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Abstract

We study long-term Markov Decision Processes and Gambling Houses, with applica-
tions to any partial observation MDPs with finitely many states and zero-sum repeated
games with an informed controller. We consider a decision-maker which is maximizing
the weighted sum

∑
t≥1 θtrt, where rt is the expected reward of the t-th stage. We prove

the existence of a very strong notion of long-term value called general uniform value, rep-
resenting the fact that the decision-maker can play well independently of the evaluations
(θt)t≥1 over stages, provided the total variation (or impatience)

∑
t≥1 |θt+1 − θt| is small

enough. This result generalizes previous results of Rosenberg, Solan and Vieille [35] and
Renault [31] that focus on arithmetic means and discounted evaluations. Moreover, we give
a variational characterization of the general uniform value via the introduction of appro-
priate invariant measures for the decision problems, generalizing the fundamental theorem
of gambling or the Aumann-Maschler cavu formula for repeated games with incomplete
information.

Apart the introduction of appropriate invariant measures, the main innovation in our
proofs is the introduction of a new metric d∗ such that partial observation MDP’s and
repeated games with an informed controller may be associated to auxiliary problems that
are non-expansive with respect to d∗. Given two Borel probabilities over a compact subset
X of a normed vector space, we define d∗(u, v) = supf∈D1

|u(f)− v(f)|, where D1 is the
set of functions satisfying: ∀x, y ∈ X, ∀a, b ≥ 0, af(x)− bf(y) ≤ ‖ax− by‖. The particular
case where X is a simplex endowed with the L1-norm is particularly interesting: d∗ is
the largest distance over the probabilities with finite support over X which makes every
disintegration non-expansive. Moreover, we obtain a Kantorovich-Rubinstein type duality
formula for d∗(u, v) involving couples of measures (α, β) over X × X such that the first
marginal of α is u and the second marginal of β is v.

Keywords: Gambling Houses, Partial observation Markov decision processes, Repeated games,
Wasserstein metric, Uniform value, Characterization of the value.

1 Introduction

The standard model of Markov Decision Processes (or Controlled Markov chains) was intro-
duced by Bellman [6] in the 1950s and has been extensively studied since then. In this model,
a decision-maker perfectly observes at the beginning of every stage what is the current state,
and chooses an action accordingly. The current state and the selected action induce a stage
payoff and the law of the next state. The most common ways to aggregate the infinite stream
of expected payoff into a global evaluation are the discounted evaluation (where the stream of
payoffs is evaluated with a discount factor) and the finite evaluation (where the stream of pay-
offs is evaluated by the arithmetic average of the payoffs of the first T stages). More generally,
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for any sequence θ = (θt)t≥1, with θt ≥ 0 and
∑
t≥1 θt = 1, one can define the θ-evaluation as

the problem where the payoff at stage t has a weight θt. The supremum over the strategies of
the decision maker of the expected payoff under a θ-evaluation is then called the θ-value.

There are two traditional ways to study long term values in MDP. The first one called the
asymptotic approach focuses on the convergence to the same limit of the discounted values
when the discount factor goes to 0 and of the finite values when the number of stages goes
to ∞. Whenever this joint limit exists, it is called the limit value. The second one called the
uniform approach is stronger than the limit value and focuses on the possibility for the decision
maker to guarantee the asymptotic value in any sufficiently long game. The value is then called
the uniform value. When the sets of states and actions are both finite, Blackwell [9] proved the
existence of a strategy which is optimal for all discount factors close to 0 (sufficiently patient).
It implies the existence of the limit value and of the uniform value. Denardo and Fox [15] and
Hordjik and Kallenberg [19] (see Remark 4.7) later provided a characterization of the limit
value by the introduction of the “Average Cost Optimality Equation”.

This model was generalized into several directions. Some authors tried to relax the finiteness
assumption under some ergodicity conditions (Runggaldier and Stettner [37], Borkar [10],[11],
see Arapostathis et al. [1] for a survey of the different results and techniques). Under such
conditons, the limit value is independent of the initial state and satisfies the ”Average Cost
Optimailty Criterion”. Contrary to a large part of the literature, we won’t assume any ergodicity
condition. The model was also generalized to POMDPs where the decision-maker no longer
observes the current state. At the beginning of each stage the decision maker receives a signal
which depends on the previous and current states and on his previous action. In order to
study such problem a natural approach is to go back to the standard model of MDPs with full
observation on the new state, with new state space the space of beliefs on the original state (see
Astrom, K.J. [3], Sawaragi and Yoshikawa [38] and Rhenius [34]). Using the structure of the
belief state, Rosenberg et al. [35] proved the existence of the uniform value in POMDPs when
the sets of states, actions and signals are finite. Renault [31] gave another proof and extended
their result by removing the finiteness assumption on signals and actions.

Shapley [39] introduced an extension of standard MDPs to 2-player called stochastic games:
the state variable is now simultaneously controlled by 2 players having opposite interests. Both
the notion of limit value and uniform value can be defined in this new framework. Whenever
states and actions are finite, the existence of the limit value is due to Bewley and Kohlberg [7].
A few years later, Mertens and Neyman [24] proved in this setup the existence of the uniform
value. Naturally the model of stochastic games also generalizes to partial information (see
Mertens [26]), but the existence of possible private information for the different players implies
a very complex structure on the auxiliary state space. Following Harsanyi [18], Mertens and
Zamir [25] introduced the universal belief space which synthesizes all the information for both
players in a general repeated game: their beliefs about the state, their beliefs about the beliefs
of the other player, etc. So far, the results of the literature always concern some subclasses of
games where we can explicitly write the auxiliary game in a “small” tractable set. A lot of work
has especially been done about games with one fully informed player and one player with partial
information, and we will only consider such games here. In the simplest model introduced by
Aumann and Maschler (see reference from 1995), a state is initially chosen and remains fixed for
the rest of the game. Renault [30] extended the analysis to a general underlying Markov chain
on the state space (see also Neyman, [28]). Renault [32] proved the existence of the uniform
value when the informed player can additionally control the evolution of the state variable (see
also Rosenberg et al. [36]).

In this paper, we study the existence of long-term values with respect to a more general set
of evaluations than finite and discounted evaluations. We will consider the case of a “patient”
decision-maker optimizing in the long term, in the sense that given an evaluation θ = (θt)t,
its total variation, TV (θ) =

∑
t≥1 |θt+1 − θt| is sufficiently small. We say that the MDP has a
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general limit value if vθ converges uniformly as TV (θ) goes to 0. We say that it has a general
uniform value if the limit value exists and for each ε > 0, there exists a strategy which is ε-
optimal for each evaluation θ such that TV (θ) is sufficiently small (so that if TV (θ) is small, it
is possible to play well without knowing exactly θ). For MDP with finitely many states and ac-
tions, Blackwell’s result [9] immediatly implies the existence of these stronger notions of values.
For POMDPs and repeated games with an informed controller, Rosenberg et al. [35], Renault
[31] and Renault [33] only prove positive results concerning discounted and finite evaluations.
We will study here four different models: Gambling Houses introduced by Dubins and Savage
[16], Markov Decision Processes (where contrary to gambling houses, there is an explicit set
of actions), Partial Observation Decision Processes and Repeated Games. Moreover, we will
provide a new characterization of the limit value with the introduction of appropriate invariant
measures.

In Section 1, we first consider Gambling Houses defined by Γ = (X,F, r), where X is
the state space, r : X → [0, 1] is the running payoff and F : X ⇒ ∆f (X) is the transition
multifunction. Given an initial state x0 in X, a decision-maker, or player, has to choose u1 in
F (x0), then x1 is selected according to u1 and there is a payoff r(x1), etc. We show in Theorem
2.10 that if X is metric compact, r is continuous and F is non-expansive with respect to the
Kantorovitch-Rubinstein metric, then the problem has a general uniform value v∗ characterized
by:

∀x ∈ X, v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
u∈F (y)

w(u) and (2) ∀u ∈ R,w(u) ≥ r(u)
}
.

where R is a suitably defined set of invariant measures for the Gambling House Γ (see Defi-
nition 2.9). Hence in addition of strengthening the usual existence result, we also provide a
characterization of the limit value. Note that no ergodicity condition is assumed, and in general
the limit value v∗ does depend on the initial state.

Unfortunately, this result does not allow us to go beyond and to study Partial Observation
Markov Decision Processes or Repeated Games with an informed controller, where the basic
state space is a finite set K. The natural state space to study these problems becomes the
simplex X = ∆(K) of probabilities over K, and one can try to apply Theorem 2.10 to the
induced Gambling House. However it turns out that the KR distance is not small enough
to make the transitions non-expansive (see example 3.12 later), so even in simple cases of
incomplete information the hypotheses of Theorem 2.10 won’t be satisfied. Section 2 is dedicated
to the introduction and the study of a new metric, which will be well adapted to the study of
POMDPs and Repeated games with an informed controller in Section 3 and Section 4. Given
X a subset of a normed vector space, we introduce the pseudo-metric over ∆(X) given by:

d∗(u, v) = sup
f∈D1

|u(f)− v(f)|,

where D1 is the set of functions satisfying: ∀x, y ∈ X,∀a, b ≥ 0, af(x)−bf(y) ≤ ‖ax−by‖. This
metric is smaller than the KR metric and induces the same topology. We prove in Theorem 3.5
a first duality theorem expressing d∗ as the infimum on some couplings. When X = ∆(K) is a
simplex endowed with the L1-norm, we show that d∗ is a metric metrizing the weak-* topology
and describe several equivalent formulations of this metric. In Theorem 3.10, we provides a
duality theorem for probabilities with finite support: given u, v ∈ ∆f (X),

d∗(u, v) = min
(α,β)∈M4(u,v)

∑
(x,y)∈U×V

‖xα(x, y)− yβ(x, y)‖,

where M4(u, v) is the set of couples (α, β) of probability measures on supp (u) × supp (v)
such that the first marginal of α is u and the second marginal of β is v. Finally, one can
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characterize the metric d∗ by introducing disintegrations of probabilities. For any finite set S,
define the disintegration mapping ψS on ∆(K × S) by ψS(π) =

∑
s∈S π(s)δp(s) where for each

s, p(s) is the posterior on K given s. The mapping ψS is 1-Lipschitz from (∆(K × S), ‖.‖1) to
(∆f (X), d∗). Moreover, d∗ exactly is the largest distance such that any of these mappings is
1-Lipschitz (Theorem 3.13). This is a desirable property (not shared by the KR metric), since
π contains some information on s, and certainly more information than ψS(π).

In Section 3, we use the metric d∗ in order to study standard MDPs that we will later
use in Section 4. A standard MDPs Ψ is given by a set of states X, a non empty set of
actions A, a mapping q : X × A → ∆f (X) and a payoff function g : X × A → [0, 1]. At
each stage, the player learns the current state x and chooses an action a. He then receives
the payoff g(x, a), a new state is drawn accordingly to q(x, a) and the game proceeds to the
next stage. We assume in Theorem 4.5 that X is a compact subset of a simplex ∆(K), and
moreover that ∀x ∈ X,∀y ∈ X,∀a ∈ A,∀f ∈ D1,∀α ≥ 0,∀β ≥ 0, |αf(q(x, a))− βf(q(y, a))| ≤
‖αx−βy‖1 and |αg(x, a)−βg(y, a)| ≤ ‖αx−βy‖1. Then we prove that Ψ has a general uniform
value v∗ characterized by: for all x in X,

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀x′ ∈ X,w(x′) ≥ sup
a∈A

w(q(x′, a)) and (2) ∀(u, y) ∈ RR,w(u) ≥ y
}
,

where RR is a suitably defined set of invariant couples for the MDP Ψ (see Definition 4.4).
This result can in particular be applied when X is finite and provides an alternative formulation
for the limit value in the simplest case (see Remark 4.7). To prove Theorem 4.5, we use the
properties of the metric d∗ introduced in Section 2.

Finally, in Section 4 we apply the result of Section 3 to any POMDP with a finite set of
states (without assumptions on the set of actions), and to any repeated game with an informed
controller with finitely many states and actions. Hence proving the existence of the general
uniform value in these models. Finally, we recall an open problem showing the difficulty to
compute v∗ in general.

2 Long-term values for Gambling Houses

In this section, we study Gambling Houses that are non-expansive for the Kantorovitch-Rubinstein
metric and we prove the existence of the general uniform value.

Given X a compact metric set, we denote by C = C(X) the set of continuous functions from
X to the reals, and by C1 the set of 1-Lipschitz functions in C. We denote by ∆(X) the set of
Borel probability measures on X, by ∆f (X) the set of Borel probability measure with finite
supports and for each x in X we write δx for the Dirac probability measure on x. It is well
known that ∆(X) is compact for the weak-* topology, and this topology can be metrizable by
the (Wasserstein) Kantorovich-Rubinstein distance:

∀u, v ∈ ∆(X), dKR(u, v) = sup
f∈C1

u(f)− v(f).

The standard Kantorovich duality formula reads (see e.g. Villani 2003, p.207):

dKR(u, v) = sup
f∈C1

|u(f)− v(f)| = min
γ∈Π(u,v)

∫
(x,y)∈X×X

d(x, y) dγ(x, y),

where Π(u, v) denotes the set of transference plans, or couplings, of u and v, that is the set of
probability distributions over X ×X with first marginal u and second marginal v.
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2.1 Model

The model is the following. There is a non empty set of states X, a transition given by a multi-
valued mapping F : X ⇒ ∆f (X) with non empty values, and a payoff (or reward) function
r : X → [0, 1]. The interpretation is that given an initial state x0 in X, a decision-maker (or
player) has to choose a probability with finite support u1 in F (x0), then x1 is selected according
to u1 and there is a payoff r(x1). Then the player has to choose u2 in F (x1), x2 is selected
according to u2 and the player receives the payoff r(x2), etc. Note that there is no explicit
action set here, and that the transitions take values in ∆f (X) and hence have finite support.

We say that Γ = (X,F, r) is a Gambling House. We identify the elements in X with their
Dirac measures in ∆(X), and in case the values of F only consist of Dirac measures on X, we
view F as a correspondence from X to X and say that Γ is a deterministic Gambling House
(or a Dynamic Programming problem). An element of ∆f (X) is written u =

∑
x∈X u(x)δx.

The set of stages is IN∗ = {1, ..., t, ....}, and a probability distribution over stages is called an
evaluation. Given an evaluation θ = (θt)t≥1 and an initial stage x0 in X, the θ-problem Γθ(x0)
is the optimization problem defined by a decision-maker starting from x0 and maximizing the
expectation of

∑
t≥1 θtr(xt).

Formally, we first linearly extend r and F to ∆f (X) by defining for each u =
∑
x∈X u(x)δx

in ∆f (X), the payoff r(u) =
∑
x∈X r(x)u(x) and the transition by

F (u) =

{∑
x∈X

u(x)f(x), s.t. f : X → ∆f (X) and f(x) ∈ F (x), ∀x ∈ X

}
.

Definition 2.1. The mixed extension of F is the correspondence from ∆f (X) to itself which
associates to every u =

∑
x∈X u(x)δx in ∆f (X) the image:

F̂ (u) =

{∑
x∈X

u(x)f(x), s.t. f : X → ∆f (X) and f(x) ∈ convF (x) ∀x ∈ X

}
.

The graph of F̂ is the convex hull of the graph of F . Moreover F̂ is an affine correspondence,
as shown by the lemma below whose proof can be found in the appendix.

Lemma 2.2. ∀u, u′ ∈ ∆f (X), ∀α ∈ [0, 1], F̂ (αu+ (1− α)u′) = αF̂ (u) + (1− α)F̂ (u′).

Definition 2.3. A pure play, or deterministic play, at x0 is a sequence σ = (u1, ..., ut, ...) ∈
∆f (X)∞ such that u1 ∈ F (x0) and ut+1 ∈ F (ut) for each t ≥ 1. A play, or mixed play, at x0

is a sequence σ = (u1, ..., ut, ...) ∈ ∆f (X)∞ such that u1 ∈ convF (x0) and ut+1 ∈ F̂ (ut) for
each t ≥ 1. We denote by Σ(x0) the set of mixed plays at x0.

A pure play is a particular case of a mixed play. Mixed plays corresponds to situations where the
decision-maker can select, at every stage t and state xt−1, randomly the law ut of the new state.
A mixed play at x0 naturally induces a probability distribution over the set (X ×∆f (X))

∞

of sequences (x0, u0, x1, u1, ...), where X and ∆f (X) are endowed with the discrete σ-algebra
and (X ×∆f (X))

∞
is endowed with the product σ-algebra. We do not need any measurability

assumption since the range of F is ∆f (X), hence any strategy generates only a countable set
of states.

Definition 2.4. Given an evaluation θ, the θ-payoff of a play σ = (u1, ..., ut, ...) is defined as:
γθ(σ) =

∑
t≥1 θtr(ut), and the θ-value at x0 is:

vθ(x0) = sup
σ∈Σ(x0)

γθ(σ).

It is easy to see that the supremum in the definition of vθ can be taken over the set of pure
plays at x0. We extend linearly vθ to ∆f (X) by defining for each u =

∑
x∈X u(x)δx, vθ(u) =
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∑
x∈X u(x)vθ(x). We have the following recursive formula. For each evaluation θ = (θt)t≥1

such that θ1 < 1, denote by θ+ the “shifted” evaluation
(
θt+1

1−θ1

)
t≥1

then the recursive formula

reads:
∀θ ∈ ∆(IN∗),∀x ∈ X, vθ(x) = sup

u∈convF (x)

(θ1r(u) + (1− θ1)vθ+(u)) .

By linearity the supremum can be taken over F (x). It is also easy to see that for all evaluations
θ and initial states x, we have the inequality:

|vθ(x)− sup
u∈F (x)

vθ(u)| ≤ θ1 +
∑
t≥2

|θt − θt−1|. (1)

In this paper, we are interested in the limit behavior when the decision-maker is very patient.
Given an evaluation θ, we define the total variation of θ by:

TV (θ) =
∑
t≥1

|θt+1 − θt|.

The decision-maker is considered as patient whenever TV (θ) is small, so TV (θ) may be seen as
the impatience of θ (see Renault [33] and Sorin [40] p. 105). When θ = (θt)t≥1 is non increasing,
then TV (θ) is just θ1. A classic example is when θ = 1

n

∑n
t=1 δt, the value vθ is just denoted

vn and the evaluation corresponds to the average payoff from stage 1 to stage n. In this case
TV (θ) = 1/n −−−−→

n→∞
0. We also have TV (θ) = 1/n if θ =

∑m+n
t=m+1

1
nδt for some non-negative

m. Another example is the case of discounted payoffs where θ = (λ(1− λ)
t−1

)t≥1 for some
discount factor λ ∈ (0, 1]. In this case the value vθ is denoted vλ and TV (θ) = λ −−−→

λ→0
0.

Definition 2.5. The Gambling House Γ = (X,F, r) has a general limit value v∗ if (vθ) uni-
formly converges to v∗ when TV (θ) goes to zero, i.e.:

∀ε > 0,∃α > 0,∀θ, ( TV (θ) ≤ α =⇒ (∀x ∈ X, |vθ(x)− v∗(x)| ≤ ε) ) .

The existence of the general limit value implies in particular that (vn)n and (vλ)λ converge to
the same limit when n goes to +∞ and λ goes to 0. This is coherent with the result of Lehrer
and Sorin [21], which states that the uniform convergence of (vn)n and (vλ)λ are equivalent.
A recent characterization of the uniform convergence of a sequence of value functions (vθk)k,
when TV (θk) −−−−→

k→∞
0, can be found in Renault [33], and it is shown that all such sequences

have a unique possible limit point given by v∗ = infθ∈∆(IN∗) supm≥0 vm,θ, where vm,θ is the
value corresponding to the evaluation with weight 0 for the first m stages and with weight θt−m
for stages t > m.

In the definition of the general limit value, we require all value functions to be close to v∗

when the patience is high, but the plays used may depend on the precise expression of θ. In
the following definition, we require the same play to be simultaneously optimal for all θ patient
enough.

Definition 2.6. The Gambling House Γ = (X,F, r) has a general uniform value if it has a
general limit value v∗ and moreover for each ε > 0 one can find α > 0 and for each initial state
x a mixed play σ(x) at x satisfying:

∀θ, ( TV (θ) ≤ α =⇒ (∀x ∈ X, γθ(σ(x)) ≥ v∗(x)− ε) ) .

The literature has mainly focused on the evaluations θ =
∑n
t=1

1
nδt and θ = (λ(1− λ)

t−1
)t≥1.

The standard (Cesàro)-uniform value can be defined by restricting the evaluations to be Cesàro
means: for each ε > 0 one can find n0 and for each initial state x a mixed play σ(x) at x satis-
fying: ∀n ≥ n0,∀x ∈ X, γn(σ(x)) ≥ v∗(x) − ε. Recently, Renault [31] considered deterministic
Gambling Houses and characterized the uniform convergence of the value functions (vn)n. The
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existence of the standard Cesàro-uniform value is proved under some assumptions, including
the case where the set of states X is metric precompact, the transitions are non-expansive and
the payoff function is uniformly continuous. As a corollary, the existence of the uniform value
is shown in Partial Observation Markov Decision Processes with finite set of states (after each
stage the decision-maker just observes a stochastic signal possibly correlated to the new state).

2.2 Result

We now present our main theorem for Gambling Houses. Equation (1) implies that the general
limit value v∗ necessarily has to satisfy some rigidity property. The linear extension of the
function v∗ to ∆f (X) can only be an “excessive function” in the terminology of potential
theory [14] and Gambling Houses (Dubins and Savage [16], Maitra and Sudderth [22]).

Definition 2.7. An affine function w defined on ∆f (X) (or ∆(X)) is said to be excessive if
for all x in X, w(x) ≥ supu∈F (x) w(u).

Example 2.8. Let us consider the splitting transition given by a finite set K, X = ∆(K)
and for each x in X, F (x) = {u ∈ ∆(X),

∑
p∈X u(p) p = x} is the set of probabilities on X

centered at x. Then the function w from ∆f (X) or ∆(X) to IR is excessive if and only if the

restriction of w to X is concave. Moreover given u, u′ ∈ ∆(X), u′ ∈ F̂ (u) if and only if u′ is a
sweeping of u as defined by Choquet [14]: for all continuous concave functions f from X to IR,
u′(f) ≤ u(f).

Assume now that X is a compact metric space. Any continuous function f on X can be
extended naturally into an affine continuous function on ∆(X) by f(u) =

∫
x∈X f(x)du(x) for

all Borel probabilities on X. In particular the payoff function r is naturally extended to an
affine continuous function on ∆(X) that we will still denote by r. In the following definition,
we consider the closure of the graph of F̂ within the (compact) set ∆(X ×X).

Definition 2.9. An element u in ∆(X) is said to be an invariant measure of the Gambling
House Γ = (X,F, r) if (u, u) ∈ cl(Graph F̂ ). The set of invariant measures of Γ is denoted by
R, so that:

R = {u ∈ ∆(X), (u, u) ∈ cl(Graph F̂ )}.

R is a convex compact subset of ∆(X). Even when Γ is deterministic, we still need to work in
the space ∆(X) of probabilities over X to define invariant measures. Morally, we have replaced
the time averages by the space averages.

Theorem 2.10. Consider a Gambling House Γ = (X,F, r) such that X is a compact metric
space, r is continuous from X to [0, 1] and F is non-expansive with respect to the Kantorovich-
Rubinstein distance, i.e. ∀x ∈ X,∀x′ ∈ X,∀u ∈ F (x),∃u′ ∈ F (x′) s.t. dKR(u, u′) ≤ d(x, x′).

Then the Gambling House Γ has a general uniform value v∗ characterized by:

∀x ∈ X, v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
u∈F (y)

w(u) and (2) ∀u ∈ R,w(u) ≥ r(u)
}
.

That is, the affine extension of v∗ to ∆(X) is the smallest continuous affine function which is
1) excessive and 2) above the running payoff r on invariant measures.

The proof of Theorem 2.10 is in the Appendix. Notice that:
1) when Γ = (X,F, r) is deterministic, the hypotheses are satisfied as soon as X is metric
compact for some metric d, r is continuous and F is non-expansive for d.
2) when X is finite, one can use the distance d(x, x′) = 2 for all x 6= x′ in X, so that for u and u′

in ∆(X), dKR(u, u′) = ‖u− u′‖1 =
∑
x∈X |u(x)− u′(x)|, and the hypotheses are automatically

satisfied. We will prove later a more general result for a model of MDP with finite state space,
allowing for explicit actions influencing transitions and payoffs (see Corollary 4.6).
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Remark 2.11. The non-expansivity condition in order to prove the existence of the limit value
and/or of the uniform value was already introduced in Renault [31] for Gambling Houses. Such
a condition was also used in a continuous time framework by Quincampoix and Renault [29]
and Buckdahn et al. [13].

Remark 2.12. The formula also holds when there is no decision-maker, i.e. when F is single-
valued, and there are some similarities with the Von Neumann’s ergodic theorem [41]. Let Z
be a Hilbert space and Q be a linear isometry on Z, this theorem states that for all z ∈ Z, the
sequence zn = 1

n

∑n
t=1Q

t(z) converges to the projection z∗ of z on the set R of fixed points of
Q. Using the linearity and the non-expansiveness leads to a characterization by the set of fixed
points. In particular, having in mind linear payoff functions of the form (z 7→< l, z >), we have
that the projection z∗ of z on R is characterized by:

∀l ∈ ∆f (X), < l, z∗ >=< l∗, z >= inf{< l′, z >, l′ ∈ R and < l′, r >≥< l, r > ∀r ∈ R}.

Example 2.13. We consider here a basic periodic sequence of 0 and 1. Let X = {0, 1}
and for all x ∈ X, F (x) = {1 − x} and r(x) = x. There is a unique invariant measure
u = 1/2δ0 + 1/2δ1, and the general uniform value exists and satisifes v∗(x) = 1

2 for all states x.
Notice that considering evaluations θ = (θt)t such that θt is small for each t without requiring
TV (θ) small, would not necessarily lead to v∗. Consider for instance θn =

∑n
t=1

1
nδ2t for each

n, we have vθn(x) = x for all x in X.

Example 2.14. The state space is the unit circle, letX = {x ∈ C, |x| = 1} and F (eiα) = ei(α+1)

for all real α. If we denote by µ the uniform distribution (Haar probability measure) on the
circle, the mapping F is µ-ergodic and µ is F -invariant. By Birkhoff’s theorem [8], we know
that the time average converges to the space average µ-almost surely. Here µ is the unique
invariant measure, and we obtain that the general uniform value is the constant:

∀x ∈ X, v∗(x) =
1

2π

∫ 2π

0

r(eiα)dα.

Notice that we obtain the convergence of the value vθ(x) to v∗(x) for all x in X, and not only
for µ-almost all x in X.

Example 2.15. Let Γ = (X,F, r) be an MDP satisfying the hypotheses of Theorem 2.10, and
such that for all x ∈ X, δx ∈ F (x). Therefore the set R is equal to ∆(X). In the terminology
of Gambling Theory (see Maitra Sudderth, [22], Γ is called a leavable Gambling House since at
each stage the player can stay at the current state. The limit value v∗ is here characterized by:

v∗ = inf{v : X → [0, 1] continuous, v is excessive and v ≥ r}.

In the above formula, v excessive means: ∀x ∈ X, v(x) ≥ supu∈F (x) IEu(v). This is a variant of
the Fundamental Theorem of Gambling Theory (see section 3.1 in Maitra Sudderth [22]).

Example 2.16. The following deterministic Gambling House, which is an extension of Example
1.4.4. in Sorin [40] and of Example 5.2 of Renault [31], shows that the assumptions of Theorem
2.10 allow for many speeds of convergence to the limit value v∗. Here l > 1 is a fixed parameter,
X is the simplex {x = (pa, pb, pc) ∈ IR3

+, p
a + pb + pc = 1} and the initial state is x0 = (1, 0, 0).

The payoff is r(pa, pb, pc) = pb − pc, and the transition is defined by: F (pa, pb, pc) = {((1−α−
αl)pa, pb + αpa, pc + αlpa), α ∈ [0, 1/2]}.

The probabilistic interpretation is the following: there are 3 points a, b and c, and the initial
point is a. The payoff is 0 at a, it is +1 at b, and -1 at c. At point a, the decision-maker has to
choose α ∈ [0, 1/2] : then b is reached with probability α, c is reached with probability αl, and
the play stays in a with the remaining probability 1− α− αl. When b (resp. c) is reached, the
play stays at b (resp. c) forever. So the decision-maker starting at point a wants to reach b and
to avoid c. By playing at each stage α > 0 small enough, he can get as close to b as he wants.
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Back to our deterministic setup, we use norm ‖.‖1 and obtain that X is compact, F is non-
expansive and r is continuous, so that Theorem 2.10 applies, and the limit value is given by
v∗(pa, pb, pc) = pa+pb. Notice that even though the data are very smooth, there is no 0-optimal
strategy here, in the sense that there is no mixed play σ at a such that limTV (θ)→0γθ(σ) = 1,
any good strategy requires to take a positive risk.

If we denote by xλ the value vλ(x0), we have for all λ ∈ (0, 1]: xλ = φλ(xλ), where for all x ∈
IR, φλ(x) = maxα∈[0,1/2](1−λ)(1−α−αl)x+α. Since xλ ∈ (0, 1), the first order condition gives

(1−λ)(−1−lαl−1)xλ+1 = 0 and we can obtain: xλ = 1
(1−λ)

(
l
(

λ
(1−λ)(l−1)

) l−1
l

+ 1

)−1

. Finally

we compute an equivalent of xλ−1 as λ goes to 0, and obtain: 1−vλ(x0) ∼ Cλ
l−1
l with C =

l

(l−1)
(l−1)

l

.

3 A distance for belief spaces

In the previous section, we proved an existence result for Gambling Houses that are non-
expansive for the KR-metric. We now want to go beyond and to study Partial Observation
Markov Decision Processes or Repeated Games with an informed controller, where the basic
state space is a finite set K. The natural state space becomes the simplex X = ∆(K) of proba-
bilities overK, and one can try to apply Theorem 2.10 to the induced Gambling House. However
it turns out that the KR distance is not small enough to make the transitions non-expansive
(see example 3.12 later), so even in simple cases of incomplete information the hypotheses of
Theorem 2.10 won’t be satisfied.

In this section, we introduce and study a new metric, which will be well adapted to our
problems. We first introduce a pseudo-metric on the set of probabilities over a compact subset
X of a real normed space, and prove a first duality theorem (Theorem 3.5). Then, we focus on
the special case where X itself is a probability space over a finite set K and prove our main
duality theorem (Theorem 3.10). Finally, we provide a fundamental characterization of our
metric as the largest metric compatible with disintegrations over finite sets (Theorem 3.13).

3.1 A pseudo-distance for probabilities on a compact subset of a
normed vector space

Let X be a compact subset of a real normed vector space V . Recall that C = C(X) denotes the
set of continuous functions on X and C1 the set of 1-Lipschitz functions.

We introduce here a new pseudo-distance on ∆(X), which is not greater than dKR and in
some cases also metrizes the weak-* topology. We start with several definitions, which will turn
out to be equivalent. Let u and v be in ∆(X).

Definition 3.1. d1(u, v) = supf∈D1
u(f)− v(f),

where D1 = {f ∈ C,∀x, y ∈ X,∀a, b ≥ 0, af(x)− bf(y) ≤ ‖ax− by‖}.

Note that any linear functional on X with norm 1 induces an element of D1. If f is in
D1 then −f is also in D1, so d1(u, v) = supf∈D1

|u(f) − v(f)| and d1 is a pseudo-distance on
∆(X). We also have D1 ⊂ C1, so that d1(u, v) ≤ dKR(u, v) and the supremum in the definition
of d1(u, v) is achieved. Given x and y in X, it is known that dKR(δx, δy) = ‖x − y‖ and the
supremum in the definition of dKR is reached by a linear functional on X. It follows that
d1(δx, δy) = ‖x− y‖.

Notice that D1 = {f ∈ C,∀x, y ∈ X,∀a, b ≥ 0, |af(x) − bf(y)| ≤ ‖ax − by‖}. If f , g are in
D1 then sup{f, g} and inf{f, g} also are in D1, and D1 is a convex lattice with greatest element
(x 7→ ‖x‖) and smallest element (x 7→ −‖x‖). If 0 ∈ X, then all f in D1 satisfy f(0) = 0.
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Example 3.2. First consider the particular case where X = [0, 1] endowed with the usual
norm. Then all f in D1 are linear. As a consequence, d1(u, v) = 0 for u = 1/2 δ0 + 1/2 δ1 and
v = δ1/2. We do not have the separation property and d1 is not a distance in this case1.

Let us modify the example. X now is the set of probability distributions over 2 elements,
viewed as X = {(x, 1− x), x ∈ [0, 1]}. We use the norm ‖.‖1 to measure the distance between
(x, 1−x) and (y, 1−y), so that V = IR2 is endowed with ‖(x1, x2)−(y1, y2)‖ = |x1−y1|+|x2−y2|.
Consider f in C such that f((x, 1 − x)) = x(1 − x) for all x. f now belongs to D1, and
d1(u, v) ≥ 1/4 > 0 for u = 1/2 δ0 + 1/2 δ1 and v = δ1/2. One can show that (∆(X), d1) is
a compact metric space in this case (see Proposition 3.7 later), and for applications in this
paper d1 will be a particularly useful distance whenever X is a simplex ∆(K) endowed with
‖x− y‖ =

∑
k∈K |xk − yk|. �

Notice also that the Kantorovich-Rubinstein metric on ∆(X) only depends on the restriction
of the norm ‖.‖ on the set X. Especially if X is finite and if ‖x − x′‖ = 2 for all x 6= x′ ∈ X,
then for all u, v ∈ ∆(X) we have dKR(u, v) = ‖u− v‖1. This is not the case when considering
the metric d1, where two norms on V giving the same metric on X may lead to different
pseudo-metrics on ∆(X).

We now give other expressions for the pseudo-distance d1.

Definition 3.3. d2(u, v) = sup(f,g)∈D2
u(f) + v(g),

where D2 = {(f, g) ∈ C × C,∀x, y ∈ X,∀a, b ≥ 0, af(x) + bg(y) ≤ ‖ax− by‖}.

Definition 3.4. d3(u, v) = infγ∈M3(u,v)

∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ),

where M3(u, v) is the set of finite positive measures on X2 × [0, 1]2 such that: ∀f ∈ C,∫
(x,y,λ,µ)∈X2×[0,1]2

λf(x)dγ(x, y, λ, µ) = u(f) and

∫
(x,y,λ,µ)∈X2×[0,1]2

µf(y)dγ(x, y, λ, µ) = v(f).

Theorem 3.5. For all u and v in ∆(X), d1(u, v) = d2(u, v) = d3(u, v).

The proof of Theorem 3.5 uses the Hahn-Banach theorem and is an involved elaboration
on the proof of the standard Kantorovich duality formula in Dudley ([17], see Lemma 11.8.5
p.423), it can be found in the appendix. Compared to the formula for dKR, our proof requires
to handle 2 extra variables λ and µ corresponding to a and b in the definition of D1 (see Remark
6.9). This will lead to the introduction of the intermediary quantity d+

2 .
We will now use in Subsection 3.2 the duality result d1 = d3 to prove our main duality

formula (Theorem 3.10 ) in the case where X is a simplex. This duality formula Theorem 3.10,
as well as our universal characterization via disintegrations (Theorem 3.13), will only apply to
probabilities with finite support (see Remark 3.14).

3.2 The case of probabilities over a simplex

The case where X itself is a probability space is interesting for applications, and we assume
here that X = ∆(K) is a simplex, where K is a non empty finite set. We use ‖p‖ =

∑
k |pk|

for every vector p = (pk)k∈K in IRK , and view X as the set of vectors in IRK+ with norm 1:
X = {p = (pk)k∈K ∈ IRK+ ,

∑
k∈K p

k = 1}.
We now prove that d1 is a distance on ∆(X) metrizing the weak-* topology.

Lemma 3.6. The linear span of D1 is dense in C(X).

The proof of Lemma 3.6 is in the appendix. Notice that D1 itself is not dense in C(x).

1More generally one can show that if there exists x 6= 0 such that the segment [0, x] is included in X, then
all f in D1 are linear on [0, x] and d1(δx/2, 1/2 δ0 + 1/2 δx) = 0, so d1 is not a distance. In the case X = [−1, 1]
with the usual norm, one can show that D1 = {f ∈ C, ∃ α, β ≥ 0 s.t.f(x) = αx for x ∈ [−1, 0] and f(x) =
βx for x ∈ [0, 1]}.
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Proposition 3.7. d1 is a distance on ∆(X) metrizing the weak-* topology.

Proof: Because the linear span of D1 is dense in C(X), we obtain the separation property and
d1 is a distance on ∆(X). Because D1 ⊂ C1, we have d1 ≤ dKR. Since (∆(X), dKR) is a
compact metric space, the identity map from (∆(X), dKR) to (∆(X), d1) is bicontinuous, and
we obtain that (∆(X), d1) is a compact metric space and d1 and dKR are equivalent. (See for
instance proposition 2 page 138 [4]). Therefore d1 is a distance on ∆(X) metrizing the weak-*
topology.

Remarks 3.8.
1) One can also here give another definition of d1 by using functions introduced by Aumann

and Machler [5] for repeated games with incomplete information.
Given a collection of matrices (Gk)k∈K (all of the same finite size I × J) indexed by K and

with values in [−1, 1], we define the “non revealing function” f in C(X) by:

∀p ∈ X, f(p) = Val

(∑
k∈K

pkGk

)
= max
x∈∆(I)

min
y∈∆(J)

∑
i∈I,j∈J

x(i)y(j)

(∑
k∈K

pkGk(i, j)

)

= min
y∈∆(J)

max
x∈∆(I)

∑
i∈I,j∈J

x(i)y(j)

(∑
k∈K

pkGk(i, j)

)
.

Here Val denotes the minmax value of a matrix, and f(p) is the minmax value of the average
matrix

∑
k p

kGk. The set of all such non revealing functions f , where I, J and (Gk)k∈K vary,
is denoted by D0.

By construction, we have D0 ⊂ D1. Moreover, one can show that the closure of D0 is D1,
so that restricting the supremum in Definition 3.1 to functions in D0 defines the same distance.
One can also show that allowing for infinite sets I, J in the definition of D0 (still assuming
that all games

∑
k p

kGk have a value) would not change the distance. The interest for this
type of distances defined through games previously appeared while doing research on Markov
Decision Processes with partial observation and repeated games with an informed controller
(see Proposition 5.1. chapter VI p. 357 in Mertens et al. [27], Renault [31] or [32]).

2) Let LF be the set of linear forms on (IRK , ‖.‖1) with norm at most 1. In the definition of
d1, one can also replace D1 by the lattice generated by the restrictions to ∆(K) of the elements
of LF .

From now on, we just write d∗(u, v) for the distance d1 = d2 = d3 on ∆(X). Elements of
X can be viewed as elements of ∆(X), and for p, q in X, we have: dKR(δp, δq) = d∗(δp, δq) =
‖p − q‖. We now present a dual formulation for our distance, in the spirit of the Kantorovich
duality formula from optimal transport. We will concentrate on probabilities on X with finite
support.

Definition 3.9. Let u and v be in ∆f (X) with respective supports U and V . We define the set
M4(u, v) =(α, β) ∈ (IR+

U×V )2, s.t. ∀x ∈ U,
∑
y′∈V

α(x, y′) = u(x) and ∀y ∈ V,
∑
x′∈U

β(x′, y) = v(y)

 .

We put d4(u, v) = inf
(α,β)∈M4(u,v)

∑
(x,y)∈U×V

‖xα(x, y)−yβ(x, y)‖.

M4(u, v) is the set of couples (α, β) of probability measures on U × V such that the first
marginal of α is u and the second marginal of β is v. Notice that diagonal elements inM4(u, v)
coincide with elements of Π(u, v), i.e. with probability distributions over X × X with first
marginal u and second marginal v. The set M4(u, v) is simply a polytope in the Euclidean
space (IRU×V )2, so the infimum in the definition of d4(u, v) is achieved. The next theorem is
the main result of this section.
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Theorem 3.10. (Duality formula) Let u and v be in ∆f (X) with respective supports U and V .

d∗(u, v) = sup
f∈D1

|u(f)− v(f)| = min
(α,β)∈M4(u,v)

∑
(x,y)∈U×V

‖xα(x, y)− yβ(x, y)‖.

The proof can be found in the appendix. We conclude this part by a simple but universal
property of the distance d∗.

Definition 3.11. Given finite sets S and K, the disintegration, or posterior mapping, ψS from
∆(K × S) to ∆f (X) is defined by:

ψS(π) =
∑
s∈S

π(s)δp(s)

where for each s, π(s) =
∑
k π(k, s) and p(s) = (pk(s))k∈K ∈ X is the posterior on K given s

(defined arbitrarily if π(s) = 0) : for each k in K, pk(s) = π(k,s)
π(s) .

ψS(π) is a probability with finite support over X. Intuitively, think of a joint variable
(k, s) being selected according to π, and an agent just observes s. His knowledge on K is then
represented by p(s) and ψS(π) represents the ex-ante information that the agent will know
about the variable k.

∆(K × S) is endowed as usual with the ‖.‖1 norm. One can show that ψS is continuous
whenever X is endowed with the weak-* topology. Intuitively, ψS(π) has less information than
π, because the agent does not care about s itself but just on the information about k given by s.
So one may hope that the mapping ψS is 1-Lipschitz (non-expansive) for a well chosen distance
on ∆(X). The following example shows that the Kantorovich-Rubinstein distance dKR is not
appropriate for this.

Example 3.12. Consider the case where K = {a, b, c} and S = {α, β}. We denote by π and
π′ the following laws on ∆(K × S):

S S

K

 1
4 0
0 1

2
1
4 0

 and

 1
4 0
0 1

2
0 1

4

.

π π′

Their disintegrations are respectively ψS(π) = 1
2 (1/2, 0, 1/2) + 1

2 (0, 1, 0) and ψS(π′) =
1
4 (1, 0, 0) + 3

4 (0, 2/3, 1/3) .
We define the test function f : ∆(K) → [−1, 1] by: f(0, 1, 0) = 1

3 , f (1/2, 0, 1/2) =
− 1

3 , f(1, 0, 0) = 2
3 , f (0, 2/3, 1/3) = 1. f can be extended to a 1-Lispchitz function on the

simplex ∆(K) by the McShane-Whitney extension theorem (McShane, [23]), or directly by
f(pa, pb, pc) = max{1− pa − |pb − 2/3| − |pc − 1/3|,−1/3 + |pa − pc|}). We have ‖π − π′‖ = 1

2
and dKR(ψS(π), ψS(π′)) ≥ ψS(π′)(f) − ψS(π)(f) = 11

12 − 0 > 1
2 . So the posterior mapping ψS

is not 1-Lipschitz from (∆(K × S), ‖.‖1) to (∆(X), dKR).

The next theorem shows that our distance d∗ has the fundamental property to make all
disintegrations ψS non-expansive, and is the largest distance to do so.

Theorem 3.13. For each finite set S, the mapping ψS is 1-Lipschitz from (∆(K ×S), ‖.‖1) to
(∆f (X), d∗). Moreover, d∗ is the largest distance on ∆f (X) having this property:

∀u, u′ ∈ ∆f (X), d∗(u, u
′) = min{‖π − π′‖1, s.t. ∃S finite, ψS(π) = u, ψS(π′) = u′}.
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The proof simply uses the duality formula.
Proof: For clarity, we will precise the space on which each norm is considered. First fix S and
π, π′ in ∆(K × S). Write u = ψS(π) =

∑
s∈S π(s)δp(s) and u′ = ψS(π′) =

∑
s∈S π

′(s)δp′(s).

Recall that for every s ∈ S and every k ∈ K, π(k, s) = π(s)pk(s) and π′(k, s) = π′(s)p′k(s).
For any f in D1, we have

u(f)− u′(f) =
∑
s∈S

(π(s)f(p(s))− π′(s)f(p′(s)) .

By definition of D1, for every s ∈ S we have

π(s)f(p(s))− π′(s)f(p′(s)) ≤ ‖π(s)p(s)− π(s)p(s)‖1,K .

Therefore,

u(f)− u′(f) ≤
∑
s∈S
‖π(s)p(s)− π(s)p(s)‖1,K

=
∑
s∈S
‖(π(k, s))k − (π′(k, s))k‖1,K ,

=
∑
s∈S

∑
k∈K

|π(k, s)− π′(k, s)|,

= ‖π − π′‖1,K×S .

So d∗(u, u
′) ≤ ‖π − π′‖1,K×S , and ψS is 1-Lipschitz.

Let now u and v be in ∆f (X) with respective supports U and V . Using the duality formula
of Theorem 3.10, one can find (α, β) ∈M4(u, v) such that

d∗(u, v) =
∑

(x,y)∈U×V

‖α(x, y)x− β(x, y)y‖.

Define S = U × V and π, π′ ∈ ∆(K × S) by π(k, (x, y)) = x(k)α(x, y) and π′(k, (x, y)) =
y(k)β(x, y). By definition of M4(u, v), π and π′ are probabilities and

‖π − π′‖1,K×S =
∑

k∈K,(x,y)∈U×V

|x(k)α(x, y)− y(k)β(x, y)|

=
∑

(x,y)∈U×V

‖α(x, y)x− β(x, y)y‖.

�
Finally notice that considering an infinite set S dramatically changes the picture, as shown

by the following simple example (mentioned by F. Santambrogio).

Remark 3.14. Fix K = {a, b} and S = [0, 1], and define for each π in ∆(K × S), the image
ψS(π) in ∆(X) by: ψS(π)(f) =

∫
k,s
f(p(s))dπ(k, s) for all f in C(X) (here again, X = ∆(K)

and p(s) is the posterior on K given S). ∆(K × S) and ∆(X) are endowed with weak-*
topologies.

Consider the uniform probability π over K × S, then ψS(π) = δ 1
2a+ 1

2 b
is the Dirac measure

on 1
2a + 1

2b. We approximate π by considering finer and finer grids of the unit interval. For

each positive integer n, partition [0, 1) into An = ∪n−1
k=0 [ 2k

2n ,
2k+1

2n ) and Bn = ∪n−1
k=0 [ 2k+1

2n , 2k+2
2n ).

We can define πn by first choosing s in S according to the Lebesgue measure, then set k = a if
s ∈ An and set k = b if s ∈ Bn. Knowing s perfectly determines k here, and ψS(πn) = 1

2δa+ 1
2δb.

However πn converges to π, so ψS is not even continuous.
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4 Long-term values for standard MDPs

In Section 2, we studied Gambling Houses that are non-expansive for the Kantorovitch-Rubinstein
metric. Unfortunately, this model is not adapted to the study of Partial Observation Markov
Decision Process since the associated transitions are not 1-Lipschitz for the KR metric.

We consider here a variant of the model of Gambling House that we call standard Markov
Decision Processes, where the decision-maker has an explicit action set and where the payoffs
may depend both on the current state and action. The main result of this section is Theorem
4.5 which uses the metric d∗ defined in Section 3. We will show in section 5 that this theorem
applies to the standard MDPs associated to a POMDP or to a repeated game with an informed
controller.

A standard Markov Decision Problem Ψ is given by a non empty set of states X, a non
empty set of actions A, a mapping q : X×A→ ∆f (X) and a payoff function g : X×A→ [0, 1].
At each stage, the player learns the current state x and chooses an action a. He then receives
the payoff g(x, a), a new state is drawn accordingly to q(x, a) and the game proceeds to the
next stage.

Definition 4.1. A pure, or deterministic, strategy is a sequence of mappings σ = (σt)t≥1 where
σt : (X × A)t−1 → A for each t. A strategy (or behavioral strategy) is a sequence of mappings
σ = (σt)t≥1 where σt : (X ×A)t−1 → ∆f (A) for each t. We denote by Σ the set of strategies.

(X × A)0 is a singleton, so σ1 is viewed as an element of ∆f (A) representing the lottery
on actions played at the first stage (or simply if σ is pure, the action in A played at the first
stage). A pure strategy is a particular case of strategy. An initial state x1 in X and a strategy
σ naturally induce a probability distribution with finite support over the set of finite histories
(X ×A)n for all n, which can be uniquely extended to a probability over the set (X ×A)∞ of
infinite histories.

Definition 4.2. Given an evaluation θ and an initial state x1 in X, the θ-payoff of a strategy

σ at x1 is defined as γθ(x1, σ) = IEx1,σ

(∑
t≥1 θtg(xt, at)

)
, and the θ-value at x1 is:

vθ(x1) = sup
σ∈Σ

γθ(x1, σ).

As for Gambling Houses, it is easy to see that the supremum can be taken over the smaller set
of pure strategies, and one can derive a recursive formula linking the value functions. General
limit and uniform values are defined as in Subsection 2.

Definition 4.3. Let Ψ = (X,A, q, g) be a standard MDP.
Ψ has a general limit value v∗ if (vθ) uniformly converges to v∗ when TV (θ) goes to zero,

i.e. for each ε > 0 one can find α > 0 such that:

∀θ, ( TV (θ) ≤ α =⇒ (∀x ∈ X, |vθ(x)− v∗(x)| ≤ ε) ) .

Ψ has a general uniform value if it has a general limit value v∗, and if for each ε > 0 one
can find α > 0 and a behavior strategy σ(x) for each initial state x satisfying:

∀θ, (TV (θ) ≤ α =⇒ (∀x ∈ X, γθ(x, σ(x)) ≥ v∗(x)− ε) ) .

We now present a notion of invariance for the MDP Ψ. The next definition will be similar
to Definition 2.9, however one needs to be slightly more sophisticated here to incorporate the
payoff component. First, we define for every a ∈ ∆f (A) and for every x ∈ X,

g(x, a) =
∑

i∈supp (a)

a(i)g(x, i).
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and q(x, a) ∈ ∆(X) is the unique probability distribution such that for every f ∈ C(X, [0, 1]),

q(x, a)(f) =
∑

i∈supp (a)

a(i)q(x, i)(f).

Assume now that X is a compact metric space, and define for each (u, y) in ∆f (X)× [0, 1],

F̂ (u, y) =

{(∑
x∈X

u(x)q(x, a(x)),
∑
x∈X

u(x)g(x, a(x))

)
, where a : X → ∆f (A)

}
.

We have defined a correspondence F̂ from ∆f (X) × [0, 1] to itself. It is easy to see that

F̂ always is an affine correspondence (see Lemma 6.16 later). In the following definition we

consider the closure of the graph of F̂ within the compact set (∆(X)× [0, 1])
2
, with the weak

topology.

Definition 4.4. An element (u, y) in ∆(X) × [0, 1] is said to be an invariant couple for the
MDP Ψ if ((u, y), (u, y)) ∈ cl(Graph(F̂ )). The set of invariant couples of Ψ is denoted by RR.

Our main result for standard MDPs is the following theorem, where X is assumed to be a
compact subset of a simplex ∆(K), with K a finite set. Denote D1 = {f ∈ C(∆(K)),∀x, y ∈
∆(K),∀a, b ≥ 0, af(x)−bf(y) ≤ ‖ax−by‖1}, and any f in D1 is linearly extended to ∆(∆(K)).
Notice that the set D1 is a subset of the set of 1-Lipschitz function.

Theorem 4.5. Let Ψ = (X,A, q, g) be a standard MDP where X is a compact subset of a
simplex ∆(K) with K finite, and such that:

∀x ∈ X,∀y ∈ X,∀a ∈ A,∀f ∈ D1,∀α ≥ 0,∀β ≥ 0,

|αf(q(x, a))− βf(q(y, a))| ≤ ‖αx− βy‖1 and |αg(x, a)− βg(y, a)| ≤ ‖αx− βy‖1.

Then Ψ has a general uniform value v∗ characterized by: for all x in X,

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀x′ ∈ X,w(x′) ≥ sup
a∈A

w(q(x′, a)) and (2) ∀(u, y) ∈ RR,w(u) ≥ y
}
.

The proof can be found in the appendix. The key argument is the use of the new metric
d∗ over probability space on the simplex defined in Section 3 and Subsection 3.2. Under our
assumptions, the standard MDP is equivalent to a Gambling House which is non-expansive for
this metric d∗. Moreover d∗ satisfies the duality Theorem 3.10, and we can adapt the proof of
Theorem 2.10.

When the state space is finite, we have an immediate corollary of the above theorem.

Corollary 4.6. Consider a standard MDP (K,A, q, g) with a finite set of states K. Then it
has a general uniform value v∗, and for each state k:

v∗(k) = inf
{
w(k), w : ∆(K)→ [0, 1] affine s.t.

(1) ∀k′ ∈ K,w(k′) ≥ sup
a∈A

w(q(k′, a)) and (2)∀(p, y) ∈ RR,w(p) ≥ y
}
.

with RR = {(p, y) ∈ ∆(K)× [0, 1], ((p, y), (p, y)) ∈ cl(conv(Graph(F )))}

and F (k, y) = {(q(k, a), g(k, a)), a ∈ A}.

Proof of Corollary 4.6: K is viewed as a subset of the simplex ∆(K), endowed with the L1-
norm. Fix k, k′ in K, a in A, α ≥ 0 and β ≥ 0. We have ‖αk − βk′‖ = |α− β| if k = k′ , and
‖αk − βk′‖ = α+ β otherwise.
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First we have

|αg(k, a)− βg(k′, a)| ≤

{
|α− β|g(k, a) if k = k′

α+ β otherwise
,

so in all cases |αg(k, a)− βg(k′, a)| ≤ ‖αk− βk′‖. Secondly, consider f ∈ D1. f takes values in
[−1, 1], so similarly we have: |αf(q(k, a))− βf(q(k′, a))| ≤ ‖αk − βk′‖.

So we can apply Theorem 4.5, and the graph of F̂ is the convex hull of the graph of F .

Remark 4.7. When both sets of states and actions are finite, we are in the simple setting of
Blackwell [9]. In this case, one can deduce the existence of the general uniform value from the
proof of Blackwell. Our theorem yields in addition a characterization. This characteriation is
the dual formulation of a result of Denardo and Fox [15]. We say that a couple (w, h) ∈ IRK×IRK
is superharmonic, in the sense of Hordjik and Kallenberg [19], if

∀k ∈ K,∀a ∈ A, w(k) + h(k) ≥ g(k, a) +
∑
k′∈K

q(k, a)(k′)h(k′). (2)

Denardo and Fox [15] showed that the value v∗ is the smallest (pointwise) excessive function
that can be completed by a function h such that (v∗, h) is superharmonic.

The existence of a function h such that (w, h) is superharmonic is equivalent to condition
(2) of Corollary 4.6. Given a function w, solving equation (2) is a linear programming problem
with K ×A inequalities. By Farkas’ lemma, it has a solution if and only if the following linear
programming problem (Dw), with unknown π ∈ IRK×A, has no solution:

∀(k, a) ∈ K ×A π(k, a) ≥ 0
∀k ∈ K

∑
a′∈A π(k, a′) =

∑
k′∈K,a′∈A π(k′, a′)q(k′, a′)(k)∑

k′∈,a′∈A π(k′, a′)g(k′, a′) >
∑
k′∈K,a′∈A π(k′, a′)w(k′).

Fix w a function on K. We prove that (Dw) has a solution if and only if condition (2) of
Corollary 4.6 is not satisfied. Therefore both conditions are equivalent.

Let π be a solution of (Dw). We can assume without loss of generality that
∑
k,a π(k, a) = 1.

We denote by p the marginal of π on K and put for all k ∈ K, σ(k) =
(
π(k,a′)
p(k)

)
a′∈A

∈ ∆(A)

if p(k) > 0, and define arbitrarily σ(k) if p(k) = 0. Denote by σ the strategy which plays
σ(k) if the state is k for each k. The payoff obtained by playing σ from distribution p is
y =

∑
k′∈,a′∈A π(k′, a′)g(k′, a′). The second line of equations of (Dw) implies that p is invariant

by σ, so (p, y) ∈ RR and the last equation implies that y > w(p). The function w does not
satisfy condition (2) of Corollary 4.6.

Conversally if condition (2) of Corollary 4.6 is not satisfied, there exists (p, y) ∈ RR such that
y > w(p). By compactness of the set of probabilities over K and the set of payoffs, there exists
a strategy σ ∈ ∆(A)K , such that p is invariant under σ and y is the payoff obtained by playing
σ from distribution p. The probability π defined by: ∀k ∈ K, ∀a ∈ A, π(k, a) = p(k)σ(k, a), is
then a solution of (Dw).

Notice that Denardo and Fox also use duality theory but they study directly the minimiza-
tion problem with unknown w and h and deduce a dual maximization problem.

5 Applications to partial observation and games

In this section, we use Theorem 4.5 to prove the existence of the general uniform value in any
POMDP with finite set of states (without assumptions on the set of actions), and in any re-
peated game with an informed controller with finitely many states and actions. Subsection 5.1
is dedicated to POMDPs and Subsection 5.2 to repeated games with an informed controller. In
both cases, we apply Theorem 4.5.
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5.1 POMDP with finitely many states

We now consider a more general model of MDP with actions where after each stage, the decision-
maker does not perfectly observe the state. An MDP with partial observation, or POMDP,
Γ = (K,A, S, q, g) includes a finite set of states K, a non empty set of actions A and a non
empty set of signals S. The transition q now goes from K × A to ∆f (S ×K) and the payoff
function g still goes from K × A to [0, 1]. Given an initial probability p1 on K, the POMDP
Γ(p1) is played as follows. An initial state k1 in K is selected according to p1 and is not told
to the decision-maker. At every stage t ≥ 1, the decision-maker selects an action at ∈ A. If
the current state is kt, he has a (unobserved) payoff g(kt, at) and a pair (st, kt+1) is drawn
according to q(kt, at). Then the player learns st, and the play proceeds to stage t + 1 with
new state kt+1. A behavioral strategy is now a sequence (σt)t≥1 of applications with for each
t, σt : (A × S)t−1 → ∆f (A). As usual, an initial probability on K and a behavior strategy σ
induce a probability distribution over (K × A × S)∞ and we can define the θ-values and the
notions of general limit and uniform values accordingly.

Theorem 5.1. A POMDP with finitely many states has a general uniform value, i.e. there
exists v∗ : ∆(K) → IR with the following property: for each ε > 0 one can find α > 0 and for
each initial probability p a behavior strategy σ(p) such that for each evaluation θ with TV (θ) ≤ α,

∀p ∈ ∆(K), |vθ(p)− v∗(p)| ≤ ε and γθ(σ(p)) ≥ v∗(p)− ε.

Proof of Theorem 5.1: It is natural to introduce an auxiliary MDP with state variable the belief
of the decision-maker on the state in K. We define Ψ the standard MDP on X = ∆(K) with
the same set of actions A and the following payoff and transition functions:
• r : X ×A −→ [0, 1] s.t. r(p, a) =

∑
k∈K p(k)g(k, a) for all p, a,

• q̂ : X × A → ∆f (X) such that q̂(p, a) =
∑
s∈S q(p, a)(s)δχ(p,a,s), where q(p, a)(s) =∑

k p
kq(k, a)(s) and χ(p, a, s) ∈ ∆(K) is the belief on the new state after playing a at p and

observing the signal s: ∀k′ ∈ K,χ(p, a, s)(k′) = q(p,a)(k′,s)
q(p,a)(s) =

∑
k p

kq(k,a)(k′,s)∑
k p

kq(k,a)(s)
.

The POMDP Γ(p1) and the standard MDP Ψ(p1) have the same value for all θ-evaluations.
For each strategy σ in Ψ(p1), the player can guarantee the same payoff in the original game
Γ(p1) by mimicking the strategy σ. So if we prove that Ψ has a general uniform value it will
imply that the POMDP Γ has a general uniform value.

To conclude the proof, we will simply apply Theorem 4.5 to the MDP Ψ. We need to check
the assumptions on the payoff and on the transition.

Consider any p, p′ in X, a ∈ A, α ≥ 0 and β ≥ 0. We have:

|αr(p, a)− βr(p′, a)| =

∣∣∣∣∣∑
k

(αp(k)− βp′(k))g(k, a)

∣∣∣∣∣ ≤ ‖αp− βp′‖.
Moreover for any f ∈ D1, we have:

|αq̂(p, a)(f)− βq̂(p′, a)(f)| =

∣∣∣∣∣∑
s∈S

αq(p, a)(s)f(χ(p, a, s))−
∑
s∈S

βq(p′, a)(s)f(χ(p′, a, s))

∣∣∣∣∣
≤
∑
s

‖αq(p, a)(., s)− βq(p′, a)(., s)‖

≤
∑
s,k,k′

|αp(k′)q(k′, a)(k, s)− βp′(k′)q(k′, a)(k, s)|

≤
∑
s,k,k′

q(k′, a)(k, s)|αp(k′)− βp′(k′)| = ‖αp− βp′‖.

where the first inequality comes from the definition of D1.
By Theorem 4.5, the MDP Ψ has a general uniform value and we deduce that the POMDP

Γ has a general uniform value. �
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Example 5.2. Let Γ = (K,A, S, q, g, p1) be a POMDP where K = {k1, k2}, A = {a, b},
S = {∗} and p1 = δk1 . The initial state is k1 and since there is only one signal, the decision-
maker will obtain no additional information on the state. We say that he is in the dark. The
payoff is given by g(k1, a) = g(k1, b) = g(k2, b) = 0 and g(k2, a) = 1, and the transition by
q(k1, a) = q(k1, b) = δ∗,k1 , q(k2, a) = δ∗,k2 and q(k1, b) = 1

2δ∗,k1 + 1
2δ∗,k2 . On one hand if the

decision-maker plays a then the state stays the same, and he receives a payoff of 1 if and only if
the state is k2. On the other hand if he plays b then he receives a payoff of 0 but the probability
to be in state k2 increases.

We define the function r from X × A = ∆(K) × A to [0, 1] by r((p, 1 − p), a) = 1 − p and
r((p, 1− p), b) = 0 for all p ∈ [0, 1], and we define the transition q̂ from X ×A to ∆f (X) by :

q̂((p, 1− p), a) = δ(p,1−p) and q̂((p, 1− p), b) = δ(p/2,1−p/2).

Then the standard MDP Ψ = (∆(K), A, q̂, r) is the MDP associated in the previous proof to
Γ. This MDP is here deterministic, because the decision is in the dark.

The existence of a general uniform value is immediate here. Given n ≥ 1, the strategy
σ = bna∞ which plays n times b and then a for the rest of the game, guarantees a stage payoff
of (1 − 1

2n ) from stage n + 1 on, so the game has a general uniform value equal to 1. Finally
if we consider the discounted evaluations, one can show that the speed of convergence of vλ is
here slower than λ :

vλ(p1) = 1− ln(λ)

ln(2)
λ+O(λ).

The partial observation allows for a speed of convergence slower than λ contrary to the perfect
observation case where it is well known that the convergence is in O(λ).

Remark 5.3. It is here unknown if the uniform value exists in pure strategies, i.e. if the
behavior strategies σ(p) of Theorem 5.1 can be chosen with values in A. This was already
an open problem for the Cesàro-uniform value, that is when only evaluations of the form
θ = 1

n

∑n
t=1 δt are considered (see Rosenberg et al. [35] and Renault [31] for different proofs

requiring the use of behavioral strategies). In the present proof, there are two related places
where the use of lotteries on actions is important. First in the proof of the convergence of the
function hT,n (within the proof of Theorem 2.10), we used Sion’s theorem in order to exchange
a supremum and an infimum, and to do so the convexity of the set of strategies was required.
Secondly when we prove that the extended transition is 1-Lipschitz (see Lemma 6.16), the
coupling between the two distributions u and u′ requires some randomization.

5.2 Zero-sum repeated games with an informed controller

We finally consider zero-sum repeated games with an informed controller. We start with a
general model Γ = (K, I, J, C,D, q, g) of zero-sum repeated game, where we have 5 non empty
finite sets: a set of states K, two sets of actions I and J and two sets of signals C and D,
and we also have a transition mapping q from K × I × J to ∆(K × C × D) and a payoff
function g from K × I × J to [0, 1]. Given an initial probability π on ∆(K × C × D), the
game Γ(π) = Γ(K, I, J, C,D, q, g, π) is played as follows: at stage 1, a triple (k1, c1, d1) is drawn
according to π, player 1 learns c1 and player 2 learns d1. Then simultaneously player 1 chooses
an action i1 in I and player 2 chooses an action j1 in J . Player 1 gets a (unobserved) payoff
r(k1, i1, j1) and player 2 the opposite payoff. Then a new triple (k2, c2, d2) is drawn accordingly
to q(k1, i1, j1). Player 1 observes c2, player 2 observes d2 and the game proceeds to the next
stage, etc.

A (behavioral) strategy for player 1 is a sequence σ = (σt)t≥1 where for each t ≥ 1, σt is
a mapping from (C × I)t−1 × C to ∆(I). Similarly a strategy for player 2 is a sequence of
mappings τ = (τt)t≥1 where for each t ≥ 1 ,τt is a mapping from (D × J)t−1 × D to ∆(J).
We denote respectively by Σ and τ the set of strategies of player 1 and player 2. An initial
distribution π and a couple of strategies (σ, τ) define for each t a probability on the possible
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histories up to stage t, which can be uniquely extended to a probability on the set of infinite
histories (K × C ×D × I × J)+∞.

Given an evaluation θ, we define the θ-payoff of (σ, τ) in Γ(π) as the expectation under
IPπ,σ,τ of the payoff function,

γθ(π, σ, τ) = IEπ,σ,τ

(∑
t

θt r(kt, it, jt)

)
.

By Sion’s theorem the game with θ-payoff has a value: vθ(π) = maxσ∈Σ minτ∈τ γθ(π, σ, τ) =
minτ∈τ maxσ∈Σ γθ(π, σ, τ), and we can define the general limit value as in the MDP framework.
Note that we do not ask the convergence to be uniform for all π in ∆(K ×C ×D), because we
will later make some assumptions, in particular on the initial distribution.

Definition 5.4. The repeated game Γ(π) = (K, I, J, C,D, q, g, π) has a general limit value
v∗(π) if vθ(π) converges to v∗(π) when TV (θ) goes to zero, i.e.:

∀ε > 0,∃α > 0,∀θ, ( TV (θ) ≤ α =⇒ (|vθ(π)− v∗(π)| ≤ ε) ) .

Definition 5.5. The repeated game Γ(π) has a general uniform value if it has a general limit
value v∗(π) and for each ε > 0 one can find α > 0 and a couple of strategies σ∗ and τ∗ such
that for all evaluations θ with TV (θ) ≤ α:

∀τ ∈ τ , γθ(π, σ∗, τ) ≥ v∗(π)− ε and ∀σ ∈ Σ, γθ(π, σ, τ
∗) ≤ v∗(π) + ε.

Without further assumption, the general values may fail to exist. We will focus here on
the case of a repeated game with an informed controller, as introduced in Renault [32]. The
first assumption concerns the information of the first player. We assume that he can always
reconstruct the current state and the signal of the second player from his own signal:

Assumption 5.6. There exist two mappings k̃ : C → K and d̃ : C → D such that, if E denotes
{(k, c, d) ∈ K × C ×D, k̃(c) = k, d̃(c) = d}, we have: ∀(k, i, j) ∈ K × I × J , q(k, i, j)(E) = 1,
and π(E) = 1.

Moreover we will assume that only player 1 has a meaningful influence on the transitions,
in the following sense.

Assumption 5.7. The marginal of the transition on K × D is not influenced by player 2’s
action. For k in K, i in I and j in J , we denote by q̄(k, i) the marginal of q(k, i, j) on K ×D.

The second player may influence the signal of the first player but he cannot prevent him
either from learning his state or from learning his own signal. Moreover he cannot influence his
own information, thus he has no influence on his beliefs about the state or about the beliefs
of player 1 about his beliefs. A repeated game satisfying assumptions 5.6 and 5.7 is called a
repeated game with an informed controller. It was proved in Renault [32] that for such games
the Cesàro-uniform value (that is, when only evaluations of the form θ = 1

n

∑n
t=1 δt are consid-

ered) exists and we will extend it here to the general uniform value.

Example 5.8. We consider the simplest case of zero-sum repeated game with incomplete
information introduced by Aumann and Maschler in the sixties (see reference [5]). It is defined
by a finite family (Gk)k∈K of payoff matrices in [0, 1]I×J and p ∈ ∆(K) an initial probability.
At the first stage, some state k is selected according to p and told to player 1 only. The second
player knows the initial distribution p but not the realization of the state. Then the matrix
game Gk is repeated over and over. At each stage the players observe past actions but not
their payoff (notice that player 1 can always reconstruct the payoff from the actions and the
state). Formally it is a zero-sum repeated game Γ = (K, I, J, C,D, q, g) as defined previously,
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with C = K × I × J and D = I × J , and for all (k, i, j) ∈ K × I × J , g(k, i, j) = Gk(i, j)
and q(k, i, j) = δk,(k,i,j),(i,j). For all p ∈ ∆(K), we denote by Γ(p) the game where the initial
probability π ∈ ∆(K ×C ×D) is given by π =

∑
k∈K p(k)δk,(k,i0,j0),(i0,j0) with (i0, j0) ∈ I × J

fixed.
For each n, we denote by vn(p) the value of the n-stage game with initial probability p,

where the payoff is the expected average of the first n payoffs. The value satisfies the standard
recursive formula:

vn(p) = sup
a∈∆(I)K

(
1

n
R(p, a) +

n− 1

n

∑
i∈I

a(p)(i)vn−1(χ(p, a, i))

)
,

where ak ∈ ∆(I) represents the lottery on actions played by player 1 if the state is k, a(p)(i) =∑
k∈K p

kak(i) is the probability that player 1 plays i, R(p, a) = minj(
∑
k p

kGk(ak, j)) is the
minimal expected payoff for player 1, and χ(p, a, i) is the conditional belief on ∆(K) given p,
a, i:

χ(p, a, i) =

(
p(k)ak(i)

a(p)(i)

)
k

.

Starting from a belief p about the state, if player 2 observes action i and knows that the
distribution of actions of player 1 is a, then he updates his beliefs to χ(p, a, i). Aumann and
Maschler have proved that the limit value exists and is characterized by

v∗ = cavf∗ = inf{v : ∆(K)→ [0, 1], v concave v ≥ f∗},

where f∗(p) = V al
(∑

k p
kGk

)
for all p ∈ ∆(K). The function f∗ is the value of the game,

called the non-revealing game, where player 1 is forbidden to use his information.

Theorem 5.9. A zero-sum repeated game with an informed controller has a general uniform
value.

The proof, to be found in the appendix, will consist of 5 steps. First we introduce an
auxiliary standard Markov Decision Process Ψ(π̂) on the state space X = ∆(K). Then we
show that for all evaluations θ, the repeated game Γ(π) and the MDP Ψ(π̂) have the same
θ-value. In step 3 we check that the MDP satisfies the assumption of Theorem 4.5 so it has a
general limit value and a general uniform value v∗. As a consequence the repeated game has
a general limit value v∗(π). Then we prove that player 1 can use an ε-optimal strategy of the
auxilliary MDP in order to guarantee v∗(π) − ε in the original game. Finally we prove that
Player 2 can play by blocks in the repeated game in order to guarantee v∗(π) + ε. We obtain
that v∗(π) can be guaranteed by both players in the repeated game, so it is the general uniform
value of Γ(π).

Example 5.10. The computation of the value is in general a difficult problem, as shown by
the next example introduced in Renault [30] and studied by Hörner et al. [20]. In this example
the value exists but has been computed only for some values of the parameter. The set of states
is K = {k1, k2}, the set of actions of player 1 is I = {T,B}, the set of actions of player 2 is
J = {L,R}, and the payoff of player 1 is given by:

L R L R
T
B

(
1 0
0 0

)
and

T
B

(
0 0
0 1

)
.

k1 k2

The sequence of states follows an exogeneous Markov chain, with initial probability (1/2, 1/2)

and transition matrix

(
p 1− p

1− p p

)
, where p is a given parameter. At the beginning of

every stage, only player 1 oberves the current state in K, and at the end of each stage the
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actions played are observed. (with the previous notations C = K × I × J , D = I × J , and
q(k, i, j) = p δk,(k,i,j),(i,j) + (1− p) δk′,(k′,i,j),(i,j) for all k in K, k′ ∈ K\{k}, i in I and j in J).

For each value of the parameter p ∈ [0, 1], we have a repeated game Γp and by symmetry
it is sufficient to study the case p ∈ [1/2, 1]. If p = 1 we are in the setup of Example 5.8
and the value is clearly 1/4. Hörner et al. [20] proved that for p ∈ [1/2, 2/3), the value is
vp = p

4p−1 . Bressaud and Quas [12] showed recently that for p ∈ [2/3, .73] the value satisfies

the following equation 1
vp

= u0 + u0u1 + u0u1u2 + ..., where (un) is defined by u0 = 1 and

un+1 = max{ψ(un), 1− ψ(un)} with ψ(u) = 3p− 1− 2p−1
u . What is the value for p = 0.9?

6 Appendix

6.1 Proof of Theorem 2.10

In this section we consider a compact metric space (X, d), and we use the Kantorovich-
Rubinstein distance d = dKR on ∆(X). We start with a lemma.

Lemma 6.1. Let F : X ⇒ ∆f (X) be non-expansive for dKR. Then the mixed extension of F
is 1-Lipschitz from ∆f (X) to ∆f (X) for dKR.

Proof of Lemma 6.1. We first show that the mapping (p 7→ convF (p)) is non-expansive from X
to ∆f (X). Indeed, consider p and p′ in X, and u =

∑
i∈I αiui, with I finite, αi ≥ 0, ui ∈ F (p)

for each i, and
∑
i∈I αi = 1. By assumption for each i one can find u′i in F (p′) such that

dKR(ui, u
′
i) ≤ d(p, p′). Define u′ =

∑
i∈I αiu

′
i in convF (p′). We have:

dKR(u, u′) = sup
f∈C1

(∑
i

αiui(f)−
∑
i

αiu
′
i(f)

)
,

= sup
f∈C1

∑
i∈I

αi(ui(f)− u′i(f)),

≤
∑
i∈I

αi dKR(ui, u
′
i),

≤ d(p, p′).

We now prove that F̂ is 1-Lipschitz from ∆f (X) to ∆f (X). Let u1, u2 be in ∆f (X) and
v1 =

∑
p∈X u1(p)f1(p), where f1(p) ∈ convF (p) for each p. By the Kantorovich duality formula,

there exists a coupling γ = (γ(p, q))(p,q)∈X×X in ∆f (X ×X) with first marginal u1 and second
marginal u2 satisfying:

dKR(u1, u2) =
∑

(p,q)∈X×X

γ(p, q)d(p, q).

For each p, q in X by the first part of this proof there exists fp(q) ∈ convF (q) such that
dKR(fp(q), f1(p)) ≤ d(p, q). We define:

f2(q) =
∑
p∈X

γ(p, q)

u2(q)
fp(q) ∈ convF (q), and v2 =

∑
q∈X

u2(q)f2(q) ∈ F̂ (u2).

21



We now conclude.

dKR(v1, v2) = dKR

∑
p∈X

u1(p)f1(p),
∑
q∈X

u2(q)f2(q)


= dKR

(∑
p,q

γ(p, q)f1(p),
∑
q,p

γ(p, q)fp(q)

)
≤

∑
p,q

γ(p, q)dKR(f1(p), fp(q))

≤
∑
p,q

γ(p, q)d(p, q) = dKR(u1, u2).

The mixed extension of F is 1-lipschitz. �

We now consider a Gambling House Γ = (X,F, r) and assume the hypotheses of Theorem
2.10 are satisfied. We will work with the deterministic Gambling House Γ̂ = (∆f (X), F̂ , r).

Recall that r is extended to an affine and continuous mapping on ∆(X) whereas F̂ is an affine
non-expansive correspondence from ∆f (X) to ∆f (X).

For p in X, the pure plays in Γ̂ at the initial state δp coincide with the mixed plays in Γ at

the initial state p. As a consequence, the θ-value for Γ at p coincides with the θ-value for Γ̂ at
δp, which is written vθ(p) = vθ(δp). Because F̂ and r are affine on ∆f (X), the θ-value for Γ̂, as
a function defined on ∆f (X), is the affine extension of the original vθ defined on X. So we have

a unique value function vθ which is defined on ∆f (X) and is affine. Because F̂ is 1-Lipschitz
and r is uniformly continuous, all the value functions vθ have the same modulus of continuity
as r, so (vθ)θ is an equicontinuous family of mappings from ∆f (X) to [0, 1]. Consequently,
we extend vθ to an affine mapping on ∆(X) with the same modulous of continuity, and the
family (vθ)θ now is an equicontinuous family of mappings from ∆(X) to [0, 1]. ∆f (X) being
precompact, this is enough to obtain the existence of a general limit value, see Renault [33].
Here we will moreover obtain a characterization of this value and the existence of the general
uniform value.

We define R and v∗ as in the statements of Theorem 2.10, so that for all x in X,

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
u∈F (y)

w(u) and (2)∀u ∈ R,w(u) ≥ r(u)
}
.

We start with a lemma based on the non-expansiveness of F̂ .

Lemma 6.2. 1) Given (u, u′) in cl(Graph(F̂ )), v in ∆f (X) and ε > 0, there exists v′ ∈ F̂ (v)
such that d(u′, v′) ≤ d(u, v) + ε.

2) Given a sequence (zt)t≥0 of elements of ∆(X) such that (zt, zt+1) ∈ cl(Graph(F̂ )) for all
t ≥ 1, and given ε > 0, one can find a sequence (z′t)t≥0 of elements of ∆f (X) such that (z′t)t≥1

is a play at z′0, and d(zt, z
′
t) ≤ ε for each t ≥ 0.

Proof of Lemma 6.2: 1) For all ε > 0 there exists (z, z′) ∈ Graph(F̂ ) such that d(z, u) ≤ ε and
d(z′, u′) ≤ ε. Because F̂ is non-expansive, one can find v′ in F̂ (v) such that d(z′, v′) ≤ d(z, v).
Consequently, d(v′, u′) ≤ d(v′, z′) + d(z′, u′) ≤ d(z, v) + ε ≤ d(u, v) + 2ε.

2) It is first easy to construct (z′0, z
′
1) in the graph of F̂ such that d(z′0, z0) ≤ ε and d(z′1, z1) ≤

ε. (z1, z2) ∈ cl(Graph(F̂ )) so by 1) one can find (z′2) in F̂ (z′1) such that d(z2, z
′
2) ≤ d(z1, z

′
1) +

ε2 ≤ ε+ ε2. Iterating, we construct a play (z′t)t≥1 at z′0 such that d(zt, z
′
t) ≤ ε+ ε2 + ...+ εt for

each t.
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We now prove2 Theorem 2.10 with the two following propositions.

Proposition 6.3. Γ has a general limit value given by v∗.

Proof of Proposition 6.3: By Ascoli’s theorem, it is enough to show that any limit point of
(vθ)θ (for the uniform convergence) coincides with v∗. We thus assume that (vθk)k uniformly
converges to v on ∆(X) when k goes to ∞, for a family of evaluations satisfying:∑

t≥1

|θkt+1 − θkt | −→k→∞ 0.

We need to show that v = v∗.

A) We first show that v ≥ v∗.
It is plain that v can be extended to an affine function on ∆(X) and has the modulus of

continuity of r. Because
∑
t≥1 |θkt+1−θkt | −→k→∞ 0, we have by Equation (1) of Section 2 that:

∀y ∈ X, v(y) = supu∈F (y) v(u).
Let now u be in R. By Lemma 6.2 for each ε one can find u0 in ∆f (X) and a play

(u1, u2, ..., ut, ...) such that ut ∈ F̂ (ut−1) and d(u, ut) ≤ ε for all t ≥ 0. Because r is uniformly
continuous, we get v(u) ≥ r(u).

By definition of v∗ as an infimum, we obtain: v∗ ≤ v.

B) We show that v∗ ≥ v.
Let w be a continous affine mapping from ∆(X)to [0, 1] satisfying (1) and (2) of the definition

of v∗. It is enough to show that w(p) ≥ v(p) for each p in X. Fix p in X and ε > 0.
For each k, let σk = (uk1 , ..., u

k
t , ...) ∈ ∆f (X)∞ be a play at δp for Γ̂ which is almost optimal

for the θk-value, in the sense that
∑
t≥1 θ

k
t r(u

k
t ) ≥ vθk(p)− ε. Define:

u(k) =

∞∑
t=1

θkt u
k
t ∈ ∆(X), and u′(k) =

∞∑
t=1

θkt u
k
t+1 ∈ ∆(X).

u(k) and u′(k) are well-defined limits of normal convergent series in the Banach space C(X)
′
.

Because F̂ is affine, its graph is a convex set and (u(k), u′(k)) ∈ cl(Graph(F̂ )) for each k.
Moreover, we have d(u(k), u′(k)) ≤ diam(X)(θk1 +

∑∞
t=2 |θkt − θkt−1|), where diam(X) is the

diameter of X. Consequently,
∑
t≥1 |θkt+1 − θkt | −→k→∞ 0 implies d(u(k), u′(k)) −→k→∞ 0.

Considering a limit point of the sequence (u(k), u′(k))k, we obtain some u in R. By assumption
on w, w(u) ≥ r(u). Moreover, for each k we have r(u(k)) =

∑
t≥1 θ

k
t r(u

k
t ) ≥ vθk(p) − ε, so

r(u) ≥ v(p)− ε.
Because w is excessive, we obtain that for each k the sequence (w(ukt ))t is non increasing,

so w(u(k)) =
∑
t≥1 θ

k
t w(ukt ) ≤ w(p). So we obtain:

w(p) ≥ w(u) ≥ r(u) ≥ v(p)− ε.

This is true for all ε, so w ≥ v. �

Proposition 6.4. Γ has a general uniform value.

Proof of Proposition 6.4: First we can extend the notion of mixed play to ∆f (X). A mixed

play at u0 ∈ ∆f (X), is a sequence σ = (u1, ..., ut, ...) ∈ ∆f (X)∞ such that ut+1 ∈ F̂ (ut) for

2A variant of the proof would be to consider the Gambling House on ∆(X) where the transition correspon-

dence is defined so that its graph is the closure of the graph of F̂ . Part 1) of Lemma 6.2 shows this correspondence
is also non-expansive.
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each t ≥ 0, and we denote by Σ(u0) the set of mixed plays at u0. Given t, T in IN , n ∈ IN∗ and
u0 ∈ ∆f (X), we define for each mixed play σ = (ut)t≥1 ∈ Σ(u0) the auxiliary payoff:

γt,n(σ) =
1

n

t+n∑
l=t+1

r(ul), and βT,n(σ) = inf
t∈{0,...,T}

γt,n(σ).

We also define the auxiliary value function: for all u in ∆f (X),

hT,n(u0) = sup
σ∈Σ(u0)

βT,n(σ).

Clearly, βT,n(σ) ≤ γ0,n(σ) and hT,n(u0) ≤ vn(u0). We can write:

hT,n(u0) = sup
σ∈Σ(u0)

inf
θ∈∆({0,...,T})

1

n

T∑
t=0

θt

t+n∑
l=t+1

r(ul)

= sup
σ∈Σ(u0)

inf
θ∈∆({0,...,T})

T+n∑
l=1

βl(θ, n)r(ul).

where for each l in 1, ..., T + n, βl(θ, n) = 1
n

∑Min{T,l−1}
t=Max{0,l−n} θt. By construction, F̂ is affine,

so Σ(u0) is a convex subset of ∆f (X)∞. ∆({0, ..., T}) is convex compact and the payoff∑T+n
l=1 βl(θ, n)r(ul) is affine both in θ and in σ. We can apply a standard minmax theorem

to get:

hT,n(u0) = inf
θ∈∆({0,...,T})

sup
σ∈Σ(u0)

T+n∑
l=1

βl(θ, n)r(ul).

We write θt = 0 for t > T and for each l ≥ 0: βl(n, θ) = 1
n (θ0 + ... + θl−1) if l ≤ n, βl(θ, n) =

1
n (θl−n + ...+ θl−1) if n+ 1 ≤ l ≤ n+ T , βl(n, θ) = 0 if l > n+ T . The evaluation β(θ, n) is a
particular probability on stages and hT,n(u0) = infθ∈∆({0,...,T}) vβ(θ,n)(u0). It is easy to bound
the total variation of β(θ, n):

∑
l≥0

|βl+1(θ, n)− βl(θ, n)| =
n−1∑
l=0

θl
n

+
∑
l≥n

1

n
|θl − θl−n| ≤

3

n
−→n→∞ 0.

The impatience of β(θ, n) goes to zero as n goes to infinity, uniformly in θ. So we can use the
previous Proposition 6.3 to get:

∀ε > 0,∃n0,∀n ≥ n0,∀θ ∈ ∆(IN),∀u0 ∈ ∆f (X), |vβ(θ,n)(u0)− v∗(u0)| ≤ ε.

This implies that h∞,n(u0) :=def infθ∈∆(IN) vβ(θ,n)(u0) = infT≥0 hT,n(u0) converges to v∗(u0)
when n→∞, and the convergence is uniform over ∆f (X). Consequently, if we fix ε > 0 there
exists n0 such that for all u0 in ∆f (X), for all T ≥ 0, there exists a play σT = (uTt )t≥1 in Σ(u0)
such that the average payoff is good on every interval of n0 stages starting before T + 1: for all
t = 0, ..., T , γt,n0

(σT ) ≥ v∗(u0)− ε.

We fix u0 in ∆f (X) and consider, for each T , the play σT = (uTt )t≥1 in Σ(u) as above.
By a diagonal argument we can construct for each t ≥ 1 a limit point zt in ∆(X) of the
sequence (uTt )T≥0 such that for all t we have (zt, zt+1) ∈ cl(Graph(F̂ )), with z0 = u0. For each

m ≥ 0, we have 1
n0

∑m+1+n0

t=m+1 r(uTt ) ≥ v∗(u0) − ε for T large enough, so at the limit we get:
1
n0

∑m+1+n0

t=m+1 r(zt) ≥ v∗(u0)− ε.
r being uniformly continuous, there exists α such that |r(z)−r(z′)| ≤ ε as soon as d(z, z′) ≤

α. By Lemma 6.2, one can find a mixed play σ′ = (z′1, ...., z
′
t, ...) at Σ(z0) such that for each t,

d(zt, z
′
t) ≤ α. We obtain that for each m ≥ 0, 1

n0

∑m+1+n0

t=m+1 r(z′t) ≥ v∗(u)− 2ε.
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Consequently we have proved: ∀ε > 0, there exists n0 such that for all initial state p in X,
there exists a mixed play σ′ = (z′t)t at p such that: ∀m ≥ 0, 1

n0

∑m+1+n0

t=m+1 r(z′t) ≥ v∗(p)− 2ε.

Let θ ∈ ∆(IN∗) be an evaluation, it is now easy to conclude. First if v∗(p)−2ε < 0, then any
play is 2ε-optimal. Otherwise, for each j ≥ 1, denote by θj the maximum of θ on the block Bj =
{(j− 1)n0 + 1, ..., jn0}. For all t ∈ Bj , we have: θj ≥ θt ≥ θj −

∑
t′∈{(j−1)n0+1,...jn0−1} |θt′+1−

θt′ |. As a consequence, we have for all j:

jn0∑
t=(j−1)n0+1

θtr(z
′
t) ≥ θj

jn0∑
t=(j−1)n0+1

r(z′t) − n0

∑
t′∈{(j−1)n0+1,...,jn0−1}

|θt′+1 − θt′ |

≥
jn0∑

t=(j−1)n0+1

θt(v
∗(p)− 2ε) − n0

∑
t′∈{(j−1)n0+1,...,jn0−1}

|θt′+1 − θt′ |

and by summing over j we get: γθ(x0, σ
′) ≥ v∗(p) − 2ε − n0TV (θ) ≥ v∗(p) − 3ε as soon as

TV (θ) is small enough. �

6.2 Proof of Theorem 3.5

We first introduce another pseudo-distance on ∆(X).

Definition 6.5. d+
2 (u, v) = infε>0 d

ε
2(u, v), where dε2(u, v) = sup(f,g)∈Dε

2
u(f) + v(g)

and for ε > 0, Dε
2 = {(f, g) ∈ C×C,∀x, y ∈ X,∀a, b ∈ [0, 1], af(x)+bg(y) ≤ ε+‖ax−by‖}.

We will show that d1 = d2 = d+
2 = d3. The proof is split into several parts.

Proposition 6.6. d1 = d2 = d+
2 .

It is plain that d1 ≤ d2 ≤ d+
2 , so all we have to prove is d+

2 ≤ d1. We start with a lemma.

Lemma 6.7. Fix ε > 0, and let f in C be such that: ∀x ∈ X, ∀a ∈ [0, 1], af(x) ≤ ε + a‖x‖.
Define f̂ by:

∀y ∈ X, f̂(y) = inf
a∈[0,1],b∈(0,1],x∈X

1

b
(ε+ ‖ax− by‖ − af(x)) .

Then for each y in X, −‖y‖ ≤ f̂(y) ≤ −f(y) + ε. Moreover f̂ ∈ C1, and:

∀x ∈ X,∀y ∈ X,∀a ∈ [0, 1],∀b ∈ [0, 1], af̂(x)− bf̂(y) ≤ aε+ ‖by − ax‖.

Proof of Lemma 6.7: By assumption on f , we have for all y in X, a in [0, 1], b in (0, 1], x

in X: 1
b (ε+ ‖ax− by‖ − af(x)) ≥ 1

b (−a‖x‖+ ‖ax− by‖) ≥ −‖y‖. In the definition of f̂(y),

considering a = b = 1 and x = y yields f̂(y) ≤ −f(y) + ε.
Fix x and y in X, a and b in [0, 1]. We have:

af̂(x)− bf̂(y) = a inf
a′,b′,x′

1

b′
(ε+ ‖a′x′ − b′x‖ − a′f(x′))

−b inf
a′′,b′′,x′′

1

b′′
(ε+ ‖a′′x′′ − b′′y‖ − a′′f(x′′)) .

If a = 0, then the inequality f̂(y) ≥ −‖y‖ leads to −bf̂(y) ≤ b‖y‖. If b = 0, choose a′ = 0,

b′ = 1 and x′ = x to get af̂(x) ≤ aε+ ‖ax‖.
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If ab > 0, given η > 0, choose a′′, b′′, x′′ η-optimal in the second infimum. We can define
x′ = x′′, and choose a′ ∈ [0, 1] and b′ ∈ (0, 1] such that a′

b′ = b
a
a′′

b′′ . We obtain:

af̂(x)− bf̂(y) ≤ bη + (
a

b′
− b

b′′
)ε+ (‖a

′′

b′′
bx′′ − ax‖ − ‖a

′′

b′′
bx′′ − by‖)

≤ bη + (
a

b′
− b

b′′
)ε+ ‖ax− by‖.

If a = b > 0, choose a′ = a′′ and b′ = b′′ to obtain: f̂(x) − f̂(y) ≤ ‖x − y‖ and therefore f̂
is 1-Lipschitz.

Otherwise, we distinguish two cases. If a
b b
′′ ≤ 1, we define b′ = a

b b
′′ and a′ = a′′ and we get

af̂(x) − bf̂(y) ≤ bη + ‖ax − by‖. If a
b b
′′ > 1, we define b′ = 1 and a′ = a′′b

b′′a ∈ [0, 1] and obtain

af̂(x)− bf̂(y) ≤ bη + aε+ ‖ax− by‖. Thus for all η > 0, we have

af̂(x)− bf̂(y) ≤ bη + aε+ ‖ax− by‖,

and therefore af̂(x)− bf̂(y) ≤ aε+ ‖ax− by‖.

Proof of Proposition 6.6: Fix u and v in ∆(X), and consider ε > 0. For each (f, g) in Dε
2, we

have −f + ε ≥ f̂ ≥ g and (f, f̂) in Dε
2. We also have (f̂ , f) ∈ Dε

2 so iterating the construction,

we get (f̂ ,
ˆ̂
f) ∈ Dε

2, and −f̂ + ε ≥ ˆ̂
f ≥ f .

Now, u(f) + v(g) ≤ u(
ˆ̂
f) + v(f̂) ≤ −u(f̂) + ε+ v(f̂). Hence we have obtained:

dε2(u, v) ≤ ε+ sup
f∈Cε(u,v)

−u(f) + v(f),

where Cε(u,v) is the set of functions f in C1 satisfying:

∀x ∈ X,∀y ∈ X,∀a ∈ [0, 1],∀b ∈ [0, 1], af(x)− bf(y) ≤ aε+ ‖ax− by‖ and f(y) ≥ −‖y‖.

For each positive k, one can choose fk in C1 achieving the above supremum for ε = 1/k. Taking
a limit point of (fk)k yields a function f in D1 such that: −u(f) + v(f) ≥ d+

2 (u, v). The
function f∗ = −f is in D1 and satisfies u(f∗)− v(f∗) ≥ d+

2 (u, v), and the proof of Proposition
6.6 is complete. �

Proposition 6.8. d+
2 ≥ d3.

Proof of Proposition 6.8: The proof is based on (a corollary of) Hahn-Banach theorem. Define:
H = C(X2 × [0, 1]2) and

L = {ϕ ∈ H,∃f, g ∈ C(X) s.t. ∀x, y ∈ X,∀λ, µ ∈ [0, 1], ϕ(x, y, λ, µ) = λf(x) + µg(y)}.

H is endowed with the uniform norm and L is a linear subspace of H. Note that the unique
constant mapping in L is 0. Fix u and v in ∆(X), and let r be the linear form on L defined by
r(ϕ) = u(f) + v(g), where ϕ(x, y, λ, µ) = λf(x) + µg(y) for all x, y, λ, µ.

Fix now ε > 0, and put:

Uε = {ϕ ∈ H,∀x, y ∈ X,∀λ, µ ∈ [0, 1], ϕ(x, y, λ, µ) ≤ ‖λx− µy‖+ ε}.

We have:
sup

ϕ∈L∩Uε

r(ϕ) = dε2(u, v).

Uε is a convex subset of H which is radial at 0, in the sense that: ∀ϕ ∈ H, ∃δ > 0 such that
tϕ ∈ Uε as soon as |t| ≤ δ. By a corollary of Hahn-Banach theorem (see theorem 6.2.11 p.202
in Dudley, [17]), r can be extended to a linear form on H such that:

sup
ϕ∈Uε

r(ϕ) = dε2(u, v).
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Given ϕ ∈ H, we have εϕ/‖ϕ‖∞ ∈ Uε, which implies that r(ϕ) ≤ ‖ϕ‖∞dε2(u, v)/ε, so that
r belongs to H ′. If ϕ ≥ 0, we have tϕ ∈ Uε if t ≤ 0, so that r(ϕ) ≥ dε2(u, v)/t for all t ≤ 0 and
r(ϕ) ≥ 0. By Riesz Theorem, r can be represented by a positive finite measure γ on X2× [0, 1]2.

Given f in C, one can consider ϕf ∈ L defined by ϕf (x, y, λ, µ) = λf(x). Then r(ϕf ) = γ(ϕf )
gives: u(f) =

∫
(x,y,λ,µ)∈X2×[0,1]2

λf(x)dγ(x, y, λ, µ), and similarly

v(f) =

∫
(x,y,λ,µ)∈X2×[0,1]2

µf(y)dγ(x, y, λ, µ),

and we obtain that γ ∈M3(u, v).
Since γ ≥ 0, we have supϕ∈Uε

r(ϕ) = r(ϕ∗) where ϕ∗(x, y, λ, µ) = ‖λx − µy‖ + ε. We get
dε2(u, v) =

∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ) + εγ(X2 × [0, 1]2), so

dε2(u, v) ≥
∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ) ≥ d3(u, v). �

Remark 6.9. The proof given here uses elements of the proof of the standard Kantorovich
duality formula in Dudley ([17], see Lemma 11.8.5 p.423). However the arguments need to be
more sophisticated here. In particular, there is no need in the standard duality for the extra
variables λ and µ, and the analogs of our sets H and L are Ĥ = C(X2) and L̂ = {ϕ ∈
Ĥ, ∃f, g ∈ C(X) s.t. ∀x, y ∈ X,ϕ(x, y) = f(x) + g(y)}. It is enough to define Û = {ϕ ∈
Ĥ, ∀x, y ∈ X,ϕ(x, y) < ‖ x − y‖}. Û is convex and open, so radial at any of his element, and
Û ∩ L̂ is not empty. In the present setup, if we simply define U = {ϕ ∈ H,∀x, y ∈ X,∀λ, µ ∈
[0, 1], ϕ(x, y, λ, µ) < ‖λx − µy‖}, we have U ∩ L = ∅, hence a problem. These considerations
have led to the introduction of the sets Uε and the intermediate distance d+

2 beforehand.

It is now easy to conclude the proof of Theorem 3.5.

Lemma 6.10. d3 ≥ d2.

Proof of Lemma 6.10: Fix (f, g) ∈ D2 and γ ∈M3(u, v).

u(f) + v(g) =

∫
X2×[0,1]2

λf(x)dγ(x, y, λ, µ) +

∫
X2×[0,1]2

µg(y)dγ(x, y, λ, µ)

=

∫
X2×[0,1]2

(λf(x) + µg(y))dγ(x, y, λ, µ)

≤
∫
X2×[0,1]2

‖λx− µy‖dγ(x, y, λ, µ).

6.3 Proof of Lemma 3.6

We will use the Stone-Weierstrass theorem (see for instance Lemma A7.2 in Ash [2] p. 392) in
order to show that the linear span of D1 is dense in C(X). We denote span(D1) the linear span
of D1.

If f and g belong to D1 and λ ∈ [0, 1], then −f , sup{f, g}, inf{f, g} and λf + (1− λ)g are
in D1. It follows that the linear span of D1 is stable by sup and inf operations.

We now show that for every x, y ∈ X such that x 6= y and every function f : X → IR, there
exists a function h ∈ span(D1) such that f(x) = h(x) and f(y) = h(y). Fix f a function and
x, y ∈ X. We define Y the linear span of x and y. Define the function ϕ from Y to IR by

∀λ, µ ∈ IR, ϕ(λx+ µy) = λf(x) + µf(y).
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By Hahn-Banach theorem, ϕ can be extended to a linear mapping on IRK denoted g with the
same operator norm. It follows that there exists C > 0 such that for every p, q ∈ X, for every
a, b ≥ 0,

|ag(p)− bg(q)| = |g(ap− bq)| ≤ C‖ap− bq‖.

Denote by h the restriction of g to X. It is continuous and affine, therefore it is in span(D1).
By Stone-Weierstrass theorem, we deduce that D1 is dense in C(X).

6.4 Proof of Theorem 3.10

Let u and v be in ∆(X), and denote by U and V the respective supports of u and v. We write
S = X2 × [0, 1]2, and we start with a lemma, where no finiteness assumption on U or V is
needed. Recall thatM3(u, v) is the set of finite positive measures on S satisfying for each f in
C: ∫

(x,y,λ,µ)∈S
λf(x)dγ(x, y, λ, µ) = u(f), and

∫
(x,y,λ,µ)∈S

µf(y)dγ(x, y, λ, µ) = v(f).

Lemma 6.11. For each γ ∈M3(u, v), we have:∫
S

‖λx− µy‖dγ(x, y, λ, µ) = 2 +

∫
U×V×[0,1]2

(‖λx− µy‖ − λ− µ) dγ(x, y, λ, µ).

Proof of Lemma 6.11: Write A(γ) =
∫
S
‖λx−µy‖dγ(x, y, λ, µ). Using the definition ofM3(u, v),

we can obtain that 1 =
∫
S
λ1x∈Udγ =

∫
S
µ1y∈V dγ. This implies:

∫
S
λ1x/∈Udγ =

∫
S
µ1y/∈V dγ =

0, so that λ1x/∈U = µ1y/∈V = 0 γ. a.s. We can write:

A(γ) =

∫
S

1x∈U,y∈V ‖λx− µy‖dγ(x, y, λ, µ) +

∫
S

1x∈U,y/∈V ‖λx− µy‖dγ(x, y, λ, µ)

+

∫
S

1x/∈U,y∈V ‖λx− µy‖dγ(x, y, λ, µ) +

∫
S

1x/∈U,y/∈V ‖λx− µy‖dγ(x, y, λ, µ)

=

∫
S

1x∈U,y∈V ‖λx−µy‖dγ(x, y, λ, µ)+

∫
S

1x∈U,y/∈V λdγ(x, y, λ, µ)+

∫
S

1x/∈U,y∈V µdγ(x, y, λ, µ)+0.

We now use 1 =
∫
S

1x∈U,y∈V λdγ+
∫
S

1x∈U,y/∈V λdγ and 1 =
∫
S

1x∈U,y∈V µdγ+
∫
S

1x/∈U,y∈V µdγ
to obtain:

A(γ) = 2 +

∫
S

1x∈U,y∈V ‖λx− µy‖dγ(x, y, λ, µ)−
∫
S

1x∈U,y∈V λdγ −
∫
S

1x∈U,y∈V µdγ.

We assume in the sequel that U and V are finite, and define d5(u, v) as follows:

Definition 6.12. Define

M5(u, v) =
{

(α, β) = (α(x, y), β(x, y))(x,y)∈U×V ∈ IR+
U×V × IR+

U×V , s.t.

∀x ∈ U,
∑
y′∈V

α(x, y′) ≤ u(x) and ∀y ∈ V,
∑
x′∈U

β(x′, y) ≤ v(y)
}
,

and d5(u, v) = inf
(α,β)∈M5(u,v)

2 +
∑

(x,y)∈U×V

(
‖xα(x, y)− yβ(x, y)‖ − α(x, y)− β(x, y)

) .

M5(u, v) is a polytope in the Euclidean space (IRU×V )2, so the infimum in the definition of
d5(u, v) is achieved.

Lemma 6.13. d3(u, v) ≥ d5(u, v).
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Proof of Lemme 6.13: Let γ be in M3(u, v). Fix for a while (x, y) in U × V , and assume that
γ(x, y) > 0. We define γ(.|x, y) the conditional probability on [0, 1]2 given (x, y) by: for all
ϕ ∈ C([0, 1]2),∫

[0,1]2
ϕ(λ, µ)dγ(λ, µ|x, y) =

1

γ(x, y)

∫
(x′,y′,λ,µ)∈S

1x′=x,y′=yϕ(λ, µ)dγ(x′, y′, λ, µ).

So that

γ(x, y)

∫
[0,1]2

(‖λx− µy‖ − λ− µ)dγ(λ, µ|x, y) =

∫
(λ,µ)∈[0,1]2

(‖λx− µy‖ − λ− µ)dγ(x, y, λ, µ).

Define P (x, y) =
∫

(λ,µ)∈[0,1]2
λdγ(λ, µ|x, y) and Q(x, y) =

∫
(λ,µ)∈[0,1]2

µdγ(λ, µ|x, y). The

mapping Ψ : (λ, µ) 7→ ‖λx− µy‖ − λ− µ is convex so by Jensen’s inequality we get:∫
(λ,µ)∈[0,1]2

(‖λx− µy‖ − λ− µ)dγ(λ, µ|x, y) ≥ ‖xP (x, y)− yQ(x, y)‖ − P (x, y)−Q(x, y).

Now, by Lemma 6.11,

A(γ) = 2 +
∑

x∈U,y∈V

∫
(λ,µ)∈[0,1]2

(‖λx− µy‖ − λ− µ) dγ(x, y, λ, µ)

= 2 +
∑

x∈U,y∈V,γ(x,y)>0

∫
(λ,µ)∈[0,1]2

(‖λx− µy‖ − λ− µ) dγ(x, y, λ, µ)

≥ 2 +
∑

x∈U,y∈V,γ(x,y)>0

γ(x, y) (‖xP (x, y)− yQ(x, y)‖ − P (x, y)−Q(x, y)) .

For (x, y) in U × V , define α(x, y) = γ(x, y)P (x, y) ≥ 0 and β(x, y) = γ(x, y)Q(x, y) ≥ 0
(with α(x, y) = β(x, y) = 0 if γ(x, y) = 0). We get:

A(γ) ≥ 2 +
∑

x∈U,y∈V
(‖xα(x, y)− yβ(x, y)‖ − α(x, y)− β(x, y)) .

We have, for each x in U :∑
y∈V

α(x, y) =
∑

y∈V,γ(x,y)>0

∫
(λ,µ)∈[0,1]2

λdγ(x, y, λ, µ)

≤
∫

(y,λ,µ)∈X×[0,1]2
λdγ(x, y, λ, µ) = u(x).

where the last equality comes from the definition of M3(u, v). Similarly, for each y in V we
can show that

∑
x∈U β(x, y) ≤ v(y), and Lemma 6.13 is proved. �

Lemma 6.14. d5(u, v) ≥ d4(u, v).

Proof of Lemme 6.14: Consider (α∗, β∗) achieving the minimum in the definition of d5(u, v).
Assume that there exists x∗ such that

∑
y∈V α(x∗, y) < u(x∗). For any x in X and z in IRK+ ,

it is easy to see that the mapping l : (α 7→ ‖xα − z‖ − α) is nonincreasing from IR+ to IR
(as the sum of the mappings lk : (α 7→ |αxk − zk| − αxk), each lk being non increasing in α).
As a consequence, one can choose any y∗ in V and increase α(x∗, y∗) in order to saturate the
constraint without increasing the objective. So we can assume without loss of generality that∑
y∈V α(x∗, y) = u(x∗) for all x∗ and similarly

∑
x∈U β(x, y∗) = v(y∗) for all y∗.

Consequently,

d5(u, v) = 2 +
∑

(x,y)∈U×V

(‖xα∗(x, y)− yβ∗(x, y)‖ − α∗(x, y)− β∗(x, y))

=
∑

(x,y)∈U×V

‖xα∗(x, y)− yβ∗(x, y)‖ ≥ d4(u, v).
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Lemma 6.15. d4(u, v) ≥ d2(u, v).

Proof of Lemma 6.15: Fix (f, g) ∈ D2 and (α, β) ∈M4(u, v).

u(f) + v(g) =
∑
x∈U

f(x)u(x) +
∑
y∈Y

g(y)v(y)

=
∑

(x,y)∈U×V

f(x)α(x, y) + g(y)β(x, y)

≤
∑

(x,y)∈U×V

‖α(x, y)x− β(x, y)y‖ ≤ d4(u, v).

We have shown that d3(u, v) ≥ d5(u, v) ≥ d4(u, v) ≥ d2(u, v) = d3(u, v) = d1(u, v). This
ends the proof of Theorem 3.10.

6.5 Proof of Lemma 2.2

We prove that

∀u, u′ ∈ ∆f (X), ∀α ∈ [0, 1], F̂ (αu+ (1− α)u′) = αF̂ (u) + (1− α)F̂ (u′).

The⊂ part is clear. To see the reverse inclusion, let v = α
∑
x∈X u(x)f(x)+(1−α)

∑
x∈X u

′(x)f ′(x)

be in αF̂ (u) + (1− α)F̂ (u′), with transparent notations. Define

g(x) =
αu(x)f(x) + (1− α)u′(x)f ′(x)

αu(x) + (1− α)u′(x)
,

for each x such that the denominator is positive. Then g(x) ∈ convF (x), and

v =
∑
x∈X

(αu(x) + (1− α)u′(x)) g(x) ∈ F̂ (αu+ (1− α)u′).

6.6 Proof of Theorem 4.5

Assume that X is a compact subset of a simplex ∆(K), and let Ψ = (X,A, q, g) be a standard
MDP such that: ∀x ∈ X,∀y ∈ X,∀a ∈ A,∀f ∈ D1,∀α ≥ 0,∀β ≥ 0,

|αf(q(x, a))− βf(q(y, a))| ≤ ‖αx− βy‖1 and |αg(x, a)− βg(y, a)| ≤ ‖αx− βy‖1.

We write Zc = ∆f (X) × [0, 1], and Zc = ∆(X) × [0, 1]. We will use the metric d∗ intro-
duced previously and its restriction to ∆(X), so that Zc is a compact metric space. For all
(u, y), (u′, y′) ∈ ∆f (X)× [0, 1], we put d((u, y), (u′, y′)) = max(d∗(u, u

′), |y− y′|) so that (Zc, d)

is a precompact metric space. Recall we have defined the correspondence F̂ from Zc to itself
such that for all (u, y) in Zc,

F̂ (u, y) = {(Q(u, σ), G(u, σ)) s.t. σ : X → ∆f (A)} ,

with the notations Q(u, σ) =
∑
x∈X u(x)q(x, σ(x)) and G(u, σ) =

∑
x∈X u(x)g(x, σ(x)). We

simply define the payoff function r from Zc to [0, 1] by r(u, y) = y for all (u, y) in Zc. We start
with a crucial lemma, which shows the importance of the duality formula of Theorem 3.10.

Lemma 6.16. F̂ is an affine and non-expansive correspondence from Zc to itself.

Proof of Lemma 6.16. We first show that: ∀u, u′ ∈ ∆f (X), ∀α ∈ [0, 1], ∀y, y′ ∈ [0, 1], F̂ (αu +

(1−α)u′, αy+ (1−α)y′) = αF̂ (u, y) + (1−α)F̂ (u′, y′). First the transition does not depend on
the second coordinate so we can forget it for the rest of the proof. The ⊂ part is clear. To see the
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reverse inclusion, consider σ : X → ∆f (A), σ′ : X → ∆f (A) and v = α
∑
x∈X u(x)q(x, σ(x)) +

(1− α)
∑
x∈X u

′(x)q(x, σ′(x)) in αF̂ (u) + (1− α)F̂ (u′). Define

σ∗(x) =
αu(x)σ(x) + (1− α)u′(x)σ′(x)

αu(x) + (1− α)u′(x)
,

for each x such that the denominator is positive. Then v =
∑
x∈X(αu+(1−α)u′(x))q(x, σ∗(x)),

and F̂ is affine.

We now prove that F̂ is non-expansive. Let z = (u, y) and z′ = (u′, y′) be in Zc. We
have d((u, y), (u′, y′)) ≥ d∗(u, u

′) and denote by U and U ′ the respective supports of u and
u′. By the duality formula of Theorem 3.10, there exists α = (α(p, p′))(p,p′)∈U×U ′ and β =
(β(p, p′))(p,p′)∈U×U ′ with non-negative coordinates satisfying:

∑
p′∈U ′ α(p, p′) = u(p) for all

p ∈ U ,
∑
p∈U β(p, p′) = u′(p′) for all p′ ∈ U ′, and

d∗(u, u
′) =

∑
(p,p′)∈U×U ′

‖p α(p, p′)− p′ β(p, p′)‖1.

Consider now v = Q(u, σ) =
∑
p∈U u(p)q(p, σ(p)) for some σ : X → ∆f (A). We define for

all p′ in U ′:

σ′(p′) =
∑
p∈U

β(p, p′)

u′(p′)
σ(p),

and v′ = Q(u′, σ′) =
∑
p′∈U ′ u

′(p′)q(p′, σ′(p′)). Then v′ ∈ F̂ (u′, y′), and for each test function
ϕ in D1 we have:

|ϕ(v)− ϕ(v′)| = |
∑
p,p′

α(p, p′)ϕ(q(p, σ(p)))− β(p, p′)ϕ(q(p′, σ(p)))|

= |
∑
p,p′,a

α(p, p′)σ(p)(a)ϕ(q(p, a))− β(p, p′)σ(p)(a)ϕ(q(p′, a))|

≤
∑
p,p′

‖α(p, p′)p− β(p, p′)p′‖1 = d∗(u, u
′),

and therefore d∗(v, v
′) ≤ d∗(u, u′). In addition we have a similar result on the payoff,

|G(u, σ)−G(u′, σ′)| = |
∑
p,p′

α(p, p′)g(p, σ(p))− β(p, p′)g(p′, σ(p))|

≤
∑
p,p′

‖α(p, p′)p− β(p, p′)p′‖1

≤ d∗(u, u′).

Thus we have d((Q(u, σ), G(u, σ)), (Q(u′, σ′), G(u′, σ′))) ≤ d∗(u, u′) ≤ d(z, z′). �

Recall that the set of invariant couples of the MDP Ψ is:

RR = {(u, y) ∈ Zc, ((u, y), (u, y)) ∈ cl(Graph(F̂ ))},

and the function v∗ : X −→ IR is defined by:

v∗(x) = inf
{
w(x), w : ∆(X)→ [0, 1] affine continuous s.t.

(1) ∀y ∈ X,w(y) ≥ sup
a∈A

w(q(y, a)) and (2) ∀(u, y) ∈ RR,w(u) ≥ y
}
.
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We now consider the deterministic Gambling gouse Γ̂ = (Zc, F̂ , r). Zc is precompact metric,
F̂ is affine non-expansive and r is obviously affine and uniformly continuous. Given an evalua-
tion θ, the θ-value of Γ̂ at z0 = (u, y) is denoted by v̂θ(u, y) = v̂θ(u) and does not depend on y.
The recursive formula of Section 2 yields:

∀(u, y) ∈ Z, v̂θ(u) = sup
(u′,y′)∈F̂ (u)

θ1y
′ + (1− θ1)v̂θ+(u′)

= sup
σ∈X→∆f (A)

(θ1G(u, σ) + (1− θ1)v̂θ+(Q(u, σ))) .

Because F̂ and r are affine, v̂θ is affine in u and the supremum in the above expression can be
taken over functions from X to A. Because F̂ is non-expansive and r is 1-Lipschitz, each v̂θ is
1-Lipschitz.

We denote by vθ the θ-value of the MDP Ψ and linearly extend it to ∆f (X). It turns out
that the recursive formula satisfied by vθ is similar to the above recursive formula for v̂θ, so
that vθ(u) = v̂θ(u, y) for all u in ∆f (X) and y in [0, 1]. As a consequence, the existence of the

general limit value in both problems Γ̂ and Ψ is equivalent. Moreover, a deterministic play in
Γ̂ induces a strategy in Ψ, so that the existence of the general uniform value in Γ̂ will imply
the existence of the general uniform value in Ψ (note that deterministic and mixed plays in Γ̂
are equivalent since F̂ has convex values).

It is thus sufficient to show that Γ̂ has a general uniform value given by v∗, and we can
mimic the end of the proof of Theorem 2.10. Lemma 6.2 applies word for word. Finally, one
can proceed almost exactly as in Propositions 6.3 and 6.4 to show that Γ̂, hence Ψ, has a general
uniform value given by v∗.

6.7 Proof of Theorem 5.9

Assume that Γ(π) = (K, I, J, C,D, q, g, π) is a repeated game with an informed controller, i.e.
that assumptions 5.6 and 5.7 are satisfied. The proof will consist of 5 steps. First we introduce
an auxiliary standard Markov Decision Process Ψ(π̂) on the state space X = ∆(K). Then we
show that for all evaluations θ, the repeated game Γ(π) and the MDP Ψ(π̂) have the same
θ-value. In step 3 we check that the MDP satisfies the assumption of Theorem 4.5 so it has a
general limit value and a general uniform value v∗. As a consequence the repeated game has
a general limit value v∗(π). Then we prove that player 1 can use an ε-optimal strategy of the
auxiliary MDP in order to guarantee v∗(π) − ε in the original game. Finally we prove that
Player 2 can play by blocks in the repeated game in order to guarantee v∗(π) + ε. We obtain
that v∗(π) can be guaranteed by both players in the repeated game, so it is the general uniform
value of Γ(π).

For every P ∈ ∆(K×C×D), we denote by P the marginal of P on K×D. We denote by ψD
the disintegration on ∆(K×D) with respect to D (recall Theorem 3.13): for all µ ∈ ∆(K×D),
ψD(µ) =

∑
d∈D µ(d)δµ(.|d).

Step 1: We put X = ∆(K) and A = ∆(I)K and for every p in X, a in A and b in ∆(J),
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we define:

r(p, a, b) =
∑

(k,i,j)∈K×I×J

pkak(i)b(j)g(k, i, j) ∈ [0, 1],

R(p, a) = inf
b∈∆(J)

r(p, a, b) = inf
j∈J

r(p, a, j),

q(p, a) =
∑

(k,i)∈K×I

pkak(i)q(k, i) ∈ ∆(K ×D),

Q(p, a) = ψD(q(p, a)) =
∑
d∈D

q(p, a)(d)δχ(p,a,d) ∈ ∆f (X).

Since q(p, a) is a probability distribution over ∆(K ×D) . For every d ∈ S, q(p, a)(d) denotes
the probability to observe d and χ(p, a, d) denotes the conditional probability on K knowing d,
i.e. the belief of the second player on the new state after observing the signal d and knowing
that player 1 has played a at p:

∀k′ ∈ K,χ(p, a, d)(k′) =
q(p, a)(k′, d)

q(p, a)(d)
=

∑
k p

kq(k, a(k))(k′, d)∑
k p

kq(k, a(k))(d)
.

We define the auxiliary MDP Ψ = (X,A,Q,R), and denote the θ-value in the MDP by v̂θ. The
MDP with initial state π̂ has strong links with the repeated game Γ(π).

Step 2: By proposition 4.23, part b) in Renault [32], we have for all evaluations θ with
finite support:

vθ(π) = v̂θ(π̂).

The proof relies on the same recursive formula satisfied by v and v̂, and the equality can be
easily extended to any evaluation θ.

∀θ ∈ ∆(IN∗),∀p ∈ X, vθ(p) = sup
a∈A

inf
b∈B

( θ1r(p, a, b) + (1− θ1)vθ+(Q(p, a)) ) .

where vθ+ is naturally linearly extended to ∆f (X). As a consequence if Ψ(π̂) has a general
limit value so does the repeated game Γ(π).

Step 3: Let us check that Ψ satisfies the assumption of Theorem 4.5. Consider p, p′ in X,
a in A, and α ≥ 0 and β ≥ 0. We have:

|αR(p, a)− βR(p′, a)| ≤ sup
b∈∆(J)

|αr(p, a, b)− βr(p′, a, b)|

≤ sup
b∈∆(J)

∣∣∣∣∣∑
k∈K

αpkg(k, ak, b)− βp′kg(k, ak, b)

∣∣∣∣∣
≤ sup

b∈∆(J)

∑
k∈K

∣∣αpk − βp′k∣∣ = ‖αp− βp′‖1.

Moreover, let ϕ : ∆(K) −→ IR be in D1.

|αϕ(Q(p, a))− βϕ(Q(p′, a))| =
∑
d∈D

(αq̄(p, a)(d)ϕ(χ(p, a, d))− βq̄(p′, a)(d)ϕ(χ(p′, a, d)))

≤
∑
d∈D

‖α q̄(p, a)(d) χ(p, a, d)− β q̄(p′, a)(d) χ(p′, a, d)‖1

≤
∑
d∈D

‖α (q̄(p, a)(k′, d))k′ − β (q̄(p′, a)(k′, d))k′‖1

≤
∑
d∈D

∑
k∈K

‖αpk (q̄(k, a)(k′, d))k′ − βp′k (q̄(k, a)(k′, d))k′‖1

≤
∑
d∈D

∑
k′∈K

∑
k∈K

q̄(k, a)(k′, d)
∣∣αpk − βp′k∣∣ = ‖αp− βp′‖1.
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So Ψ = (X,A,Q,R) has a general limit value and a general uniform value that we denote
by v∗. As a consequence, Γ(π) has a general limit value v∗(π).

Step 4: Given ε > 0, there exist α > 0 and a strategy σ in the MDP Ψ(π̂) such that
the θ-payoff in the MDP is large: γ̂θ(π̂, σ) ≥ v∗(π) − ε whenever TV (θ) ≤ α. Moreover if we
look at the end of the proof of Theorem 4.5 we can choose σ to be induced by a determin-
istic play in the Gambling gouse Γ̂ with state space Zc = ∆f (X) × [0, 1]. As a consequence
one can mimic σ to construct a strategy σ∗ in the original repeated game Γ(π) such that:
∀τ ∈ τ , γθ(π, σ∗, τ) ≥ v∗(π)− ε whenever TV (θ) ≤ α.

Step 5: Finally we show that player 2 can also guarantee the value v∗ in the repeated game
Γ. Note that in the repeated game he cannot compute the state variable in ∆(K) without
knowing the strategy of player 1. Nevertheless he has no influence on the transition function
so playing independently by large blocks will be sufficient for him in order to guarantee v∗(π).
We use the following characterization of the value proved in Renault [32]:

v∗(π) = inf
n

sup
m
vm,n(π).

where vm,n is the value of the game with payoff function the Cesàro mean of the stage payoffs
between stages m+1 and m+n. We proceed as in proposition 4.22 of Renault [32]. Fix n0 ≥ 1,
then we consider the strategy τ∗ which for each j ∈ IN , plays optimally in the game with
evaluation the Cesàro mean of the payoffs on the block of stages Bj = {n0(j − 1) + 1, ..., n0j}.
Since player 2 does not influence the state, τ∗ is well defined and guarantees supt≥0 vt,n0

(z) on

each block Bj .
Let θ be an evaluation and σ be a strategy of player 1. For each j ≥ 1, denote by θj the

minimum of θ on the block Bj . We have

γθ(π, σ, τ
∗) =

+∞∑
j=1

IEπ,σ,τ∗

 jn0∑
t=(j−1)n0+1

θt g(kt, at, bt)


≤

+∞∑
j=1

n0 θj sup
t≥0

vt,n0(π) + n0

+∞∑
t=1

|θt+1 − θt|

≤ sup
t≥0

vt,n0
(π) + n0TV (θ).

Given ε, there exists n0 such that supt≥0 vt,n0
(π) ≤ v∗(π) + ε. Fix α = ε

n0
and τ∗ defined as

before then for all θ such that TV (θ) ≤ α, we have

sup
σ∈Σ

γθ(π, σ, τ
∗) ≤ v∗(π) + 2ε,

and this concludes the proof of Theorem 5.9.
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