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Abstract

Often in applications such as rare events estimation or optimal control it is required that one calculates the

principal eigen-function and eigen-value of a non-negative integral kernel. Except in the finite-dimensional

case, usually neither the principal eigen-function nor the eigen-value can be computed exactly. In this

paper, we develop numerical approximations for these quantities. We show how a generic interacting particle

algorithm can be used to deliver numerical approximations of the eigen-quantities and the associated so-

called “twisted” Markov kernel as well as how these approximations are relevant to the aforementioned

applications. In addition, we study a collection of random integral operators underlying the algorithm,

address some of their mean and path-wise properties, and obtain Lr error estimates. Finally, numerical

examples are provided in the context of importance sampling for computing tail probabilities of Markov

chains and computing value functions for a class of stochastic optimal control problems.

Keywords: interacting particle methods, eigen-functions, rare events estimation, optimal control, diffusion

Monte Carlo

1 Introduction

On a state space X consider a bounded function G : X → R+, a Markov probability kernel M . The central

object of interest in this paper is the integral kernel Q given by

Q(x, dx′) := G(x)M(x, dx′).

Under some regularity assumptions, Q has an isolated, real, maximal eigen-value λ⋆, with which is associated

a positive (right) eigen-function h⋆,

Q(h⋆) = λ⋆h⋆, (1)

where for a function ϕ on X, we write Q(ϕ)(x) :=
´

Q(x, dx′)ϕ(x′). When X is finite set, λ⋆ is the Perron-

Frobenius eigen-value and h⋆ the right eigen-vector. In this paper we are interested in the case where X is a

general space, so not necessarily finite or countable. In general state spaces an extended Perron-Frobenius theory

applies, (see Nummelin [2004] for an account), but in most cases λ⋆, h⋆ cannot be determined analytically, so

numerical approximations are required and this is what this paper aims to address.

Treatment of the existence of λ⋆ and h⋆ outside of settings in which X is a finite set dates at least as far

as [Kolmogorov, 1938, Yaglom, 1947, Harris, 1963], where Q arose as a conditional moment measure associated

with a branching process; see Collet et al. [2012] for a modern perspective in the context of quasi-stationary

distributions and stochastic processes conditioned on long-term survival. In addition, Q and h⋆ have often ap-

peared as critical quantities in various more recent applications. In statistical mechanics Q corresponds to the

Hamiltonian and h⋆ could be viewed as the Schrödinger ground energy state for molecules, e.g. [Rousset, 2006,

∗School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW.
†Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ.

1

http://arxiv.org/abs/1202.6678v3


Makrini et al., 2007]. Similarly, in particle physics Q
(
1
)
(x) can be used to model the one-step probability of

survival of of a particle moving in an absorbing medium [Del Moral, 2013, Chapter 7], [Del Moral and Doucet,

2004]. In stochastic optimal control, Q arises naturally as a multiplicative Bellman or Dynamic Program-

ming operator in discrete time problems when a Kullback-Leibler divergence term is used in the stage cost

[Albertini and Runggaldier, 1988, Todorov, 2008, Dvijotham and Todorov, 2011] or in particular continuous

time models with affine dynamics in the control and additive costs that are quadratic to the control input;

see [Fleming, 1982, Sheu, 1984] or [Todorov, 2008, Theodorou et al., 2010, Kappen, 2005] for more details. In

these specific control problems, h⋆ can be viewed as a logarithmic transformation of the value function. Fi-

nally, h⋆ appears in the large deviations theory of Markov chains, see for example [Ney and Nummelin, 1987];

if (Xn;n ≥ 0) is a Markov chain with transition kernel M , initialized from X0 = x, U an appropriate function

and G(x) := eαU(x) for a particular value of α, then it is only and explicitly through h⋆(x) that the initial condi-

tion enters Bahadur-Rao-type asymptotics associated with partial sums
∑n−1

p=0 U(Xp) [Kontoyiannis and Meyn,

2003].

A related object of interest in many applications of interest is the “twisted” Markov kernel:

P⋆(x, dx
′) :=

Q(x, dx′)h⋆(x′)

h⋆(x)λ⋆
, (2)

which is also known as h-process kernel Collet et al. [2012] or Doob’s h-transform Rogers and Williams [2000,

Section III.29]. Particular instances of P⋆ define optimal changes of measure in methods for estimating rare

event probabilities, such as for tail probabilities of Markov chains [Bucklew et al., 1990, Dupuis and Wang,

2005]. In the discrete time control problems mentioned above P⋆ defines the optimally controlled Markov

transition kernel. In the context of particle motion in absorbing media P⋆ is the Markov transition kernel of

a particle conditional on long-term survival Del Moral [2013, Section 7.2 pages 223-226], and for, multi-type

branching processes, P⋆ defines a transformation from supercritical to critical [Athreya, 2000].

Of course the eigen-function equation (1) is just one side of the story. Accompanying h⋆ is a (left) eigen-

measure, which under certain conditions can be normalized to a probability measure η⋆,

η⋆Q = λ⋆η⋆, (3)

where for a measure η, we write ηQ(·) :=
´

η (dx)Q(x, ·). Del Moral and Miclo [2003] studied the non-linear

operator on measures

Φ : η 7→ ηQ

ηQ (1)
, (4)

(where 1 is the unit function on X). Under regularity assumptions, for sufficiently large n, the n-fold iterated

operator Φ(n) is contractive with respect to total-variation norm and η⋆ is its unique fixed point. Indeed

integrating both sides of (3) yields η⋆Q (1) = λ⋆ so that Φ(η⋆) = η⋆ is a re-writing of (3); see Del Moral and Miclo

[2003], Del Moral and Doucet [2004] for more details. In these papers the authors suggested and analyzed an

interacting particle algorithm whose evolution is defined through Φ and which can be used to approximate η⋆

and λ⋆. When M is reversible, h⋆ provides a density of η⋆. In this case the particle algorithm analyzed in

Del Moral and Miclo [2003] and Del Moral and Doucet [2004] has also appeared in the statistical mechanics

literature, Assaraf et al. [2000], Rousset [2006], Makrini et al. [2007], under the name Diffusion Monte Carlo

and has been used to provide estimates of h⋆ and λ⋆. Finally, we mention the Flemming-Viot particle system

in Burdzy et al. [2000], where the authors without using any reversibility assumptions use the continuous time

analog of Del Moral and Miclo [2003], Del Moral and Doucet [2004] to perform spectral analysis of the Laplacian

with Dirichlet boundary conditions.

The contributions of the paper are summarized as follows:

• We propose an interacting particle algorithm for approximating h⋆ and P⋆ numerically. Our algorithm

does not hinge upon reversibility assumptions on M and is similar in structure to one proposed by

Del Moral et al. [2011, 2012] for the rather different purpose of numerically solving optimal stopping
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problems. The novelty of our approach is that we obtain a particle approximation of P⋆ that is easy to

sample from, which is an important factor in applications.

• We apply our method to two problems. The first application is a Markov chain rare-event problem,

here our method allows us to unbiasedly estimate tail probabilities for additive functions of Markov

chains by importance sampling and P⋆ defines an optimal change of measure derived by Bucklew et al.

[1990], which we are able to approximate. The second application is an optimal control problem as

studied in [Albertini and Runggaldier, 1988, Todorov, 2008, Dvijotham and Todorov, 2011], in which the

cost function involves a Kullback-Leibler divergence term. Here P⋆ specifies the optimal dynamics for a

controlled Markov chain.

• We study the convergence properties of our algorithm, in particular deriving moment bounds for the errors

in approximation of h⋆ and P⋆, and we derive certain path-wise stability properties of random operators

obtained from our algorithm, demonstrating that they inherit the “tendency to rank-one” behavior of the

iterated operator λ−1
⋆ Q(n).

1.1 Organization of the paper

The remainder of this paper is structured as follows. Section 2 provides notation and sets out the eigen-problem.

Section 3 presents the motivating applications. In Section 4 we present the particle algorithm and state the our

results regarding various properties of the particle approximations. More details and precise statements for these

are found in Section 4.2. Section 5 contains numerical results for the application. Some concluding remarks

and possible extensions are presented in Section 6. Finally, various proofs are contained in the appendix.

2 The eigen-problem

2.1 Notation and assumptions

Let X be a state space endowed with a countably generated σ-algebra B and let L be the Banach space of

real-valued, B-measurable, bounded functions on X endowed with the infinity norm ‖f‖ := supx∈X
|f(x)|. For

a possibly signed measure η, a function ϕ, and a possibly signed integral kernelK we write µ(ϕ) :=
´

ϕ(x)µ(dx),

K(ϕ)(x) :=
´

K(x, dy)ϕ(dy), and µK(·) :=
´

µ(dx)K(x, ·), and the rank-one kernel (ϕ⊗η)(x, dx′) := ϕ(x)η(dx′).

The collection of probability measures on (X,B) is denoted by P and the total variation norm for possibly

signed measures is denoted ‖η‖ := supϕ:|ϕ|≤1 |η(ϕ)|. The operator norm corresponding to L is

9K9 := sup
ϕ:|ϕ|≤1

‖K(ϕ)‖ .

The n-fold iterate of K is denoted by K(n) and for (Kn;n ≥ 1) a collection of integral kernels and any 0 ≤ p ≤ n,

we write

Kp,n := Id, p = n, Kp,n := Kp+1 · · ·Kn, n > p. (5)

Throughout the paper, we denote by G : X → (0,∞) is a B-measurable, bounded function and let M :

X× B → [0, 1] be a Markov kernel, then define the integral kernel Q(x, dy) := G(x)M(x, dy). We have

9Q9 = sup
x∈X

Q(1)(x) = sup
x∈X

G(x),

and 9Q9 <∞ due to G being bounded. The spectral radius of Q as a bounded linear operator on L is

ξ := lim
n→∞

9Q(n)91/n

where the limit always exists, since the operator norm is sub-multiplicative.
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For two probability measures µ, ν ∈ P we will denote the Kullback-Leibler divergence or relative entropy as

KL(µ‖ ν) :=





´

log
(

dµ
dν

)
dµ if µ≪ ν,

+∞ otherwise.

For any sequence (an;n ≥ 1) and ℓ > p, we take
∏p
n=ℓ an = 1 by convention. The unit function on X or

Cartesian products thereof is denoted by 1. We will write the indicator function I[·] or sometimes IA for a set

A ⊂ X. Unless stated otherwise, we will assume throughout:

(H) there exists a probability measure ν such that for all x, Q(x, ·) is equivalent to ν. There exist constants 0 <

ǫ−, ǫ+ < ∞ such that the corresponding Radon-Nikodym derivative, denoted by q(x, x′) :=
dQ(x, ·)
dν

(x′)

satisfies

ǫ− ≤ q(x, x′) ≤ ǫ+, ∀x, x′ ∈ X.

In some places it will be convenient to use the implication of (H)

ǫ−ν(·) ≤ Q(x, ·) ≤ ǫ+ν(·), ∀x ∈ X.

The uniform recurrence of Q in Assumption (H) is a quite strong assumption, but has been used extensively

in both the particle filtering literature (Del Moral [2013, 2004], Douc et al. [2011]) and the rare events litera-

ture related to tail probabilities of interest here ([Bucklew et al., 1990, Dupuis and Wang, 2005, Chan and Lai,

2011]). It rules out kernels of the form Q(x, ·) = pδx(·)+ . . ., and rarely holds when X is non-compact, but allows

a relatively straightforward treatment of the eigen-problem and the particle algorithm. The eigen-quantities of

interest exist under much weaker assumptions, and a result similar to Theorem 1 presented later in Section (2.2)

can be obtained for non-compact X in a weighted ∞-norm setting under quite flexible Lyapunov drift conditions

[Kontoyiannis and Meyn, 2003, Whiteley et al., 2012]. The details, however, would necessitate a much more

complicated presentation, and obtaining error bounds of the sort we do for the particle approximations, under

assumptions much weaker than (H) seems very challenging.

2.2 Existence and other properties of eigen-quantities

From the minorization part of (H)

νQ(n+m−1)(1)ǫ− = νQ(n)Q(m−1)(1)ǫ− ≥ νQ(n−1)(1)ǫ−νQ(m−1)(1)ǫ−,

so by Fekete’s lemma, the following limit exists,

Λ⋆ := lim
n→∞

1

n
log νQ(n−1)(1)ǫ− = sup

n≥1

1

n
log νQ(n−1)(1)ǫ−, (6)

Define

λ⋆ := exp(Λ⋆), (7)

The proof of Theorem 1 is given in the Appendix, and it involves gathering together various arguments from

Nummelin [2004], which we recount there for the reader’s convenience.

Theorem 1. The spectral radius of Q, limn→∞ 9Q(n)91/n, coincides with λ⋆. There exists a unique probability

measure η⋆ and ν-essentially unique positive function h⋆ satisfying

η⋆Q = λ⋆η⋆, Q(h⋆) = λ⋆h⋆, η⋆(h⋆) = 1. (8)

Furthermore,
ǫ−

ǫ+
≤ h⋆(x) ≤

ǫ+

ǫ−
, ∀x ∈ X, (9)
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P⋆ has a unique invariant probability distribution, denoted by π⋆, such that dπ⋆/dη⋆ = h⋆ and for all n ≥ 1,

9 P
(n)
⋆ − 1⊗ π⋆9 ≤ 2ρn (10)

9λ−n⋆ Q(n) − h⋆ ⊗ η⋆9 ≤ 2ρn
(
ǫ+

ǫ−

)2

, (11)

where ρ := 1− (ǫ−/ǫ+).

Remark 1. The bound in (11) can be understood as describing “tendency to rank-one” of the iterated kernel

λ−n⋆ Q(n), this kind of result is sometimes referred to as a Multiplicative Ergodic Theorem (MET) [Kontoyiannis and Meyn,

2003].

2.3 Deterministic approximations

We proceed by defining the deterministic forward-backward recursions which will be used to approximate η⋆,

λ⋆, h⋆ and P⋆. These will appear throughout the remainder of the paper.

Forward recursion for measures ηn

Define the probability measures (ηn;n ≥ 0) and numbers (λn;n ≥ 0) by

η0 := µ, ηn :=
µQ(n)

µQ(n)(1)
, n ≥ 1, λn := ηn(G), n ≥ 0. (12)

Immediately from (12) we have the product formula:

ηpQ
(n−p)(1) =

n−1∏

ℓ=p

ηpQ
(ℓ−p+1)(1)

ηpQ(ℓ−p)(1)
=

n−1∏

ℓ=p

ηℓ(G) =

n−1∏

ℓ=p

λℓ, p ≤ n, (13)

and we note that

ηn = Φ(ηn−1), n ≥ 1, (14)

with Φ defined earlier in (4). Straightforward manipulations show that under (H), for any n ≥ 1, ηn is equivalent

to ν.

Backward recursion for functions hp,n

Define the sequence of non-negative functions (hp,n; 0 ≤ p ≤ n) as follows:

hn,n(x) := 1, hp,n(x) :=
Q(n−p)(1)(x)

ηpQ(n−p)(1)
, 0 ≤ p < n, x ∈ X. (15)

Remark 2. It should be noted that (ηn), (λn) and (hp,n, P(p,n)) depend implicitly on the initial measure µ.

Properties

The following lemma shows that the quantities (ηn), (hp,n), (λn) satisfy recursive relationships similar to the

eigen-measure/function/value equations in (8).

Lemma 1. The probability measures (ηn), functions (hp,n) and numbers (λn) satisfy

ηpQ = λpηp+1, Q(hp+1,n) = λphp,n, ηp(hp,n) = 1, 0 ≤ p ≤ n. (16)

Proof. The measure equation is just a rearrangement of (14). The function equation is due to the definition of

5



(hp,n) and the product formula (13), as

hp,n =
Q(n−p)(1)

ηpQ(n−p)(1)
=
ηp+1Q

(n−p−1)(1)

ηpQ(n−p)(1)
Q(hp+1,n) =

1

λp
Q(hp+1,n).

The final equality in (16) holds due to the definition (15).

Lets define now the Markov probability kernel

P(p,n)(x, dx
′) :=

Q(x, dx′)hp,n(x′)

λp−1hp−1,n(x)
, (17)

where Lemma 1 ensures it is indeed Markov. We proceed with a proposition that can be used to justify the

choice of (ηn), (hp,n), (P(p,n)) as intermediate approximations of η⋆, h⋆, P⋆ respectively. The proof is in the

Appendix.

Proposition 1. For any 0 ≤ p ≤ n,

‖ηn − η⋆‖ ≤ ρnCη, (18)

‖hp,n − h⋆‖ ≤ ρ(n−p)∧pCh, (19)

9P(p,n) − P⋆9 ≤ ρ(n−p)∧pCP , (20)

with

ρ := 1−
(
ǫ−/ǫ+

)

Cη := 4
(
ǫ+/ǫ−

)3

Ch := 2
(
ǫ+/ǫ−

)2 [
1 +

(
ǫ+/ǫ−

)
+ 2

(
ǫ+/ǫ−

)3]

CP := 2Ch
(
ǫ+/ǫ−

)2
+ Cηρ

−1
(
ǫ+/ǫ−

)

having no dependence on the initial measure µ.

Remark 3. Exponential convergence of the general form (18) has already been established in, for example,

Del Moral and Doucet [2004] using Dobrushin arguments for a collection of inhomogeneous Markov kernels, but

the rate obtained there is ρ̃ := 1− (ǫ−/ǫ+)
2

as opposed to ρ. The proof of Proposition 1 uses the MET bound of

equation (11) and, as may be seen in the proof of Theorem 1, the rate ρ is inherited from the uniform geometric

ergodicity of P⋆ as per (10). This is the source of the improved rate.

3 Applications

We will motivate our interest in the objects of Theorem 1 through two applications. The aim here is to relate

various objects from these applications with the eigen-quantities, especially P⋆, which will later show how

to approximate using a particle algorithm. Each subsection contains a different application and can be read

separately.

3.1 Importance sampling for tail probabilities

For a measurable function U : X → [−1, 1] which is not constant ν − a.e., some δ ∈ (0, 1) and m ≥ 1, our

objective is to estimate the deviation probability

πm(δ) := Px

(
m∑

p=1

U(Xp) > mδ

)
, (21)
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where Px denotes the law of (Xn;n ≥ 0) as a Markov chain with X0 = x and Xn ∼M(Xn−1, ·). There is a quite

extensive literature on methods for estimating probabilities of the form (21) (see for example [Bucklew et al.,

1990, Dupuis and Wang, 2005],) building upon large deviation theory for functionals of Markov chains, with the

results in [Iscoe et al., 1985, Ney and Nummelin, 1987] being particularly relevant in the present context. We

will explore an importance sampling scenario in the setting of Bucklew et al. [1990]. The choice of this setup

and specific form of πm (δ) provides some insight into the applicability of the proposed algorithm, but many of

the details could be generalized.

For α ∈ R, introduce

Gα(x) := eαU(x), Qα(x, dx
′) := Gα(x)M(x, dx′).

Note that Q
(n)
α (x,X) = Ex

[
exp

(∑n−1
p=0 αU(Xp)

)]
.

To simplify the discussion, assume that Qα satisfies (H) for each α ∈ R, which implies M is uniformly

recurrent; see Appendix A.1 for a definition of recurrence and related details. We denote by hα⋆ , Λ⋆(α), η
α
⋆ , P

α
⋆

the eigen-quantities and twisted kernel corresponding to Qα. It is then a consequence of Theorem 1 that

Λ⋆(α) = lim
n→∞

1

n
logEx

[
exp

(
α

n−1∑

p=0

U(Xp)

)]
.

The convex dual of Λ⋆(α) is

I(t) := sup
α∈R

[tα− Λ⋆(α)] , t ∈ R. (22)

Bucklew et al. [1990] proposed to estimate πm(δ) by importance sampling, using some Markov kernel M

such that M(x, ·) ≪M(x, ·). For L ≥ 1, we consider the estimator of πm(δ):

π̂m (δ, L) :=
1

L

L∑

i=1

I

[
m∑

p=1

U(X i
p) > mδ

]
dPx

dPx
(X i

0, ..., X
i
m), (23)

where
{(
X i

0, X
i
1, ..., X

i
m

)
; i = 1, ..., L

}
is composed by L independent Markov chains, each with transition kernel

M and law denoted by Px. The corresponding expectation will be denoted below by Ex. Note that the

dependence of π̂m (δ, L) on M is suppressed from the notation. Also following [Bucklew et al., 1990, Definition

2.] we will consider a class of candidates for M . Let C be the collection of Markov transitions M for each of

which there exists 0 < ǭ−, ǭ+ <∞ and a probability measure ν̄ such that

(C) ν̄ (·) ǭ− ≤M(x, ·) ≤ ǭ+ν̄ (·) , ∀x, ν ≪ ν̄,

ˆ

(
dν

dν̄
(x)

)2

ν̄ (dx) <∞,

where ν is as in (H).

The following result describes the asymptotic m→ ∞ behavior of the probability of interest and the second

moment of the estimator when L = 1.

Theorem 2. [Bucklew et al., 1990]

1. I(t) is a non-negative, strictly convex function with I(t) = 0 if and only if t = Λ′
⋆(0).

2. For any δ ∈ (0, 1), the following large deviation principle holds

lim
m→∞

1

m
log πm (δ) = − inf

t∈[δ,∞)
I(t).

3. For any δ ∈ (0, 1) and M in the class C, the importance sampling estimator satisfies

lim
m→∞

1

m
logEx

[
π̂m (δ, 1)

2
]
≥ −2 inf

t∈[δ,∞)
I(t). (24)
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4. For any δ ∈ (0, 1) and α the unique solution of Λ′
⋆ (α) = δ, the twisted kernel Pα⋆ is the unique member of

the class C for which equality holds in (24), and as such is called asymptotically efficient.

Proof. We just point to the appropriate references. Parts 1.-3. are due to Bucklew et al. [1990, Theorem 1 and

Corollary 1], in turn derived from various results of [Iscoe et al., 1985]. Equation (9) in [Bucklew et al., 1990] is

satisfied trivially in the present scenario since I(t) is continuous. Part 4. is an application of Bucklew et al. [1990,

Theorem 3]. We note that the authors there consider the kernelM (x, dy)Gα (y), as opposed to Gα (x)M (x, dy),

this difference is of no consequence due to the asymptotic (m→ ∞) nature of the results and the fact that the

two corresponding twisted kernels are essentially identical.

The following elementary corollary summarizes an important practical implication of this theorem.

Corollary 1. Assume inft∈[δ,∞) I(t) 6= 0. Unless M is chosen to be Pα⋆ with α the solution to Λ′
⋆ (α) = δ, the

number of samples L must increase at a strictly positive exponential rate in m in order to prevent growth of the

relative variance:

Ex

[(
π̂m (δ, L)

πm(δ)
− 1

)2
]
=

1

L



Ex

[
π̂m (δ, 1)

2
]

πm(δ)2
− 1


 , (25)

as m→ ∞. Note that Ex[π̂m (δ, L)] = πm(δ), so (25) is indeed the relative variance.

3.2 Optimal control with Kullback-Leibler divergence costs

We consider a particular class of fully observable stochastic control problems in discrete time. Let (Xn;n ≥ 0)

be a controlled Markov chain initialized from X0 = x and Xn ∼ Mfn−1(Xn−1, ·). Here for each n ≥ 0

fn ∈ H :=
{
h : X → R

∗
+; 0 < M(h)(x) <∞; ∀x

}
, where the set H is called the set of admissible control

functions. We refer to the sequence of control functions, f = (f0, f1, . . .), as the policy. We will denote the

Kullback-Leibler divergence between the controlled and control-free Markov kernels as:

KL
(
Mfp

∥∥M
)
(x) :=

ˆ

Mfp(x, dy) log
dMfp(x, ·)
dM(x, ·) (y).

Let U,Ω ∈ L. We are interested to compute the optimal policies for the following control problems:

Finite Horizon Cost V0(x) = inf
f∈Hn

E
f
x,0

[
n−1∑

p=0

(
U(Xp) +KL

(
M̌fp

∥∥M
)
(Xp)

)
+Ω(Xn)

]
, (26)

Infinite Horizon Average Cost V⋆(x) = inf
f∈HN

lim sup
n→∞

1

n
E
f
x,0

[
n∑

p=0

(
U(Xp) +KL

(
Mfp

∥∥M
)
(Xp)

)
]
, (27)

where E
f
x,p denotes the expectation over the path of the controlled chain starting at Xp = x, where p < n and

n is a deterministic finite horizon time. The interpretation of (26)-(27) is that M specifies the desired “natural”

or control free dynamics of the state of some stochastic system. The controlled state evolves according to the

dynamics specified by Mfp and KL
(
Mfp

∥∥M
)

penalizes the discrepancy between Mfp(x, ·) and M(x, ·). The

term U(x) expresses an arbitrary state dependent stage cost and Ω is the terminal stage cost for time n. It is

also possible to write discounted cost versions of (27) or non-stationary cost versions of (26), but these possible

extensions are omitted.

This problem was first posed for the finite horizon case in [Albertini and Runggaldier, 1988]. The authors

in [Albertini and Runggaldier, 1988] used unpublished work of Sheu to formulate a duality between non-linear

filtering and optimal control similar to earlier work for continuous time models found in [Fleming and Mitter,

1982, Fleming, 1982, Sheu, 1984]. As a result, one can perform computations for the dual filtering and smoothing

problem and then recover the optimal policy and value functions. Although the stage costs in (26)-(27) might

not seem very intuitive they do include Gaussian problems with quadratic costs (see Example 1) or popular
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containment problems (see Section 5). More recently, there has also been a renewed interest in this type

of problems from the machine learning community [Todorov, 2008, Theodorou et al., 2010, Kappen, 2005,

Dvijotham and Todorov, 2011, Bierkens and Kappen, 2011]. However, outside of situations like Example 1,

analytical solutions are rarely available and so numerical approximations are required.

Example 1. Consider the scalar controlled Markov model, Xp = a(Xp−1) + up−1 +Wp, with a(·) is bounded

continuous non-linear function, Wp is an independent zero mean Gaussian random variable with variance σ2

and up is a standard control input. For the controlled kernel we write

Mfp−1(xp−1, dxp) =
1√
2πσ2

exp

(
− 1

2σ2
(xp − a(xp−1)− up−1)

2

)
dxp.

In what follows, it will be convenient to think of fp as coming from Mfp(x, dy) =
M(x,dy)fp(y)
M(fp)(x)

, as it will turn

out that the dynamic programming solution for this problem takes this form. So in this example we will set

fp(y) = exp
(
yup
σ2 − u2

p

2σ2

)
. The control-free model is Xp = a(Xp−1)+Wp, so for the uncontrolled kernel we have

M = M0. For the stage cost, let U(x) = 1
2σ2 x

2 and we have KL
(
Mfp

∥∥M
)
=

u2
p

2σ2 , so we recover the usual

quadratic cost control problem.

We now present a useful lemma that will be used when manipulating the dynamic programming recursions.

Lemma 2. (Gibbs variational inequality) For every ν ∈ P, ψ > 0 such that ν
(
e−ψ

)
<∞, we have log ν

(
e−ψ

)
=

− infµ∈C(ν) {µ(ψ) +KL (µ‖ ν)}, where C(ν) = {µ ∈ P : µ≪ ν}. Moreover the infimum is attained for µ∗ such

that dµ∗

dv = e−ψ

ν(e−ψ)
.

The proof is standard and omitted; see for instance [Dupuis and Ellis, 2011, Proposition 1.4.2] or [Dai Pra et al.,

1996]. We proceed by looking at the finite and infinite horizon case separately.

The finite horizon case

For the problem in (26) define the value functions or optimal cost to go at every time time 0 ≤ p < n:

Vp(x) := inf
(fl∈H; p<l<n)



U(x) +KL

(
Mfp

∥∥M
)
(x) + E

f
x,p



n−1∑

l=p+1

(
U(Xl) +KL

(
Mfl

∥∥M
)
(Xl)

)
+Ω(Xn)


−

n∑

l=p

Λl



 ,

(28)

with Vn = Ω. Let
(
f∗
p ; 0 ≤ p < n

)
denote the corresponding minimizing control functions in (28). Compared to

(26),
∑n
l=p Λl is a scaling constant that does not affect the solution. The significance of this offset will become

clear when we choose λp = eΛp . We proceed with a dynamic programming result:

Lemma 3. The value function for problem (28) at each time p = 0, . . . , n− 1 is given by

Vp(x) = U(x)− Λp + inf
fp∈H

{
KL

(
Mfp

∥∥M
)
(x) +Mfp (Vp+1) (x)

}
(29)

with Vn = Ω. Let Q = e−UM , λp = e−Λp . In addition, for each p < n we have Vp+1 = − log hp, where hp is

given by the following backward recursion:

Q(hp+1) = λphp. (30)

Furthermore, the optimal control is given by f∗
p = hp and the optimally controlled Markov transition kernel by

Mf⋆p (x, dy) :=
M(x, dy)hp(y)

M(hp)(x)
.

Proof. Equation (29) states the standard dynamic programming recursion for finite horizon problems, e.g.

[Hernández-Lerma and Lasserre, 1996, Theorem 3.2.1 ]. Using (29) and Lemma 2 we obtain Vp = U − Λp −
logM (exp (−Vp+1)) that can be rewritten as e−Vp−Λp = e−UM(e−Vp+1). By setting λp = e−Λp , hp = e−Vp+1

9



we get (30) and the second part of Lemma 2 can be invoked to show that the expression for Mf⋆p follows by

direct substitution with the optimal control being f∗
p = exp(−Vp+1) = hp.

Note that the optimal controls appear as a multiplicative “twisting” function of the uncontrolled Markov

transition kernel M . In addition, it is clear from this result is that the non-negative operator Q is equivalent

to a multiplicative dynamic programming operator. Although the scaling provided by Λp can be arbitrary,

the particular choice is convenient for using simulated samples from ηp to approximate Vp, hp; details will be

presented in Section 4.

Remark 4. Lemma 3 provides an interpretation of hp as a log transform of a value function similar to [Albertini and Runggaldier,

1988]. The similarity between hp and Mf∗

p with hp,n and P(p,n) is clear. Despite this, we have purposely used

a different notation for hp and hp,n, due to initializing with hn = exp (−Ω).

The infinite horizon case and interpretation of h⋆ and P⋆

We will look now at the infinite horizon average cost problem of (27). The objective is: (a) to compute a

solution (V⋆, ς⋆) of the Bellman average-cost optimality equation:

V⋆(x) + ς⋆ = inf
h∈H

[
U(x) +KL

(
Mh

∥∥M
)
(x) +Mh (V⋆) (x)

]
, (31)

where V⋆ is the optimal value function and ς⋆ is the infinite horizon optimal average cost, and (b) to com-

pute h⋆, where h⋆ is the minimizer for the infimum in (31). Note that for this type of problem the optimal

policy can be shown to be stationary, i.e. the optimal control functions is the same for every time p; see

[Hernández-Lerma and Lasserre, 1996, Chapter 5] for background and details. We relate now (31) with the

eigen-problem.

Proposition 2. The average-cost Bellman equation (31) is satisfied with V⋆(x) = − logh⋆(x), ς⋆ = − logλ⋆,

where λ⋆, h⋆ are the principal eigen-pair corresponding to Q := e−UM . Furthermore the infimum in (31) is

achieved by taking h = h⋆ and the corresponding optimally controlled dynamics evolve according to P⋆.

Proof. Applying Lemma 2 and taking log’s shows that (V⋆, ς⋆) is a solution of the Bellman equation (31) if and

only if

V⋆(x) + ς⋆ = U(x)− logM
(
e−V⋆

)
(x), (32)

which is a re-writing of Q(h⋆) = λ⋆h⋆, if ς⋆ = − logλ⋆ and V⋆ = − logh⋆. For establishing that P⋆ gives indeed

the optimally controlled dynamics we use again the second part of Lemma 2 and observe that the minimizer in

(31) is attained for h = h⋆.

Remark 5. In view of Proposition 1, one may view the backward recursion hp,n (x) =
Q(hp+1,n)

λp
as a value

iteration procedure, which aims to approximate V⋆ as − log hp,n with n being a finite horizon truncation used

for numerical purposes.

4 Particle approximations for principal eigen-functions and related

quantities

We propose a method to approximate the various eigen-quantities Algorithm 1. The algorithm consists of

a forward-backward recursion approximating the deterministic quantities presented in Section 2.3. A more

precise probabilistic specification of the algorithm is given in Section 4.2 and in Sections 4.3, 4.4 we present our

convergence results. The proofs not shown in Section 4 can be found in the Appendix.
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4.1 The particle algorithm

Algorithm 1 has parameters: N , the particle population size; n, the (half) time-horizon; and µ, an initial

probability distribution. As we shall see, the values of N and n influence the accuracy of the approximation

and the choice of µ turns out to be somewhat unimportant.

Algorithm 1 Particle method for computing principal eigen-quantities

Forward recursion
Initialization:

Sample (ζi0)
N
i=1

iid∼ µ,
For p = 1, ..., 2n, :

Sample (ζip)
N
i=1

∣∣ (ζip−1)
N
i=1

iid∼
∑N
j=1G(ζ

j
p−1)M(ζjp−1, ·)∑N

j=1G(ζ
j
p−1)

.

Backward recursion
Initialization:

Set h2n,2n(x) = 1, x ∈ X

For p = 2n− 1, ..., n, :

Set hNp,2n(x) =

N∑

j=1

q(x, ζjp+1)∑N
i=1 q(ζ

i
p, ζ

j
p+1)

hNp+1,2n(ζ
j
p+1). x ∈ X

We will take the random function hNn,2n as an approximation of h⋆ and the random kernel

PN(n,2n)(x, dx
′) :=

1

hNn−1,2n(x)

N∑

j=1

q(x, ζjn)∑N
i=1 q(ζ

i
n−1, ζ

j
n)
hNn,2n(ζ

j
n)δζjn (dx

′) . (33)

as an approximation of P⋆. Note that, if so desired, each hNp,2n appearing in the algorithm can be evaluated at

any point x ∈ X, but each step of the backward recursion actually requires evaluation of hNp+1,2n only on the

random grid
{
ζip+1; i = 1, ..., N

}
. Further note the subscripting in PN(n,2n) is not the semigroup index notation

of (5), and pertains only to the particular kernel in (33). Occurrences will be kept to an absolute minimum.

4.2 Properties of the particle approximations

We now provide a probabilistic specification of the quantities in Algorithm 1 and present some of their key

properties, which will be used to obtain Lr bounds on the errors hNn,2n(x)− h⋆(x) and PN(n,2n)(x,A)− P⋆(x,A)

(in terms of N and n) in Section 4.3 and an unbiasedness result when
(
PN(p,2n); p > n

)
is used as an importance

sampling proposal in Section 4.4.

Preliminaries

For N ≥ 1, the particle system in the forward part of the algorithm can be constructed as a canonical Markov

chain with sample space ΩN :=
(
X
N
)N

, endowed with the corresponding product σ-algebra, derived from the

underlying σ-algebra B. The state of the chain at time n ≥ 0 is the n-th coordinate projection of ω ∈ ΩN denoted

by ζn(ω) =
(
ζ1n(ω), . . . , ζ

N
n (ω)

)
, taking values in X

N . The natural filtration is denoted by Fn = σ(ζ0, · · · , ζn),
where the dependence of each ζn and Fn on N is suppressed from the notation.

We introduce collections of random probability measures (ηNn )n≥0:

ηNn :=
1

N

N∑

i=1

δζin , n ≥ 0.

The law of the N -particle system is denoted by PN , and in integral form, the initial distribution and transition

11



probabilities of the process (ζn)n≥0 are given by

PN (ζ0 ∈ dx0) =

N∏

i=1

µ(dxi0)

PN(ζn ∈ dxn| ζn−1) =

N∏

i=1

ηNn−1Q(dxin)

ηNn−1Q(1)
=

N∏

i=1

Φ(ηNn−1)(dx
i
n), n ≥ 1, (34)

where dxn is an infinitesimal neighborhood of xn =
(
x1n, . . . x

N
n

)
∈ X

N . The expectation corresponding to PN is

denoted EN .

The idea for the eigen-function approximation in the algorithm is to consider the identity

hp−1,n(x) =
1

λp−1

ˆ

Q(x, dy)hp,n(y)

=
1

λp−1

ˆ

dQ(x, ·)
dηp

(y)hp,n(y)ηp(dy)

=
1

λp−1

ˆ

dQ(x, ·)
dΦ(ηp−1)

(y)hp,n(y)ηp(dy)

=

ˆ

dQ(x, ·)
d(ηp−1Q)

(y)hp,n(y)ηp(dy), (35)

where the first equality is due to the definition of the functions (hp,n), the second equality is just a change of

measure in the integral, and the third and fourth equalities are due to ηp(·) = Φ(ηp−1)(·) =
ηp−1Q(·)
ηp−1(G)

and the

definition λp−1 = ηp−1(G). For any x and p, the derivative dQ(x,·)
dηp

is well defined under (H) because Q(x, ·) is

then equivalent to ν for any x, and then also equivalent to ηp.

Loosely speaking, the backward recursion of the algorithm arises from taking the random measures (ηNp ) in

place of (ηp) in (35). To be more precise, let
(
QNn
)

be the collection of random integral kernels defined by

QNn (x, dx′) :=
dQ(x, ·)

dΦ
(
ηNn−1

) (x′)ηNn (dx′), n ≥ 1. (36)

It is convenient to recall the semigroup notation in this context:

QNn,n := Id, QNp,n := QNp+1 · · ·QNn , p < n.

Now define

λNn := ηNn (G), n ≥ 0, (37)

and mimicking (15) let
(
hNp,n

)
be the collection of random functions defined by

hNn,n(x) := 1, hNp,n(x) :=
QNp,n(1)(x)

ηNp Q
N
p,n(1)

, 0 ≤ p < n. (38)

Also, generalizing from the definition of PN(p,2n) in (33), define

PN(p,n)(x, dx
′) :=

QNp (x, dx′)hNp,n(x
′)

λNp−1h
N
p−1,n(x)

.

The following lemma establishes relationships between these objects which may be considered stochastic coun-

terparts of the relations of Lemma 1.

Lemma 4. The random measures
(
ηNn
)
, functions

(
hNp,n

)
, and kernels

(
QNn
)

satisfy

ηNp Q
N
p+1 = λNp η

N
p+1, QNp+1(h

N
p+1,n) = λNp h

N
p,n, ηNp (hNp,n) = 1, 0 ≤ p < n. (39)
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ηNp Q
N
p,n(1) =

n−1∏

ℓ=p

λNℓ , 0 ≤ p < n. (40)

Proof. For the measure equation in (39) and the definitions (36)-(37),

ηNp Q
N
p+1(dx

′) = ηNp+1(dx
′)

ˆ

ηNp (dx)
dQ(x·)
dΦ
(
ηNp
) (x′)

= λNp η
N
p+1(dx

′)

ˆ

ηNp (dx)
q(x, x′)

´

ηNp (dy)q(y, x′)

= λNp η
N
p+1(dx

′). (41)

By iterated application of (41) we have

ηNp Q
N
p,n(1) = λNp η

N
p+1Q

N
p+1,n(1) =



n−1∏

ℓ=p

λNℓ


 ηNn Q

N
n,n(1) =

n−1∏

ℓ=p

λNℓ ,

where the final equality is due to the convention QNn,n := Id. This establishes (40). For the function equation

in (39), we have

QNp+1

(
hNp+1,n

)
=

QNp,n(1)

ηNp+1Q
N
p+1,n(1)

= λNp h
N
p,n,

where the final inequality holds due to (40). The right-most equality in (39) holds directly from the definition

of hNp,n.

Remark 6. The recursion in the “backward” part of the algorithm is a re-arrangement of the middle equation

in (39).

Lack of bias

Next we will see how iterates of the random operators
(
QNp
)

can be used to obtain unbiased estimates of iterates

of the underlying operator Q.

Proposition 3. Fix N ≥ 1 arbitrarily. Let µ′ ∈ P and let µN be an F0-measurable random measure satisfying

EN

[
µN (A)

]
= µ′ (A) for all A ∈ B. Then for any ϕ ∈ L and n ≥ 0

EN

[
µNQN0,n (ϕ)

]
= µ′Q(n) (ϕ) .

Remark 7. We highlight two interesting instances of initial measures in Proposition 3. The first is the degenerate

case in which µN = µ′, for some µ′ ∈ P other than µ: in this case we note that there is no bias (in the sense

that the Proposition 3 holds) when the functional µNQN0,n (ϕ) involves a deterministic initial measure, other

than that used to initialize the particle system. The second case is that in which µ′ = µ and µN = ηN0 . In this
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case we have

ηN0 Q
N
0,n (ϕ) = ηN0 (G)

ˆ ˆ

ηN0 (dx0)
dQ (x0, ·)
dηN0 Q

(x1)Q
N
1,n (ϕ) (x1) η

N
1 (dx1)

= ηN0 (G)

ˆ ˆ

ηN0 (dx0)
q (x0, x1)

1

N

N∑

i=1

q
(
ζi0, x1

)
QN1,n (ϕ) (x1) η

N
1 (dx1)

= ηN0 (G)

ˆ

QN1,n (ϕ) (x1) η
N
1 (dx1)

=

n−1∏

p=0

ηNp (G)ηNn (ϕ) ,

where the final equality can be verified by a simple induction. So in this case, we recover from Proposition 3

the equality EN

[∏n−1
p=0 η

N
p (G)ηNn (ϕ)

]
= µQ(n) (ϕ), which is well known for the “forward” part of the particle

algorithm [Del Moral, 2004, Chapter 9].

Remark 8. A number of generalizations of Proposition 3 may be obtained quite directly. Consider some integral

kernel Q̃ different from Q and which, for simplicity, satisfies Q̃(x, ·) ≪ Q(x, ·) for all x. Then defining

Q̃Nn (x, dx′) :=
dQ̃(x, ·)
dΦ
(
ηNn−1

) (x′)ηNn (dx′), n ≥ 1,

one can establish by similar arguments to those in the proof of Proposition 3 that

EN

[
µN Q̃N0,n (ϕ)

]
= µ′Q̃(n) (ϕ) , n ≥ 0,

i.e. that the particle system defining
(
ηNn
)

and whose law involves Q can be used to obtain unbiased estimates

of product formulae involving Q̃. In turn, this might be of interest both in the present context and in other

applications of particle systems, when the aim is to approximate ratios of the form

µ′Q̃(n) (1)

µQ(n) (1)
,

although further details are beyond the scope of the present work. The time-homogeneity can also easily be

relaxed, of course under appropriate domination assumptions.

Path-wise stability of the random operators

Next we establish a sample path result for the random (and generally path-wise inhomogeneous) semigroups

QN0,n and
µ′QN0,n
µ′QN0,n(1)

, where we show exponential stability uniformly with respect to N .

Theorem 3. The following path-wise, uniform bounds hold for the random operators
(
QNn
)

and the corre-

sponding non-linear semigroup. For any n ≥ 1 and ϕ ∈ L,

sup
µ′∈P

sup
N≥1

sup
ω∈ΩN

∣∣∣∣∣∣

(
n−1∏

p=0

λNp

)−1

µ′QN0,n (ϕ)− µ′ (hN0.n
)
ηNn (ϕ)

∣∣∣∣∣∣
(ω) ≤ 2 ‖ϕ‖ ρ̃n

(
ǫ+

ǫ−

)
, (42)

sup
µ′∈P

sup
N≥1

sup
ω∈ΩN

∣∣∣∣∣
µ′QN0,n (ϕ)

µ′QN0,n (1)
− ηNn (ϕ)

∣∣∣∣∣ (ω) ≤ 2 ‖ϕ‖ ρ̃n
(
ǫ+

ǫ−

)2

, (43)

where ρ̃ = 1− (ǫ−/ǫ+)
2
.

This type of uniform path-wise convergence plays an important role in proving Lr bounds that follows below.
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4.3 L
r

error estimates

The forward part of the algorithm has been suggested by Del Moral and Miclo [2003], Del Moral and Doucet

[2004] in order to approximate η⋆ and λ⋆ using the empirical probability measures
(
ηNn
)
. Defining

ΛNn :=
1

n

n−1∑

p=0

log λNp , (44)

they proved estimates of the form

EN

[∣∣ηNn (ϕ)− η⋆ (ϕ)
∣∣r
]1/r

≤ ‖ϕ‖C
(
Br√
N

+ ρ̃n
)

EN

[∣∣ΛNn − Λ⋆
∣∣r
]1/r

≤ C

(
Br√
N

+
1

n

)

for some constants C < ∞ and ρ̃ < 1; see the final expressions in the proofs of Theorem 2 and Corollary 2 of

[Del Moral and Doucet, 2004] for precise details.

Remark 9. Del Moral and Doucet [2004] addressed the case that the function G may vanish, and a weaker

“multi-step” version of (H). Similar techniques as used therein can be applied in the present context, but

involve notational complications.

The backward recursion of Algorithm 1 is relevant to the main aim of this paper, i.e. to quantify the error

in approximations of h⋆, and P⋆. This is presented in the following result.

Theorem 4. For any r ≥ 1 there is a universal constant Br such that for any n ≥ 1, 0 ≤ p < n and N ≥ 1,

sup
x∈X

EN

[∣∣hNp,n(x)− h⋆(x)
∣∣r
]1/r

≤ 2
Br√
N
C̃ + Chρ

p∧(n−p), (45)

sup
x∈X

sup
A∈B

EN

[∣∣∣PN(p,n) (x,A)− P⋆ (x,A)
∣∣∣
r]1/r

≤ 4
Br√
N
C̃
ǫ+

ǫ−
+ CPρ

p∧(n−p). (46)

where C̃ =

[
3
(
ǫ+

ǫ−

)7
+
(
ǫ+

ǫ−

)5
1

1−ρ̃

]
and ρ, Ch, CP are as in Proposition 1.

The errors are thus controlled in N , p and n, and in these bounds there is no dependence on the measure

µ used in the initialization of the algorithm. The proof uses the following decompositions

hNp,n(x) − h⋆(x) =
QNp+1(h

N
p+1,n)(x)

λNp
− Q(hp+1,n)(x)

λp
+ hp,n(x)− h⋆(x),

and

PN(p,n) (x,A)− P⋆ (x,A) = Ξ1(x,A) + Ξ2(x,A) + Ξ3(x,A),

where

Ξ1(x,A) :=
1

hNp−1,n(x)

[
QNp (hNp,nIA)(x)

λNp−1

− Q(hp,nIA)(x)

λp−1

]

Ξ2(x,A) :=
Q(hp,nIA)(x)

λp−1

[
1

hNp−1,n(x)
− 1

hp−1,n(x)

]

Ξ3(x,A) := P(p,n)(x,A) − P⋆(x,A).

Hence, it is crucial to provide additional Lr bounds for
QNp (ϕh

N
p,n)(x)

λN
p−1

−Q(ϕhp,n)(x)
λp−1

for any ϕ ∈ L. This is achieved

in Proposition 8 (in the Appendix), but is based on cumbersome expressions so more details are not presented

here.
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Remark 10. The type of recursion in the backward part of the algorithm is implicitly present (albeit expressed

somewhat differently) in other interacting particle algorithms, see for example [Del Moral et al., 2010] and

[Douc et al., 2011] in the context of non-linear filtering/smoothing or Del Moral et al. [2011, 2012] in the context

of optimal stopping problems. The main novelty of the present work stems from finding the connection between

the backward recursion and h⋆, P⋆ and incorporating it in the analysis. Note also that the forward part of the

algorithm runs from 0 up to 2n, but the backward part runs from 2n to n.

4.4 Lack of bias and a χ2-distance bound for importance sampling using PN(p,n) (x,A)

Section 3.1 showed an application where one is interested to sample from P⋆ in the context of importance

sampling. Similarly, the twisted kernel approximations (PNp,n)p≤n can be used to achieve unbiased estimates of

expectations on the path space of the Markov process evolving with kernel M . One may use the twisted kernel

approximations after the forward-backward pass of Algorithm 1 and define an additional conditional simulation

forward pass by sampling Xp ∼ PN(n+p,2n)(Xp−1, ·), p = 1, . . . ,m. When this simulation is used in the context

of importance sampling, a lack of bias result similar to Proposition 3 follows.

Proposition 4. Fix N ≥ 1, n ≥ 1, m ≤ n and x ∈ X arbitrarily. Conditional on F2n, let (Xp; p = 0, ...,m) be

a non-homogeneous Markov chain with transitions

X0 = x, Xp ∼ PN(n+p,2n)(Xp−1, ·), p = 1, . . . ,m, (47)

where
(
PN(n+p,2n)

)
are obtained from Algorithm 1. Let EN denote the expectation w.r.t. the joint law of the

particle system and (Xp) sampled according to (47). Then, for any integrable function F : Xm+1 → R,

EN

[
F (X0:m)

hNn,2n(X0)

hNn+m,2n(Xm)

m−1∏

p=0

λNn+p
G(Xp)

]
= Ex [F (X0:m)] , (48)

where on the r.h.s. Ex denotes expectation w.r.t. the law of a Markov chain (Xp; p = 0, ...,m) with X0 = x and

Xp ∼M(Xp−1, ·).

We can also quantify the discrepancy between the law of (Xp; p = 0, ...,m) when obtained from (47), i.e.

P
N,n

x (X0 ∈ A0, . . . , Xm ∈ Am) := EN [I[X0 ∈ A0, . . . , Xm ∈ Am]]

and the “ideal” law:

Px(X0 ∈ A0, . . . , Xm ∈ Am) :=

ˆ

A0×···×Am
δx(dx0)

m∏

p=1

P⋆(xp−1, dxp).

Indeed, since

Px(X0 ∈ A0, . . . , Xm ∈ Am) =

ˆ

A0×···×Am
δx(dx0)

m∏

p=1

M(xp−1, dxp) = Ex [I[X0 ∈ A0, . . . , Xm ∈ Am]] ,

it follows from (48) that up to null sets,

dPx

dP
N,n

x

(X0, . . . , Xm) = EN

[
hNn,2n(X0)

hNn+m,2n(Xm)

m−1∏

p=0

λNn+p
G(Xp)

∣∣∣∣∣X0, . . . , Xm

]
,

and from the definition of P⋆ in (2),

dPx

dPx
(X0, . . . , Xm) =

h⋆(X0)

h⋆(Xm)

m−1∏

p=0

λ⋆
G(Xp)

.
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Therefore
dPx

dP
N,n

x

(X0, . . . , Xm) = EN

[
hNn,2n(X0)

h⋆(X0)

h⋆(Xm)

hNn+m,2n(Xm)

m−1∏

p=0

λNn+p
λ⋆

∣∣∣∣∣X0, . . . , Xm

]
.

The following proposition estimates the χ2-distance (variance of Radon-Nikodym derivative) between the two

measures in question. Restricting our attention to the case where the state space X is a finite set allows for a

fairly straightforward proof, given in the Appendix.

Proposition 5. Assume that X is a finite set and that the assumptions of Proposition 4 hold. Then, there

exists a finite constant C depending on ǫ+, ǫ− such that the following bound holds for any x ∈ X, 1 ≤ m ≤ n

and N ≥ 1,

EN



(

dPx

dP
N,n

x

(X0, . . . , Xm)− 1

)2


1/2

≤ C

(
1 +

C√
N

)1/2 [(
1 +

C

N

)m
− 1

]1/2
+ C

[
1√
N

+

(
1− ǫ−

ǫ+

)n−m]
card(X). (49)

5 Numerical Examples

We will present numerical examples for each application of Section 3.

5.1 Importance Sampling for tail probabilities

We commence by this revisiting the problem in Section 3.1 where the eigen-quantities arise from a rare-event

estimation problem. Recall we consider a Markov process starting from x ∈ X with transition kernel M and are

interested to estimate the tail probability πm(δ) := Px

(∑m
p=1 U(Xp) > mδ

)
. Following the results in Section

3.1 we will choose M = Pα⋆ as the importance kernel, where α is the unique solution of of Λ′
⋆ (α) = δ. Then,

the importance sampling estimate of πm(δ) written earlier in (23) becomes

π̂m (δ, L) =
1

L

L∑

i=1

(
I

[
m∑

p=1

U(X i
p) > mδ

]
exp [mΛ⋆ (α)]∏m−1
p=0 Gα(X i

p)

hα⋆ (X
i
0)

hα⋆ (X
i
m)

)
. (50)

As per Proposition 4, it is in fact possible to achieve unbiased estimates using the twisted kernel approximations

to define a conditional simulation distribution, and using an estimator which mimics the form of (50).

It is an immediate corollary of Proposition 4 that EN [π̂m (δ, L)] = πm(δ), and Proposition 5 indicates that

r.h.s. of (49) goes to zero as m→ ∞ ifN,n grow such that m = o(n) and m = o(N).

Numerics

For some c > 0 we take X = [−c, c] and consider an ergodic Gaussian transition kernel with support restricted

to [−c, c],

M(x, dy) =
exp

(
− 1

2

(
y − x

2

)2)

(
erf
(
c−x/2√

2

)
− erf

(
−c−x/2√

2

))√
2π

I[−c,c](y)dy,

and consider U defined by

U (x) =





−1 x ≤ −1

x x ∈ (−1, 1)

1 x ≥ 1.

For any α ∈ R, assumption (H) holds. The left plot in Figure 1 shows estimated values of πm(δ), obtained

from the algorithm with N = 250, n = 500, α = 6 and using the estimator which appears inside the expectation
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Figure 1: Left: estimated value of πm(δ) against m, for: ◦,δ = 0.8; �,δ = 0.9, and +, δ = 0.99. Right: solid
lines show sample relative variance of the estimated value of πm(0.9) against m using the conditional simulation
method with: ◦, α = 1; +, α = 2; ∗, α = 4; �, α = 8; and ×, α = 16. Dashed line shows sample relative
variance of π̂m (0.9, 1) in the case M =M .
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Figure 2: Left: each of the solid curves shows an approximation of [αt− Λ⋆(α)] against α, with each curve
corresponding to a different value of t in the range [−0.8, 0.8]. The cross on each curve indicates its maximum
and thus approximates the value of supα [αt− Λ⋆(α)] = I(t). Right: Λ′

⋆(α) against α approximated using finite
differences.

in 50, i.e. a single sample of the conditional Markov chain. The displayed results are the averages over 2000

realizations of this entire procedure. The exponential decay rate predicted by the large deviation principle

(Theorem 2, part 2.) is apparent. The sample relative variances in the case of δ = 0.9 are shown on the right

of 1, for different values of α. The sample relative variance of π̂m (0.9, 1) for the trivial case M = M is also

included for reference, and explodes rapidly with m.

On a very fine grid of α-values, approximations of Λ⋆ (α) as per (44) were obtained with the same settings of

N and n. These were used to obtain the approximations of [αt− Λ⋆(α)] against α plotted on the left of Figure

2 and an approximation of Λ′
⋆(α) was obtained by finite differences, the result is shown on the right of Figure

2. The latter plot suggests Λ′
⋆ (10) ≈ 0.9, and bearing in mind the optimality result of Theorem 2, part 4., we

then notice in the relative variance plots of Figure 1 that the slowest growth (amongst the α values considered)

occurs with α = 8.
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Figure 3: Estimated value functions V Np (x) = − loghNp,n against x for p = 10, 15, 19 and n = 20. Top left panel
is U(x) against x.

5.2 Optimal control with KL stage costs

We will show some numerical results related to the control problem of Section 3.2. We will look at the finite

and infinite horizon case separately.

Finite Horizon

We begin by looking at a particular case of Example 1. Let X = R
2 and consider the controlled dynamics being

Xp =

[
1 τ

0 1

]
Xp−1 +

[
τ τ2/2

0 τ

]
(Wp + Fp) ,

where p = 1, . . . , n and Wn are independent zero mean Gaussian random variables with covariance matrix σ2I

and Fn ∈ R
2 are the standard control inputs. Note in general M cannot satisfy (H), but truncation (and

suitable re-normalization) of M to any bounded interval of X does allow (H) to be satisfied. Let also the

state-dependent part of the stage cost be U(x) = (1− I(−δ,δ)(x (1))) for some δ > 0. This type of cost penalizes

states outside (−δ, δ) and can be a convenient choice for various containment problems. For this example we will

set X0 to be zero mean Gaussian random variables with covariance matrix

[
3 0

0 1

]
. In Figure 3 we present

estimated some value functions for T = 2n = 20, τ = 0.1, δ = 0.5 and N = 500. Note that the displayed value

function estimates are obtained by averaging over 50 independent multiple runs as due to the high variance of

the initial condition the estimates hNp,2n exhibit a significant amount of variance. Still some errors are visible in

the form or ripples due to using a small N .
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Figure 4: Estimated optimal value function V⋆(x) against x for various parameter values: ◦, δ = 5;×, δ =
4;�, δ = 3;+, δ = 2.

Infinite Horizon

We will now look at a different infinite horizon scalar example. The Cox-Ingersoll-Ross process satisfies

dXt = θ (µ−Xt) dt+ σ
√
XtdWt,

where {Wt} is standard one-dimensional Brownian motion, θ > 0 is the reversion rate, µ > 0 is the level of mean

reversion and σ > 0 specifies the volatility. In financial applications this process is widely used to model interest

rates. When 2θµ > σ2 it is stationary. Here X = R
+ and for purposes of illustration we consider the case that

M is the transition probability from time t = 0 to t = 0.01 of the CIR process, which is available in closed

form [Cox et al., 1985]. Although known to satisfy a type of multiplicative Lyapunov drift condition which

allows an MET to be established in a weighted ∞-norm setting [Whiteley et al., 2012], M cannot satisfy (H).

Truncation (and suitable re-normalization) of M to any bounded interval of X does allow (H) to be satisfied. In

our numerical experiments this truncation was made to [0, 500]. We took the parameter settings θ = 2, σ = 20,

µ = 10 and considered, for a range of δ, the following “well-shaped” cost function:

U(x) = 2I[0,10−δ](x) + I[10+δ,∞)(x), (51)

which penalizes states outside (10− δ, 10 + δ).

Figure 4 shows estimates of the value function, which were obtained via averaging by evaluating the window-

averaged quantities 1
m

∑m−1
p=0 hNn+p,2n(x) with N = 500, n = 2000 and m = 100 and evaluations on a fine grid

from x = 4 to x = 20. Note the coincidence of the discontinuities in (51) with those in the estimated function.

The influence of the parameter δ is apparent. Table 1 shows the empirical relative variance (variance over the

square of the mean) of the estimated value function evaluations at different points x and for different numbers

of particles N . The variance evidently decreases with N , with large values associated with more extreme values

of x.

6 Discussion

We presented a generic particle algorithm to approximate the principle eigen-function of an un-normalized

positive Markov integral kernel together with the associated twisted probability kernel. As per standard Perron-
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N
x

6 8 10 12 14 16
50 1.81× 10−3 1.94× 10−5 5.62× 10−5 7.27× 10−5 1.07× 10−3 7.2× 10−3

100 1.02× 10−3 9.13× 10−6 2.78× 10−5 3.26× 10−5 5.41× 10−4 6.15× 10−3

500 1.15× 10−4 4.95× 10−6 1.46× 10−6 5.75× 10−6 3.08× 10−5 2.28× 10−3

Table 1: Empirical relative variance of value function evaluations (at different x), with n = 2000 from 500
independent realizations of the algorithm.

Frobenius theory, we have not made any reversibility assumptions, and this is reflected to some extent in the

“forward-backward” structure of the algorithm. We also presented some theoretical results demonstrating the

validity of using such a numerical scheme and saw how it can be applied to a variety of practical problems.

There are a number of possible avenues for further investigation. Regarding the theory, Assumption (H) is

very restrictive when X is non-compact. Starting points for the analysis of the method under weaker assump-

tions are [Whiteley, 2013, Whiteley et al., 2012], where the stability of Feynman-Kac semigroups and particle

approximations have been studied under a relaxation of the uniform majorization/minorization structure of

(H), using a Lyapunov drift condition.

There also many aspects of the applications considered here that could benefit from further study. The

connection to optimal importance sampling schemes for rare event simulation and estimation could be extended

by studying in detail the variance of the estimator appearing in Proposition 4 as well as the propagation of

chaos properties associated with blocks of samples drawn from
(
PN(p,n)

)
. Furthermore, it is of some interest to

investigate how optimization schemes such as those in [Kantas, 2009, Chapter 5] could be combined with the

algorithm in order to estimate the solution of Λ′
⋆(α) = δ. Regarding this last point, when the solution of α is not

unique [Chan and Lai, 2011] by-pass the computation of the eigen-function using saddle-point approximations,

so it would be interesting to investigate how the two approaches could be combined. Furthermore, the optimal

control problem underlying the Bellman equation in Section 3.2 has only recently received some mathematical

attention [Theodorou et al., 2010, Dvijotham and Todorov, 2011] for the finite horizon case and could be in-

vestigated further. Especially for the infinite horizon case, there are many connections with continuous time

control problems [Dai Pra et al., 1996, Sheu, 1984] and further insight could extend the applicability of the

numerical tools in this paper.

A Appendix

A.1 Proofs and auxiliary results for Section 2.2

We now present dome definitions and preliminary results which preface the proof of Theorem 1 . The first is a

lemma that establishes uniform bounds on ratio functionals involving iterates ofQ. Set L+ := {ϕ ∈ L : ν(ϕ) > 0}.

Lemma 5. For any µ′ ∈ P and ϕ ∈ L+,

inf
n≥1

inf
x∈X

Q(n)(ϕ)(x)

µ′Q(n)(ϕ)
≥ ǫ−

ǫ+
> 0, sup

n≥1
sup
x∈X

Q(n)(ϕ)(x)

µ′Q(n)(ϕ)
≤ ǫ+

ǫ−
<∞. (52)

Proof. Under (H),
Q(n) (ϕ) (y)

Q(n) (ϕ) (x)
≤ ǫ+

ǫ−
∀x, y ∈ X, n ≥ 1,

then integrating in the numerator with respect to µ′ and re-arranging gives the infimum bound in (52). The

proof of the supremum bound is similar.

Following Nummelin [2004], the notions of irreducibility and aperiodicity of a non-negative kernel generalize

naturally from the probabilistic case, and are expressed in terms of a σ-finite irreducibility measure. For

simplicity of presentation we shall take as this measure the ν appearing in (H). It follows immediately from
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the definitions of [Nummelin, 2004] that when (H) holds, Q is ν-irreducible and aperiodic. The number λ⋆ as

defined in (6)-(7) is called the generalized principal eigen-value (g.p.e.) of Q by Kontoyiannis and Meyn [2003,

Theorem 3.1] and in our setting coincides with the reciprocal of the convergence parameter of Nummelin [2004,

Section 3.2].

Recall, the spectral radius of Q as a bounded linear operator on L is defined as ξ := limn→∞ 9Q(n)91/n

(existence follows by sub-multiplicativity of operator norm). For notational convenience define s− : X → R+,

s+ : X → R+ by s−(x) = ǫ−, s+(x) = ǫ+, ∀x, respectively. In the terminology Nummelin [2004, Proposition 3.4],

Q is called λ⋆-recurrent if and only if
∑∞

n=0 λ
−n
⋆ νQ(n) (s−) = ∞. The following lemma prepares for Theorem 1.

Lemma 6. We have

ǫ− ≤ ξ = λ⋆ ≤ ǫ+, inf
µ′∈P

inf
n≥0

µ′Q(n)(1)

λn⋆
> 0, (53)

and therefore Q is λ⋆ -recurrent.

Remark 11. Following the terminology and arguments of [Nummelin, 2004, p.96], under (H) the kernel Q is

then additionally uniformly λ⋆-recurrent.

Proof. The upper and lower bounds on the spectral radius ξ follow from (H), because for any n ≥ 1 and x ∈ X

we have ǫ− ≤
[
Q(n)(1)(x)

]1/n ≤ ǫ+. To verify that λ⋆ coincides with ξ, write

∣∣∣∣
1

n
log

supxQ
(n)(1)(x)

νQ(n)(s−)

∣∣∣∣ =

∣∣∣∣
1

n
log

supxQ
(n)(1)(x)

νQ(n)(1)
− 1

n
log ǫ−

∣∣∣∣

≤ 1

n
log

ǫ+

ǫ−
+

1

n
log

νQ(n−1)(1)

νQ(n−1)(1)
+

1

n

∣∣log ǫ−
∣∣ → 0 as n→ ∞.

It remains to verify the uniform lower bound in (53) and thus the λ⋆-recurrence. A key feature of the majorization

part of assumption (H) is that it implies νQ(n+m−1) (s+) ≤ νQ(n−1) (s+) νQ(m−1) (s+) and then by sub-

additivity we are assured of the existence of:

Λ+
⋆ := lim

n→∞
1

n
log νQ(n−1)

(
s+
)
= inf
n≥1

1

n
log νQ(n−1)

(
s+
)
. (54)

But from the definitions of s+ and s−,

1

n
log νQ(n−1)

(
s+
)
− 1

n
log νQ(n−1)

(
s−
)

=
1

n
log

[
νQ(n−1)(1)

νQ(n−1)(1)

ǫ+

ǫ−

]

=
1

n
log

(
ǫ+

ǫ−

)
, (55)

so taking n→ ∞ we find that Λ+
⋆ = Λ⋆, and then (55) together with the right-most equality in (54) imply

1

n
log νQ(n−1)

(
s−
)
− Λ⋆ ≥ − 1

n
log

(
ǫ+

ǫ−

)
,

so
νQ(n−1) (s−)

λn⋆
≥ ǫ−

ǫ+
> 0.

Equation (53) then holds as µ′Q(n)(1)

νQ(n)(1)ǫ+
≥ ǫ−

(ǫ+)2
for all µ′ ∈ P , and this implies λ⋆-recurrence.

Now consider the family of potential kernels, {Uθ; θ ∈ [λ⋆,∞)},

Uθ :=

∞∑

n=0

θ−n−1
(
Q − s− ⊗ ν

)(n)
.

where the convergence of the sum, in the operator norm, is ensured by the λ⋆-recurrence of Q (shown in Lemma

6 in Appendix) and is straightforward to verify using the inversion argument of Kontoyiannis and Meyn [2003,
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Proof of Lemma 3.2], noting that as per Lemma 6, the spectral radius of Q coincides with the g.p.e., ξ = λ⋆.

Proof. (of Theorem 1) As per Lemma 6, the spectral radius of Q coincides with λ⋆. By the same Lemma, Q is

λ⋆−recurrent. By [Nummelin, 2004, Theorems 5.1 and 5.2], νUλ⋆ and Uλ⋆(s
−) are then respectively the unique

measure and ν-essentially unique non-zero function satisfying

νUλ⋆Q = λ⋆νUλ⋆ , QUλ⋆(s
−) = λ⋆Uλ⋆(s

−), νUλ⋆
(
s−
)
= 1. (56)

Under (H) we then have from (56) that

0 <
ǫ−

λ⋆
=
ǫ−

λ⋆
νUλ⋆(s

−) ≤ Uλ⋆(s
−)(x) ≤ ǫ+

λ⋆
νUλ⋆(s

−) =
ǫ+

λ⋆
<∞, ∀x, (57)

thus we take

η⋆ :=
νUλ⋆

νUλ⋆ (1)
, h⋆ :=

Uλ⋆ (s
−)

η⋆Uλ⋆ (s
−)

(58)

establishing (8). The uniqueness properties transfer directly to η⋆ and h⋆.

We obtain from (56) and (57) the following uniform lower and upper bounds on h⋆:

h⋆(x) =
Q (h⋆) (x)

λ⋆
≥ ǫ−

λ⋆
ν (h⋆) =

ǫ−

λ⋆

νUλ⋆ (s
−)

η⋆Uλ⋆ (s
−)

=
ǫ−

λ⋆

1

η⋆Uλ⋆ (s
−)

≥ ǫ−

ǫ+
> 0, ∀x, (59)

h⋆(x) =
Q (h⋆) (x)

λ⋆
≤ ǫ+

λ⋆
ν (h⋆) =

ǫ+

λ⋆

1

η⋆Uλ⋆ (s
−)

≤ ǫ+

ǫ−
<∞, ∀x (60)

so that (9) is established. Furthermore P⋆ is then well-defined as a Markov kernel and we readily verify that it

satisfies a uniform minorization condition:

P⋆(x, dx
′) =

Q(x, dx′)h⋆(x′)

h⋆(x)λ⋆

≥ ν(h⋆)

h⋆(x)λ⋆

ǫ−ν(dx′)h⋆(x′)

ν(h⋆)

=
1

Uλ⋆ (s
−) (x)λ⋆

ǫ−ν(dx′)Uλ⋆
(
s−
)
(x′)

≥ ǫ−

ǫ+
ν(dx′)Uλ⋆

(
s−
)
(x′), ∀x,

where νUλ⋆ (s
−) = 1 and (57) have been used. Thus P⋆ is uniformly geometrically ergodic and by inspection

of the eigen-measure equation its unique invariant probability distribution, denoted by π⋆, is given by π⋆ (ϕ) =

η⋆ (h⋆ϕ) /η⋆ (h⋆) = η⋆ (h⋆ϕ). Then, again noting that νUλ⋆ (s
−) = 1, by [Meyn and Tweedie, 2009, Theorem

16.2.4] we have:

9 P
(n)
⋆ − 1⊗ π⋆9 ≤ 2ρn, (61)

where ρ := 1− (ǫ−/ǫ+), which establishes (10). Multiplying by h⋆ > 0 in (61) yields for any φ ∈ L, x ∈ X,

∣∣∣λ−n⋆ Q(n) (h⋆φ) (x)− h⋆(x)η⋆ (h⋆φ)
∣∣∣ ≤ 2ρnh⋆(x) ‖φ‖ ≤ 2ρn

(
ǫ+

ǫ−

)
‖φ‖ , (62)

where (60) has been used. By equation (59), h⋆ is bounded below away from zero and therefore for any ϕ ∈ L,

we may have taken φ := ϕ/h⋆ ∈ L in (62). Finally noting from (59) that ‖ϕ/h⋆‖ ≤ (ǫ+/ǫ−) ‖ϕ‖, the bound of

(11) is established.

A.2 Proofs and auxiliary results for Section 2.3

Under assumption (H) we obtain uniform bounds on these quantities, as per the following Lemma.
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Lemma 7.

inf
n≥0

ηn(G) > 0 (63)

inf
n≥1

inf
0≤p≤n

inf
x∈X

hp,n(x) ≥
ǫ−

ǫ+
> 0, sup

n≥1
sup

0≤p≤n
sup
x∈X

hp,n(x) ≤
ǫ+

ǫ−
<∞. (64)

Proof. Assumption (H) implies that G is bounded below away from zero and therefore we have (63). Lemma

5 in the Appendix implies (64).

We proceed with the proof of Proposition 1:

Proof. (of Proposition 1) We first treat (18),

‖ηn − η⋆‖ = sup
ϕ:|ϕ|≤1

∣∣∣∣µQ
(n) (ϕ)

[
1

µQ(n) (1)
− 1

λn⋆µ(h⋆)

]
+
µQ(n) (ϕ)

λn⋆µ(h⋆)
− η⋆ (ϕ)

∣∣∣∣

≤ sup
ϕ:|ϕ|≤1

∣∣∣∣
µQ(n) (ϕ)

µQ(n) (1)

∣∣∣∣
∣∣∣∣
µQ(n) (1)

λn⋆µ(h⋆)
− 1

∣∣∣∣

+ sup
ϕ:|ϕ|≤1

∣∣∣∣
µQ(n) (ϕ)

λn⋆µ(h⋆)
− η⋆ (ϕ)

∣∣∣∣

≤ 2

µ(h⋆)
ρn
(
ǫ+

ǫ−

)2

+
2

µ(h⋆)
ρn
(
ǫ+

ǫ−

)2

≤ 4ρn
(
ǫ+

ǫ−

)3

,

where the penultimate inequality follows from two applications of the bound of Theorem 1, Equation (11), and

the final inequality is due to (9). This establishes (18).

In order to prove (19), we first consider products of the values (λn). We have

∣∣∣∣∣

∏n−1
ℓ=p λℓ

λn−p⋆

− 1

∣∣∣∣∣ =

∣∣∣∣
ηpQ

(n−p)(1)

λn−p⋆

− ηp(h⋆) + ηp(h⋆)− η⋆(h⋆)

∣∣∣∣

≤
∣∣∣∣
ηpQ

(n−p)(1)

λn−p⋆

− ηp(h⋆)

∣∣∣∣+ |ηp(h⋆)− η⋆(h⋆)|

≤ 2ρn−p
(
ǫ+

ǫ−

)2

+ 4ρp
(
ǫ+

ǫ−

)3

‖h⋆‖

≤ 2ρ(n−p)∧p
(
ǫ+

ǫ−

)2
(
1 + 2

(
ǫ+

ǫ−

)2
)

(65)

where the penultimate inequality is due to (11) of Theorem 1 and (18), and the final inequality is due to (9).

Integrating and iterating the eigen-measure equation (58) gives λn⋆ = η⋆Q
n(1) . Then by Lemma 5,

sup
n≥1

sup
x∈X

Q(n)(1)(x)

λn⋆
≤ ǫ+

ǫ−
. (66)
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With the above bounds in hand we now address (19). We have

|hp,n(x) − h⋆(x)| =

∣∣∣∣∣
Q(n−p)(1)(x)

λn−p⋆

(
λn−p⋆∏n−1
ℓ=p λℓ

− 1

)
+
Q(n−p)(1)(x)

λn−p⋆

− h⋆(x)

∣∣∣∣∣

≤
∣∣∣∣∣
λn−p⋆∏n−1
ℓ=p λℓ

− 1

∣∣∣∣∣ supm≥1
sup
y∈X

Q(m)(1)(y)

λm⋆

+

∣∣∣∣
Q(n−p)(1)(x)

λn−p⋆

− h⋆(x)

∣∣∣∣

≤ 2ρ(n−p)∧p
(
ǫ+

ǫ−

)3
(
1 + 2

(
ǫ+

ǫ−

)2
)

+ 2ρn−p
(
ǫ+

ǫ−

)2

= 2ρ(n−p)∧p
(
ǫ+

ǫ−

)2
[
1 +

(
ǫ+

ǫ−

)
+ 2

(
ǫ+

ǫ−

)3
]
.

where for the final inequality, (65), (66) and (11) have been used. This establishes (19).

For (20), consider the decomposition

9P(p,n) − P⋆9 ≤ sup
x

sup
ϕ:|ϕ|≤1

[
1

λp−1hp−1,n(x)
|Q [(hp,n − h⋆)ϕ] (x)|

+
1

λp−1

|hp−1,n(x)− h⋆(x)|
hp−1,n(x)

|Q (h⋆ϕ) (x)|
h⋆(x)

+
|λ⋆ − λp−1|
λp−1λ⋆

1

h⋆(x)
|Q (h⋆ϕ) (x)|

]

≤ ‖hp,n − h⋆‖ sup
x

Q(1)(x)

λp−1hp−1,n(x)

+
λ⋆
λp−1

‖hp−1,n − h⋆‖ sup
x

1

hp−1,n(x)

+
|λ⋆ − λp−1|

λp−1

≤ Chρ
(n−p)∧p2

(
ǫ+

ǫ−

)2

+ Cηρ
p−1 ǫ

+

ǫ−
,

where for the final equality, Lemma 7, the identities λp = ηp(G), λ⋆ = η⋆(G), and (18)-(19) have been used.

A.3 Proofs and auxiliary results for Section 4.2

A.3.1 Lack of bias

Proof. (of Proposition 3). The n = 0 case is trivial. For any ϕ ∈ L, n ≥ 1 and x ∈ X, we have

EN

[
QNn (ϕ) (x)

∣∣Fn−1

]
= EN

[
ˆ

dQ (x, ·)
dΦ
(
ηNn−1

) (x′)ϕ (x′) ηNn (dx′)

∣∣∣∣∣Fn−1

]

=
1

N

N∑

i=1

EN

[
dQ (x, ·)
dΦ
(
ηNn−1

) (ζin
)
ϕ
(
ζin
)
∣∣∣∣∣Fn−1

]

=

ˆ

dQ (x, ·)
dΦ
(
ηNn−1

) (x′)ϕ (x′)Φ
(
ηNn−1

)
(dx′)

= Q (ϕ) (x), (67)

where the penultimate equality is due to the definition of the particle transition probabilities (34).
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Now consider the telescoping decomposition

µNQN0,n (ϕ)− µ′Q(n) (ϕ) =

n−1∑

p=0

[
µNQN0,p+1Q

(n−p−1) (ϕ)− µNQN0,pQ
(n−p) (ϕ)

]

+
(
µN − µ′)Q(n) (ϕ) .

For each term in the big summation we have

EN

[
µNQN0,p+1Q

(n−p−1) (ϕ)− µNQN0,pQ
(n−p) (ϕ)

∣∣∣Fp
]

=

ˆ

µNQN0,p (dxp)E
[
QNp+1Q

(n−p−1) (ϕ) (xp)−Q(n−p) (ϕ) (xp)
∣∣∣Fp

]

= 0,

where the final equality is due to (67). For the remaining term, EN
[(
µN − µ′)Q(n) (ϕ)

]
= 0 by assumption of

the proposition.

A.3.2 Path-wise stability

The following proposition provides a generic result on iterates of non-negative kernels, which will serve multiple

purposes throughout the remaining proofs in the paper.

Proposition 6. Let (Kn;n ≥ 1) be a collection of possibly random, non-negative integral kernels, and suppose

that for a collection of possibly random, finite measures (νn;n ≥ 1) and positive, bounded functions (S−
n , S

+
n ;n ≥ 1),

S−
n (x)νn (·) ≤ Kn(x, ·) ≤ S+

n (x)νn (·) , ∀x ∈ X, n ≥ 1. (68)

Then

sup
n≥1

sup
x,x′∈X

K0,n(1)(x)

K0,n(1)(x′)
≤ sup

n≥1
Sn, (69)

where

Sn := sup
x,x′∈X

S+
n (x)

S−
n (x′)

.

Furthermore, for any possibly random probability measure η and ϕ ∈ L,

sup
x∈X

∣∣∣∣
K0,n(ϕ)(x)

ηK0,n(1)
− K0,n(1)(x)

ηK0,n(1)

ηK0,n(ϕ)

ηK0,n(1)

∣∣∣∣ ≤ ‖ϕ‖ 2CS
n∏

p=1

ρp

where ρn := 1−
(
infx∈X

S−

n (x)

S+
n (x)

)2
and CS := supn≥1 Sn.

Remark 12. We approach the proof of this proposition using a decomposition idea of Kleptsyna and Veretennikov

[2008], a technique which they demonstrated to be useful in the analysis of non-linear filter stability on non-

compact state-spaces. We won’t exploit the full generality of this kind of decomposition (it is useful under

conditions much weaker than (H) - see for example [Douc et al., 2009], again in the filtering context) and we

choose to take this approach because it yields a short and direct proof, which is sufficient for our purposes.

Proof. (of Proposition 6). The uniform bound of (69) holds directly under the assumptions of the proposition.

We write K⊗2
n (x, y, d (x′, y′)) := Kn (x, dx

′)Kn (y, dy
′) and ν⊗2

n (d (x, y)) := νn(dx)νn(dy). Under the as-

sumptions of the proposition we have for any (x, y) ∈ X
2 and measurable A ⊂ X

2 such that ν⊗2
n (A) > 0,

K̂n (x, y, A) := K⊗2
n (x, y, A)− S−

n (x)S
−
n (y)ν

⊗2
n (A)

≤
[
1− S−

n (x)S
−
n (y)

S+
n (x)S

+
n (y)

]
K⊗2
n (x, y, A) .

≤ ρnK
⊗2
n (x, y, A) . (70)
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Furthermore,

∣∣∣∣
K0,n(ϕ)(x)

ηK0,n(1)
− K0,n(1)(x)

ηK0,n(1)

ηK0,n(ϕ)

ηK0,n(1)

∣∣∣∣

=
|K0,n(ϕ)(x)ηK0,n(1)−K0,n(1)(x)ηK0,n(ϕ)|

ηK0,n(1)ηK0,n(1)

=
K0,n(1)(x)

ηK0,n(1)

∣∣(δx ⊗ η)K⊗2
0,n (ϕ⊗ 1− 1⊗ ϕ)

∣∣
(δx ⊗ η)K⊗2

0,n(1 ⊗ 1)

=
K0,n(1)(x)

ηK0,n(1)

∣∣∣(δx ⊗ η) K̂0,n (ϕ⊗ 1− 1⊗ ϕ)
∣∣∣

(δx ⊗ η)K⊗2
0,n(1 ⊗ 1)

(71)

≤ 2 ‖ϕ‖
(
sup
p≥1

Sp

)
(δx ⊗ η) K̂0,n (1⊗ 1)

(δx ⊗ η)K⊗2
0,n(1⊗ 1)

≤ 2 ‖ϕ‖
(
sup
p≥1

Sp

) n∏

p=1

ρp,

where the equality in (71) is due to the decomposition technique of Kleptsyna and Veretennikov [2008, p. 422]

[see also Douc et al., 2009, Proof of Proposition 12], and for the final two inequalities (69) and (70) have been

used.

Under assumption (H), we find that the random operators satisfy path-wise, a regularity condition of a

similar form, which is used below in the Proof of Proposition 8.

Lemma 8. The operators
(
QNn
)

satisfy

αNn (·)ǫ− ≤ QNn (x, ·) ≤ ǫ+αNn (·), ∀x ∈ X, n ≥ 1, N ≥ 1, (72)

where αNn is the random finite measure:

αNn (dx) := ηNn (dx)

[
dΦ
(
ηNn−1

)

dν
(x)

]−1

,

and ǫ−, ǫ+ are the deterministic constants in assumption (H). Moreover for all x ∈ X and p ≤ n,

ǫ−

ǫ+
≤ hNp,n(x) ≤

ǫ+

ǫ−
,

Proof. Since Q(x, ·) is equivalent to ν, then Φ
(
ηNn−1

)
is too, and it is straightforward to check that assumption

(H) implies that dν

dΦ(ηNn−1)
(x) is bounded above and below away from zero in x. We then have

QNn (x,A) =

ˆ

A

dQ(x·)
dΦ
(
ηNn−1

) (x′)ηNn (dx′)

=

ˆ

A

q(x, x′)
dν

dΦ
(
ηNn−1

) (x′)ηNn (dx′)

≤ ǫ+
ˆ

A

dν

dΦ
(
ηNn−1

) (x′)ηNn (dx′),

The proof of the lower bound is similar. The bounds for hNp,n(x) = QNp,n(1)(x)/η
N
p Q

N
p,n(1) follow from (72).

Proof. (of Theorem 3) From Lemma 4,

n−1∏

p=0

λNp = ηN0 Q
N
0,n (1) , hN0,n =

QN0,n (1)

ηN0 Q
N
0,n (1)

, ηNn =
ηN0 Q

N
0,n

ηN0 Q
N
0,n (1)

. (73)
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Thus (42) holds due to Lemma 8 and Proposition 6 applied with η = ηN0 , Kn = QNn , νn = αNn and S+
n =

ǫ+, S−
n = ǫ− are constant. Dividing through by µ′ (hN0.n

)
in (42), again noting (73) and using

sup
n≥1

sup
x,x′∈X

QN0,n(1)(x)

QN0,n(1)(x
′)

≤ ǫ+

ǫ−
, (74)

which also holds by Proposition 6, we establish (43).

A.4 Auxiliary results and proof of Theorem 4

Consider the collection of “backward” random kernels
(
RNn
)

defined by

RNn (x, dx′) := ηNn−1(dx
′)
dQ(x′, ·)
dΦ
(
ηNn−1

) (x), n ≥ 1,

and with a slight abuse of convention, write

RNn,n := Id, RNn,p := RNn R
N
n−1 · · ·RNp+1, p < n.

The interest in these quantities is that, in the context of the Lr error estimates which are the focus of this

section, they provide a convenient way to express the functions
(
hNp,n

)
and share path-wise stability properties

with
(
QNn
)
. Indeed by a simple induction it can be shown that for any ϕ ∈ L,

ηNn R
N
n,p (ϕ) = ηNp

[
ϕQNp,n(1)

]
, p ≤ n. (75)

Remark 13. Each kernel RNn is equal, up to a scaling factor of ηNn−1(G), to a certain “backward” Markov

kernel used in the analysis of Del Moral et al. [2010]. In contrast to the latter work, we are centrally concerned

with emphasizing the relationship between
(
QNp,n

)
and the underlying semigroup

(
Q(n)

)
. In view of (75) and

Proposition 3, we therefore prefer to deal with
(
RNn
)
, but only for cosmetic reasons.

The
(
RNn
)

satisfy a condition similar to that in Lemma 8, as per the following Lemma.

Lemma 9. The operators
(
RNn
)

satisfy

ηNn−1(·)βNn (x)ǫ− ≤ RNn (x, ·) ≤ ǫ+βNn (x)ηNn−1(·), ∀x ∈ X, n ≥ 1, N ≥ 1,

where βNn is the random, positive and bounded function:

βNn (x) :=

[
dΦ
(
ηNn−1

)

dν
(x)

]−1

,

and ǫ−, ǫ+ are the deterministic constants in assumption (H).

Proof. From definitions,

RNn (x,A) =

ˆ

A

dQ(x′, ·)
dΦ
(
ηNn−1

) (x)ηNn−1(dx
′)

=

ˆ

A

dQ(x′, ·)
dν

dν

Φ
(
ηNn−1

) (x)ηNn−1(dx
′)

≤ ǫ+
dν

dΦ
(
ηNn−1

) (x)ηNn−1 (A) .

The claimed positivity and boundedness of βNn follows from (H). The proof of the lower bound is similar.

It is well known that under (H) and variations thereof, one can obtain time-uniform Lr estimates for errors

of the form ηNn (ϕ) − ηn (ϕ). We will make use of the following result, due to Del Moral [2004, Theorem 7.4.4].
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The proof is omitted.

Proposition 7. For any r ≥ 1 there exists a universal constant Br such that for any ϕ ∈ L, the following time

uniform estimate holds

sup
n≥0

EN

[∣∣ηNn (ϕ)− ηn (ϕ)
∣∣r
]1/r

≤ 2 ‖ϕ‖ Br√
N

(
ǫ+

ǫ−

)5

.

We need a further definition. Consider now the functions (φn) and their random counterparts
(
φNn
)

defined

by

φn (x, x
′) :=

dQ (x, ·)
dηnQ

(x′) , φNn (x, x′) :=
dQ (x, ·)
dηNn Q

(x′) , n ≥ 0

and note that under (H),

sup
n≥0

sup
x,x′

|φn (x, x′)| ≤
ǫ+

ǫ−
, sup

N≥1
sup
n≥0

sup
x,x′

∣∣φNn (x, x′)
∣∣ ≤ ǫ+

ǫ−
. (76)

Furthermore, we then have from definitions that

hNp,n(x) =
QNp,n(1)(x)

ηNp Q
N
p,n(1)

=
1

ηNp+1Q
N
p+1,n(1)

ˆ

dQ (x, ·)
dηNp Q

(x′)QNp+1,n(1)(x
′)ηNp+1 (dx

′)

=
ηNn R

N
n,p+1

[
φNp (x, ·)

]

ηNn R
N
n,p+1 (1)

, (77)

where the final equality is due to (75).

Proposition 8. For any r ≥ 1 there exists a universal constant Br such that for any ϕ ∈ L and N ≥ 1,

sup
p≤n

sup
x∈X

EN

[∣∣∣∣∣
QNp (ϕhNp,n)(x)

λNp−1

− Q(ϕhp,n)(x)

λp−1

∣∣∣∣∣

r]1/r
≤ 2 ‖ϕ‖ Br√

N
C̃,

where

C̃ =

[
3

(
ǫ+

ǫ−

)7

+

(
ǫ+

ǫ−

)5
1

1− ρ̃

]
,

and ρ̃ is as in Theorem 3.

Proof. (of Proposition 8) From the identities

QNp (ϕh
N
p,n)(x)

λNp−1

=
ηNp
[
ϕφNp−1 (x, ·)QNp,n(1)

]

ηNp Q
N
p,n(1)

=
ηNn R

N
n,p

[
ϕφNp−1 (x, ·)

]

ηNn R
N
n,p (1)

(established similarly to equation (77)) and

Q(ϕhp,n)

λp−1
(x) =

ηp
[
ϕφp−1 (x, ·)Q(n−p)(1)

]

ηpQ(n−p)(1)
,

we have the decomposition

QNp (ϕhNp,n)(x)

λNp−1

− Q(ϕhp,n)(x)

λp−1
=

3∑

j=1

TN,jp,n (x)
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where

TN,1p,n (x) :=
ηNn R

N
n,p

[
ϕ
(
φNp−1 (x, ·)− φp−1 (x, ·)

)]

ηNn R
N
n,p (1)

(78)

TN,2p,n (x) :=
ηNn R

N
n,p [ϕφp−1 (x, ·)]
ηNn R

N
n,p (1)

−
Φ
(
ηNp−1

) [
ϕφp−1 (x, ·)Q(n−p)(1)

]

Φ
(
ηNp−1

)
Q(n−p)(1)

(79)

TN,3p,n (x) :=
Φ
(
ηNp−1

) [
ϕφp−1 (x, ·)Q(n−p)(1)

]

Φ
(
ηNp−1

)
Q(n−p)(1)

− ηp
[
ϕφp−1 (x, ·)Q(n−p)(1)

]

ηpQ(n−p)(1)
. (80)

For the difference in (78), under (H) we have

sup
x∈X

∣∣TN,1p,n (x)
∣∣ ≤ ‖ϕ‖ ǫ+

ηNn R
N
n,p (1)

ˆ

∣∣∣∣∣
1

´

ηNp−1(dy)q (y, x
′)

− 1
´

ηp−1(dy)q (y, x′)

∣∣∣∣∣ η
N
n R

N
n,p (dx

′)

≤ ‖ϕ‖ ǫ+
ηNn R

N
n,p (1)

ˆ

∣∣∣∣∣

´

q (y, x′)
[
ηp−1(dy)− ηNp−1(dy)

]
´

q (y, x′) ηNp−1(dy)
´

q (y, x′) ηp−1(dy)

∣∣∣∣∣ η
N
n R

N
n,p (dx

′)

≤ ‖ϕ‖
(ǫ−)2

ǫ+

ηNn R
N
n,p (1)

ˆ

∣∣∣∣
ˆ

q (y, x′)
[
ηp−1(dy)− ηNp−1(dy)

]∣∣∣∣ η
N
n R

N
n,p (dx

′)

≤ ‖ϕ‖ ǫ+

(ǫ−)2
sup
x′

∣∣∣∣
ˆ

q (y, x′)
[
ηp−1(dy)− ηNp−1(dy)

]∣∣∣∣ ,

and therefore by Proposition 7 and q (y, x′) ≤ ǫ+,

sup
x∈X

EN

[∣∣TN,1p,n (x)
∣∣r
]1/r

≤ 2 ‖ϕ‖ Br√
N

(
ǫ+

ǫ−

)7

. (81)

For the difference in (79), due to the relation

ηNp−1(dx)Q (x, dx′) = Φ
(
ηNp−1

)
(dx′)RNp (x′, dx) ,

we have the telescoping decomposition

TN,2p,n (x)

=
ηNn R

N
n,p [ϕφp−1 (x, ·)]
ηNn R

N
n,p (1)

−
Φ
(
ηNp−1

) [
ϕφp−1 (x, ·)Q(n−p)(1)

]

Φ
(
ηNp−1

)
Q(n−p)(1)

=
n∑

m=p

[
ηNm
[
Q(n−m)(1)RNm,p [ϕφp−1 (x, ·)]

]

ηNm
[
Q(n−m)(1)RNm,p(1)

] −
Φ
(
ηNm−1

) [
Q(n−m)(1)RNm,p [ϕφp−1 (x, ·)]

]

Φ
(
ηNm−1

) [
Q(n−m)(1)RNm,p(1)

]
]
. (82)

Each term in the summation (82) is of the form

Φ
(
ηNm−1

) [
Q(n−m)RNm,p (1)

]

ηNm
[
Q(n−m)RNm,p (1)

]
[
ηNm − Φ

(
ηNm−1

)] [
∆(x)
p,n,m

]
, (83)

where

∆(x)
p,n,m(y) :=

Q(n−m)(1)(y)RNm,p [ϕφp (x, ·)] (y)
Φ
(
ηNm−1

) [
Q(n−m)(1)RNm,p (1)

]

−
Q(n−m)(1)(y)RNm,p (1) (y)

Φ
(
ηNm−1

) [
Q(n−m)(1)RNm,p (1)

] Φ
(
ηNm−1

) [
Q(n−m)(1)RNm,p [ϕφp−1 (x, ·)]

]

Φ
(
ηNm−1

) [
Q(n−m)(1)RNm,p (1)

] .

Defining the map Ψm,n : P → P by Ψm,n(η)(A) :=
η
[
Q(n−m)(1)IA

]

ηQ(n−m)(1)
, for A ∈ B, we have
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sup
x,y

∣∣∣∆(x)
p,n,m(y)

∣∣∣

≤ sup
y

Q(n−m)(1)(y)

Φ
(
ηNm−1

) [
Q(n−m)(1)

]

× sup
x,y

∣∣∣∣∣
RNm,p [ϕφp−1 (x, ·)] (y)

Ψm,n
[
Φ
(
ηNm−1

)] [
RNm,p (1)

] −
RNm,p (1) (y)

Ψm,n
[
Φ
(
ηNm−1

)] [
RNm,p (1)

] Ψm,n
[
Φ
(
ηNm−1

)]
RNm,p [ϕφp−1 (x, ·)]

Ψm,n
[
Φ
(
ηNm−1

)] [
RNm,p (1)

]
∣∣∣∣∣

≤ ‖ϕ‖ ρ̃m−p2

(
ǫ+

ǫ−

)3

.

where the inequality is due to Lemma 5, the bound of (76) and then Lemma 9 and Proposition 6 applied to the

sequence of kernels RNm, R
N
m−1, . . . , R

N
p+1 with η = Ψm,n

[
Φ
(
ηNm−1

)]
, and ρ̃ is as in Theorem 3. Then returning

to (82)-(83), and noting that ∆
(x)
p,n,m(y) is measurable w.r.t. to Fm−1, we have by an application of Del Moral

[2004, Lemma 7.3.3.]

sup
x∈X

EN

[∣∣TN,2p,n (x)
∣∣r
]1/r

≤ 2 ‖ϕ‖ Br√
N

(
ǫ+

ǫ−

)5 n∑

m=p

ρ̃m−p ≤ 2 ‖ϕ‖ Br√
N

(
ǫ+

ǫ−

)5
1

1− ρ̃
. (84)

where the bound of Proposition 6 in equation (69) has been applied to the left factor in (83).

It remains to consider TN,3p,n (x), and we do so using the decomposition:

∣∣TN,3p,n (x)
∣∣ =

∣∣∣∣∣
Φ
(
ηNp−1

) [
ϕφp−1 (x, ·)Q(n−p)(1)

]

Φ
(
ηNp−1

)
Q(n−p)(1)

− ηp
[
ϕφp−1 (x, ·)Q(n−p)(1)

]

ηpQ(n−p)(1)

∣∣∣∣∣

≤ ‖ϕ‖
ηNp−1Q

[
φp−1(x, ·)Q(n−p)(1)

]

ηNp−1Q
(n−p+1)(1)

∣∣(ηp−1 − ηNp−1

)
Q(n−p+1)(1)

∣∣
ηp−1Q(n−p+1)(1)

+ ‖ϕ‖
∣∣(ηNp−1 − ηp−1

)
Q
[
φp−1(x, ·)Q(n−p)(1)

]∣∣
ηp−1Q(n−p+1)(1)

. (85)

Now note that due to Lemma 5 and the bound of (76),

sup
x,y

Q
[
φp−1(x, ·)Q(n−p)(1)

]
(y)

ηp−1Q(n−p+1)(1)
≤ sup

x,x′

|φp−1(x, x
′)| sup

y

Q(n−p+1)(1)(y)

ηp−1Q(n−p+1)(1)

≤
(
ǫ+

ǫ−

)2

, (86)

and the same bound holds with ηNp−1 in place of ηp−1. Then Proposition 7 combined with (86) may be applied

to each of the terms in (85) to yield:

sup
x∈X

EN

[∣∣TN,3p,n (x)
∣∣r
]1/r

≤ ‖ϕ‖ Br√
N

4

(
ǫ+

ǫ−

)7

. (87)

Combining (81), (84) and (87) completes the proof.

Remark 14. The treatment of the term TN,2p,n in the proof uses some arguments from [Del Moral et al., 2010,

Proof of Theorem 3.2], with variations customized to the present context.

Proof. (of Theorem 4) Consider the decomposition

hNp,n(x)− h⋆(x) =
QNp+1(h

N
p+1,n)(x)

λNp
− Q(hp+1,n)(x)

λp

+hp,n(x) − h⋆(x). (88)

31



The first difference on the r.h.s. of (88) is dealt with using Proposition 8 applied with ϕ = 1. For the other

difference, we have that by Proposition 1,

sup
x∈X

|hp,n(x)− h⋆(x)| ≤ Chρ
(n−p)∧p. (89)

To prove (46), consider the decomposition:

PN(p,n) (x,A)− P⋆ (x,A) = Ξ1(x,A) + Ξ2(x,A) + Ξ3(x,A)

where

Ξ1(x,A) :=
1

hNp−1,n(x)

[
QNp (hNp,nIA)(x)

λNp−1

− Q(hp,nIA)(x)

λp−1

]
(90)

Ξ2(x,A) :=
Q(hp,nIA)(x)

λp−1

[
1

hNp−1,n(x)
− 1

hp−1,n(x)

]
(91)

Ξ3(x,A) := P(p,n)(x,A) − P⋆(x,A). (92)

For the first term,

EN [|Ξ1(x,A)|r]1/r ≤ ǫ+

ǫ−
E

[∣∣∣∣∣
QNp (hNp,nIA)(x)

λNp−1

− Q(hp,nIA)(x)

λp−1

∣∣∣∣∣

r]1/r

≤ 2
ǫ+

ǫ−
Br√
N
C̃,

where the first inequality uses the a lower bounds on hNp−1,n(x) from Lemma 8 and the second inequality is due

to Proposition 8 applied with ϕ = IA.

We also have

EN [|Ξ2(x,A)|r]1/r ≤ ǫ+

ǫ−
Q(hp,nIA)(x)

λp−1hp−1,n(x)
E

[∣∣hp−1,n(x) − hNp−1,n(x)
∣∣r
]1/r

≤ 2
ǫ+

ǫ−
Br√
N
C̃,

where for the first inequality the lower bound on hNp−1,n(x) from Lemma 8 has been again be used, the second

inequality is due Lemma 1 and Proposition 8 applied with ϕ = 1. The term Ξ3 is dealt with using Proposition

1 and that completes the proof.

A.5 Proofs of Propositions 4 and 5

Proof. (of Proposition 4) From (47) and the definition of PN(n+p,2n) , for any x0 ∈ X,

EN

[
EN

[
F (X0:m)

hNn,2n(X0)

hNn+m,2n(Xm)

m−1∏

p=0

λNn+p
Gα(Xp)

∣∣∣∣∣F2n

]]

= EN

[
ˆ

Xm+1

F (x0:m)
hNn,2n(x0)

hNn+m,2n(xm)

m∏

p=1

λNn+p−1

Gα(xp−1)
PN(n+p,2n)(xp−1,dxp)

]

= EN

[
ˆ

Xm+1

F (x0:m)

m∏

p=1

1

Gα(xp−1)
QNn+p,2n(xp−1,dxp)

]

= EN

[
ˆ

Xm+1

F (x0:m)
m∏

p=1

dM(xp−1, ·)
dΦ(ηNn+p−1)

(xp)η
N
n+p(dxp)

]
. (93)
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where F2n is the σ-algebra generated by the particle system at time 2n. We will proceed to decompose the

difference between (93) and πm (δ).

For ℓ = 1, ...,m, define Fℓ by

Fm(x0:m) := F (x0:m), Fℓ(x0:ℓ) :=

ˆ

X

Fℓ+1(x0:ℓ+1)M(xℓ, dxℓ+1), ℓ = 1, ...,m− 1,

and observe that then

M(F1)(x) = Ex [F (X0:m)] . (94)

For any ℓ = 0, ...,m, and x0 ∈ X , define

F
N

0 (x0) :=M(F1)(x0), F
N

ℓ (x0) :=

ˆ

Xℓ

Fℓ (x1:ℓ)

ℓ∏

p=1

dM(xp−1, ·)
dΦ(ηNn+p−1)

(xp)η
N
n+p(dxp), ℓ = 1, ...,m. (95)

Then for any ℓ = 2, ...,m,

EN

[
F
N

ℓ (x0)
∣∣∣Fn+ℓ−1

]

=

ˆ

Xℓ−1

ℓ−1∏

p=1

dM(xp−1, ·)
dΦ(ηNn+p−1)

(xp)η
N
n+p(dxp)EN

[
ˆ

X

Fℓ(x1:ℓ)
dM(xℓ−1, ·)
dΦ(ηNn+ℓ−1)

(xℓ)η
N
n+ℓ(dxℓ)

∣∣∣∣∣Fn+ℓ−1

]

=

ˆ

Xℓ−1

ℓ−1∏

p=1

dM(xp−1, ·)
dΦ(ηNn+p−1)

(xp)η
N
n+p(dxp)

ˆ

X

Fℓ(x1:ℓ)M(xℓ−1, dxℓ)

=

ˆ

Xℓ−1

Fℓ−1(x1:ℓ−1)

ℓ−1∏

p=1

dM(xp−1, ·)
dΦ(ηNn+p−1)

(xp)η
N
n+p(dxp) = F

N

ℓ−1(x0), (96)

and a similar manipulation shows

EN

[
F
N

1 (x0)
∣∣∣Fn

]
= F

N

0 (x0). (97)

We then have that

EN

[
F
N

m(x0)
]
− Ex0 [F (X0:m)] =

m∑

ℓ=1

EN

[
F
N

ℓ (x0)− F
N

ℓ−1(x0)
]
= 0,

where (94), (96), (97) and (95) have been applied. But F
N

m(x0) is just what appears inside the expectation (93),

so the proof is complete.

Lemma 10. Assume (H) and let EN denote the expectation w.r.t. the joint law of the particle system and

(Xp) sampled according to (47). There exists a finite constant C such that for all m ≥ 1, N ≥ 1,

sup
n≥0

EN



(
m−1∏

p=0

λNn+p
λn+p

− 1

)2

 ≤

(
1 +

C√
N

)[(
1 +

C

N

)m
− 1

]

Proof. Throughout the proof C denotes a finite constant which is independent of m, n and N , but whose value

may change on each appearance. From hereon m ≥ 1, N ≥ 1 and n ≥ 0 are fixed to arbitrary values.

For 1 ≤ p ≤ m, consider the decomposition

p−1∏

q=0

λNn+q
λn+q

− 1 =

p∑

q=0

∆p,q
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where

∆p,0 :=
[
ηNn − ηn

] Q(p)(1)

ηnQ(p)(1)

∆p,q :=

(
q−1∏

r=0

λNn+r
λn+r

)[
ηNn+q −

ηNn+q−1Q

λNn+q−1

]
Q(p−q)(1)

ηn+qQ(p−q)(1)
, 1 ≤ q ≤ p.

Note that by Lemma 5, supp supxQ
(p)(1)(x)/ηnQ

(p)(1) ≤ ǫ+/ǫ−, so by Proposition 7,

sup
p

|EN [∆p,0]| ≤
C√
N
, sup

p
EN

[
|∆p,0|2

]
≤ C

N
.

Also note that

ηNn+q −
ηNn+q−1Q

λNn+q−1

= ηNn+q − Φ(ηNn+q−1)

and recall that given Fn+q−1, (ζ
i
n+q)

N
i=1 are conditionally i.i.d. draws from Φ(ηNn+p−1). Therefore

E [∆p,q| F2n] = 0 and E [∆p,q∆p,l| F2n] = 0, 1 ≤ q < l ≤ p,

so

EN

[
p−1∏

q=0

λNn+q
λn+q

− 1

]
= EN [∆p,0] .

Collecting the above and adopting the convention
∏−1
r=0

λNn+r

λn+r
= 1, we have

EN



(
p−1∏

q=0

λNn+q
λn+q

− 1

)2

 =

p∑

q=0

EN

[
(∆p,q)

2
]

≤ C

N

p−1∑

q=0

EN



(
q−1∏

r=0

λNn+r
λn+r

)2



=
C

N

p−1∑

q=0

EN



(
q−1∏

r=0

λNn+r
λn+r

− 1 + 1

)2



≤ C

N

p−1∑

q=0


EN



(
q−1∏

r=0

λNn+r
λn+r

− 1

)2

+ 1 + 2 |E [∆q,0]|




≤ C

N

p−1∑

q=0


EN



(
q−1∏

r=0

λNn+r
λn+r

− 1

)2

+ 1 +

C√
N


 .

With the shorthand

ap := EN



(
p−1∏

q=0

λNn+q
λn+q

− 1

)2

 , 0 ≤ p ≤ m, b := 1 +

C√
N
,

we have so far established

a0 = 0, ap ≤
C

N

p−1∑

q=0

(aq + b), 1 ≤ p ≤ m. (98)

We claim that solving this recursion gives

ap ≤ b

[(
1 +

C

N

)p
− 1

]
. (99)

Indeed (99) holds with p = 0 since a0 = 0 by definition, and when (99) holds at ranks less than or equal to p,
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(98) gives

ap+1 ≤ C

N

p∑

q=0

(
b

[(
1 +

C

N

)q
− 1

]
+ b

)

= b
C

N

(
1 + C

N

)p+1 − 1(
1 + C

N

)
− 1

= b

[(
1 +

C

N

)p+1

− 1

]
.

The proof is complete since (99) with p = m is the bound in the statement of the lemma.

Lemma 11. Assume the assumptions of Lemma 10 hold and in addition that X is a finite set. There exists a

finite constant C such that for all 1 ≤ m ≤ n and N ≥ 1,

∣∣∣∣∣

m−1∏

p=0

λn+p
λ⋆

− 1

∣∣∣∣∣ ≤
(
1− ǫ−

ǫ+

)n
C

EN



(

h⋆(Xm)

hNn+m,2n(Xm)
− 1

)2


1/2

≤ C

[
1√
N

+

(
1− ǫ−

ǫ+

)n−m]
card(X)

EN



(
hNn,2n(X0)

h⋆(X0)
− 1

)2


1/2

≤ C

[
1√
N

+

(
1− ǫ−

ǫ+

)n]

Proof. By Proposition 1,

∣∣∣∣∣

m−1∏

p=0

λn+p
λ⋆

− 1

∣∣∣∣∣ =

∣∣∣∣
ηnQ

(m)(1)

η⋆Q(m)(1)
− 1

∣∣∣∣ =
∣∣∣∣[ηn − η⋆]

Q(m)(1)

η⋆Q(m)(1)

∣∣∣∣ ≤
(
1− ǫ−

ǫ+

)n
Cη

ǫ+

ǫ−
.

For the second inequality in the statement, using Lemma 8 and noting that by assumption X is a finite set,

we have ∣∣∣∣∣
h⋆(Xm)

hNn+m,2n(Xm)
− 1

∣∣∣∣∣ ≤ max
x∈X

∣∣∣∣∣
h⋆(x)

hNn+m,2n(x)
− 1

∣∣∣∣∣ ≤
ǫ+

ǫ−

∑

x∈X

∣∣h⋆(x) − hNn+m,2n(x)
∣∣ . (100)

Theorem 4 together with Minkowski’s inequality applied to (100) gives the desired bound. The third inequality

is proved similarly, except that under (47) X0 = x a.s., hence

∣∣∣∣∣
h⋆(Xm)

hNn+m,2n(Xm)
− 1

∣∣∣∣∣ =
∣∣∣∣∣

h⋆(x)

hNn+m,2n(x)
− 1

∣∣∣∣∣ , a.s.

Proof. (of Proposition 5) Throughout the proof m, N and n are fixed. Define

W :=
hNn,2n(X0)

h⋆(X0)

h⋆(Xm)

hNn+m,2n(Xm)

m−1∏

p=0

λNn+p
λ⋆

,

so that
dPx

dP
N,n

x

(X0, . . . , Xm) = EN [W |X0, . . . , Xm] .

For the result of the Proposition we need to bound EN

[
EN [W − 1|X0, . . . , Xm]

2
]

by the r.h.s. of (49). By the

conditional Jensen’s inequality, it is sufficient to show that the same upper bound holds for EN

[
(W − 1)2

]
.

35



Consider the decomposition W − 1 =
∑4

i=1Wi where

W1 :=
hNn,2n(X0)

h⋆(X0)

h⋆(Xm)

hNn+m,2n(Xm)

(
m−1∏

p=0

λn+p
λ⋆

)(
m−1∏

p=0

λNn+p
λn+p

− 1

)
,

W2 :=
hNn,2n(X0)

h⋆(X0)

h⋆(Xm)

hNn+m,2n(Xm)

(
m−1∏

p=0

λn+p
λ⋆

− 1

)
,

W3 :=
hNn,2n(X0)

h⋆(X0)

(
h⋆(Xm)

hNn+m,2n(Xm)
− 1

)
,

W4 :=
hNn,2n(X0)

h⋆(X0)
− 1.

By (9) and Lemma 8

sup
x

hNn,2n(x)

h⋆(x)
∨ h⋆(x)

hNn+m,2n(xm)
≤
(
ǫ+

ǫ−

)2

. (101)

Since
m−1∏

p=0

λn+p
λ⋆

=
ηnQ

(m)(1)

η⋆Q(m)(1)
≤ ǫ+

ǫ−
,

Lemma 10 gives

EN

[
(W1)

2
]1/2 ≤

(
ǫ+

ǫ−

)5

EN



(
m−1∏

p=0

λNn+p
λn+p

− 1

)2


1/2

≤ C

(
1 +

C√
N

)1/2 [(
1 +

C

N

)m
− 1

]1/2
.

Lemma 11 and (101) give

EN

[
(W2)

2
]1/2 ≤

(
ǫ+

ǫ−

)4
(
m−1∏

p=0

λn+p
λ⋆

− 1

)
≤ C

(
1− ǫ−

ǫ+

)n
,

EN

[
(W3)

2
]1/2 ≤

(
ǫ+

ǫ−

)2

EN



(

h⋆(Xm)

hNn+m,2n(Xm)
− 1

)2


1/2

≤ C

[
1√
N

+

(
1− ǫ−

ǫ+

)n−m]
card(X),

EN

[
(W4)

2
]1/2 ≤ C

[
1√
N

+

(
1− ǫ−

ǫ+

)n]
.

Combining these bounds with Minkowski’s inequality applied to W − 1 =
∑4

i=1Wi completes the proof of the

proposition.
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