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Abstract

For a GI/GI/1 queue, we show that the average sojourn time under the (blind) Randomized
Multilevel Feedback algorithm is no worse than that under the Shortest Remaining Processing Time
algorithm times a logarithmic function of the system load. Moreover, it is verified that this bound
is tight in heavy traffic, up to a constant multiplicative factor. We obtain this result by combining
techniques from two disparate areas: competitive analysis and applied probability.
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1 Introduction

One of the most relevant and widely studied measures of quality of service in a GI/GI/1 queue is the
average sojourn time, also known as response time or flow time, defined as the average time spent by a
job from its arrival in the system until its completion [3–6, 8, 15, 19, 21, 28–30]. We consider the most
basic setting of a single machine with pre-emption, i.e. jobs can be interrupted arbitrarily and resumed
later without any penalty. It is well-known that the Shortest Remaining Processing Time (SRPT) policy,
that at any time works on the job with the least remaining processing time, is the optimal policy for
every problem instance (or equivalently for every sample path) for minimizing the sojourn time [26].
However, to run SRPT one needs the exact knowledge of all job sizes. This information may not be
available in many settings; specifically, jobs sizes may only be known approximately, or may not be
known at all [17]. For this reason one may have to be content with more generally applicable policies.

In this paper we are interested in policies that do not require the knowledge of job sizes in their
scheduling decisions. We refer to such policies as blind policies. More formally, in a blind policy the
scheduler is only aware of the existence of a job and how much processing it has received thus far. The
size of the job becomes known to the scheduler only when it terminates and leaves the system. Observe
that the class of blind policies contains several well-studied policies, such as Processor Sharing (also
known as Round Robin) [14], Foreground-Background [20], and First In First Out [2].

It is natural to ask how much this inability to use the knowledge of sizes can hurt performance. In
particular, how much can the average sojourn time between SRPT and an optimal blind policy differ for
a given GI/GI/1 queue? As an illustration, let us consider the M/M/1 queue. In this setting, all blind
policies are identical due to the memoryless nature of the job size distribution. More precisely, Conway
et al. [9] state that any blind policy has an average sojourn time equal to E[B]/(1 − ρ), where E[B] is
the average job size and ρ is the load of the system. On the other hand, if job sizes are known upon
arrival, then Bansal [3] derives that the average sojourn time E[TSRPT] under M/M/1/SRPT is

E[TSRPT] = (1 + o(1))
1

log
(

e
1−ρ

) E[B]

1− ρ
, (1.1)
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where o(1) vanishes as ρ approaches one. That is, the SRPT policy performs better by a factor log(e/(1−
ρ)) in heavy traffic. So while SRPT can be arbitrarily better than a blind policy for a M/M/1 queue as
the load approaches one, this improvement factor grows quite mildly.

The performance of SRPT as a function of load can be dramatically different for heavy-tailed distri-
butions. Bansal and Gamarnik [4] and Lin et al. [15] show that the growth factor of the average sojourn
time in heavy traffic can be much smaller than 1/(1−ρ) even in M/GI/1 queues. For example, if the job
sizes follow a Pareto(β) distribution with β ∈ (1, 2), then the growth factor of the average sojourn time
E[TSRPT] is E[B] log(1/(1 − ρ)), up to constant factors depending on β. On the other hand, Kleinrock
[14] states that Processor Sharing has an average sojourn time of E[B]/(1−ρ) in any M/GI/1 queue. As
this example illustrates, it is conceivable that for a general distribution, the gap between blind policies
and SRPT can be much larger then in the M/M/1 case.

Another subfield of computer science where the performance improvement of SRPT over blind policies
has been studied is competitive analysis [7, 11, 22], which generally regards worst case analyses of
algorithms. The study of competitive analysis of blind scheduling policies was initiated by Motwani
et al. [18], who showed that no blind deterministic algorithm1 can have a better competitive ratio than
Ω(m1/3) for the problem of minimizing the average sojourn time, where m is the number of jobs in an
instance. Motwani et al. also showed that no blind randomized algorithm can have a competitive ratio
better than Ω(log(m)). In a significant breakthrough, Kalyanasundaram and Pruhs [13] gave an elegant
and non-trivial randomized algorithm that they called Randomized Multilevel Feedback (RMLF) and
proved that it has competitive ratio of at most O(log(m) log(log(m))). Later, Becchetti and Leonardi
[6] showed that RMLF is in fact an O(log(m))-competitive randomized algorithm and hence the best
possible (up to constant factors). Additional background on multilevel algorithms can be found in
Kleinrock [14], and an analysis of the average sojourn time under such algorithms is performed in Aalto
and Ayesta [1].

The result in Becchetti and Leonardi [6] is derived under the assumption that job sizes are bounded
from below by a strictly positive constant, an assumption which is removed in this paper. This “extended”
version of RMLF is denoted by eRMLF.

The insights from applied probability and competitive analysis concerning the relation between blind
policies and SRPT can be combined when m is taken as the number of jobs in a regeneration cycle,
which has an expected value of the order 1/(1 − ρ). We make this precise in our main theorem and its
proof. The main theorem shows that, for a GI/GI/1 queue, the gap between SRPT and the best blind
policy A for that system is at most log(1/(1−ρ)), up to constant factors. More specifically, we show that
this growth factor is a guaranteed upper bound on the gap between SRPT and the eRMLF algorithm.
That is, we show that

E[TA] ≤ E[TeRMLF] = O

(
log

(
1

1− ρ

)
E[TSRPT]

)
(1.2)

as ρ grows to one. We note that the implementation of the RMLF algorithm does not depend on the
distributions of interarrival times and job sizes and is therefore applicable to every GI/GI/1 queue; this
property may not hold for an optimal blind policy A in general.

The second main contribution of this paper is the proof of (1.2) itself. It involves a novel combination
of techniques from competitive analysis and applied probability. Using a renewal argument, we consider
the average sojourn time E[TRMLF] of jobs in a general busy period, and subsequently distinguish two
types of busy periods (small and large) by the number of jobs. For small busy periods, we apply a
worst-case performance bound of RMLF from the study of competitive analysis. For large busy periods,
we derive the heavy traffic behaviour of moments of two functionals: the busy period duration and
the number of jobs in a busy period. In particular, we show that the κ-th moment of both of these
functionals behaves like O((1 − ρ)1−2κ) for κ ≥ 1; a new result, which may facilitate future instances
where competitive analysis and regenerative process theory can be combined to obtain information about

1 Note that SRPT is deterministic, but not blind.
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algorithms under uncertainty. To prove these bounds, we rely on properties of ladder height distributions
derived in Asmussen [2] and Lotov [16].

This paper is organized as follows. A detailed model description and notation is introduced in
Section 2. Section 3 clarifies the concept of a competitive ratio and describes the RMLF algorithm.
Additionally, Section 3.2 relaxes the constraints on RMLF while preserving the competitive ratio. The
main result, Theorem 3, is presented in Section 4, whereas its proof is given in Section 5. Propositions
required for the main theorem are proven in Section 6. Finally, Section 7 concludes the paper.

2 Preliminaries

This section introduces a general framework for sequences of GI/GI/1 queues, so that we may analyse
their limiting behaviour in further sections. In particular, the model allows for a heavy traffic analysis
of the average sojourn time and various other functionals.

Sequence of queues

Consider a sequence of GI/GI/1 queues, indexed by n ≥ 1, where jobs arrive sequentially with inde-

pendent and identically distributed (i.i.d.) sizes B
(n)
i , i ∈ {1, 2, . . .}, chosen from a distribution F

(n)
B .

The jobs are then processed by a single server with unit speed. The time between two consecutive job

arrivals is given by the i.i.d. interarrival times A
(n)
i , i ∈ {1, 2, . . .}, chosen from a distribution F

(n)
A . All

jobs and interarrival times are assumed to be positive, i.e. the support of F
(n)
A and F

(n)
A is contained in

(0,∞). For notational convenience, we define A(n) := A
(n)
1 and B(n) := B

(n)
1 .

Assume that there exist ρ0 ∈ (0, 1) and Amin > 0, both independent of the system index n, such
that the inequalities ρ0Amin ≤ ρ0E[A

(n)] ≤ E[B(n)] < E[A(n)] are respected. The load of the system is
denoted by ρ(n) := E[B(n)]/E[A(n)] ∈ [ρ0, 1), and is interpreted as the fraction of time that the server is
busy. As is customary in the literature on heavy traffic analysis [12, 23], we assume limn→∞ ρ(n) = 1.
The mean amount of work that a server completes between two consecutive arrivals is represented by
µ(n) := E[A(n)]− E[B(n)] = E[A(n)](1− ρ(n)).

Furthermore, we require that the interarrival times have finite variance for all n and additionally that
lim supn→∞ E[(A(n))2] < ∞. Since a queue can only form when a job arrives to a non-empty system,
we pose the final requirement that for some δ > 0 and γ > 0 independent of n, the system satisfies
P(B(n) −A(n) ≥ δ) ≥ γ.

Example 1. In order to interpret some of our obtained results, one may compare them to a
M/GI/1 queue that is send into heavy traffic in a natural manner. Specifically, assume that both the

Ai’s and Bi’s have unit mean and consider interarrival times A
(r)
i = Ai/r, i ∈ {1, 2, . . .}, r ∈ (0, 1).

This model experiences a load of ρ = E[B]/E[A(r)] = r and is exposed to heavy traffic as r tends to
one due to decreasing interarrival times. The model fits in the framework described above by letting

A
(n)
i = Ai/(1− 1/n), B

(n)
i = Bi and ρ(n) = 1− 1/n, and is referred to as the Example Model. All further

remarks on the Example Model are emphasised by superscripts r for all related variables and functionals;

e.g. the notation A
(r)
i indicates the i-th interarrival time in this Example Model.

Queueing functionals

The sojourn time of a job is the amount of time it spends in the system, namely its service completion
time minus its arrival time. Given a scheduling policy π, we denote the average sojourn time of a generic

job by E[T
(n)
π ]. The steady-state cumulative amount of work in the system is represented by V (n), whose

distribution has an atom at zero that corresponds to the times when the server is idle. The steady-state
duration of such an idle period is denoted by I(n). Idle periods are ended by the arrival of a new job,
which initiates a busy period. A busy period finishes at the earliest subsequent time for which the system
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is empty again. The steady-state duration of a busy period is represented by P (n), whereas the total
number of arrivals during a busy period is denoted by N (n). Finally, the steady-state cumulative amount
of work in the system at an arrival instance is represented by W (n).

Scheduling policies

A scheduling policy π is an algorithm or a rule which specifies which job receives service at any time
in the system. For the GI/GI/1 queue under consideration, such a policy prescribes the behaviour of a
single server under the relaxation that jobs can be pre-empted ; that is, jobs can be interrupted at any
point during their execution and can be resumed later from this point without any penalty. Of the large
class of scheduling policies that apply to this system, we consider only those policies π that satisfy the
following two criteria (quoted from Wierman and Zwart [30], after Stolyar and Ramanan [27]):

1. π is non-anticipative: a scheduling decision at time t does not depend on information about
customers that arrive beyond time t.

2. π is non-learning : the scheduling decisions cannot depend on information about previous busy
periods. That is, a scheduling decision on a sample path cannot change when the history before
the current busy period is changed.

Of special interest are those scheduling policies π that additionally obey the following characteristic:

3. π is blind : the scheduling decisions do not depend on the sizes of the jobs. That is, the scheduling
decisions on a sample path up to time t cannot change when the sizes of jobs that have not finished
at that time are altered (in such a way that the jobs remain unfinished).

Policies that satisfy all above criteria are very common: First In First Out (FIFO), Processor Sharing and
Foreground-Background (FB) are all blind policies within the specified subclass of scheduling policies.
On the other hand, policies like Shortest Job First or Shortest Remaining Processing Time (SRPT) are
non-blind elements of the specified subclass as they require knowledge of the job sizes when making a
scheduling decision.

We let A(n) denote a blind policy that minimizes the average sojourn time over the space of all blind

policies for the n-th GI/GI/1 queue. In general, A(n) could depend on the distributions F
(n)
A and F

(n)
B

that specify the GI/GI/1 queue. We denote RMLF and eRMLF to be the randomized blind algorithms
that are formalized in Sections 3.1 and 3.2, respectively. The implementation of the RMLF and eRMLF

algorithms does not depend on F
(n)
A and F

(n)
B and is therefore independent of the system index n.

Finally, we call a scheduling policy π work-conserving if it always has the server working at unit
speed whenever work is present in the system. One can easily verify that all above policies, including
A(n), are work-conserving.

Asymptotic relations

We use the standard notation that for two functions f(n) and g(n), f(n) = O(g(n)) and f(n) = o(g(n))
if lim supn→∞ f(n)/g(n) < ∞ and lim supn→∞ f(n)/g(n) = 0, respectively. Similarly, f(n) = Ω(g(n))
means lim infn→∞ f(n)/g(n) > 0 and f(n) = Θ(g(n)) is equivalent to 0 < lim infn→∞ f(n)/g(n) ≤
lim supn→∞ f(n)/g(n) < ∞.

Final notational conventions in this paper are the floor-function ⌊x⌋ := sup{m ∈ N : m ≤ x} and the
indicator function 1([logical expression]) that takes value 1 if the logical expression is true, and value 0
otherwise.
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3 Competitive analysis of scheduling policies

In this section, we describe some relevant definitions and results from the area of competitive analysis,
which deals with the worst case analysis of algorithms. We restrict our presentation here only to the
competitive analysis of scheduling algorithms with respect to average sojourn time. Subsequently, we
introduce the original RMLF algorithm and its extension eRMLF.

A scheduling problem instance I consists of a collection of jobs specified by their sizes and their
arrival times. We say that an instance has size m, i.e. |I| = m, if it consists of m jobs. For an instance
I, we denote the optimal average sojourn time possible for this instance by E[TOPT(I)], which for our
purposes is same as E[TSRPT(I)].

For a blind deterministic algorithm π, we let E[Tπ(I)] denote the average sojourn time when the
instance I is executed according to the algorithm π. We say that the algorithm π has competitive ratio
c(m) if

sup
I:|I|≤m

E[Tπ(I)]

E[TOPT(I)]
≤ c(m).

Thus, the competitive ratio of an algorithm (possibly a function of m), is the worst case ratio over
all input instances of length at most m of the sojourn time achieved by π and the optimal sojourn time
on that instance. Observe that the definition of the competitive ratio is rather strict, in that even if an
algorithm is close to optimal on all but one input instance, its competitive ratio will be lower bounded
by its performance on the bad input instance.

For this purpose it is useful to consider randomized algorithms. A blind randomized algorithm π̃
can toss coins internally and base its decisions on this outcome of these internal random variables.
Such an algorithm can thus be viewed as a probability distribution over blind deterministic algorithms
πi [7]. It then follows that the average sojourn time of instance I under a randomized algorithm π̃
equals E[Tπ̃(I)] = Ei[E[Tπi

(I)]], where the outer expectation is over the internal random choices of the
algorithm. We say that π̃ has competitive ratio c(m) if

sup
I:|I|≤m

E[Tπ̃(I)]

E[TOPT(I)]
= sup

I:|I|≤m

Ei[E[Tπi
(I)]]

E[TOPT(I)]
≤ c(m). (3.1)

Observe that the expectation is only over the random choices made by the algorithm, and the competitive
ratio is still determined by the worst possible instance. However, the competitive ratio of a blind
randomized algorithm can be substantially lower, e.g. in situations where no single blind deterministic
algorithm is good for all instances, but a suitable combination of algorithms is close to optimal for all
instances.

3.1 Randomized Multilevel Feedback algorithm

This section introduces Kalyanasundaram and Pruhs [13]’s Randomized Multilevel Feedback (RMLF)
algorithm. As the name suggests, it is a randomized version of the Multilevel Feedback (MLF) algorithm
proposed by Corbató et al. [10]. Both algorithms are blind and can therefore only learn the size of a job
upon completion.

The general idea of both MLF and RMLF is to prioritize potential short jobs (e.g. jobs that have not
received much service) and reduce the priority of a job as it receives more service. This prioritisation is
embodied by assigning every job Jj to a virtual high priority queue Qi, and move it to a lower priority
queue Qi+1 once it has received Ui,j units of service. The performance of the algorithm may suffer from
a poor choice of the so-called targets Ui,j; in particular, if the job sizes are slightly above the targets,
then jobs are moved to lower priority queues just prior to completion. The improvement of RMLF over
MLF is due to randomization of the targets, thereby reducing the possibility of such events over general
instances.
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Algorithm RMLF: At all times the collection of released, but uncompleted, jobs are partitioned
into queues, Q0, Q1, . . . We say that Qi is lower than Qj for i < j. [For] each job Jj ∈ Qi, Ui,j ∈
[2i, 2i+1] when it entered Qi. RMLF maintains the invariant that it is always running the job at
the front of the lowest non-empty queue.
When a job Jh is released at time rh, RMLF takes the following actions:

• Job Jh is enqueued on Q0.

• The target U0,h is set to max{1, 2− βh}.

• If, just prior to rh, it was the case that Q0 was empty, and that RMLF was running a job
Jj , RMLF then takes the following actions:

– Job Jj is pre-empted. Note that Jj remains at the front of its queue.

– RMLF begins running Jh.

If at some time t, a job Jj ∈ Qi−1 is being run when wj(t) becomes equal to Ui−1,j, then RMLF
takes the following actions:

• Job Jj is dequeued from Qi−1.

• Job Jj is enqueued on Qi.

• The target Ui,j is set to 2Ui−1,j = 2imax{1, 2− βj}.

Whenever a job is completed, it is removed from its queue.

Figure 1: Formal statement of RMLF algorithm.

We now provide a mathematical representation of the RMLF algorithm. Assume first that there is
a universal lower bound of on the job sizes in every instance I, say with value 2. For every instance of
size m, the j-th job Jj is released at time rj and has size Bj. The process wj(t) denotes the amount of
time that RMLF has run Jj before time t. For some symbolic constant θ, fixed at θ := 12, we define
the independent exponentially distributed variables βj with P(βj ≤ x) = 1 − exp[−θx ln j]. Finally,
the targets are defined as Ui,j = 2i max{1, 2 − βj} for all i ∈ {1, 2, . . .}, j ∈ {1, . . . ,m}. RMLF is then
formalized in Figure 1, identical to Kalyanasundaram and Pruhs [13].

Kalyanasundaram and Pruhs [13] proved that the RMLF algorithm is O(log(m) log(log(m)))- com-
petitive. This result was later strengthened by Becchetti and Leonardi [6] to a competitive ratio of
O(log(m)):

Theorem 1. The RMLF algorithm is log(m)-competitive. That is,

E[TRMLF(I)] ≤ C1 log(m)E[TSRPT(I)] (3.2)

for all instances I of size at most m and a universal constant C1.

The competitive ratio lower bound of Ω(log(m)) as shown by Motwani et al. [18] implies that, up to
multiplicative factors, this is the best bound possible for randomized algorithms in the current model.
Note that this competitive ratio is significantly lower than the best possible ratio for blind deterministic
algorithms: Ω(m1/3).

In the next section we propose a variant on RMLF that makes the assumption of a universal lower
bound on job sizes obsolete.

3.2 Extending the RMLF algorithm

In a general GI/GI/1 queue there may not be a strictly positive lower bound on the job sizes. The
RMLF algorithm is not directly applicable in that case. This problem is solved in an extension of the
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RMLF algorithm, which we will refer to as the eRMLF algorithm. The eRMLF algorithm defines queues
Q̃1, Q̃2, . . . that are identical to the queues Q1, Q2, . . . of the RMLF algorithm, but splits the first queue
Q0 into many queues Q̃0, Q̃−1, . . . Additionally, it considers a “new job” queue Q̃∗. The concept of the
eRMLF algorithm is described below; the formal statement is presented in the appendix.

Let a problem instance Ĩ for eRMLF be given. A target Ũ∗,j = 2z
∗

j max{1, 2 − β̃j} is assigned to

every job J̃j upon arrival, where β̃j is an exponentially distributed random variable and z∗j ∈ Z depends
on the current state of the system. When the target has been assigned to the new job, it receives service
in Q̃∗ until either the job is completed, the obtained service equals the target, or a new job arrives. Once
either of the latter two events happens, the job in Q̃∗ is assigned to a queue Q̃z, z ∈ Z.

If there are no jobs in queue Q̃∗, the eRMLF algorithm serves the queues Q̃z in a similar fashion as the
RMLF algorithm. Moreover, at any time the problem instance Ĩ can be converted to a problem instance
I for RMLF by a scaling argument, and under this scaling the sojourn times of all jobs are identical for
both algorithms. From this perspective, it is only natural that eRMLF inherits the competitive ratio of
RMLF:

Theorem 2. The eRMLF algorithm is log(m)-competitive. That is,

E[TeRMLF(I)] ≤ C1 log(m)E[TSRPT(I)] (3.3)

for all instances I of size at most m for a universal constant C1. This constant is identical to the
constant C1 in Theorem 1.

The proof of Theorem 2 is given in the appendix.

4 Main result

We are now ready to present the main result, Theorem 3. The main result states that the average
sojourn time under SRPT is at most a factor log(1/(1− ρ(n))) better than that under eRMLF in heavy
traffic:

Theorem 3. For a GI/GI/1 queue, the eRMLF algorithm satisfies the relation

E[T
(n)
eRMLF] = O

(
log

(
1

1− ρ(n)

)
E[T

(n)
SRPT]

)
(4.1)

as n → ∞, provided that supn∈{1,2,...} E[(B
(n))α] < ∞ for some α > 2.

The proof of the theorem is postponed until the next section. It relies on techniques from both
competitive analysis and applied probability.

As a consequence of Theorem 3, the blind policy A(n) that minimizes the average sojourn time for the
n-th system also satisfies the above performance bound. We emphasise the fact that the implementation
of eRMLF does not depend on the interarrival and job size distributions, whereas this may not be true for
the optimal blind policy A(n). This property may pose a considerable advantage over a system-dependent
optimal blind policy with similar mean performance, for example when the input distributions are only
approximately known. Also, we note that Theorem 3 remains true if eRMLF is replaced by RMLF,

provided that the support of the job size distribution F
(n)
B is uniformly bounded away from zero (i.e.

B
(n)
i ≥ Bmin for some Bmin > 0 independent of i and n).
We conclude this section with some remarks:
Remark 1. Recall that the average sojourn time under any blind policy in an M/M/1 queue is

E[B(n)]/(1 − ρ(n)), whereas the average sojourn time under SRPT [5] is

E[T
(n)
SRPT] = (1 + o(1))

1

log
(

e
1−ρ(n)

) E[B(n)]

1− ρ(n)
. (4.2)
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In this case, our result is tight up to a multiplicative factor.

Remark 2. There may be sequences of GI/GI/1 queues for which E[T
(n)
eRMLF] has a worse heavy

traffic scaling than E[T
(n)

A(n) ]. For example, it is known that the FB policy minimizes the average sojourn

time over all blind policies in a M/GI/1 queue if F
(n)
B has a decreasing failure rate [25]. Moreover, if

F
(n)
B (x) = 1− x−β, x ≥ 1, β ∈ (1,∞)/{2}, then E[T

(n)
FB ] = Θ(E[T

(n)
SRPT]) displays the best possible scaling

in heavy traffic [15, 20]. The heavy traffic behaviour of E[T
(n)
eRMLF] is unknown for any GI/GI/1 queue

and could scale worse than E[T
(n)
FB ] (although no worse than log(1/(1 − ρ))E[T

(n)
FB ] by Theorem 3).

On the other hand, the optimal blind policyA(n) may not be robust under different input distributions

F
(n)
A and F

(n)
B . Continuing the FB example, we see that it is optimal if F

(n)
B is the Pareto distribution,

yet E[T
(n)
FB ] = Θ((1− ρ)−2) = Θ((1− ρ)−1)E[T

(n)
SRPT] if F

(n)
B = 1(x ≤ 1) is deterministic [15, 20].

5 Proof of the main theorem

The current section presents the proof of Theorem 3.

5.1 Proof strategy.

The competitive ratio of the eRMLF algorithm provides an upper bound on the suboptimality of eRMLF.
Specifically, it guarantees an upper bound of O(log(m)) on the ratio of the average sojourn time under
eRMLF over the average sojourn time under SRPT, for instances of length at most m. Unfortunately,
a general GI/GI/1 queue corresponds to an infinite-length problem instance and hence the competitive
ratio result can not be applied directly.

The key idea of the proof is that a GI/GI/1 queue is a regenerative process, and as such one would like
to analyse individual busy periods rather than the infinite problem instance. This approach is justified
by the fact that for a single server, any two work-conserving scheduling policies π1 and π2 generate the

same busy periods, i.e. V
(n)
π1 (t) ≡ V

(n)
π2 (t). This means that the server is simultaneously active under

both policies, and hence in particular that every busy period under π1 can be compared to the same
busy period under π2.

Still, regarding every busy period as an individual problem instance does not bound the problem
instance length. One way to circumvent the unbounded problem instances is by discriminating between

“small” busy periods with at most N
(n)
0 jobs, and “large” busy periods. Busy periods with at most N

(n)
0

jobs can be analysed with the competitive ratio, yielding a bound of O(log(N
(n)
0 )). This leaves us with

the analysis of large busy periods.
Since the GI/GI/1 queue induces a distribution over problem instances, the probability of experi-

encing busy periods with at least N
(n)
0 jobs can be made arbitrarily small by choosing the threshold

N
(n)
0 properly. The combined sojourn time of all the jobs in such a large busy period is dominated

by the product of the number of jobs N (n) in the busy period and the duration P (n) of the busy
period. Therefore, the contribution of large busy periods to the overall average sojourn time is at

most E[N (n)P (n)
1(N (n) > N

(n)
0 )]/E[N (n)]. We will show that, for an appropriate choice of N

(n)
0 , the

contribution of the large busy periods is o(log(N
(n)
0 )).

The second part of this section formalizes the above strategy. In the analysis of the expectation

E[N (n)P (n)
1(N (n) > N

(n)
0 )] we greatly rely on Hölder’s inequality for decoupling the given expectation

into individual moments of P (n) and N (n). The behaviour of these moments is then the subject of
Propositions 1 and 2, both of which are proven in Section 6.
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5.2 Small and large busy periods

We begin by specifying the threshold that distinguishes small and large busy periods based on the number

of jobs. Fix s ∈
(

α
α−1 , 2

)
and ζ > 4+2s

2−s . The threshold N
(n)
0 is now defined as N

(n)
0 := (1− ρ(n))−ζ .

Let T
(n)
eRMLF,i, T

(n)
SRPT,i, i ∈ {1, . . . , N (n)}, be the sojourn time of job i under algorithm eRMLF and

SRPT, respectively. Using the fact that a GI/GI/1 queue is a regenerative process, we only need to
consider a general busy period when analysing the average sojourn time [2, Thm. VI.1.2, Prop. X.1.3]:

E[T
(n)
eRMLF] =

1

E[N (n)]
E



N(n)∑

i=1

T
(n)
eRMLF,i


 . (5.1)

Discriminating between small and large busy periods then yields

E[T
(n)
eRMLF] =

1

E[N (n)]
E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) ≤ N
(n)
0 )


 +

1

E[N (n)]
E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) > N
(n)
0 )


 .

(5.2)
As described in the strategy, we will bound the first term by means of the competitive ratio of eRMLF
and show that the second term vanishes asymptotically as n → ∞. These analyses are the subjects of
the following two subsections.

5.3 Small busy periods: competitive ratio

The first term in (5.2) considers busy periods with at most N
(n)
0 jobs. Theorem 2 ensures that, for

any problem instance I with N (n) ≤ N
(n)
0 jobs, the average sojourn time E[TeRMLF(I)] is bounded by

C1 log(N
(n)
0 )E[TSRPT(I)]. In particular

1

E[N (n)]
E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) ≤ N
(n)
0 )


 ≤

C1

E[N (n)]
log(N

(n)
0 )E



N(n)∑

i=1

T
(n)
SRPT,i1(N

(n) ≤ N
(n)
0 )




≤
C1

E[N (n)]
log(N

(n)
0 )E



N(n)∑

i=1

T
(n)
SRPT,i




= C1 log(N
(n)
0 )E[T

(n)
SRPT].

The proof is complete once we show that the second term in (5.2) is dominated by log(N
(n)
0 )E[T

(n)
SRPT]

as n → ∞.

5.4 Large busy periods: Hölders inequality

For any work-conserving scheduling policy, the sojourn time of an individual job is bounded by the
duration P (n) of the busy period. Therefore, the second term in (5.2) is bounded by

1

E[N (n)]
E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) > N
(n)
0 )


 ≤

1

E[N (n)]
E

[
N (n)P (n)

1(N (n) > N
(n)
0 )

]
. (5.3)

The functionals N (n) and P (n) are dependent, which makes an exact analysis of the expectation trouble-
some. This complication is avoided by applying Hölder’s inequality, which allows us to approximate the
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dependent expectation by the product of two expectations. In particular, for s̃ = s
s−1 ∈ (2, α) we have

1
s̃ +

1
s = 1 and hence

E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) > N
(n)
0 )


 ≤ E[(P (n))

s
s−1 ]

s−1
s E[(N (n))s1(N (n) > N

(n)
0 )]

1
s . (5.4)

Applying Hölder’s inequality once more with parameters 2
s and 2

2−s , we get

E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) > N
(n)
0 )


 ≤ E[(P (n))

s
s−1 ]

s−1
s E[(N (n))2]

1
2P(N (n) > N

(n)
0 )

2−s
2s . (5.5)

Finally, the tail probability of N (n) is bounded by Markov’s inequality. We therefore obtain the following
upper bound for the second term in (5.2):

1

E[N (n)]
E



N(n)∑

i=1

T
(n)
eRMLF,i1(N

(n) > N
(n)
0 )


 ≤ E[(P (n))

s
s−1 ]

s−1
s E[(N (n))2]

1
2
E[N (n)]

2−s
2s

−1

(N
(n)
0 )

2−s
2s

. (5.6)

The analysis of the average sojourn time for large busy periods is now reduced to the analysis of
moments of N (n) and P (n). The following two propositions quantify the behaviour of these moments.

Proposition 1. Assume supn∈{1,2,...} E[(B
(n))α] < ∞ for some α ≥ 2. Then

E[(P (n))κ] = O
(
(1− ρ(n))1−2κ

)
. (5.7)

for all κ ∈ [1, α]. Moreover, E[P (n)] = Θ
(
(1− ρ(n))−1

)
.

Proposition 2. Assume supn∈{1,2,...} E[(B
(n))α] < ∞ for some α ≥ 2. Then

E[(N (n))κ] = O
(
(1− ρ(n))1−2κ

)
. (5.8)

for all κ ∈ [1, α]. Moreover, E[N (n)] = Θ
(
(1− ρ(n))−1

)
.

Both propositions are proven in Section 6.
Remark 3. When applied to the Example Model, Proposition 1 states that E[(P (r))κ] is uniformly

bounded from above by C2(1− r)1−2κ, for some constant C2. Alternatively, the integer moments of the
busy period duration in an M/GI/1 queue can be calculated explicitly from its Laplace-Stieltjes trans-

form, yielding E[P (r)] = E[B]
1−r and E[(P (r))2] = E[B2]

(1−r)3 . One may therefore conclude that the asymptotic

behaviour of the bound in Proposition 1 is in fact sharp for the first two moments of the busy period
duration P (r) in the Example Model.

From Propositions 1 and 2 it follows that, for some constant C3,

1

E[N (n)]
E

[
P (n)N (n)

1(N (n) > N
(n)
0 )

]

≤ C3(1− ρ(n))(1−2 s
s−1)

s−1
s (1− ρ(n))−

3
2 (1− ρ(n))1−

2−s
2s (1− ρ(n))

2−s
2s

ζ

= C3(1− ρ(n))−1− 1
s (1− ρ(n))−

3
2 (1− ρ(n))

3
2
− 1

s (1− ρ(n))
2−s
2s

ζ

= C3(1− ρ(n))
2−s
2s

ζ− 2+s
s . (5.9)
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Comparing this to log(N
(n)
0 )E[T

(n)
SRPT] and noting that E[T

(n)
SRPT] ≥ E[B(n)] yields

lim sup
n→∞

1
E[N(n)]

E

[
P (n)N (n)

1(N (n) > N
(n)
0 )

]

log(N
(n)
0 )E[T

(n)
SRPT]

≤ lim sup
n→∞

C3(1− ρ(n))
2−s
2s

ζ− 2+s
s

ζ log
(

1
1−ρ(n)

)
E[B(n)]

≤ lim sup
n→∞

C3(1− ρ(n))
2−s
2s

ζ− 2+s
s

ζ log
(

1
1−ρ(n)

)
ρ0Amin

,

which tends to zero as n → ∞. This completes the proof of Theorem 3.

6 Moments of busy period functionals

This section proves several results on the moments of functionals. First, we introduce some new notation
in Section 6.1. Then, we state and prove two lemmas in Section 6.2 in order to prove Propositions 1
and 2. Sequentially, the propositions are proven in Sections 6.3 and 6.4. We emphasise that all of the
functionals considered are independent of the scheduling policy, provided that it is work-conserving.

6.1 Counting and netput processes

For any non-negative random variable Y , we define a random variable Ye that is distributed as the excess
of Y ; i.e. P(Ye ≤ x) =

∫ x
0 P(Y > x) dx/E[Y ]. Next, we define two counting processes in the GI/GI/1

queue under consideration. The first process N (n)(t) := inf{m ∈ {1, 2, . . .} : A
(n)
1 + . . .+A

(n)
m ≥ t}, t ≥ 0,

counts the number of arrivals in t time units, starting from a reference arrival that is also the first count.
The second process Ñ (n)(t), t ≥ 0, is similar and only differs by initializing the count at an arbitrary
point in time. Specifically,

Ñ (n)(t) =

{
0 if t < A

(n)
e ,

inf{m ∈ {1, 2, . . .} : A
(n)
e +A

(n)
1 + . . .+A

(n)
m ≥ t} otherwise.

These counting processes allow us to introduce two netput processes, X(n)(t) =
∑N(n)(t)

i=1 B
(n)
i − t and

X̃(n)(t) =
∑Ñ(n)(t)

i=1 B
(n)
i − t, that quantify the net amount of work that could have been processed by

the server in the t time units after an arrival, or respectively after an arbitrary point in time. Note
that X(t) becomes negative right after the first time that the queue is emptied. One may verify that
P(X̃(n)(t) > x) ≤ P(X(n)(t) > x) for all t ≥ 0, which will be denoted by X̃(n)(t) ≤st X(n)(t) in the
remainder of this paper.

Similarly, we define two discrete processes that quantify the netput process at an arrival instance,

denoted by S
(n)
m and S̃

(n)
m ,m ≥ 0. The process S

(n)
m is defined as S

(n)
0 := 0, S

(n)
m :=

∑m
i=1[B

(n)
i − A

(n)
i ]

and quantifies all the work that the server has received between the arrival of the reference job and

the m-th next arrival, minus the work that it could have addressed during this time. The process S̃
(n)
m

starts observing at an arbitrary point in time instead of at the arrival of a reference job. It is defined

as S̃
(n)
0 = −A

(n)
e , S̃

(n)
m = −A

(n)
e +

∑m
i=1[B

(n)
i − A

(n)
i ]. Again, we obtain the relation S̃

(n)
m ≤st S

(n)
m . Also,

one may verify that supt≥0 X
(n)(t) = supm∈{1,2,...} S

(n)
m , and hence by Asmussen [2, Cor. III.6.5] we have

supt≥0 X
(n)(t) = supm∈{0,1,...} S

(n)
m

d
= W (n). Here, ·

d
= · denotes equality in distribution. All sums

∑0
i=1

are understood to be zero.

6.2 Preliminary lemmas

The following two lemmas facilitate the proof of Propositions 1 and 2. Lemma 1 concerns the first
moment of N (n) and I(n), whereas Lemma 2 considers general moments of W (n).

11



Lemma 1. The relations

(1− ρ(n))E[N (n)] = Θ(1) and E[I(n)] = Θ(1) (6.1)

both hold as n → ∞.

Proof of Lemma 1. Since we have µ(n) = E[A(n)](1− ρ(n)) = Θ(1− ρ(n)), it suffices to prove the relation
µ(n)

E[N (n)] = Θ(1). Proposition X.3.1 in Asmussen [2], stating

E[I(n)] = µ(n)
E[N (n)], (6.2)

then implies that this is equivalent to the relation E[I(n)] = Θ(1).
Both the upper and the lower bound follow from Lotov [16], who considers the ladder height of a

random walk. Specifically, Lotov obtains upper bounds for the moments of the ladder epochs and the
moments of overshoot over an arbitrary non-negative level if the expectation of jumps is positive and
close to zero. As such, his results apply to the random walk −S(n) with ladder epochs N (n).

The upper bound is implied by Theorem 2 in Lotov [16], which claims that

µ(n)
E[N (n)] ≤ C4 (6.3)

for some constant C4 and all n, provided that supn∈{1,2,...} E[(max{A(n) −B(n), 0})2] < ∞. Accordance

with this condition follows directly from supn∈{1,2,...} E[(A
(n))2] < ∞.

The lower bound is implied by inequality (2) in Lotov [16]. In our model, we assumed that there
exist constants δ > 0, γ > 0 such that P(B(n) −A(n) ≥ δ) ≥ γ for all n. Lotov [16] then states

µ(n)
E[N (n)] ≥

∫ ∞

0
xdP(B(n) −A(n) ≤ x) ≥ δγ

for all n. This completes the proof.

Lemma 2. Let p > 0 and define q = max{2, p + 1}. Assume that supn∈{1,2,...} E[(B
(n))q] < ∞. Then

lim sup
n→∞

(1− ρ(n))pE[(W (n))p] < ∞. (6.4)

Remark 4. Consider the Example Model, and assume that jobs are served according to the FIFO
discipline. Then W (r) is just the waiting time of a job, and hence for some constant C5 the average

sojourn time E[T
(r)
FIFO] = E[W

(r)
FIFO] + E[B] ≤ C5

1−r + E[B] scales no worse than 1/(1 − r). Lemma 2

provides bounds on the work W (r) at an arrival for more general moments, provided that a sufficiently
high moment of the job size distribution exists.

Proof of Lemma 2. Since supn∈{1,2,...} E[A
(n)] < ∞, relation (6.4) is equivalent to

(µ(n))pE[(W (n))p] < ∞, (6.5)

which is proven below.

Assume p ≥ 1 and let E
(n)
i , i ∈ {1, 2, . . .}, be independent exponentially distributed random variables

with mean

E[E(n)] =
E[A(n)] + E[B(n)]

2
< E[A(n)].

We define E(n) := E
(n)
1 and note that supn∈{1,2,...} E[E

(n)] ≤ supn∈{1,2,...} E[A
(n)] < ∞.

By Asmussen [2, Cor. III.6.5] and subadditivity of suprema, W (n) is upper bounded as

W (n) d
= sup

m∈{0,1,2,...}

m∑

i=1

[
B

(n)
i −A

(n)
i

]
≤ sup

m∈{0,1,2,...}

m∑

i=1

[
B

(n)
i −E

(n)
i

]
+ sup

m∈{0,1,2,...}

m∑

i=1

[
E

(n)
i −A

(n)
i

]

=: W
(n)
1 +W

(n)
2 ,
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where W
(n)
1 can be interpreted as the total work in an M/GI/1 queue as observed by an arrival, and

W
(n)
2 as the total work in an GI/M/1 queue as observed by an arrival. As a consequence, P(W (n) >

x) ≤ P(W
(n)
1 +W

(n)
2 > x) ≤ P(W

(n)
1 > x/2) + P(W

(n)
2 > x/2) and thus

E[(W (n))p] = p

∫ ∞

0
xp−1

P(W (n) > x) dx

≤ p

∫ ∞

0
xp−1

P(W
(n)
1 > x/2) dx+ p

∫ ∞

0
xp−1

P(W
(n)
2 > x/2) dx

= 2p
(
E[(W

(n)
1 )p] + E[(W

(n)
2 )p]

)
.

First, we consider W
(n)
1 . Define the geometrically distributed random variable K

(n)
1 with support

{0, 1, . . .} and fail parameter

ξ
(n)
1 :=

E[B(n)]

E[E(n)]
=

2E[B(n)]

E[A(n)] + E[B(n)]
.

For notational convenience, we drop the superscript (n) of ξ
(n)
1 for the remainder of this section. The-

orem VIII.5.7 in Asmussen [2] presents a random sum representation of the functional W
(n)
1 in terms of

K
(n)
1 and B

(n)
e,i :

W
(n)
1

d
=

K
(n)
1∑

i=1

B
(n)
e,i .

Since f(x) = xp is a convex function for all p ≥ 1, Lemma 5 in Remerova et al. [24] implies

E[(W
(n)
1 )p] ≤ E[(K

(n)
1 )p]E[(B(n)

e )p]. (6.6)

The conditions of Lemma 2 ensure that the p-th moment of B
(n)
e is finite as n → ∞:

E[(B(n)
e )p] =

∫ ∞

0
xp dP(B(n)

e ≤ x) =
1

E[B(n)]

∫ ∞

0
xpP(B(n) > x) dx

=
1

(p+ 1)E[B(n)]

∫ ∞

0
xp+1 dP(B(n) ≤ x) =

1

(p+ 1)E[B(n)]
E[(B(n))p+1]. (6.7)

Therefore, we need to show that (µ(n))pE[(K
(n)
1 )p] is uniformly bounded as n → ∞. Let k = ⌊p⌋. Then

E[(K
(n)
1 )p] =

1− ξ1
(1− ξ1)p

∞∑

m=0

((1− ξ1)m)pξm1

≤
1− ξ1

(1− ξ1)p

⌊
1

1−ξ1

⌋

∑

m=0

((1− ξ1)m)kξm1 +
1− ξ1

(1− ξ1)p

∞∑

m=
⌊

1
1−ξ1

⌋
+1

((1− ξ1)m)k+1ξm1

≤
(1− ξ1)

k+1

(1− ξ1)p

∞∑

m=0

mkξm1 +
(1− ξ1)

k+2

(1− ξ1)p

∞∑

m=0

mk+1ξm1 . (6.8)

On the one hand, for any ℓ ∈ {1, 2, . . .}, we have

(1− ξ1)
ℓ+1ξℓ1

dℓ

dξℓ1

∞∑

m=0

ξm1 = (1− ξ1)
ℓ+1ξℓ1

dℓ

dξℓ1
(1− ξ1)

−1 = ℓ!ξℓ1. (6.9)
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On the other hand we have

(1− ξ1)
ℓ+1ξℓ1

dℓ

dξℓ1

∞∑

m=0

ξm1 = (1− ξ1)
ℓ+1

∞∑

m=ℓ

m(m− 1) · · · (m− ℓ+ 1)ξm1

= (1− ξ1)
ℓ+1

∞∑

m=0

mℓξm1 − (1− ξ1)
ℓ+1

ℓ−1∑

m=0

mℓξm1 + (1− ξ1)
ℓ+1

∞∑

m=ℓ

o(mℓ)ξm1 .

(6.10)

Combining equalities (6.9) and (6.10), we find that

(1− ξ1)
ℓ+1

∞∑

m=0

mℓξm1 = ℓ!ξℓ1 + (1− ξ1)
ℓ+1

ℓ−1∑

m=0

mℓξm1 + (1− ξ1)
ℓ+1

∞∑

m=ℓ

o(mℓ)ξm1 .

Now, for any ν > 0 there exists a Mν ∈ {1, 2, . . .} independent of the system index n such that for all
m ≥ Mν the o(mℓ) term is dominated by νmℓ. Fix such ν ∈ (0, 1) and Mν . Then

(1− ξ1)
ℓ+1

∞∑

m=0

mℓξm1 ≤ ℓ! + ℓℓ+1 + (1− ξ1)
ℓ+1ν

∞∑

m=Mν

mℓξm1 + (1− ξ1)
ℓ+1

Mν∑

m=0

o(mℓ)ξm1

≤ C6 + (1− ξ1)
ℓ+1ν

∞∑

m=0

mℓξm1

for some constant C6 > 0, and hence

(1− ξ1)
ℓ+1

∞∑

m=0

mℓξm1 ≤
C6

1− ν
. (6.11)

Since (µ(n)/(1 − ξ1))
p = (E[A(n)] + E[B(n)])p, we may conclude from relations (6.8) and (6.11) that

(µ(n))pE[(K
(n)
1 )p] is uniformly bounded from above as n → ∞, and so is (µ(n))pE[(W

(n)
1 )p] by (6.6).

Second, we consider the functional W
(n)
2 . Recall that W

(n)
2 denotes the steady-state workload in a

GI/M/1 queue upon arrival. Theorem VIII.5.8 and page 296 in Asmussen [2] together state that

W
(n)
2

d
=

K
(n)
2∑

i=1

E
(n)
i , (6.12)

where K
(n)
2 is a geometrically distributed random variable with support {0, 1, . . .} and unknown fail

parameter ξ
(n)
2 . Remerova et al. [24] again ensure that

E[(W
(n)
2 )p] ≤ E[(K

(n)
2 )p]E[(E(n))p], (6.13)

where the latter expectation is finite uniformly in n as a property of exponential distributions. The p-th

moment of K
(n)
2 is bounded by (6.8) and (6.11), so that

(µ(n))pE[(K
(n)
2 )p] ≤ C7

(
µ(n)

1− ξ
(n)
2

)p

(6.14)

for some constant C7 > 0. The proof is complete once we show µ(n)

1−ξ
(n)
2

= O(1).

From (6.12) it can be verified that P(W
(n)
2 = 0) = P(K

(n)
2 = 0) = 1 − ξ

(n)
2 . Additionally, by

Theorem VIII.2.3 in Asmussen [2], we have P(W
(n)
2 = 0) = 1/E[N

(n)
2 ] and hence E[N

(n)
2 ] = 1/(1− ξ

(n)
2 ).
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Here, N
(n)
2 is the steady-state number of jobs in a busy period of the GI/M/1 queue. Applying Lemma 1

with interarrival times A
(n)
i , job sizes E

(n)
i , and mean service between arrivals 1

2µ
(n) yields 1

2µ
(n)

E[N
(n)
2 ] =

Θ(1), and therefore µ(n)/(1− ξ
(n)
2 ) = O(1).

Finally, for 0 < p < 1 the lemma follows directly from the case p = 1 after observing that
(µ(n))pE[(W (n))p] ≤

(
µ(n)

E[W (n)]
)p

by Jensen’s inequality.

Lemmas 1 and 2 provide the asymptotic behaviour of functionals that are closely related to P (n) and
N (n). The remainder of this section utilizes these results in order to prove Propositions 1 and 2.

6.3 Busy period duration P
(n)

This section is devoted to the proof of Proposition 1. We wish to show that

E[(P (n))κ] = O
(
(1− ρ(n))1−2κ

)
. (5.7, revisited)

for all κ ∈ [1, α], provided that supn∈{1,2,...} E[(B
(n))α] < ∞ for some α ≥ 2. Moreover, we claim that

E[P (n)] = Θ
(
(1− ρ(n))−1

)
.

First, consider κ = 1. Due to Little’s law for a busy server, we have

1− ρ(n) =
E[I(n)]

E[I(n)] + E[P (n)]
, (6.15)

so that

E[P (n)] =
ρ(n)E[I(n)]

1− ρ(n)
. (6.16)

The result now follows from Lemma 1.
Second, consider κ > 1. Similar to (6.7), one obtains E[(P

(n)
e )κ−1] = E[(P (n))κ]/(κE[P (n)]) and

hence it suffices to show that E[(P
(n)
e )κ−1] = O((1 − ρ(n))2(1−κ)). We have the following convenient

representation for P
(n)
e [2, Thm. X.3.4]:

P (n)
e

d
= inf{τ ≥ 0 : X̃(n)(τ) ≤ −V (n) | V (n) > 0}

d
= inf{τ ≥ 0 : B(n)

e +W (n) + X̃(n)(τ) ≤ 0}.

The above relation allows us to bound P(P
(n)
e > t) as

P(P (n)
e > t) = P(inf{τ ≥ 0 : B(n)

e +W (n) + X̃(n)(τ) ≤ 0} > t)

= P(B(n)
e +W (n) + X̃(n)(τ) > 0,∀τ ≤ t)

≤ P(B(n)
e +W (n) + X̃(n)(t) + (1− ρ(n))t/2 > (1− ρ(n))t/2)

≤ P(B(n)
e > (1− ρ(n))t/6) + P(W (n) > (1− ρ(n))t/6)

+ P

(
sup
τ≥0

[X̃(n)(τ) + (1− ρ(n))τ/2] > (1− ρ(n))t/6

)
.

In Section 6.1 we derived the relations X̃(n)(τ) ≤st X
(n)(τ) and W (n) d

= supτ≥0 X
(n)(τ). These relations

imply

P(P (n)
e > t) ≤ P(B(n)

e > (1− ρ(n))t/6) + 2P

(
sup
τ≥0

[X(n)(τ) + (1− ρ(n))τ/2] > (1− ρ(n))t/6

)
. (6.17)
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The last inequality suggests that

E[(P (n)
e )κ−1] = (κ− 1)

∫ ∞

0
tκ−2

P(P (n)
e > t) dt

≤ (κ− 1)

∫ ∞

0
tκ−2

P(B(n)
e > (1− ρ(n))t/6) dt

+ 2(κ− 1)

∫ ∞

0
tκ−2

P

(
sup
τ≥0

[X(n)(τ) + (1− ρ(n))τ/2] > (1− ρ(n))t/6

)
dt.

To deal with the first term, note that

(κ− 1)

∫ ∞

0
tκ−2

P(B(n)
e > (1− ρ(n))t/6) dt = (κ− 1)

∫ ∞

0
tκ−2

P(6B(n)
e /(1 − ρ(n)) > t) dt

= E



(

6B
(n)
e

1− ρ(n)

)κ−1

 = O

(
(1− ρ(n))1−κ

)
E[(B(n)

e )κ−1] = o
(
(1− ρ(n))2(1−κ)

)
,

since E[(B(n))κ] < ∞ implies E[(B
(n)
e )κ−1] < ∞ (cf. 6.7).

For the second term, observe that

sup
τ≥0

[X(n)(τ) + (1− ρ(n))τ/2] = sup
τ≥0



N(n)(τ)∑

i=1

B
(n)
i − τ + (1− ρ(n))τ/2




= sup
τ≥0



N(n)(τ)∑

i=1

B
(n)
i −

1 + ρ(n)

2
τ


 = sup

n∈{0,1,2,...}

[
n∑

i=1

{
B

(n)
i −

1 + ρ(n)

2
A

(n)
i

}]

=: W̃ (n),

where W̃ (n) is equal in distribution to the steady-state cumulative amount of work at arrival in a

GI/GI/1 queue with job sizes B
(n)
i and interarrival times 1+ρ(n)

2 A
(n)
i , i ∈ {1, 2, . . .}. The mean amount

of work that the server completes between two consecutive arrivals in this system is then given by

µ̃(n) := 1+ρ(n)

2 E[A(n)]− E[B(n)] = 1−ρ(n)

2 E[A(n)]. We therefore obtain

(κ− 1)

∫ ∞

0
tκ−2

P

(
sup
τ≥0

[X(n)(τ) + (1− ρ(n))τ/2] > (1− ρ(n))t/6

)
dt

= (κ− 1)

∫ ∞

0
tκ−2

P

(
6

1− ρ(n)
W̃ (n) > t

)
dt

=
6κ−1

(1− ρ(n))κ−1(µ̃(n))κ−1
E[(µ̃(n)W̃ (n))κ−1]

≤
C8

(1− ρ(n))2(κ−1)
E[(µ̃(n)W̃ (n))κ−1]

for some constant C8 > 0, by using Lemma 1. Finally, E[(µ̃(n)W̃ (n))κ−1] is bounded due to Lemma 2,
which completes the proof of the proposition.

6.4 Arrivals in a busy period N
(n)

This section contains the proof of Proposition 2. The proposition states that

E[(N (n))κ] = O
(
(1− ρ(n))1−2κ

)
. (5.8, revisited)
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for all κ ∈ [1, α], provided that supn∈{1,2,...} E[(B
(n))α] < ∞ for some α ≥ 2. Moreover, we claim that

E[N (n)] = Θ
(
(1− ρ(n))−1

)
.

The structure of the proof is identical to the proof of Proposition 1. For κ = 1, the result follows
directly from Lemma 1. Therefore, we consider E[(N (n))κ] for κ > 1. Similar to the proof of Proposition 1,
we use the relation

E[(N (n)
e )κ−1] =

E[(N (n))κ]

κE[N (n)]
(6.18)

and note that

N (n)
e

d
= inf{η ∈ {0, 1, 2, . . .} : S̃(n)

η ≤ −V (n) | V (n) > 0}
d
= inf{η ∈ {0, 1, 2, . . .} : B(n)

e +W (n) + S̃(n)
η ≤ 0}.

As before, the relations S̃
(n)
η ≤st S

(n)
η and W (n) d

= supη∈{0,1,...} S
(n)
η are exploited in order to obtain an

equivalent of (6.17):

P(N (n)
e > m) ≤ P(B(n)

e > (1− ρ(n))m/6) + 2P

(
sup

η∈{0,1,2,...}
[S(n)

η + (1− ρ(n))η/2] > (1− ρ(n))m/6

)
.

For any η ∈ {0, 1, 2, . . .}, consider τ
(n)
η := A

(n)
1 + . . . +A

(n)
η . Then S

(n)
η = X(n)(τ

(n)
η ), so in particular

P(N (n)
e > m) ≤ P(B(n)

e > (1− ρ(n))m/6) + 2P

(
sup
τ≥0

[X(n)(τ) + (1− ρ(n))τ/2] > (1− ρ(n))m/6

)
.

The remainder of the proof is identical to that of Proposition 1.

7 Conclusion

In this paper, we proved a result about the average case performance of (an extension of) the Randomized
Multilevel Feedback (RMLF) algorithm in a GI/GI/1 queue. Specifically, the gap in average sojourn
time between the RMLF algorithm and the Shortest Remaining Processing Time algorithm behaves like
O(log(1/(1− ρ(n)))) and this bound is tight for the M/M/1 queue. An appealing property of the RMLF

algorithm is that its implementation does not depend on the input distributions F
(n)
A and F

(n)
B ; however,

if F
(n)
A and F

(n)
B are known then there can be blind algorithms with a better performance than RMLF

(e.g. Foreground-Background if F
(n)
B has decreasing failure rate). The result was established by using

techniques from both competitive analysis and applied probability. As the structure of the proof is quite
general, it would be interesting to explore other possibilities in the intersection of these areas.
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The eRMLF algorithm is presented after the introduction of some notation. Define the queues
Q̃z, z ∈ Z and a “new job” queue Q̃∗. Let the targets Ũz,j be given by Ũz,j = 2z max{1, 2 − β̃j},

where the β̃j ’s are independent random variables with exponential cumulative distribution function

P(β̃j ≤ x) = 1 − exp[−θx ln j]. Identical to the RMLF algorithm, θ is a symbolic constant fixed at

θ = 12. All symbols J̃j , r̃j , B̃j and w̃j(t) are defined analogue to the symbols without accent in the
RMLF algorithm. All release times r̃j must be distinct (e.g. all interarrival times are strictly positive),

and jobs may have any size B̃j ≥ 0. Note that the original RMLF algorithm requires the job sizes to be
uniformly bounded from below, but does not restrict the interarrival times to be non-zero.

Every job J̃h is assigned an initial target Ũ∗,h upon arrival, after which it is immediately served in

Q̃∗ by a dedicated server. It departs from Q̃∗ on three occasions:
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• The amount of service received equals the size B̃h of the job. In this case, J̃h is completed and
leaves the system.

• A new job enters the system. In this case, J̃h is moved to a queue Q̃z, z ∈ Z, that it naturally
belongs to based on the amount of service w̃h(t) it has obtained thus far; that is, it is moved to
the unique queue Q̃z∗

h
that satisfies Ũz∗

h
−1,h ≤ w̃h(t) < Ũz∗

h
,h.

• The amount of service received equals the initial target Ũ∗,h. In this case, similar to the previous

case, J̃h is moved to a queue Q̃z that it naturally belongs to.

The choice of the initial target Ũ∗,h depends on the system state:

• If the system is empty upon arrival, then the server is dedicated to J̃h regardless of the queue that
J̃h is in. In this case, the target can be chosen arbitrarily; we set it to Ũ∗,h = Ũ0,h.

• If the system is not empty upon arrival, then there must be a lowest-index non-empty queue
Q̃z∗

h
(possibly after moving the job originally in Q̃∗ to another queue). J̃h may now experience a

dedicated server until the moment when it would enter queue Q̃z∗
h
based on its obtained service and

the (z∗h − 1)-th target Ũz∗
h
−1,h. Therefore, J̃h should be moved no later then after Ũ∗,h = Ũz∗

h
−1,h

units of obtained service.

If Q̃∗ is empty, then eRMLF always works on the non-empty queue Q̃z with the lowest index z ∈ Z.
Jobs in Q̃z are always served in a First Come First Serve order.

The eRMLF is formally presented in Figure 2. Observe that both RMLF and eRMLF preserve the
ordering of the jobs; that is, if job J̃j is released prior to job J̃k then as long as both jobs are incomplete:

• job J̃j will never be in a lower queue than job J̃k, and

• if both jobs are in the same queue, then job J̃j is closer to the front of the queue than job J̃k.

We are now ready to prove Theorem 2, stating that

E[TeRMLF(I)] ≤ C1 log(m)E[TSRPT(I)] (3.3, revisited)

for all instances I of size at most m for a universal constant C1. This constant is identical to the constant
C1 in Theorem 1.

Proof of Theorem 2. Consider any instance Ĩ for eRMLF of size at most m. Since all jobs of size zero
are immediately served in queue Q̃∗ upon arrival, we assume without loss of generality that the instance
does not contain any jobs of size zero. As a consequence, the minimum job size B̃min = min

j=1,...,|Ĩ|
B̃j is

strictly positive. We now transform the instance Ĩ for eRMLF to a corresponding instance I for RMLF.
Define the scaling parameter g := ⌊log2(B̃min)⌋ − 1 ∈ Z, satisfying 2−gB̃min ≥ 2. The instance

I consists out of |Ĩ | jobs that are scaled versions of the original |Ĩ| jobs; specifically, job Jj has size

Bj := 2−gB̃j and release date rj := 2−g r̃j. Then, the smallest job is of size at least 2 and the RMLF
algorithm may be applied to the instance I.

Since the jobs are released in the same order as in the original instance, we note that the random
variables βj assigned by RMLF have the same distribution as the β̃j assigned by eRMLF. We therefore

couple these random variables in a trivial way: βj ≡ β̃j for all j = 1, . . . , |Ĩ |. It immediately follows

that the targets Ũz,j as assigned to Ĩ by eRMLF and the targets Ui,j as assigned to I by RMLF satisfy

Ũi,j = Ui,j for all i ∈ {0, 1, 2, . . .}. Additionally, the initial RMLF target U0,j satisfies U0,j = Ũ0,j =

2g−g max{1, 2 − β̃j} = 2−gŨg,j.
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Algorithm eRMLF: At all times the collection of released, but uncompleted, jobs are partitioned
into queues, Q̃∗, Q̃z, z ∈ Z. We say that Q̃i is lower than Q̃j for i < j. Q̃∗ is the lowest queue.

For each job J̃j ∈ Q̃i, Ũi,j ∈ [2i, 2i+1] when it entered Q̃i. eRMLF maintains the invariant that it
is always running the job at the front of the lowest non-empty queue.
When a job J̃h is released at time r̃h, eRMLF takes the following actions:

• If, just prior to r̃h, all queues were empty, then

– Job J̃h is enqueued on Q̃∗.

– The initial target Ũ∗,h is set to Ũ0,h = max{1, 2− β̃h}.

• If, just prior to r̃h, there are unfinished jobs in the system but Q̃∗ is empty, then

– Job J̃h is enqueued on Q̃∗.

– The initial target Ũ∗,h is set to Ũz∗

h
−1,h = 2z

∗

h
−1 max{1, 2 − β̃h}, where the queue

index z∗h = min{z ∈ Z : Q̃z non-empty at time t} corresponds to the lowest non-
empty queue.

• If, just prior to r̃h, Q̃
∗ is non-empty, then Q̃∗ = {J̃h−1} at that time. Now,

– The target Ũz∗

h
,h−1 = 2z

∗

h max{1, 2 − β̃h−1} with z∗h := min{z ∈ Z : w̃h−1(r̃h) ≤

Ũz,h−1}} is the lowest target not yet reached by job J̃h−1.

– Job J̃h−1 is dequeued from Q̃∗.

– Job J̃h−1 is enqueued on Q̃z∗

h
.

– Job J̃h is enqueued on Q̃∗.

– The initial target Ũ∗,h is set to Ũz∗

h
−1,h = 2z

∗

h
−1 max{1, 2− β̃h}.

• If, just prior to r̃h, it was the case that eRMLF was running a job J̃j , then J̃j is pre-empted.

• eRMLF begins running J̃h.

If at some time t, a job J̃j ∈ Q̃z−1 is being run when w̃j(t) becomes equal to Ũz−1,j, then eRMLF
takes the following actions:

• Job J̃j is dequeued from Q̃z−1.

• Job J̃j is enqueued on Q̃z.

• The target Ũz,j is set to 2Ũz−1,j = 2z max{1, 2− β̃j}.

If at some time t, a job J̃j ∈ Q̃∗ is being run when w̃j(t) becomes equal to Ũ∗,j, then eRMLF
takes the following actions:

• Job J̃j is dequeued from Q̃∗.

• Job J̃j is enqueued on Q̃z∗

h
, where z∗h = log2

(
w̃j(t)/max{1, 2− β̃j}

)
+ 1.

• The target Ũz∗

h
,j is set to 2Ũ∗,j = 2z

∗

h max{1, 2− β̃j}.

Whenever a job is completed, it is removed from its queue.

Figure 2: Formal statement of eRMLF algorithm.

We will show that the above construction implies an equivalence between RMLF and eRMLF. For
all z ∈ Z and t ≥ 0 define the sets

Q̃z(t) :=
{
J̃j : Ũz−1,j ≤ w̃j(t) < Ũz,j

}
(.1)
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that contain all jobs in the system at time t that are in queue Q̃z, or the most recently released job if
it has received a similar amount of service. The equivalence is first observed between the initial RMLF
queue Q0(t) and the augmented eRMLF queue Q̂(t), defined as

Q0(t) := {Jj : wj(t) < U0,j} (.2)

and

Q̂(t) :=

g⋃

z=−∞

Q̃z(t) =
{
J̃j : w̃j(t) < Ũg,j

}
, (.3)

respectively. One may observe that since Q0 is the highest priority queue, it experiences a dedicated,
work-conserving server that works at unit speed on jobs Jj with sizes U0,j. Therefore, the event that the
RMLF server works on Q0 is equivalent to the event {Q0(t) > 0}.

We assume without loss of generality that job 1 arrives at time r1 = 0. The arrival of this job
initiates a first busy period for Q0(t) of N1 jobs, where N1 is such that the cumulative targets U0,j of
the first N1 jobs can be served before the (N1 + 1)-th job is released. It is defined as N1 = inf{k ≥ 1 :∑k

j=1 U0,j − rj+1 ≤ 0}, where r|Ĩ|+1 is understood as plus infinity. The duration of the busy period is

given by P1 =
∑N1

j=1U0,j =
∑N1

j=1 2
−gŨg,j . The server may then work on jobs in higher queues (perceived

as idle time by Q0) until time rN1+1, when a new busy period is initiated. For t ∈ [0, rN1+1) we have
now obtained

Q0(t) > 0 ⇔ t ≤ P1 ⇔ 2gt ≤

N1∑

j=1

Ũg,j. (.4)

By a similar analysis of the augmented queue Q̂ we find that for all t ∈ [0, 2grN1+1) = [0, r̃N1+1) the
relation Q̂(t) > 0 ⇔ Q0(2

−gt) > 0 holds, and for all t ≥ 0 by a straightforward generalisation of the
above procedure. Observing that both algorithms preserve the ordering of jobs, we may similarly show
that the eRMLF server processes job J̃j in queue Q̃g+i at time t if and only if the RMLF server processes
job Jj in queue Qi at time 2gt for all i ∈ {1, 2, . . .} and t ≥ 0.

From the above results, one may deduce that the average sojourn time E[TeRMLF(Ĩ)] of instance
Ĩ under algorithm eRMLF equals 2g times the average sojourn time E[TRMLF(I)] of instance I under
RMLF. The competitive ratio of RMLF as stated in Theorem 1 hence guarantees that, for all instances
Ĩ of size at most m,

E[TeRMLF(Ĩ)] = 2gE[TRMLF(I)] ≤ C1 log(m)2gE[TSRPT(I)]. (.5)

The competitive ratio of eRMLF is concluded by verifying

2gE[TSRPT(I)] = E[TSRPT(Ĩ)], (.6)

which is a direct consequence of our scaling. In particular, the constant C1 in the upper bound is the
same for RMLF and eRMLF.

.
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