
ar
X

iv
:1

40
9.

70
28

v3
  [

m
at

h.
PR

] 
 7

 S
ep

 2
01

7

A unified approach to time consistency of dynamic risk measures

and dynamic performance measures in discrete time

Tomasz R. Bielecki a, Igor Cialenco a, and Marcin Pitera b

First Circulated: September 22, 2014

This Version: January 30, 2017

Forthcoming in Mathematics of Operations Research

http://doi.org/10.1287/moor.2017.0858

Abstract: In this paper we provide a flexible framework allowing for a unified study of time

consistency of risk measures and performance measures (also known as acceptability

indices). The proposed framework not only integrates existing forms of time consistency,

but also provides a comprehensive toolbox for analysis and synthesis of the concept of

time consistency in decision making. In particular, it allows for in depth comparative

analysis of (most of) the existing types of time consistency – a feat that has not be

possible before and which is done in the companion paper [BCP16] to this one. In our

approach the time consistency is studied for a large class of maps that are postulated to

satisfy only two properties – monotonicity and locality. The time consistency is defined

in terms of an update rule. The form of the update rule introduced here is novel, and is

perfectly suited for developing the unifying framework that is worked out in this paper.

As an illustration of the applicability of our approach, we show how to recover almost all

concepts of weak time consistency by means of constructing appropriate update rules.

Keywords: time consistency, update rule, dynamic LM-measure, dynamic risk measure, dynamic

acceptability index, dynamic performance measure.
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1 Introduction

In the seminal paper by Artzner et al. [ADEH99], the authors proposed an axiomatic approach to

defining risk measures that are meant to give a numerical value of the riskiness of a given financial

contract or portfolio. Alternatively, one can view the risk measures as a tool that allows to establish
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preference orders on the set of cash flows according to their riskiness. Another seminal paper,

Cherny and Madan [CM09], introduced and studied axiomatic approach to defining performance

measures, or acceptability indices, that are meant to provide evaluation of performance of a financial

portfolio. In their most native form, performance measures evaluate the trade-off between return

on the portfolio and the portfolio’s risk. Both Artzner et al. [ADEH99] and Cherny and Madan

[CM09] were concerned with measures of risk and measures of performance in the static framework.

As shown in one of the first papers that studied risk measures in the dynamic framework,

Riedel [Rie04], if one is concerned about making noncontradictory decisions (from the risk point

of view) over time, then an additional axiom, called time consistency, is needed. Over the past

decade significant progress has been made towards expanding the theory of dynamic risk measures

and their time consistency. For example, so called cocycle condition (for convex risk measures)

was studied in Föllmer and Penner [FP06], recursive construction was exploited in Cheridito and

Kupper [CK11], relation to acceptance and rejection sets was studied in Delbaen [Del06], the

concept of prudence was introduced in Penner [Pen07], connections to g-expectations were studied

in Rosazza Gianin [RG06], and the relation to Bellman’s principle of optimality was shown in

Artzner et al. [ADE+07].

Following Acciaio and Penner [AP11] let us briefly recall the concept of strong time consistency

of dynamic monetary risk measures,1 which is one of the most recognized forms of time consistency.

Assume that ρt(X) is the value of a monetary risk measure at time t ∈ [0, T ], that corresponds

to the riskiness, at time t, of the terminal cash flow X, with X being an FT -measurable random

variable. The dynamic monetary risk measure ρ = {ρt}0≤t≤T is said to be strongly time consistent

if for any t < s ≤ T , and any FT -measurable random variables X,Y we have that

ρs(X) = ρs(Y ) ⇒ ρt(X) = ρt(Y ). (1.1)

The financial interpretation of the strong time consistency is clear – if X is as risky as Y at some

future time s, then today, at time t, X is also as risky as Y . One of the main features of the strong

time consistency is its connection to the dynamic programming principle. It is not hard to show

that in the L∞ framework, a dynamic monetary risk measure is strongly time consistent if and only

if

ρt = ρt(−ρs), 0 ≤ t < s ≤ T. (1.2)

All other forms of time consistency for dynamic monetary risk measures, such as weak, acceptance

consistent, rejection consistent, are tied to this connection as well. In Tutsch [Tut08], the author

proposed a general approach to time consistency for cash-additive risk measures by introducing so

called test sets or benchmark sets. Each form of time consistency was associated to a benchmark set

of random variables, and larger benchmark sets corresponded to stronger forms of time consistency.

For more details on dynamic cash-additive (monetary risk) measures and their time consistency,

we refer the reader to a comprehensive survey paper Acciaio and Penner [AP11] and the references

therein.

1A dynamic monetary risk measure is a local, monotone and cash-additive function; see Section 2 for a formal

definition.
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Besides the dynamic risk measures, in this paper we study the dynamic acceptability indices

that are also known as dynamic performance measures.2 The scale invariance property, which is the

distinctive property of dynamic performance measures, makes the study of time consistency in this

case more intricate. In particular, the recursive property analogous to (1.2) or the benchmark sets

approach are not appropriate for study of time consistency of scale invariant maps. The first study

of time consistency of dynamic performance measures is due to Bielecki et al. [BCZ14], where the

authors elevated the theory of coherent acceptability indices to a dynamic setup in discrete time.

It was pointed out that none of the forms of time consistency for risk measures is suitable for the

acceptability indices.

One of the specific features of the acceptability indices, that needed to be accounted for in

study of their time consistency, is that these measures of performance can take infinite value. In

particular, this required extending the analysis beyond the L∞ framework.

Consequently, one of the main challenges was to find an appropriate form of time consistency

of acceptability indices, that would be both financially reasonable and mathematically tractable.

For the case of random variables (terminal cash flows), the proposed form of time consistency for

a dynamic coherent acceptability index α = {αt}0≤t≤T reads as follows: for any Ft-measurable

random variables mt, nt, and any t < T , the following implications hold

αt+1(X) ≥ mt ⇒ αt(X) ≥ mt,

αt+1(X) ≤ nt ⇒ αt(X) ≤ nt. (1.3)

The financial interpretation is clear – if tomorrow X is acceptable at least at level mt, then today X

is also acceptable at least at level mt; similar interpretation holds true for the second part of (1.3).

It is fair to say, we think, that dynamic acceptability indices and their time consistency properties

play a critical role in so called conic approach to valuation and hedging of financial contracts; see

Bielecki et al.[BCIR13] and and Rosazza Gianin and Sgarra [RGS13].

We recall that both risk measures and performance measures, in the nutshell, put preferences

on the set of cash flows. While the corresponding forms of time consistency (1.1) and (1.3) for these

classes of maps, as argued above, are different, we note that generally speaking both forms of time

consistency are linking preferences between different times. The aim of this paper is to present

a unified and flexible framework for time consistency of risk measures and performance measures,

that integrates existing forms of time consistency.

We consider a (large) class of maps that are postulated to satisfy only two properties - mono-

tonicity and locality3 - and we study time consistency of such maps. We focus on these two

properties, as, in our opinion, they have to be satisfied by any reasonable dynamic risk measure or

dynamic performance measure. We introduce the notion of an update rule that is meant to link

preferences between different times. The time consistency is defined in terms of an update rule. It

needs to be stressed that our notion of the update rule is different from the notion of update rule

used in Tutsch [Tut08]. It should be also noted that there exist a large literature in economics,

2A dynamic acceptability index is a local, monotone and scale invariant function; see Section 2 for further discus-

sions.
3See Section 2 for rigorous definitions along with a detailed discussion of each property.
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which is focused on the evolution of preferences and the term update rule is used there as well; see

e.g. Epstein and Schneider [ES03], Hanany and Klibanoff [HK09], and the references therein. We

want to underline that while the concepts of locality and monotonicity are considered there, the

updating is applied directly to preference relations, rather than to risk measures or acceptability

indices. So, their study is of different nature and is not directly connected to our (axiomatic)

framework.

This paper is the first step in our research leading towards a unified theory of time consistency

of dynamic risk/performance measures and it ought to be seen as the theoretical basis. Accordingly,

here we focus on formulating and studying the methodological framework without engaging into

in-depth presentation of broader aspects of our theory. We refer the reader to our survey paper

Bielecki et al. [BCP16], where we provide a comprehensive literature overview, present various

examples of dynamic LM-measures, update rules and different types of time consistency, such as

middle time consistency, strong time consistency, supermartingale time consistency etc. Moreover,

in the survey paper we use our methodology to study connections between these different types of

time consistency.

Nevertheless, we spent some time in this paper on illustration of the applicability of our ap-

proach. Specifically, we show that almost all known concepts of weak time consistency can be

reproduced and studied in terms of a single concept of an update rule introduced in this paper,

which is suitable both for dynamic risk measures and dynamic performance measures. In particular,

in Proposition 4.3 we characterize weak time consistency for random variables and in Proposition 4.8

we provide a characterization of (semi-)weak time consistency for stochastic processes. Moreover,

Propositions 4.9 and 4.10 show how the weak time consistency property transfers between dy-

namic coherent risk measures and (normalized) dynamic acceptability indices. This generalizes

the result from Bielecki et al. [BCZ14] and complements the characterizations from Cherny and

Madan [CM09], showing how the duality theorems look like in the dynamic setting.

We believe that the general approach introduced in this paper unifies and simplifies the study

of time consistency. A good example of this is Proposition 3.6 that provides a characterization of

time consistency via a version of the dynamic programming principle. While in our framework such

characterization is almost immediate, it is not that straightforward to derive it using the benchmark

set approach introduced in Tutsch [Tut08]. Another good example is Proposition 3.8 where we show

how to recover all known (benchmark set) concepts of time consistency using appropriate update

rules.

Finally, we want to mention that, traditionally, the investigation of dynamic risk measures and

dynamic performances indices is accompanied by robust representation type results. This aspect of

the theory is beyond the scope of this study given the generality of the classes of measures considered

here. In particular, the reason for absence in the paper of results regarding robust representation

is that such results are usually derived in the context of convex analysis by exploring convexity (of

risk measures) or quasi-concavity (of acceptability indices) properties of some relevant functions.

However, we study time consistency without using convex analysis, and we consider functions that

are only local and monotone.

The importance of the contribution of the paper can be summarized as follows:
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• We provide a theoretical framework for analysis and synthesis of the various forms of time

consistency, allowing for a comparative study of them. Such study is done in the companion

paper [BCP16].

• Our theoretical framework is based on the appropriate concept of an update rule. Although

the term “update rule” has been used in the literature before, the concept of an update rule

introduced here is novel and specifically suited for our needs.

• Our theoretical framework requires minimal assumptions: locality and monotonicity of the

measures, for which time consistency is defined and studied.

The paper is organized as follows. In Section 2 we introduce some necessary notations and

present the main object of our study – the Dynamic LM-measure. In Section 3 we set forth the

main concepts of the paper – the notion of an updated rule and the definition of time consistency

of a dynamic LM-measure. We prove a general result about time consistency, that can be viewed

as counterpart of dynamic programming principle (1.2). Additionally, we show that there is a

close relationship between update rule approach to time consistency and the approach based on

so called benchmark sets. Section 4 is devoted to weak time consistency. The theory presented

herein hinges on some new technical results about conditional expectation and conditional essential

infimum/supremum for random variables that may take the values ±∞. These results are presented

in Appendix A.1. To ease the exposition of the main concepts, all technical proofs are deferred to

the Appendix A.2, unless stated otherwise directly below the theorem or proposition.

2 Preliminaries

Let (Ω,F ,F = {Ft}t∈T, P ) be a filtered probability space, with F0 = {Ω, ∅}, and T = {0, 1, . . . , T},

for a fixed and finite time horizon T ∈ N.4

For G ⊆ F we denote by L0(Ω,G, P ), and L̄0(Ω,G, P ) the sets of all G-measurable random

variables with values in (−∞,∞), and [−∞,∞], respectively. In addition, we will use the notation

Lp(G) := Lp(Ω,G, P ), Lp
t := Lp(Ft), and Lp := Lp

T , for p ∈ {0, 1,∞}. Analogous definitions will

apply to L̄0. We will also use the notation V
p := {(Vt)t∈T : Vt ∈ Lp

t }, for p ∈ {0, 1,∞}.

Throughout this paper, X will denote either the space of random variables Lp, or the space of

adapted processes V
p, for p ∈ {0, 1,∞}. If X = Lp, for p ∈ {0, 1,∞}, then the elements X ∈ X

are interpreted as discounted terminal cash flows. On the other hand, if X = V
p, for p ∈ {0, 1,∞},

then the elements of X , are interpreted as discounted dividend processes. It needs to be remarked,

that all concepts developed for X = V
p can be easily adapted to the case of cumulative discounted

value processes. The case of random variables can be viewed as a particular case of stochastic

processes by considering cash flows with only the terminal payoff, i.e. stochastic processes such

that V = (0, . . . , 0, VT ). Nevertheless, we treat this case separately for transparency. For both cases

4Most of the results hold true or can be adjusted respectively, to the case of infinite time horizon. For sake of

brevity, we will omit the discussion of this case here.
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we will consider standard pointwise order, understood in the almost sure sense. In what follows,

we will also make use of the multiplication operator denoted as ·t and defined by:

m ·t V := (V0, . . . , Vt−1,mVt,mVt+1, . . .),

m ·t X := mX, (2.1)

for V ∈
{
(Vt)t∈T | Vt ∈ L0

t

}
, X ∈ L0 and m ∈ L∞

t . In order to ease the notations, if no confusion

arises, we will drop ·t from the above product, and we will simply write mV and mX instead of

m ·t V and m ·t X, respectively.

Remark 2.1. We note that the space V
p, p ∈ {0, 1,∞}, endowed with multiplication ( ·t, ) does

not define a proper L0–module [FKV09] (e.g. 0 ·t V 6= 0 for some V ∈ V
p). However, in what

follows, we will adopt some concepts from L0-module theory which naturally fit into our study.

Moreover, as in many cases we consider, if one additionally assumes independence of the past, and

replaces V0, . . . , Vt−1 with 0s in (2.1), then X becomes an L0–module. We refer the reader to

[BCDK16, BCP15] for a thorough discussion on this matter.

Throughout, we will use the convention that ∞−∞ = −∞+∞ = −∞ and 0 · ±∞ = 0.

For t ∈ T and X ∈ L̄0, we define the (generalized) Ft-conditional expectation of X by

E[X|Ft] := lim
n→∞

E[(X+ ∧ n)|Ft]− lim
n→∞

E[(X− ∧ n)|Ft],

where X+ = (X ∨ 0) and X− = (−X ∨ 0). Note that, in view of our convention we have

that (−1)(∞ − ∞) = ∞ 6= −∞ + ∞ = −∞, which, in particular, implies that we might get

−E[X] 6= E[−X]. Thus, the conditional expectation operator defined above is no longer linear on

L̄0 space (see Appendix A.1, Proposition A.1). Similarly, for any t ∈ T and X ∈ L̄0, we define the

(generalized) Ft-conditional essential infimum by5

ess inftX := lim
n→∞

[
ess inft(X

+ ∧ n)
]
− lim

n→∞

[
ess supt(X

− ∧ n)
]
, (2.2)

and respectively, we put ess supt(X) := − ess inft(−X). For some basic properties of this operator

and the definition of conditional essential infimum on L∞ see Appendix A.1. In particular, note

that, for any X ∈ L̄0
t , we get ess inftX = X.

Next, we introduce the main object of this study.

Definition 2.2. A family ϕ = {ϕt}t∈T of maps ϕt : X → L̄0
t is a Dynamic LM-measure if ϕ satisfies

1) (Locality) 1Aϕt(X) = 1Aϕt(1A ·t X);

2) (Monotonicity) X ≤ Y ⇒ ϕt(X) ≤ ϕt(Y );

for any t ∈ T, X,Y ∈ X , and A ∈ Ft.

5Since both sequences ess inft(X
+ ∧ n) and ess supt(X

− ∧ n) are monotone, the corresponding limits exist.
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We believe that locality and monotonicity are two properties that must be satisfied by any

reasonable dynamic measure of performance and/or measure of risk. Monotonicity property is

natural for any numerical representation of an order between elements of X . The locality property

essentially means that the values of the LM-measure restricted to a set A ∈ F remain invariant

with respect to the values of the arguments outside of the same set A ∈ F ; in particular, the events

that will not happen in the future do not change the value of the measure today.

Dynamic LM-measures contain several important subclasses. Among the most recognized ones

are dynamic risk measures and dynamic performance measures (dynamic acceptability indices).

These classes of measures have been extensively studied in the literature over the past decade.

We recall that a function ϕt : X → L̄0
t is: cash additive if ϕ(X +m1{t}) = ϕt(X) +m, for any

X ∈ X , t ∈ T, and m ∈ Lp
t ; scale invariant if ϕt(β ·t X) = ϕt(X), for any X ∈ X , t ∈ T, and

β ∈ Lp
t , β > 0.

A dynamic monetary utility measure is a cash-additive LM-measure, and a dynamic risk measure

is the negative of a dynamic monetary utility measure. For convenience, we will study dynamic

monetary utility measure in this study rather than dynamic risk measures. Cash additivity is the

key property that distinguishes utility/risk measures from all other measures. This property means

that adding $m to a portfolio today reduces the overall risk by the same amount $m. From the

regulatory perspective, the value of a risk measure is typically interpreted as the minimal capital

requirement for a bank. For more details on coherent/covex/monetary risk measures we refer the

reader to the survey papers [FS10, AP11].

A dynamic performance measure is a scale invariant LM-measure. As already mentioned, the

distinctive property of performance measures is the scale invariance - a rescaled portfolio or a cash

flow is accepted at the same level. Performance measures, sometimes referred to as acceptability in-

dices, were studied in [CM09, BCZ14, CK13, BCP15], and they are meant to provide an assessment

of how good a financial position is.6 It needs to be noted that the theory developed in this paper

can also be applied to sub-scale invariant dynamic assessment indices studied in [RGS13, BCC15].

3 Time consistency and update rules

In this section we introduce the main concept of this paper - the time consistency of dynamic risk

measures and dynamic performance measures, or more generally, the time consistency of dynamic

LM-measures introduced in the previous section.

We recall that these dynamic LM-measures are defined on X , where X either denotes the space

Lp of random variables or the space V
p of stochastic processes, for p ∈ {0, 1,∞}, so, our study of

time consistency is done relative to such spaces. Nevertheless, the definition of time consistency

can be easily adapted to more general spaces, such as Orlicz hearts (as studied in [CL09]), or, such

as topological L0-modules (see for instance [BCDK16]).

6Some authors treat acceptability indices as the special subclass of performance measures, that satisfy the quasi-

concavity axiom. In particular, [CK13] gives examples of performance indices that are not quasi-concave. Neverthe-

less, in this paper we have decided to use those two names interchangeably.
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Assume that ϕ is a dynamic LM-measure on X . For an arbitrary fixed X ∈ X and t ∈ T, the

value ϕt(X) represents a quantification (measurement) of preferences about X at time t. Clearly,

it is reasonable to require that any such quantification (measurement) methodology should be

coherent as time passes. This is precisely the motivation behind the concepts of time consistency

of dynamic LM-measures.

There are various forms of time consistency proposed in the literature, some of them suitable

for one class of measures, others for a different class of measures. For example, for dynamic convex

(or coherent) risk measures, various version of time consistency surveyed in [AP11] can be seen

as versions of the celebrated dynamic programming principle. On the other hand, as shown in

[BCZ14], dynamic programming principle essentially is not suited for scale invariant measures such

as dynamic acceptability indices, and the authors introduce a new type of time consistency, tailored

for these measures, and provide a robust representation of them. Nevertheless, in all these cases the

time consistency property connects, in a noncontradictory way, the measurements done at different

times.

Next, we will introduce the notion of update rule that serves as the main tool in relating the

measurements of preferences at different times, and also, it is the main building block of our unified

theory of time consistency property.

Definition 3.1. We call a family µ = {µt,s : t, s ∈ T, s > t} of maps µt,s : L̄
0
s ×X → L̄0

t an update

rule if for any s > t, the map µt,s satisfies the following properties:

1) (Locality) 1Aµt,s(m,X) = 1Aµt,s(1Am,X);

2) (Monotonicity) if m ≥ m′, then µt,s(m,X) ≥ µt,s(m
′,X);

for any X ∈ X , A ∈ Ft and m,m′ ∈ L̄0
s.

Since LM-measures are local and monotone, properties with clear financial interpretations, the

update rules are naturally assumed to be local and monotone too.

The first argument m ∈ L̄0
s in µt,s serves as a benchmark to which the measurement ϕs(X) is

compared. The presence of the second argument, X ∈ X , in µt,s, allows the update rule to depend

on the objects to which the preferences are applied to. However, as we will see in next section,

there are natural situations when the update rules are independent of X ∈ X , and sometimes they

do not even depend on the future times s ∈ T.

Remark 3.2. As we have mentioned, the update rule is used for updating preferences through time.

This, for example, can be achieved in terms of the conditional expectation operator

µt,s(m,X) = E[m|Ft], (3.1)

which is an update rule. Note that this particular update rule does not depend on s or X. Update

rules might be also used for discounting the preferences. Intuitively speaking, the risk of loss in

the far future might be more preferred than the imminent risk of loss (see [Che10] for the more

detailed explanation of this idea). For example, the update rule µ of the form

µt,s(m,X) =

{
εs−tE[m|Ft] on {E[m|Ft] ≥ 0},

εt−sE[m|Ft] on {E[m|Ft] < 0}.
(3.2)
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for a fixed ε ∈ (0, 1) would achieve this goal. Note that ‘discounting’ proposed here has nothing to

do with the ordinary discounting, as we act on discounted values already.

Next, we define several particular classes of update rules, suited for our needs.

Definition 3.3. Let µ be an update rule. We say that µ is:

1) X-invariant, if µt,s(m,X) = µt,s(m, 0);

2) sX-invariant, if there exists a family {µt}t∈T of maps µt : L̄0 → L̄0
t , such that µt,s(m,X) =

µt(m);

3) Projective, if it is sX-invariant and µt(mt) = mt;

for any s, t ∈ T, s > t, X ∈ X , m ∈ L̄0
s and mt ∈ L̄0

t .

Examples of update rules satisfying 1) and 3) are given by (3.2) and (3.1), respectively. The

update rule, which satisfies 2), but not 3) can be constructed by substituting εt−s with a constant in

(3.2). Generally speaking update rules for stochastic processes will not satisfy 1) as the information

about the process on the time interval (t, s) will affect µt,s; see Subsection 4.2 for details.

Remark 3.4. If an update rule µ is sX-invariant, then it is enough to consider only the corresponding

family {µt}t∈T. Hence, with slight abuse of notation we will write µ = {µt}t∈T, and call it an update

rule as well.

We are now ready to introduce the general definition of time consistency.

Definition 3.5.7 Let µ be an update rule. We say that the dynamic LM-measure ϕ is µ-acceptance

(resp. µ-rejection) time consistent if

ϕs(X) ≥ ms (resp. ≤) =⇒ ϕt(X) ≥ µt,s(ms,X) (resp. ≤), (3.3)

for all s, t ∈ T, s > t, X ∈ X and ms ∈ L̄0
s. If property (3.3) is satisfied only for s, t ∈ T, such that

s = t+1, then we say that ϕ is one step µ-acceptance (resp. one step µ-rejection) time consistent.

The financial interpretation of acceptance time consistency is straightforward: if X ∈ X is

accepted at some future time s ∈ T, at least at level m, then today, at time t ∈ T, it is accepted

at least at level µt,s(m,X). Similarly for rejection time consistency. Essentially, the update rule µ

translates the preference levels at time s to preference levels at time t. As it turns out, this simple

and intuitive definition of time consistency, with appropriately chosen µ, will cover various cases

of time consistency for risk and performance measures that can be found in the existing literature

(see [BCP16] for a survey).

Next, we will give an equivalent formulation of time consistency, which, in fact, might be

taken as a definition of time consistency (in place of (3.3)). Given the nature of the update

7We introduce the concept of time consistency only for LM-measures, as this is the only class of measures used in

this paper. However, the definition itself is suitable for any map acting from X to L̄0. For example, traditionally in

the literature, the time consistency is defined for dynamic risk measures (negatives of cash-additive LM-measures),

and the above definition of time consistency will be appropriate, although one has to flip ‘acceptance’ with ‘rejection’.
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rule and its purpose, we however believe that property (3.3) is more natural defining property, as

compared to (3.4). While the proof of the equivalence is simple, the result itself is very important

and it will be conveniently used in the sequel. Moreover, it can be viewed as a counterpart of

dynamic programming principle, which is an equivalent formulation of dynamic consistency for

convex/coherent risk measures. This is the reason why we separate out this result in the form of

proposition.

Proposition 3.6. Let µ be an update rule, and let ϕ be a dynamic LM-measure. Then, ϕ is

µ-acceptance (resp. µ-rejection) time consistent if and only if

ϕt(X) ≥ µt,s(ϕs(X),X) (resp. ≤), (3.4)

for any X ∈ X and s, t ∈ T, such that s > t.

Remark 3.7. It is clear, and also naturally desired, that a monotone transformation of an LM-

measure will not change the preference order of the underlying elements. We want to emphasize that

a monotone transformation will also preserve the time consistency. In other words, the preference

orders will be also preserved in time. Indeed, if ϕ is µ-acceptance time consistent, and g : R̄ → R̄

is a strictly monotone function, then the family {g ◦ ϕt}t∈T is µ̃-acceptance time consistent, where

the update rule µ̃ is defined by µ̃t,s(m,X) = g(µt,s(g
−1(m),X)), for t, s ∈ T, s > t, X ∈ X and

m ∈ L̄0
s.

In the case of random variables, X = Lp, we we will usually consider update rules that are

X-invariant. The case of stochastic processes is more intricate. If ϕ is a dynamic LM-measure, and

V ∈ V
p, then in order to compare ϕt(V ) and ϕs(V ), for s > t, one also needs to take into account

the cash flows between times t and s. Usually, for X = V
p we consider update rules, such that

µt,t+1(m,V ) = µt,t+1(m, 0) + f(Vt), (3.5)

where f : R̄ → R̄ is a Borel measurable function, such that f(0) = 0. We note, that any such one

step update rule µ can be easily adapted to the case of random variables. Indeed, upon setting

µ̃t,t+1(m) := µt,t+1(m, 0) we get a one step X-invariant update rule µ̃, which is suitable for random

variables. Moreover, µ̃ will define the corresponding type of one step time consistency for random

variables. Of course, this correspondence between update rule for processes and random variables

is valid only for ‘one step’ setup.

Moreover, for update rules, which admit the so called nested composition property (cf. [Rus10,

RS06] and references therein),

µt,s(m,V ) = µt,t+1(µt+1,t+2(. . . µs−2,s−1(µs−1,s(m,V ), V ) . . . V ), V ), (3.6)

we have that µ-acceptance (resp. µ-rejection) time consistency is equivalent to one step µ-acceptance

(resp. µ-rejection) time consistency.
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3.1 Relation between update rule approach and the benchmark approach

As we will show in this section, there is a close relationship between our update rule approach to time

consistency and the approach based on so called benchmark sets. The latter approach was initiated

in [Tut08], where the author applied it in the context of dynamic risk measures. Essentially, a

benchmark set is a collection of elements from X that satisfy some additional structural properties.

For simplicity, we shall assume here that X = Lp, for p ∈ {0, 1,∞}. The definition of time

consistency in terms of benchmark sets is as follows:

Definition 3.8. Let ϕ be a dynamic LM-measure and let Y = {Yt}t∈T be a family of benchmark

sets, that is, sets Yt such that Yt ⊆ Lp, 0 ∈ Yt and Yt+R = Yt. We say that ϕ is acceptance (resp.

rejection) time consistent with respect to Y, if

ϕs(X) ≥ ϕs(Y ) (resp. ≤) =⇒ ϕt(X) ≥ ϕt(Y ) (resp. ≤), (3.7)

for all s ≥ t, X ∈ Lp and Y ∈ Ys.

Informally, the ‘degree’ of time consistency with respect to Y is measured by the size of Y.

Thus, the larger the sets Ys are, for each s ∈ T, the stronger is the degree of time consistency of ϕ.

We now have the following important proposition,

Proposition 3.9. Let ϕ be a dynamic LM-measure and let Y be a family of benchmark sets. Then,

there exists an update rule µ such that: ϕ is acceptance (resp. rejection) time consistent with respect

to Y if and only if it is µ-acceptance (resp. µ-rejection) time consistent.

The update rule µ is said to provide ϕ with the same type of time consistency as Y does, and vice

versa. Generally speaking, the converse implication does not hold true, i.e. given an LM-measure

ϕ and an update rule µ it may not be possible to construct Y so that it provides the same type

of time consistency as µ does. In other words, the notion of time consistency given in terms of

updates rule is more general.

4 Weak time consistency

In this section we will discuss examples of update rules, which relate to weak time consistency for

random variables and for stochastic processes. This is meant to illustrate the framework developed

earlier in this paper. As mentioned in the Introduction, see [BCP16] for a comprehensive survey of

various types of time consistency and connections between them.

The notion of weak time consistency was introduced in [Tut08], and subsequently studied in

[AP11, ADE+07, CDK06, DS05, AFP12]. The idea is that if ‘tomorrow’, say at time s, we accept

X ∈ X at level ms ∈ Fs, then ‘today’, say at time t, we would accept X at least at any level

lower or equal to ms, appropriately adjusted by the information Ft available at time t (cf. (??)).

Similarly, if tomorrow we reject X at level higher or equal to ms ∈ Fs, then today, we should also

reject X at any level higher than ms, adjusted to the flow of information Ft. This suggests that

the update rules should be taken as Ft-conditional essential infimum and supremum, respectively.
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Towards this end, we first show that Ft-conditional essential infimum and supremum are projective

update rules.

Proposition 4.1. The family µinf := {µinf
t }t∈T of maps µinf

t : L̄0 → L̄0
t given by

µinf
t (m) = ess inftm,

is a projective8 update rule. Similar result is true for the family µsup := {µsup
t }t∈T of maps µsup

t :

L̄0 → L̄0
t given by µsup

t (m) = ess suptm.

4.1 Weak time consistency for random variables

Recall that the case of random variables corresponds to X = Lp, for a fixed p ∈ {0, 1,∞}. We

proceed with the definition of weak acceptance and weak rejection time consistency (for random

variables).

Definition 4.2. A dynamic LM-measure ϕ is said to be weakly acceptance (resp. weakly rejection)

time consistent if it is µinf -acceptance (resp. µsup-rejection) time consistent.

Definition 4.2 of time consistency is equivalent to many forms of time consistency studied in

the current literature. Usually, the weak time consistency is considered for dynamic monetary risk

measures on L∞ (cf. [AP11] and references therein); we refer to this case as to the ‘classical weak

time consistency.’ It was observed in [AP11] that in the classical weak time consistency framework,

weak acceptance (resp. weak rejection) time consistency is equivalent to the statement that for any

X ∈ Lp and s > t, we get

ϕs(X) ≥ 0 ⇒ ϕt(X) ≥ 0, (resp. ≤). (4.1)

This observation was the motivation for our definition of weak acceptance (resp. weak rejection)

time consistency, and the next proposition explains why so.

Proposition 4.3. Let ϕ be a dynamic LM-measure. The following conditions are equivalent

1) ϕ is weakly acceptance time consistent.

2) For any X ∈ Lp, s, t ∈ T, s > t, and mt ∈ L̄0
t ,

ϕs(X) ≥ mt ⇒ ϕt(X) ≥ mt.

If additionally ϕ is a normalized dynamic monetary utility measure9, then the above conditions are

equivalent to

3) For any X ∈ Lp and s, t ∈ T, s > t,

ϕs(X) ≥ 0 ⇒ ϕt(X) ≥ 0.
8See Remark 3.4 for the comment about notation.
9i.e ϕt(0) = 0 and ϕt(X + ct) = ϕt(X) + ct for any t ∈ T, X ∈ Lp and ct ∈ L∞

t .
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Similar result holds true for the weak rejection time consistency.

Property 2) in Proposition 4.3 was also suggested as the notion of (weak) acceptance and (weak)

rejection time consistency in the context of scale invariant measures (cf. [BBN14, BCZ14]).

In many papers studying risk measurement theory (cf. [DS05] and references therein), the weak

form of time consistency is defined using dual approach to the measurement of risk. Rather than

directly updating the level of preferences m, as in our approach, in the dual approach the level of

preference is updated indirectly by manipulating probabilistic scenarios and explaining the update

procedure by using so called pasting property (see e.g. [DS05, Def. 9]). As shown in the next result,

our update rule related to weak form of time consistency admits dual representation, allowing us

to link our definition with the dual approach.

Proposition 4.4. For any m ∈ L̄0 and t ∈ T, we have

µinf
t (m) = ess inf

Z∈Pt

E[Zm|Ft], (4.2)

where Pt := {Z ∈ L0 | Z ≥ 0, E[Z|Ft] = 1}. Similar result is true for ess suptm.

In (4.2), the random variables Z ∈ Pt may be treated as the Radon-Nikodym derivatives with

resect to P of some probability measures Q such that Q ≪ P and Q|Ft = P |Ft . The family

Pt may thus be thought of as the family of all possible Ft-conditional probabilistic scenarios.

Accordingly, µinf
t (m) represents the Ft-conditional worst-case preference update with respect to all

such scenarios. Note that by combining Propositions 3.6 and 4.4, we obtain that weak acceptance

time consistency of ϕ is equivalent to the condition

ϕt(X) ≥ ess inf
Z∈Pt

E[Zϕs(X)|Ft], (4.3)

which is a starting point for almost all robust definitions of weak time consistency, for ϕ’s that

admit dual representation [DS05].

As next result shows, the weak time consistency is indeed one of the weakest forms of time

consistency, being implied by any other concept of time consistency generated by a projective rule.

Proposition 4.5. Let ϕ be a dynamic LM-measure and let µ be a projective update rule. If ϕ is µ-

acceptance (resp. µ-rejection) time consistent, then ϕ is weakly acceptance (resp. weakly rejection)

time consistent.

In particular, recall that time consistency is preserved under monotone transformations, Re-

mark 3.7. Thus, for any strictly monotone function g : R̄ → R̄ , if ϕ is weakly acceptance (resp.

weakly rejection) time consistent, then {g◦ϕt}t∈T also is weakly acceptance (resp. weakly rejection)

time consistent.

4.2 Weak and Semi-weak time consistency for stochastic processes

In this subsection we introduce and discuss the concept of semi-weak time consistency for stochastic

processes. Thus, we take X = V
p, for a fixed p ∈ {0, 1,∞}. As it will turn out, in the case of
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random variables semi-weak time consistency coincides with weak time consistency; that is why we

omitted discussion of semi-weak consistency in the previous section.

To provide a better perspective for the concept of semi-weak time consistency, we start with

the definition of weak time consistency for stochastic processes, which transfers directly from the

case of random variables by using (3.5).

Definition 4.6. Let ϕ be a dynamic LM-measure. We say that ϕ is weakly acceptance (resp.

weakly rejection) time consistent for stochastic processes if it is one step µ-acceptance (resp. one

step µ∗-rejection) time consistent, where the update rule is given by

µt,t+1(m,V ) = µinf
t (m) + Vt (resp. µ∗

t,t+1(m,V ) = µsup
t (m) + Vt).

As mentioned earlier, the update rule, and consequently weak time consistency for stochastic

processes, depends also on the value of the process (the dividend paid) at time t. If tomorrow, at

time t + 1, we accept X ∈ V
p at level greater than mt+1 ∈ Ft+1, then today at time t, we will

accept X at least at level ess inftmt+1 (i.e. the worst level of mt+1 adapted to the information Ft)

plus the dividend Vt received today.

For counterparts of Propositions 4.3 and 4.5 for the case of stochastic processes see [BCP16].

As it was shown in [BCZ14], none of the existing, at that time, forms of time consistency were

suitable for scale invariant maps, such as acceptability indices. In fact, even the weak acceptance

and the weak rejection time consistency for stochastic processes are too strong in case of acceptabil-

ity indices. Because of that, we need a weaker notion of time consistency, which we will refer to as

semi-weak acceptance and semi-weak rejection time consistency. These notions of time consistency

are suited precisely for acceptability indices, and we refer the reader to [BCZ14] for a detailed

discussion on time consistency for acceptability indices and their dual representations10.

Definition 4.7. Let ϕ be a dynamic LM-measure (for processes). Then ϕ is said to be:

• Semi-weakly acceptance time consistent if it is one step µ-acceptance time consistent, where

the update rule is given by

µt,t+1(m,V ) = 1{Vt≥0}µ
inf
t (m) + 1{Vt<0}(−∞).

• Semi-weakly rejection time consistent if it is one step µ′-rejection time consistent, where the

update rule is given by

µ′
t,t+1(m,V ) = 1{Vt≤0}µ

sup
t (m) + 1{Vt>0}(+∞).

It is straightforward to check that weak acceptance/rejection time consistency for stochastic

processes always implies semi-weak acceptance/rejection time consistency.

Next, we will show that the definition of semi-weak time consistency is indeed equivalent to the

time consistency introduced in [BCZ14], and later studied in [BBN14, BCC15].

10In [BCZ14] the authors combined both semi-weak acceptance and rejection time consistency into one single

definition and call it time consistency.
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Proposition 4.8. Let ϕ be a dynamic LM-measure on V
p . The following conditions are equivalent.

1) ϕ is semi-weakly acceptance time consistent, i.e. for all V ∈ V
p, t ∈ T, t < T , and mt ∈ L̄0

t ,

ϕt+1(V ) ≥ mt+1 ⇒ ϕt(V ) ≥ 1{Vt≥0} ess inft(mt+1) + 1{Vt<0}(−∞).

2) For all V ∈ V
p and t ∈ T, t < T , ϕt(V ) ≥ 1{Vt≥0} ess inft(ϕt+1(V )) + 1{Vt<0}(−∞).

3) For all V ∈ V
p, t ∈ T, t < T , and mt ∈ L̄0

t , such that Vt ≥ 0 if ϕt+1(V ) ≥ mt, then ϕt(V ) ≥ mt.

Similar result is true for semi-weak rejection time consistency.

Property 3) in Proposition 4.8 illustrates best the financial meaning of semi-weak acceptance

time consistency: if tomorrow we accept the dividend stream V ∈ V
p at level mt, and if we get a

positive dividend Vt paid today at time t, then today we accept the cash flow V at least at level

mt as well. Similar interpretation is valid for semi-weak rejection time consistency.

The next two results give an important (dual) connection between cash additive risk measures

and acceptability indices. In particular, these results shed light on the relation between time

consistency property of dynamic acceptability indices, represented by the family {αt}t∈T below,

and time consistency of the corresponding family {φx}x∈R+
, where φx = {φx

t }t∈T is a dynamic risk

measure (for any x ∈ R+).

Proposition 4.9. Let {φx}x∈R+
be a decreasing family of dynamic LM-measures11. Assume that

for each x ∈ R+, {φ
x
t }t∈T is weakly acceptance (resp. weakly rejection) time consistent. Then, the

family {αt}t∈T of maps αt : V
p → L̄0

t defined by12

αt(V ) := ess sup
x∈R+

{x1{φx
t (V )≥0}}, (4.4)

is a semi-weakly acceptance (resp. semi-weakly rejection) time consistent dynamic LM-measure.

Observe that a version of αt(V ) is given as

αt(V )(ω) = sup{x ∈ R+ : φx
t (V )(ω) ≥ 0}. (4.5)

As the representation (4.5) is more convenient than (4.4), it will be used in the proofs given in the

Appendix.

Proposition 4.10. Let {αt}t∈T be a dynamic LM-measure, which is independent of the past and

translation invariant13. Assume that {αt}t∈T is semi-weakly acceptance (resp. semi-weakly rejec-

tion) time consistent. Then, for any x ∈ R+, the family {φx
t }t∈T defined by

φx
t (V ) = ess inf

c∈R
{c1{αt(V−c1{t})≤x}}, (4.6)

is a weakly acceptance (resp. weakly rejection) time consistent dynamic LM-measure.

11A family, indexed by x ∈ R+, of maps {φx
t }t∈T, will be called decreasing, if φx

t (X) ≤ φ
y
t (X) for all X ∈ X , t ∈ T

and x, y ∈ R+, such that x ≥ y.
12Note that the map defined in (4.4) is Ft-measurable as the essential supremum over an uncountable family of

Ft-measurable random variables. See Appendix A.1.
13We say that α is translation invariant if αt(V + m1{t}) = αt(V + m1{s}), for any m ∈ L

p
t and V ∈ V

p,

where 1{t} corresponds to process equal to 1 a time t and 0 elsewhere; We say that α is independent of the past if

αt(V ) = αt((0, . . . , 0, Vt, . . . , VT )), for any V ∈ V
p.
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In the proofs given in the Appendix, we will use the representation

φx
t (V )(ω) = inf{c ∈ R : αt(V − c1{t})(ω) ≤ x}, (4.7)

rather than (4.6), as it is more convenient.

This type of dual representations, i.e. (4.4) and (4.6), first appeared in [CM09], where the

authors studied static (one period of time) scale invariant measures. Subsequently, in [BCZ14], the

authors extended these results to the case of stochastic processes with special emphasis on time

consistency property. In contrast to [BCZ14], we consider an arbitrary probability space, not just

a finite one.

We conclude this section by presenting two examples that illustrate the concept of semi-weak

time consistency and show the connection between maps introduced in Propositions 4.9 and 4.10.

For more examples see [BCP16].

Example 4.11 (Dynamic Gain Loss Ratio). Dynamic Gain Loss Ratio (dGLR) is a popular

measure of performance, which essentially improves on some drawbacks of Sharpe Ratio (such

as penalizing for positive returns), and it is equal to the ratio of expected return over expected

losses. Formally, for X = V
1, dGLR is defined as

ϕt(V ) :=





E[
∑T

i=t Vi|Ft]

E[(
∑T

i=t Vi)−|Ft]
, if E[

∑T
i=t Vi|Ft] > 0,

0, otherwise.
(4.8)

For various properties and dual representations of dGLR see for instance [BCZ14, BCDK16]. In

[BCZ14], the authors showed that dGLR is both semi-weakly acceptance and semi-weakly rejection

time consistent, although assuming that Ω is finite. For sake of completeness we will show here

that dGLR is semi-weakly acceptance time consistency; semi-weakly rejection time consistency is

left to an interested reader as an exercise.

Assume that t ∈ T \ {T}, and V ∈ V
p. In view of Proposition 3.6, it is enough to show that

ϕt(V ) ≥ 1{Vt≥0} ess inft(ϕt+1(V )) + 1{Vt<0}(−∞). (4.9)

On the set {Vt < 0} the inequality (4.9) is trivial. Since ϕt is non-negative and local, without loss

of generality, we may assume that ess inft(ϕt+1(V )) > 0. Moreover, ϕt+1(V ) ≥ ess inft(ϕt+1(V )),

which implies

E[

T∑

i=t+1

Vi|Ft+1] ≥ ess inft(ϕt+1(V )) · E[(

T∑

i=t+1

Vi)
−|Ft+1]. (4.10)

Using (4.10) we obtain

1{Vt≥0}E[

T∑

i=t

Vi|Ft] ≥ 1{Vt≥0}E[E[

T∑

i=t+1

Vi|Ft+1]|Ft]

≥ 1{Vt≥0} ess inft(ϕt+1(V )) · E[1{Vt≥0}E[(
T∑

i=t+1

Vi)
−|Ft+1]|Ft]

≥ 1{Vt≥0} ess inft(ϕt+1(V )) · E[(

T∑

i=t

Vi)
−|Ft]. (4.11)
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Note that ess inft(ϕt+1(V )) > 0 implies that ϕt+1(V ) > 0, and thus E[
∑T

i=t+1 Vi|Ft+1] > 0. Hence,

on the set {Vt ≥ 0}, we have

1{Vt≥1}E[
T∑

i=t

Vi|Ft] ≥ 1{Vt≥1}E[E[
T∑

i=t+1

Vi|Ft+1]|Ft] > 0.

Combining this and (4.11), we conclude the proof.

Example 4.12 (Dynamic RAROC for processes). Risk Adjusted Return On Capital (RAROC)

is a popular scale invariant measure of performance; see [CM09] for a study of static RAROC,

and [BCZ14] for its extension to the dynamic setup. We consider the space X = V
1, and we fix

ε ∈ (0, 1). Dynamic RAROC, at level ε, is the family {αt}t∈T, with αt given by

αt(V ) :=

{
E[

∑T
i=t Vi|Ft]

−ρεt (V ) if E[
∑T

i=t Vi|Ft] > 0,

0 otherwise,
(4.12)

where ρεt (V ) = ess inf
Z∈Dε

t

E[Z
∑T

i=t Vi|Ft], and where the family of sets {Dε
t }t∈T is defined by14

Dε
t := {Z ∈ L1 : 0 ≤ Z ≤ ε−1, E[Z|Ft] = 1}. (4.13)

We use the convention αt(V ) = +∞, if ρt(V ) ≥ 0. In [BCZ14] it was shown that dynamic RAROC

is a dynamic acceptability index for processes. Moreover, it admits the following dual representation

(cf. (4.5)): for any fixed t ∈ T,

αt(V ) = sup{x ∈ R+ : φx
t (V ) ≥ 0},

where φx
t (V ) = ess inf

Z∈Bx
t

E[Z(
∑T

i=t Vi)|Ft], with

Bx
t = {Z ∈ L1 : Z =

1

1 + x
+

x

1 + x
Z1, for some Z1 ∈ Dε

t}.

It is easy to check, that the family {φx
t }t∈T is a dynamic coherent risk measure for processes, see

[BCZ14] for details. Since 1 ∈ Dε
t , we also get that {φx

t }t∈T is increasing in x ∈ R+.

Moreover, it is known that {φx
t }t∈T is weakly acceptance time consistent but not weakly re-

jection time consistent, for any fixed x ∈ R+ (see [BCP16, Example 1]). Thus, using Proposi-

tions 4.9 and 4.10 we immediately conclude that {φx
t }t∈T is semi-weakly acceptance time consistent

and not semi-weakly rejection time consistent.

A Appendix

A.1 Conditional expectation and essential supremum/infimum on L̄
0

First, we will present some elementary properties of the generalized conditional expectation.

14The family {Dε
t }t∈T represents risk scenarios, which define the dynamic version of the conditional value at risk

at level ε (cf. [Che10]).
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Proposition A.1. For any X,Y ∈ L̄0 and s, t ∈ T, s > t we get

1) E[λX|Ft] ≤ λE[X|Ft] for λ ∈ L0
t , and E[λX|Ft] = λE[X|Ft] for λ ∈ L0

t , λ ≥ 0;

2) E[X|Ft] ≤ E[E[X|Fs]|Ft], and E[X|Ft] = E[E[X|Fs]|Ft] for X ≥ 0;

3) E[X|Ft] + E[Y |Ft] ≤ E[X + Y |Ft], and E[X|Ft] + E[Y |Ft] = E[X + Y |Ft] if X,Y ≥ 0;

Remark A.2. All inequalities in Proposition A.1 can be strict. Assume that t = 0 and k, s ∈ T,

k > s > 0, and let ξ ∈ L0
k be such that ξ = ±1, ξ is independent of Fs, and P (ξ = 1) = P (ξ =

−1) = 1/2. We consider Z ∈ L0
s such that Z ≥ 0, and E[Z] = ∞. By taking λ = −1, X = ξZ and

Y = −X, we get strict inequalities in 1), 2) and 3).

Next, we will discuss some important features of conditional essential infimum and conditional

essential supremum, in the context of L̄0.

Before that, we will recall the definition of conditional essential infimum for bounded random

variables. For X ∈ L∞ and t ∈ T, we will denote by ess inftX the unique (up to a set of probability

zero), Ft-measurable random variable, such that for any A ∈ Ft, the following equality holds true

ess inf
ω∈A

X = ess inf
ω∈A

(ess inf tX). (A.1)

We will call this random variable the Ft-conditional essential infimum of X. We refer the reader to

[BCJ03] for a detailed proof of the existence and uniqueness of the conditional essential infimum.

We will call ess supt(X) := − ess inft(−X) the Ft-conditional essential supremum of X ∈ L∞.

As stated in the preliminaries, we extend these two notions to the space L̄0. For any t ∈ T and

X ∈ L̄0, we define the Ft-conditional essential infimum by

ess inftX := lim
n→∞

[
ess inft(X

+ ∧ n)
]
− lim

n→∞

[
ess supt(X

− ∧ n)
]
, (A.2)

and respectively we put ess supt(X) := − ess inft(−X).

Remark A.3. Extending the function arctan to [−∞,∞] by continuity, and observing that arctanX ∈

L∞ for any X ∈ L̄0, one can naturally extend conditional essential infimum to L̄0 by setting

ess inftX = arctan−1[ess inft(arctanX)].

We proceed with the following result:

Proposition A.4. For any X,Y ∈ L̄0, s, t ∈ T, s ≥ t, and A ∈ Ft we have

1) ess infω∈AX = ess infω∈A(ess inf tX);

2) If ess infω∈A X = ess infω∈A U for some U ∈ L̄0
t , then U = ess inftX;

3) X ≥ ess inftX;

4) If Z ∈ L̄0
t , is such that X ≥ Z, then ess inftX ≥ Z;
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5) If X ≥ Y , then ess inftX ≥ ess inft Y ;

6) 1A ess inftX = 1A ess inft(1AX);

7) ess infsX ≥ ess inftX;

The analogous results are true for {ess supt}t∈T.

The proof for the case X,Y ∈ L∞ can be found in [BCJ03]. Since for any n ∈ N and X,Y ∈ L̄0

we get X+ ∧ n ∈ L∞, X− ∧ n ∈ L∞ and X+ ∧ X− = 0, the extension of the proof to the case

X,Y ∈ L̄0 is straightforward, and we omit it here.

Remark A.5. Similarly to [BCJ03], the conditional essential infimum ess inft(X) can be alternatively

defined as the largest Ft-measurable random variable, which is smaller than X, i.e. properties 3)

and 4) from Proposition A.4 are characteristic properties for conditional essential infimum.

Next, we define the generalized versions of ess inf and ess sup of a (possibly uncountable) family

of random variables: For {Xi}i∈I , where Xi ∈ L̄0, we let

ess inf
i∈I

Xi := lim
n→∞

[
ess inf i∈I(X

+
i ∧ n)

]
− lim

n→∞

[
ess supi∈I(X

−
i ∧ n)

]
. (A.3)

Note that, in view of [KS98, Appendix A], ess infi∈I Xi ∧ n and ess supi∈I Xi ∧ n are well defined,

so that ess inf i∈I Xi is well defined. It needs to be observed that the operations of the right hand

side of (A.3) preserve measurability. In particular, if Xi ∈ Ft for all i ∈ I, then ess inf i∈I Xi ∈ Ft.

Furthermore, if for any i, j ∈ I, there exists k ∈ I, such that Xk ≤ Xi ∧Xj , then there exists

a sequence in ∈ I, n ∈ N, such that {Xin}n∈N is nonincreasing and ess inf i∈I Xi = infn∈NXin =

limn→∞Xin . Analogous results hold true for ess supi∈I Xi.

A.2 Proofs

Proof of Proposition 3.6.

Proof. Let µ be an update rule.

1) The implication (⇒) follows immediately, by taking in the definition of acceptance time consis-

tency ms = ϕs(X).

(⇐) Assume that ϕt(X) ≥ µt,s(ϕs(X),X), for any s, t ∈ T, s > t, and X ∈ X . Let ms ∈ L̄0
s be

such that ϕs(X) ≥ ms. Using monotonicity of µ, we get ϕt(X) ≥ µt,s(ϕs(X),X) ≥ µt,s(ms,X).

2) The proof is similar to 1).

Proof of Proposition 3.9.

Proof. We do the proof only for acceptance time consistency. The proof for rejection time consis-

tency is analogous.

Step 1. We will show that ϕ is acceptance time consistent with respect to Y, if and only if

1Aϕs(X) ≥ 1Aϕs(Y ) =⇒ 1Aϕt(X) ≥ 1Aϕt(Y ), (A.4)
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for all s ≥ t, X ∈ Lp, Y ∈ Ys and A ∈ Ft. For sufficiency it is enough to take A = Ω. For necessity

let us assume that

1Aϕs(X) ≥ 1Aϕs(Y ). (A.5)

Using locality of ϕ, we get that (A.5) is equivalent to

1Aϕs(1AX + 1AcY ) + 1Acϕs(1AX + 1AcY ) ≥ 1Aϕs(Y ) + 1Acϕs(Y ),

and consequently to ϕs(1AX + 1AcY ) ≥ ϕs(Y ). Thus, using (3.7), we get

ϕs(1AX + 1AcY ) ≥ ϕs(Y ) =⇒ ϕt(1AX + 1AcY ) ≥ ϕt(Y ).

By the same arguments we get that ϕt(1AX+1AcY ) ≥ ϕt(Y ) is equivalent to 1Aϕt(X) ≥ 1Aϕt(Y ),

which concludes this part of the proof.

Step 2. Now we demonstrate that ϕ is acceptance time consistent with respect to Y if and only if

ϕ is acceptance time consistent with respect to the family Ŷ = {Ŷt}t∈T of benchmark sets given by

Ŷt := {1AY1 + 1AcY2 : Y1, Y2 ∈ Yt, A ∈ Ft}. (A.6)

Noting that for any t ∈ T we have Yt ⊆ Ŷt, we get the sufficiency part. For necessity let us assume

that

ϕs(X) ≥ ϕs(Y ), (A.7)

for some Y ∈ Ŷt. In view of (A.6) we conclude that there exists A ∈ Ft and Y1, Y2 ∈ Ys, such that

Y = 1AY1 + 1AcY2. Consequently, using locality of ϕ, and the fact that (A.7) is equivalent to

1Aϕs(X) + 1Acϕs(X) ≥ 1Aϕs(1AY1 + 1AcY2) + 1Acϕs(1AY1 + 1AcY2),

we deduce that (A.7) is equivalent to

1Aϕs(X) + 1Acϕs(X) ≥ 1Aϕs(Y1) + 1Acϕs(Y2).

As the sets A and Ac are disjoint, using (A.4) twice, we get

1Aϕt(X) + 1Acϕt(X) ≥ 1Aϕt(Y1) + 1Acϕt(Y2).

By similar arguments as before, we get that the above inequality is equivalent to ϕt(X) ≥ ϕt(Y ),

that concludes this part of the proof.

Step 3. For any ms ∈ L̄0
s, we set

µt,s(ms) := ess sup
A∈Ft

[
1A ess sup

Y ∈Y−
A,s

(ms)

ϕt(Y ) + 1Ac(−∞)
]
,

where Y−
A,s(ms) := {Y ∈ Ŷs : 1Ams ≥ 1Aϕs(Y )}, and show that the corresponding family of maps

µ is a projective update rule.
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Adaptiveness. For anyms ∈ L̄0
s, ess sup of the set of Ft-measurable random variables {ϕt(Y )}

Y ∈Y−
A,s

(ms)

is Ft-measurable (see [KS98], Appendix A), which implies that µt,s(ms) ∈ L̄0
t .

Monotonicity. If ms ≥ m′
s, then for any A ∈ Ft we get Y−

A,s(ms) ⊇ Y−
A,s(m

′
s), which implies

µt,s(ms) ≥ µt,s(m
′
s).

Locality. Let B ∈ Ft, and ms ∈ L̄0
s. It is enough to consider A ∈ Ft, such that Y−

A,s(ms) 6= ∅, as

otherwise we get [
1A ess sup

Y ∈Y−
A,s

(ms)

ϕt(Y ) + 1Ac(−∞)
]
≡ −∞.

For any such A ∈ Ft, we get

1A∩B ess sup
Y ∈Y−

A,s
(ms)

ϕt(Y ) = 1A∩B ess sup
Y ∈Y−

A∩B,s
(ms)

ϕt(Y ). (A.8)

Indeed, since Y−
A,s(ms) ⊆ Y−

A∩B,s(ms), we have

1A∩B ess sup
Y ∈Y−

A,s
(ms)

ϕt(Y ) ≤ 1A∩B ess sup
Y ∈Y−

A∩B,s
(ms)

ϕt(Y ).

On the other hand, for any Y ∈ Y−
A∩B,s(ms), and for a fixed Z ∈ Y−

A,s(ms), in view of (A.6), we

obtain

1BY + 1BcZ ∈ Y−
A,s(ms).

Thus, using locality of ϕt, we deduce

1A∩B ess sup
Y ∈Y−

A∩B,s
(ms)

ϕt(Y ) = 1A∩B ess sup
Y ∈Y−

A∩B,s
(ms)

1Bϕt(1BY + 1BcZ) ≤ 1A∩B ess sup
Y ∈Y−

A,s
(ms)

ϕt(Y ),

which proves (A.8). Now, note that Y−
A∩B,s(ms) = Y−

A∩B,s(1Bms), and thus

1A ess sup
Y ∈Y−

A∩B,s
(ms)

ϕt(Y ) = 1A ess sup
Y ∈Y−

A∩B,s
(1Bms)

ϕt(Y ). (A.9)

Combining (A.8), (A.9), and the fact that Y−
A,s(ms) 6= ∅ implies Y−

A,s(1Bms) 6= ∅, we obtain the

following chain of equalities

1Bµt,s(ms) = 1B ess sup
A∈Ft

[
1A ess sup

Y ∈Y−
A,s

(ms)

ϕt(Y ) + 1Ac(−∞)
]

= 1B ess sup
A∈Ft

[
1A∩B ess sup

Y ∈Y−
A,s

(ms)

ϕt(Y ) + 1Ac∩B(−∞)
]

= 1B ess sup
A∈Ft

[
1A∩B ess sup

Y ∈Y−
A∩B,s

(ms)

ϕt(Y ) + 1Ac∩B(−∞)
]

= 1B ess sup
A∈Ft

[
1A∩B ess sup

Y ∈Y−
A∩B,s

(1Bms)

ϕt(Y ) + 1Ac∩B(−∞)
]

= 1B ess sup
A∈Ft

[
1A ess sup

Y ∈Y−
A,s

(1Bms)

ϕt(Y ) + 1Ac(−∞)
]

= 1Bµt,s(1Bms).
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Thus, µ is an X-invariant update rule.

Step 4. By locality of ϕ and (A.4), we note that acceptance time consistency with respect to Y is

equivalent to

ϕt(X) ≥ ess sup
A∈Ft

[
1A ess sup

Y ∈Y−
A,s

(ϕs(X))

ϕt(Y ) + 1Ac(−∞)
]
. (A.10)

Thus, using (3.4), we deduce that ϕ satisfies (3.7) if and only if ϕ is time consistent with respect

to the update rule µ. Since (3.4) is equivalent to (A.10), we conclude the proof.

Proof of Proposition 4.1.

Proof. Monotonicity and locality of µinf is a straightforward implication of Proposition A.4. Thus,

µinf is an sX-invariant update rule. The projectivity comes straight from the definition (see Re-

mark A.5).

Proof of Proposition 4.3.

Proof. We will only show the proof for acceptance consistency. The proof for rejection consistency

is similar. Let ϕ be a dynamic LM-measure.

1) ⇒ 2). Assume that ϕ is weakly acceptance consistent, and let mt ∈ L̄0
t be such that ϕs(X) ≥ mt.

Then, using Proposition 3.6, we get ϕt(X) ≥ ess inft(ϕs(X)) ≥ ess inft(mt) = mt, and hence 2) is

proved.

2) ⇒ 1). By the definition of conditional essential infimum, ess inft(ϕs(X)) ∈ L̄0
t , for any X ∈ Lp,

and t, s ∈ T . Moreover, by Proposition A.4.(3), we have that ϕs(X) ≥ ess inft(ϕs(X)). Using 2)

withmt = ess inft(ϕs(X)), we immediately obtain ϕt(X) ≥ ess inft(ϕs(X)). Due to Proposition 3.6,

this concludes the proof.

2) ⇔ 3). Clearly 2) ⇒ 3). Thus, it remains to show the converse implication. Since ϕ is a

monetary utility measure, then invoking locality of ϕ, we conclude that for any mt ∈ L̄0
t , such that

ϕs(X) ≥ mt, and for any n ∈ N, we have

ϕs(1{mt∈(−n,n)}(X −mt)) ≥ 0.

Now, in view of 3), we get that ϕt(1{mt∈(−n,n)}(X −mt)) ≥ 0, and consequently

1{mt∈(−n,n)}ϕt(X) ≥ 1{mt∈(−n,n)}mt.

Thus, 2) is proved on the Ft-measurable set {mt ∈ (−∞,∞)} =
⋃

n∈N{mt ∈ (−n, n)}. On the set

{mt = −∞} the inequality ϕt(X) ≥ mt is trivial. Finally, on the set {mt = ∞}, in view of the

monotonicity of ϕ, we have that ϕs(X) = ϕt(X) = ∞, which implies 2). This concludes the proof.
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Proof of Proposition 4.4.

Proof. Let a family µ = {µt}t∈T of maps µt : L̄
0 → L̄0

t be given by

µt(m) = ess inf
Z∈Pt

E[Zm|Ft] (A.11)

Before proving (4.2), we will need to prove some auxiliary facts about µ.

First, let us show that µ is local and monotone. Let t ∈ T. Monotonicity is straightforward.

Indeed, let m,m′ ∈ L̄0 be such that m ≥ m′. For any Z ∈ Pt, using the fact that Z ≥ 0,

we get Zm ≥ Zm′. Thus, E[Zm|Ft] ≥ E[Zm′|Ft] and consequently ess infZ∈Pt E[Zm|Ft] ≥

ess infZ∈Pt E[Zm′|Ft]. Next, for any A ∈ Ft and m ∈ L̄0, by invoking Proposition A.1, convention

0 · ±∞ = 0, and the fact that for any Z1, Z2 ∈ Pt we have 1AZ1 + 1AcZ2 ∈ Pt, we get

1Aµt(m) = 1A ess inf
Z∈Pt

E[Zm|Ft]

= 1A ess inf
Z∈Pt

(E[(1AZ)m|Ft] + E[(1AcZ)m|Ft])

= 1A ess inf
Z∈Pt

E[(1AZ)m|Ft] + 1A ess inf
Z∈Pt

E[(1AcZ)m|Ft]

= 1A ess inf
Z∈Pt

E[Z(1Am)|Ft] + 1A ess inf
Z∈Pt

1AcE[Zm|Ft]

= 1Aµt(1Am),

which proves locality.

Secondly, let us prove that

m ≥ µt(m), (A.12)

for any m ∈ L̄0. Let m ∈ L0. For ε ∈ (0, 1) let15

Zε := 1{m≤q+t (ε)}E[1{m≤q+t (ε)}|Ft]
−1. (A.13)

where q+t (ε) is Ft-conditional (upper) ε quantile of m, defined as

q+t (ε) := ess sup{Y ∈ L0
t | E[1{m≤Y }|Ft] ≤ ε}.

For ε ∈ (0, 1), noticing that Zε < ∞, due to convention 0 · ∞ = 0 and the fact that

{E[1{m≤q+t (ε)}|Ft] = 0} ⊆ {1{m≤q+t (ε)} = 0} ∪B,

for some B, such that P [B] = 0, we conclude that Zε ∈ Pt.

Moreover, by the definition of q+t (ε), there exists a sequence Yn ∈ L0
t , such that Yn ր q+t (ε),

and

E[1{m<Yn} | Ft] ≤ ε.

Consequently, by monotone convergence theorem, we have

E[1{m<q+t (ε)} | Ft] ≤ ε.

15In the risk measure framework, it might be seen as the risk minimazing scenario for conditional CV@Rε.
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Hence, we deduce

P [m < q+t (ε)] = E[1{m<q+t (ε)}] ≤ E[E[1{m<q+t (ε)}|Ft]] ≤ E[ε] = ε,

which implies that

P [m ≥ q+t (ε)] ≥ (1− ε). (A.14)

On the other hand

1{m≥q+t (ε)}m ≥ 1{m≥q+t (ε)}q
+
t (ε) = 1{m≥q+t (ε)}q

+
t (α)E[Zε|Ft]

≥ 1{m≥q+t (ε)}E[Zεq
+
t (ε)|Ft] ≥ 1{m≥q+t (ε)}E[Zεm|Ft],

which combined with (A.14), implies that

P
[
m ≥ E[Zεm|Ft]

]
≥ 1− ε. (A.15)

Hence, using (A.15), and the fact that

E[Zεm|Ft] ≥ µt(m), ε ∈ (0, 1),

we get that

P [m ≥ µt(m)] ≥ 1− ε.

Letting ε → 0, we conclude that (A.12) holds true for m ∈ L0.

Now, assume that m ∈ L̄0, and let A := {E[1{m=−∞}|Ft] = 0}. Similar to the arguments

above, we get

1Am ≥ µt(1Am).

Since µt(0) = 0, and due to locality of µt, we deduce

1Am ≥ µt(1Am) = 1Aµt(1Am) = 1Aµt(m). (A.16)

Moreover, taking Z = 1 in (A.11), we get

1Acm ≥ 1Ac(−∞) = 1AcE[m|Ft] ≥ 1Acµt(m). (A.17)

Combining (A.16) and (A.17), we conclude the proof of (A.12) for all m ∈ L̄0.

Finally, we will show that µ defined as in (A.11) satisfies property 1) from Proposition A.4, which

will consequently imply equality (4.2). Let m ∈ L̄0 and A ∈ Ft. From the fact that m ≥ µt(m),

we get

ess inf
ω∈A

m ≥ ess inf
ω∈A

µt(m).

On the other hand, we know that 1A ess infω∈A m ≤ 1Am and 1A ess infω∈A m ∈ L̄0
t , so

ess inf
ω∈A

m = ess inf
ω∈A

(1A ess inf
ω∈A

m) = ess inf
ω∈A

(1Aµt(1A ess inf
ω∈A

m)) ≤

≤ ess inf
ω∈A

(1Aµt(1Am)) = ess inf
ω∈A

(1Aµt(m)) = ess inf
ω∈A

µt(m)

which proves the equality. The proof for ess supt is similar and we omit it here. This concludes the

proof.
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Proof of Proposition 4.5.

Proof. Using Proposition A.4, for any t, s ∈ T, s > t, and any X ∈ Lp, we get

ϕt(X) ≥ µt(ϕs(X)) ≥ µt(ess infs(ϕs(X))) ≥ µt(ess inft(ϕs(X))) = ess inft(ϕs(X)).

The proof for rejection time consistency is similar.

Proof of Proposition 4.8.

Proof. We will only show the proof for acceptance consistency. The proof for rejection consistency

is similar. Let ϕ be a dynamic LM-measure.

1) ⇔ 2). This is a direct implication of Proposition 3.6.

2) ⇒ 3). Assume that ϕ is semi-weakly acceptance consistent. Let V ∈ V
p and mt ∈ L̄0

t be such

that ϕt+1(V ) ≥ mt and Vt ≥ 0. Then, by monotonicity of µinf
t , we have

ϕt(V ) ≥ 1{Vt≥0}µ
inf
t (ϕt+1(V )) ≥ µinf

t (mt) = ess inft(mt) = mt,

and hence 3) is proved.

3) ⇒ 2). Let V ∈ V
p. We need to show that

ϕt(V ) ≥ 1{Vt≥0}µ
inf
t (ϕt+1(V )) + 1{Vt<0}(−∞). (A.18)

On the set {Vt < 0} inequality (A.18) is trivial. We know that

(1{Vt≥0} ·t V )t ≥ 0 and ϕt+1(1{Vt≥0} ·t V ) ≥ ess inft ϕt+1(1{Vt≥0} ·t V ).

Thus, for mt = ess inft ϕt+1(1{Vt≥0} ·t V ), using locality of ϕ and µinf as well as 3), we get

1{Vt≥0}ϕt(V ) = 1{Vt≥0}ϕt(1{Vt≥0} ·t V ) ≥ 1{Vt≥0}mt = 1{Vt≥0}µ
inf
t (ϕt+1(V )),

and hence (A.18) is proved on the set {Vt ≥ 0}. This conclude the proof of 2).

Proof of Proposition 4.9

Proof. The proof of locality and monotonicity of (4.4) is straightforward (see [BCZ14] for details).

Let us assume that {φx
t }t∈T is weakly acceptance time consistent. Using counterpart of Proposi-

tion 4.3 for stochastic processes (see [BCP16]) we get

1{Vt≥0}αt(V ) = 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0}φ

x
t (V ) ≥ 0}

)

≥ 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0}[ess inft φ

x
t+1(V ) + Vt] ≥ 0}

)

≥ 1{Vt≥0}

(
sup{x ∈ R+ : 1{Vt≥0} ess inft φ

x
t+1(V ) ≥ 0}

)

= 1{Vt≥0} ess inft

(
sup{x ∈ R+ : 1{Vt≥0}φ

x
t+1(V ) ≥ 0}

)

= 1{Vt≥0} ess inft αt+1(V ).
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This leads to

αt(V ) ≥ 1{Vt≥0} ess inft αt+1(V ) + 1{Vt<0}(−∞),

which, by Proposition 4.8, is equivalent to the semi-weak rejection time consistency. The proof of

the weak acceptance time consistency is similar.

Proof of Proposition 4.10

Proof. The proof of locality and monotonicity of (4.6) is straightforward (see [BCZ14] for details).

Let us prove the weak acceptance time consistency. Assume that {αt}t∈T is semi-weakly acceptance

time consistent. Using Proposition 3.6 we get

φx
t (V ) = inf{c ∈ R : αt(V − c1{t}) ≤ x}

= inf{c ∈ R : αt(V − c1{t+1}) ≤ x}

= inf{c ∈ R : αt(V − c1{t+1} − Vt1{t}) ≤ x}+ Vt

≥ inf{c ∈ R : 1{0≥0} ess inft αt+1(V − c1{t+1} − Vt1{t}) + 1{0<0}(−∞) ≤ x}+ Vt

= inf{c ∈ R : ess inft αt+1(V − c1{t+1}) ≤ x}+ Vt

= ess inft
(
inf{c ∈ R : αt+1(V − c1{t+1}) ≤ x}

)
+ Vt

= ess inft φ
x
t+1(V ) + Vt,

which, is equivalent to the weak acceptance time consistency of φ. The proof of the rejection time

consistency is similar.

Proof of Proposition A.1.

Proof. First note that for any X,Y ∈ L̄0, λ ∈ L0
t , such that X,Y, λ ≥ 0, and for any s, t ∈ T, s > t,

by Monotone Convergence Theorem, and using the convention 0 · ±∞ = 0, we get

E[λX|Ft] = λE[X|Ft]; (A.19)

E[X|Ft] = E[E[X|Fs]|Ft]; (A.20)

E[X|Ft] + E[Y |Ft] = E[X + Y |Ft]. (A.21)

Moreover, for X ∈ L̄0, we also have

E[−X|Ft] ≤ −E[X|Ft]. (A.22)

For the last inequality we used the convention ∞−∞ = −∞.

Next, using (A.19)-(A.22), we will prove the announced results. Assume that X,Y ∈ L̄0.

1) If λ ∈ L0
t , and λ ≥ 0, then, by (A.19) we get

E[λX|Ft] = E[(λX)+|Ft]− E[(λX)−|Ft] = E[λX+|Ft]− E[λX−|Ft] =

= λE[X+|Ft]− λE[X−|Ft] = λE[X|Ft].
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From here, and using (A.22), for a general λ ∈ L0
t , we deduce

E[λX|Ft] = E[1{λ≥0}λX + 1{λ<0}λX|Ft] = 1{λ≥0}λE[X|Ft] + 1{λ<0}(−λ)E[−X|Ft] ≤

≤ 1{λ≥0}λE[X|Ft] + 1{λ<0}λE[X|Ft] = λE[X|Ft].

2) The proof of 2) follows from (A.20) and (A.22); for X ∈ L0 see also the proof in [Che10, Lemma

3.4].

3) On the set {E[X|Ft] = −∞} ∪ {E[Y |Ft] = −∞} the inequality is trivial due to the convention

∞−∞ = −∞. On the other hand the set {E[X|Ft] > −∞}∩{E[Y |Ft] > −∞} can be represented

as the union of the sets {E[X|Ft] > n}∩{E[Y |Ft] > n}, for n ∈ Z, on which the inequality becomes

the equality, due to (A.21).
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[AFP12] B. Acciaio, H. Föllmer, and I. Penner. Risk assessment for uncertain cash flows: model ambiguity,

discounting ambiguity, and the role of bubbles. Finance and Stochastics, 16:669–709, 2012.

[AP11] B. Acciaio and I. Penner. Dynamic risk measures. In G. Di Nunno and B. Øksendal (Eds.),

Advanced Mathematical Methods for Finance, Springer, pages 1–34, 2011.

[BBN14] S. Biagini and J. Bion-Nadal. Dynamic quasi-concave performance measures. Journal of Mathe-

matical Economics, 55:143–153, December 2014.

[BCC15] T.R. Bielecki, I. Cialenco, and T. Chen. Dynamic conic finance via Backward Stochastic Differ-

ence Equations. SIAM J. Finan. Math., 6(1):1068–1122, 2015.

[BCDK16] T.R. Bielecki, I. Cialenco, S. Drapeau, and M. Karliczek. Dynamic assessment indices. Stochas-

tics: An International Journal of Probability and Stochastic Processes, 88(1):1–44, 2016.



A unified approach to time consistency 28

[BCIR13] T.R. Bielecki, I. Cialenco, I. Iyigunler, and R. Rodriguez. Dynamic Conic Finance: Pricing and

hedging via dynamic coherent acceptability indices with transaction costs. International Journal

of Theoretical and Applied Finance, 16(01):1350002, 2013.

[BCJ03] E. N. Barron, P. Cardaliaguet, and R. Jensen. Conditional essential suprema with applications.

Appl. Math. Optim., 48(3):229–253, 2003.

[BCP15] T.R. Bielecki, I. Cialenco, and M. Pitera. Dynamic limit growth indices in discrete time. Stochastic

Models, 31:494–523, 2015.

[BCP16] T.R. Bielecki, I. Cialenco, and M. Pitera. A survey of time consistency of dynamic risk measures

and dynamic performance measures in discrete time: LM-measure perspective. Forthcoming in

Probability, Uncertainty and Quantitative Risk, 2016.

[BCZ14] T.R. Bielecki, I. Cialenco, and Z. Zhang. Dynamic coherent acceptability indices and their

applications to finance. Mathematical Finance, 24(3):411–441, 2014.

[CDK06] P. Cheridito, F. Delbaen, and M. Kupper. Dynamic monetary risk measures for bounded discrete-

time processes. Electron. J. Probab., 11(3):57–106, 2006.

[Che10] A. Cherny. Risk-reward optimization with discrete-time coherent risk. Math. Finance, 20(4):571–

595, 2010.

[CK11] P. Cheridito and M. Kupper. Composition of time-consistent dynamic monetary risk measures

in discrete time. International Journal of Theoretical and Applied Finance, 14(1):137–162, 2011.

[CK13] P. Cheridito and E. Kromer. Reward-Risk Ratio. Journal of Investment Strategies, 3(1):1–16,

2013.

[CL09] P. Cheridito and T. Li. Risk measures on Orlicz hearts. Math. Finance, 19(2):189–214, 2009.

[CM09] A. Cherny and D.B. Madan. New measures for performance evaluation. The Review of Financial

Studies, 22(7):2571–2606, 2009.

[Del06] F. Delbaen. The structure of m-stable sets and in particular of the set of risk neutral measures.
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