting the agents’ labels),

Λi ⊆ R
mi is a compact set (not assumed to be convex; cf. e.g., the set Yq in the previous subsection).

For each i = 1, · · · , I and j = 1, · · · , J , fi,j : Ω ⊆ R
n → R, where Ω is an open convex superset of X,

is either convex or concave on X. Finally, for each i = 1, · · · , I and j = 1, · · · , J , hi,j : Ω i ⊆ R
mi → R,

where Ω i is open convex set containing Λi, is such that each product hi,j(λ
i)fi,j(x) is concave in λi for

fixed x. A particularly important special case of Λi is when it is a unit simplex and each function hi,j is
affine so that the continuous pointwise maximum becomes a discrete pointwise maximum and the overall
problem (3) is as follows:

maximize
x∈X

I∑

i=1

max
1≤j≤J

fi,j(x).

Our proof showing that the function θ in (3) is of the dc kind appears to be new. In order not to further
deviate from the discussion of the main topics of this paper, we provide the proof in an appendix at the
end of the paper. Notice that (3) is “equivalent” to the “bivariate” maximization

maximize
x∈X; (λi∈Λi)Ii=1

I∑

i=1

J∑

j=1

hi,j(λ
i)fi,j(x), (4)

where the equivalence pertains to the globally optimal solutions of these two problems. Nevertheless,
when it comes to stationary solutions, the situation is quite different; see the subsequent discussion in
Subsection 3.3. In particular, (4) is a differentiable program if all function hi,j and fi,j are differentiable
while (3) remains non-differentiable due to the max operator; even with this advantage of differentiability,
the concept of “d-stationarity” in the former problem is not as sharp as the same concept in the latter
that has the λ-variable “hidden”, i.e., in the x-alone formulation:

maximize
x∈X

θ(x) ,

I∑

i=1

θi(x); with each θi(x) , maximum
λi∈Λi

J∑

j=1

hi,j(λ
i)fi,j(x).

The upshot of this discussion is that different formulations of a non-differentiable, non-convex opti-
mization problem could lead to stationary solutions with unequal likelihood for being a locally optimal
solution. The search for a superior formulation is not an easy task in general, however.

3 Stationarity: Convex Constraints

As a non-convex optimization problems, globally optimal solutions of a dc program are in general not
possible to be computed. Thus, one has to settle for computing a “stationary” solution in practice. Even
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so, one has to be cautious about the notion of stationarity, especially in the case where the constraints
contain dc functions. The situation is simpler when the constraint set is convex; in this section, we
consider this case first. Specifically, we deal with the following convex constrained dc minimization
program:

minimize
x∈X

ζ(x) , f(x)− g(x), (5)

where f and g are convex functions defined on an open convex set Ω containing the closed convex set
X ⊆ R

n. [Note the change from maximization in the previous section to minimization in the problem (5).]
Since ζ is not differentiable, stationarity concepts of (5) are defined in terms of directional derivatives of
the objective function, which we briefly review in the subsection below. Before doing so, we mention the
references [4, 11] where a host of properties of dc functions are summarized.

3.1 Directional derivatives

The directional derivative of ζ at a point x ∈ Ω along a direction d ∈ R
n is given by:

ζ ′(x; d) , lim
τ↓0

ζ(x+ τd)− ζ(x)

τ
.

It is well known that convex functions are directionally differentiable; so with ζ = f − g being a dc
function, ζ ′(x; d) is well defined for all x ∈ Ω and d ∈ R

n; moreover

ζ ′(x; d) = f ′(x; d)− g ′(x; d).

Since dc functions are locally Lipschitz continuous (and are thus B(ouligand) differentiable [9, Defini-
tion 3.1.2]), the C(larke) directional derivative is also well defined:

ζ0(x; d) , lim sup
y→x

τ↓0

ζ(y + τd)− ζ(y)

τ
.

In general, ζ0(x; d) ≥ ζ ′(x; d). These two directional derivatives are equal if the function ζ is C-regular [8].
However, dc functions are in general not C-regular. We recall that a function ζ is strictly differentiable
at a point x if the following limit holds:

lim
(y,z)→(x,x)

y 6=z

ζ(y)− ζ(z)−∇ζ(x)T ( y − z )

‖ y − z ‖
= 0,

where∇ζ(x) denotes the gradient vector of ζ at x. If g is strictly differentiable at x, then the dc function ζ
is C-regular at x. This class of dc functions deserves a name. Specifically, we say that ζ is a good dc func-
tion on Ω (with respect to a minimization problem) if there exists a strictly differentiable convex function
v on Ω such that ζ+ v is convex on Ω; in other words, ζ is a good dc function if convex functions u and v
exist such that ζ = u−v and v is strictly differentiable. The class of good dc functions appears extensively
in the machine learning area; see e.g. [44] and the references therein. These dc functions are particularly
relevant in the context of computing stationary solutions and play an important role in the convergence
of several families of iterative algorithms for solving dc programs, such as: the DCA [21, 13, 44, 32] that
has been a fundamental algorithm with many applications, the S(uccessive)C(onvex)A(approximation)
method [2, 7, 12, 36, 41, 42] that has attracted significant interest in recent years for solving non-convex
non-differentiable optimization problems, and an alternating/successive minimization method [35, 36] for
solving the joint minimization formulation of the dc program (to be introduced subsequently). In partic-
ular, the class of good dc functions will play an important role in two algorithms that we introduce later;
see Propositions 16 and 17. Incidentally, since every quadratic function is a differentiable dc function,
it follows that every convex constrained optimization problem with a quadratic objective is a “good dc
program” while remaining possibly nonconvex.
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3.2 Concepts of stationarity

As a non-convex, non-differentiable optimization program, there are many kinds of stationary solutions
for a dc program. Ideally, we want to be able to identify a stationary solution of the sharpest kind.
Arguably, for the convex constrained dc program (5), a d(irectional)-stationary solution defined in terms
of the directional derivatives of the objective function would qualify for this purpose. In what follows, we
clarify the relations of several major kinds of stationary solutions of (3) by starting with the definition
of d-stationarity.

Specifically, we say that a vector x ∈ X is a (constrained) d(irectional)-stationary point of ζ on X if

ζ ′(x;x ′ − x) ≥ 0, ∀x ′ ∈ X, (6)

or equivalently, f ′(x;x ′ − x) ≥ g ′(x;x ′ − x) for all x ∈ X. Since g ′(x; d) = max
v∈∂g(x)

vT d, where ∂g(x) is

the subdifferential of the convex function g at x, it follows that x is a (constrained) d-stationary point of
the dc function ζ on X if for all v ∈ ∂g(x),

f ′(x;x ′ − x) ≥ vT (x ′ − x), ∀x ′ ∈ X; (7)

or equivalently, if
x ∈ argmin

x ′∈X
f(x ′)− vTx ′, ∀ v ∈ ∂g(x).

Letting f̂ , f + δX , where δX is the indicator function of the set X, i.e., δX(x) =

{
0 if x ∈ X
∞ otherwise

,

we deduce that x ∈ X is d-stationary point of ζ on X if and only if v ∈ ∂f̂(x) for all v ∈ ∂g(x); i.e.,
if and only if ∂g(x) ⊆ ∂f̂(x) = ∂f(x) + N (x;X), where N (x;X) is the normal cone of the convex set
X at x ∈ X [37]. This characterization of a d-stationary point is precisely the notion of a generalized
KKT point employed in the dc literature [18, 20, 32] that is convex analysis based. We prefer to follow a
directional derivative based definition with the constraint set X exposed in the condition (6) to facilitate
the practical solution of the dc program (5). A weaker notion of stationarity, called criticality in the dc
literature, is defined by the condition: ∂g(x) ∩ (∂f(x) +N (x;X)) 6= ∅. In terms of directional derivatives,
this condition says that x ∈ X is a critical point of ζ of X if there exists (as opposed to for all) v ∈ ∂g(x)
such that (7) holds.

Using the C-directional derivative, we say that a vector x ∈ X is C(larke)-stationary if ζ0(x;x ′ − x) ≥ 0
for all x′ ∈ X. For a good dc function ζ, d-stationarity and C-stationarity are equivalent. We will
momentarily provide an example to show that if ζ is not good, then the converse implication of C-
stationarity implying d-stationarity is not always valid. This example uses the following fact which is by
itself of independent interest.

Proposition 2. Let ζ be a dc function defined on an open convex set Ω ⊆ R
n. The following two

statements are equivalent:

(a) both ζ and its negative are good on Ω;

(b) ζ is strictly differentiable on Ω and there exists a strictly differentiable function v on Ω such that
ζ + v is convex.

Proof. (a) ⇒ (b). It suffices to show that ζ is strictly differentiable on Ω if (a) holds. Since both ζ and
−ζ are C-regular, we have

−lim inf
y→x

τ↓0

ζ(y + τd)− ζ(y)

τ
= lim sup

y→x

τ↓0

−ζ(y + τd) + ζ(y)

τ
= (−ζ)0(x; d)

= (−ζ) ′(x; d) = −lim
τ↓0

ζ(x+ τd)− ζ(x)

τ
= −lim sup

y→x

τ↓0

ζ(y + τd)− ζ(y)

τ
.

7



Hence,

lim inf
y→x

τ↓0

ζ(y + τd)− ζ(y)

τ
= ζ ′(x; d) = lim sup

y→x

τ↓0

ζ(y + τd)− ζ(y)

τ
.

Consequently,

lim
y→x

τ↓0

ζ(y + τd)− ζ(y)

τ
= ζ ′(x; d), ∀x ∈ Ω and ∀ d ∈ R

n.

Using this limit, we show that ζ ′(x; •) is linear on R
n for fixed x. Indeed, we have, for any d and d ′ in

R
n,

ζ ′(x; d+ d ′)− ζ ′(x; d) = lim
y→x

τ↓0

[
ζ(y + τd+ τd ′)− ζ(y)

τ
−
ζ(y + τd)− ζ(y)

τ

]

= lim
y→x

τ↓0

ζ(y + τd+ τd ′)− ζ(y + τd)

τ

= lim
y ′→x

τ↓0

ζ(y ′ + τd ′)− ζ(y ′)

τ
= ζ ′(x; d ′).

The strict differentiability of ζ follows readily from a direct verification of this property.

(b) ⇒ (a). This follows easily from the trivial equality ζ = (ζ + v)− v. �

The example below shows that for a dc function whose negative is good, a C-stationary point is not
necessarily d-stationary.

Example. Consider the univariate dc function ζ(x) , 1+x2−2|x| in the scalar variable x. Since −ζ is a
good dc function and ζ is not differentiable at x = 0, ζ cannot be good. Clearly, ∂Cζ(0) = [−2, 2] contains
the origin; thus x = 0 is a C-stationary point. Yet, ζ ′(0;±1) = −2; thus x = 0 is not d-stationary. �

3.3 Lifted stationarity ⇔ weak d-stationary

A certain class of nonsmooth dc programs can be “lifted” to become a smooth, albeit still nonconvex,
program to which standard stationarity conditions can be applied. Specifically, consider a dc function of
the following kind:

ζ(x) , φ(x)−max
µ∈M

ψ(x, µ), (8)

where φ is a convex function, ψ is convex-concave, i.e., ψ(•, µ) is convex and ψ(x, •) is concave, and M is
a compact set in R

ℓ. By not requiring M to be convex allows us to include the case where M is a discrete
set such as P ∩ {0, 1}ℓ, where P is a polyhedron in R

ℓ, so that the µ-maximization problem corresponds
to a binary optimization problem. In the event that ψ(x, •) is linear for fixed x, the maximization of
ψ(x, µ) for µ in a discrete set is equivalent to the maximization of ψ(x, µ) for µ in the convex hull of the
set. If x is a d-stationary point of ζ on X, then by the renowned Danskin’s Theorem,

φ ′(x;x ′ − x)− max
µ∈M(x)

ψ(•, µ) ′(x;x ′ − x) ≥ 0, ∀x ′ ∈ X,

where M(x) , argmax
µ∈M

ψ(x, µ). Equivalently,

φ ′(x;x ′ − x) ≥ ψ(•, µ) ′(x;x ′ − x), ∀x ′ ∈ X and ∀µ ∈ M(x). (9)

We say that a vector x ∈ X is a weak d-stationary point of ζ given by (8) on X if there exists µ ∈ M(x)
such that

φ ′(x;x ′ − x) ≥ ψ(•, µ) ′(x;x ′ − x), ∀x ′ ∈ X.

8



In contrast, since ∂max
µ∈M

ψ(x, µ) = convex hull of ∂xψ(x, µ) for µ ∈ M(x), where ∂xψ(x, µ) denotes the

subdifferential of the function ψ(•, µ), it follows that x is a critical point if there exist finitely many
µi ∈ M(x) for i = 1, · · · I, finitely many nonnegative scalars (λi)

I
i=1 summing to unity, and subgradients

vi ∈ ∂xψ(x, µ
i) such that

I∑

i=1

λi v
i ∈ ∂φ(x) +N (x;X),

which is equivalent to

φ ′(x;x ′ − x) = max
u∈∂φ(x)

uT (x ′ − x) ≥

[
I∑

i=1

λi v
i

]T
(x ′ − x) ≥ 0, ∀x ′ ∈ X. (10)

The latter inequality confirms that d-stationarity ⇒ weak d-stationary ⇒ criticality; the reason for these
one-sided implications is twofold: (i) the multiplicity of the argmax M(x), and (ii) the multiplicity of
the set ∂xψ(x, µ̄) even if M(x) is the singleton {µ̄}. When both M(x) and ∂xψ(x, µ̄) are singletons, then
d-stationarity ⇔ weak d-stationary ⇔ criticality. This happens when ζ is a good dc function.

Corresponding to the minimization problem (5) which takes the form

minimize
x∈X

[
φ(x)−max

µ∈M
ψ(x, µ)

]
, (11)

is the lifted reformulation in the pair of variables (x, µ):

minimize
(x,µ)∈X×M

[φ(x)− ψ(x, µ) ] . (12)

In the case where both φ and ψ are differentiable, the latter minimization has the advantage over the
former in that it is a differentiable program in the variables (x, µ) jointly, whereas with µ hidden in the
function ζ, the minimization of ζ over the x-variable alone is not a differentiable program unless M(x)
is a singleton for all x of interest.

In general, if M is also convex, and ψ is directionally differentiable in both variables jointly (e.g., ψ is
continuously differentiable in (x, µ)) such that the total directional derivative is the sum of the partial
directional derivatives with respect to the two arguments, i.e., suppose that

ψ ′((x, µ); (x ′ − x, µ ′ − µ)) = ψ(•, µ) ′(x;x ′ − x) + ψ(x, •) ′(µ;µ ′ − µ),

then it is not difficult to show that (x, µ̄) is a stationary point of the function φ(x)− ψ(x, µ) on X ×M
if and only if µ̄ ∈ M(x) and

φ ′(x;x ′ − x) ≥ ψ(•, µ̄) ′(x;x ′ − x), ∀x ′ ∈ X. (13)

Thus, x is a weak d-stationary point of ζ (given by (8)) on X if and only if there exists µ̄ ∈ M(x) such
that (x, µ̄) is a stationary point of the bivariate function φ(x)−ψ(x, µ) on X ×M. In this sense, we can
say that x is a lifted stationary point of ζ on X after we have exposed the µ-variable that is part of the
bivariate function ψ(x, µ).

The lifted problem (12) in the joint variables (x, µ) can be interpreted as a 2-person Nash equilibrium
problem. Indeed, consider two optimization problems: one is a minimization problem in the x-variable
parameterized by µ and the other is a maximization in the µ-variable parameterized by x:

minimize
x∈X

φ(x)− ψ(x, µ) and maximize
µ∈M

ψ(x, µ). (14)

9



A Nash equilibrium of (14) is a pair (x∗, µ∗) such that

x∗ ∈ argmin
x∈X

φ(x)− ψ(x, µ∗) and µ∗ ∈ argmax
µ∈M

ψ(x∗, µ).

Since, φ− ψ(•, µ) is not necessarily a convex function, we say that (x∗, µ∗) is a quasi-Nash equilibrium
(QNE) [30, 31] if x∗ is a stationary point of the differentiable program

minimize
x∈X

φ(x)− ψ(x, µ∗)

and µ∗ ∈ argmax
µ∈M

ψ(x∗, µ). It is then easy to see that if a pair (x∗, µ∗) is a QNE of the pair of programs

(14), then x∗ is a lifted stationary point of ζ (given by (8)) on X. Conversely, if x∗ is such a stationary
solution, then (x∗, µ∗) is a QNE of the pair of programs (14) for some µ∗. The upshot of this observation
is that a dc program is intimated related to games through its equivalent lifted program formulation.

For the dc minimization problem (11) and its lifted formulation (12) withM convex, we have the following
string of implications that relates different concepts of stationarity.

local minimizer of (11) =====> d-stationary =====> lifted stationary
⇓

C-stat. ⇐ d-stationary
M(x) singleton
<===== weak d-stationary

ψ(x; •) linear
<====== critical
ψ(•;µ) diff.

m ⇑

QNE <=====> lifted stationary
φ diff

======> C-stationary
ψ(•;µ) diff

Two of the above implications are not accounted for in the above discussion; namely, criticality implies
lifted stationarity if ψ(x; •) is linear and ψ(•;µ) is differentiable on Ω for all µ ∈ M, and lifted stationarity
implies C-stationarity if φ and ψ(•, µ) are both differentiable. To prove the former, let {µi, λi, vi}Ii=1 be

as given in the derivation of (10). Since ψ(x, •) is linear, it follows that
I∑

i=1

λiv
i ∈ ∂xψ

(
x,

I∑

i=1

λiu
i

)
.

Thus,

I∑

i=1

λiv
i = ∇xψ

(
x,

I∑

i=1

λiu
i

)
. Since µ̄ ,

I∑

i=1

λiu
i ∈ M(x), weak d-stationarity follows. To prove

the remaining implication, we recall that C-stationarity of a vector x̂ ∈ X means that ζ0(x̂;x − x̂) ≥ 0
for all x ∈ X. By the definition of the C-generalized gradient, we have, for any vector d,

ζ0(x̂; d) = lim sup
y→x̂

τ↓0

φ(y + τd)− φ(y)− (ϕ(y + τd)− ϕ(y) )

τ

≥ lim sup
τ↓0

φ(x̂)− φ(x̂− τd)− (ϕ(x̂)− ϕ(x̂− τd) )

τ
.

Let µ ∈ M(x̂) be such that φ ′(x̂;x ′ − x̂) ≥ ψ(•, µ) ′(x̂;x ′ − x̂) for all x ′ ∈ X. We then have, provided
that φ and ψ(•, µ) are both differentiable at x̂,

ζ0(x̂;x− x̂) ≥ lim sup
τ↓0

φ(x̂)− φ(x̂− τ(x− x̂)) + ψ(x̂− τ(x− x̂), µ)− ψ(x̂, µ)

τ

≥ ∇φ(x̂)T (x− x̂ )−∇xψ(x̂)
T (x− x̂ ).
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If the value function ϕ(x) is strictly differentiable (thus ζ = φ − ϕ is a good dc function), then all the
stationarity concepts discussed so far are equivalent. When M is a finite set, ϕ(x) is a piecewise smooth
function; its strict differentiability has been characterized in terms of the gradients ∇xψ(x, µ) at the
maximizing µ’s; see [33]. This class of dc programs, which can be good or not, will be the focus of our
subsequent algorithmic development.

Counterexamples. We make two remarks with regard to the above string of implications:

(1) In general, a critical point of (11) is not necessarily weakly d-stationary; a counterexample is provided
by the univariate function: ζ(x) , −|x| obtained by letting φ(x) , 0, ψ(x,±1) , ±x, M , {±1}, and
X , [−1, 1] for simplicity. Since ∂Cζ(0) = [−1, 1] and NX(0) = {0}, it follows that 0 ∈ ∂Cζ(0) +NX(0).

Yet
∂ψ(0,±1)

∂x
= ±1 6= 0.

(2) If φ is not differentiable, then a weak d-stationary point is not necessarily C-stationary. Take φ(x) ,
x+ |x| and the same ψ, M, and X as above, resulting in ϕ(x) = |x|; thus ζ(x) = x. Clearly, 0 is not a

C-stationary point. Yet, with µ = 1, we have φ ′(0; d) −
∂ψ(0, 1)

∂x
d = d + |d| − d = |d| ≥ 0 for all d ∈ R.

Hence 0 is a weak d-stationary point; yet this point has no minimizing property whatsoever with regard
to the problem of minimizing ζ(x) on X. �

Derived from the above discussion, particularly from the counterexamples, the following conclusions refine
our understanding of dc programs and add insights to the existing literature of this class of non-convex
optimization problems.

• The class of good dc programs, i.e., convex constrained programs whose objectives are good dc functions,
is a favorable class of nonsmooth dc problems for which many advanced concepts of stationarity are
equivalent to the basic d-stationarity that is easily described and understood in terms of the elementary
directional derivatives.

• Given a dc function (even a differentiable one), a “bad” representation as the difference of two convex
functions can yield a weak d-stationary point that is not C-stationary.

• For general nonsmooth minimization problems, the search for a sharp notion of stationarity has always
been a challenge. Ideally, one wants to be able to design an algorithm that will compute a stationary point
that has the best chance to be a local minimum. For the class of dc minimization problems exemplified by
(11), the above examples show that the critical points, C-stationary points, and even weak d-stationary
points are not ideal because it is less likely for them to correspond to local minima.

4 dc Constrained dc Programs

In this section, we study the B-stationarity concept (to be defined momentarily) associated with a general
dc program, i.e., a dc program subject to dc constraints:

minimize
x∈X

ζ(x) , φ(x)− ϕ(x)

subject to φc,j(x)− ϕc,j(x) ≤ 0, j = 1, · · · , J,
(15)

where φ, ϕ, φc,j, and ϕc,j for all j are all convex functions defined on the open convex set Ω containing the
closed convex set X. This study is not only interesting for its own sake but the results are needed sub-
sequently in the convergence analysis of an iterative scheme for solving the problem. Before proceeding,
we mention a variation of the problem (1) that leads to dc constraints; see [1]. Namely, in this version
of the problem, we impose some Quality-of-Service (QoS) constraints defined by a prescribed level of
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minimum secrecy rate profile s∗ ,
(
s∗q
)Q
q=1

that need to be satisfied in the power allocation. Specifically,

the problem is

maximize
(p,p̂)≥0

Q∑

q=1

N∑

k=1

[Rqqk(p, p̂)−Rq0k(p, p̂) ]
+

subject to:

N∑

k=1

pq(k) ≤ Pmax
q ∀ q = 1, . . . , Q (private constraints)

N∑

k=1

p̂j(k) ≤ P̂max
j ∀ j = 1, . . . , J (coupling constraints)

and
N∑

k=1

[Rqqk(p, p̂)−Rq0k(p, p̂) ]
+ ≥ s∗q, q = 1, · · · , Q (QoS constraints).

Since each term [Rqqk(p, p̂)−Rq0k(p, p̂)]
+ is a dc function of the power variables, the QoS constraints

are of the dc type. Another class of problems that leads to a dc constrained dc program is the class of
quadratic programs with (linear) complementarity constraints (QPCC) [5, 6, 14]. Specifically, consider

minimize
(x,y)∈Z

q(x, y)

subject to 0 ≤ y ⊥ r +Nx+My ≥ 0,
(16)

where q(x, y) is a (possibly nonconvex) quadratic function, Z is a polyhedron in R
n+m, r is an m-

dimensional vector, N is an m×n matrix, M is an m×m matrix (not necessarily positive semidefinite),
and the ⊥ notation denotes the complementarity between the variables y and w , r +Nx+My. Since
the (linear) complementarity constraint is clearly equivalent to 3 conditions, 2 linear and 1 quadratic:

y ≥ 0, r +Nx+My ≥ 0, and yT ( r +Nx+My ) ≤ 0,

the QPCC is a linearly constrained dc program with one additional dc constraint.

In general, multiple dc constraints can be combined into a single nondifferentiable dc constraint using
the max-function. Indeed, the J dc constraints in (15) are equivalent to the single dc constraint:

max
1≤j≤J

(φc,j(x)− ϕc,j(x) ) ≤ 0.

Note that

max
1≤j≤J

(φc,j(x)− ϕc,j(x) ) = max
1≤j≤J


φc,j(x) +

J∑

j 6=ℓ=1

ϕc,ℓ(x)




︸ ︷︷ ︸
φc(x)

−
J∑

ℓ=1

ϕc,ℓ(x)

︸ ︷︷ ︸
ϕc(x)

,

where φc(x) and ϕc(x) are both convex functions with the latter being (strictly) differentiable if each ϕc,ℓ

is so. Thus ζc(x) , φc(x) − ϕc(x) is a good dc function if each ϕc,ℓ is strictly differentiable. Thus, we
restrict the discussion below to a singly dc constrained dc program:

minimize
x∈X

ζ(x) , φ(x)− ϕ(x)

subject to ζc(x) , φc(x)− ϕc(x) ≤ 0.
(17)
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Due to the last nonconvex constraint: φc(x) ≤ ϕc(x), the above problem is considerably more complicated
than the convex constrained problem (5). For one thing, constraint qualifications (CQs) are needed to
yield a constructive description of the stationarity condition of the problem (17); this is not a trivial task
as the dc constraint is both nondifferentiable and nonconvex. We focus on the well-known concept of
stationarity based on the B(oulingand) tangent cone of a constraint set at a feasible point. Applied to
(17), this concept, called B-stationarity [28], pertains to a feasible vector x∗ ∈ X̂ satisfying

ζ ′(x∗; d) ≥ 0, ∀ d ∈ T
X̂
(x∗), (18)

where X̂ , {x ∈ X | φc(x) ≤ ϕc(x)} is the (nonconvex) feasible set of (17) and T
X̂
(x∗) is the Bouligand

tangent cone of X̂ at x∗ ∈ X̂, i.e., d ∈ T
X̂
(x∗) if there exist a sequence of vectors {xk} ⊂ X̂ converging

to x∗ and a sequence of positive scalars {τk} converging to 0 such that d = lim
k→∞

xk − x∗

τk
. For a noncon-

vex set such as X̂ that involves the nondifferentiable function ζc, it is difficult to derive a constructive
description of T

X̂
(x∗). Thus the B-stationarity condition (18) is hard to verify in general and no existing

computational scheme can compute a B-stationary point for the problem (17) according to this defini-
tion. Incidentally, B-stationarity reduces to d-stationarity without the dc constraint; we use the former
terminology to highlight the nonconvexity and nondifferentiability of the dc constraint.

4.1 A subclass of dc constraints

Our goal here is to introduce a constraint qualification for the special case of (17) where

ϕc(x) , max
1≤k≤L

ψc,k(x) (19)

is the pointwise maximum of finitely many differentiable convex functions but there is no structural
assumption on φc(x) except its convexity. Under the stipulation, the feasible set X̂ is the union of
finitely many convex sets consisting of the “smooth” pieces of X̂. Specifically, we have

X̂ =
L⋃

j=1

X̂j , with X̂j , {x ∈ X | φc(x) ≤ ψc,j(x) } .

The approach below is reminiscent of the study of stationarity for the class of mathematical programs
with complementarity constraints [27, 29, 39, 40], and more generally, problems with piecewise smooth
constraints. In particular, the stationarity theory in [39] is in principle applicable to the above repre-
sentation of the feasible X̂ . Yet, by focusing on each individual set X̂j , we are able to derive a full
characterization of the tangent cone of this set at a feasible point x̄ under a pointwise CQ of the Slater
type. For the discussion below to be meaningful, we assume that x̄ ∈ X̂ is such that φc(x̄) = ϕc(x̄).
Indeed, if φc(x̄) < ϕc(x̄), then T

X̂
(x̄) = TX(x̄) and there is no need to analyze T

X̂
(x̄) further because we

assume that TX(x̄) is well behaved.

We introduce a convex subset of X̂j by linearizing the function ψc,j(x) at the given point x̄ ∈ X̂j,

obtaining a convex subset of X̂j :

Ŷ j(x̄) ,
{
x ∈ X | φc(x) ≤ ψc,j(x̄) +∇ψc,j(x̄)

T (x− x̄ )
}
.

Notice that we cannot linearize the function φc(x) because we do not assume that it is differentiable;
moreover, the set Ŷ j(x̄) depends on the given vector x̄ whereas X̂j does not. Clearly, T

Ŷ j(x̄)
(x̄) ⊆ T

X̂j (x̄).

The example below shows that this inclusion is proper in general.
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Example 3. Consider the convex univariate functions φc(x) = x4 and ψc(x) = x2 so that the set
X̂ , {x ∈ R | x4−x2 ≤ 0} = [−1, 1] is a simple interval. Let x̄ = 0. It follows that Ŷ (0) = {0} = T

Ŷ (0)
(0);

yet T
X̂
(0) = R. For this example, note that x = 1/2 is an “algebraic Slater” point of X̂, i.e., the inequality

x4 ≤ x2 holds strictly at this point. �

We next introduce a convex cone that is a candidate for the tangent cones T
Ŷ j(x̄)(x̄) and T

X̂j(x̄):

Ĉj(x̄) ,
{
d ∈ TX(x̄) | φ ′

c(x̄; d) ≤ ∇ψc,j(x̄)
Td
}
,

for j ∈ Mc(x̄) , {k | ϕc(x̄) = ψc,k(x̄)}. The result below shows that if the above cone has an element
that satisfies the inequality therein strictly, then the two tangent cones T

Ŷ j(x̄)(x̄) and T
X̂j(x̄) are both

equal to Ĉj(x̄). This result is the key for us to show the convergence of the iterative algorithm to be
presented later for computing a B-stationary point of the dc constrained dc program (17).

Proposition 4. Let x̄ ∈ X̂ be such that φc(x̄) = ϕc(x̄) and let j ∈ Mc(x̄). Suppose an element d̄ ∈ TX(x̄)
exists such that φ ′

c(x̄; d̄) < ∇ψc,j(x̄)
T d̄. Then

T
Ŷ j(x̄)(x̄) = T

X̂j(x̄) = Ĉ j(x̄). (20)

Thus T
X̂j (x̄) is a closed convex cone.

Proof. We have the following inclusions:

T
Ŷ j(x̄)(x̄) ⊆ T

X̂j(x̄) ⊆ Ĉ j(x̄),

where the second inclusion can easily be proved as follows. Let d ∈ T
X̂j (x̄) with unit norm be given.

Clearly d ∈ TX(x̄). Let {xk} ⊂ X̂j(x̄) \ {x̄} be a sequence converging to x̄ such that d = lim
k→∞

xk − x̄

‖xk − x̄‖
.

Since φc(x
k) ≤ ψc,j(x

k) for all k and φc(x̄) = ψc,j(x̄), it follows readily that φ ′
c(x̄; d) ≤ ∇ψc,j(x̄)

Td. It re-

mains to show that Ĉj(x̄) ⊆ T
Ŷ j(x̄)(x̄). We first show that any d̄ ∈ TX(x̄) satisfying φ ′

c(x̄; d̄) < ∇ψc,j(x̄)
T d̄

must belong to T
Ŷ j(x̄)

(x̄). Indeed, for any such d̄, let {x̄k} ⊂ X \ {x̄} be a sequence converging to x̄ such

that d̄ = lim
k→∞

x̄k − x̄

‖x̄k − x̄‖
. Since φ ′

c(x̄; d) = lim
k→∞

φc(x̄
k)− φc(x̄)

‖x̄k − x̄‖
, it follows that for all k sufficiently large,

φc(x̄
k) < ψc,j(x̄) +∇ψc,j(x̄)

T (x̄k − x̄). Thus x̄k ∈ Ŷ j(x̄) for all k sufficiently large. Hence d̄ ∈ T
Ŷ j(x̄)

(x̄).

For any d ∈ Ĉj(x̄), d + τ d̄ remains in TX(x̄) and satisfies: φ ′
c(x̄; d + τ d̄) < ∇ψc,j(x̄)

T (d + τ d̄) for all
τ > 0, by the subadditivity and positive homogeneity of the directional derivative φ ′

c(x̄; •). Therefore,
d + τ d̄ ∈ T

Ŷ j(x̄)
(x̄) for all τ > 0. Since the tangent cone is a closed set, it follows that d ∈ T

Ŷ j(x̄)
(x̄),

establishing the equalities in (20). The last assertion of the proposition follows readily from the closedness
and convexity of Ĉ j(x̄). �

The following remarks are worth noting.

• The existence of a vector d̄ ∈ TX(x̄) such that φ ′
c(x̄; d̄) < ∇ψc,j(x̄)

T d̄ is equivalent to the existence of a
vector x̂ ∈ X such that φc(x̂) < ψc,j(x̄) +∇ψc,j(x̄)

T (x̂− x̄). Such a vector satisfies φc(x̂) < ψc,j(x̂).

• For an index j ∈ Mc(x̄) for which ψc,j is an affine function, we have X̂j = Ŷ j(x̄) for any x̄ ∈ X̂j.
Hence T

Ŷ j(x̄)(x̄) = T
X̂j (x̄) always holds; nevertheless for the second equality in (20) to hold, we still need

the existence of the vector d̄ as in Proposition 4. �

We define a Slater concept for a vector x̄ satisfying the assumptions of Proposition 4.
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Definition 5. The pointwise Slater CQ is said to hold for the set X̂ at a vector x̄ ∈ X̂ satisfying
φc(x̄) = ϕc(x̄) if for every index j ∈ Mc(x̄), there exists d̄j ∈ TX(x̄) satisfying φ ′

c(x̄; d̄
j) < ∇ψc,j(x̄)

T d̄j.
�

Since φ ′
c(x̄; •) is convex, it follows that the pointwise Slater CQ holds at a vector x̄ ∈ X̂ satisfying

φc(x̄) = ϕc(x̄) if and only if there exists a single vector d̄ ∈ TX(x̄) such that φ ′
c(x̄; d̄) < ∇ψc,j(x̄)

T d̄ for
all j ∈ Mc(x̄). At such a point x̄, we have the following string of implications:

pointwise Slater at x̄ ⇒ set algebraic Slater ⇒ set topological Slater; i.e.,

φc(x̂) < ψc,j(x̄) +∇ψc,j(x̄)
T (x̂− x̄) ⇒ φc(x̂) < ψc,j(x̂) ⇒ x̂ interior pt. of Φc,j

m

φ ′
c(x̄; d̄) < ∇ψc,j(x̄)

T d̄,

where Φc,j , {x | φc(x) ≤ ψc,j(x)}. Nevertheless, the reverse of each of the two implications is in general
not true, the main reason being the nonconvexity of the set Φc,j. The corollary below is an immediate
consequence of Proposition 4.

Corollary 6. If x̄ ∈ X̂ satisfies the pointwise Slater CQ, then

T
X̂
(x̄) =

⋃

j∈Mc(x̄)

Ĉj(x̄). (21)

Hence, T
X̂
(x̄) is the union of finitely many closed convex cone. �

The next result identifies another situation in which the equalities in (21) will hold. We recall that a
function θ is piecewise affine on a domain D [9, Definition 4.1.3] if it is continuous and there exist finitely
many affine functions {θi}Ki=1 such that θ(x) ∈ {θi(x)}Ki=1 for all x ∈ D.

Proposition 7. Let x̄ ∈ X̂ be such that φc(x̄) = ϕc(x̄). If X is a polyhedron and the (convex) function
φc is piecewise affine on X, then (21) holds.

Proof. It suffices to show the inclusion: Ĉj(x̄) ⊆ T
Ŷ j(x̄)(x̄) for all j ∈ Mc(x̄). Let d ∈ Ĉj(x̄). Since X is

polyhedral, it follows that x̄+ τd ∈ X for all τ > 0 sufficiently small. Moreover, for all such τ , we have

φc(x̄+ τd) = φc(x̄) + τ φ ′
c(x̄; d)

by the piecewise affine property of φc; see Exercise 4.8.10 in [9]. From this equality, we easily deduce
that d ∈ T

Ŷ j(x̄)
(x̄). �

Based on the last two results, we can derive the following necessary and sufficient conditions for a B-
stationary point of the program (17).

Proposition 8. Let x̄ ∈ X̂ . Provided that either x̄ satisfies the pointwise Slater CQ or the assumptions
of Proposition 7 hold, the following statements are equivalent:

(a) x̄ is a B-stationary point of (17);

(b) for every j ∈ Mc(x̄), ζ
′(x̄; d) ≥ 0 for all d in Ĉ j(x̄);

(c) for every j ∈ Mc(x̄), x̄ is a d-stationary point of ζ(x) on the convex subset Ŷ j(x̄) of X̂j ; i.e.,
ζ ′(x̄;x− x̄) ≥ 0 for all x ∈ Ŷ j(x̄). �

Thus, under the assumptions of Proposition 8, checking if x̄ is a B-stationary point of (17) can be
determined by showing that x̄ is a d-stationary of |Mc(x̄)| convex-constrained dc programs (part (c)).
An algorithm for accomplishing the latter task is presented in Section 6. Nevertheless, the identification
of x̄ requires an extension of this algorithm to deal with the dc constraint.
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5 Computing d-Stationary Points

We are now ready to discuss the next main topic of this paper, namely the computation of a d-stationary
point of a convex constrained dc program and its extension to a B-stationary point when there is a dc
constraint present in the problem. The discussion is divided into 3 parts: the first part (Subsection 5.1)
deals with the convex-constrained dc program (5), the second part extends the discussion to a problem
with a dc constraint, and the third and last part discusses a parallel implementation when the problem
objective function has a sum structure.

5.1 The basic algorithm

The DCA is a well-known algorithm for solving a dc program. In its abstract form [21, 13, 32, 45], the
algorithm works with the subgradients of the two convex functions φ(x) and ϕ(x), taken to be extended
valued, whose difference is the objective function of the problem; the constraints are all embedded in φ
and ϕ. Subsequential convergence to a critical point is proved, among other properties of the algorithm.
Assuming that ϕ(x) is differentiable, the paper [44] revisited the DCA and extended it, called the convex-
concave procedure (CCCP), to a problem with dc constraints defined by good dc functions. Thus the
setting in the latter reference pertains to good dc programs. To motivate the discussion below, we give
an example of a dc function that is not good and show that the limit point obtained by the DCA is not
a d-stationary solution.

Example 9. Consider the univariate, unconstrained minimization of the dc function 1
2x

2 −max(−x, 0)
whose unique d-stationary point is x = −1. Choose a positive x0 as the initial iterate. Without regular-
ization, the DCA computes x1 by minimizing 1

2x
2, yielding x1 = 0. At this point, if the subgradient of the

plus-function is incorrectly picked, the algorithm could stay at the origin forever. A better illustration is
to consider a regularization of the DCA wherein at each iteration ν, the algorithm minimizes the regu-
larized function 1

2x
2− (∂max(−x, 0)|x=xν )(x−xν)+ 1

2(x−x
ν)2. It is not hard to see that starting at the

same positive x0, the regularized DCA generates a sequence of iterates satisfying the recursive equation
xν+1 = 1

2x
ν for ν = 0, 1, · · · , which converges to the non-d-stationary point x∞ = 0. For this example, it

is easy to modify the DCA so that the unique d-stationary point can be computed; one such modification
is that at each iteration ν, we consider 2 subproblems: (i) minimizing 1

2x
2+(x−xν)+ 1

2(x−x
ν)2, and (ii)

minimizing 1
2x

2 + 1
2(x− xν)2, and choose the next iterate to be the minimizer of these two subproblems

that gives a lower value of the original objective function. We leave it to the reader to verify that this
modified procedure will converge to the d-stationary solution of −1. �

Consider the dc program:

minimize
x∈X

ζ(x) , φ(x)− ϕ(x), ϕ(x) , max
1≤i≤ℓ

ψi(x) (22)

where φ and each ψi are convex functions defined on an open convex set Ω containing the feasible set X,
which is a closed convex set in R

n. Moreover, we assume that each ψi is continuously differentiable (C1)
on Ω. Being a pointwise maximum of finitely many C1 convex functions, ϕ is a convex piecewise smooth
function with directional derivative at a point x along a direction d ∈ R

n given by

ϕ ′(x; d) = max
i∈M(x)

∇ψi(x)
T d,

where M(x) , argmax
1≤i≤ℓ

ψi(x). For a given scalar ε > 0, let Mε(x) , {i | ψi(x) ≥ ϕ(x)− ε} which is a

superset of M(x). The following result gives necessary and sufficient condition for a d-stationary point
of (22) that is useful for its computation.
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Proposition 10. A vector x̄ ∈ X is a d-stationary solution of (22) if and only if for every i ∈ M(x̄),
x̄ ∈ argmin

x∈X

[
φ(x)−∇ψi(x̄)

T (x− x̄)
]
, or equivalently, x̄ = argmin

x∈X

[
φ(x)−∇ψi(x̄)

T (x− x̄) + 1
2‖x− x̄‖2

]
.

Proof. This follows readily because both functions φ(x)−∇ψi(x̄)
T (x− x̄) and φ(x)−∇ψi(x̄)

T (x− x̄)+
1
2‖x− x̄‖2 are convex in x. �

Algorithm I. Let ε > 0 be given. For a given xν ∈ X at iteration ν and for each index i ∈ Mε(x
ν),

let
x̂ ν,i = argmin

x∈X
φ(x)− ψi(x

ν)−∇ψi(x
ν)T (x− xν) + 1

2 ‖x− xν ‖2. (23)

Let î ∈ argmin
i∈Mε(xν)

ζ(x̂ ν,i) + 1
2‖x̂

ν,i − xν‖2; set xν+1 , x̂ ν,̂i. If xν+1 = xν , terminate; otherwise replace ν

by ν + 1 and repeat the iteration.

Before proving the convergence of the above algorithm, we offer a few comments. First of all, with
ε = 0 and noting that ∇ψi(x

ν) ∈ ∂ϕ(xν), the algorithm is the “complete primal DCA” described in
Section 3 of the unpublished report [19]. Nevertheless, as shown by the example above, convergence to a
d-stationary point of the algorithm with ε = 0 cannot be proved. Thus, the introduction of the scalar ε is
essential. Second, the proximal regularization is perhaps not needed as one can always strongly convexify
the functions φ and ψi without changing the difference function ζ; indeed we always have

ζ(x) = [φ(x) + c(x) ] − max
1≤i≤ℓ

[ψi(x) + c(x) ] ,

for any strongly convex function c(x) such as 1
2‖x‖

2. We adopt the term 1
2‖x− xν‖2 as this is a common

regularization in many nonlinear programming algorithms. Third, we have left open the practical solution
of the subproblems (23) which may require yet an iterative process. With the many advances in convex
programming in recent years, this is a safe omission as we are adopting this technology as the workhorse
in the above algorithm. In this regard, one could incorporate a variable step size in the quadratic term
instead of a unit step size to increase flexibility in the practical implementation of the algorithm. We
have omitted all these refinements as we want to present the basic version of the algorithm and establish
its (subsequential) convergence to a d-stationary point of the program (22) which we present in the result
below.

Proposition 11. Suppose that the dc function ζ is bounded below on the closed convex set X. Starting
at any x0 ∈ X for which the level set L(x0) , {x ∈ X | ζ(x) ≤ ζ(x0)} is bounded, Algorithm I generates
a well-defined bounded sequence {xν} such that every accumulation point, at least one of which must
exist, is a d-stationary solution of (22). Moreover, if the algorithm does not terminate in a finite number
of iterations, any such point cannot be a local maximizer of ζ on X.
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Proof. By the update rule of the algorithm, we have

ζ(xν) = φ(x ν)− max
1≤i≤ℓ

{ψi(x
ν)}

= φ(xν)− ψi(x
ν), ∀i ∈ M(xν)

≥ φ(x̂ ν,i)− ψi(x
ν)−∇ψi(x

ν)T (x̂ ν,i − xν) + 1
2 ‖x̂

ν,i − xν‖2, ∀i ∈ M(xν)

by the definition of x̂ ν,i

≥ φ(x̂ ν,i)− ψi(x̂
ν,i) + 1

2 ‖ x̂
ν,i − xν ‖2, ∀ i ∈ M(xν)

by the convexity of ψi

≥ φ(x̂ ν,i)− max
1≤j≤ℓ

ψj(x̂
ν,i) + 1

2 ‖ x̂
ν,i − xν ‖2, ∀ i ∈ M(xν)

= ζ(x̂ ν,i) + 1
2 ‖ x̂

ν,i − xν ‖2, ∀ i ∈ M(xν)

≥ ζ(xν+1) + 1
2 ‖x

ν+1 − xν ‖2 by the definition of xν+1.

Hence, the sequence of objective values {ζ(xν)} is non-increasing, and strictly decreasing if xν+1 6= xν

for all ν. Since ζ is bounded below on X, it follows that lim
ν→∞

ζ(xν) exists and

lim
ν→∞

[
ζ(xν)− ζ(xν+1)

]
= lim

ν→∞
‖xν+1 − xν ‖ = 0. (24)

Since the sequence {xν} is contained in the bounded set L(x0), it has at least one accumulation point. Let
{xν}ν∈κ be a subsequence converging to a limit x∞, which must necessarily belong to X. By restricting
the subsequence on hand, a simple limiting argument shows that M(xν) ⊆ M(x∞) ⊆ Mε(x

ν) for all
ν ∈ κ sufficiently large. Therefore, using the update rule of the algorithm, for all i ∈ M(x∞), we have

ζ(xν+1) + 1
2‖x

ν+1 − xν‖2 ≤ ζ(x̂ ν,i) + 1
2‖ x̂

ν,i − xν ‖2

≤ φ(x)−
(
ψi(x

ν) +∇ψi(x
ν)T (x− xν)

)
+ 1

2 ‖x− xν ‖2 ∀x ∈ X.

Taking the limit ν(∈ κ) → ∞ yields

ζ(x∞) ≤ φ(x)−
(
ψi(x

∞) +∇ψi(x
∞)T (x− x∞)

)
+ 1

2 ‖x− x∞ ‖2, ∀x ∈ X, ∀ i ∈ M(x∞),

or equivalently

φ(x∞) ≤ φ(x)−∇ψi(x
∞)T (x− x∞) + 1

2 ‖x− x∞ ‖2, ∀x ∈ X, ∀ i ∈ M(x∞).

The d-stationarity of x∞ for the minimization problem (22) follows from Proposition 10. To prove the
last statement of the proposition, we note that the sequence {ζ(xν)} must be strictly decreasing (since
the algorithm does not terminate in finite number of iterations); moreover, if x̂ is any accumumation
point of the sequence {xν}, then the sequence {ζ(xν)} converges to ζ(x̂). Let {xν}ν∈κ ′ be a subsequence
converging to x̂. We must have ζ(xν−1) > ζ(xν) ≥ ζ(x̂) for all ν ∈ κ ′. Since {xν−1}ν∈κ ′ also converges
to x̂, it follows that x̂ cannot be a local maximizer of ζ on X. �

We make several additional remarks regarding the algorithm and its convergence proof.

• The choice of ε > 0 is important as Example 9 shows the failure of the algorithm with ε = 0.

• A major departure of the algorithm from the DCA is that instead of choosing a subgradient from
∂ϕ(xν) at iteration ν, we choose the family of gradients {∇ψk(x

ν)}k∈Mε(xν), which is a finite subset of

18



∂ϕ(xν), at the expense of solving multiple convex subprograms. This extra effort per iteration leads to
the (subsequential) convergence to a d-stationary point of (22).

• A referee asked the question of whether the non-increasing property of the sequence of objective values
{ζ(xν)} can be derived from the well-known properties of the proximal map. This does not appear to be
the case; however, the proof given above is fairly elementary.

• If the function φ = φnd + φd is the sum of two convex functions with φnd being nondifferentiable and
φd being differentiable, then we keep φnd as it is but approximate φd by its first-order Taylor expression
at xν . Specifically, we may define x̂ ν,i to be the minimizer of

minimize
x∈X

φnd(x) + φd(x
ν) +∇φd(x

ν)T (x− xν ) + 1
2 ‖x− xν ‖2 − ψi(x

ν)−∇ψi(x
ν)T (x− xν),

and the same convergence result can be proved.

• At this time, we are not able to extend the algorithm to treat the case where ϕ(x) is the value function
of a continuum family of convex functions, i.e., when ϕ(x) = max

y∈Y
ψ(x, y) where ψ(x, •) is a concave

function and Y is a compact convex set in R
m for some positive integer m. It remains an open challenge

to develop a practically implementable and provably convergent algorithm to compute a d-stationary
solution of (22) in this case.

Proposition 11 yields the subsequential convergence of Algorithm I. There are various additional condi-
tions under which sequential convergence can be established. One such condition is the existence of an
isolated accumulated point of the sequence; such a point has the property that it is the unique accumu-
lation point of the sequence within a certain neighborhood of the point. We formally state this result in
the corollary below; its proof follows immediately from [9, Proposition 8.3.10] and is omitted.

Corollary 12. Under the assumptions of Proposition 11, if one of the accumulation points of the sequence
{xν} is isolated, then the sequence converges to it. �

A referee pointed out that a recent paper [3] has established the convergence of the whole sequence (as
opposed to subsequences) produced by various classes of algorithms to a “critical point” for a broad class
of nonconvex semi-algebraic problems. It would be interesting to investigate whether such a sequential
convergence result could be established for Algorithm I applied to the dc program (22) with semi-algebraic
functions.

5.2 A randomized version

When the set Mε(x
ν) contains a large number of elements, then many subproblems (23) have to be solved.

Although each of them is convex and presumably easy to solve, it would be desirable not to solve too
many of them in practical implementation. Randomization could help in this regard; i.e., we randomize
the choice of an appropriate subproblem to be solved at each iteration. We present this randomized
algorithm below and show that it will produce a d-stationary point of the problem (22) almost surely.

The Randomized Version. Let a scalar pmin ∈ (0, 1) be given and let ε > 0 be arbitrary. For a
given xν ∈ X at iteration ν, choose an index i ∈ Mε(x

ν) randomly so that

pνi , Pr
(
index i is chosen | x1, · · · , xν

)
≥ pmin > 0.

Let xν+1 = argmin
x∈X

φ(x) + 1
2 ‖x− xν ‖2 −

(
ψi(x

ν) +∇ψi(x
ν)T (x− xν)

)
.
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In what follows, we establish the almost sure convergence of the above randomized algorithm. For each
index j ∈ Mε(x

ν), let x̂ ν,j , argmin
x∈X

ζ̂j(x;x
ν) , φ(x) + 1

2 ‖x− xν‖2 −
(
ψj(x

ν) +∇ψj(x
ν)T (x− xν)

)
. We

have,
ζ(xν) = ζ̂j(x

ν ;xν) ≥ ζ̂j(x̂
ν,j;xν) ≥ ζ(x̂ ν,j) + 1

2 ‖ x̂
ν,j − xν ‖2.

Moreover, xν+1 = x̂ ν,j with probability pνj . Taking conditional expectations, the above inequality implies

E
[
ζ(xν+1) | xν

]
=

∑

i∈Mε(xν)

pνi ζ(x̂
ν,i) ≤ ζ(xν)− 1

2

∑

i∈Mε(xν)

pνi ‖ x̂
ν,i − xν ‖2.

Consequently, the random sequence {ζ(xν)} is a supermartingale and assuming that ζ is bounded from
below on X, we may conclude that {ζ(xν)} converges almost surely and, letting pνi = 0 for all i 6∈ Mε(x

ν),

lim
ν→∞

pνi ‖ x̂
ν,i − xν ‖ = 0, ∀ i = 1, · · · , ℓ (25)

with probability one. In the rest of the proof, we restrict ourselves to the set of probability one in which
the above limit holds. Consider a point x∞ that is the limit of the subsequence {xν}ν∈κ. By further
restricting the subsequence on hand, we can assume that iν = ī for all ν ∈ κ with ī ∈ M(x∞). Let
i ∈ M(x∞) be given. It then follows that i ∈ Mε(x

ν) for all ν ∈ κ sufficiently large. Since pνi ≥ pmin, it
follows from (25) that lim

ν(∈κ)→∞
x̂ ν,i = lim

ν(∈κ)→∞
xν = x∞. Therefore, by the definition of x̂ ν,i, we have,

for every x ∈ X,

φ(x) + 1
2 ‖x− xν ‖2 − ψi(x

ν)−∇ψi(x
ν)T (x− xν) ≥ φ(x̂ ν,i)− ψi(x

ν)−∇ψi(x
ν)T (x̂ ν,i − xν).

Letting ν(∈ κ) → ∞ in the above inequality, we deduce

φ(x) + 1
2 ‖x− x∞ ‖2 −∇ψi(x

∞)T (x− x∞) ≥ φ(x∞),

from which we can deduce that φ(x)−∇ψi(x
∞)T (x− x∞) ≥ φ(x∞) for all x ∈ X. By Proposition 10, it

follows that x∞ is a d-stationary solution of (22) almost surely. This completes the proof of the following
convergence result.

Proposition 13. Suppose that the dc function ζ is bounded below on the closed convex set X. Every
limit point of the iterates generated by the randomized algorithm is a d-stationary point of the dc
program (22) with probability one. �

6 Algorithmic Extension: I

In this and the next section, we present two extensions of the deterministic Algorithm I and omit their
randomized versions. When providing the convergence of the extended algorithms, we focus on their
subsequential convergence and rely on Corollary 12 and the recent reference [3] for the issue of sequential
convergence. The first extension of Algorithm I is to the dc constrained dc program (17). We start by
presenting an immediate consequence of Propositions 8 and 10.

Proposition 14. Let ϕ(x) , max
1≤j≤ℓ

ψi(x) and ϕc(x) , max
1≤j≤L

ψc,j(x), where ψi and ψc,j are convex differ-

entiable functions on Ω. Let x̄ ∈ X̂ satisfy the pointwise Slater CQ. It holds that x̄ is a B-stationary solu-
tion of (17) if and only if for every i ∈ M(x̄) and every j ∈ Mc(x̄), x̄ ∈ argmin

x∈Ŷ j(x̄)

[
φ(x)−∇ψi(x̄)

T (x− x̄)
]
,

or equivalently, x̄ = argmin
x∈Ŷ j(x̄)

[
φ(x)−∇ψi(x̄)

T (x− x̄) + 1
2‖x− x̄‖2

]
. �
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In the rest of this section, we assume that the two functions ϕ and ϕc are as given in Proposition 14. Till
now, the issue of feasibility of the problem (17) has not been addressed. Indeed, this is a very difficult
issue and we will not directly deal with it. In what follows, we propose two approaches to compute a
B-stationary point of (17). The first approach assumes that a feasible solution of the problem is available
which we will use to initiate the algorithm. The second approach does not assume that such a (feasible)
solution is readily available, perhaps because the problem is actually not feasible. We propose a double-
loop scheme in which the outer loop solves a sequence of convex-constrained subproblems by penalizing
the dc constraint and the inner loop applies the basic Algorithm I (or its randomized version) to compute
a d-stationary point of the penalized subproblems. Convergence of both algorithms will be analyzed.

6.1 Feasibility assumed

In this subsection, we assume that a vector x0 ∈ X̂ is available. Similar to the index set Mε(x̄) pertaining
to the max-function ϕ(x) in the objective, we define, for each ε > 0 and each x̄ ∈ X the set

Mc,ε(x̄) , { k | ψc,k(x̄) ≥ ϕc(x̄)− ε }

pertaining to the max-function ϕc(x) in the constraint. We also recall the set

Ŷ j(x̄) ,
{
x ∈ X | φc(x) ≤ ψc,j(x̄) +∇ψc,j(x̄)

T (x− x̄ )
}
,

which we have previously defined for a vector x̄ ∈ X̂j is now extended to an arbitrary vector x̄ ∈ X.
Note: if x̄ 6∈ X̂j , the nonemptiness of Ŷ j(x̄) is not guaranteed. Nevertheless Ŷ j(x̄) must be nonempty if
x̄ ∈ X̂ and j ∈ Mc(x̄).

Algorithm II. Let ε > 0 and x0 ∈ X̂ be given. At iteration ν, given xν ∈ X̂ , we let, for every pair of
indices i ∈ Mε(x

ν) and j ∈ Mc,ε(x
ν), x̂ ν,i,j be the (unique) optimal solution of the strongly convex

program:
argmin
x∈Ŷ j(xν)

φ(x)− ψi(x
ν)−∇ψi(x

ν)T (x− xν) + 1
2 ‖x− xν ‖2 (26)

if Ŷ j(xν) 6= ∅; otherwise we let x̂ ν,i,j = xν . Let
(
î, ĵ
)
∈ argmin

(i,j)∈Mε(xν)×Mc,ε(xν)
ζ(x̂ ν,i,j)+ 1

2‖x̂
ν,i,j−xν‖2;

set xν+1 , x̂ ν,̂i,ĵ.

We have the following (subsequential) convergence result of the above algorithm.

Proposition 15. Suppose that the dc function ζ is bounded below on the feasible set X̂. Starting at
any x0 ∈ X̂ for which the level set L̂(x0) , {x ∈ X̂ | ζ(x) ≤ ζ(x0)} is bounded, Algorithm II generates a
well-defined bounded sequence {xν} ⊂ X̂ such that every accumulation point x∞, at least one of which
must exist, is feasible to (17); moreover, if x∞ satisfies the pointwise Slater CQ, then x∞ is a B-stationary
point of (17).

Proof. Since xν ∈ X̂, it follows that the subproblem (26) is feasible for all j ∈ Mc(x
ν) and thus has

a unique optimal solution. Moreover, xν+1 ∈ X̂ by the gradient inequality applied to the function ψc,ĵ.
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We now follow the proof of Proposition 11 to deduce the following string of (in)equalities:

ζ(xν) = φ(x ν)− max
1≤i≤ℓ

{ψi(x
ν)}

= φ(xν)− ψi(x
ν), ∀i ∈ M(xν)

≥ φ(x̂ ν,i,j)− ψi(x
ν)−∇ψi(x

ν)T (x̂ ν,i,j − xν) + 1
2 ‖x̂

ν,i,j − xν‖2,

∀ (i, j) ∈ M(xν)×Mc(x
ν); by the definition of x̂ ν,i,j

≥ φ(x̂ ν,i,j)− ψi(x̂
ν,i,j) + 1

2 ‖ x̂
ν,i,j − xν ‖2, ∀ (i, j) ∈ M(xν)×Mc(x

ν)

by the convexity of ψi

≥ φ(x̂ ν,i)− max
1≤k≤ℓ

ψk(x̂
ν,i,j) + 1

2 ‖ x̂
ν,i,j − xν ‖2, ∀ (i, j) ∈ M(xν)×Mc(x

ν)

= ζ(x̂ ν,i,j) + 1
2 ‖ x̂

ν,i,j − xν ‖2, ∀ (i, j) ∈ M(xν)×Mc(x
ν)

≥ ζ(xν+1) + 1
2 ‖x

ν+1 − xν ‖2 by the definition of xν+1.

As before, it follows that (24) holds. Let {xν}ν∈κ be a subsequence converging to a limit x∞, which
can easily be seen to belong to X̂. Suppose that x∞ satisfies the pointwise Slater CQ. According to
Proposition 14, it suffices to show that x̄ = argmin

x∈Ŷ j(x̄)

[
φ(x)−∇ψi(x̄)

T (x− x̄) + 1
2‖x− x̄‖2

]
for all pairs

of indices (i, j) ∈ M(x∞) × Mc(x
∞). Let j be such an index and x ∈ Ŷ j(x∞) be arbitrary. Then

j ∈ Mc,ε(x
ν) for all ν ∈ κ sufficiently large. Let x̄j satisfy: φc(x̄

j) < ψc,j(x
∞) +∇ψc,j(x

∞)T (x̄j − x∞).
For all scalars τ ∈ [0, 1), with xτ , x̄j + τ(x− x̄j) ∈ X, we have

φc(x
τ ) < ψc,j(x

∞) +∇ψc,j(x
∞)T (xτ − x∞).

For each fixed τ ∈ [0, 1), it follows that for all ν(∈ κ) sufficiently large, we have

φc(x
τ ) < ψc,j(x

ν) +∇ψc,j(x
ν)T (xτ − xν )

for all ν ∈ κ sufficiently large. Thus, xτ is feasible to (26). Similar to the proof of Proposition 11, we
have for all i ∈ M(x∞), which is a subset of Mε(x

ν) for all ν sufficiently large

ζ(xν+1) + 1
2‖x

ν+1 − xν‖2 ≤ ζ(x̂ ν,i,j) + 1
2‖ x̂

ν,i,j − xν ‖2

≤ φ(xτ )−
(
ψi(x

ν) +∇ψi(x
ν)T (xτ − xν)

)
+ 1

2 ‖x
τ − xν ‖2.

Passing to the limit ν(∈ κ) → ∞, we deduce, for all τ ∈ [0, 1),

ζ(x∞) ≤ φ(xτ )− ψi(x
∞)−∇ψi(x

∞)T (xτ − x∞ ) + 1
2‖x

τ − x∞ ‖2.

Passing to the limit τ ↑ 1, we deduce

φ(x∞) ≤ φ(x)−∇ψi(x
∞)T (x− x∞) + 1

2‖x− x∞ ‖2

for all x ∈ Ŷ j(x∞) and all (i, j) ∈ M(x∞)×Mc(x
∞) as desired. �

6.2 Feasibility not assumed

Without assuming the feasibility of the problem (17), we propose a penalization of the dc constraint
and establish a limiting result when the penalization tends to infinity. Penalization techniques in dc
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programming and DCA have been investigated for solving dc constrained dc programs [32, 22, 23, 18].
The departure of our discussion from these references is that we aim to compute a B-stationary solution
of such a program. This is accomplished by considering the following penalized convex-constrained dc
program: for ρ > 0,

minimize
x∈X

ζ(x) + ρ max ( 0, ζc(x) )

and letting xρ be a d-stationary point of this problem. Suppose that for a sequence of penalty parameters
{ρν} ↑ ∞, the corresponding sequence of d-stationary solutions {xρν} converges to a limit x∞. What can
we say about x∞ with regard to the stationarity properties of (17)? Incidentally, since

φ(x)− ϕ(x) + ρ max ( 0, φc(x)− ϕc(x) ) =


φ(x) + ρ max (φc(x), ϕc(x) )︸ ︷︷ ︸

convex


−


ϕ(x) + ρϕc(x)︸ ︷︷ ︸

convex


 ,

the computation of each xρ can be accomplished by Algorithm I or its randomized version. It should
be noted that during the computation of the sequence {xν}, where xν , xρν , if at any time, an iterate
satisfies the dc constraint and is thus a feasible solution of the problem (17), we have the option of
abandoning this penalization approach and return to the previous direct approach wherein feasibility is
maintained throughout the algorithm. Here, we do not concern ourselves with these algorithmic details
and focus on an understanding of the asymptotic property of the penalization approach employing an
unbounded sequence of penalty parameters. For practical implementation, one should introduce a penalty
update rule that circumvents the unboundedness of such a sequence. Details like this should best be left
for future studies.

Proposition 16. In the above setting, the following three statements hold:

(a) If ζc(x
ν) > 0 for infinitely many ν’s, and if ϕc is strictly differentiable at x∞, then provided that X

is bounded and ζ is globally Lipschitz continuous on X, x∞ is a d-stationary solution of

minimize
x∈X

ζc(x) , φc(x)− ϕc(x);

(b) If ζc(x
ν) < 0 for infinitely many ν’s, then x∞ is a d-stationary point of ζ on X, thus a B-stationary

point on X̂;

(c) Suppose ζc(x
ν) = 0 for all but finitely many ν’s. If x∞ satisfies the pointwise Slater CQ and Mc(x

∞)
is a singleton, then x∞ is a B-stationary point of (17).

Proof. (a) If ζc(x
ν) > 0, then the stationarity condition of xν is

ζ ′(xν ;x− xν) + ρν ζ
′
c(x

ν ;x− xν) ≥ 0, ∀x ∈ X. (27)

In the following, we restrict ν so that ζc(x
ν) > 0. On one hand, we have

ζ ′c(x
ν ;x− xν) = φ′c(x

ν ;x− xν)− ( gν )T (x− xν ),

where gν ∈ ∂ϕc(x
ν) that depends on the vector x. With x fixed, the sequence of subgradients {gν} has

an accumulation point g∞ which belongs to ∂ϕc(x
∞). Without loss of generality, we may assume that

g∞ is the limit of the sequence {gν}. Consequently, we deduce that

lim sup
ν→∞

ζ ′c(x
ν ;x− xν) ≤ φ′c(x

∞;x− x∞)− ( g∞ )T (x− x∞ ).

On the other hand, by the boundedness of X and the global Lipschitz continuity of ζ, it follows that
ζ ′(xν ;x− xν) is bounded. Hence diving by ρν in (27), we deduce

φ′c(x
∞;x− x∞)− ( g∞ )T (x− x∞ ) ≥ 0,
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where the limit g∞ depends on x. Thus, we have proved that

φ′c(x
∞;x− x∞) ≥ min

g∈∂ϕc(x∞)
gT (x− x∞ ), ∀x ∈ X.

Hence, if ϕc is strictly differentiable at x∞, the above inequality yields the d-stationarity of the dc
constraint function ζc on X.

(b) If ζc(x
ν) < 0, then the stationarity condition of xν is

ζ ′(xν ;x− xν) ≥ 0, ∀x ∈ X.

Passing to the limit ν → ∞ for these ν’s easily yields ζ ′(x∞;x− x∞) ≥ 0 for all x ∈ X, as desired.

(c) Suppose ζc(x
ν) = 0 for all but finitely many ν’s. The stationarity condition of xν is

ζ ′(xν ;x− xν) + ρν max( 0, ζ ′c(x
ν ;x− xν) ) ≥ 0, ∀x ∈ X, (28)

from which we want to show: ζ ′(x∞;x− x∞) ≥ 0 for all x ∈ Ŷ j(x∞), where

Ŷ j(x∞) ,
{
x ∈ X | φc(x) ≤ ψc,j(x

∞) +∇ψc,j(x
∞)T (x− x∞)

}
,

with j being the single element of ∈ Mc(x
∞). Thus Mc(x

ν) = {j} also, for all ν sufficiently large. Hence,

ζ ′c(x
ν ;x− xν) = φ′c(x

ν ;x− xν)−∇ψc(x
ν)T (x− xν ).

Consider a vector x ∈ Ŷ j(x∞) that satisfies the inequality therein strictly. Since ψc,j(x
∞) = ϕc(x

∞) =
φc(x

∞), we deduce

lim sup
ν→∞

φ ′
c(x

ν ;x− xν) ≤ φ′c(x
∞;x− x∞)

≤ φc(x)− φc(x
∞) < ∇ψc,j(x

∞)T (x− x∞) = lim
ν→∞

∇ψc,j(x
ν)T (x− xν).

It follows that for all ν sufficiently large,

φ ′
c(x

ν ;x− xν) < ∇ψc,j(x
ν)T (x− xν)

Hence
0 ≤ ζ ′(xν ;x− xν) + ρν max( 0, ζ ′c(x

ν ;x− xν) ) = ζ ′(xν ;x− xν).

If x ∈ Ŷ j(x∞) is such that φc(x) = ψc,j(x
∞)+∇ψc,j(x

∞)T (x−x∞), then the vector xτ , x̄j + τ(x− x̄j),
where x̄j is the Slater point under the CQ, i.e., x̄j ∈ X satisfies the dc constraint strictly, remains a Slater
point of Ŷ j for all τ ∈ [0, 1). By the above proof, we have ζ ′(xν ;xτ − xν) ≥ 0. Letting τ ↑ 1 completes
the proof. �

Remarks. The assumption thatMc(x
∞) is a singleton, or equivalently that ϕc is strictly differentiable at

x∞, is a pointwise goodness of the dc function ζc(x) = φc(x)−ϕc(x) at x
∞. In spite of the differentiability

of the function ϕc at x∞, the difference function ζc remains not necessarily so. This is another instance
where the class of good dc functions offers an advantage over the class of not-good dc functions.

Another noteworthy remark is that while the assumption ζc(x
ν) = 0 renders xν feasible to the problem

(17), this vector is obtained as a limit point of a presumably infinite process when the penalized subprob-
lem is solved, and is thus generally not readily available in practical computation. From this perspective,
Proposition 16 should be considered a conceptual result in that it offers insights into the asymptotic
property of the penalization approach for solving a dc constrained dc program without assuming feasi-
bility. How this result can be turned into a constructive approach for use in practice in solving such a
problem requires further investigation. �
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7 Algorithmic Extension: II

In this section, we discuss how we can develop a distributed algorithm for solving the following extended
dc program:

minimize
x∈X

ζ(x) , φ(x)−
I∑

i=1

ϕi(x), with each ϕi(x) , max
1≤k≤ℓi

ψi,k(x) (29)

where φ and each ψi,k are convex functions defined on Ω with each ψi,k being C1 on Ω. The goal is to
exploit the sum structure in the objective function so that each summand can be treated separately from
the others. One motivation of this consideration arises from a multi-agent optimization context wherein
each agent i has a private performance function ϕi(x) and it is desirable to be able to implement an
algorithm requiring minimal communication among the agents. Two challenges of this goal is the dc and
nondifferentiable features of the overall objective function and the coupling of variables in each summand.

Before presenting the distributed algorithm, we mention that while it is possible to apply the basic
Algorithm I to the problem (29), the sum structure makes a straightforward application of this cen-
tralized algorithm rather laborious when there are many summands. In this case, it may be necessary
to solve many subproblems at each iteration that are derived by selecting the functions ψi,j for all
j ∈ {k | ψi,k(x

ν) ≥ ϕi(x
ν)− ε} and all i = 1, · · · , I. To give an example, consider the case I = n and

each ℓi = 2. In this case, the number of subproblems to be solved in each iteration could be exponential
in n. Randomization could help in this regard by not exhausting such a selection per iteration; yet the
resulting algorithm remains a centralized scheme that does not take advantage of the sum structure for
possible parallel processing. To see how the probabilistic approach can be applied, we define the tuple

t , (ki)
I
i=1 and let K ,

I∏

i=1

{1, · · · , ℓi}. For each such tuple t, let ψt(x) ,

I∑

i=1

ψi,ki(x). It is easy to see

that
ζ(x) = φ(x)− ϕ(x), where ϕ(x) , max

t∈K
ψt(x).

The total number of elements in K is
I∏

i=1

ℓi, which could be very large. [For instance, if each ℓi = 2 and

I = n, then the product of these ℓi’s is equal to 2n, which is exponential in the dimension of the variable
x.] In this case, the randomized version of the algorithm becomes useful. For ε > 0 and i = 1, · · · , I, let

Mi(x) , { k | ψi,k(x) = ϕi(x) } and Mi,ε(x) , { k | ψi,k(x) ≥ ϕi(x)− ε }.

At each iteration ν, given an iterate xν , we select a random tuple t , (ki)
I
i=1 ∈ K such that ki ∈ Mi,ε(x

ν)
for every i = 1, · · · , I. We then solve the following strongly convex subproblem,

argmin
x∈X

[
φ(x) + 1

2 ‖x− xν ‖2 −
I∑

i=1

(
ψki(x

ν) +∇ψki(x
ν)T (x− xν)

}
]
. (30)

Although the randomized selection of the tuple t avoids the enumeration of a possibly large number of
elements of the set K and significantly reduces the number of subproblems to be solved at each iteration,
the global resolution of (30) remains a centralized task. While it may be possible to simplify this task
under some structural assumptions on the set X and differentiability properties of the functions φ(x)
and ϕ(x) (see [1, 2]), we present below a distributed penalty approach that is by itself a novel idea for
computing d-stationary points of dc programs of the kind (29) and requires no such additional structures.
Variations of this approach can be applied to other separable forms of a dc program (e.g., when φ(x) is
also a sum of agents’ functions or a sum of a differentiable and a non-differentiable function). In what
follows, we restrict our discussion to (29) where a sum structure is present only in the concave term
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of the objective. This distributed approach recognizes the sum structure

I∑

i=1

max
1≤k≤ℓi

ψi,k(x) and solves

subproblems that naturally decomposes according to the latter structure; each decomposed subproblem
can be solved in parallel per individual summand.

7.1 A penalty approach

The penalty approach for computing a d-stationary solution to the problem (29) consists of two main
iterative steps implemented by a sequence of outer iterations each in turn composed of a sequence of
inner iterations. Each outer iteration is based on the simple observation that the problem (29) is clearly
equivalent to the following one where the single variable x is duplicated I times with the addition of the
constraints: zi = x. This results in a reformulated problem with I + 1 variables:

minimize
x, zi ∈X

φ(x)−
I∑

i=1

ϕi(z
i)

subject to zi = x, i = 1, · · · , I.

(31)

We next penalize the duplication constraints by replacing them with a sum-of-squares term in the objec-
tive using a penalty scalar ρ > 0:

minimize
x, zi ∈X

θρ(x, z) , φ(x)−
I∑

i=1

ϕi(z
i) +

ρ

2

I∑

i=1

∥∥ zi − x
∥∥2 ; where z ,

(
zi
)I
i=1

. (32)

The outer iterations consist of solving the problem (32) for an increasing sequence of positive scalars {ρν}
tending to ∞. This is accomplished by applying the basic Algorithm I or its randomized version to the
following problem:

minimize
x, zi ∈X

θρν (x, z) , φ(x)−
I∑

i=1

ϕi(z
i) +

ρν
2

I∑

i=1

∥∥ zi − x
∥∥2 (33)

for each ν, yielding a sequence of d-stationary points
{
xν , (zν,i)Ii=1

}∞
ν=1

. Thus, for all x and zi in X,

φ ′(xν ;x− xν)−
I∑

i=1

max
k∈Mi(zν,i)

∇ψi,k(z
ν,i)T ( zi − zν,i )+

ρν

I∑

i=1

[
( zν,i − xν )T ( zi − zν,i ) + (xν − zν,i )T (x− xν )

]
≥ 0.

(34)

Before describing the inner iterations to generate such stationary solutions of (33), we first establish
the desired limiting property of such solutions; namely, every accumulation point

(
x∞, (z∞,i)Ii=1

)
of{

xν , (zν,i)Ii=1

}∞
ν=1

must satisfy z∞,i = x∞ for all i = 1, · · · , I; thus we recover the feasibility condition of
(31).

Convergence of penalization. Throughout the following analysis, we assume that each ‖∇ψi,k‖ is
bounded on X. By letting η , max

1≤i≤I
max

1≤k≤ℓi
max
x∈X

‖∇ψi,k(x)‖ and zi = x = xν for all i, we deduce from

(34),

0 ≤ η

I∑

i=1

‖xν − zν,i ‖ −
ρν
2

I∑

i=1

‖ zν,i − xν ‖2,
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which easily implies that lim
ν→∞

‖zν,i−xν‖ = 0 for all i. Hence, if x∞ is the limit of a convergent subsequence

{xν}ν∈N , which must exist by the boundedness of X, then lim
ν(∈N )→∞

zν,i = x∞ for all i. With zi = x for

every i, (34) also implies

φ ′(xν ;x− xν) ≥
I∑

i=1

max
k∈Mi(zν,i)

∇ψi,k(z
ν,i)T (x− zν,i ).

Since Mi(z
ν,i) ⊆ Mi(x

∞) for all ν ∈ N sufficiently large, we deduce that for some nonnegative scalars{
λνi,k

}
k∈Mi(x∞)

, satisfying
∑

k∈Mi(x∞)

λνi,k = 1 and possibly dependent on x,

φ ′(xν ;x− xν) ≥
I∑

i=1

∑

k∈M(x∞)

λνi,k ∇ψi,k(z
ν,i)T (x− zν,i ).

For x fixed, we may assume, without loss of generality, that for each pair (i, k), the sequence of scalars{
λνi,k

}
ν∈N

converges to λ∞i,k, which must be nonnegative and satisfies:
∑

k∈Mi(x∞)

λ∞i,k = 1. By a known

limiting property of the directional derivatives of convex functions [37, Theorem 24.5], we have

φ ′(x∞;x− x∞) ≥ lim sup
ν(∈N )→∞

φ ′(xν ;x− xν).

Hence,

φ ′(x∞;x− x∞) ≥
I∑

i=1

∑

k∈Mi(x∞)

λ∞i,k ∇ψi,k(x
∞)T (x− x∞ ).

Since
∑

k∈Mi(x∞)

λ∞i,k∇ψi,k(x
∞) ∈ ∂ϕi(x

∞), we deduce that

φ ′(x∞;x− x∞) ≥
I∑

i=1

min
gi∈∂ϕi(x∞)

( gi )T (x− x∞ ), ∀x ∈ X.

Hence, if each ∂ϕi(x
∞) is a singleton, it follows that x∞ is a d-stationarity solution of (29). We have

therefore proved the next result.

Proposition 17. Suppose that each ‖∇ψi,k‖ is bounded on X.

(a) (Recovering feasibility) Every accumulation point
(
x∞, (z∞,i)Ii=1

)
of the sequence

{
xν , (zν,i)Ii=1

}∞
ν=1

of penalized d-stationary points corresponding to a sequence of penalty parameters {ρν} ↑ ∞ must
satisfy z∞,i = x∞ for all i = 1, · · · I.

(b) (Achieving stationarity) Moreover, if each ϕi is strictly differentiable at x∞, then x∞ is a d-stationary
solution of (29). �

Remark. Once again, the goodness of the objective function of (29) is needed to complete the last step
of the proof of the above proposition. �

A distributed algorithm for (33). Based on Algorithm I, we present in this section a distributed
algorithm for computing a d-stationary solution of each penalized problem (33). To do this, we need to
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take care of one detail of this problem having to do with the non-separability of the term ‖zi − x‖2 in
the objective function. Namely, we linearize this term at a base tuple

(
xν , (zν,i)Ii=1

)
as follows:

‖ zi − x‖2 ≈ ‖ zν,i − xν ‖2 + 2
[
(x− xν )T (xν − zν,i ) + ( zi − zν,i )T ( zν,i − xν )

]
(35)

and use this linearization in each step of the algorithm.

At the beginning of an outer iteration ν (thus ρν is fixed), starting at a tuple
(
xν,0,

(
zν,i,0

)I
i=1

)
of vectors

in X, the algorithm generates a sequence of inner iterates

{
xν,µ, (zν,i,µ)Ii=1

}∞
µ=0

. (36)

At each inner iteration µ = 1, 2, · · · , for every tuple tν,µ , (kν,i,µ)
I
i=1 consisting of indices kν,i,µ ∈

Mi,ε(z
ν,i,µ) for i = 1, · · · , I, we solve the strongly convex subprogram:

minimize
x, zi ∈X





φ(x) + 1
2




‖x− xν,µ ‖2 +
I∑

i=1

‖ zi − zν,i,µ ‖2

︸ ︷︷ ︸
regularization




+

ρν

I∑

i=1


 (x− xν,µ )T (xν,µ − zν,i,µ ) + ( zi − zν,i µ )T ( zν,i,µ − xν,µ )︸ ︷︷ ︸

linear approximation of 1
2‖z

i − x‖2


−

I∑

i=1

(
ψi,kν,i,µ(z

ν,i,µ) +∇ψi,kν,i,µ(z
ν,i,µ)T ( zi − zν,i,µ )

)
}
,

(37)

which naturally decomposes into I + 1 subproblems:

• a strongly convex subproblem in the x-variable,

minimize
x∈X

[
φ(x) + 1

2 ‖x− xν,µ ‖2 + ρν (x− xν,µ )T
I∑

i=1

(xν,µ − zν,i,µ )

]
;

• a problem of the same kind in the zi-variable, for i = 1, · · · , I,

minimize
zi∈X

{
1
2‖ z

i − zν,i,µ ‖2 + ρν ( z
i − zν,i µ )T ( zν,i,µ − xν,µ )−

[
ψi,kν,i,µ(z

ν,i,µ) +∇ψi,kν,i,µ(z
ν,i,µ)T ( zi − zν,i,µ )

] }
.

(38)

Among the optimal solutions to (37) for various choices of the index tuples tν,µ, one of them leads to
the new iterates

(
xν,µ+1, (zν,i,µ+1)Ii=1

)
. [This is the deterministic version of the algorithm; we leave the

probabilistic version for the reader to complete and remind the reader that the latter could be more
efficient than the former in practice especially when synchronization among agents is costly.] In total, for
each tuple t, a total of I+1 strongly convex subprograms are solved at each inner iteration, each of them
can be solved separately from the others. The choice of the individual indices kν,i,µ can be carried out
in parallel per agent i. Thus, the overall implementation of the algorithm is totally distributed. At the
completion of the inner iterations according to a prescribed termination criterion, the penalty parameter
ρν is updated and a new sequence of inner iterations is entered. The convergence of the inner iterations
can be proved in a similar way as the basic Algorithm I and is not repeated.
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The outer-inner scheme for solving (29) has its advantage of being implementable distributedly according
to the individual summands. Ideally, it would be desirable to have a single-loop algorithm wherein the
update of the penalty parameter ρ can be incorporated into the inner iterations. At this time, we are
not able to develop a provably convergent single-loop algorithm that can be implemented distributedly.
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visit to Lorraine University where he had a very productive discussion with Professors Pham Dinh Tao
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Appendix: Proof of the dc-property of θ in (3). We first introduce some notational definitions.
For every i = 1, . . . , I and j = 1, . . . , J we let

ρmax
i,j , maximum

λi∈Λi
hi,j(λ

i) and ρmin
i,j , minimum

λi∈Λi
hi,j(λ

i), (39)
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which are finite scalars by the compactness of Λi and the continuity of hi,j. Based on these two extremum
values, we rewrite each product hi,j(λ

i)fi,j(x) as follows:

(i) if fi,j(x) is convex (cvx):

hi,j(λ
i) fi,j(x) = ρmin

i,j fi,j(x) +
(
hi,j(λ

i)− ρmin
i,j

)
fi,j(x),

(ii) if fi,j(x) is concave (cve):

hi,j(λ
i) fi,j(x) = ρmax

i,j fi,j(x) +
(
ρmax
i,j − hi,j(λ

i)
)
(−fi,j(x)).

Thus, we can rewrite each θi(x) for i = 1, . . . , I as

θi(x) = maximum
λi∈Λi

J∑

j=1

hi,j(λ
i)fi,j(x)

=
∑

j:fi,j cvx

ρmin
i,j fi,j(x) +

∑

j:fi,j cve

ρmax
i,j fi,j(x)

+ maximum
λi∈Λi


 ∑

j:fi,j cvx

(
hi,j(λ

i)− ρmin
i,j

)
fi,j(x) +

∑

j:fi,j cve

(
ρmax
i,j − hi,j(λ

i)
)
(−fi,j(x))




(40)

It is important to highlight the following facts with regard to the above representation:

• If ρmin
i,j ≤ 0 for some j such that fi,j is convex then ρmin

i,j fi,j(x) is a concave function on X.

• If ρmax
i,j ≥ 0 for some j such that fi,j is concave then ρmax

i,j fi,j(x) is a concave function on X.

• Let

gi(x) , maximum
λi∈Λi




∑

j:fi,j cvx

(
hi,j(λ

i)− ρmin
i,j

)
fi,j(x) +

∑

j:fi,j cve

(
ρmax
i,j − hi,j(λ

i)
)
(−fi,j(x))

︸ ︷︷ ︸
, ϕi(x, λ

i)




. (41)

Since the maximand ϕi(x, λ
i) is a convex function in x for each λi, it follows readily that gi(x) is a convex

function on X.

• By combining the above three observations, it is clear that each θi(x) is a dc-function. To be explicit,
we define some index sets:

J −,cvx
i ,

{
j | ρmin

i,j ≤ 0 and fi,j is cvx
}

J +,cvx
i ,

{
j | ρmin

i,j ≥ 0 and fi,j is cvx
}

J +,cve
i ,

{
j | ρmax

i,j ≥ 0 and fi,j is cve
}

J −,cve
i ,

{
j | ρmax

i,j ≤ 0 and fi,j is cve
}
.
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We can then write

θi(x) =
∑

j:fi,j cvx

ρmin
i,j fi,j(x) +

∑

j:fi,j cve

ρmax
i,j fi,j(x) + gi(x)

=




∑

j∈J−,cvx
i

ρmin
i,j fi,j(x) +

∑

j∈J+,cve
i

ρmax
i,j fi,j(x)

︸ ︷︷ ︸
, ui(x)




+




∑

j∈J+,cvx
i

ρmin
i,j fi,j(x) +

∑

j∈J−,cve
i

ρmax
i,j fi,j(x) + gi(x)

︸ ︷︷ ︸
, vi(x)




where the function ui(x) is concave and differentiable while vi(x) is convex and non-differentiable. Hence

θi(x) is a dc function; thus so is θ(x) =
I∑

i=1

θi(x) = u(x) + v(x), where u(x) ,
I∑

i=1

ui(x) is concave and

differentiable and v(x) ,

I∑

i=1

vi(x) is convex and nondifferentiable. Consequently, (3) is a nondifferentiable

dc program. The noteworthy point is that in the representation θ(x) = u(x)+v(x), the concave summand
u(x) is differentiable whereas the convex summand v(x) is not; thus θ is not a good dc function.

33


	1 Introduction
	2 Motivating Applied Problems
	2.1 A digression: Continuum family of dc functions

	3 Stationarity: Convex Constraints
	3.1 Directional derivatives
	3.2 Concepts of stationarity
	3.3 Lifted stationarity  weak d-stationary

	4 dc Constrained dc Programs
	4.1 A subclass of dc constraints

	5 Computing d-Stationary Points
	5.1 The basic algorithm
	5.2 A randomized version

	6 Algorithmic Extension: I
	6.1 Feasibility assumed
	6.2 Feasibility not assumed

	7 Algorithmic Extension: II
	7.1 A penalty approach


