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1. Introduction In this paper, we shall study the Q-linear rate convergence of the alternating
direction method of multipliers (ADMM) for solving the following convex composite optimization
problem

min {ϑ(y) + g(y) +ϕ(z) +h(z) : A∗y+B∗z = c, y ∈Y, z ∈Z}, (1)

where Y and Z are two finite-dimensional real Euclidean spaces each equipped with an inner prod-
uct 〈·, ·〉 and its induced norm ‖ · ‖, ϑ : Y → (−∞,+∞] and ϕ : Z → (−∞,+∞] are two proper
closed convex functions, g : Y → (−∞,+∞) and h : Z → (−∞,+∞) are two continuously differ-
entiable convex functions (e.g., convex quadratic functions), A∗ : Y →X and B∗ : Z →X are the
adjoints of the two linear operators A :X →Y and B :X →Z, respectively, with X being another
real finite-dimensional Euclidean space equipped with an inner product 〈·, ·〉 and its induced norm
‖ · ‖ and c ∈ X is a given point. To avoid triviality, neither A nor B is assumed to be vacuous.
For any convex function θ : X → (−∞,+∞], we use domθ to define its effective domain, i.e.,
domθ := {x ∈ X : θ(x)<∞}, epiθ to denote its epigraph, i.e., epiθ := {(x, t) ∈ X ×< : θ(x)≤ t}
and θ∗ :X → (−∞,+∞] to represent its Fenchel conjugate, respectively.

* This paper is revised from the first part of “Linear Rate Convergence of the Alternating Direction Method of
Multipliers for Convex Composite Quadratic and semidefinite Programming”, arXiv:1508.02134, August 2015.
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The classic ADMM was designed by Glowinski and Marroco [23] and Gabay and Mercier [20] and
its construction was much influenced by Rockafellar’s works on proximal point algorithms (PPAs)
for solving the more general maximal monotone inclusion problems [38, 39]. The readers may refer
to Glowinski [22] for a note on the historical development of the classic ADMM. The convergence
analysis for the classic ADMM under certain settings was first conducted by Gabay and Mercier
[20], Glowinski [21] and Fortin and Glowinski [17]. For a recent survey on this, see [15].

Our focus of this paper is on the linear rate convergence analysis of the ADMM. This shall be
conducted under a more convenient semi-proximal ADMM (in short, sPADMM) setting proposed
by Fazel et al. [16] by allowing the dual step-length to be at least as large as the golden ratio of
1.618. This sPADMM, which covers the classic ADMM, has the advantage to resolve the potentially
non-solvability issue of the subproblems in the classic ADMM. But, perhaps more importantly it
possesses the abilities of handling multi-block convex optimization problems. For example, it has
been shown most recently that the sPADMM plays a pivotal role in solving multi-block convex
composite semidefinite programming problems [42, 30, 5] of a low to medium accuracy. We shall
come back to this in Section 4.

For any self-adjoint positive semidefinite linear operatorM :X →X , denote ‖x‖M :=
√
〈x,Mx〉

and distM(x,D) = infx′∈D ‖x′ − x‖M for any x ∈ X and any set D ⊆ X . We use I to denote the
identity mapping from X to itself. Let σ > 0 be a given parameter. Write ϑg(·)≡ ϑ(·) + g(·) and
ϕh(·)≡ϕ(·) +h(·). The augmented Lagrangian function of problem (1) is defined by

Lσ(y, z;x) := ϑg(y) +ϕh(z) + 〈x,A∗y+B∗z− c〉+ σ

2
‖A∗y+B∗z− c‖2, ∀ (y, z,x)∈Y ×Z ×X . (2)

Then the sPADMM may be described as follows.

sPADMM: A semi-proximal alternating direction method of multipliers for solving the con-
vex optimization problem (1).
Step 0. Input (y0, z0, x0)∈ dom ϑ×domϕ×X . Let τ ∈ (0,+∞) be a positive parameter (e.g.,
τ ∈ (0, (1 +

√
5)/2) ), and S : Y →Y and T : Z →Z be two self-adjoint positive semidefinite,

not necessarily positive definite, linear operators. Set k := 0.
Step 1. Set 

yk+1 ∈ argmin Lσ(y, zk;xk) +
1

2
‖y− yk‖2S , (3a)

zk+1 ∈ argmin Lσ(yk+1, z;xk) +
1

2
‖z− zk‖2T , (3b)

xk+1 = xk + τσ(A∗yk+1 +B∗zk+1− c). (3c)

Step 2. If a termination criterion is not met, set k := k+ 1 and go to Step 1.

The sPADMM scheme (3a)–(3c) with S = 0 and T = 0 is nothing but the classic ADMM of
Glowinski and Marroco [23] and Gabay and Mercier [20]. When B = I and A is surjective, the
global convergence of the classic ADMM with any τ ∈ (0, (1 +

√
5)/2) has been established by

Glowinski [21] and Fortin and Glowinski [17]. Interestingly, in [19], Gabay has further shown that
the classic ADMM with τ = 1, under the existence condition of a solution to the Karush-Kuhn-
Tucker (KKT) system of problem (1), is actually equivalent to the Douglas-Rachford (DR) splitting
method applied to a stationary system to the dual of problem (1). Moreover, Eckstein and Berstekas
[14] have proven that the DR splitting method can be equivalently represented as a special case
of PPA. This is achieved by using a splitting operator constructed by Eckstein in his PhD thesis
[12], which we will call the Eckstein splitting operator for the convenience of reference. Thus, one
may always use known results on the DR splitting method and the PPA to study the properties
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of the classic ADMM with τ = 1 (this does not apply to the case that τ 6= 1 of course) though the
properties on the corresponding Eckstein splitting operator can be much involved.

The above sPADMM scheme (3a)–(3c) with S � 0 and T � 0 was initiated by Eckstein [13] to
make the subproblems in (3a) and (3b) easier to solve. In the same paper, Eckstein [13] showed
how the sPADMM with S � 0 and T � 0 can be transformed into the framework of PPAs. In
[26], He et al. further studied an inexact version of Eckstein’s work in the context of monotone
variational inequalities. Using essentially the same variational techniques developed by Glowinski
[21] and Fortin and Glowinski [17], Fazel et al. developed an extremely easy-to-use convergence
theorem, which covers earlier nice results of Xu and Wu [44] with S � 0 and/or T � 0, for the
sPADMM [16, Appendix B] when the dual step-length τ is chosen in (0, (1 +

√
5)/2). In [41], Shefi

and Teboulle conducted a comprehensive study on the iteration complexities, in particular in the
ergodic sense, for the sPADMM with τ = 1 and B ≡ I. Related results for the more general cases
can be found, e.g., in [28] for the case that the linear operators S and T are allowed to be indefinite
and in [7] for the case that the objective function is allowed to have a coupled smooth term. For
details on choosing S and T , one may refer to the recent PhD thesis of Li [29].

Compared with the large amount of literature1 mainly being devoted to the applications of the
ADMM, there is a much smaller number of papers targeting the linear rate, in particular the
Q-linear rate, convergence analysis though there do exist a number of classic results and several
new advancements on the latter. By using the aforementioned connections among the DR splitting
method, PPAs, and the classic ADMM with τ = 1, we can derive the corresponding R-linear rate
convergence of the ADMM from the works of Lions and Mercier [31] on the DR splitting method
with a globally Lipschitz continuous and strongly monotone operator and Rockafellar [38, 39] and
Luque [32] on the convergence rates of the PPAs under various error bound conditions imposed
on the Eckstein splitting operator. For example, within this spirit, Eckstein [12] proved the global
R-linear convergence rate of the ADMM with τ = 1 when it is applied to linear programming. In the
same vein, one can easily obtain the similar global R-linear convergence rate of the ADMM with τ =
1 for convex piecewise linear-quadratic programming by combining the classic result of Robinson
on piecewise polyhedral multi-valued mappings [36] and J. Sun’s sub-differential characterization
of convex piecewise linear-quadratic functions [43].

There are some interesting new developments on the R-linear and/or Q-Linear convergence rate
of the ADMM. Apparently, unaware of the above mentioned connections, for convex quadratic
programming, Boley [1] provided a local R-linear convergence result for the ADMM with τ = 1
under the conditions of the uniqueness of the optimal solutions to both the primal and dual
problems and the strict complementarity; in [25], Han and Yuan removed the restrictive conditions
imposed by Boley and established the local Q-linear rate convergence of the generalized ADMM
in the sense of Eckstein and Bertsekas [14] for the sequence {(zk, xk)}. For the more general
convex piecewise linear-quadratic programming problems, Yang and Han [45] established the global
Q-linear convergence rate for the sequence {(zk, xk)} and {(yk, zk, xk)} of the ADMM and the
linearized ADMM (a special case of sPADMM with S � 0 and T � 0) with τ = 1, respectively.
We remark that when either S � 0 or T � 0 fails to hold, the convergence analysis in [45] for
the linearized ADMM is no longer valid. In [9], Deng and Yin provided a number of scenarios on
both the R-linear and Q-linear rate convergence for the ADMM and sPADMM with τ = 1 under
the assumption that either ϑg(·) or ϕh(·) is strongly convex with a Lipschitz continuous gradient
in addition to the boundedness condition on the generated iteration sequence and others. Deng
and Yin also provided a detailed comparison between their most notable R-linear rate convergence
result and that of Lions and Mercier [31] on the DR splitting method when applied to a stationary

1 For example, according to Google Scholar, the survey paper by Boyd et al. [3] on the applications of the ADMM
with τ = 1 has been cited 5,000 times as of May 5, 2017.
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system to the dual of problem (1). Assuming an error bound condition and some others, Hong and
Luo [27] provided a global R-linear rate convergence of the multi-block ADMM and its variants
with a sufficiently small step-length τ . Theoretically, this may constitute important progress on
understanding the convergence and the linear rate of convergence of the ADMM. Computationally,
however, this is far from being satisfactory as in practical implementations one always prefers a
larger step-length for achieving numerical efficiency.

In this paper, we aim to resolve the Q-linear rate convergence issue for the sPADMM scheme
(3a)–(3c) with τ ∈ (0, (1 +

√
5)/2) under mild conditions. Special attention shall be paid to convex

composite piecewise linear-quadratic programming and quadratic semidefinite programming. Under
a calmness condition only, we provide a global Q-linear rate convergence analysis for the sPADMM
with τ ∈ (0, (1+

√
5)/2). This is made possible by constructing an elegant inequality on the iteration

sequence via re-organizing the relevant results developed in [16, Appendix B]. For convex composite
piecewise linear-quadratic programming, the global Q-linear convergence rate is obtained with no
additional conditions as the calmness assumption holds automatically. By choosing the positive
semidefinite linear operators S and T properly, in particular T = 0, we demonstrate how the
established global Q-linear rate convergence of the sPADMM can be applied to multi-block convex
composite quadratic conic programming.

The remaining parts of this paper are organized as follows. In Section 2, we conduct brief dis-
cussions on the optimality conditions for problem (1) and on both the locally upper Lipschitz
continuity and the calmness for multi-valued mappings. Section 3 is divided into two parts with
the first part focusing on the derivation of a particularly useful inequality for the iteration sequence
generated from the sPADMM. This inequality, which grows out of the results in [16, Appendix B],
is then employed to build up a general Q-linear rate convergence theorem under a calmness condi-
tion. Section 4 is about the applications of the Q-linear convergence theorem of the sPADMM to
important convex composite quadratic conic programming problems. We make our final conclusions
in Section 5.

2. Preliminaries In this section, we summarize some useful preliminaries for our subsequent
analysis.

2.1. Optimality conditions For a multifunction F :Y⇒Y, we say that F is monotone if

〈y′− y, ξ′− ξ〉 ≥ 0, ∀ ξ′ ∈ F (y′), ∀ ξ ∈ F (y). (4)

It is well known that for any proper closed convex function θ :X → (−∞,+∞], ∂θ(·) is a monotone
multi-valued function (see [37]), that is, for any w1 ∈ dom θ and any w2 ∈ dom θ,

〈ξ− ζ,w1−w2〉 ≥ 0, ∀ ξ ∈ ∂θ(w1), ∀ ζ ∈ ∂θ(w2). (5)

In our analysis, we shall often use the optimality conditions for problem (1). Let (ȳ, z̄)∈ domϑ×
domϕ be an optimal solution to problem (1). If there exists x̄ ∈X such that (ȳ, z̄, x̄) satisfies the
following KKT system 

0∈ ∂ϑ(y) +∇g(y) +Ax,

0∈ ∂ϕ(z) +∇h(z) +Bx,

c−A∗y−B∗z = 0,

(6)

then (ȳ, z̄, x̄) is called a KKT point for problem (1). Denote the solution set to the KKT system
(6) by Ω. The existence of such KKT points can be guaranteed if a certain constraint qualification
such as the Slater condition holds:

∃ (y′, z′)∈ ri (domϑ×domϕ)∩{(y, z)∈Y ×Z : A∗y+B∗z = c},
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where ri(S) denotes the relative interior of a given convex set S. In this paper, instead of using an
explicit constraint qualification, we make the following blanket assumption on the existence of a
KKT point.

Assumption 1. The KKT system (6) has a non-empty solution set.

Denote u := (y, z,x) for y ∈Y, z ∈Z and x∈X . Let U :=Y ×Z ×X . Define the KKT mapping
R : U →U as

R(u) :=

 y−Prϑ[y− (∇g(y) +Ax)]

z−Prϕ[z− (∇h(z) +Bx)]

c−A∗y−B∗z

 , ∀u∈ U , (7)

where for any convex function θ : X → (−∞,+∞], Prθ(·) denotes its associated Moreau-Yosida
proximal mapping [40]. If θ(·) = δK(·), the indicator function over the closed convex set K⊆X , then
Prθ(·) = ΠK(·), the metric projection operator over K. Then, since the Moreau-Yosida proximal
mappings Prϑ(·) and Prϕ(·) are both globally Lipschitz continuous with modulus one, the mapping
R(·) is at least continuous on U and

∀u∈ U , R(u) = 0⇐⇒ u∈Ω.

2.2. Locally upper Lipschitz continuity and calmness Let X and Y be two finite-
dimensional real Euclidean spaces and F :X ⇒Y be a set-valued mapping. Denote the graph of F
by gphF . Let BY denote the unit ball in Y.
Definition 1. The multi-valued mapping F : X ⇒ Y is said to be locally upper Lipschitz

continuous at x0 ∈X with modulus κ0 > 0 if there exist a neighborhood V of x0 such that

F (x)⊆ F (x0) +κ0‖x−x0‖BY , ∀x∈ V.

The above definition of locally upper Lipschitz continuity was first coined by Robinson in [34]
for the purpose of developing an implicit function for generalized variational inequalities. In the
same paper, he also studied several important properties of multi-valued mappings. Recall that
the multi-valued mapping F is called piecewise polyhedral if gphF is the union of finitely many
polyhedral sets. In one of his seminal papers, Robinson [36] established the following fundamental
property on the locally upper Lipschitz continuity of a piecewise polyhedral multi-valued mapping.

Proposition 1. If the multi-valued mapping F : X ⇒ Y is piecewise polyhedral, then F is
locally upper Lipschitz continuous at any x0 ∈X with modulus κ0 independent of the choice of x0.

One important class of piecewise polyhedral multi-valued mappings is the sub-diffenrential of
convex piecewise linear-quadratic functions. Note that a closed proper convex function θ : X →
(−∞,+∞] is said to be piecewise linear-quadratic if domθ is the union of finitely many polyhedral
sets and on each of these polyhedral sets, θ is either an affine or a quadratic function. In his
PhD thesis [43], J. Sun established the following key characterization on convex piecewise linear-
quadratic functions. For a complete proof about this proposition and its extensions, see Propositions
12.30 and 11.14 in the monograph [40] written by Rockafellar and Wets.

Proposition 2. Let θ :X → (−∞,+∞] be a closed proper convex function. Then θ is piecewise
linear-quadratic if and only if the graph of ∂θ is piecewise polyhedral. Moreover, θ is piecewise
linear-quadratic if and only if θ∗ is piecewise linear-quadratic.

Next, we give the definition of calmness for F :X ⇒Y at x0 for y0 with (x0, y0)∈ gphF .
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Definition 2. Let (x0, y0) ∈ gphF . The multi-valued mapping F : X ⇒ Y is said to be calm
at x0 for y0 with modulus κ0 ≥ 0 if there exist a neighborhood V of x0 and a neighborhood W of
y0 such that

F (x)∩W ⊆ F (x0) +κ0‖x−x0‖BY , ∀x∈ V.

The above definition of calmness is taken from [11, Section 3.8(3H)]. It follows from Proposition
1 that if F : X ⇒ Y is piecewise polyhedral, and in particular from Proposition 2 that F is the
sub-differential mapping of a convex piecewise linear-quadratic function, then F is calm at x0 for y0

satisfying (x0, y0)∈ gphF with modulus κ0 > 0 independent of the choice of (x0, y0). Furthermore,
it is well known, e.g., [11, Theorem 3H.3], that for any (x0, y0)∈ gphF , the mapping F is calm at
x0 for y0 if and only if F−1, the inverse mapping of F , is metrically subregular at y0 for x0, i.e.,
there exist a constant κ′0 ≥ 0, a neighborhood W of y0, and a neighborhood V of x0 such that

dist(y,F (x0))≤ κ′0 dist(x0,F−1(y)∩V ), ∀y ∈W. (8)

3. A general theorem on the Q-linear rate convergence In this section, we shall estab-
lish a general theorem on the Q-linear convergence rate of the sPADMM scheme (3a)-(3c).

First we recall the global convergence of the sPADMM from [16, Appendix B]. Since both ∂ϑ
and ∂ϕ are maximally monotone and g and h are two continuously differentiable convex functions,
there exist two self-adjoint and positive semidefinite linear operators Σg and Σh such that for all
y′, y ∈ domϑg, ξ ∈ ∂ϑg(y) and ξ′ ∈ ∂ϑg(y′), and for all z′, z ∈ domϕh, ζ ∈ ∂ϕh(z) and ζ ′ ∈ ∂ϕh(z′),

〈ξ′− ξ, y′− y〉 ≥ ‖y′− y‖2Σg , 〈ζ ′− ζ, z′− z〉 ≥ ‖z′− z‖2Σh . (9)

For notational convenience, let E :X →U :=Y ×Z×X be a linear operator such that its adjoint
E∗ satisfies E∗(y, z,x) = A∗y + B∗z for any (y, z,x) ∈ Y × Z × X and for u := (y, z,x) ∈ U and
u′ := (y′, z′, x′)∈ U , define the following function to measure the weighted distance of two points:

θ(u,u′) := (τσ)−1‖x−x′‖2 + ‖y− y′‖2S + ‖z− z′‖2T +σ‖B∗(z− z′)‖2.

The following theorem, which will be used in the following, is adapted from Appendix B of [16].

Theorem 1. Let Assumption 1 be satisfied. Suppose that the sPADMM generates a well defined
infinite sequence {uk}. Let ū= (ȳ, z̄, x̄)∈Ω. For k≥ 1, denote{

δk := τ(1− τ + min{τ, τ−1})σ‖B∗(zk− zk−1)‖2 + ‖zk− zk−1‖2T ,

νk := δk + ‖yk− yk−1‖2S + 2‖yk− ȳ‖2Σg + 2‖zk− z̄‖2Σh .
(10)

Then, the following results hold:
(i) For any k≥ 1,[

θ(uk+1, u) + ‖zk+1− zk‖2T + (1−min{τ, τ−1})σ‖E∗(yk+1, zk+1,0)− c‖2
]

−
[
θ(uk, ū) + ‖zk− zk−1‖2T + (1−min{τ, τ−1})σ‖E∗(yk, zk,0)− c‖2

]
≤−

[
νk+1 + (1− τ + min{τ, τ−1})σ‖E∗(yk+1, zk+1,0)− c‖2

]
.

(11)

(ii) Assume that both Σg +S+σAA∗ and Σh+T +σBB∗ are positive definite so that the sequence
{uk} is automatically well defined. If τ ∈ (0, (1 +

√
5)/2), then the whole sequence {(yk, zk, xk)}

converges to a KKT point in Ω.
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Theorem 1 provides global convergence results for the sPADMM under fairly general and mild
conditions. For the purpose to obtain inequality (11) in Theorem 1, one needs to assume that
the subproblems in the sPADMM must admit optimal solutions, which can be guaranteed if both
Σg +S+σAA∗ and Σh +T +σBB∗ are positive definite. Obviously one can always choose positive
semidefinite linear operators S and T to ensure Σg + S + σAA∗ � 0 and Σh + T + σBB∗ � 0 as
Σg+σAA∗ � 0 and Σh+σBB∗ � 0. In the classic ADMM, since both S = 0 and T = 0, one needs to
assume that Σg+σAA∗ � 0 and Σh+σBB∗ � 0, which hold automatically if the surjectivity of both
A and B is assumed as in the original ADMM papers [21, 17]. An example was constructed by Chen
et al. [5] to show that Assumption 1 itself is not enough for ensuring the existence of solutions to all
the subproblems in the sPADMM. This example also shows that the statement made in [3] on the
convergence of the classic ADMM without the surjectivity of A and B is incorrect. Interestingly,
for the case that S = 0 and T = 0, the global convergence results in Theorem 1 may still be valid
even if the surjectivity of A or B fails to hold if Σf and Σg are incorporated in the analysis. To
illustrate this, let us consider the following convex composite least squares optimization problem

min
1

2
‖Lx− d‖2 +φ(x)

s.t. Ax= b,
(12)

where d∈<l, b∈<m, L∈<l×n and A∈<m×n are two matrices and φ :<n→ (−∞,+∞] is a proper
closed convex function. Without loss of generality, assume that A is of full row rank. The Lagrange
dual of (12) can be written as

max −1

2
‖w− d‖2 + bTyE −φ∗(z)

s.t. LTw+ATyE − z = 0,

which can be equivalently reformulated as

min
1

2
‖v‖2− bTyE +φ∗(z)

s.t. LTv+ATyE − z =−LTd.
(13)

By treating (v, yE) as one-variable block and z the other, we can write problem (13) in the form
of (1) with

g(v, yE) :=
1

2
‖v‖2− bTyE, ∀ (v, yE)∈<l×<m & h(z) := 0, ∀z ∈<n. (14)

Consequently, one immediately obtains

Σg ≡
(
Il 0
0 0

)
, Σh ≡ 0, (15)

where for any positive integer j, Ij denotes the j by j identity matrix. Note that in this case A :=(
L
A

)
is not necessarily surjective any more though B=−In is. So the known global convergence

analysis for the classic ADMM without using Σg may be invalid. However, since both Σg +σAA∗
and Σh +σBB∗ are positive definite, the global convergence of the classic ADMM (both S = 0 and
T = 0) for solving problem (13) follows readily from Theorem 1. Thus, one can see the benefit of
exploiting the availability of Σg or Σh.

For any self-adjoint linear operatorM :X →X , we use λmax(M) to denote its largest eigen-value.
Define

κ1 := 3‖S‖, κ2 := max{3σλmax(AA∗),2‖T ‖}, κ3 := σ−1 + (1− τ)2σ(3λmax(AA∗) + 2λmax(BB∗)).
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Let κ4 := max{κ1, κ2, κ3}. Let H0 be the block-diagonal linear operator defined by

H0 := κ4 Diag
(
S,T +σBB∗, (τ 2σ)−1I

)
. (16)

The usefulness of the block-diagonal linear operator H0 can be found in the following lemma on
deriving an upper bound for ‖R(·)‖ computed at the sequence generated by the sPADMM.

Lemma 1. Let {uk := (yk, zk, xk)} be the infinite sequence generated by the sPADMM scheme
(3a)-(3c). Then for any k≥ 0,

‖uk+1−uk‖2H0
≥ ‖R(uk+1)‖2. (17)

Proof. The optimality condition for (3a) is

0∈ ∂ϑ(yk+1) +∇g(yk+1) +A[xk +σ(A∗yk+1 +B∗zk− c)] +S(yk+1− yk). (18)

From the definition of xk+1, we have

xk +σ(A∗yk+1 +B∗zk− c) =−σB∗(zk+1− zk) +xk + τ−1(xk+1−xk).

It then follows from (18) that

0∈ ∂ϑ(yk+1) +∇g(yk+1) +A[σB∗(zk− zk+1) +xk + τ−1(xk+1−xk)] +S(yk+1− yk),

which implies

yk+1 = Prϑ (yk+1− (∇g(yk+1) +A[σB∗(zk− zk+1) +xk + τ−1(xk+1−xk)] +S(yk+1− yk))) . (19)

Noting that since zk+1 is a solution to the subproblem (3b), we have that

0∈ ∂ϕ(zk+1) +∇h(zk+1) +Bxk +σB(A∗yk+1 +B∗zk+1− c) + T (zk+1− zk),

which is equivalent to

0∈ ∂ϕ(zk+1) +∇h(zk+1) +B[xk + τ−1(xk+1−xk)] + T (zk+1− zk).

Thus, we have

zk+1 = Prϕ
(
zk+1−

(
∇h(zk+1) +B[xk + τ−1(xk+1−xk)] + T (zk+1− zk)

))
. (20)

Note that from (3c),
xk+1 = xk + τσ(A∗yk+1 +B∗zk+1− c). (21)

Then, by combining (19), (20) and (21) and noticing of the Lipschitz continuity of the Moreau-
Yosida proximal mappings, we obtain from the definition of R(·) in (7) that

‖R(uk+1)‖2 ≤ ‖−S(yk+1− yk) +σAB∗(zk+1− zk) + (1− τ−1)A(xk+1−xk)‖2

+‖−T (zk+1− zk) + (1− τ−1)B(xk+1−xk)‖2 + (τσ)−2‖xk+1−xk‖2

≤ [3‖S‖‖yk+1− yk‖2S + 3σ2λmax(AA∗)‖B∗(zk+1− zk)‖2 + 3(1− τ−1)2‖A(xk+1−xk)‖2]

+ [2‖T ‖‖zk+1− zk‖2T + 2(1− τ−1)2‖B(xk+1−xk)‖2 + (τσ)−2‖xk+1−xk‖2]

≤ κ1‖yk+1− yk‖2S +κ2‖zk+1− zk‖2T +σBB∗ +κ3(τ 2σ)−1‖xk+1−xk‖2,

which immediately implies (17). �
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Figure 1. The values of sτ and tτ for τ ∈ [0, (1 +
√

5)/2].

For any τ ∈ (0,+∞), define

sτ :=
5− τ − 3min{τ, τ−1}

4
& tτ :=

1− τ + min{τ, τ−1}
2

.

Note that one can easily compute the following

1/4≤ sτ ≤ 5/4 & 0< tτ ≤ 1/2, ∀ τ ∈ (0, (1 +
√

5)/2). (22)

See Figure 1 for the values of sτ and tτ for τ ∈ [0, (1 +
√

5)/2].
Denote the following two self-adjoint linear operators for our subsequent developments:

M := Diag
(
S + Σg,T + Σh +σBB∗, (τσ)−1I

)
+ sτσEE∗, (23)

H := Diag

(
S +

1

2
Σg,T +

1

2
Σh + 2tττσBB∗, tτ (τ 2σ)−1I

)
+

1

4
tτσEE∗. (24)

Then we immediately get the following relation

κ4H�min{2τ,1}tτH0 +
1

4
κ4tτσEE∗, ∀ τ ∈ (0,+∞). (25)

The operator M will be used to define the weighted distance from an iterate to the KKT points
while H will be employed to measure the weighted distance between two consecutive iterates. The
next proposition will answer the needed positive definiteness of these two linear operators, which
is made possible due to the introduction of the last term in (23) and (24), respectively.

Proposition 3. Let τ ∈ (0, (1 +
√

5)/2). Then

Σg +S +σAA∗ � 0 & Σh + T +σBB∗ � 0⇐⇒M� 0⇐⇒H� 0.

Proof. Since, in view of (22), it is obvious that M� 0⇐⇒H� 0, we only need to show that

Σg +S +σAA∗ � 0 & Σh + T +σBB∗ � 0⇐⇒M� 0.

First, we show that Σg +S + σAA∗ � 0 & Σh + T + σBB∗ � 0 =⇒M� 0. Suppose that Σg +S +
σAA∗ � 0 & Σh + T + σBB∗ � 0, but there exists a vector 0 6= d := (dy, dz, dx) ∈ Y ×Z ×X such
that 〈d,Md〉= 0. By using the definition of M and (22), we have

dx = 0, (Σh + T +σBB∗)dz = 0, (Σg +S)dy = 0 & E∗(dy, dz,0) = 0,
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which, together with the assumption that Σg +S + σAA∗ � 0 & Σh + T + σBB∗ � 0, imply d= 0.
This contradiction shows that M� 0.

Next, suppose that M� 0. Since sτ > 0 and for any d = (0, dz,0) ∈ Y × Z × X , 〈d,Md〉 =
〈dz, (Σh + T + (1 + sτ )σBB∗)dz〉, we know that Σh + T + σBB∗ � 0. Similarly, since for any d =
(dy,0,0)∈Y ×Z ×X , 〈d,Md〉= 〈dy, (Σg +S + sτσAA∗)dy〉, we know that Σg +S +σAA∗ � 0. So
the proof is completed. �

Based on Proposition 3, we are ready to develop the promised key inequality needed for proving
the Q-linear rate of convergence for the sPADMM.

Proposition 4. Let τ ∈ (0, (1 +
√

5)/2] and {(yk, zk, xk)} be an infinite sequence generated by
the sPADMM. Then for any ū= (ȳ, z̄, x̄)∈Ω and any k≥ 1,

‖uk+1− ū‖2M+ ‖zk+1− zk‖2T ≤
(
‖uk− ū‖2M+ ‖zk− zk−1‖2T

)
−‖uk+1−uk‖2H. (26)

Consequently, we have for all k≥ 1,

dist2
M(uk+1,Ω) + ‖zk+1− zk‖2T ≤

(
dist2

M(uk,Ω) + ‖zk− zk−1‖2T
)
−‖uk+1−uk‖2H. (27)

Proof. Let ū= (ȳ, z̄, x̄)∈Ω be fixed but arbitrarily chosen. From part (i) of Theorem 1, we have
for k≥ 1 that

(τσ)−1‖xk+1− x̄‖2 + ‖yk+1− ȳ‖2S + ‖zk+1− z̄‖2T +σ‖B∗(zk+1− z̄)‖2 + ‖zk+1− zk‖2T
+(1−min{τ, τ−1})σ‖E∗(yk+1, zk+1,0)− c‖2

≤ (τσ)−1‖xk− x̄‖2 + ‖yk− ȳ‖2S + ‖zk− z̄‖2T +σ‖B∗(zk− z̄)‖2 + ‖zk− zk−1‖2T
+(1−min{τ, τ−1})σ‖E∗(yk, zk,0)− c‖2−

{
σ[τ − τ 2 + τ min{τ, τ−1}]‖B∗(zk+1− zk)‖2

+‖zk+1− zk‖2T + ‖yk+1− yk‖2S + 2‖yk+1− ȳ‖2Σg + 2‖zk+1− z̄‖2Σh
+(1− τ + min{τ, τ−1})σ‖E∗(yk+1, zk+1,0)− c‖2

}
.

(28)

By reorganizing the terms in (28), we obtain

(τσ)−1‖xk+1− x̄‖2 + ‖yk+1− ȳ‖2S + ‖zk+1− z̄‖2T +σ‖B∗(zk+1− z̄)‖2 + ‖zk+1− zk‖2T
+ 1

4
(5− τ − 3min{τ, τ−1})σ‖E∗(yk+1, zk+1,0)− c‖2 + ‖yk+1− ȳ‖2Σg + ‖zk+1− z̄‖2Σh

≤ (τσ)−1‖xk− x̄‖2 + ‖yk− ȳ‖2S + ‖zk− z̄‖2T +σ‖B∗(zk− z̄)‖2 + ‖zk− zk−1‖2T
+ 1

4
(5− τ − 3min{τ, τ−1})σ‖E∗(yk, zk,0)− c‖2 + ‖yk− ȳ‖2Σg + ‖zk− z̄‖2Σh

−
{

2tτστ‖B∗(zk+1− zk)‖2 + ‖zk+1− zk‖2T + ‖yk+1− yk‖2S + ‖yk+1− ȳ‖2Σg + ‖yk− ȳ‖2Σg
+‖zk+1− z̄‖2Σh + ‖zk− z̄‖2Σh + 1

2
(1− τ + min{τ, τ−1})σ‖E∗(yk+1, zk+1,0)− c‖2

+ 1
4
(1− τ + min{τ, τ−1})σ[‖E∗(yk+1, zk+1,0)− c‖2 + ‖E∗(yk, zk,0)− c‖2]

}
or equivalently

(τσ)−1‖xk+1− x̄‖2 + ‖yk+1− ȳ‖2S + ‖zk+1− z̄‖2T +σ‖B∗(zk+1− z̄)‖2 + ‖zk+1− zk‖2T
+sτσ‖E∗(yk+1, zk+1,0)− c‖2 + ‖yk+1− ȳ‖2Σg + ‖zk+1− z̄‖2Σh

≤ (τσ)−1‖xk− x̄‖2 + ‖yk− ȳ‖2S + ‖zk− z̄‖2T +σ‖B∗(zk− z̄)‖2 + ‖zk− zk−1‖2T
+sτσ‖E∗(yk, zk,0)− c‖2 + ‖yk− ȳ‖2Σg + ‖zk− z̄‖2Σh

−
{

2tτστ‖B∗(zk+1− zk)‖2 + ‖zk+1− zk‖2T + ‖yk+1− yk‖2S + ‖yk+1− ȳ‖2Σg + ‖yk− ȳ‖2Σg
+‖zk+1− z̄‖2Σh + ‖zk− z̄‖2Σh + tτσ‖E∗(yk+1, zk+1,0)− c‖2

+ 1
2
tτσ[‖E∗(yk+1, zk+1,0)− c‖2 + ‖E∗(yk, zk,0)− c‖2]

}
.

(29)
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Using equalities
E∗(yk+1, zk+1,0)− c=A∗(yk+1− ȳ) +B∗(zk+1− z̄),

E∗(yk, zk,0)− c=A∗(yk− ȳ) +B∗(zk− z̄),

E∗(yk+1, zk+1,0)− c= (τσ)−1(xk+1−xk)
and inequalities

‖yk+1− ȳ‖2Σg + ‖yk− ȳ‖2Σg ≥
1
2
‖yk+1− yk‖2Σg ,

‖zk+1− z̄‖2Σh + ‖zk− z̄‖2Σh ≥
1
2
‖zk+1− zk‖2Σh ,

‖E∗(yk+1, zk+1,0)− c‖2 + ‖E∗(yk, zk,0)− c‖2 ≥ 1
2
‖A∗(yk+1− yk) +B∗(zk+1− zk)‖2,

we obtain from (29) and the definitions of sτ and tτ that for any τ ∈ (0, (1 +
√

5)/2],

(τσ)−1‖xk+1− x̄‖2 + ‖yk+1− ȳ‖2S + ‖zk+1− z̄‖2T +σ‖B∗(zk+1− z̄)‖2

+‖zk+1− zk‖2T + sτσ‖A∗(yk+1− ȳ) +B∗(zk+1− z̄)‖2 + ‖yk+1− ȳ‖2Σg + ‖zk+1− z̄‖2Σh
≤ (τσ)−1‖xk− x̄‖2 + ‖yk− ȳ‖2S + ‖zk− z̄‖2T +σ‖B∗(zk− z̄)‖2

+‖zk− zk−1‖2T + sτσ‖A∗(yk− ȳ) +B∗(zk− z̄)‖2 + ‖yk− ȳ‖2Σg + ‖zk− z̄‖2Σh
−
{

2tτστ‖B∗(zk+1− zk)‖2 + ‖zk+1− zk‖2T + ‖yk+1− yk‖2S + 1
2
‖yk+1− yk‖2Σg

+ 1
2
‖zk+1− zk‖2Σh + tτ (τ

2σ)−1‖xk+1−xk‖2 + 1
4
tτσ‖A∗(yk+1− yk) +B∗(zk+1− zk)‖2

}
,

which shows that (26) holds. By noting that Ω is a nonempty closed convex set and (26) holds for
any ū∈Ω, we immediately get (27). �

Now, we can establish the Q-linear rate of convergence of the sPADMM under a calmness
condition on R−1 at the origin for some KKT point.

Theorem 2. Let τ ∈ (0, (1 +
√

5)/2). Let S and T be chosen such that Σg +S+σAA∗ � 0 and
Σh + T +σBB∗ � 0. Then there exists a KKT point ū := (ȳ, z̄, x̄)∈Ω such that the whole sequence
{(yk, zk, xk)} generated by the sPADMM converges to ū. Assume that R−1 is calm at the origin for
ū with modulus η > 0, i.e., there exists r > 0 such that

dist(u,Ω)≤ η||R(u)‖, ∀u∈ {u∈ U : ||u− ū‖ ≤ r}. (30)

Then there exists an integer k̄≥ 1 such that for all k≥ k̄,

dist2
M(uk+1,Ω) + ‖zk+1− zk‖2T ≤ µ

[
dist2

M(uk,Ω) + ‖zk− zk−1‖2T
]
, (31)

where
µ := (1 + 2κ)−1(1 +κ)< 1 & κ := min{2τ,1}tτ

(
η2κ4λmax(M)

)−1
> 0.

Moreover, there exists a positive number ς ∈ [µ,1) such that for all k≥ 1,

dist2
M(uk+1,Ω) + ‖zk+1− zk‖2T ≤ ς

[
dist2

M(uk,Ω) + ‖zk− zk−1‖2T
]
. (32)

Proof. From part (ii) of Theorem 1 we already know that the whole sequence {(yk, zk, xk)}
generated by the sPADMM converges to a KKT point in Ω, say ū = (ȳ, z̄, x̄). Then there exists
k̄≥ 1 such that for all k≥ k̄,

‖uk+1− ū‖ ≤ r.

Thus, by using Lemma 1 and (30), we know that for all k≥ k̄,

dist2(uk+1,Ω)≤ η2‖R(uk+1)‖2 ≤ η2‖uk+1−uk‖2H0
. (33)
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From the definition of H, we have for all k≥ 0,

‖zk+1− zk‖2T ≤ ‖uk+1−uk‖2H.

It follows from (25) and (33) that for all k≥ k̄,

‖uk+1−uk‖2H ≥min{2τ,1}tτκ−1
4 ‖uk+1−uk‖2H0

≥min{2τ,1}tτκ−1
4 η−2dist2(uk+1,Ω)≥ κdist2

M(uk+1,Ω).
(34)

Let κ5 = (1 +κ)−1. From (27) in Proposition 4 and (34), we have for all k≥ k̄,

dist2
M(uk+1,Ω) + ‖zk+1− zk‖2T −

{
dist2

M(uk,Ω) + ‖zk− zk−1‖2T
}

≤− ((1−κ5)‖uk+1−uk‖2H+κ5‖uk+1−uk‖2H)

≤−
(
(1−κ5)‖zk+1− zk‖2T +κ5κdist2

M(uk+1,Ω)
)
.

(35)

Then we obtain from (35) that for all k≥ k̄,

(1 +κ5κ)dist2
M(uk+1,Ω) + (2−κ5)‖zk+1− zk‖2T ≤ dist2

M(uk,Ω) + ‖zk− zk−1‖2T .

By noting that 1 +κ5κ= 2−κ5 = µ−1, we obtain the estimate (31).
By combining (31) with Lemma 1, (27) in Proposition 4 and (25), we can obtain directly that

there exists a positive number ς ∈ [µ,1) such that (32) holds for all k≥ 1. The proof is completed.
�

Theorem 2 provides a very general result on the Q-linear rate of convergence for the sPADMM. As
one can see that the key assumption made in this theorem is the calmness condition (30), which may
not hold in general (see the next section for more detailed discussions on this). However, if R−1 is
piecewise polyhedral, this calmness condition holds automatically. Since R−1 is piecewise polyhedral
if and only if R itself is piecewise polyhedral, we can obtain the following from Proposition 1 and
the proof of Theorem 2.

Corollary 1. Let τ ∈ (0, (1 +
√

5)/2). Suppose that Ω 6= ∅ and that both Σg +S + σAA∗ and
Σh + T + σBB∗ are positive definite. Assume that the mapping R : U → U is piecewise polyhedral.
Then there exist a constant η̂ > 0 such that the infinite sequence {(yk, zk, xk)} generated from the
sPADMM satisfies for all k≥ 1,

dist(uk,Ω)≤ η̂||R(uk)‖, (36)

dist2
M(uk+1,Ω) + ‖zk+1− zk‖2T ≤ µ̂

[
dist2

M(uk,Ω) + ‖zk− zk−1‖2T
]
, (37)

where
µ̂ := (1 + 2κ̂)−1(1 + κ̂)< 1 & κ̂ := min{2τ,1}tτ

(
η̂2κ4λmax(M)

)−1
> 0.

Proof. Since Ω 6= ∅ and R−1 : U →U is piecewise polyhedral, it follows from Proposition 1 that
there exist two constants η > 0 and ρ> 0 such that

dist(u,Ω)≤ η||R(u)‖, ∀u∈ {u∈ U : ||R(u)‖ ≤ ρ}.

Moreover, from the proof of Theorem 2, we know that there exists a constant r > 0 such that
the sequence {(yk, zk, xk)} generated by the sPADMM converges to a KKT point ū ∈ Ω with
‖uk− ū‖ ≤ r for all k≥ 0. Since for those uk such that ‖R(uk)‖>ρ, it holds that

dist(uk,Ω)≤ ||uk− ū‖ ≤ r < r(ρ−1‖R(uk)‖), (38)

we know that (36) holds with η̂ := max{η, r/ρ}. The inequality (37) can then be proved similarly
as for (31) in Theorem 2. �

Before we move to the next section, let us compare the results in the above corollary with those
obtained in the most recent paper [45], where the authors considered the following two cases with
R(·) being a piecewise polyhedral mapping:
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(1) The classic ADMM with S = 0, T = 0 and τ = 1. Both A and B are assumed to be surjective.
(2) The linearized ADMM with τ = 1 and two positive definite linear operators: S = γ1I−σAA∗

and T = γ2I − σBB∗, where γ1 > σλmax(AA∗) and γ2 > σλmax(BB∗). Again A and B are assumed
to be surjective.

For Case (1), Yang and Han [45] proved the global Q-linear rate of convergence of the sequence
{(zk, xk)} while we proved in Corollary 1 the global Q-linear rate of convergence of the sequence
{(yk, zk, xk)} for any τ ∈ (0, (1+

√
5)/2). Interestingly, the global Q-linear rate of convergence result

in Corollary 1 is still valid even if the surjectivity of A or B fails to hold as the availability of Σg

and Σh can be exploited (cf. problem (13)).

For Case (2), Yang and Han proved the global Q-linear convergence rate of the whole sequence
{(yk, zk, xk)}. We also proved the same thing but with one major difference: unlike [45] we neither
need to assume the surjectivity of A or B nor we need to assume S or T to be positive definite. In
fact, the analysis in [45] breaks down when γ1→ σλmax(AA∗) or γ2→ σλmax(BB∗) even if both A
and B are surjective. On the other hand, it is easy to see that our results in Corollary 1 are still
valid with S = σλmax(AA∗)I − σAA∗ and T = σλmax(BB∗)I − σBB∗. Here, the main reason that
we can obtain the Q-linear convergence results as in Corollary 1 is due to the availability of the key
inequality (26) proven in Proposition 4 via the construction of the two linear operators M and H
in (23) and (24), respectively. More importantly, the freedom of choices of the positive semidefinite
linear operators S and T in our model allows us to efficiently deal with even multi-block convex
composite quadratic conic optimization problems as shall be demonstrated in the next section.

4. Applications to convex composite quadratic conic programming In this section
we shall demonstrate how the Q-linear rate convergence results proven in the last section can be
applied to the following convex composite quadratic conic programming

min
1

2
〈x,Qx〉+ 〈c,x〉+φ(x)

s.t. Ax= b, x∈K,
(39)

where c∈X , b∈<m, Q :X →X is a self-adjoint positive semidefinite linear operator, A :X →<m
is a linear operator, K is a closed convex cone in X and φ : X → (−∞,+∞] is a proper closed
convex function. Here, we assume that φ∗(·) can be computed relatively easily. If K is polyhedral
and φ is piecewise linear-quadratic, problem (39) is called the convex composite piecewise linear-
quadratic programming. Note that for the latter the first quadratic term in the objective function of
problem (39) could be absorbed in the piecewise linear-quadratic function φ. However, this should
be avoided as it is more efficient to deal with this quadratic term separately.

By introducing an additional variable d∈X , we can rewrite problem (39) equivalently as

min
1

2
〈x,Qx〉+ 〈c,x〉+ δK(x) +φ(d)

s.t. Ax= b, x− d= 0.
(40)

Obviously, problem (40) is in the form of (1). Let the polar of K be defined by K◦ := {x′ ∈ X :
〈x′, x〉 ≤ 0, ∀x∈K}. Denote the dual cone of K by K∗ :=−K◦. The Lagrange dual of problem (40)
takes the form of

max inf
x∈X

{
1

2
〈x,Qx〉+ 〈v,x〉

}
+ 〈b, y〉−φ∗(−z)

s.t. s+A∗y+ v+ z = c, s∈K∗,
which is equivalent to

min δK∗(s)−〈b, y〉+
1

2
〈w,Qw〉+φ∗(−z)

s.t. s+A∗y−Qw+ z = c, w ∈W,
(41)
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where W is any linear subspace in X containing RangeQ, the range space of Q, e.g., W = X or

W = RangeQ. When W =X , problem (41) is better known as the Wolfe dual to problem (40) (see

Fujiwara, Han and Mangasarian [18] for discussions on the Wolfe dual of conventional nonlinear

programming and Qi [33] on nonlinear semidefinite programming). So when RangeQ⊆W 6=X , one

may call problem (41) the restricted Wolfe dual to problem (40). One particularly useful case is the

restricted Wolfe dual with W = RangeQ. The dual problem (41) has four natural variable-blocks

and can be written in the form of (1) in several different ways. The cases that we are interested in

applying the sPADMM to problem (41) are:

Case 1) if K 6=X , then (s, y,w) is treated as one variable-block and z the other block; and

Case 2) if K=X , then (w,y) is treated as one variable-block and z the other block.

Here we shall only discuss Case 1) as Case 2) can be done similarly in a simpler manner.

4.1. The primal case First, we consider the application of the sPADMM to the primal

problem (40). Let U :=X ×X ×<m×X . The augmented Lagrangian function LPσ for problem (40)

is defined as follows

LPσ (x,d;y, z) :=
1

2
〈x,Qx〉+ 〈c,x〉+ δK(x) +φ(d) + 〈y,Ax− b〉+ 〈z,x− d〉

+
σ

2
(‖Ax− b‖2 + ‖x− d‖2), ∀ (x,d, y, z)∈ U .

Then the sPADMM for solving problem (40) can be stated in the following way.

sPADMM: A semi-proximal alternating direction method of multipliers for solving the con-
vex optimization problem (40).
Step 0. Input (x0, d0, y0, z0)∈K×domφ×<m×X . Let τ ∈ (0,+∞) be a positive parameter

(e.g., τ ∈ (0, (1 +
√

5)/2) ). Define S :X →X to be any self-adjoint positive semidefinite linear
operator such that Q+S +σA∗A� 0. Set k := 0.
Step 1. Set 

xk+1 = argmin LPσ (x,dk;yk, zk) +
1

2
‖x−xk‖2S ,

dk+1 = argmin LPσ (xk+1, d;yk, zk) ,

yk+1 = yk + τσ(Axk+1− b) & zk+1 = zk + τσ(xk+1− dk+1).

Step 2. If a termination criterion is not met, set k := k+ 1 and go to Step 1.

In the above sPADMM for solving the convex optimization problem (40), we need to choose S � 0

satisfying Q+S +σA∗A� 0 such that the subproblems on the x-part are relatively easy to solve,

e.g., one can take S = λmax (Q+σA∗A)I − (Q+σA∗A). Note that if one takes S = γ1I − σA∗A
with γ1 >σλmax(A∗A), as discussed in [45], the subproblems on the x-part may still be difficult to

solve unless Q is simple, e.g., Q= 0 or I.

In order to apply Theorem 2 and Corollary 1 to prove the Q-linear convergence rate of the

sPADMM for solving problem (40), we need to know under what conditions the required calmness

assumption for problem (40) holds. Next, we shall discuss this issue in two situations: 1) K is

polyhedral and φ(·) is piecewise linear-quadratic; and 2) K is the non-polyhedral cone Sn+, which

is the cone of all n by n symmetric and positive semidefinite matrices.

The KKT optimality conditions for problem (40) take the form of

0∈Qx+ c+ ∂δK(x) +A∗y+ z, 0∈ ∂φ(d)− z, Ax− b= 0, x− d= 0. (42)



Han, Sun, and Zhang: Q-Linear Rate of ADMM
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 15

Define the KKT mapping R : U →U by

R(x,d, y, z) :=


x−ΠK[x− (Qx+ c+A∗y+ z)]

d−Prφ(d+ z)

b−Ax

d−x

 , ∀(x,d, y, z)∈ U . (43)

Then (x,d, y, z)∈ U satisfies (42) if and only if R(x,d, y, z) = 0.
If K is polyhedral and φ(·) is piecewise linear-quadratic, then things are much easier as in this

case Proposition 2 implies that both ΠK(·) and Prφ(·) are piecewise polyhedral, and so are R
and R−1. Thus, from the discussions in Section 2 we know that in this case, R−1 is calm at the
origin for any KKT point, if exists, to problem (40) with a modulus independent of the choice of
the KKT points. Therefore, for any τ ∈ (0, (1 +

√
5)/2), as long as K is a polyhedral set, φ(·) is

a piecewise linear-quadratic convex function and problem (40) has at least one KKT point, the
infinite sequence {(xk, dk, yk, zk)} generated by the sPADMM converges to a KKT point of problem
(40) globally at a Q-linear rate.

When K is non-polyhedral, things are more complicated regardless of the properties of φ. This can
be seen from the following convex quadratic semidefinite programming (SDP) example constructed
by Bonnans and Shapiro [2, Example 4.54].
Example 1. Consider

min x1 +x2
1 +x2

2

s.t. X −Diag(x) = εB, X ∈ S2
+,

(44)

where x = (x1, x2) ∈ <2, Diag(x) is the 2× 2 diagonal matrix whose i-th diagonal element is xi,
i = 1,2, B is any 2 by 2 non-diagonal symmetric matrix, and ε is a scalar parameter. When
ε= 0, the optimization problem (44) has a unique KKT point (X, x̄,Y ) ∈ S2

+ ×<2 × (−S2
+) with

(X, x̄) = (0,0) and Y =

(
−1 0
0 0

)
.

Bonnans and Shapiro [2, Example 4.54] showed that for any given ε ≥ 0, problem (44) has a
KKT point (X(ε), x̄(ε), Y (ε))∈ S2

+×<2× (−S2
+) with x̄2(ε) of the order ε2/3 as ε ↓ 0. Then, in view

of [8, Proposition 2.4], we know that R−1 cannot be calm at the origin for (X, x̄,Y ) even if the
unperturbed problem has a strongly convex objective function with a unique KKT point.

Example 1 shows that for a non-polyhedral set K, unlike the polyhedral case, we need additional
conditions for guaranteeing the calmness property for problem (40). At the moment, not many
results are available when K is a general non-polyhedral cone. However, most recently several
interesting results on the calmness property have been obtained for the following convex composite
quadratic semidefinite programming

min
1

2
〈X,QX〉+ 〈C,X〉+ δP(X)

s.t. AX = b, X ∈ Sn+,
(45)

where C ∈ Sn, b∈<m,Q : Sn→ Sn is a self-adjoint positive semidefinite linear operator,A : Sn→<m
is a linear operator, P is a simple nonempty convex polyhedral set in Sn, and 〈·, ·〉 is the usual
trace inner product.

Firstly, in [24], Han et al. proved that if problem (45) has a unique KKT point, then the mapping
R−1 is calm at the origin for this KKT point if and only if the no-gap second order sufficient
conditions in terms of Bonnans and Shapiro [2] hold for both the primal and its restricted Wolfe-
dual problems. Thus, the reason for the lack of the calmness property of R−1 for Example 1 is
due to the fact that the no-gap second order sufficient condition for the dual of the unperturbed
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problem fails to hold. The above characterization has led Ding et al. [10] to study the calmness
property at an isolated KKT point for a class of non-convex conic programming problems with K
being a C2-cone reducible set, which is rich enough to include the polyhedral set, the second order
cone, the positive semidefinite cone Sn+ and their Cartesian products [2].

Secondly, sufficient conditions for ensuring the metric subregularity of R or equivalently the
calmness of R−1 have been provided by Cui et al. [8] even if problem (45) may admit multiple KKT
points. Here, instead of presenting these sufficient conditions in [8], we shall quote an example used
in [8] to illustrate the calmness property of R−1.
Example 2. Consider the following convex quadratic SDP problem:

min
1

2
(〈I2,X〉− 1)2

s.t. 〈A,X〉+x= 1, X ∈ S2
+, x∈<+

(46)

whose dual (in its equivalent minimization form) can be written as

min −y+
1

2
w2 +w+ δS2+(S) + δ<+

(s)

s.t. yA+wI2 +S = 0 , s− y= 0 ,
(47)

where A=

(
1 −2
−2 1

)
. Problem (47) has a unique optimal solution (ȳ, w̄, S, s̄) = (0,0,0,0). The set

of all optimal solutions to problem (46) is given by{
(X,x)∈ S2

+×<+ | 〈A,X〉+x= 1, 〈I2,X〉= 1
}
. (48)

One can easily check that for Example 2 the sufficient conditions made in [8] for ensuring the metric
subregularity of R hold. Thus, for this example R−1 is calm at the origin for any KKT point.

4.2. The dual case In this subsection we turn to the dual problem (41). As mentioned earlier,
problem (41) has four natural variable-blocks. Since the directly extended ADMM to the multi-
block case may be divergent even the dual step-length τ is taken to be as small as 10−8 [4], one
needs new ideas to deal with problem (41). Here, we will adopt the symmetric Gauss-Seidel (sGS)
technique invented by Li et al. [30]. For details on the sGS technique, see [29]. Most recent research
has shown that it is much more efficient to solve the dual problem (41) rather than its primal
counterpart (40) in the context of semidefinite programming and convex quadratic semidefinite
programming [42, 30, 29, 5]. At the first glance, this seems to be counter-intuitive as problem (41)
looks much more complicated than the primal problem (40). The key point for more efficiently
dealing with the dual problem is to intelligently combine the above mentioned sGS technique with
the sPADMM.

The augmented Lagrangian function LDσ for problem (41) is defined as follows

LDσ (s, y,w, z;x) := δK∗(s)−〈b, y〉+
1

2
〈w,Qw〉+φ∗(−z) + 〈x, s+A∗y−Qw+ z− c〉

+
σ

2
‖s+A∗y−Qw+ z− c‖2, ∀ (s, y,w, z,x)∈X ×<m×W×X ×X .

Then the sGS technique based sPADMM, in short sGS-sPADMM, considered by Li et al. [30] for
solving the multi-block problem (41) can be stated as in the following. At the first glance, the
sGS-sPADMM does not seem to fall within the scheme (3a)–(3c). However, it has been shown in
[30] that it is indeed a special case of (3a)–(3c) through the construction of special semi-proximal
terms.



Han, Sun, and Zhang: Q-Linear Rate of ADMM
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 17

sGS-sPADMM: A symmetric Gauss-Seidel based semi-proximal alternating direction
method of multipliers for solving problem (41).
Step 0. Input (s0, y0,w0, z0, x0) ∈ K∗ × <m ×W × (−dom φ∗) × X . Let τ ∈ (0,+∞) be a

positive parameter (e.g., τ ∈ (0, (1+
√

5)/2) ). Choose any two self-adjoint positive semidefinite
linear operators S1 :<m→<m and S2 :W→W satisfying S1 +σAA∗ � 0 and S2 +Q+σQ2 � 0.
Set k := 0.
Step 1. Set 

wk+ 1
2 = argmin LDσ (sk, yk,w, zk;xk) +

1

2
‖w−wk‖2S2 ,

yk+ 1
2 = arg min LDσ (sk, y,wk+ 1

2 , zk;xk) +
1

2
‖y− yk‖2S1 ,

sk+1 = arg min LDσ (s, yk+ 1
2 ,wk+ 1

2 , zk;xk) ,

yk+1 = argmin LDσ (sk+1, y,wk+ 1
2 , zk;xk) +

1

2
‖y− yk‖2S1 ,

wk+1 = argmin LDσ (sk+1, yk+1,w, zk;xk) +
1

2
‖w−wk‖2S2 ,

zk+1 = argmin LDσ (sk+1, yk+1,wk+1, z;xk) ,

xk+1 = xk + τσ(sk+1 +A∗yk+1−Qwk+1 + zk+1− c).

Step 2. If a termination criterion is not met, set k := k+ 1 and go to Step 1.

As mentioned earlier, the global convergence of Algorithm sGS-sPADMM is established by Li.
et al. in [30] through converting it into an equivalent sPADMM scheme (3a)–(3c) for solving a
particular problem of the form (1). To illustrate how this is achieved, for simplicity, we assume that
A : X →<m is surjective and W = RangeQ so that we can take S1 = 0 and S2 = 0, i.e., there are
no proximal terms in the above Algorithm sGS-sPADMM. Note that the self-dual linear operator
Q is always positive definite from RangeQ to itself even if it is only positive semidefinite from X
to X .

Define the self-adjoint positive semidefinite linear operator (to be interpreted as in the matrix
format) S :X ×<m×W→X ×<m×W by

S = σ

 0 0 0
A 0 0
−Q −QA∗ 0

 I 0 0
0 (AA∗)−1 0
0 0 (Q2 +σ−1Q)−1

 0 A∗ −Q
0 0 −AQ
0 0 0

 . (49)

Then, with (s, y,w) being treated as one variable-block and z the other block, the above sGS-
sPADMM for solving problem (41) reduces to the sPADMM scheme (3a)–(3c), where the proximal
terms S being given by (49) and T = 0 [30]. We remark here that although the linear operator
S looks complicated, one never needs to compute it in the numerical implementations and it is
introduced only for connecting Algorithm sGS-sPADMM to the general scheme (3a)–(3c).

One may further note that at each iteration, either the w-part or the y-part needs to be solved
twice, which seems to suggest that Algorithm sGS-sPADMM is more costly compared to the non-
convergent directly extended ADMM. However, the extra cost is minimum as the coefficient matrix
for solving either part is identical through all the iterations.

By using the above connection, just as for the primal case, one can use Theorem 2 and Corollary
1 to derive the Q-linear rate convergence of the infinite sequence {(sk, yk,wk, zk, xk)} generated by
Algorithm sGS-sPADMM if Assumption 1 and the required calmness condition hold for problem
(41) and τ ∈ (0, (1 +

√
5)/2). On the calmness condition, one may conduct similar discussions as in



Han, Sun, and Zhang: Q-Linear Rate of ADMM
18 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Subsection 4.1, but start from the dual problem (41). For brevity, we omit the details here. As a
final note to this section, we comment that in all the above applications, the linear operator T ≡ 0
while the linear operator S may take various values, which are often to be positive semidefinite
only.

5. Conclusions In this paper, we have provided a road-map for analyzing the Q-linear con-
vergence rate of the sPADMM for solving linearly constrained convex composite optimization
problems. One significant feature of our approach is that it only relies on a very mild calmness
property. This allows us to obtain a more or less complete picture on the Q-linear rate convergence
analysis for solving the convex composite piecewise linear-quadratic programming. More impor-
tantly, it also allows us to derive Q-linearly convergent results of the sPADMM for solving convex
composite quadratic semidefinite programming. Along this line, perhaps, the most important issue
left unanswered is to provide weaker sufficient conditions for ensuring the calmness property for
convex composite optimization problems with non-polyhedral cone constraints. Another important
issue is to develop similar results for the inexact version of the sPADMM, which is often more
useful in practice. Given the recent progress made on the inexact symmetric Gauss-Seidel based
sPADMM in [5], it does not seem to be difficult to extend our analysis to the inexact sPADMM in
a parallel way.
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