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Abstract

In this paper, we consider a finite-horizon Markov decision process (MDP) for which
the objective at each stage is to minimize a quantile-based risk measure (QBRM) of
the sequence of future costs; we call the overall objective a dynamic quantile-based
risk measure (DQBRM). In particular, we consider optimizing dynamic risk measures
where the one-step risk measures are QBRMs, a class of risk measures that includes
the popular value at risk (VaR) and the conditional value at risk (CVaR). Although
there is considerable theoretical development of risk-averse MDPs in the literature, the
computational challenges have not been explored as thoroughly. We propose data-
driven and simulation-based approximate dynamic programming (ADP) algorithms to
solve the risk-averse sequential decision problem. We address the issue of inefficient
sampling for risk applications in simulated settings and present a procedure, based on
importance sampling, to direct samples toward the “risky region” as the ADP algorithm
progresses. Finally, we show numerical results of our algorithms in the context of an
application involving risk-averse bidding for energy storage.

1 Introduction

Sequential decision problems, in the form of Markov decision processes (MDPs), are most
often formulated with the objective of minimizing an expected sum of costs or maximizing
an expected sum of rewards [Puterman, 2014, Bertsekas and Tsitsiklis, 1996, Powell, 2011].
However, it is becoming more and more evident that solely considering the expectation is
insufficient as risk-preferences can vary greatly from application to application. Broadly
speaking, the expected value can fail to be useful in settings containing either heavy-tailed
distributions or rare, but high-impact events. For example, heavy-tailed distributions arise
frequently in finance (electricity prices are well-known to possess this feature; see Byström
[2005], Kim and Powell [2011]). In this case, the mean of the distribution itself may not
necessarily be a good representation of the randomness of the problem; instead, it is likely
useful to introduce a measure of risk on the tail of the distribution as well. The rare event
situation is, in a sense, the inverse case of the heavy-tail phenomenon, but it can also benefit
from a risk measure other than the expectation. To illustrate, certain problems in operations
research can be complicated by critical events that happen with small probability, such as
guarding against stock-outs and large back-orders in inventory problems (see Glasserman
and Liu [1996]) or managing the risk of the failure of a high-value asset (see Enders et al.
[2010]). In these circumstances, the merit of a policy might be measured by the number of
times that a bad event happens over some time horizon.
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One way to introduce risk-aversion into sequential problems is to formulate the objective
using dynamic risk measures [Ruszczyński, 2010]. A rough preview, without formal defini-
tions, of our optimization problem is as follows: we wish to find a policy that minimizes
risk, as assessed by a certain type of dynamic risk measure. The objective can be written
as

min
π∈Π

ρα0

(
Cπ1 + ρα1

(
Cπ2 + · · ·+ ραT−1(CπT ) · · ·

))
,

where Π is a set of policies, {Cπt } are costs under policy π, and {ραt } are one-step risk
measures (i.e., components of the overall dynamic risk measure). Precise definitions are
given in the subsequent sections. We focus on the case where the objective at each stage
is to optimize a quantile-based risk measure (QBRM) of future costs; we call the overall
objective a dynamic quantile-based risk measure (DQBRM).

This paper makes the following contributions. First, we describe a new data-driven or
simulation-based ADP algorithm, called Dynamic-QBRM ADP, that is similar in spirit to
established asynchronous algorithms like Q-learning (see Watkins and Dayan [1992]) and
lookup table approximate value iteration (see, e.g., Bertsekas and Tsitsiklis [1996], Powell
[2011]), where one state is updated per iteration. The second contribution of the paper
is a companion sampling procedure to Dynamic-QBRM ADP, which we call risk-directed
sampling (RDS). As we describe above, when dealing with risk, there is a large class of
problems in which we are inherently dealing with rare, but very costly events. Broadly
speaking, the evaluation of a QBRM that is focused on the tail of the distribution (e.g.,
CVaR at, say, the 99% level) depends crucially on efficiently directing the algorithm toward
sampling these “risky” regions. In this part of the paper, we consider the question: is there
a way to learn, as the ADP algorithm progresses, the interesting values of the information
process to sample?

The paper is organized as follows. We first provide a literature review in Section 2.
In Section 3, we give our problem formulation, a brief introduction to dynamic risk mea-
sures, and the definition of a class of quantile-based risk measures. Next, we introduce
the algorithm for solving risk-averse MDPs in Section 4 and give a theoretical analysis in
Section 5. In Section 6, we discuss sampling issues and describe the companion sampling
procedure. We show numerical results on an example energy trading application in Section
7 and conclude in Section 8.

2 Literature Review

The theory of dynamic risk measures and the notion of time-consistency (see e.g. Riedel
[2004], Artzner et al. [2006], Cheridito et al. [2006]) is extended to the setting of sequential
optimization problems in Ruszczyński and Shapiro [2006a] and Ruszczyński [2010], in which
it is proved that any time-consistent dynamic risk measure can be written as compositions of
one-step conditional risk measures (these are simply risk measures defined in a conditional
setting, analogous to the conditional expectation for the traditional case). From this, a
Bellman recursion is obtained, becoming a familiar way of characterizing optimal policies.
Building on the theory of dynamic programming, versions of exact value iteration and policy
iteration are also developed in Ruszczyński [2010]. Later, in Çavus and Ruszczyński [2014],
these exact methods are analyzed in the more specific case of undiscounted transient models.

Under the assumption that we use one-step coherent risk measures, as axiomatized in
Artzner et al. [1999], the value functions of a risk-averse Markov decision process with a
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convex terminal value function can be easily shown to satisfy convexity using the fact that
coherent risk measures are convex and monotone. Therefore, the traditional method of
stochastic dual dynamic programming (SDDP) of Pereira and Pinto [1991] for multistage,
risk-neutral problems, which relies on the convexity of value functions, can be adapted to
the risk-averse case. This idea is successfully explored in Philpott and de Matos [2012],
Shapiro et al. [2013], and Philpott et al. [2013], with applications to the large-scale problem
of hydro-thermal scheduling using one-step mean-CVaR (convex combination of mean and
CVaR) and one-step mean-upper semideviation risk measures. The main drawbacks of risk-
averse SDDP are (1) the cost function must be linear in the state, (2) some popular risk
measures, such as value at risk (VaR), are excluded because they are not coherent and
do not imply convex value functions, and (3) the full risk measure (can be recast as an
expectation in certain instances) has to be computed at every iteration. Since no convexity
or linearity assumptions are made in this paper, we take an alternative approach from the
SDDP methods and instead assume the setting of finite state and action spaces, as in Q-
learning. At the same time, because the default implementation of our approach does not
take advantage of structure, it is limited to smaller problems. Extensions to the methods
proposed in this paper for exploiting structure can be made by following techniques such as
those discussed in Powell et al. [2004], Nascimento and Powell [2009], and Jiang and Powell
[2015a].

Recursive stochastic approximation methods have been applied to estimating quantiles
in static settings (see Tierney [1983], Bardou and Frikha [2009], and Kan [2011]). Related
to our work, a policy gradient method for optimizing MDPs (with a risk-neutral objective)
under a CVaR constraint is given in Chow and Ghavamzadeh [2014]. All of these methods
are related to ours in the sense that the minimization formula [Rockafellar and Uryasev,
2002, Theorem 10] for CVaR is optimized with gradient techniques. In our multistage setting
with dynamic risk measures, which is also coupled with optimal control, there are some new
interesting complexities, including the fact that every new observation (or data point) is
generated from an imperfect distribution of future costs that is “bootstrapped” from the
previous estimate of the value function. This means that not only are the observations
inherently biased, but the errors compound over time – this was not the case for the static
setting considered in earlier work. Under reasonable assumptions, we analyze both the
almost sure convergence and convergence rates for our proposed algorithms.

Our risk-directed sampling procedure is inspired by adaptive importance sampling strate-
gies from the literature, such as the celebrated cross-entropy method of Rubinstein [1999].
See, e.g., Al-Qaq et al. [1995], Bardou and Frikha [2009], Egloff and Leippold [2010], and
Ryu and Boyd [2015] for other similar approaches. The critical difference in our approach
is that in an ADP setting, we have the added difficulty of not being able to assume perfect
knowledge of the objective function; rather, our observations are noisy and biased. To our
knowledge, this is the first time an adaptive sampling procedure has been combined with
a value function approximation algorithm in the risk-averse MDP literature. The closest
paper is by Kozmı́k and Morton [2014], which considers an importance sampling approach
for policy evaluation.

3 Problem Formulation

In this section, we establish the setting of the paper. In particular, we describe the risk-
averse model, introduce the concept of dynamic risk measures, and define a class of quantile-
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based risk measures.

3.1 Model

We consider an MDP with a finite time-horizon, t = 0, 1, 2, . . . , T , where the last decision is
made at time t = T−1, so that the set of decision epochs is given by T = {0, 1, 2, . . . , T−1}.
Given a probability space (Ω,F ,P), we define a discrete-time stochastic process {Wt}Tt=0,
with Wt ∈ W for all t, as the exogenous information process in the sequential decision
problem, where Wt is adapted to a filtration {Ft}Tt=0, with {∅,Ω} = F0 ⊆ F1 ⊆ · · · ⊆
FT ⊆ F . We assume that all sources of randomness in the problem are encapsulated by
the process {Wt} and that it is independent across time. For computational tractability,
we work in the setting of finite state and action spaces. Let the state space be denoted S,
and let the action space be A, where |S| <∞ and |A| <∞. The set of feasible actions for
each state s ∈ S, written As, is a subset of A. The set U = {(s, a) ∈ S × A : a ∈ As} is
the set of all feasible state-action pairs. The stochastic process describing the states of the
system is {St}Tt=0, where St is an Ft-measurable random variable taking values in S, and at
is a feasible action determined by the decision maker using St. Furthermore, let Zt denote
the space of Ft-measurable random variables and Zt,T = Zt × · · · × ZT .

We model the system using a transition function or system model SM : S×A×W → S,
which produces the next state St+1 given a current state St, action at, and an outcome
of the exogenous process Wt+1: St+1 = SM (St, at,Wt+1). The cost for time t is given by
ct(St, at,Wt+1), where ct : S × A × W → R is the cost function. A policy is a sequence
of decision functions {Aπ0 , Aπ1 , . . . , AπT−1} indexed by π ∈ Π, where Π is the index set of
all policies. Each decision function Aπt : S → A is a mapping from a state to a feasible
action, such that Aπt (s) ∈ As for any state s. Let the sequence of costs under a policy π be
represented by the process Cπt for t = 1, 2, . . . , T , where

Cπt = ct−1(Sπt−1, A
π
t−1(Sπt−1),Wt) ∈ Zt,

where {Sπt } are the states visited while following policy π. Note that Cπt refers to the cost
from time t− 1, but the index of t refers to its measurability: Cπt depends on information
only known at time t.

3.2 Review of Dynamic Risk Measures

In this subsection, we briefly introduce the notion of a dynamic risk measure; for a more de-
tailed treatment, see, e.g., Frittelli and Gianin [2004], Riedel [2004], Pflug and Ruszczyński
[2005], Boda and Filar [2006], Cheridito et al. [2006], and Acciaio and Penner [2011]. Our
presentation closely follows that of Ruszczyński [2010], which develops the theory of dy-
namic risk measures in the context of MDPs. First, a conditional risk measure is a mapping
ρt,T : Zt,T → Zt that satisfies the following monotonicity requirement: for X,Y ∈ Zt,T and
X ≤ Y (componentwise and almost surely), ρt,T (X) ≤ ρt,T (Y ).

Given a sequence of future costs Ct, . . . , CT , the intuitive meaning of ρt,T (Ct, . . . , CT ) is a
certainty equivalent cost (i.e., at time t, one is indifferent between incurring ρt,T (Ct, . . . , CT )
and the alternative of being subjected to the stream of stochastic future costs). See Rudloff
et al. [2014] for an in-depth discussion regarding the certainty equivalent interpretation in
the context of multistage stochastic models. A dynamic risk measure {ρt,T }Tt=0 is a sequence
of conditional risk measures ρt,T : Zt,T → Zt, which allows us to evaluate the future risk at
any time t using ρt,T . Of paramount importance to the theory of dynamic risk measures is
the notion of time-consistency, which says that if from the perspective of some future time
τ , one sequence of costs is riskier than another and the two sequences of costs are identical
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from the present until τ , then the first sequence is also riskier from the present perspective
(see Ruszczyński [2010] for the full technical definition).

Other definitions of time-consistency can be found in the literature, e.g., Boda and Filar
[2006], Cheridito and Stadje [2009], and Shapiro [2009]. Though they may differ technically,
these definitions share the same intuitive spirit. Under the conditions:

ρt,T (0, . . . , 0) = 0 and ρt,T (Ct, Ct+1, . . . , CT ) = Ct + ρt,T (0, Ct+1, . . . , CT ),

it is proven in Ruszczyński [2010] that for some one-step conditional risk measures ρt :
Zt+1 → Zt, a time-consistent, dynamic risk measure {ρt,T }Tt=0 can be expressed using the
following nested representation:

ρt,T (Ct, . . . , CT ) = Ct + ρt
(
Ct+1 + ρt+1(Ct+2 + · · ·+ ρT−1(CT ) · · · )

)
,

It is thus clear that we can take the reverse approach and define a time-consistent dynamic
risk measure by simply specifying a set of one-step conditional risk measures {ρt}Tt=0. This
is a common method that has been used in the literature when applying the theory of
dynamic risk measures in practice (see, e.g., Philpott and de Matos [2012], Philpott et al.
[2013], Shapiro et al. [2013], Kozmı́k and Morton [2014], and Rudloff et al. [2014]).

3.3 Quantile-Based Risk Measures

In this paper, we focus on simulation techniques where the one-step conditional risk measure
belongs to a specific class of risk measures called quantile-based risk measures (QBRM).
Although the term quantile-based risk measure has been used in the literature to refer to
risk measures that are similar in spirit to VaR and CVaR (see, e.g., Dowd and Blake [2006],
Neise [2008], Sereda et al. [2010]), it has not been formally defined. First, let us describe
these two popular risk measures, which serve to motivate a more general definition for a
QBRM.

Also known as the quantile risk measure, VaR is a staple of the financial industry (see,
e.g., Duffie and Pan [1997]). Given a real-valued random variable X (representing a loss)
and a risk level α ∈ (0, 1), the VaR or quantile of X is defined to be

VaRα(X) = qα(X) = inf
u

{
P(X ≤ u) ≥ α

}
.

To simplify our notation, we use qα(X) in the remainder of this paper. It is well known that
VaR does not satisfy coherency Artzner et al. [1999], specifically the axiom of subadditivity,
an appealing property that encourages diversification. Despite this, several authors have
given arguments in favor of VaR. For example, Danielsson et al. [2005] concludes that in
practical situations, VaR typically exhibits subadditivity. Dhaene et al. [2006] and Ibragi-
mov and Walden [2007] give other points of view on why VaR should not be immediately
dismissed as an effective measure of risk. A nested version of VaR for use in a multistage
setting is proposed in Cheridito and Stadje [2009], though practical implications have not
been explored in the literature.

CVaR is a coherent alternative to VaR and has been both studied and applied extensively
in the literature. Although the precise definitions may slightly differ, CVaR is also known
by names such as expected shortfall, average value at risk, or tail conditional expectation.
Given a general random variable X, the following characterization is given in Rockafellar
and Uryasev [2002]:

CVaRα(X) = inf
u

{
u+

1

1− α E
[
(X − u)+

]}
= qα(X) +

1

1− α E
[(
X − qα(X)

)+]
.
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Applications of risk-averse MDPs using dynamic risk measures have largely focused on
combining CVaR with expectation; once again, see Philpott and de Matos [2012], Philpott
et al. [2013], Shapiro et al. [2013], Kozmı́k and Morton [2014], and Rudloff et al. [2014].

For the purposes of this paper, we offer the following general definition of a QBRM
that allows dependence on more than one quantile; the definition includes the above two
examples as special cases.

Definition 1 (Quantile-Based Risk Measure (QBRM)). Let X be a real-valued random
variable. A quantile-based risk measure ρα can be written as the expectation of a function
of X and finitely many of its quantiles. More precisely, ρα takes the form

ρα(X) = E
[
Φ
(
X, qα1(X), qα2(X), . . . , qαm(X)

)]
, (3.1)

where α ∈ Rm is a vector of m risk levels, α1, α2, . . . , αm, and a function Φ : Rm+1 → R,
chosen so that ρα satisfies monotonicity, translation invariance, and positive homogeneity
(see Artzner et al. [1999] for the precise definitions and note that we interpret X as a
random loss or a cost).

Our definition of QBRMs is largely motivated by practical considerations. First, the
definition covers the two most widely used risk measures, VaR and CVaR, as special cases
under a single framework; in addition, the flexibility allows for the specification of more
sophisticated risk measures that may or may not be coherent. As previously mentioned,
there are situations where nonconvex (and thus, not coherent) risk measures are appropriate
[Dhaene et al., 2006]. Another motivation for this definition of a QBRM is that it allows us
to easily construct a risk measure such that VaRα(X) ≤ ρα(X) ≤ CVaRα(X), because, as
Belles-Sampera et al. [2014] points out, one issue with VaR is that it can underestimate large
losses, but at the same time, some practitioners of the financial and insurance industries
find CVaR to be too conservative.

We see that VaR is trivially a QBRM with Φ(X, q) = q. CVaR can also be easily written
as a QBRM, using the function Φ(X, q) = q + 1

1−α (X − q)+. Although our approach can
be applied to any risk measure of the form (3.1), we use the CVaR risk measure in the
empirical work of Section 7, due to its popularity in a variety of application areas.

3.4 Dynamic Quantile-Based Risk Measures

Notice that, so far, we have developed QBRMs in a “static” setting (the value of the risk
measure is in R) for simplicity. Given a random variable X ∈ Zt+1 and a risk level α ∈ (0, 1),
the conditional counterpart for the quantile is

qαt (X) = inf
U∈Zt

{
P
(
X ≤ U | Ft

)
≥ α

}
∈ Zt.

Using this new definition, we can similarly extend the definition of a QBRM to the condi-
tional setting by replacing (3.1) with

ραt (X) = E
[
Φ
(
X, qα1

t (X), qα2
t (X), . . . , qαm

t (X)
) ∣∣Ft

]
,

and replacing the required properties of monotonicity, translation invariance, and positive
homogeneity in Definition 1 with their conditional forms given in Ruszczyński [2010] (de-
noted therein by A2, A3, and A4). For the sake of notational simplicity, let us assume that
all parameters, i.e., m, α1, . . . , αm, Φ are static over time, but we remark that an extension
to time-dependent (and even state-dependent) versions of the one-step conditional risk mea-
sure is possible. Let ρ̃αt be a (conditional) QBRM that measures tail risk. In applications,
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a weighted combination of a tail risk measure with the traditional expectation ensures that
the resulting policies are not driven completely by the tail behavior of the cost distribution;
we may use QBRMs of the form ραt (X) = (1− λ) E

[
X | Ft

]
+ λ ρ̃αt (X), where λ ∈ [0, 1].

Using one-step conditional risk measures as building blocks, we can define a dynamic
risk measure to be {ραt }Tt=0, which we refer to as a dynamic quantile-based risk measure
(DQBRM). The dynamic risk measures obtained when ραt = VaRα

t and ραt = CVaRα
t

(the conditional forms of VaR and CVaR) are precisely the time-consistent risk measures
suggested in Cheridito and Stadje [2009] under the names composed value at risk and
composed conditional value at risk.

3.5 Objective Function

We are interested in finding optimal risk-averse policies under objective functions specified
using a DQBRM. The problem is

min
π∈Π

ρα0

(
Cπ1 + ρα1

(
Cπ2 + · · ·+ ραT−1(CπT ) · · ·

))
. (3.2)

The upcoming theorem, proven in Ruszczyński [2010], gives the Bellman-like optimality
equations for a risk-averse model. We state it under the assumption that the current period
contribution is random, differing slightly from the original statement. A point of clarifica-
tion: the original theorem is proved within the setting where the one-step risk measures
satisfy conditional forms of the axioms of Artzner et al. [1999] for coherent risk measures.
In our setting, however, the QBRM ραt is only assumed to satisfy (conditional forms of)
monotonicity, positive homogeneity, and translation invariance, but not necessarily convex-
ity. The crucial step of the proof given in Ruszczyński [2010] relies only on monotonicity
and an associated interchangeability property (see [Ruszczyński and Shapiro, 2006b, The-
orem 7.1], [Ruszczyński, 2010, Theorem 2]). The assumption of convexity is therefore not
necessary for the following theorem.

Theorem 1 (Bellman Recursion for Dynamic Risk Measures, Ruszczyński [2010]). The
sequential decision problem (3.2) has optimal value functions given by

V ∗t (s) = min
at∈As

ραt
(
ct(s, at,Wt+1) + V ∗t+1(St+1)

)
for all s ∈ S, t ∈ T ,

V ∗T (s) = 0 for all s ∈ S.
The decision functions of an optimal policy π∗ are given by

Aπ
∗
t (s) ∈ arg min

at∈As

ραt
(
ct(s, at,Wt+1) + V ∗t+1(St+1)

)
for all s ∈ S, t ∈ T ,

which map to a minimizing action of the optimality equation.

For computational purposes, we are interested in interchanging the minimization oper-
ator and the risk measure ραt and thus appeal to the state-action value function or Q-factor
formulation of the Bellman equation. Define the state-action value function over the state-
action pairs (s, a) ∈ U to be Q∗t (s, a) = ραt

(
ct(s, a,Wt+1) + V ∗t+1(St+1)

)
, for t ∈ T and let

Q∗T (s, a) = 0. Thus, the counterpart to the recursion in Theorem 1 is

Q∗t (s, a) = ραt
(
ct(s, a,Wt+1) + min

a′∈ASt+1

Q∗t+1(St+1, a
′)
)
, (3.3)

with the minimization occurring inside of the risk measure.
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3.6 Some Remarks on Notation

For simplicity, we henceforth refer to Q∗ simply as the optimal value function. Let d = |U|
and D = |U| (T + 1). We consider Q∗ to be a vector in RD with components Q∗t (s, a). We
also frequently use the notation Q∗t ∈ Rd for some t ≤ T , by which we mean Q∗ restricted to
the components Q∗t (s, a) for all (s, a) ∈ U . We adopt this system for any vector in RD (e.g.,
Q̄n, ui,∗, and ūi,n to be defined later). The norms used in this paper are ‖ · ‖1, ‖ · ‖2, and
‖ · ‖∞, the l1-norm, the Euclidean norm, and the maximum norm, respectively. Example
usages of the latter two are

‖Q∗t ‖2 =

( ∑

(s,a)∈U

Q∗t (s, a)2

) 1
2

and ‖Q∗t ‖∞ = max
(s,a)∈U

|Q∗t (s, a)|.

The following naming convention is used throughout the paper and appendix: stochas-
tic processes denoted using ε, i.e., εq,nt+1, εi,nt+1, and εh,nt+1, are conditionally unbiased noise
sequences and represent Monte Carlo sampling error. On the other hand, the processes de-
noted using ξ, i.e., ξq,nt+1, ξi,nt+1, and ξh,nt+1, are biased noise and represent approximation error
from using a value function approximation. For a vector v, diag(v) is the diagonal matrix
whose entries are the components of v. Lastly, for a nonnegative function f : R → R, its
support is represented by the notation supp(f) = {x ∈ R : f(x) > 0}.

4 Algorithm

In this section, we introduce the risk-averse ADP algorithm for dynamic quantile-based risk
measures, which aims to approximate the value functionQ∗ in order to produce near-optimal
policies.

4.1 Overview of the Main Idea

Like most ADP and reinforcement learning algorithms, the algorithm that we develop in
this paper to solve (3.2) is based on the recursive relationship of (3.3). The basic structure
for the algorithm is a time-dependent version of Q-learning or approximate value iteration
(see [Powell, 2011, Chapter 10] for a discussion). Recall the form of the QBRM:

ραt (X) = E
[
Φ
(
X, qα1

t (X), qα2
t (X), . . . , qαm

t (X)
) ∣∣Ft

]
.

The main idea of our approach is to approximate the quantiles qαi
t (X) and then combine the

approximations to form an estimate of the risk measure. In essence, every observation of the
exogenous information process (real or simulated data) can be utilized to give an updated
approximation of each of the m quantiles. A second step then takes the observation and the
quantile approximations to generate an refined approximation of the optimal value function
Q∗. This type of logic is implemented using many concurrent stochastic gradient [Robbins
and Monro, 1951, Kushner and Yin, 2003] steps within a framework that walks through a
single forward trajectory of states and actions on each iteration.

It turns out that there is a convenient characterization of the quantile through the so-
called CVaR minimization formula. Given a real-valued, integrable random variable X, a
risk level αi ∈ (0, 1), and u ∈ R, Rockafellar and Uryasev [2000] proves that

qαi(X) ∈ arg min
u∈R

E

[
u+

1

1− αi
(X − u)+

]
. (4.1)

Although the main result of Rockafellar and Uryasev [2000] is that the optimal value of
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the optimization problem gives the CVaRαi(X), the characterization of the quantile as the
minimizer is particularly useful for our purposes. It suggests the use of stochastic approxi-
mation or stochastic gradient descent algorithms [Robbins and Monro, 1951, Kushner and
Yin, 2003] to iteratively optimize (4.1).

With this intuition in mind, let us move back to the context of the MDP and define the
auxiliary variables ui,∗ ∈ RD, for each i ∈ {1, 2, . . . ,m}, to be the αi-quantiles of the future
costs (recall that the quantiles αi are defined as an argument to our QBRM in Definition
1). The component at time t and state (s, a) is

ui,∗t (s, a) = qαi
(
ct(s, a,Wt+1) + min

a′∈ASt+1

Q∗t+1(St+1, a
′)
)
, (4.2)

for each i ∈ {1, 2, . . . ,m}. Using (3.1), this allows us to take advantage of the equation

Q∗t (s, a) = E
[
Φ
(
ct(s, a,Wt+1) + min

a′∈ASt+1

Q∗t+1(St+1, a
′), u1,∗

t (s, a), . . . , um,∗t (s, a)
)]
. (4.3)

The relationship between Q∗ and ui,∗ is fundamental to our algorithmic approach, which
keeps track of mutually dependent approximations {ūi,n} and {Q̄n} to the optimal values
ui,∗ and Q∗, respectively.

4.2 The Dynamic-QBRM ADP Algorithm

Before discussing the details, we need some additional notation. Clearly, at each time t, the
random quantity with which we are primarily concerned (and attempt to approximate) is the
future cost given the optimal value function Q∗. Thus, we explicitly define its distribution
function for every (s, a):

Ft(x|s, a) = P
[
ct
(
s, a,Wt+1

)
+ min
a′∈ASt+1

Q∗t+1

(
St+1, a

′) ≤ x
]
.

Recall that d is the cardinality of the state-action space. Next, suppose ūit ∈ Rd is an
approximation of ui,∗t and for each t and i ∈ {1, 2, . . . ,m}, define the stochastic gradient
mapping ψit : Rd × Rd ×W → Rd to perform the stochastic gradient computation:

ψit
(
ūit, Q̄t+1,Wt+1

)
(s, a)

= 1− 1

1− αi
1
{
ct
(
s, a,Wt+1

)
+ min
a′∈ASt+1

Q̄t+1

(
St+1, a

′) ≥ ūit(s, a)
}
.

(4.4)

To avoid confusion, we note that this is the stochastic gradient associated with the mini-
mization formula (4.1) for CVaR, but this step is necessary for any QBRM, even if we are
not utilizing CVaR.

The second piece of notation we need is a specialized, stochastic version of the Bellman
operator to the risk-averse case: for each t, we define the mapping Ht : Rd×· · ·×Rd×W →
Rd, with m + 1 arguments in Rd, to represent an approximation of the term within the
expectation of (4.3):

Ht

(
ū1
t , . . . ,ū

m
t , Q̄t+1,Wt+1

)
(s, a)

= Φ
(
ct
(
s, a,Wt+1

)
+ min
a′∈ASt+1

Q̄t+1

(
St+1, a

′), ū1
t (s, a), . . . , ūmt (s, a)

)
.

Therefore, (4.3) can be rewritten using the stochastic Bellman operator Ht by replacing all
approximate quantities with their true values:

Q∗t (s, a) = E
[
Ht

(
u1,∗
t , . . . , um,∗t , Q∗t+1,Wt+1

)
(s, a)

]
. (4.5)
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The Dynamic-QBRM ADP algorithm that we describe in the next section consists of both
outer and inner iterations: for each outer iteration n, we step through the entire time horizon
of the problem t ∈ T . At time t, iteration n, the relevant quantities for our algorithms are
a state-action pair (Snt , a

n
t ) ∈ U and two samples W u,n

t+1, W
q,n
t+1 ∈ W from the distribution of

Wt+1 corresponding to the “two steps” of our algorithm, one for approximating the auxiliary
variables ui,∗ and the second for approximating the value function Q∗. Figure 1 illustrates
the main idea behind the algorithm: we merge the results of m adaptive minimizations of
(4.1), corresponding to estimates of the m quantiles, into an estimate of the optimal value
function, Q̄nt . The estimate Q̄nt is then used to produce estimates of the relevant quantities
for the previous time period. Note that the m objective functions shown in the figure differ
only in their risk levels αi. The arrows on the curves indicate that the minimizations are
achieved via gradient descent steps.

u1,⇤
tū1,n

t um,⇤
tūm,n

tū2,n
t u2,⇤

t

· · ·

Q⇤
t+1  �� Q̄n

t+1

���! ���! ���!

Q⇤
t  �� Q̄n

t ⇡ E
h
Ht

�
⌅,⌅, . . . ,⌅,⌅, Wt+1

�i

E


u +

1

1 � ↵1
(X � u)+

�
E


u +

1

1 � ↵2
(X � u)+

�
E


u +

1

1 � ↵m
(X � u)+

�

· · ·

Figure 1: Main Algorithm Idea

Now that we are in an algorithmic setting, we consider a new probability space (Ω,G,P),
where G = σ

{
(Snt , a

n
t ,W

u,n
t ,W q,n

t ), n ≥ 0, t ≤ T
}

. In order to describe the history of the
algorithms, we define:

Gnt = σ
{
{(Skτ , akτ ,W u,k

τ ,W q,k
τ ), k < n, τ ≤ T} ∪ {(Snτ , anτ ,W u,n

τ ,W q,n
τ ), τ ≤ t}

}
,

for t ∈ T and n ≥ 1, with G0
t = {∅,Ω} for all t ≤ T . We therefore have a filtration that

obeys Gnt ⊆ Gnt+1 for t ∈ T and GnT ⊆ Gn+1
0 , coinciding precisely with the progression of

the algorithm. The random variables (Snt , a
n
t ) are generated according to some sampling

policy (to be discussed later) while W u,n
t+1 and W q,n

t+1 are generated from the distribution of
the exogenous process Wt+1.

Crucial to many ADP algorithms is the stepsize (or learning rate). In our case, we use
{γnt } and {ηnt } for smoothing new observations with previous estimates, where γnt , η

n
t ∈ Rd

for each t and n and are Gnt -measurable. The stepsize γnt is used to update our approximation
of ui,∗t while the stepsize ηnt is used to update Q∗t ; see Algorithm 1. We articulate the
asynchronous nature of our algorithm by imposing the following condition on the stepsizes
(included in Assumption 1 of Section 5):

(s, a) 6= (Snt , a
n
t ) =⇒ γnt (s, a) = ηnt (s, a) = 0,

which causes updates to only happen for states that we actually visit.
Stochastic approximation theory often requires a projection step onto a compact set

(giving bounded iterates) to ensure convergence [Kushner and Yin, 2003]. Hence, for each
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t and (s, a), let X ut (s, a) ⊆ R and X qt (s, a) ⊆ R be compact intervals and let

X ut =
{
x ∈ Rd : x(s, a) ∈ X ut (s, a)

}
and X qt =

{
x ∈ Rd : x(s, a) ∈ X qt (s, a)

}
,

be our projection sets at time t. The Euclidean projection operator to a set X is given by
the usual definition:

ΠX (y) = arg min
x∈X

‖y − x‖22.

These sets may be chosen arbitrarily large in practice and our first theoretical result (almost
sure convergence) will continue to hold. However, there is a tradeoff: if, in addition, we
want our convergence rate results to hold, then these sets also cannot be too large (see
Assumption 3).

The precise steps of Dynamic-QBRM ADP are given in Algorithm 1. A main character-
istic of the algorithm is that sequences {ūi,n} and {Q̄n} are intertwined (i.e., depend on each
other). Consequently, there are multiple levels of approximation being used throughout the
steps of the algorithm. The theoretical results of the subsequent sections shed light onto
these issues.

Algorithm 1: Dynamic-QBRM ADP

Input: Initial estimates of the value function Q̄0 ∈ RD and quantiles ūi,0 ∈ RD for
i ∈ {1, 2, . . . ,m}.
Stepsize rules γnt and ηnt for all n, t.

Output: Approximations {Q̄n} and {ūi,n}.
1 Set Q̄n

T = 0 for all n.
for n = 1, 2, . . . do

2 Choose an initial state (Sn
0 , a

n
0 ).

for t = 0, 1, . . . , T − 1 do
3 Draw samples of the information process Wu,n

t+1,W
q,n
t+1 ∈ W.

4 Update auxiliary variable approximations for i = 1, . . . ,m:

ūi,nt = ΠXu
t

{
ūi,n−1t − diag(γnt )ψi

t

(
ūi,n−1t , Q̄n−1

t+1 ,W
u,n
t+1

)}
.

5 Compute an estimate of the future cost based on the current approximations:

q̂nt = Ht

(
ū1,n−1t , . . . , ūm,n−1

t , Q̄n−1
t+1 ,W

q,n
t+1

)
.

6 Update approximation of value function:

Q̄n
t = ΠX q

t

{
Q̄n−1

t − diag(ηnt )
(
Q̄n−1

t − q̂nt
)}
.

7 Choose next state (Sn
t+1, a

n
t+1).

end

end

5 Analysis of Convergence

In this section, we state and prove convergence theorems for Algorithm 1. First, we give an
overview of our analysis and the relationship to existing work.

5.1 A Preview of Results

The two main results of this section are: (1) the almost sure convergence of Dynamic-QBRM
ADP and (2) a convergence rate result under a particular sampling policy called ε-greedy.
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The proof of almost sure convergence uses techniques from the stochastic approximation
literature [Kushner and Yin, 2003], which were applied to the field of reinforcement learn-
ing and Q-learning in Tsitsiklis [1994], Jaakkola et al. [1994] and Bertsekas and Tsitsiklis
[1996]. However, our algorithm differs from risk-neutral Q-learning in that it tracks multi-
ple quantities, ū1,n

t , ū2,n
t , . . . , ūm,nt , Q̄nt , over a horizon 1, 2, . . . , T . The intuition behind the

proof is that multiple “stochastic approximation instances” are pasted together in order to
obtain overall convergence of all relevant quantities. Accordingly, the interdependence of
various approximations means that in several parts of the proof, we require careful analy-
sis of biased noise terms (or approximation error) in addition to unbiased statistical error.
See, e.g., Kearns and Singh [1999], Even-Dar and Mansour [2004] and Azar et al. [2011],
for convergence rate results for standard Q-learning. The proof technique used to analyze
the high probability convergence rate of risk-neutral Q-learning in Even-Dar and Mansour
[2004] is based on the same types of stochastic approximation results that we utilize in this
paper.

Let us now make a few remarks regarding some simplifying assumptions made in this
paper. As proven in [Rockafellar and Uryasev, 2002, Theorem 10], the set of minimizers
arg minu∈R E

[
u + (1 − αi)−1 (X − u)+

]
is a nonempty, closed, and bounded interval for a

general X. We shall for ease of presentation, however, make assumptions (strictly increasing
and continuous cdf, Assumption 2(iii)) to guarantee that ui,∗t (s, a) is the unique minimizer
when X is the optimal future cost ct(s, a,Wt+1)+mina′∈ASt+1

Q∗t+1(St+1, a
′) and that gradi-

ent computations to remain valid. This assumption is sufficient for almost sure convergence
(Theorem 2). To further examine the convergence rate of the algorithm (Theorem 3), we
must additionally have Assumption 3, which states that the density of the future cost exists
and is positive within the constraint sets X ut — this provides us the technical condition of
strong convexity (discussed more in Section 5.3 below).

Since mina′∈ASt+1
Q∗t+1(St+1, a

′) has a discrete distribution, the assumptions hold only
in certain situations: an obvious case is when the current stage cost has a density and is
independent of St+1. For example, such a property holds when Wt+1 can be written as two
independent components (W 1

t+1,W
2
t+1) where the current stage cost depends on W 1

t+1 and
the downstream state depends on W 2

t+1. This model is relevant in a number of applica-
tions; notable examples include multi-armed bandits [Whittle, 1980], shortest path problems
with random edge costs [Ryzhov and Powell, 2011], trade execution with temporary (and
temporally independent) price impact [Bertimas and Lo, 1998], and energy trading in two-
settlement markets [Löhndorf et al., 2013]. Small algorithmic extensions (requiring more
complex notation) to handle the general case are possible, but the fundamental concepts
would remain unchanged. Hence, we will assume the cleaner setting for the purposes of this
paper.

5.2 Almost Sure Convergence

First, we discuss the necessary algorithmic assumptions, many of which are standard to the
field of stochastic approximation.

Assumption 1. For all (s, a) ∈ U and t ∈ T , suppose the following are satisfied:

(i) γnt (s, a) = γ̃n−1
t 1{(s,a)=(Sn

t ,a
n
t )}, for some γ̃n−1

t ∈ R that is Gn−1
t -measurable,

(ii) ηnt (s, a) = η̃n−1
t 1{(s,a)=(Sn

t ,a
n
t )}, for some η̃n−1

t ∈ R that is Gn−1
t -measurable,

(iii)

∞∑

n=1

γnt (s, a) =∞,
∞∑

n=1

ηnt (s, a) =∞ a.s.,
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(iv)

∞∑

n=1

γnt (s, a)2 <∞,
∞∑

n=1

ηnt (s, a)2 <∞ a.s.,

(v) ∃ ε > 0, such that state sampling policy satisfies

P
(
(Snt , a

n
t ) = (s, a)

∣∣Gnt−1

)
≥ ε and P

(
(Sn0 , a

n
0 ) = (s, a)

∣∣Gn−1
T

)
≥ ε,

(vi) the projection sets are chosen large enough so that ui,∗t ∈ X ut for each i ∈ {1, 2, . . . ,m}
and Q∗t ∈ X qt .

Assumption 1(i) and (ii) represent the asynchronous nature of the algorithm, sending the
stepsize to zero whenever a state is not visited, while (iii) and (iv) are standard conditions on
the stepsize. Assumption 1(v) is an exploration requirement; by the Extended Borel-Cantelli
Lemma (see Breiman [1992]), sampling with this exploration requirement guarantees that
we will visit every state infinitely often with probability one. In particular, for the case
with an ε-greedy sampling policy (i.e., explore with probability ε, follow current policy
otherwise), this assumption holds. We discuss this policy in greater detail in Section 5.
Part (vi) is a technical assumption. The second group of assumptions that we present are
related to the problem parameters.

Assumption 2. The following hold:

(i) the risk-aversion function Φ : Rm+1 → R (from the QBRM within the one-step con-
ditional risk measure ραt ) is Lipschitz continuous with constant LΦ > 0, i.e., for all
v, w ∈ Rm+1, |Φ(v)− Φ(w)| ≤ LΦ ‖v − w‖1,

(ii) ∃ Cmax > 0 such that E
[
ct(s, a,Wt+1)2

]
≤ Cmax for all (s, a) ∈ U and t ∈ T ,

(iii) the distribution function Ft(x|s, a) is strictly increasing and Lipschitz continuous with
constant LF > 0, i.e.,

|Ft(x|s, a)− Ft(y |s, a)| ≤ LF |x− y|,
for all x, y ∈ R, (s, a) ∈ U , and t ∈ T .

As an example for Assumption 2(i), in the case of the QBRM being CVaR, where
Φ(X, q) = q + 1

1−α (X − q)+, it is easy to see that we can take LΦ = 1 + 1
1−α . Assumption

2(ii) states that the second moment of the cost function is bounded. Assumption 2(iii)
and Assumption 1(vi) together imply that ui,∗t (s, a) is the unique u ∈ X ut (s, a) such that
Ft(u|s, a) = αi.

Lemma 1. Under Assumptions 1 and 2, if Q̄nt+1 → Q∗t+1 almost surely, then the sequences

of iterates ūi,nt generated in Step 4 of Algorithm 1 satisfy ūi,nt → ui,∗t almost surely for each
i ∈ {1, 2, . . . ,m}.

Proof. We distinguish between two types of noise sequences (in n) for each t ∈ T , the statis-
tical error and the approximation error, denoted by εi,nt+1 ∈ Rd and ξi,nt+1 ∈ Rd, respectively.
The definitions are

εi,nt+1 = ψit
(
ūi,n−1
t , Q∗t+1,W

u,n
t+1

)
−E

[
ψit
(
ūi,n−1
t , Q∗t+1,Wt+1

)]
,

ξi,nt+1 = ψit
(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)
− ψit

(
ūi,n−1
t , Q∗t+1,W

u,n
t+1

)
,

and we see that the random variable εi,nt+1 represents the error that the sample gradient
deviates from its mean, computed using the true future cost distribution (i.e., assuming we
have Q∗t+1). On the other hand, ξi,nt+1 is the error between the two evaluations of ψit given
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the same sample W u,n
t+1, due only to the difference between Q̄n−1

t+1 and Q∗t+1. Rearranging,
we have

ψit
(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)
= E

[
ψit
(
ūi,n−1
t , Q∗t+1,Wt+1

)]
+ εi,nt+1 + ξi,nt+1,

which implies that the update given in Step 4 of Algorithm 1 can be rewritten as

ūi,nt = ΠXu
t

{
ūi,n−1
t − diag(γnt )

[
E
[
ψit
(
ūi,n−1
t , Q∗t+1,Wt+1

)]
+ εi,nt+1 + ξi,nt+1

]}
.

Note that the term in the square brackets is a biased stochastic gradient and observe that
it is bounded (since ψit only takes two finite values). For the present inductive step at time
t, let us fix a state (s, a). It now becomes convenient for us to view ūi,nt (s, a) as a stochastic
process in n, adapted to the filtration {Gnt+1}n≥0 (since Gnt+1 ⊆ Gn+1

t+1 ⊆ Gn+2
t+1 · · · ). It is clear

that by the definition of εi,nt+1(s, a):

E
[
εi,nt+1(s, a) | Gn−1

t+1

]
= 0 a.s. (5.1)

Therefore, εnt+1(s, a) are unbiased increments that can be referred to as martingale difference
noise. Before continuing, notice the following useful fact:

min
a∈As

Q∗t+1(s, a)− min
a∈As

Q̄n−1
t+1 (s, a) ≤

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
∞. (5.2)

The proof follows from min v = −max (−v) and max v −maxw ≤ max |v − w|, where the
minimum and maximum are taken over the components of some vectors v and w. Now, let
Snt+1 = SM

(
s, a,W u,n

t+1

)
. Expanding the definition of ξi,nt+1(s, a) and using (5.2), we obtain

ξi,nt+1(s, a)

=
1

1− αi

[
1
{
ct
(
s, a,W u,n

t+1

)
+ min
a′∈ASn

t+1

Q∗t+1

(
Snt+1, a

′) ≥ ūi,n−1
t (s, a)

}

− 1
{
ct
(
s, a,W u,n

t+1

)
+ min
a′∈ASn

t+1

Q̄n−1
t+1

(
Snt+1, a

′) ≥ ūi,n−1
t (s, a)

}]

≤ 1

1− αi

[
1
{
ct
(
s, a,W u,n

t+1

)
+ min
a′∈ASn

t+1

Q∗t+1

(
Snt+1, a

′) ≥ ūi,n−1
t (s, a)

}

− 1
{
ct
(
s, a,W u,n

t+1

)
+ min
a′∈ASn

t+1

Q∗t+1

(
Snt+1, a

′) ≥ ūi,n−1
t (s, a) +

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
∞

}]
.

Using the shorthand Ft( · ) = Ft( ·|s, a) and taking the conditional expectation of both sides,
we get (almost surely)

∣∣E
[
ξi,nt+1(s, a) | Gn−1

t+1

]∣∣ ≤ 1

1− αi

∣∣∣Ft
(
ūi,n−1
t (s, a) +

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
∞

)
− Ft

(
ūi,n−1
t (s, a)

)∣∣∣

≤ LF
1− αi

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
∞, (5.3)

where the second inequality follows by Assumption 2(iii). Since we assumed in the statement
of the lemma that Q̄nt+1 → Q∗t+1 almost surely, it must be the case that

E
[
ξi,nt+1(s, a)

∣∣Gn−1
t+1

]
→ 0 a.s., (5.4)

and hence the noise “vanishes asymptotically” in expectation. Now, given the boundedness
of ψit (and hence, finite second moment of ψit), the unbiasedness property (5.1), the vanishing
noise property (5.4), the stepsize and sampling properties of Assumption 1, and the unique-
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ness of u∗t (s, a) from Assumption 2(iii), we can apply a classical theorem of stochastic ap-
proximation, [Kushner and Yin, 2003, Theorem 2.4], to conclude that ūi,nt (s, a)→ ui,∗t (s, a)
almost surely for each i. Because we chose an arbitrary (s, a), this convergence holds for all
(s, a) ∈ U .

Theorem 2 (Almost Sure Convergence). Choose initial approximations Q̄0 ∈ RD and
ūi,0 ∈ RD for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut for all t ∈ T . Under
Assumptions 1–2, Algorithm 1 generates a sequence of iterates Q̄n that converge almost
surely to the optimal value function Q∗.

Sketch of Proof: The idea of the proof is to induct backwards on t and repeatedly apply
Lemma 1. At each step, the induction hypothesis is that Q̄nt+1 → Q∗t+1 from which we obtain

convergence of ūi,nt → ui,∗t from Lemma 1. After making sure certain technical details are
satisfied, stochastic approximation theory allows us to show that Q̄nt → Q∗t . The full details
are given in Appendix A.

5.3 Convergence Rate

In this section, we discuss the convergence rate (in terms of the expected deviation to Q∗)
of the procedure described in Algorithm 1. Because we are working with an asynchronous
algorithm where only one state per time period is visited every iteration, it is necessary for us
to specify the assumed state sampling policy for visiting states before deriving convergence
rate results. Due to Assumption 1(i)–(ii), we naturally must consider the sampling policy
and the stepsize sequences jointly, as is done in the upcoming proposition. We employ the
ε-greedy policy, a popular choice that balances exploitation and exploration using a tunable
parameter ε; it is defined as follows. For any iteration n > 0, choose (Sn0 , a

n
0 ) independently

and uniformly at random. At iteration n, time t > 0, let

snt+1 = SM (Snt , a
n
t ,W

n
t+1) and ant+1 = arg min

a∈A
Q̄n−1
t+1 (snt+1, a)

and define a Bernoulli random variable Xn
t+1 with parameter 1 − εd that is independent

from Gnt (i.e., the rest of the system). The next state to visit is selected by the rule

(
Snt+1, a

n
t+1

)
=

{(
snt+1, a

n
t+1

)
if Xn

t+1 = 1,

Choose uniformly over U otherwise.
(5.5)

Note that Assumption 1(v) is clearly satisfied as each state is visited with probability at
least ε. We also choose our stepsize sequences with γ̃n−1

t and η̃n−1
t as deterministic harmonic

sequences (for ease of analysis) so that

γnt (s, a) =
γt
n

1{(s,a)=(Sn
t ,a

n
t )} and ηnt (s, a) =

ηt
n

1{(s,a)=(Sn
t ,a

n
t )}, (5.6)

where γt > 0 and ηt > 0 are deterministic, time-dependent constants. Since neither γ̃n−1
t =

γnt /n nor η̃nt = ηnt /n depend on the history of visited states, they are known as centralized
learning rates (see Szepesvari and Littman [1996] for a discussion). The main difficulty
for the centralized stepsizes of (5.6) is that when the frequency of visits to a state decays
quickly enough, then Assumption 1(iii) and (iv) may not hold (for example, consider when
a state is only visited on iteration numbers that are powers of two). In fact, it is often not
immediately obvious when Assumption 1(iii) and (iv) are satisfied. The next proposition
shows that under the ε-greedy sampling policy, the states are visited often enough that the
assumption remains satisfied.
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Proposition 1. Under the ε-greedy sampling policy given in (5.5) and the deterministic
harmonic stepsizes given in (5.6), Assumption 1(iii)–(iv) is satisfied.

Proof. See Appendix A.

For a technical reason needed to prove the convergence rate results, we need to constrain
the iterates of the algorithm to a region within the support of the distribution of future
costs (stated formally in Assumption 3 below). We shall see that when this assumption is
satisfied, we get a notion of strong convexity. To be more precise, observe that ∂2E[u +
(X − u)+/(1−αi)]/∂u2 = fX(u)/(1−α), where fX is the density of X. If u is constrained
to be within the support of the distribution of X (i.e., where fX > 0), then we are able
to lower bound the second derivative by some constant (that depends on the constraint
set), thereby attaining strong convexity within the region. This is useful for deriving the
convergence rate results (see Lemma 2); unfortunately, this condition is in general difficult
to check in practice.

Assumption 3. The density ft(x|s, a) = dFt(x|s, a)/dx exists and the stochastic approx-
imation projection set is within the support of the density: X ut (s, a) ⊆ supp

(
ft( ·|s, a)

)
for

all (s, a) ∈ U and t ∈ T . Let

lf = min
(s,a,t)

min
{
x ∈ X ut (s, a) : ft(x|s, a)

}

be a positive real number that lower bounds the density function over all t and (s, a) ∈ U .

We now provide a few lemmas that will be useful in establishing the final result. The
first lemma relates the error of ūi,nt to the error in the last iteration (i.e., of ūi,n−1

t ) and the
error of the value function in the next time period (i.e., of Q̄n−1

t+1 ).

Lemma 2. Under Assumptions 1(vi)–3, the ε-greedy sampling policy of (5.5), and the de-
terministic harmonic stepsizes given in (5.6), the sequence of approximations ūi,nt generated
by Algorithm 1 satisfies, for any κ > 0,

E
[∥∥ūi,nt − ui,∗t

∥∥2

2

]

≤
[
1− γt

n

(
2 εClf − κCLF

)]
E
[∥∥ūi,n−1

t − ui,∗t
∥∥2

2

]
+

γt
nκ

E
[∥∥Q̄n−1

t+1 −Q∗t+1

∥∥2

2

]
+ Cαi

γ2
t

n2
,

where Clf =
lf

1−αi
, CLF

=
L2
F

(1−αt)2 , and Cαi =
[
max

(
1, αi

1−αi

)]2
.

Proof. Fix an i. Recall the update equation given in Step 5 of Algorithm 1:

ūi,nt = ΠXu
t

{
ūi,n−1
t − diag(γnt )ψit

(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)}
.

Using the non-expansive property of the projection operator, we have

∥∥ūi,nt − ui,∗t
∥∥2

2
=
∥∥∥ΠXu

t

{
ūi,n−1
t − diag(γnt )ψit

(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)}
−ΠXu

t

{
ui,∗t
}∥∥∥

2

2

≤
∥∥ūi,n−1

t − ui,∗t − diag(γnt )ψit
(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)∥∥2

2

≤
∥∥ūi,n−1

t − ui,∗t
∥∥2

2
+ Cαi

γ2
t

n2

− 2 (ūi,n−1
t − ui,∗t )T diag(γnt )ψit

(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)
.

(5.7)

Recall from the proof of Lemma 1 that we can write

ψit
(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)
= E

[
ψit
(
ūi,n−1
t , Q∗t+1,Wt+1

)]
+ εi,nt+1 + ξi,nt+1,
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from which we see that the cross-term (ūi,n−1
t − ui,∗t )T diag(γnt )ψit

(
ūi,n−1
t , Q̄n−1

t+1 ,W
u,n
t+1

)
in

the chain of inequalities (5.7) can be expanded into three terms. These terms can now
be analyzed separately. By (4.4) and Assumption 2(iv), we see that the derivative of
E
[
ψit
(
u,Q∗t+1,Wt+1

)]
in u(s, a) can be expressed as

∂

∂u(s, a)
E
[
ψit
(
u,Q∗t+1,Wt+1

)]
(s, a) =

ft(u(s, a)|s, a)

1− αi
≥ lf

1− αi
. (5.8)

Since every state is visited with probability larger than ε, we know that E
[
γnt (s, a)

∣∣Gn−1
t+1

]
≥

εγt
n . Combining this with (5.8) and E

[
ψit
(
u∗t , Q

∗
t+1,Wt+1

)
= 0, it follows that (almost surely)

E
[
(ūi,n−1
t − ui,∗t )T diag(γnt ) E

[
ψit
(
ūi,n−1
t , Q∗t+1,Wt+1

)] ∣∣Gn−1
t+1

]

≥ εγt
n

(
ūi,n−1
t − ui,∗t

)T[
E
[
ψit
(
ūi,n−1
t , Q∗t+1,Wt+1

)]
−E

[
ψit
(
u∗t , Q

∗
t+1,Wt+1

)]]
(5.9)

≥ εγt
n

lf
1− αi

∥∥ūi,n−1
t − ui,∗t

∥∥2

2
.

Note that γnt (s, a) depends on (Snt , a
n
t ) and εi,nt+1(s, a) depends on W u,n

t+1. By independence

of (Snt , a
n
t ) and W u,n

t+1 and the unbiased property of εi,nt+1(s, a) of (5.1),

E
[
(ūi,n−1
t − ui,∗t )T diag(γnt ) εi,nt+1

∣∣Gn−1
t+1

]
= 0. (5.10)

Moving on to the third term, using (5.3), the fact that γnt has exactly one nonzero compo-
nent, and the monotonicity of lp norms, we can deduce

E
[
−(ūi,n−1

t − ui,∗t )T diag(γnt ) ξi,nt+1

∣∣Gn−1
t+1

]
≤ γt
n

∥∥ūi,n−1
t − ui,∗t

∥∥
∞

LF
1− αi

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
∞

≤ γt
n

LF
1− αi

∥∥ūi,n−1
t − ui,∗t

∥∥
2

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
2
.

Using the inequality 2ab ≤ a2 κ+ b2/κ for κ > 0 on the above, we arrive at

E
[
−2 (ūi,n−1

t − ui,∗t )T diag(γnt ) ξi,nt+1

∣∣Gn−1
t+1

]

≤ γt L
2
F κ

n (1− αi)2

∥∥ūi,n−1
t − ui,∗t

∥∥2

2
+

γt
nκ

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥2

2
.

(5.11)

Finally, the statement of the lemma follows by taking expectations of the inequalities (5.7),
(5.9), (5.10), and (5.11) and combining.

Similarly, the next lemma relates the error of the approximate value function Q̄nt to the
error in the last iteration (i.e., of Q̄n−1

t ), the error of the value function in the next time
period (i.e., of Q̄n−1

t+1 ), and the error of all of the approximate quantiles ūi,nt . Because the
analysis is similar to that of Lemma 2, we relegate the proof to Appendix A.

Lemma 3. Under the same conditions as Lemma 2, the sequence of approximations Q̄nt
generated by Algorithm 1 satisfies, for any κ0, κ1, . . . , κm > 0,

E
[∥∥Q̄nt −Q∗t

∥∥2

2

]
≤
[
1− ηt

n

(
2 ε− LΦ κ0 − LΦ

m∑

i=1

κi

)]
E
[∥∥Q̄n−1

t −Q∗t
∥∥2

2

]

+
ηt LΦ

nκ0
E
[∥∥Q̄n−1

t+1 −Q∗t+1

∥∥2

2

]
+
ηt
n

m∑

i=1

LΦ

κi
E
[∥∥ūi,n−1

t − ui,∗t
∥∥2

2

]
+ CH

η2
t

n2
,
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where CH bounds the term

E
[
Q̄n−1
t (s, a)−Ht

(
ū1,n−1
t , . . . , ūm,n−1

t , Q̄n−1
t+1 ,Wt+1

)
(s, a)

]2
≤ CH ,

for all (s, a) ∈ U .

Proof. See Appendix A.

With these preliminary results in mind, we move on to the theorem that states our
O(1/n) convergence rate and provide a sketch of the proof.

Theorem 3 (Convergence Rate). Choose initial approximations Q̄0 ∈ RD and ūi,0 ∈ RD
for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut for all t ∈ T . Under Assumptions
1(vi)–3, the ε-greedy sampling policy of (5.5), and the deterministic harmonic stepsizes given
in (5.6), the sequences of iterates ūi,n for i ∈ {1, . . . ,m} and Q̄n generated by Algorithm

1 satisfy convergence rates of the form E
[∥∥ūi,n − ui,∗

∥∥2

2

]
≤ O (1/n) for i ∈ {1, . . . ,m} and

E
[∥∥Q̄n −Q∗

∥∥2

2

]
≤ O (1/n).

Sketch of Proof. The proof is also by backwards induction on t, where the induction hy-
pothesis at each step is that Q̄nt+1 converges at a rate of O(1/n). Applying Lemma 2 along

with some additional analysis, it is possible to show that ūi,nt also converges at a rate of
O(1/n). Lemma 3 then completes the proof by showing the desired rate for Q̄nt . The details
are given in Appendix A.

Although both ūi,n and Q̄n converge at a rate of O (1/n), the slower sequence is Q̄n.
To see why this step is slower, one can compare Lemmas 2 and 3. From Lemma 2, we
see that the error of the quantity ūi,nt depends only on the “last iteration error” (the error
of ūi,n−1

t ) and the error of the next stage value function Q̄n−1
t+1 . In contrast, Lemma 3

shows that the error of Q̄nt also depends on the error of the current stage quantile ūi,n−1,
in addition to its own “last iteration error” and the error of the next stage value function.
The interpretation of these bounds is that accuracy of ūi,n−1 is needed before we obtain
an accurate approximation of Q̄nt , exactly as our intuition would suggest, given Figure 1.
Indeed, this is observed in empirical experiments (see Section 7), motivating the second
contribution of this paper, a procedure aimed toward speeding up the slow step of the ADP
algorithm.

6 Efficient Sampling of the “Risky” Region

Arguably, the biggest practical issue with a Monte Carlo-based algorithm in the setting of
risk-averse decision making is the question of sampling. To illustrate, suppose the one-step
conditional risk measure is CVaR at a level of α = 0.99. Because α is close to 1, the iterates
of the Dynamic-QBRM ADP algorithm are volatile and exhibit poor empirical convergence
rates, as shown in Figure 2. In this section, we discuss a method to address this issue.

6.1 Overview of the Main Idea

As we have mentioned, Dynamic-QBRM ADP can be applied in situations where the dis-
tribution of the information process {Wt} is unknown, a common assumption for ADP
algorithms. An example of when such a paradigm can be useful is when one has access to
real data, but no stochastic model from which to simulate. Another example is a black-box
simulator where the user has little to no control of its parameters. In these scenarios, a
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Figure 2: Sample Paths of Dynamic-QBRM ADP

good remedy to any sampling issue is to implement an adaptive stepsize rule, similar to
the likes of George and Powell [2006], Schaul et al. [2013], and Ryzhov et al. [2015] (the
third reference develops a stepsize rule specifically in the context of ADP), that can adjust
based on previously observed data points. However, if the distribution of the stochastic
process {Wt}Tt=0 is known, then we can propose a new companion procedure to control the
sampling process as our ADP algorithm progresses. The procedure takes advantage of the
idea of importance sampling (see, e.g., Bucklew [2004]) and is inspired by adaptive sampling
approaches like the cross-entropy method of Rubinstein [1999].

ADP RDS
ūi,n, Q̄n

ADP
ūi,n+1, Q̄n+1

RDS
sampling dist.approximations

. . .
sampling dist.approximations

Figure 3: RDS Algorithm Idea

Recall from the results of the previous section that the convergence of Q̄nt , the approx-
imation of the value function, is expected to be slower than that of ūi,nt , the auxiliary
variable. In this section, we propose a procedure called risk-directed sampling (RDS) to
improve the sampling efficiency for the step of Dynamic-QBRM ADP where Q̄nt is updated,
i.e., Step 6 of Algorithm 1. The main idea, as illustrated in Figure 3, is to use the ADP
approximations to drive the learning of the sampling distribution and simultaneously use
the sampling distribution to generate the samples for updating the ADP approximations.
As the figure shows, the hope is that our procedure updates the distribution in such a way
that we dedicate samples to the regions of high risk (from where we may otherwise not see
many samples).

6.2 Risk-Directed Sampling

Suppose the distribution of the exogenous information Wt+1 has a density pt(w). Notice
that by (4.3), we have for any (s, a) and t,

Q∗t (s, a) =

∫
Ht

(
u1,∗
t , u2,∗

t , . . . , um,∗t , Q∗t+1, w
)
(s, a) pt(w) dw. (6.1)

For convenience, we use the shorthand notation

H∗t (w|s, a) = Ht

(
u1,∗
t , u2,∗

t , . . . , um,∗t , Q∗t+1, w
)
(s, a),

to emphasize the variable of integration, w. From the principle of importance sampling
(see, e.g., Bucklew [2004]), it is known that to produce a low-variance estimate of Q∗t (s, a)
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using Monte Carlo sampling, one should sample from a distribution whose density is nearly
proportional to the absolute value of the integrand of (6.1).

Our approach takes advantage of this proportionality property of the optimal density
and directly constructs an approximation to the absolute value of the integrand of (6.1) by
minimizing a mean squared error. The idea is to capture the “risky regions,” i.e., the parts
of the outcome space where the integrand is large. When the parametric class of sampling
distributions is chosen to be a mixture class (as we do), this introduces a simplification by
allowing us to effectively remove the constraint ‖θ‖1 = 1 from the optimization problem.
In addition, we prove that our method converges without exact knowledge of the function
H∗t (w|s, a). Instead, the algorithm works in conjunction with Dynamic-QBRM ADP by
using approximations defined by

Hn
t (w|s, a) = Ht

(
ū1,n−1
t , ū2,n−1

t , . . . , ūm,n−1
t , Q̄n−1

t+1 , w
)
(s, a),

where ū1,n−1
t , ū2,n−1

t , . . . , ūm,n−1
t , Q̄n−1

t+1 are outputs from Dynamic-QBRM ADP. Like the
main ADP method, the procedure is fully adaptive and updates to the sampling distribution
are made at every iteration. To our knowledge, an adaptive importance sampling approach
for constructing risk-averse policies has not been considered in the literature. However,
Kozmı́k and Morton [2014] employs importance sampling from a different perspective: for
the evaluation of risk-averse policies in stochastic programming.

Let {φkt }Kk=1 be the set of densities for K prespecified basis distributions (we also refer
to these as basis functions) for time t, from which we create a mixture distribution used
for sampling. Note that it is often sufficient to specify one set of distributions for all t, as
we do in Section 7. Our goal is to take the traditional regression approach and develop an
approximation of the form

∑
k θ̄

k,n
t (s, a)φkt (w) ≈

∣∣H∗t (w|s, a)
∣∣ pt(w), where θ̄k,nt (s, a) is the

weight of the k-th basis density at iteration n and state (s, a). For convenience, we also

use the notation θ̄nt (s, a) to be a vector in RK with components θ̄k,nt (s, a) for k = 1 to K.
Choose a (large) compact subsetW ⊆W and define a random variable W u that is uniformly
distributed overW, i.e., assume that its density is given by the function pu(w) = CW 1{w∈W}
for some constant CW . In what follows, we measure the mean squared error using this
distribution, though of course, other reasonable choices may exist and the algorithm can
be adapted accordingly. For a function F : W → R and φ = (φ1, φ2, . . . , φK)T, define the
projection operator

ΠφF = arg min
θ≥0

E
[[
θTφ(W u)− F (W u)

]2]
, (6.2)

which maps F to a nonnegative coefficient vector θ corresponding to the best, i.e., minimum
mean squared error, approximation under φ.

Proposition 2. Under the condition that E
[
φ(W u)φ(W u)T

]
is positive definite, the opti-

mization problem of (6.2) has a unique solution.

Proof. If the positive definiteness condition holds, then the problem is a strictly convex
quadratic program (see, e.g., Boyd and Vandenberghe [2004]).

Exactly in the spirit of importance sampling, we define the optimal sampling density
(within the mixture class) to be the probability density function corresponding to the best fit
of the integrand using the given basis functions, i.e., [Πφ[ |H∗t ( · |s, a)| pt(·)]]Tφ(w), which is
computed by normalizing the weight vector so that it has unit norm. The sampling density
we use at time t, iteration n, and state (s, a) and the corresponding likelihood ratio are
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given by

p̄n−1
t (w|s, a) ∝

[
θ̄n−1
t (s, a)

]T
φ(w) and Lnt+1(s, a) = pt

(
W q,n
t+1

)
p̄n−1
t

(
W q,n
t+1

∣∣s, a
)−1

,

where Lnt+1 ∈ Rd is defined for each t and n and W q,n
t+1 ∈ W is the random sample gener-

ated by from p̄n−1
t (w|s, a). Assume that if θ̄n−1

t (s, a) = 0 (the zero vector), then we set
p̄n−1
t (w|s, a) ∝∑k φ

k(w). Finally, to update our coefficients θ̄nt (s, a) from one iteration to
the next, we need to introduce another Gnt -measurable stepsize sequence {βnt } with βnt ∈ Rd
for each t. The description of the new algorithm is given in Algorithm 2 below.

Besides the additional input parameters, there are three points of departure from Algo-
rithm 1. In Step 3, the information process sample W q,n

t+1 is drawn according to p̄n−1
t (w|s, a)

rather than the true distribution, pt(w). In Step 5, we include an additional factor corre-
sponding to the likelihood ratio Lnt+1 in order to apply importance sampling. Step 7 is new
and represents the updating step for the sampling coefficients θ̄nt (s, a) using a stochastic
approximation step. Before moving on to the convergence result, we need another stepsize
assumption and an assumption on the basis functions. In addition, Lemma 5 verifies a
technical condition that we need for the convergence result of Theorem 5.

Algorithm 2: Dynamic-QBRM ADP with Risk-Directed Sampling

Input: Initial estimates of the value function Q̄0 ∈ RD and quantiles ūi,0 ∈ RD for
i ∈ {1, 2, . . . ,m}.
Basis distributions φk and initial sampling coefficients θ̄0(s, a) ∈ RK .

Stepsize rules γnt , ηnt , and βn
t for all n, t.

Output: Approximations {Q̄n} and {ūi,n}.
1 Set Q̄n

T = 0 for all n.
for n = 1, 2, . . . do

2 Choose an initial state (Sn
0 , a

n
0 ).

for t = 0, 1, . . . , T − 1 do
3 Draw a sample of the information process Wu,n

t+1 from the distribution of Wt+1.

Draw an IS sample W q,n
t+1 so that W q,n

t+1(s, a) ∼ p̄n−1t (w|s, a).

4 Update auxiliary variable approximations for i = 1, . . .m:

ūi,nt = ΠXu
t

{
ūi,n−1t − diag(γnt )ψi

t

(
ūi,n−1t , Q̄n−1

t+1 ,W
u,n
t+1

)}
.

5 Compute an estimate of the future cost based on the current approximations:

q̂nt = diag(Ln
t+1)

[
Ht

(
ū1,n−1t , . . . , ūm,n−1

t , Q̄n−1
t+1 ,W

q,n
t+1

)]
.

6 Update approximation of value function:

Q̄n
t = ΠX q

t

{
Q̄n−1

t − diag(ηnt )
(
Q̄n−1

t − q̂nt
)}
.

7 Update the sampling coefficients for each state. Let w = W q,n
t+1(s, a) and

θ̄nt (s, a) =
[
θ̄n−1t (s, a)−βn

t (s, a)
[(
θ̄n−1t (s, a)

)T
φ(w)

−
∣∣Hn

t (w|s, a)
∣∣ pt(w)

]
φ(w) pu(w) p̄n−1t (w|s, a)−1

]+
,

where [ · ]+ is taken componentwise.

8 Choose next state (Sn
t+1, a

n
t+1).

end

end
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Assumption 4. For all (s, a) ∈ U and t ∈ T , suppose βnt is Gnt -measurable and

(i) βnt (s, a) = β̃n−1
t 1{(s,a)=(Sn

t ,a
n
t )}, for some β̃n−1

t ∈ R that is Gn−1
t -measurable.

(ii)
∞∑

n=1

βnt (s, a) =∞,
∞∑

n=1

βnt (s, a)2 <∞ a.s.

(iii) E
[
(β̃n−1
t )2

]
≤ O(n−1−ε) for some ε > 0.

Assumption 5. With regard to the basis distributions φk, k ∈ {1, 2, . . . ,K}, the following
hold:

(i) E
[
φ(W u)φ(W u)T

]
is a positive definite matrix (so that we may apply Proposition 2),

(ii) Let q̂nt ∈ Rd be defined as in Step 5 of Algorithm 2. There exists a constant Cφ such
that the following holds for any t and (s, a): given θ ≥ 0 and ‖θ‖1 = 1, the tails of the
distribution

∑
k θ

kφk are “heavy” enough to guarantee that if W q,n
t+1 ∼

∑
k θ

kφk, then
E
[
q̂nt (s, a)2

]
≤ Cφ.

We remark that due to the compactness of the sets X ut and X qt , many of the terms
in the definition of q̂nt are bounded; therefore, the crucial terms that affect Assumption
5(ii) are Lnt+1 and the cost function ct. The condition that E

[
βnt (s, a)2

]
≤ O(n−1−ε)

is not particularly difficult to satisfy; for example, our deterministic harmonic stepsizes
satisfy the condition with ε = 1. In addition, polynomial rules of the form βnt (s, a) =
n−1/2−ε/2 1{(s,a)=(Sn

t ,a
n
t )} work as well. We state the convergence result for Algorithm 2 in

Theorem 5. Since Step 7 of Algorithm 2 does not project to a compact set, we cannot make
use of [Kushner and Yin, 2003, Theorem 2.4] as we did before. Instead, our convergence
result is derived from a theorem of Pflug [1996] for stochastic approximation, which requires
the result of Lemma 5. The rest of the proof is mostly standard and is thus deferred to
Appendix A.

Because the importance sampled stochastic processes are corrected for in expectation
using the likelihood ratio Lnt+1, we should not expect the rate of convergence to change.
Indeed, we have the following theorem.

Theorem 4 (Convergence Rate). Choose initial approximations Q̄0 ∈ RD and ūi,0 ∈ RD
for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut for all t ∈ T . Under Assumptions
1(vi)–5, the ε-greedy sampling policy of (5.5), and the deterministic harmonic stepsizes given
in (5.6), the sequences of iterates ūi,n for i ∈ {1, . . . ,m} and Q̄n generated by Algorithm

1 satisfy convergence rates of the form E
[∥∥ūi,n − ui,∗

∥∥2

2

]
≤ O (1/n) for i ∈ {1, . . . ,m} and

E
[∥∥Q̄n −Q∗

∥∥2

2

]
≤ O (1/n).

Proof. The proof is analogous to that of Theorem 3. We need versions of Lemma 2 and
Lemma 3 for Algorithm 2. The difference is that we need to deal with the term Lnt+1(s, a),
which has expectation equal to 1.

Theorem 5 (Convergence of Risk-Directed Sampling Procedure). Choose initial approxi-
mations Q̄0 ∈ RD and ūi,0 ∈ RD for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut
for all t ∈ T . Under Assumptions 1(vi)–5, the ε-greedy sampling policy of (5.5), and the
deterministic harmonic stepsizes given in (5.6), Algorithm 2 generates a sequence of iterates
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Q̄n that converge almost surely to the optimal value function Q∗. Moreover, the sampling
coefficients θ̄nt (s, a) converge to the optimal sampling coefficients under φ:

θ̄nt (s, a) −→ Πφ

[ ∣∣H∗t (·|s, a)
∣∣ pt(·)

]
a.s.

for each t and (s, a) ∈ U .

Proof. See Appendix A.

Not surprisingly, the new algorithm retains the same theoretical properties of the stan-
dard Dynamic-QBRM ADP without RDS. In addition, we now have a sampling density
that converges to the optimal sampling density as the algorithm progresses (Theorem 5).
What remains for us to explore are the empirical convergence rates of the two approaches.

7 Numerical Results

The recent surge of interest in energy and sustainability has shown that when pertaining to
the question of risk, the problem of optimal control of energy storage assets is an especially
rich application domain. In this section, we illustrate our proposed ADP algorithm by way
of a stylized energy trading and bidding problem in which both heavy tails and extreme
events play a prominent role.

7.1 Model

We consider the problem of using energy storage to trade in the electricity market, i.e.,
energy arbitrage, with the caveat that there is the possibility of some financial penalty
when the amount of stored energy is low. For example, since storage for backup purposes
is rarely in use, one might consider using it to generate a stream of revenue by interacting
with the market. However, this immediately introduces a source of risk: in the rare event
when backup is needed, it is crucial that there is enough energy to cover demand. Failure to
do can cause complications, so it is useful to consider a risk-averse policy to this problem.
See Xi et al. [2014] for a detailed model of the shared storage situation, but solved with
a risk-neutral objective. When no penalty is assessed, we assume that there is a modest
reward. Finally, we introduce a bidding aspect to the problem where one must place bids
prior to the desired transaction time (see Jiang and Powell [2015b] for detailed model of
hour-ahead bidding).

For t = 0 to t = T , let St ∈ S = {0, 1, . . . , Smax} be the amount of energy in storage
and let Pt ∼ logN (µP (t), σP (t)2) be the (heavy-tailed) spot price of electricity. Also,
let Ut ∼ N (0, σ2

U ) be independent of Pt, and suppose our simple model of storage-based
penalties is as follows. Given two constants 0 < a < b, where a represents the “rate of
reward” and b represents the “rate of penalty,” assume that the reward/penalty assessed at
time t+ 1 is given by

Ft+1 =
∣∣µS(St) + Ut+1

∣∣
[
b · 1{µS(St)+Ut+1<0} − a · 1{µS(St)+Ut+1≥0}

]
,

where µS : S → R is a nondecreasing function, signifying that as St increases, the possibility
of penalty decreases (rare event). Our two-dimensional action at each time t is given by

at = (b−t , b
+
t ) ∈ A ⊆

{
(b−, b+) : 0 ≤ b− ≤ b+ ≤ bmax

}
,

where |A| < ∞. There are no constraints, so As = A for all s ∈ S. We call b−t the buy
bid and b+t the sell bid : if Pt fluctuates below the buy bid, we are obligated to buy from
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the market and if Pt rises above the sell bid, we are obligated to sell to the market. In
addition, we are penalized the amount of the spot price if we are to sell but the storage
device is empty, i.e., St = 0. In this problem, our information process Wt is given by the pair
(Pt, Ut) and is independent of the past. We find it most natural to model this problem in
the sense of maximizing revenues (or “contributions”) rather than minimizing costs; hence,
the contribution function is

ct(St, at,Wt+1) = −Ft+1 + Pt+1

[
1{b+t <Pt+1} − 1{b−t >Pt+1} − 1{St=0} 1{b+t <Pt+1}

]
,

and the transition function is given by St+1 = [min{St + 1{b−t >Pt+1} − 1{b+t <Pt+1}, Smax}]+.

The objective is to optimize the risk-averse model given in (3.2) with the “min” operator
replaced by a “max” and taking the QBRM to be mean-CVaR at α = 0.99 (this refers to
the lower 0.01 tail of the distribution since we are now in the setting of rewards, not costs).
Various values of λ are considered.

7.2 Parameter Choices

We let T = 12 and the size of the storage device be Smax = 6. Next, suppose the values
of µS are chosen so that P

(
µS(St) + Ut+1 < 0

)
are 0.1, 0.05, 0.02, 0.01, 0.01, 0.001, and

0.001 for St = 0, 1, . . . , Smax (representing increasingly rare penalties) with σ2
U = 1. The

penalty parameters are set to be a = 5 and b = 500, making the penalty events relatively
severe. We denote the (seasonal) mean of the spot price process by m(t) = E(Pt) =
50 sin(4πt/T )+100, with a constant variance v = Var(Pt) = 3000. By the properties of the
lognormal distribution, this leads to the parameters µP (t) = log(m(t) (1 + v/m(t)2)−1/2)
and σP (t) =

√
log(1 + v/m(t)2). The maximum bid is chosen to be bmax = 500 and each

dimension (the range from 0 to 500) is discretized into increments of 50, resulting in an
MDP with approximately 7,000 states.

Finally, we discuss our choice of parameters for the risk-directed sampling (RDS) pro-
cedure. For φ1, we simply take the true distribution of Wt+1 and for the remaining φk, we
select a set of bivariate normal distributions placed in a grid, with mean of the first com-
ponent taking values in {50, 175, 300} and the mean of the second component taking values
in {−3,−1, 1}. The standard deviations are chosen to be 750 and 0.25 for the respective
components. This is a fairly general choice of basis functions that uses very little problem
specific information and/or tuning. Figure 4B shows an example of the shape of the sam-
pling density after 500 iterations of RDS for a fixed state of (St, b

−
t , b

+
t ) = (0, 150, 300) at

t = T − 1 with λ = 0.5 (note: the z-axis is not normalized here and the range of the Pt axis
has been decreased to focus on the nonzero areas). As we would expect, the algorithm has
chosen to allocate a relatively large sampling effort toward small values of Ut, presumably
due to the fact that these events are very costly with b = 500 and thus critical to the
estimation of CVaR. The last few observations are shown as red points.

7.3 Evaluating Policies

Here, we describe the procedure for evaluating policies under the objective (3.2). Let
{Aπ0 , Aπ1 , . . . , AπT−1} be a policy; to compute (3.2), let Sπt+1 = SM (s,Aπt (s),Wt+1) and we
solve the recursive equations given by

V π
t (s) = ραt

(
ct(s,A

π
t (s),Wt+1) + V π

t+1(Sπt+1)
)

for all s ∈ S, t ∈ T , (7.1)

V π
T (s) = 0 for all s ∈ S.
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(A) Basis distributions φk (equally weighted) (B) Shape of sampling density, n = 500

Figure 4: Example Illustration of Risk-Directed Sampling (λ = 0.5)

The value of the policy is then given by V π
0 (S0), but since Wt is continuously distributed,

we cannot, in general, solve these equations exactly. For this reason, we select a large, finite
sample Ω̂ ⊆ Ω, and apply the standard sample average approximation (SAA) technique
of Kleywegt et al. [2002] to the Bellman recursion (7.1) along with the standard linear
programming method suggested in Rockafellar and Uryasev [2000] for computing conditional
value at risk. Next, in order to have an optimality benchmark against which ADP policies
can be compared, we also apply the SAA technique to the Bellman recursion for the optimal
policy specified in Theorem 1 (with ρt = ραt and the “min” replaced by “max”).

We use 50,000 realizations of Wt = (Pt, Ut) for each t = 1, 2, . . . , T in our simulations
below. For the purposes of our numerical work and Figure 7, we refer to the SAA optimal
policy (which has value function V ∗0,β(S0)) as our benchmark for “100% optimal” and a
corresponding SAA myopic policy, denoted by πm, (i.e., the policy which takes the action
to maximize ραt (ct(s, a,Wt+1)) with zero continuation value to be “0% optimal.” More
precisely, we have

% optimality of policy π (with respect to myopic policy πm) =
V π

0 (S0)− V πm
0 (S0)

V ∗0 (S0)− V πm
0 (S0)

.

Recall that larger V π
0 (S0) is better, as we have switched to the maximization setting for the

numerical application.

7.4 Results

Let us first show a few plots that illustrate the effectiveness of the RDS procedure. Once
again, we fix the state to be (St, b

−
t , b

+
t ) = (0, 150, 300) at t = T−1 and set λ = 0.5, but now

we focus on the evolution of the approximations Q̄nt and ūnt ; representative sample paths
are shown in Figure 5 (the first plot is from Figure 2, repeated for comparison purposes).

To make the comparison as fair as possible, the random number generator seed is set
so that the sequence of observations used to update ūnt is the same in both cases (i.e., the
gray lines are identical). The true limit points are approximately u∗t (St, at) ≈ −555 and
Q∗t (St, at) ≈ −387, and we notice that in the case of Figure 5B, a decent approximation
of Q∗t is obtained around visit 2500, while the approximation in Figure 5A does not settle
until the end. This drastic difference in empirical convergence rate can have a significant
impact on the performance of Dynamic-QBRM ADP as the large errors shown in Figure
5A are propagated backwards in time.

In fact, we can illustrate this impact by examining the value function approximations
back at time t = 0, with and without RDS, compared to the SAA optimal value function.
Figure 6 compares the two methods after N = 5,000,000 iterations by varying the bid
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Figure 5: Sample Paths of Approximations Generated by Dynamic-QBRM ADP (λ = 0.5)

dimensions of a fixed state S0 = 0. Notice that in Figure 6B, the approximation from the
RDS procedure very closely resembles the optimal value function of Figure 6C even after
errors are propagated through T = 12 steps. The same cannot be said of the approximation
in Figure 6A.
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Figure 6: Surface Plots of Value Function Approximations at t = 0 (λ = 0.5)

Lastly, we illustrate that in addition to the improved empirical convergence rates ob-
served in Figures 5 and 6, running Dynamic-QBRM ADP with RDS has a noticeable effect
on the resulting policies as well. Using the backward recursive SAA evaluation procedure
described above, we plot optimality percentages of risk-averse policies produced by the
two variants of the algorithm for λ ∈ {0.6, 0.55, 0.5, 0.45, 0.4} in Figure 7. We see that
RDS has the advantage in all cases, especially during the early iterations. Figure 7 uses
a log-scale to display the early progress of the algorithms every 50,000 iterations from
N = 0 to N = 1,000,000 and also the asymptotic progress every 1,000,000 iterations from
N = 1,000,000 to N = 5,000,000. Our simulations also suggest that as λ decreases, the
advantage of using RDS diminishes; this is not surprising because decreasing λ corresponds
to deemphasizing the “risky” events that RDS seeks to sample. In fact, we find that in this
particular example problem, the algorithms are practically indistinguishable for λ ≤ 0.3.
Computation times for the three methods are given in Table 1; notice that we are able to
run the ADP methods for 5 million iterations in roughly half of the time it takes to com-
pute the SAA optimal solution (the large number of scenarios presents a challenge for the
optimization routine implemented in CPLEX). The online companion contains additional
numerical results of evaluating our policies on more “practical” metrics of risk and reward,
rather than the dynamic risk measure objective function. We observe that the policies
generated by our algorithms behave in an intuitively appealing way.
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(D) λ = 0.45
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Figure 7: Comparison of Dynamic-QBRM ADP with and without RDS

Method λ = 0.6 λ = 0.55 λ = 0.5 λ = 0.45 λ = 0.4

Dynamic-QBRM ADP 810.24 819.40 816.40 830.69 811.45

Dynamic-QBRM ADP with RDS 926.25 983.33 989.87 926.85 973.50

SAA Backward Recursion 2119.74 2058.36 2163.91 2118.84 2072.79

Table 1: CPU Times for N = 5, 000, 000 Iterations of ADP and SAA Optimal Solution (minutes)

8 Conclusion

In this paper, we propose a new ADP algorithm for solving risk-averse MDPs [Ruszczyński,
2010] under a class of quantile-based risk measures. The algorithm uses a two-step updating
procedure to approximate the optimal value function and we prove that it converges almost
surely with a rate of O(1/n). We also show a companion sampling procedure to more
efficiently sample the “risky” region of the outcome space and then prove that the sampling
distribution converges to one that is, in a sense, the best within a parametric class. Next,
we describe an energy storage and bidding application, on which we demonstrate that the
RDS sampling approach provides significant benefits in terms of the empirical convergence
rate. Moreover, we illustrate that the approximate policies produced by Dynamic-QBRM
ADP behave in an intuitive and appealing way in terms of the tradeoff between risk and
reward (see online companion), suggesting that it can be readily applied to a variety of
problem settings.
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A Proofs

Theorem 2 (Almost Sure Convergence). Choose initial approximations Q̄0 ∈ RD and
ūi,0 ∈ RD for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut for all t ∈ T . Under
Assumptions 1–2, Algorithm 1 generates a sequence of iterates Q̄n that converge almost
surely to the optimal value function Q∗.

Proof. We induct backwards on t, starting with the base case t = T . Since QnT (s, a) =
Q∗T (s, a) = 0 for all n and all (s, a), convergence trivially holds. The induction hypothesis is
that Q̄nt+1(s, a)→ Q∗t+1(s, a) almost surely, and we aim to show the same statement with t
replacing t+ 1. As we did before, we analyze the statistical error and approximation error,
εq,nt+1, ξ

q,n
t+1 ∈ Rd, except they are now with respect to the stochastic Bellman operator Ht:

εq,nt+1 = Q∗t −Ht

(
u1,∗
t , . . . , um,∗t , Q∗t+1,W

q,n
t+1

)
,

ξq,nt+1 = Ht

(
u1,∗
t , . . . , um,∗t , Q∗t+1,W

q,n
t+1

)
−Ht

(
ū1,n−1
t , . . . , ūm,n−1

t , Q̄n−1
t+1 ,W

q,n
t+1

)
.

Therefore, the update of Step 6 of Algorithm 1 is equivalent to

Q̄nt = ΠX q
t

{
Q̄n−1
t − diag(ηnt )

[
Q̄n−1
t −Q∗t + εq,nt+1 + ξq,nt+1

]}
. (A.1)

It is once again clear that E
[
εq,nt+1(s, a)

∣∣Gn−1
t+1

]
= 0 almost surely. Furthermore, we can easily

argue that for some positive constant CH ,

E
[
Q̄n−1
t (s, a)−Ht

(
ū1,n−1
t , . . . , ūm,n−1

t , Q̄n−1
t+1 ,W

q,n
t+1

)
(s, a)

]2
≤ CH , (A.2)

using Assumption 2(i), Assumption 2(ii), the fact that ραt (0) = Φ(0, . . . , 0) = 0, and the
boundedness of the iterates Q̄n−1

t+1 and ūnt .
Now, fix an (s, a) and let Snt+1 = SM

(
s, a,W q,n

t+1

)
. Expanding and using Assumption 2(i)

and the property (5.2) we see that

|ξq,nt+1(s, a)| ≤ LΦ

∣∣ min
a′∈ASn

t+1

Q∗t+1(Snt+1, a
′)− min

a′∈An
St+1

Q̄n−1
t+1 (Snt+1, a

′)
∣∣

+ LΦ

∑

i

∣∣ūi,n−1
t (s, a)− ui,∗t (s, a)

∣∣

≤ LΦ

[∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
∞ +

∑

i

∥∥ūi,n−1
t − ui,∗t

∥∥
∞

]
. (A.3)

Taking conditional expectation, applying Lemma 1, and using the induction hypothesis
(which tells us that ūi,nt → ui,∗t and Q̄nt+1 → Q∗t+1 almost surely), we conclude

E
[
ξq,nt+1(s, a)

∣∣Gn−1
t+1

]
→ 0 a.s.,

satisfying one of the conditions of [Kushner and Yin, 2003, Theorem 2.4]. In addition, note
the bounded second moment condition of (A.2), the conditional unbiasedness of εq,nt+1(s, a),
the stepsize, sampling, and truncation properties of Assumption 1. We once again have the
ingredients to apply the stochastic approximation convergence theorem [Kushner and Yin,
2003, Theorem 2.4] (the objective function for applying the theorem is q 7→ ‖q −Q∗t ‖22) to
the update equation of (A.1) in order to conclude

Q̄nt (s, a)→ Q∗t (s, a) a.s.,

for every (s, a) ∈ U , completing both the inductive step and the proof.
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Proposition 1. Under the ε-greedy sampling policy given in (5.5) and the deterministic
harmonic stepsizes given in (5.6), Assumption 1(iii)–(iv) is satisfied.

Proof. Let us consider, for a fixed t and (s, a), the stepsize sequence

γnt (s, a) =
γt
n

1{(s,a)=(Sn
t ,a

n
t )}.

The argument for the case of ηnt (s, a) is, of course, exactly the same and is omitted. First,
notice that the second part, i.e.,

∑∞
n=1 γ

n
t (s, a)2 < ∞ almost surely, is trivial. We thus

focus on proving that the second part of the assumption, that
∑∞

n=1 γ
n
t (s, a) = ∞ almost

surely, holds in this case. An iteration n is called a visit to state (s, a) if (s, a) = (Snt , a
n
t )

(so the stepsize is nonzero). Let {∆k
t (s, a)}k≥1 be a process that describes the interarrival

times for visits to the state (s, a); in other words, ∆k
t (s, a) is the number of iterations that

pass between the (k − 1)-st and k-th visits to the state (s, a). The arrival time sequence
(the iterations for which (s, a) is visited) is thus given by the sum

Nk
t (s, a) =

k∑

k′=1

∆k′
t (s, a) for k > 0.

To simplify notation, we henceforth drop the dependence of these processes on (s, a) and use
∆k
t = ∆k

t (s, a) and Nk
t = Nk

t (s, a). By selecting only the iterations for which the stepsizes
are nonzero, we see that

∞∑

k=1

γ
Nk

t
t =

∞∑

n=1

γnt (s, a).

Analogous to Nk
t process, define the deterministic sequence

nkt =

⌈
k∑

k′=1

δk
′
t

⌉
and δkt =

−2

log (1− ε) log k.

Observe that under the ε-greedy sampling policy, the event
{

(s, a) 6= (Snt , a
n
t )
}

occurs with
probability at most 1− ε. Hence, by independence, we can show that

P
(
∆k
t ≥ δkt

)
≤ (1− ε)dδkt e ≤ 1

k2
.

By the Borel-Cantelli Lemma, with probability 1, the events
{

∆k
t ≥ δkt

}
occur finitely

often. Hence, there exists an almost surely finite Kt such that for all k ≥ Kt, it is true that
∆k
t ≤ δkt . Clearly, nkt ≤ O(k log k) and

∞∑

k=1

γ
nk
t

t =
∞∑

k=1

γt

nkt
=∞ (A.4)

holds. Let C1 =
∑Kt−1

i=1
γt
N i

t
and C2 =

∑Kt−1
i=1 ∆i

t be almost surely finite random variables.

Some simple manipulations yield (the following chain of inequalities may be analyzed ω-wise
to obtain the a.s. qualification)

∞∑

k=1

γ
Nk

t
t =

∞∑

k=1

γt

Nk
t

= C1 +

∞∑

k=Kt

γt

C2 +
∑k

i=Kt
∆i
t

≥ C1 +

∞∑

k=Kt

γt

C2 +
∑k

i=Kt
δit
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≥ C1 +

∞∑

k=Kt

γt

C2 −
∑Kt−1

i=0 δit + nkt
=∞ a.s.,

where the final equality follows from (A.4).

Lemma 3. Under the same conditions as Lemma 2, the sequence of approximations Q̄nt
generated by Algorithm 1 satisfies, for any κ0, κ1, . . . , κm > 0,

E
[∥∥Q̄nt −Q∗t

∥∥2

2

]
≤
[
1− ηt

n

(
2 ε− LΦ κ0 − LΦ

m∑

i=1

κi

)]
E
[∥∥Q̄n−1

t −Q∗t
∥∥2

2

]

+
ηt LΦ

nκ0
E
[∥∥Q̄n−1

t+1 −Q∗t+1

∥∥2

2

]
+
ηt
n

m∑

i=1

LΦ

κi
E
[∥∥ūi,n−1

t − ui,∗t
∥∥2

2

]
+ CH

η2
t

n2
,

where CH bounds the term

E
[
Q̄n−1
t (s, a)−Ht

(
ū1,n−1
t , . . . , ūm,n−1

t , Q̄n−1
t+1 ,Wt+1

)
(s, a)

]2
≤ CH ,

for all (s, a) ∈ U .

Proof. Note that although we omit its algebraic form, the existence of Cg is guaranteed
by Assumption 2(ii) and the boundedness of Q̄n−1

t (s, a). Let us recall the update equation
given in Step 7 of Algorithm 1 can be rewritten as

Q̄nt = ΠX q
t

{
Q̄n−1
t − diag(ηnt )

[
Q̄n−1
t −Q∗t + εq,nt+1 + ξq,nt+1

]}
.

Expanding, we have
∥∥Q̄nt −Q∗t

∥∥2

2
≤
∥∥Q̄n−1

t −Q∗t
∥∥2

2
+
∥∥diag(ηnt )

[
Q̄n−1
t −Q∗t + εq,nt+1 + ξq,nt+1

]∥∥2

2

− 2
(
Q̄n−1
t −Q∗t

)T
diag(ηnt )

[
Q̄n−1
t −Q∗t + εq,nt+1 + ξq,nt+1

]
.

(A.5)

We focus on the cross term. First, by the ε-greedy sampling policy, notice that

E
[(
Q̄n−1
t −Q∗t

)T
diag(ηnt )

(
Q̄n−1
t −Q∗t

) ∣∣Gn−1
t+1

]
≥ εηt

n

∥∥Q̄n−1
t −Q∗t

∥∥2

2
, (A.6)

and by the definition of εq,nt+1,

E
[(
Q̄n−1
t −Q∗t

)T
diag(ηnt ) εq,nt+1

∣∣Gn−1
t+1

]
= 0. (A.7)

Using the bound (A.3), the fact that ηnt contains exactly one nonzero component, and the
monotonicity of the lp norms, we can see that

E
[
− (Q̄n−1

t −Q∗t )T diag(ηnt ) ξq,nt+1

∣∣Gn−1
t+1

]
≤ ηt

n
LΦ

[∥∥Q̄n−1
t −Q∗t

∥∥
∞
∥∥Q̄n−1

t+1 −Q∗t+1

∥∥
∞

+
∥∥Q̄n−1

t −Q∗t
∥∥
∞

∑

i

∥∥ūi,n−1
t − ui,∗t

∥∥
∞

]

≤ ηt
n
LΦ

[∥∥Q̄n−1
t −Q∗t

∥∥
2

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
2

+
∥∥Q̄n−1

t −Q∗t
∥∥

2

∑

i

∥∥ūi,n−1
t − ui,∗t

∥∥
2

]
.
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Again applying 2ab ≤ a2κ+ b2/κ, we see that for any constants κk > 0, k = 0, 1, . . . ,m,

E
[
−2 (Q̄n−1

t −Q∗t )T diag(ηnt ) ξφ,nt+1

∣∣Gn−1
t+1

]
≤ ηt
n
LΦ

[(
κ0 +

m∑

i=1

κi

)∥∥Q̄n−1
t −Q∗t

∥∥2

2

+
1

κ0

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥2

2
+

m∑

i=1

1

κi

∥∥ūi,n−1
t − ui,∗t

∥∥2

2

]
.

(A.8)
The statement of the lemma follows by taking expectations of (A.5), (A.6), (A.7), and (A.8),
using the CH bound, and combining.

Theorem 3 (Convergence Rate). Choose initial approximations Q̄0 ∈ RD and ūi,0 ∈ RD
for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut for all t ∈ T . Under Assumptions
1(vi)–3, the ε-greedy sampling policy of (5.5), and the deterministic harmonic stepsizes given
in (5.6), the sequences of iterates ūi,n for i ∈ {1, . . . ,m} and Q̄n generated by Algorithm

1 satisfy convergence rates of the form E
[∥∥ūi,n − ui,∗

∥∥2

2

]
≤ O (1/n) for i ∈ {1, . . . ,m} and

E
[∥∥Q̄n −Q∗

∥∥2

2

]
≤ O (1/n).

Proof. First, we state a special case of Chung’s Lemma (see Chung [1954]), which is useful
for analyzing a specific type of sequence that arises often in recursive optimization algo-
rithms (see, e.g., Juditsky et al. [2009], Rakhlin et al. [2012]).

Lemma 4 (Chung [1954]). Consider a sequence {an}. Suppose that the following recursive
inequality holds for some b > 1 and every n ≥ 1:

an ≤
(

1− b

n

)
an−1 +

c

n2
.

Then, if k ≥ max
{

c
b−1 , a

0
}

, it follows that an ≤ k
n for n ≥ 1.

To prove the theorem, we use an induction argument for Q̄n. Let us first consider t = T
as the base case. Since E

[∥∥Q̄nT − Q∗T
∥∥2

2

]
= 0, it is trivially O(1/n), so let us take our

induction hypothesis to be E
[∥∥Q̄nt+1 − Q∗t+1

∥∥2

2

]
≤ O(1/n) for a particular t < T . Hence,

there exists kqt+1 > 0 independent of n such that E
[∥∥Q̄n−1

t+1 −Q∗t+1

∥∥2

2

]
≤ kqt+1

n holds for n ≥ 1

(note the n−1 on the left hand side). We first apply Lemma 2 with γt = 2
εClf

and κ =
εClf

CLF
,

so by Lemma 4, we can take

kit = 2 max

{
2CLF

ε2C2
lf

kqt+1 +
4Cαi

ε2C2
lf

,
∥∥ūi,0t − ui,∗t

∥∥2

2

}

to satisfy E
[∥∥ūnt − u∗t

∥∥2

2

]
≤ kit

2n for n ≥ 1. It follows that E
[∥∥ūn−1

t − u∗t
∥∥2

2

]
≤ kit

n for n ≥ 2.

Finally, we apply Lemma 3 with ηt = 2
ε , κ0 = ε

2LΦ
, and κi = ε

2mLΦ
for all i. Again by

Lemma 4, we can choose

kqt = max

{
4L2

Φ

ε2
kqt+1 +

4mL2
Φ

ε2

∑

i

kit +
4CH
ε2

,
∥∥Q̄0

t −Q∗t
∥∥2

2

}
,

which gives E
[∥∥Q̄nt − Q∗t

∥∥2

2

]
≤ kqt

n for n ≥ 2, the O(1/n) rate needed to complete the
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inductive step. Therefore, we can conclude that

E
[∥∥Q̄n −Q∗

∥∥2

2

]
=

T∑

t=0

E
[∥∥Q̄nt −Q∗t

∥∥2

2

]
≤ O (1/n) ,

as desired. As for the convergence of E
[∥∥ūi,n− ui,∗

∥∥2

2

]
, we note that the values kit obtained

through the induction above can be used to deduce the O (1/n) convergence rate.

Similar to the sequences ξi,nt+1 and ξq,nt+1 used in the proofs of Lemma 1 and Theorem 2,

let us introduce another useful process ξh,nt+1(s, a) ∈ RK for each t and (s, a). As in Step 7
of Algorithm 2, let w = W q,n

t+1. We define

ξh,nt+1(s, a) =
[∣∣H∗t (w|s, a)

∣∣−
∣∣Hn

t (w|s, a)
∣∣
]
φ(w) pt(w) pu(w) p̄n−1

t (w|s, a)−1,

representing the error from using Hn
t (w|s, a) to approximate H∗t (w|s, a).

Lemma 5. Under the ε-greedy sampling policy of (5.5) and Assumptions 1(vi)–5, it follows
that

∞∑

n=1

β̃n−1
t E

[∥∥ξh,nt+1(s, a)
∥∥

2

∣∣Gn−1
t+1

]
<∞ a.s.

for each t and (s, a).

Proof. For simplicity, let w = W q,n
t+1 and P = φ(w) pt(w) pu(w) p̄n−1

t (w|s, a)−1. We notice
that

∥∥ξh,nt+1(s, a)
∥∥

2
≤ ‖P‖2

∣∣H∗t (w|s, a)−Hn
t (w|s, a)

∣∣

≤ ‖P‖2 LΦ

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥
2

+ ‖P‖2 LΦ

∑

i

∥∥ūi,n−1
t − ui,∗t

∥∥
2
,

where the second inequality follows from the same steps used in deriving (A.3) and then
applying the monotonicity of lp norms. Squaring, applying the inequality 2ab ≤ a2κ+ b2/κ
for any κ > 0 to the cross terms, and using the fact that each component of P is bounded
(due to pu), we can write

∥∥ξh,nt+1(s, a)
∥∥2

2
≤ CQ

∥∥Q̄n−1
t+1 −Q∗t+1

∥∥2

2
+
∑

i

Cu,i
∥∥ūi,n−1

t − ui,∗t
∥∥2

2
, (A.9)

for some constants CQ, Cu,1, . . . , Cu,m ≥ 0. Taking expectation of (A.9) and using the

convergence rate result of Theorem 4, we see that E
[
‖ξh,nt+1(s, a)‖22

]
≤ O(1/n). Now, by

Cauchy-Schwarz and Assumption 4(iii),

E
[
β̃n−1
t E

[
‖ξh,nt+1(s, a)‖2 | Gn−1

t+1

]]
= E

[
β̃n−1
t

∥∥ξh,nt+1(s, a)
∥∥

2

]

≤
√

E
[
(β̃n−1
t )2

]
E
[
‖ξh,nt+1(s, a)‖22

]
≤ O(n−1−ε/2),

so it is clear that the terms E
[
β̃n−1
t E

[
‖ξh,nt+1(s, a)‖2 | Gn−1

t+1

]]
are summable. By the monotone

convergence theorem, we conclude

E

[ ∞∑

n=1

β̃n−1
t E

[∥∥ξh,nt+1(s, a)
∥∥

2
| Gn−1

t+1

]]
<∞,

from which the statement of the lemma follows (notice that the term within the expectation
must be finite almost surely).

32



Theorem 5 (Convergence of Risk-Directed Sampling Procedure). Choose initial approxi-
mations Q̄0 ∈ RD and ūi,0 ∈ RD for each i ∈ {1, 2, . . . ,m} so that Q̄0

t ∈ X qt and ūi,0t ∈ X ut
for all t ∈ T . Under Assumptions 1(vi)–5, the ε-greedy sampling policy of (5.5), and the
deterministic harmonic stepsizes given in (5.6), Algorithm 2 generates a sequence of iterates
Q̄n that converge almost surely to the optimal value function Q∗. Moreover, the sampling
coefficients θ̄nt (s, a) converge to the optimal sampling coefficients under φ:

θ̄nt (s, a) −→ Πφ

[ ∣∣H∗t (·|s, a)
∣∣ pt(·)

]
a.s.

for each t and (s, a) ∈ U .

Proof. First, notice that the convergence of Q̄n and ūi,n is (mostly) unaffected by the
addition of the sampling procedure. By the principle of importance sampling, the factor of
diag(Lnt ) corrects, in expectation, for the fact that W q,n

t+1 is sampled from the importance

distribution p̄n−1
t (w|s, a) rather than pt(w). In addition, Assumption 5 implies that the

condition stating that the second moment of the gradient term is finite, which is needed for
[Kushner and Yin, 2003, Theorem 2.4], still holds and therefore the convergence follows.

We now focus on the last part of the theorem and analyze the convergence of the
sampling coefficients. Let

θ∗t (s, a) = Πφ

[ ∣∣H∗t (·|s, a)
∣∣ pt(·)

]
,

and we aim to show θ̄nt (s, a) → θ∗t (s, a) almost surely. The proof technique is standard
and uses a supermartingale convergence argument; see, e.g, [Pflug, 1996, Theorem 5.3], but
several aspects need to be adapted for technical reasons in our setting. Throughout this
proof, fix a t and (s, a). To simplify notation, we use the shorthand p̄n−1

t (w) = p̄n−1
t (w|s, a),

w = W q,n
t+1 ∼ p̄n−1

t (w), Hn
t (w) = Hn

t (w|s, a), and H∗t (w) = H∗t (w|s, a). First, we decompose
the gradient term. Define a function ht : RK → RK , so that for θ ∈ RK ,

ht(θ) = E
[[
θTφ(w)− |H∗t (w)| pt(w)

]
φ(w) pu(w) p̄n−1

t (w)−1
]
.

Note that ht is affine in θ and is the gradient of the (strictly convex) quadratic objective
function in (6.2), meaning that we can find positive constants Ch,1 and Ch,2 such that

∥∥ht(θ)
∥∥2

2
≤ Ch,1

∥∥θ − θ∗t (s, a)
∥∥2

2
+ Ch,2. (A.10)

Next, the noise term εh,nt+1(s, a) is given by

εh,nt+1(s, a) =
[(
θ̄n−1
t (s, a)

)T
φ(w)−

∣∣H∗t (w)
∣∣ pt(w)

]
φ(w) pu(w) p̄n−1

t (w)−1 − ht
(
θ̄n−1
t (s, a)

)
,

and it follows that E
[
εh,nt+1(s, a) | Gn−1

t+1

]
= 0. Using the fact that ht

(
θ̄n−1
t (s, a)

)
is a deter-

ministic affine function of θ̄n−1
t (s, a), we observe that εh,nt+1(s, a) can be written in the form

X
[
θ̄n−1
t (s, a)− θ∗t (s, a)

]
+ Z where X ∈ RK×K and Z ∈ RK are random. Since pu(w) = 0

for w outside of a compact set, the entries of both X and Z are bounded. Let ‖ · ‖2 denote
the operator norm whenever its argument is a matrix and we have

∥∥εh,nt+1(s, a)
∥∥2

2
≤
[
‖X‖2

∥∥θ̄n−1
t (s, a)− θ∗t (s, a)

∥∥
2

+ ‖Z‖2
]2

≤ Cε,1
∥∥θ̄n−1

t (s, a)− θ∗t (s, a)
∥∥2

2
+ Cε,2,

(A.11)

for some constants Cε,1 and Cε,2. We also reproduce the definition of ξh,nt+1(s, a) given previ-
ously:

ξh,nt+1(s, a) =
[∣∣H∗t (w)

∣∣−
∣∣Hn

t (w)
∣∣
]
φ(w) pt(w) pu(w) p̄n−1

t (w)−1.
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Step 7 of Algorithm 2 can therefore be written

θ̄nt (s, a) =
[
θ̄n−1
t (s, a)− βnt (s, a)

[
ht
(
θ̄n−1
t (s, a)

)
+ εh,nt+1(s, a) + ξh,nt+1(s, a)

]]+
.

For convenience, let us define

Ant = θ̄nt (s, a)− θ∗t (s, a) and ĥnt = ht
(
θ̄n−1
t (s, a)

)
+ εh,nt+1(s, a) + ξh,nt+1(s, a).

Hence,

‖Ant ‖22 ≤
∥∥[θ̄n−1

t (s, a)− βnt (s, a) ĥnt
]+ −

[
θ∗t (s, a)

]+∥∥2

2

≤ ‖An−1
t ‖22 − 2βnt (s, a) (An−1

t )T ĥnt +
(
β̃n−1
t

)2 ‖ĥnt ‖22.
(A.12)

Taking conditional expectation of the cross term, using Assumption 4, noting the inequality
(An−1

t )T ht(θ̄
n−1
t (s, a)) > 0 (by strict convexity), and using Cauchy-Schwarz, we get

E
[
−2βnt (s, a) (An−1

t )T ĥnt | Gn−1
t+1

]
≤ −2 ε β̃n−1

t (An−1
t )T ht

(
θ̄n−1
t (s, a)

)

+ 2 β̃n−1
t ‖An−1

t ‖2 E
[
‖ξh,nt+1(s, a)‖2

∣∣Gn−1
t+1

]
(A.13)

Moving onto the third term of (A.12), we have

E
[
‖ĥnt ‖22 | Gn−1

t+1

]
≤
[
‖ht(θ̄n−1

t (s, a))‖22 + E
[
‖εh,nt+1(s, a)‖22 + ‖ξh,nt+1(s, a)‖22

+ 2 ‖εh,nt+1(s, a)‖2 ‖ξh,nt+1(s, a)‖2 + 2 ‖ht(θ̄n−1
t (s, a))‖2 ‖εh,nt+1(s, a)‖2

+ 2 ‖ht(θ̄n−1
t (s, a))‖2 ‖ξh,nt+1(s, a)

∥∥
2
| Gn−1

t+1

]]

≤ 3
[
E
[
‖εh,nt+1(s, a)‖22 + ‖ξh,nt+1(s, a)‖22 | Gn−1

t+1

]
+ ‖ht(θ̄n−1

t (s, a))‖22
]

≤
[
Cĥ,1 ‖A

n−1
t ‖22 + Cĥ,2 + 3 E

[
‖ξh,nt+1(s, a)‖22 | Gn−1

t+1

]]
(A.14)

where the second inequality is due to the inequality 2ab ≤ a2 + b2 and the third inequality,
with new constants Cĥ,1 and Cĥ,2, is due to the bounds (A.10) and (A.11). Combining

(A.12), (A.13), and (A.14),

E
[
‖Ant ‖22 | Gn−1

t+1

]
≤ ‖An−1

t ‖22 (1 + ζn−1
t ) + µn−1

t − νn−1
t ,

where

ζn−1
t = Cĥ,1

(
β̃n−1
t

)2
+ 2 β̃n−1

t E
[
‖ξh,nt+1(s, a)‖2 | Gn−1

t+1

]
,

µn−1
t = 3

(
β̃n−1
t

)2
E
[
‖ξh,nt+1(s, a)‖22 | Gn−1

t+1

]
+ Cĥ,2

(
β̃n−1
t

)2
,

νn−1
t = 2 ε β̃n−1

t (An−1
t )T ht

(
θ̄n−1
t (s, a)

)
.

Note that
∑∞

n=1

(
β̃n−1
t

)2
< ∞ almost surely by Assumption 4(iii) and the monotone con-

vergence theorem (we can apply the same logic as Lemma 5). This, together with Lemma
5, allows us to conclude that

∑∞
n=1 ζ

n−1
t < ∞ almost surely. Moreover, since β̃n−1

t must

converge to zero and (A.9) implies E
[
‖ξh,nt+1(s, a)‖22 | Gn−1

t+1

]
converges to zero, we can see

that
∑∞

n=1 µ
n−1
t < ∞ almost surely. The well-known supermartingale convergence lemma

of Robbins and Siegmund [1971] tells us that ‖Ant ‖2 converges and
∑∞

n=1 ν
n−1
t <∞ almost

surely. Let Dδ =
{

limn→∞ ‖Ant ‖2 > δ
}

. On the event Dδ, using strict convexity, we know
that (An−1

t )T ht
(
θ̄n−1
t (s, a)

)
is positive and bounded away from zero for any n. Along with∑∞

n=1 β̃
n−1
t =∞, this implies

∑∞
n=1 ν

n−1
t =∞, which in turn shows us that Dδ must occur

with probability zero for any δ > 0.
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