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On the Complexity of Robust PCA and

ℓ1-Norm Low-Rank Matrix Approximation

Nicolas Gillis∗ Stephen A. Vavasis†

Abstract

The low-rank matrix approximation problem with respect to the component-wise ℓ1-norm (ℓ1-
LRA), which is closely related to robust principal component analysis (PCA), has become a very
popular tool in data mining and machine learning. Robust PCA aims at recovering a low-rank ma-
trix that was perturbed with sparse noise, with applications for example in foreground-background
video separation. Although ℓ1-LRA is strongly believed to be NP-hard, there is, to the best of our
knowledge, no formal proof of this fact. In this paper, we prove that ℓ1-LRA is NP-hard, already
in the rank-one case, using a reduction from MAX CUT. Our derivations draw interesting connec-
tions between ℓ1-LRA and several other well-known problems, namely, robust PCA, ℓ0-LRA, binary
matrix factorization, a particular densest bipartite subgraph problem, the computation of the cut
norm of {−1,+1} matrices, and the discrete basis problem, which we all prove to be NP-hard.

Keywords. Robust PCA, low-rank matrix approximations, ℓ1 norm, binary matrix factorization,
cut norm, computational complexity

1 Introduction

Low-rank matrix approximation is a key problem in data analysis and machine learning. It is equivalent
to linear dimensionality reduction that approximates a set of data points via a low-dimensional linear
subspace. Given a matrix M ∈ R

m×n and a factorization rank r ≤ min(m,n), the problem can be
stated as follows

min
X∈Rm×n

||M −X|| such that rank(X) ≤ r,

where ||.|| is a matrix norm used to measure the error of the approximation. Equivalently, the matrix
X can be written as the outer product of two matrices and we have

min
U∈Rm×r ,V ∈Rr×n

||M − UV || .

Typically, the columns of the matrix M represent n data points in a m-dimensional space. The above
decomposition gives M(:, j) ≈

∑r
k=1 U(:, k)V (k, j) for all j, and hence is a linear and low-dimensional

model for the data: the columns of U are the basis of the linear subspace while each column of V
gives the coordinates in the basis U to approximate each data point.

The choice of the norm ||.|| usually depends on the problem at hand and the noise model that is
assumed on the input data. The most widely used norm is the Frobenius norm:

min
U∈Rm×r ,V ∈Rr×n

||M − UV ||2F =
∑

i,j

(M − UV )2ij , (1.1)
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which assumes Gaussian noise. The problem (1.1) can be solved via the singular value decomposition
(SVD); see [18] and the references therein. It is closely related to principal component analysis (PCA)
as both problems are essentially equivalent (in PCA, the data is usually assumed to be mean centered).
However, in some applications, other metrics might have to be used; here are two important examples:

• Weights and missing data. Adding weights in the objective function, that is, minimizing
∑

i,j Wij(M − UV )2ij for some nonnegative weight matrix W ∈ R
m×n
+ , allows to take into ac-

count different confidence levels among the entries of the input data M [15], or take into account
missing entries (corresponding to zero entries of W ). This has applications in machine learning
for recommender systems [25], in computer vision to recover structure from motion [35], and
in control for system identification [27, 37]. However, the problem is NP-hard for any fixed
factorization rank [17], even in the rank-one case (that is, for r = 1).

• Sparse input matrix. If the input matrix is sparse, which is typical for example in applications
involving large graphs and networks or document data sets, Gaussian noise is not a good model
and it makes more sense to minimize for example the (generalized) Kullback-Leibler divergence

D(M ||UV ) =
∑

i,j

(

Mij log

(
Mij

(UV )ij

)

−Mij + (UV )ij

)

;

see, e.g., the discussion in [9] and the references therein.

Another important example that has been extensively studied is when the noise is sparse. In that
case, the following problem is often considered:

min
X∈Rm×n,S∈Rm×n

rank(X) + λ||S||0 such that M = X + S, (1.2)

where ||.||0 is the ℓ0 ‘norm’ defined as

||S||0 = |{(i, j) | Sij 6= 0 }|

that counts the number of nonzero entries in the matrix S, and λ > 0 is a penalty parameter; see, e.g.,
[39] and the references therein. Note that the equality constraint M = X + S can be replaced with
||M −X − S|| ≤ ǫ in case some other type of noise is present (e.g., using the Frobenius norm allows
to model both Gaussian and sparse noise). This problem is sometimes referred to as robust PCA [7].
Equivalently, if the rank of X is fixed to r, the problem (1.2) can be written as

min
U∈Rm×r ,V ∈Rr×n

||M − UV ||0, (1.3)

which we will refer to as ℓ0 low-rank matrix approximation (ℓ0-LRA).
Several heuristic algorithms have been proposed for this problem. The two main families are the

following:

1. Non-linear optimization-based algorithms. Using the formulation (1.3) and replacing the ℓ0 norm
by its well-known convex surrogate, the ℓ1 norm, we have

min
U∈Rm×r ,V ∈Rr×n

||M − UV ||1 =
∑

i,j

|Mij − (UV )ij |, (1.4)

which we will refer to as ℓ1-LRA. One can apply standard non-linear optimization schemes
to (1.4), e.g., sequential rank-one updates [21], alternating optimization [22] (a.k.a. coordinate
descent), the Wiberg algorithm [12], augmented Lagrangian approaches [42], successive projec-
tions on hyperplanes and linear programming [5], to cite a few. The main drawback of this class
of methods is that it does not guarantee to recover the global optimum of (1.4) and is in general
sensitive to initialization. (In fact, we will show that this problem is NP-hard; see Theorem 3.)
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2. Convexification. Starting from the formulation (1.2), the standard convexification approach is
to use the ℓ1 norm as a proxy for sparsity and the nuclear norm ||.||∗ as a proxy for the rank
function [7]. The nuclear norm ||X||∗ =

∑

i σi(X) is the sum of the singular values of X.
Denoting σ(X) the vector containing the singular values of X, we have rank(X) = ||σ(X)||0
and ||X||∗ = ||σ(X)||1 which explains this choice of the nuclear norm: it is the ℓ1 norm of the
vector of singular values. Finally, the difficult combinatorial problem (1.2) is replaced with the
following SDP-representable optimization problem (hence tractable) [8]:

min
X,L

||X||∗ + λ||L||1 such that M = X + L. (1.5)

Given that the input matrix M has the sought structure (that is, sparse + low-rank) and satisfies
some additional conditions (e.g., the non-zero entries of the sparse noise are not too numerous
and appear randomly among the entries of M), solving (1.5) guarantees to recover the sought
solution [8, 7, 40]. This model has attracted a lot attention lately, both for its theoretical,
algorithmic and application-oriented aspects.

The two main drawback of this approach are that,

(a) if the input matrix is far from being a low-rank matrix plus sparse noise, the solution
of (1.5) can be very poor, and

(b) it requires to solve an optimization problem in nm variables (for example, in foreground-
background video separation, n is the number of pixels and m the number of frames, which
can both be rather high).

More recently, a simple algorithm based on alternating projections (alternatively project onto
the set of low-rank matrices and sparse matrices) was proved to recover the sought solutions
under reasonable conditions [30] (similar to that of the convexification-based approaches).

Problems (1.3), (1.4), (1.5) and variants have been used for many applications, e.g., foreground-
background video separation, face recognition, latent semantic indexing, graphical modeling with
latent variables, matrix rigidity and composite system identification; see the discussion in [7, 8, 32]
and the references therein. It can also be used to identify large and dense subgraphs in bipartite
graphs. Let M be the biadjacency matrix of a graph representing the relationships between two
groups of objects, e.g., movies vs. users, documents vs. words, or papers vs. authors. Let us focus
on the movies vs. users example: each row of M corresponds to a movie, each column to a user, and
Mij = 1 if and only if user j has watched movie i. Finding a subset of movies and a subset of users
that is fully connected (referred to as a biclique) amounts to finding a community (a group of users
watching the same movies). In the unweighted case, the matrix M is binary and it can be easily
checked that a community correspond to a rank-one binary matrix (a rectangle of ones). Moreover, in
practice, some edges are often missing inside a community (all users have not watched all movies from
their community) or some edges between communities might be present (some users might belong
to several communities or watch movies from other communities). An important problem in this
setting is to find the largest community. This can be cast as a rank-one robust PCA problem (see also
Section 2). Let us illustrate this with a simple example.

Example 1. Assume we have a single community represented by the following matrix (the first three
movies have been watched by the first four users):

M =







1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 0 0 0 0







=







1
1
1
0







(
1 1 1 1 0

)
.
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In real-world problems, some sparse noise is added to the matrix M (see above). Under such perturba-
tions, the optimal rank-one solution of ℓ2-LRA (1.1) loses the underlying structure very quickly, even
when only a few entries in M are modified: for example, adding three edges gives the following optimal
rank-one approximation

M̃ =







1 1 1 1 0
1 1 1 1 1
1 1 1 1 0
1 0 0 0 1







≈







1.03 0.92 0.92 0.92 0.44
1.15 1.02 1.02 1.02 0.50
1.03 0.92 0.92 0.92 0.44
0.40 0.36 0.36 0.36 0.17







,

while the optimal rank-one solution1 of (1.3) and (1.4) is given by M . Ames and Vavasis [2], and
Doan and Vavasis [11] studied this particular variant of robust PCA (although they did not call it that)
and showed that the convexification approach based on the nuclear norm is able to recover the largest
community given that sufficiently few edges are perturbed (either randomly or by an adversary).

Another closely related class of low-rank matrix approximation problems has also attracted much
attention lately, namely

min
X,rank(X)=r

n∑

i=1

(
||M(:, i) −X(:, i)||2

)p
.

For p = 2, this is ℓ2-LRA (1.1). For 1 ≤ p 6= 2, the problem has been shown to be NP-hard [19, 10];
and approximation algorithms have been proposed; see [10] and the references therein.

1.1 Contribution and outline of the paper

Although robust PCA and its variants are widely believed to be NP-hard (see, e.g., [26, 39]), it has,
to the best of our knowledge, never been proved rigorously. In this paper, we prove that ℓ0-LRA and
ℓ1-LRA are NP-hard, already in the rank-one case, that is, for r = 1. This solves the first part of the
open question 2 in [38].

In section 2, we focus on ℓ0-LRA (1.3) of a binary matrix, which we show is equivalent to rank-one
binary matrix factorization (BMF). We also show the connection with the problem of finding a large
and dense subgraph in a bipartite graph. In section 3, we prove that rank-one BMF is equivalent to the
cut norm computation of {−1,+1} matrices, which we prove to be NP-hard using an equivalence with
the computation of the norm ||.||∞→1 and a reduction from MAX CUT (Theorem 1). This implies
that ℓ0-LRA and rank-one BMF are both NP-hard. In section 4, we prove that, for a {−1,+1} input
matrix, any optimal solution of rank-one ℓ1-LRA (1.4) can be transformed into a rank-one solution
with entries in {−1,+1} (Theorem 2). We also show that, for {−1,+1} matrices, rank-one ℓ1-LRA is
equivalent to the computation of the norm ||.||∞→1 which implies NP-hardness of ℓ1-LRA (Theorem 3).
In section 5, we briefly describe how the complexity results in the rank-one case can be generalized to
higher ranks.

2 Binary matrix factorization and densest bipartite subgraph

Let M ∈ {0, 1}m×n be a binary matrix. Rank-one BMF is the problem

min
u∈{0,1}m,v∈{0,1}n

||M − uvT ||. (2.1)

BMF was used successfully to mine discrete patterns with applications for example to analyze gene ex-
pression data [34, 41, 29]. We refer the reader to the tutorial http://people.mpi-inf.mpg.de/~pmiettin/bmf_tutorial
and the references therein for more details. Although BMF is conjectured to be NP-hard [34, 29],

1You can run this example with our code available from https://sites.google.com/site/nicolasgillis/code.
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there is, to the best of our knowledge, no formal proof of this fact. We will prove in this paper that
it is in fact NP-hard.

For BMF, all component-wise norms, that is, all norms of the form ||M−uvT || = ∑

i,j f(Mi,j, uivj)
for some function f with f(z, z) = 0 and f(z, z′) > 0 for z′ 6= z, are equivalent since both M and
uvT are binary matrices. For such norms, ||M − uvT || amounts to count the number of mismatches
between M and uvT and hence rank-one BMF can be formulated as follows

min
u∈{0,1}m,v∈{0,1}n

||M − uvT ||0. (2.2)

The matrix M ∈ {0, 1}m×n can be interpreted as the biadjacency of a bipartite graph G =
(S × T,E) with S = {s1, s2, . . . , sm}, T = {t1, t2, . . . , tn}, and E ⊂ S × T where Mij = 1 ⇐⇒
(si, tj) ∈ E. Let us denote E(S′, T ′) the number of edges in G in the subgraph induced by S′ × T ′,
and denote S̄′ = S\S′. Then (2.2) is the problem of finding two subsets S′ ⊆ S and T ′ ⊆ T (with
si ∈ S′ ⇐⇒ ui = 1 and tj ∈ V ′

1 ⇐⇒ vj = 1), such that the subsets of vertices S′ and T ′ maximize
the following quantity

E(S′, T ′)
︸ ︷︷ ︸

# edges in S′ × T ′

− (|S′||T ′| −E(S′, T ′))
︸ ︷︷ ︸

# non-edges in S′ × T ′

− (|E| − E(S′, T ′))
︸ ︷︷ ︸

# edges outside S′ × T ′

= 3E(S′, T ′)− |S′||T ′| − |E|.

This problem is a particular variant of the general problem of finding large dense subgraphs in bipartite
graphs; see, e.g., [3, 23, 24] and the references therein. If the size of the subgraph is fixed a priori,
finding the densest subgraph is NP-hard [3], even to approximate [23]. However, finding a partition

S′ × T ′ that maximizes E(S′,T ′)√
|S′||T ′|

can be done in polynomial time [20]. The problem above is slightly

different because we do not fix the size nor try to find the densest subgraph: it looks for a subgraph
that is at the same time large and relatively dense. Hence, as far as we know, the complexity results
for the densest subgraph do not apply to our problem (at least we could not find a reduction from
these problems to ours).

In the following we prove that rank-one ℓ0-LRA is equivalent to rank-one BMF. Let us show the
following straightforward lemma.

Lemma 1. Let x ∈ R
m and y ∈ R

n, and let M be a binary matrix. Applying the following simple
transformation to x and y

Φ(x)i =

{
0 if xi = 0,
1 otherwise,

gives
||M − Φ(x)Φ(y)T ||0 ≤ ||M − xyT ||0.

Proof. There are two cases

1. If xiyj = 0, then Φ(xi)Φ(yj) = 0 hence the transformation does not affect the approximation.

2. If xiyj 6= 0, then Φ(xi)Φ(yj) = 1. If Mij = 0 then ||Mij − xiyj||0 = ||M − Φ(xi)Φ(yj)||0 = 1
while, if Mij = 1, ||Mij − xiyj||0 ≥ ||M − Φ(xi)Φ(yj)||0 = 0.

Corollary 1. For a binary input matrix M , rank-one ℓ0-LRA is equivalent to rank-one BMF.

In the next section, we prove that rank-one ℓ0-LRA of a binary matrix is NP-hard, showing it is
equivalent to the computation of the cut norm of a {−1,+1} matrix which we show is NP-hard using
a reduction from MAX CUT.
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3 Cut norm of {−1,+1} matrices and rank-one ℓ0-LRA

Given a matrix M , its cut norm is defined as [14]

||M ||C = max
u∈{0,1}m,v∈{0,1}n

∣
∣uTMv

∣
∣ . (3.1)

The fact that this is a norm on R
m×n (regarded as a vector space isomorphic to R

mn) can be checked
easily. In [14], Frieze and Kannan study the low-rank matrix approximation problem with respect to
the cut norm and design an algorithm that provides a solution which is the sum of O(1/ǫ2) rank-one
matrices with error at most ǫmn.

In [1], Alon and Naor prove NP-hardness of the problem of computing the cut norm using a
reduction from MAX CUT. The reduction uses matrices M with entries in {−1, 0,+1}.

Let us show how the cut norm computation is related to low-rank matrix approximations. Let
M be a binary matrix and let us derive some equivalent forms of rank-one BMF or, equivalently, to
rank-one ℓ0-LRA (Corollary 1). First note that for any (u, v), we have

||M − uvT ||2F = ||M ||2F − 2
∑

i,j

Mijuivj +
∑

i,j

(uivj)
2. (3.2)

Hence, we obtain

min
u∈{0,1}m,v∈{0,1}n

||M − uvT ||2F = ||M ||2F + min
u∈{0,1}m,v∈{0,1}n

∑

i,j

uivj − 2
∑

i,j

Mijuivj

= ||M ||2F + min
u∈{0,1}m,v∈{0,1}n

∑

i,j

(1− 2Mij)uivj

= ||M ||2F + max
u∈{0,1}m,v∈{0,1}n

∑

i,j

(2Mij − 1)uivj .

The last problem is closely related to the cut norm of the {−1,+1} matrix A = 2M − 1 and −A. In
fact,

||A||C = max



 max
u∈{0,1}m,v∈{0,1}n

∑

i,j

(2Mij − 1)uivj, max
u∈{0,1}m,v∈{0,1}n

∑

i,j

(1− 2Mij)uivj



 .

Hence, if we were able to solve maxu∈{0,1}m,v∈{0,1}n u
TXv for any X ∈ {−1,+1}m×n, we would be

able to compute the cut norm of A. However, the cut norm problem was shown to be NP-hard only
for A ∈ {−1, 0,+1}m×n using a reduction from MAX CUT. It turns out that the reduction no longer
holds for A ∈ {−1,+1}m×n.

In the following, we prove that computing the cut norm of {−1,+1}m×n matrices is NP-hard hence
rank-one BMF and rank-one ℓ0-LRA are also NP-hard.

First, let us consider the following norm introduced in [1]: for A ∈ R
m×n

||A||∞→1 = max
u∈{−1,+1}m,v∈{−1,+1}n

uTAv. (3.3)

To the best of our knowledge, solving (3.3) was first shown to be NP-hard in [31] (for matrices in
{0, 1, p} for some positive real p); see also [33].

This norm is closely related to the cut norm, in fact, it can be easily shown that [1]

||A||C ≤ ||A||∞→1 ≤ 4||A||C .

Moreover,
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Lemma 2. Given A ∈ R
m×n, we have

||A||∞→1 =

∥
∥
∥
∥

(
A −A
−A A

)∥
∥
∥
∥
C

.

Proof. It was proved in [1] that a matrix B whose rows and columns sum to zero satisfies

||B||∞→1 = 4||B||C .

In fact, let e be the vector of all ones, and u = 2x− e and v = 2y − e have entries in {−1,+1} where
x and y have binary entries. Then,

uTBv = (2x− e)TB(2y − e) = 4xTBy − 2xTBe− 2eTBy + eTBe = 4xTBy

since Be = 0 and BT e = 0 by assumption.
Since the rows and columns of the matrix

B =

(
A −A
−A A

)

sum to zero, we have ||B||∞→1 = 4||B||C . To conclude the proof, we show that ||B||∞→1 = 4||A||∞→1.
Let u = [u1;u2] and v = [v1; v2] be a solution of (3.3) for B. We have

||B||∞→1 = uTBv = uT1 Av1 − uT1 Av2 + uT2 Av2 − uT2 Av1.

Clearly, each term has to be smaller than ||A||∞→1 since u and v have entries in {−1,+1} and
||A||∞→1 = || −A||∞→1. However, taking u1 and v1 such that

||A||∞→1 = uT1 Av1,

and u2 = −u1, v2 = −v1 gives ||B||∞→1 = 4||A||∞→1.

Let us show that computing the norm ||.||∞→1 is NP-hard for {−1,+1} matrices, which will imply,
by Lemma 2, that it is NP-hard to compute the cut norm of {−1,+1} matrices.

Theorem 1. It is NP-hard to compute the norm ||.||∞→1 for {−1,+1}-matrices.

Proof. The problem under consideration is, given an m × n matrix A all of whose entries are ±1,
find u ∈ {−1, 1}m and v ∈ {−1, 1}n to maximize uTAv. Let us define P1 the decision version of this
problem:

(P1) Given A and an integer d∗, does there exist u ∈ {−1, 1}m and v ∈ {−1, 1}n such that
uTAv ≥ d∗?

We prove that this problem is NP-hard by a reduction from unweighted MAX CUT.

(MAX CUT) Given a graph G = (V,E) and a positive integer c∗, is there a cut containing
at least c∗ edges?

Given an instance (G, c∗) of MAX CUT, let us produce an instance (A, d∗) of P1 as follows. Let p ≥ 1
be an integer to be determined later. The matrix A has dimension m×n with m = p|E| and n = p|V |.
It will be constructed via p × p blocks as follows. Suppose edge q ∈ E, 1 ≤ q ≤ |E|, has endpoints
(i, j), 1 ≤ i < j ≤ |V |. Then the (q, i) block of A is the p × p block of all 1’s; the (q, j) block of A
is the p × p block of all −1’s, and the (q, l) block of A for any l ∈ {1, . . . , |V |} − {i, j} is the p × p
Hadamard matrix H.
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Recall that a p× p Hadamard matrix H is a matrix all of whose entries are ±1 and such that the
columns are mutually orthogonal. In the case that p is a power of 2, there is a straightforward recursive
construction of a Hadamard matrix: the 1×1 Hadamard matrix is [ 1 ], and the p×p Hadamard matrix
is [H0,H0;−H0,H0], where H0 is the (p/2)×(p/2) Hadamard matrix. For the remainder of this proof,
assume that p is a power of 2 so that we can rely on this simple construction.

Suppose (S, S̄) is a partition of V (i.e., a cut). We can associate vectors (u, v) with S as follows:
for i ∈ S, let the ith block of v contain p 1’s. For i ∈ S̄, let the ith block of v contain p −1’s. For
q = (i, j) ∈ E, i < j, such that i ∈ S, j ∈ S̄, let the qth block of u contain p 1’s. For (i, j) ∈ E, i < j,
such that i ∈ S̄, j ∈ S, let the qth block of u contain p −1’s. Finally, for q = (i, j) such that {i, j} ⊂ S
or {i, j} ⊂ S̄, the qth block of u may be selected arbitrarily.

For the choice of (u, v) in the last paragraph, let us obtain a lower bound on uTAv. Observe that
the signs have been chosen such that for each q = (i, j) that crosses the cut, the blocks of A indexed
(q, i) and (q, j) contribute 2p2 to uTAv. Blocks of A indexed (q, i) and (q, j) such that q = (i, j)
does not cross the cut contribute 0. Finally, we have to account for the blocks of the form (q, l)
where l is not an endpoint of q. For this, we make the following observation: if u0, v0 are two ±1 p-
dimensional vectors and H is a p×p Hadamard matrix, then |uT0 Hv0| ≤ p3/2 [6]. This follows because
‖u0‖2 = ‖v0‖2 = ‖H‖2 =

√
p. (The last equation follows because the ℓ2-norm of an orthogonal matrix

is exactly 1, and a Hadamard matrix is an orthogonal matrix scaled by
√
p.)

Thus, a lower bound on the objective uTAv for the cut (S, S̄) is 2p2c− |E||V |p3/2, where c is the
size of the cut induced by (S, S̄) because there at most |E||V | blocks of the form (q, l) where l is not an
endpoint of q. So the decision problem posed for P1 is: “Given A constructed above, is the objective
function for this A at least d∗ = 2p2c∗ − |E||V |p3/2?” We have already shown that if there is a cut of
size c∗ in the graph, then there is a solution of size d∗ for P1.

The last thing to prove is that if the max cut of G has fewer than c∗ edges, then P1 is a no-
instance, i.e., for any u ∈ {−1, 1}|E|p and v ∈ {−1, 1}|V |p, uTAv < d∗. Choose any u ∈ {−1, 1}|E|p and
v ∈ {−1, 1}|V |p. Let sq denote the number of 1’s in block q of u, q = 1, . . . |E| (so that p − sq is the
number of −1’s in the block). Let ti denote the number of 1’s in block i of v. It is straightforward to
show that contribution to the objective function from the 2|E| blocks of A that correspond to edges
(i.e., the blocks numbered (q, i) where i is an endpoint of q) is precisely T1, where

T1 =
∑

q=(i,j)∈E

2(ti − tj)(2sq − p).

Now observe that
T1 ≤

∑

q=(i,j)∈E

2|ti − tj|p

since the second factor in the previous summation has absolute value at most p. Next, notice that this
latter summation, regarded as a function of t ∈ [0, p]|V |, is maximized at an extreme point because it
is a convex function. Therefore, there exists a vector t̃ ∈ {0, p}|V | such that

T1 ≤ 2p
∑

q=(i,j)∈E

|t̃i − t̃j |.

The latter is exactly 2p2 multiplied by the size of cut induced by t̃ (i.e., the cut (S, S̄) with i ∈ S if
and only if t̃i = p). Since we are considering the case that all cuts have fewer than c∗ edges,

T1 ≤ 2p2(c∗ − 1).

This accounts for the 2|E| blocks that correspond to edges. For the |E||V | − 2|E| blocks that do not
correspond to edges, the contribution to the objective function is at most p3/2 for the same reason as
above. Therefore,

uTAv ≤ 2p2(c∗ − 1) + |E||V |p3/2 = 2p2c∗ − (2p2 − |E||V |p3/2).
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We see that the right-hand side is less than d∗ = 2p2c∗ − |E||V |p3/2 provided that 2|E||V |p3/2 < 2p2,
i.e.,

√
p > |E||V |. Therefore, we choose p > |E|2|V |2 and also p a power of 2.

Corollary 2. It is NP-hard to compute the cut norm (3.1) of {−1,+1}-matrices.

Corollary 3. Rank-one ℓ0-LRA, that is, problem (1.3) with r = 1, is NP-hard.

Corollary 4. Rank-one BMF (2.1) is NP-hard.

Remark 1 (The discrete basis problem and boolean matrix factorization). The discrete basis problem
(DSP) [28], also known as Boolean matrix factorization, is similar to BMF and can be formulated a
follows: given a binary matrix M ∈ {0, 1}m×n and a rank r, solve

min
U∈{0,1}m×r ,V ∈{0,1}r×n

||M − U ◦ V || (3.4)

where (U ◦ V )ij =
⊕

k UikVkj where 0
⊕

0 = 0, 0
⊕

1 = 1 and 1
⊕

1 = 1. For r = 1, BMF and DSP
coincide, therefore our result also implies that rank-one DSP is NP-hard.

Note that DSP is closely related to the rectangle covering problem which is equivalent to the mini-
mum biclique cover problem in bipartite graph; see Fiorini et al. [13].

4 The component-wise ℓ1 low-rank matrix approximation problem

In this section, we prove that for a {−1,+1} matrix, any optimal solution of rank-one ℓ1-LRA (1.4) can
be assumed to have entries in {−1,+1} (Theorem 2). Moreover, we prove that computing the norm
||.||∞→1 of a {−1,+1} matrix is equivalent to solving rank-one ℓ1-LRA for that matrix (Lemma 3).
This will imply that rank-one ℓ1-LRA is NP-hard (Theorem 3).

Lemma 3. For A ∈ {−1,+1}m×n, computing ||A||∞→1 is equivalent to solving

min
x∈{−1,+1}m,y∈{−1,+1}n

||A− xyT ||1.

Proof. We have

2 min
x∈{−1,+1}m,y∈{−1,+1}n

||A− xyT ||1 = min
x∈{−1,+1}m,y∈{−1,+1}n

||A− xyT ||2F

= ||A||2F + min
x∈{−1,+1}m,y∈{−1,+1}n

−2xTAy + ||xyT ||2F

= ||A||2F +mn+ 2||A||∞→1.

The first equality follows from the fact that A−uvT has entries in {−2, 0,+2}, the second from (3.2),
and the third by definition of ||A||∞→1 and since xyT has entries in {−1,+1}.

Theorem 2. Let A be a {−1,+1} matrix, then any optimal solution of rank-one ℓ1-LRA (1.4) for
input matrix A can be transformed into an optimal solution whose entries are in {−1,+1}. This
implies that

min
x∈{−1,+1}m,y∈{−1,+1}n

||A− xyT ||1 = min
x∈Rm,y∈Rn

||A− xyT ||1.

Proof. Let (u, v) be an optimal solution of rank-one ℓ1-LRA for matrix A, that is, of

min
x∈Rm,y∈Rn

||A− xyT ||1 =
∑

i,j

|Aij − xiyj|.

First note that u 6= 0 and v 6= 0 since we can approximate exactly at least one entry of A, e.g., take
u1 = 1, v1 = A11 and all other entries of u and v equal to zero.
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By optimality, we have for all 1 ≤ i ≤ m that

ui = argminxi∈R

∑

j

|Aij − xivj| = argminxi∈R

∑

j,vj 6=0

|Aij − xivj |.

The objective function of this problem is piece-wise linear hence we can assume without loss of gen-
erality (w.l.o.g.) that ui is equal to one of the break points (otherwise we can easily modify u so that
this property holds), that is, there exists j such that vj 6= 0 and

ui =
Aij

vj
∈
{

1

vj
,
−1

vj

}

.

By symmetry, the same holds of v. Note that this implies that we can assume w.l.o.g. that u and v
have all their entries different from zero.

Let the entries of u take k different values in absolute value 0 < α1 < α2 < · · · < αk. Note that
the entries of v also take k different values in absolute value, namely 1/αp for 1 ≤ p ≤ k.

We partition the solution (u, v) into k blocks (Ku
p ,K

v
p ) for 1 ≤ p ≤ k such that for all i ∈ Ku

p and
j ∈ Kv

p

ui = ±αp and vj = ± 1

αp
.

Let us assume w.l.o.g. that

• u and v are scaled such that maxi |ui| = 1 hence minj |vj | = 1. This implies αk = 1.

• we permute the entries of u (and the corresponding rows of A) such that the entries of |u| are
in nondecreasing order, and we permute the entries of v (and the corresponding rows of A) such
that the entries of |v| are in nonincreasing order.

Therefore, after suitable permutations and scaling, the rank-one solution can be put, w.l.o.g., in the
following form

u = (±α1, . . . ,±α1,±α2, . . . ,±α2, . . . ,±αk−1, . . . ,±αk−1,±1, . . . ,±1)T ,

and
v =

(
±α−1

1 , . . . ,±α−1
1 ,±α−1

2 , . . . ,±α−1
2 , . . . ,±α−1

k−1, . . . ,±α−1
k−1,±1, . . . ,±1

)T
,

which gives the following rank-one solution:

±α−1
1 . . . ±α−1

1 . . . ±α−1
k−1 . . . ±α−1

k−1 ±1 . . . ±1

±α1
... ± 1 . . . ± α1

αk−1
1 ±α1 1

±α1
...

...
...

...

±αk−1
... ±αk−1

α1
1 . . . ± 1 ±αk−1 1

±αk−1

±1
... ± 1

α1
1 . . . ± 1

αk−1

1 ± 1

±1

10



where 1 is the matrix of all ones of appropriate dimensions. The rank-one matrix uvT is a block matrix
with k2 blocks at positions (p, q) for 1 ≤ p, q ≤ k. Note that the diagonal blocks are not necessarily
square, that is, |u| may contain more (or less) entries equal to αp than |v| contains entries equal to
α−1
p . Note also that the blocks above (resp. below) the diagonal have entries strictly smaller (resp.

larger) than one in absolute value since α1 < α2 < · · · < αk = 1.

Now, let us consider two modifications of this rank-one solution and let us see how the objective
function of rank-one ℓ1-LRA (1.4) changes with these modifications.

Move 1. We divide the entries in u different from ±1 by αk−1 and multiply the entries in v different
from ±1 by αk−1 from which we get the following solution (u′, v′):

u′ =

(

± α1

αk−1
, . . . ,± α1

αk−1
,± α2

αk−1
, . . . ,± α2

αk−1
, . . . ,

αk−2

αk−1
, . . . ,

αk−2

αk−1
,±1, . . . ,±1

)T

,

and

v′ =

(

±αk−1

α1
, . . . ,±αk−1

α1
,±αk−1

α2
, . . . ,±αk−1

α2
, . . . ,±αk−1

αk−2
, . . . ,±αk−1

αk−2
,±1, . . . ,±1

)T

.

Compared to uvT , only the blocks at position (p, k) and (k, p) for 1 ≤ p ≤ k − 1 have been modified

by the changes from (u, v) to (u′, v′). Let us denote δ
(1)
p the modification of the objective function for

the two blocks (p, k) and (k, p) (the 1 stands for move 1), that is,

δ(1)p =
∑

(i,j) in (p, k), (k, p)-blocks

(
|Mij − u′iv

′
j | − |Mij − uivj|

)
.

Let us denote ap (resp. bp) the number of entries in the (p, k)-block such that the sign of A does (resp.
does not) match the sign in uvT . Let us also denote cp (resp. dp) the number of entries in the block
(k, p) such that the sign of A and the sign of uvT does (resp. does not) match. To simplify notations,
let us denote β = αk−1 where 1 > β ≥ αp for all 1 ≤ p ≤ k − 1 by construction.

In the block (p, k) (1 ≤ p ≤ k − 1) the error of the solution uvT is given by

e(p,k) = ap(1− αp) + bp(1 + αp),

while the error of the solution u′v′T is given by

e′(p,k) = ap

(

1− αp

β

)

+ bp

(

1 +
αp

β

)

.

The difference is given by

e′(p,k) − e(p,k) = −αp

(
1

β
− 1

)

ap + αp

(
1

β
− 1

)

bp =
αp(1− β)

β
(−ap + bp).

Note that 1
αp

> 1 and
αp

β ≤ 1 for all 1 ≤ p ≤ k − 1. Doing exactly the same for the block (k, p), we

obtain the error of the solution uvT ,

e(k,p) = cp

(
1

αp
− 1

)

+ dp

(
1

αp
+ 1

)

,

and the error of the solution u′v′T ,

e′(k,p) = cp

(
β

αp
− 1

)

+ dp

(
β

αp
+ 1

)

,
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so that

e′(k,p) − e(k,p) = − 1

αp
(1− β) cp −

1

αp
(1− β) dp = −1− β

αp
(cp + dp).

Finally, the total difference between the objective function of (u, v) and (u′, v′) is given by

δ(1) = ||A− u′v′T ||1 − ||A− uvT ||1 =

k−1∑

p=1

δ(1)p = (1− β)

k−1∑

p=1

(

−αp

β
ap +

αp

β
bp −

1

αp
cp −

1

αp
dp

)

,

and is nonnegative since (u, v) is an optimal solution.

Move 2. We divide the entries in u different from ±1 by −αk−1 to get u′′ and multiply the entries
in v different from ±1 by −αk−1 to get v′′. Again, only the blocks at position (k, p) and (p, k) for
1 ≤ p ≤ k− 1 are affected by these modifications and we can, following exactly the same procedure as
for the first move, compute the difference between the objective function value of (u′′, v′′) and (u, v).
The error of the solution u′′v′′T for the block (p, k) is given by

e′′(p,k) = ap

(

1 +
αp

β

)

+ bp

(

1− αp

β

)

,

so that

e′′(p,k) − e(p,k) = αp

(
1

β
+ 1

)

ap − αp

(
1

β
+ 1

)

bp.

For the block (k, p), we obtain the error of the solution u′′v′′T ,

e′′(k,p) = cp

(
β

αp
+ 1

)

+ dp

(
β

αp
− 1

)

,

so that

e′′(k,p) − e(k,p) = cp

(

2 +
β

αp
− 1

αp

)

+ dp

(
β

αp
− 2− 1

αp

)

.

Finally,

δ(2) =

k−1∑

p=1

(

αp

(
1 + β

β

)

ap − αp

(
1 + β

β

)

bp +

(

2 +
β

αp
− 1

αp

)

cp −
(

2 +
1

αp
− β

αp

)

dp

)

.

Combining Move 1 and Move 2 Now, recall that, by optimality of (u, v), δ(1) ≥ 0 and δ(2) ≥ 0.
Let us compute the following nonnegative linear combination of δ(1) and δ(2):

0 ≤ 1− β

1 + β
δ(1) + δ(2) =

k−1∑

p=1

(

−αp(β + 1)

β
+

αp(β + 1)

β

)

ap

+

(
αp(β + 1)

β
− αp(1 + β)

β

)

bp

+

(−(1 + β)

αp
+ 2 +

β

αp
− 1

αp

)

cp

+

(−(1 + β)

αp
− 2− 1

αp
+

β

αp

)

dp

= −
k−1∑

p=1

(
2(1 − αp)

αp
cp +

2(1 + αp)

αp
dp

)

.

For all 1 ≤ p ≤ k − 1, the coefficients for cp and dp are positive which implies that cp = dp = 0 for all
1 ≤ p ≤ k − 1. In other words, all the (k, p)-blocks for 1 ≤ p ≤ k − 1 are empty: this is only possible
if v has entries only in {−1,+1} hence u also has all its entries in {−1,+1}.

12



Theorem 3. Rank-one ℓ1-LRA (1.4) is NP-hard.

Proof. This follows from Theorem 1, Lemma 3 and Theorem 2.

Remark 2 (Local minima of ℓ1-LRA). Initially, we thought that any local minimum of ℓ1-LRA (1.4)
of a {−1,+1} matrix can be assumed w.l.o.g. to have entries in {−1,+1}. However, this is not always
true. Here is a counter example: for

A =











1 1 1 1 1 1
1 1 1 1 1 1
1 −1 −1 −1 1 1

−1 1 −1 −1 1 1
−1 −1 1 −1 1 1
−1 −1 −1 1 1 1











the solution
u = [1, 1, x, x, x, x]T , v = [1, 1, 1, 1, 1/x, 1/x]T

is a stationary point of ℓ1-LRA for any 0.5 < x < 1, and is a local minimum for x =
√
2/2 (there is a

segment of stationary points with a local minimum in its interior) with error 23.3. Using the ‘Move 2’
from the proof of Theorem 2, we obtain

u = [1, 1,−1,−1,−1,−1]T , v = [1, 1, 1, 1,−1,−1]T

which is an optimal solution with error 16 (with 8 mismatches).

Theorem 2 also has practical implications: in fact, the difficult combinatorial problem (3.3) of com-
puting the norm ||.||∞→1 has a continuous characterization given by ℓ1-LRA (1.4). Therefore, a nice
and simple heuristic for computing the norm ||.||∞→1 is to use any (iterative) nonlinear optimization
scheme for ℓ1-LRA (see the introduction). Moreover, we have a good initial candidate: the solution of
ℓ2-LRA that can be computed efficiently via the truncated singular value decomposition. The same
continuous characterization can be used to solve other closely related combinatorial problems such
as the densest bipartite subgraph problem described in Section 2. We have implemented a simple
cyclic coordinate descent method in Matlab for ℓ1-LRA, as described in [21]. The code is available
from https://sites.google.com/site/nicolasgillis/code, and also contain the matrices from
remark 2 and example 1.

5 Higher-rank matrix approximations

It is easy to generalize our rank-one NP-hardness results to higher ranks. In fact, the same construction
as in [16, Theorem 3] can be used. For example, for the rank-one BMF problem, instead of considering
the binary input matrix M as in the rank-one case, we consider the input matrix

A =








M 0 . . . 0
0 M . . . 0
...

...
. . .

...
0 0 . . . M








= diag(M, r).

The idea is that an optimal rank-r approximation of A is constituted of rank-one factors that do not
have nonzero entries in more than one diagonal block (otherwise the solution can be improved). Hence
an optimal solution for rank-r BMF of A leads to a combination of optimal rank-one approximations
of M , one for each block; see the proof in [16, Theorem 3] for more details.
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Note however that using this construction, the ratio between the factorization rank r and the
dimension of the input matrix remains unchanged. Moreover, ℓ1-LRA with r = min(m,n)− 1 can be
solved in polynomial time using linear programming [4, 5]. Therefore, it remains an open question
whether ℓ1-LRA is NP-hard for different values of r depending on m and n. For example, is ℓ1-LRA
a difficult problem for r = min(m,n)− 2 ?

6 Conclusion and Future Work

The main results of this paper are

• The equivalence between robust PCA, rank-one ℓ0 low-rank matrix approximation, rank-one
binary matrix factorization, a particular densest bipartite subgraph problem, the computation
of the cut norm and the norm ||.||∞→1 of {−1,+1} matrices, and the rank-one discrete basis
problem.

• The proof that the optimal rank-one solution of ℓ1-LRA of {−1,+1} matrices can be assumed
without loss of generality to be a {−1,+1} matrix (Theorem 2).

• The NP-hardness of the computation of the norm ||.||∞→1 of {−1,+1} matrices (Theorem 1)
which allowed us to prove NP-hardness of all the problems listed above.

After the publication of an earlier of this paper, Song, Woodruff and Zhong proposed several
approximation algorithms for ℓ1-LRA [36], addressing the second part of the open question 2 in [38].
In particular, they showed that it is possible to achieve an approximation factor α = (log n) · poly(r)
in nnz(M) + (m + n)poly(r) time, where nnz(M) denotes the number of non-zero entries of M . If r
is constant, they further improve the approximation ratio to O(1) with a poly(mn)-time algorithm.
They also discuss the extension of their results to ℓp-LRA for 1 < p < 2, and to other related problems,
where ℓp-LRA is defined as

min
U∈Rp×r,V ∈Rr×n

||M − UV ||p =
∑

i,j

|Mij − (UV )ij|p.

Directions for further research include the study of the complexity of ℓp-LRA, for p /∈ {0, 1},
except for p = 2 that can be solved in polynomial time via the singular value decomposition. We
expect that the techniques introduced in section 4 can be extended to show NP-hardness of ℓp-LRA
for p in (0, 1) (because optimal solutions have the same structure as for the ℓ1-norm). It would be
particularly interesting to know whether ℓ∞-LRA is NP-hard, in particular in the rank-one case. In
fact, it was shown to be NP-hard for r = min(m,n) − 1 in [31] (although the problem is stated in a
slightly different way).
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